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ABSTRACT 

UCRL-17985 

A semiclassical theory is developed to describe high energy 

(;(,10 BeV) reactions of hadrons with nuclei. The theory is applied 

to analysis of 19.3 BeV/c proton scattering data of Bellettini .• et a1. 

at CERN. These data imply, at least for lead, that the nuclear density 

has a tail extending beyond the charge density distribution determined 

by electron scattering. Also, the effective density just within the 

tail region must be lower than the electron data suggest. Tentative 

explanations of these facts are given, and further experiments suggested. 

* Now at Department of Physics, State University of New York, Stony 

Brook, New York. 

t Now at Physique Thtorique et Mathtmatique, Facult~ des Sciences, 

Universit~ Libre de Bruxelles, Brussels, Belgium. 
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I. INTRODUCTION 

Observation of hadron interactions with nuclei is a staple of the 

nuclear physicist. However, theoretical analysis of such observations is 

simplified enormously when the incident hadron has a very high energy. The 

main reason for this is that the hadron travels faster than the characteristic 

excitations of the nuclear medium. It arrives at any point in the nucleus 

before any other signal of its presence resulting from previous collisions 

with target nucleons. The hadron takes a "snapshot" of the nuclear ground 

state. Thus the full complexity of the many-body problem can be avoided and 

one can use the incident hadron to probe nature's solution to the A body 

problem for a nucleus of mass number A without solving the corresponding 

(A+l) problem. 

The large accelerators now available make it feasible to carry out 

such experiments. Quantitative theories with only a fe,,r fundamental para­

meters related to hadron-nucleon interactions and to the structure of the 

nucleus can thus be tested. 

In this paper we present a crude beginning of such theoretical 

efforts. In Sec. II, we give a semiclassical theory of high energy hadron­

nucleus interactions.' The main advantage of our discussion over previous 

onesl is that it permits the easiest possible transfer of classical intuition 

to a quantum mechanical problem. In Sec. III we analyze some data of 

Bellettini et al. 2 on proton-nucleus scattering at 19.3 GeV/c. A future 

paper will contain an analysis of experimental data on "AI" production in 

nuclei. 
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II. THE EIKONAJ;., (HIGH EN"ERGY) OPrICAL MODEL 

In this section we expound the conceptual basis of the high 

energy optical model. More formal discussions may be found in the 

1 
references. 

A. The EikonalWave Flmction. 

(i) Basic assumptions. Consider a particle of very high wave 

/\ 
number k ~ k z , incident on a many-body system. At any point r 

.,vv· 

the system is nearly uniform on the scale of the incident wavelength. 

If it were completely uniform we could deduce from translational 

invariance that the wave function would be 

1jr(r) 
ikz 

cp(r) e 
,,,/'.,' ., ...... ' 

(2.1 ) 

cp(r) 
iKz 

e .", 

and k' k + K would be the wave number in the medium. Since the 

medium is not completely uniform, we take K as a slowly vary:i.ng 

function of r and write the eikonal wave function 

cp(r) 
NY 

z 

= exp i J dz' K(x, y, z') . 

-CD 

(2.2 ) 

To determine K, we assume that the medium is made up of scatterers 

f(e) eikr/r eikz which produce scattered waves when a wave is incident 

upon them. Only the waves scattered in the forward direction combine 

V 
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coherently to modify the incident wave. The modification d ~ from 

a slab of thickness dz is then 

d ~ = i g p (r) fO ~ dz . 

Here p is the density of scatterers and fO is the forward scattering 

amplitude on a single nucleon. The geometrical 

constant g is easily obtained. The density of the incoming wave 

obeys the equation 

(2.4 ) 

but this must also be given by the classical attenuation formula, 

(2.5 ) 

where aT is the total cross section for interaction with a single 

scatterer. Using the optical theorem 

we find g 

4:rr 
k 

A} the deBroglie wavelength, and 

ikz ikz 
e ~(r) = e exp i 

M-

z 

~ dz' A fO p(x, y, z') . 

-00 

(2.6) 
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All the calculations in this paper depend on such an approxima:-

tion to describe the projectile wave in the region of the target 

system. 

For later purposes it is useful to note the relation between 

the wave number shift K(r) and the optical potential V(r), - ~ 

K(r) ::: 8k ::: (dk/dE) BE ::: (dk/dE) (-V) ::: - V/v • (2.8 ) 
r-,. 

We have used the relations K/k < < 1 and E + V ::: constant; v is 

the velocity of the incident particle and E, its kinetic energy. 

What we have found so far is this: Provided that the nucleus 

may be treated as a gas of slowly moving free nucleons, and that the 

incid.ent hadron propagates freely through the nucleus between collisions 

with these nucleons, then at high energies the ~ function ~ 

develops in the same way as the classical intensity distribution 

for unscattered beam particles, with the sUbstitution -0: -.. if A. 
T 

I c 

::: O:~2 + i (Ref)",. Since the quantlw mechanical intensity IQ 

is simply j~f, Ic and IQ are the same if the target particles 

are uncorrelated, but we shall see that differences arise when 

correlations are present. These differences come because the quantum 

mechanical wave packet is coherent over regions large compared to 

internucleon spacing, or, for that matter, to the size of the nucleus! 

In the practically impossible case that the packet has dimensions of 

1 fm or less,one would use I 
c 

instead of to describe the beam. 
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Of course, in this limit there would be no diffraction scattering by 

the nucleus. 

Our derivation applies only for a dilute gas of nucleons, i.e., 

one in which the separation of target particles is large compared to 

their size (the range of force between target and projectile). Never-

theless (2.7) is correct even for a dense gas provided that the density 

varies little over a target particle diameter, and that the nucleons 

are uncorrelated. 3 

(ii) Spin effects. To order -1 A , where A is the mass number, 

there are as many nucleons with spin up as with spin down at any point 

in a nucleus. Therefore the quantity fO which appears in (2.7) must 

be averaged over the target nucleon spin, .S/2. For the same reason 

fO is averaged over the target isospin ~2) with a weight factor 

(1 - (N - Z)/A 1"z)' This spin and isospin averaging makes the nuclear 

scattering sensitive to a different amplitude from that which describes 

forward scattering on a free target nucleon. Thus, comparisionof 

results with nucleons and nuclei as targets may permit the isolation of 

spin dependent effects. This could be useful, for example, in high 

energy p - p scattering, where the forward scattering amplitude may 

be written a + b '£1 . 22 + c O"lz 02z . Direct determination of ~ b 

and c separately would require a double polarization experiment 

which is impractical at present. 

(iii) Impulse approximation. There are several factors which 

may lead to deviations from (2.7). We have assumed that the scattering 
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amplitude f(e) is the same in the medium as for a free target particle. 

The validity of this assumption, which constitutes the "impulse 

approximation, " is discussed in the Appendix. Suffice it to '2I3y here that 

the error associated with this approximation is expected to be small. 

« 1%) for the applications which concern us. 
'" 

(iv) Correlation effects. We have assumed so far that the target 

particles are uncorrelated. We may see the effect of correlations by 

semi-classical considerations. Assume there are only two-particle 

correlations. We wish to compute the probability 8p that the 

trajectory of an incoming projectile will intercept exactly one target 

particle in an interval 5z small compared to the mean free path but 

large compared to correlation distances. To second order in 8z, this 

probability is 

8p (probability of at least one collision)-(probability of two collisions) 

5z 

=~ 
5z 

dz p ( zi) <iT - J 
o 

dz 

5z 

J 
z 

dz'p(2)(z )'\ /\ 2 
z, z' z) <iT (2.9) 

with p (2)(r, r') 
All MI 

:= p(~) pC,~') (1 + C(';' ,~')) , and the correlation 

function C depends strongly on the difference of its arguments 

r - r' 
,I\,.,,J' I'l(0l' J 

but weakly on the average R 
/l/V 

(r + r' )/2. The result is 
I\<\ ,-v.; 

8p <i~ 5z 
1 

(p <iT 8z) 
2 

- p <iT 8z (p <iT Il c ) (2.10) 0 - 2" ..1. 

with R (r) =[ ds C(r, r + s'i). c iI" .N" ·w 

.. , 

:, 

(,0. 
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The approximation of integrating C to infinite s == z I - z is 

justified because 8z is large compared to correlation distances. 

The second term in (2.10) is simply the second term in the 
-PO'T8z . 

expansion of 5p = 1 - e , the probability of interaction in 

the absence of correlations. The third term, linear in 5z, implies 

a correction to the mean free path to account for correlations, 

(2.11 ) 

One may express the implications of (2.11) quite simply. 

When target particles clump together, it becomes more likely tr~t a 

projectile which misses one will miss another) and. the mean free path 

is increased. The argument is equally valid with all. s1.gns reversed. 

An analysis in terms of probability amplitudes instead of 

probability density (-0' ~ i f A) leads to the correlation correction 
T 

to the wave number shift K, 

(2 .. 12 ) 

The alert reader may notice that the correlation term in (2.12) is 

only half that suggested by applying the optical theorem to (2.11). 

This is a genuine quantum mechanical effect. 

Following Johnston and Watson4 we shall take R ~ - .SF 
c 

in saturated nuclear matter. This turns out to decrease by about 
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20% the mean free path of a proton in the interior of a nucleus. The 

negative \( 
c 

reflects the almost universal assumption, still untested 

experimentally, that nucleons in the nucleus do not interpenetrate each 

other. 

In the outer region of the nucleus the density falls below its 

central, saturated, value, and the nucleons may cluster in regions of 

higher than average density, leaving holes between them. Such cluster-

ing would imply positive values of R (r) c iN 
at the nuclear surface. Alpha 

particle clustering (which of course involves up to four-nucleon 

correlations) could lead to a reduction of K (no correlations) by, say, 

25%. Such strong correlation effects are best computed, not in terms 

of R ,but by carrying out the analysis leading to (2.7) for a system 
c 

of target a particles, 

where fO is the forward hadron-alpha. scatterin?, amplitude. a 

(2.13 ) 

If the total p - a cross section is thrice the p - p cross section, 

we obtain the 25% figure mentioned above.5 Furthermore, the a particle 

would be '~lacker" than a nucleon, so that the real part of fO for an 

a could be proportionately smaller than that for a nucleon. Sj.nce 

the degree of surface clustering is a matter of considera·ble debate, 

we have left it adjustable when trying to fit experimental data. 

B. The Elastic Scattering Amplitude. 

(i) Huygens' principle and analogy with partial wave expansion. 

Knowing the eikonal wave function ~(r), we are ready to compute the 
.r-...,'V' 
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amplitude for elastic scattering. The wave just beyond the target 

system has suffered a complex phase shift 28 relative to a wave in 

the absence of the target, with 

00 

28(x,y) == 'J dz K(x, y, z) • (2.14) 

-00 

We may compute the scattering amplitude by Huygens' principle 

from the difference between the phase shifted wave and an unscattered 

wave, 

F(q) 
I'V J i(q x+q~y) ( . ( ) ) 

(k/21!i) dx dy e 1 -c \.e2 1.8 x,y _ 1 . 

where q is the momentum transfer to the projectile. If the target 
Nv 

is spherically symmetric, then 8(x,y) will be simply 8(b), with 
12 2 

b == yx + y , and F may be written 

00 

() ( I) J ( ) fe2i8 (b) - 1) , F q == k i 0 b db J 0 qb \t (2.16) 

using Barseval's integral representation of the Bessel function J O • 

For small q == k9 we may make the substitutions kb~ £ + ~ , 

JO(qb) ~ P£(cos 9) to write the integral as a sum of partial wave 

. amplitudes ' 

F(q) 
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Thus, to the extent that our approximations are valid, we have obtained 

the partial wave phase shifts :::: 

(ii) Coulomb effects. In practice we must take account of long-

range Coulomb forces as well as short-range strong forces. We do this 

by recalling the effect of Coulomb forces on the usual partial wave 

expansion,6 

F(q) :::: Fc(S) + FN(9) 

FN(S) (2ikfl L == 
£ 

(2£ + 1) p£(cos 8) 
2iO'£ ~ 2io£ 

e e - 1) 

F (8) - (t)/2k sin
2

e/2) 
-2it)£nsin(e/2 ) 2iO'O 

:=: e e 
c 

:::: arg r(t + 1 + it)) . (2.18 ) 

Using approximations appropriate to the regime of the eikonal 

treatment, Q,max» 1 and e < < 1, we write 

CD 

F(qJ :=: F (8) + 
c 

(k/i) I db b JO(qb) e2it)£n(kb) (iiO(b) - 1) (2.19) 

o 

There is a small additional subtlety here.· Equation (2.19) is 

obtained by matching partial waves inside the nucleus to solutions in 

the presence of a point Coulomb potential outside. The actual Coulomb 

potential inside the nucleus is that of an extended charge distribution. 

Thus, in order to match to point Coulomb solutions outside, one must 
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introduce inside the nucleus an effective potential 

vCr) - V coul (extended) - V ul (point) 
eff co 

00 CD 

- 4:rr ~v J (r'r
2 t, 2 (2.20 ) = dr' dr"(r") p (r") ch 

r 

where pch(r) is the charge density distribution, normalized to unity. 

The final expression for the wave number shift K is obtained with the 

help of (2.8), 

K(r) = K2(r) - (l/v) Veff(r) • (2.21 ) 

For high energy scattering of protons from lead, the Coulomb amplitude 

is at least comparable to the nuclear amplitude at all angles, and 

precise calculation of Coulomb effects is essential. 

(iii) Total cross sections. By analogy with the usual partial 

wave discussion we may deduce the total inelastic cross section. 

co 

o. = 2:rr f b db [1 _ e-4Imo (b») • 
J.n 

o 

To the extent that Coulomb phases may be ignored, we may 

obtain the "total nuclear cross section" from 

(2.22 ) 
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:= a - a T coul 
:= 4~ I' b db [1 - cos 2 Re B e-

2ImB
) 

o 

(2.23 ) 

However, when Coulomb phases are big, interference between 

Fc and FN plays an important part and (2.23) has no direct physical 

significance. The quantities which can be compared with experiment 

are (2.22) and da/d~ := /FN + Fc/
2

• 

C. Corrections to the Elastic Scattering Cross Section. 

There are several reasons for possible deviation from the 

prediction (2.19) of the elastic scattering from a nucleus. First, let 

us back track a bit to formula (2.8) relating K(r) to an optical 

potential VCr) acting on the projectile. If V were a true potential 
"" 

appearing in a Dirac or Klein-Gordon equation, then (2.19) would be 

the eikonal approximation to the exact scattering amplitude. Saxon 

and Schiff7have estimated the relative error resulting from the eikonal 

approximation. For our case this takes the form 

(2.24 ) 

where R is the radius of the target. For 20 BeV p - Pb scattering 

at q := 1 fm -1 this is 0(7%) • 

We have taken a smoothly varying optical potential. In fact, 
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one might expect non-local effects over distances of the order of a 

nucleon size (-vlfm) or a nucleon correlation length (also ;v lfm). 

fm- I Thus we expect deviations from our calculation for 'l ~ 1 . 

Finally, one might say that the whole approach taken here has 

dubious validity because it entails taking serioully an ordinary space-

time picture of events on a scale of 10-13 cm. Since we don't know 

how to proceed otherwise, we feel justified in ignoring this objection 

until and unless experiment forces us to face it. 

D. Inelastic Reactions. 

(i) Single interaction effects. If an experiment is not sensitive 

to excitation of the nuclear target, then scattering which excites or 

fractures the nucleus will not be distinguished from elastic scattering. 

To compare our results with data from such experiments we must estimate 

the inelastic scattering. If the particles in the nucleus are un-

correlated, we may estimate the differential cross section for exciting 

the nucleus semi-classically. First, suppose the excitation occurs in 

a collision yith a single target nucleon, then do/dQ is given by 

p • 
n 

(2.25 ) 

Here, dcr/dQf is the differential cross section for elastic scattering 

on a single target nucleon. PG is the probability that the nucleus 

remains in its ground state, and we expect P
G 

< < 1 for 'l R > > 1. 8 
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The factor Pn is the probability that a projectile passing through 

the position of target nucleon n will not be absorbed while passing 

through the nucleus. The "effective number" of free nucleon sca tterer s 

is 

ex:> J dz I p(x, y, Z f) • 

-00 

(2.26) 

In (2.26), we neglect t,he fact that the path of the projectile is bent 

slightly by the small angle scattering at the point r • 

Equation (2.25) actually gives a lower limit to do/Ml. ,since 
~n 

the possibility of exciting the nucleus by exciting two or more target 

nucleons is excluded. The ratio of double scattering (without r:article 

production) to single scattering is d02/dOl :'.; a e.e/ 0T ' since two elastic 

scatterings must occur. For incident protons is about 1 9 
4' ' 

and therefore the order of magnitude of the inelastic scattering is 

correctly given by (2 .~?5) if correlations are unimportant. 

Explicit computations confirm the intuitive expectation that 

most of the contributions to ~(A), the effective nl~ber of target 

nucleons,originate in the surface of the nucleus. Thus, strong sl1rface 

correlations cOl1ld appreciably alter A1.A). To obtain an upper limit 

to such an effect, again suppose that the surface nucleons are clu.stered 

tightly into alpha particles. The scattering amplitude on an a is 

certainly less than fou.r times that on a single nucleon, probably about 

three. S The cross section on an a particle would then be about 9 
'4 
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that on four uncorrelated nucleons, dropping to the uncorrelated value 

for momentum transfers large compared to an inverse a particle radius. 

Thus pt(A) calculated from (2.26) might be doubled or tripled at small 

momentum transfers (~1 fm-l) by surface correlation effects, but should 

be very nearly correct as it stands at larger momentum transfers. 

(ii) Deformation effects. We have discussed inelastic scattering 

involving single-nucleon or alpha-particle cluster excitation. There 

is another class of corrections associated with the possibility that 

the ground state of the nucle11s is deformed. Let us treat these effects 

in the adiabatic approximation, that is? let us neglect the motion of 

the nucleus during the passage of the fast (v "V c) particle. This 

should be a very good approximation for non-spherical nuclei, which 

have characteristic rotation frequencies of tens of KeV, such as 

uF38 •l OFor nuclei which have only oscillating deformations about a 

spherical equilibrimu, with characteristic frequencies of MeV, such 

208 11. . as (perhaps) Ph ,~he passage t~me of the fast particle is about 10% 
of an oscillation period. Thus, the adiabatic approximation should give 

a slight over estimate of the oscillation effect, which is small in any 

case. 

When the adiabatic approximation holds, we may calculate the 

scattering for each orientation a of the nucleus. The eikonal 
,·v 

calculation proceeds as before, with a wave number shift 

A. f p (r) a 
",. 

(2.27) 
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where po/~:) is the density distribution of nucleons for orientation 

ex. For example, a prolate nucleus might have a density distribution 

p (r) := ex,,,,, 
"'" 

(2.28 ) 

where cos e ,"" is the proj ection of r onto the long axis of the nucleus, 

specified by ex (8, cp), 
""I 

cos e ::: cos e cos e + sin e sin e cos(cp - cp) . 

This Pex gives rise to an elastic scattering amplitude 

f(e, cp, ex). Since the value of ex could be measured, at least in 
'\,y" ,"vv' 

principle, after the incident projectile had passed, the amplitudes 

for different ex are incoherent. Therefore the proper way to compute 

the differential cross section is not to superpose amplitudes, but 

rather to average the cross section over ex, 
NY 

. dO/dQ(e) (2.29 ) 

The qualitative ~ffect of deformation is clearly to blur 

radius effects, making maxima and minima in dO/dQ( e) less conspi.cuous. 

This effect is obvious in a comparison of the diffraction patterns of 

r.,' 
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19.3 BeV protons on Pb and 
2 

U targets. The Pb nucleus is 

thought to be nearly spherical, while U is quite deformed 

The amplitude f(e, ~,a) is diagonal by ·construction for a 
'v 

set of nuclear basis states labeled by a. Thus, in the a basis, 
I'\I'V- ,,,,,-. 

we have computed the elastic scattering from a deformed nucleus with 

a specific orientation. However, if we revert to the angular momentum 

basis IJ, m), where J is the generator of rotations on a, the 
,,\,,,,.r ,'..,,' 

amplitude (J'm' If(e, ~)IJ, m) is not diagonal. Drozdov12and Blair13 

used the unitary transformation from a to J to estimate matrix 

elements for excitati.on of collective states with angular momentum J' 

from the ground state IJo). For 01n' purposes here the individual 

excited states of the nucleus and the ground state are indistinguishable, 

so that we must sum (2JO + lrl 1(,J'm r IflJom)12 over all J r, m', m. 

This sum is precisely equivalent to the angular average (2.29), assuming 

that the energy differences E
J

, - E
J 

are insignificant for computing 

f , as is implied by the adiabatic approximation. 

It is worth noting that the contribution of a particular 

inelastic state Jr to da/dQ(8) can be greater than the total 

deformation effect at angle e. This is possible because the amplitude 

(JOlf(8)IJo) for scattering with no excitation may be reduced by the 

deformation, thus more or less compensating for the appearance of 

collective inelastic scattering. 
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E. Production Reactions and Other "Single-Scattering" Effects. 

(i) Production •. Eikonal wave functions of the form (2.2) may 

also be used to calculate differential cross sections for production 

reactions. To orient ourselves here we first consider a case in which 

the incident projectile has such a small interaction with each target 

nucleon that it is unlikely to interact more than once while passing 

through the nucleus. Call a the amplitude for production of some 

final particle on a single nucleon, e.g. n + p - Al + p, and A 

the corresponding amplitude for the whole nucleus. In the weak 

interaction limit we simply add the amplitudes from each nucleon, with 

a relative phase depending on momentum transfer and position: 

N+z 

L a(q) 
iq,r. 

.. '" .,-1. 
e 

iq:r 
~. ""' e 

i:=l 

This is just the 1st Eorn approximation with a potential proportional 

to a(q) p(r). 
"" 

To account for the strong interaction of the projectile with 

the nucleus, we must modify our treatment. Let us now make the 

reasonable assumption that the production process involves only a 

single nucleon, while the waves before and after production are modified 

by wave number shifts K and K respectively. For small angle 

production we neglect deviation of the path through the nucleus from a 

straight line, and write 

" 
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J d3~Exp 
z 

dz' K(x,y,z' ~ iq.r 
A(q) = a(q) i J e /tIoI~" p(r) 

;"tv 

-00 

)( exp f.{ dz' R(x,y, z' 0 2iO'(b) 

\ e 

z 

b 
12-"2 

== ,IX + y 

This is an eikonal "distorted wave Born approximation" for a production 

potential proportional to ap(r). The factor e2i O'(b) accounts for 

long range Coulomb effects on the in- and out-going waves. 

The absorption effects summarized in (2.31) alter a commonly-

stated c?nclusion about thresholds for coherent production of a 

resonance on a nucleus. The minimum momentum transfer to a target T 

in the production reaction X + T -Y + T is found when Y canes out 

parallel to the incident X. This longitudinal momentum transfer q If 

is given at high energies by 

where the notation is obvious. In the absence of absorption, coherence 

of the production reaction over the whole nucleus would require 

q II R < < 1, where R i.s the nuclear radius. However, as a result 

of the absorption of the coherent wave, coherence in the direction 

parallel to p is only maintained over dimensions of order A, where 
.vi. X 

A is the mean free path in the nucleus. Thus, we have 



-20-

~IIA«l 

and there should not be a strong A-dependence of the coherent production 

threshold. In particular we wou1d not expect coherent production at 

zero degrees to 'drop as A increases, but rather it should rise, since 

the production takes place mainly in a ring of radius 

the ring gets bigger. 

(ii) Sin~le-scattering effects in elastic reactions. Formula (2.31) 

may also be applied to elastic scattering amplitudes for which the single-

scattering assumption is valid. For example, in elastic scattering of 

protons, the amplitude for a single target nucleon may be 'ITi tten 
_> A /\ 

f(q) + s(q)cr'k
i 

x k
f 

; we ignore the spin of the target nucleon, which 

is unimportant for coherent processes with a target nucleus. If 
.... 1\ 

s (q) Ik
i 

x kf 1 is small compared to r O
, then we may assume seq) acts 

only once on passage through the nucleus, and write the amplitude for 

spin-orbit coupling with the nucleus using (2.31), with a(q) ~ 

"" .1\ ~ 
seq) k i x kf'cr • 

The analogous procedure may be applied to estimate corrections 

to elastic scattering due to the finite size of target nucleons. Taking 

d(q) = f(q) - f
O

, we may substitute d ror .a in (2.31) to determine 

the amplitude D which sh01.11dbe added to F in (2.18), to account 

for the fact that f(q) varies somewhat in the range of momentum 

transfers to which we apply' (2.18). For high energy protons at q =0 1 frn-1 

(If(q)1 - Irol)/lrol is about -0.2. If that ratio is unchanged by 

.. 
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removing absolute value signs, then the single-scattering assumption 

i9 justified, for computing n(q), q,$ Ifm-I. 

F. Stmmary of Theory. 

In this section we have seen how to compute cross sections for 

reactions of fast elementary particles with large nuclei. 

The basis for the whole development is the use of an approximate wave 

function for a projectil~ inside the nucleus, 
ikz 

e 

exp i 1 z 
-00 

dz' K(x,y,z'), where the complex wave number shift K 

depends on the interaction of the projectile with individual nucleons 

and on the distribution of nucleons in the target. The main results 

are contained in (2.19), the eikonal approximation for elastic scattering, 

and (2.31), which gives single-scattering effects, including particle 

production. 
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III. SCATTERING OF 19.3 BeV/c PROTONS 

Bellettini et a1. 2 have observed "elastic" scattering of protons on a 

variety of nuclei: Li6 , Li7, Be9 , C12, A127 , and natural Cu, Pb, and U. By 

"elastic" we indicate that the energy resolution was not sufficient to distinguish 

cases in which the target nucleus was excited from cases of true elastic scattering, 

although hadron production could be excluded. These experiments have already been 

the subject of several simplified analyses14 , perhaps the most thorough being that 

of Frahn and \lliechers (FW) 14 . These authors, following earlier work,lS describe 

the scattering from a complex nucleus by a simple parameterization of the phase 

shift function e2i8~-1. The fits they obtain for the heavy nuclei (Cu,Pb,U) are 

similar in appearance to those in Figures 1-4, described below. They also fit the 

lighter nuclei (Li6.-A127), but we did not. 

Using the eikonal approximation, one may infer from the phase shift 

function the effective proton nucleus potential (V+iW) (r)16. This is not a 

reliable procedure for the interior of heavy nuclei, since they are nearly opaque at 

small impact parameters. It would hardly affect the computed differential cross 

section to set e2i8 (b) 0 at small b, but this would imply W(r) = 00 at small r! 

However, for the light nuclei, which are Semi-transparent even at the c.enter, 

inference of the poteDtial from the phase shift is meaningful. FW compute leW) and 

leV), the integrals over the nuclear volume of the imaginary and real parts of 

the potential. From (2.8) we deduce 

I(V) + il(W) = - vAAfo (3.1) 

where A is the mass number of the target nucleus. Table I shows the comparison 

of right and left sides of (3.1) using the values of leV), I(W) deduced by FW. 

The first two columns of Table I agree very well with each other, 

except, as expected, for the heavy nuclei. In terms of the theory presented in 

Section II, the agreement is perhaps too good, since, the absorption in the bulk 

of the nucleus should be about 25% bigger than the first approximation used here 
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because of negative correlations in saturated nuclear matter. The answer may be 

that positive correlations in the nuclear surface cancel the negative correlation 

effect in I(W). 

The remaining two columns of the table present a cloudy picture. Con­

sistency requires us to disregard the heavy nuclei, since V is not well deter­

mined in the nuclear interior. This may be less serious for I(V) than for I(W), 

since the V of FW does not grow enormously as r ~ 0, but it precludes quantita­

tive reliability. As it happens, even the values for light nuclei scatter a 

good deal. The general tendency suggests a larger value of -a than that deter­

mined by p-p scatteringl7 . 

It is worth noting that these nuclei are not so transparent that the 

first Born approximation holds. In Table II, we compare total cross sections of 

the light nuclei with the Born approximation AoT(pp). We conclude that, for the 

semi-transparent light nuclei, the unforced fits of FW give strong support to 

the ideas underlying the present work. 

Let us turn to our optical model description of the proton scattering 

on Cu, Pb and U. We have used the theory of Section II, taking fO from p-p 

scattering experimentsl7 . The nuclear density distribution is given by the 

Woods-Saxon form 

pws(r) = po/[l + exp ((r-R)!a)] (3.2) 

with R and a the parameters of the charge density distribution determined by 

electron scatteringl8 . The scattering amplitude is 

Fscatt = F + D (3.3) 

with F given by Eq. (2.19) and D the amplitude described in II.E.(ii). The D 

term gives an approximate correction to F due to the finite range of the p-p 

interaction. It affects none of our conclusions. 

There is another way to estimate the finite range effect. In this 

method, we treat the nuclear charge density as a folding of the proton density and 

the charge distribution of the proton. We assume the strong nuclear potential 
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is given by folding the nuclear density with the proton-nucleon potential. As sum-

ing Gaussian distributions for the ptoton charge distribution and the proton-nucleon 

potential, and taking the latter as the folding of the former with itself19 , we find 

the strong-interaction potential is slightly more extended than the charge distri-

bution, 

(3.4) 

where all lengths are measured in ~ermis. For Pb 208 , with charge distribution 

specified by R = 6.5 and a = .5, the modification (3.4) changes the distribution 

to one with R::::: 6.7, a ~ .5. This is, a small effect, an increase in the half 

density radius by 3% (which is less than 1/10 of the surface thickness 

t = 4.4a). We have not included the modification (3.4) in our ".§!. priori" 

calculations of e'xperimental quantities. 

In calculating the phase shift 8(b) we use (2.21) and include the 

effect of repulsive correlations in the nuclear interior, but no positive 

correlations at the surface. The resulting " a priori" fits to the data are shown 

in Figures 1-3. The only fitted parameter is~(A), the number of equivalent free 

nucleons to produce the incoherent large-angle inelastic scattering. 

~ = IFscattl
2 

+ A~ (p-p) (3.5) 
elastic 

The fits to Cu and U data are impressive. Note the good agreement for 

eu in the attenuation cross section, 

(3.6) 

Since both Cu and U are deformed nuclei, most of. the discrepancies 

between theory and experiment may be attributed to the effect of averaging over 

orientations of the aspherical target. We have not included effects due to 

target deformation in our calculations20 . 

We come now to the case of Pb. Even a casual glance at Figure 3 

indicates two reasons to believe the lead target is larger than we have assumed. 
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First, Gatt as calculated is 10% below the experimental value. Secondly, the 

oscillations of the theoretical curve lag behind those given by experiment. There 

is a third reason. Using Eq.· (2.26) we may compute~A). It turns out that 

~A) is quite sensitive to the diffuseness~, but fairly insensitive to the half­

density radius !, as shown in Table 111.21 

For Cu,a(A) is about 5 with our a priori choice of parameters. This is 

in good agreement with the value a = 6·used in our fit. For Pb, our 2:. priori 

choice would give a ~ 6.6 which is not so close to the value a = 10 of our fit. 

The arguments above persuade us to change a from .5 to .7, yielding the 

curve in Figure 4. Now a casual glance would leave one fairly happy with the 

agreement, but there is still a serious difficulty. At the first four small-angle 

points, where inelastic effects are negligible and the theory should be most 

reliable, the theoretical points are 10 -12% above the experimental values. Close 

inspection of the curves of FW indicates a similar situation. Aside from the 

possibility of mechanical mistakes in theory or experiment, we see only two 

explanations. Either the theory is wrong in a deep way, perhaps having to do 

with Coulomb effects, or the effective nuclear density distribution is considerably 

different from the charge distribution. 

Let us follow the second alternative. If it were not for Coulomb effects, 

it would be clear that we need a more diffuse nuclear surface to get agreement 

with experiment. The slope of the theoretical curve is about right, but the 

absolute magnitude is high. If the scatterer had about the same size but lower sur-

face density one could get agreement. This intuition turns out to apply also in 

the presence of Coulomb effects. Figure 5 shows the results for R 4, a = 1.1. 

The agreement at small angles is excellent (see Table IV); 0att(the) is acceptable; 

and the main discrepancies have been shifted to larger angles. 

Before discussing these, let us ask what such an effective density 

distribution would signify. First of all, because the opacity is so high at small 
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impact parameter, we can say almost nothing about the central density. Thus, 

one would expect equally good results from an effective density distribution 

which looked the same in the surface region, but had a central value identical 

to that for R = 6.5, a = .7. We have verified this. Thus, we may assume the 

central density has about the value indicated by many-body calculations. The 

novelty of the new distribution lies only in its description of the nuclear 

surface. 22At least tvlO phenomena could alter the effective nuclear density distri-

but ion without affecting the dete~~ination of charge density by elastic electron 

scattering. First, there may be a neutron tail extending beyond the proton 

density distribution. Secondly, there could be strong positive correlations, 

exemplified ~y alpha-particle clusters, in the region just inside the neutron 

tail. These clusters would not show up in electron scattering because of the 

~ong range of the e-p interaction. To confirm the qualitative reasonableness 

of such a picture, we have obtained a fit to the p-Pb scattering with an effective 

densi ty defined as follOlO)s. Firs t the neutron tail is tacked on: 

p PWs(r),r ~ R + 3a 

P = P
Ws

(R+3a) exp «R+3a-r)/2a), r > R+3a 

R = 6.5 a = .7 (3.7) 

Then negative correlations in the nuclear interior are accounted for 

as in Eq. (2.12): 

p-(r) = P (r)(l+i 6<cHop (r) (3.8) 

We include positive correlations, as well as a reduction in neutron 

density corresponding to the shift of neutrons out to the tail by defining 

a reduced effective density just inside the tail: 

Peffer) = u(r)p(r) + (l-u(r»)s(r)p(r) 

u(r) = p(r)/p(o) 

~(r) t,r < R + 2.5a 

~(r) = 1 - 1/[2 exp«r-R-2.5a)/a)],r> R + 2.5a (3.9) 
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The resulting differential and attenuation cross sections(Figure 6)are 

similar to those of Figure 5, though about 5% higher. Practically exact agree-

ment with Figure 5 is obtained by applying (3.4) for R = 6.0, a = .7 fm. 

There are still problems in explaining the large angle data. The mean 

value of do/d~ (i.e., averaged over oscillations) depends sensitively on the 

amount of a-clustering. lve may estimate the effect of clustering by extrapolating 

the lBeV p-a cross section23 , assuming do(p-a)/dt is independent of incident 

momentum aside from a small reduction associated with the drop in p-p total cross 

section between 1.7 

do (p-a, 
d0. 

and 19.3 BeV/C: 

,19.3) ~ (19.3)2 
1.7 

x do (p-a 19.3 8 1.7) orr ' 1.7 ' 

= 105 exp (-8 2/100) mb/sr (3.10) 

Clearly, the amount of a clustering has a significant effect on do/d0. at 5 mr or 

more. Thus, in the diffuse surface model, the magnitude of the large-angle cross 

section is not accurately predicted. 

The oscillations in the large-angle cross section can only be explained 

by an effect involving .. coherent sc'attering from a region of nuclear dimensions. 

Conceivably fiddling further with Peff(r) (perhaps putting in a kink, an abrupt 

change) would bring the theoretical curve into agreement with experiment. 

However such adjustments would be artificial at the present state of understanding. 

Two other possible sources of the oscillations are coherent excitation 

of a particular excited state, and spin-flip scattering. The latter may be 

treated in the single scattering approximation of Eq. (2.31). We may \.,rrite the 

result as 



. 2 

dO'/dnsf (p-p,6) 
= """'d-O' 7""d""'n~I"7"(p---p-,"::"O""") 

, e 

-28-

(3.11) 

The quantity IJI is plotted in Figure 7,and it is clear that spip.-flip can only 

be important if spin-flip scattering on a single proton at 5 mr is comparable to 

the elastic forward p-p cross section. At small angles dCi/d0.sf (p-p) vanishes 

as q2. Thus, a crude upper limit, sufficient for our purposes, can be obtained 
2 

by taking the ratio multiplying Ii I in (3.11) as bq2 = 82/(250 mr2) ,where 

the elastic p-p cross section is approximated as Ifo I
2
exp-bq 2. 24 This excludes 

spin-flip scattering as a significant contribution to p-Pb scattering. As to 

coherent excitation, it is hard to see why just one state should be excited; 

as in the deformation model of Section II, one expects the differential cross 

section to become smoother, not to develop oscillations. 

Thus, we know of no simple and natural explanation for the oscillations 

at large angles if the small-angle data are taken seriously as a constraint on 

the effective density distribution. 

One might ask if the diffuse effective density could be associated 

with octupole vibrations of the ground state, these being the strongest collective 

deformations hypothesized for Pb. ll Using the parameters of Lane and Pendleburyll 

we find the root mean square variation in radius of the nuclear surface is less 

than .5 fm, too little to explain the depression of the small-angle differential 

cross section. This deformation effect20 is of the right order of magnitude to 

account for the discrepancy between theory and experiment in the first diffraction 

minimum of Figure 4. However, already in the figure, the diffraction dip is 

partly filled by constructive interference between the effects of the Coulomb 

force and of the repulsive real part of the proton nucleon interaction. This is 

not true for Figures 5 and 6. As a result, we ~o,1ould obtain a valuable tes t 

discriminating between the diffuse- and sharp-surface models by looking at 
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± 
~ - Pb scattering. Since the ~± -nucleon amplitudes are essentially the same, 

while the Coulomb potential reverses sign between ~+ and ~-, we conclude that 

in the "conventional" model the first diffraction minimum would be much deeper 

for ~- than for ~+, but in the diffuse surface model there would be little effect. 

At the end, we find that the most straightforward application of a 

semi-classical picture gives excellent qualitative and fair quantitative agreement 

with experiment. If we take the model seriously in the domain where it is most 

reliable, the 10% discrepancy in small-angle p-Pb scattering forces us to resort 

to a model of the nucleus with a much more diffuse surface of the effective 

nucleon density distribution than that suggested by electron scattering data. 

In this model, which is reasonable in terms of current ideas on nuclear phenomena 

at lower energies, the main difficulty is to explain the oscillations in the large 

angle differential cross section. However, even if this effect should disappear, 

the fit of Figure 4 already suggests strongly that the nuclear surface of Pb is 

more diffuse than the charge distribution. Thus, any interpretation of the data 

of Belletini et al. suggests a diffuse surface. The questions remaining are, first, 

how diffuse is the s~rface, and second, how can the theory reconcile the small-angle 

and large angle data ? 
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IV. CONCLUSIONS 

The results of the previous section demonstrate that high energy 

scattering can provide useful data for determination of nuclear structure. 

In particular, the dat? for lead imply a considerably more diffuse nuclear 

surface than suggested by electron scattering. In order to check this 

effect, and to permit more complete analyses, many more experinlEmtswould 

be useful. 

(1) Repetition of the original work with somvlhat better 

statistics, using isotopically pure targets. 

(2) The same exp~riment with 1T± beams. This would permit separa­

tion of hadron spin-flip effects from inelastic scattering. Also, at 

these energies the 1T+ and 1T- nucleon scattering amplitudes are nearly 

identical, so that comparison on the nuclear predictions with theory vlOuld 

give a useful check on the method of including Coulomb effects, and on the 

role of Coulomb-nuclear interference in filling the first diffraction 

minimum. 

(3) Variation of the beam energy: Since the theory is 

essentially energy independent, this would give a sensitive test. 

(4) Scatte-ring with polarized protons. 

(5) Detection of recoil nuclear excitation. 

Experiments (4) and (5) are very hard, but their value is evident. 

From the theoretical point of view, a more complete discussion 

of inelastic effects would complement future experiments. This would 

include the appropriate angular averaging for deformed nuclei, as well as 

multiple inelastic reactions. 25 

At this point the promise of the subject is just as clear as the 

need for more work. 
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TABLE I 

Comparison of the Integrated Optical Potential of 

FW with the First-Order High Energy Model. 

Target r(W)a -AoT(p-p)/2 b I(V) -a t °T( p- p) 

fm2 . 2 
fin fm2 fin2 

Li6 -12.8 -11. 7 4.9 2.9 

Li7 -14.4 -13.6 5.8 3.4 

Be9 -16.4 -17.5 7.3 4.4 

C12 -22.6 -23.2 7.1 5.9 

A127 -55.5 -52.7 13.5 13.2 

Cu63 . 6 -161 -248 29.6 31.0 

Pb207 . 2 -935 -404 127 101 

U238 -935 -454 140 116 

a. Frahn and Wiechers, Ref. 14. 

b. Ref. 17. 
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TABLE II 

Total Cross Sections of Light Nuclei 

Target °T(mb)a A 0T(P-P) b 

Li6 232 ± 5 234 

Li7 250 ± 5 253 

Be9 278 ± 4 350 

C12 335 ± 5 468 

A127 687 ± 10 1007 

a. Ref. 2 

b. Ref. 17. 

• 
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TABLE lIlA 

Values of A (A) for a = .7 and R = 1.2A1 / 3 

A 4 10 20 40 SO 150 208 

~4 2.8 4.7 '6.3 7.S 9.3 10.5 10.8 

TABLE IlIB 

Values of P/(20S) for R = 6.5 

a .5 .7 .9 I 1.1 1.3 

tref 6.6 9.8 l3 17 21 



TABLE IV 

Comparison of Theory and Experiment for the Small-Angle Scattering on Lead 

lab 8 (mr) 2.25 2.75 3.25 3.75 4.25 4.75 5.25 

clo (10-23cm2)a 
d~ sr 51l0±100 2780±68 1630±48 910±39 423±27 262±5 131±4 

do :(the)"b 
d~ , 5300 3120 1870 1050 530 236 97 

do (the)c 5670 3230 1830 944 441 183 82 
d~ 

; 

do (the)d 5140 , 2840 1640 917 484 241 120 
d~ 

do (the)e 
d~ 

5370 2970 1680 917 46L. 219 103 

do (the)f 
d~ 

5290 3050 1830 1060 

I 
570 274 124 

- ---- _._. ----

a. Ref,. 2. 

b. Parameters of Figure 3. 

c. Parameters of Figure 4. 

d. Parameters of Figure 5. 

e. Parameters of Figure 6. 

f. Ref, 23. 

~ 

, 
5.75 

80±2 

54 

65 

69 

59 

65 

, 

I 
W 
00 
I 
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FIGURE CAPTIONS 

1. Laboratory differential cross section for proton scattering on copper 

at 19.3 BeV/c, in units of 10-23 cm2/sr. The experimental points 

come from Ref. 2. The theoretical curve uses a Woods-Saxon nuclear 

density t.7ith R = 4.3 fro, a = .55 fm (Ref. 18) to compute the elastic 

scattering cross section. The only inelastic scattering included 

in the theory is quasi-elastic scattering from 6 equivalent free 

nucleons. The solid curve is the sum of elastic and inelastic, the 

dashed curve, inelastic alone. 

2. Proton scattering on uranium at 19.3 BeV/c. See caption of Figure 1. 

Here R = 6.8, a =.5 fm (Ref. 18). We assume 10 equivalent free 

nucleons. 

3. Proton scattering on lead at 19.3 BeV/c. See Caption of Figure 1. 

Here R = 6.5, a = .5 fm (Ref. 18). We assume 10 equivalent free 

nucleons. 

4. Proton scattering on lead at 19.3 BeV/c. The only change from 

Figure 3 is a = .7 fm. 

5. Proton scattering on lead at 19.3 BeV/c. Here R = 4.0, a = 1.1 fm. 

We use the computed 13.5 equivalent free nucleons for the inelastic 

scattering. 

6. Proton scattering on lead at 19.3 BeV/c. See text for assumed 

effective density distribution. We take 12 equivalent free nucleons 

for the inelastic scattering. 
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7. The quantity tf/2. If the differential cross section for a certain' 

reaction on a single proton is d0/d~ = /E(e)fOI 2 , then the single 

scattering approximation gives the differential cross section on 

Pb, d0/d~ = /E(e»):(e) /2. We use the parameters of Figure 5 in 

computing ~ (e). 
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APPENDIX A. ACCURACY OF APPROxIMATIONS 

(i) The Impulse Approximation. We wish to estimate the error. 

caused by assuming the scattering amplitude on a target nucleon in 

the nucleus is the same as that for a free target nucleon. The 

standard estimate for the error of the impulse approximation is given, 

e.g., by Goldberger and Watson 1 

(A.I) 

where f is the forward scattering amplitude on a single free nucleon, 

k is the incident particle wave number, U is an energy characteristic 

of the binding of the system, and E is the incident particle energy. 

For very high energies (A.l) becomes arbitrarily large, if the total 

cross section on a single nucleon approaches a constant: 

2 

I fkU/€ I > I \:T U 
E 

(A.2 ) 

However (A.l) was obtained on the assumption that If(e)1 is 

of the same order of magnitude for all e. 

If one uses the same set of assumptions (embodied in Eq. 11.29 

of Goldberger and Watson) vlithout imposing isotropy of f( e), one 

obtains the more general expres·sion' 
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/ 
~ 

k
2 '\ 

16To I /v 2i UJrm d 
Tfi Tif) IEf 4;1 dE. \ dE ./dk = € 

1 " 1 i 
(A.3 ) 

TO 2 fO -2n: E 

which ~~y be reduced to (A.l) with the ass1llUption of isotropy provided 

that derivatives of Tfi and 'r
if 

,vith respect to E are unimportant. 

If one aSS1llUes that T is negligible outside a cone of opening 

angle 8 < < IJ and the energy € is highly relativistic one may 

estin~te ~o by applying unitarity, as 

1 
~ 
2:rC 

u 
%c 

/ 

/1 + IRe 
! "\ 

d .en Tf · I \j 1 l 

-d~.e:-n-E-I f=i /' 

" ... 

(A.4) 

This result is obtained assuming Tfi yields only elastic scattering, 

but the order of magnitude is probably not changed by the presence of 

particle production channels. 

The second term in parenthesis in (A.4) must still be evaluated. 

This involves the derivative of Tfi with respect to the incident 

projectile nergy €, for a fixed final configuration and for incident 

3-momentum equal to final 3-momentum. To compute such an off-energy-

shell derivative, we must have a model for the scattering amplitude 

off the energy shell. For elastic scattering the on-energy shell 



-50-

amplitude appears to be well described as a function of momentum 

transfer, 

t == 

at 
e 

( )2 ('4> ."~)2 
€ - € - P - P 
~ f i f 

Let us suppose that T has the same behavior when energy is not 

conserved. We must now find dt/d€. • This is given by 
J. 

e.dt/d€. 
J. J. 

2(-€. €f + p. Pf cos e/v.) 
J. J. J. 

2 
/l, t + 2m - 2 ( €. - P.) Pf --v J. J. 

e < < 1 

2 
~. t + m 

Substitution of (A.5) into (A. 4) yields the final result 

\ 

( 
1 2 )\ 

.1 + (- 2" + Ream ) ) • 
/ 

(A.5 ) 

(A.5 ) 

(A.6 ) 

For high energy p - p scattering the quantity Ream2 is about 5. 9 

Therefore we obtain for 20 BeV protons 

(A.7) 
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where U is taken as 40 MeV, the characteristic strength of the shell 

model binding potential. 

Actually, (A.7) is probably an overestimate of the error in 

TO. It canes from the assumption that the commutator [T,V] of the 

binding potential V with the T-matrix is the same size as the 

product T V. 

The binding potential is slo1vly varying over a region corres-

ponding to the wave number of the projectile, and since T depends on 

the momenta and kinetic energies of the colliding particles} the 

commutator [V, T] should be small. 

A naive estimate of 16T
o I would be simply 

= (A.8) 

which agrees well with the more elaborate procedure. 

The analysis leading to CA. ~() applies strictly for a single 

target particle bound in a fixed potential. When one wants to use T, 

as we do} to deduce the optical potential V 0 for passage through a 

many-body system, then the re,!uired T has a further constraint. The 

point is this; Vo may act arbitrarily often as the projectile passes 

through the target system, always leaving the target in its ground 

state. Since Vo is obtained as a pO'l-Ter series in Ta (the scattering 

matrix for target particle Ct) it becomes necessary to exclude in the 

integral e,!uation defining T 
a 

intermediate states in which the target 
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system is not excited. Otherwise these states would be counted more 

·than once in the Born series obtained from VO' To estimate the 

resulting correction to Ta ' we may go back to the classical picture 

and ask what fraction of the cross section (J 
a 

on a single target 

particle corresponds to the nucleus remaining in the ground state. If 

the nucleon and the nucleus were quite opaque bodies of similar shape 

but different size, then this fraction would be given by 

P (Ja 

do a 
dQ 

where F(e) is the nuclear form factor, Le., the overlap between the 

ground state wave function and the i,ave function with one nucleon 

shifted in momentlw by 6p :::; k8. Now a is proportional to 
2 

r 

effective squared radius of a single nucleon interaction, and ~ is 

t " 1 t R2, the dId" propor ~ona· -0 square nuc ear ra ~us. 

P 
2 

r 

Therefore, we get 

a a 
2 

2rc R 

Thus, the cr we should use in computing the mean free path 

in the nucleus is 

the 

(A.lO) 
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The quantum mechanical result of Goldberger and watson has an extra 

factor of ~, just as did the correction term due to correlations, 

and for the same reason. Their result is 

(A.10) 

For high energy protons, then, we have 

- (4/41l R2) .~ - (1/150) for Pb 

~ - (1/50) for eu 

~ -(1/l.2nA2/3)for mass number A. (A.ll) 

The above arguments do not apply in the surface region of the 

nucleus, where the gradient of the nuclear density becomes appreciable 

on the scale of nucleon size (as determined from the typical momentum 

transfer in ~-nucleon scattering.). In fact, one expects the 

effective potential fAP to vary more slowly in the surface than P 

itself. This is easily seen in the formalism of Glauber. l 

Glauber shows that in the eikonal approximation, in the absence 

of correlations, the phase shift may be written 



-54-

e 2i8(b) 

(A.12) 

Here the scattering amplitude on a single nucleon (assumed independent 

of the nucleon quantum numbers) is 

f(q) 

If p(r) varies IHtle in the region where feb - r) 

appreciable, then we may approximate the integral over 

"v...' Vf-

r 
IV" l. 

0) • 

(A.l3) 

is 

by 

(A.14) 

This approximation breaks down at the nuclear surface, where 

the integral may be written 

I 
eff 

p f(q 0) (A. IS) 

and 
eff 

p is a (possibly complex) effective density which goes to 

zero more slowly than p itself. 

We conclude that, in the energy range dealt with in this paper 

(16-20 BeV), corrections to the impulse approximation for TO in bulk 

nuclear matter are only a few percent. 
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(ii) Correlation effects. In our discussion of correlation effects 

in the text we ignored the finite size of the target nucleons. It is 

interesting to evaluate the resulting error in a simple model. 

Instead of a nucleus, let us imagine that the target is a large 

cube of uniform refractive index and side D. This could be divided 

into N smaller cubes with side ~ satisfying 

If we calculate the scattering amplitude exactly, it is 

F = 
/~D \\ 

cos 1 __ : 
\ 2 ./ 
\, .,/ 

where K is the wave number shift in the cube. 

I D\ I . 

cos l ~ .. - : 
l -y 2 J 
\. ,/ 

(A.16) 

(A.17) 

Now we may calculate the same result treating the N small 

cubes as separate "target particles". Ignoring edge effects, we find 

(A.I7) reproduced, with 

K ~ K' = (

' L :ft.. 
1+i i~) 

a 

f 
k 

(A.18) -
21(1 

Expanding f yields a second order formula for K', 



) 
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K' (A.19) 

Now, for a cubic lattice of this type, we have 26 

yielding 

K' K(l - O.22iKa). (A.20) 

Thus, the correlation correction calculated in the text, 

although of the proper sign, is too big to give K' = K~ + O((Ka)2». 

A similar effect must be expected in scattering from a nucleus., 

so that the param.eter ~ , even if well determined by fits to scattering ':c 

data, should not be taken as a precise estimate of the correlation 

distance. As mentioned in the text, the predictions for proton-nucleus 

scattering are insensitive to the absorption in the interior of the 

nucleus. Thus it turns out that the value of ~ has little effect on 
c 

the predicted scattering. 

" 
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APPENDIX B. INELASTIC REACTIONS 

We wish to derive an estimate of dO/dU for the reaction 

h + (Ii.. -7h+ 

where '"(L is a nucleus, is an excited, nuclear system, and h 

is a high energy hadron. 

First consider the case of very weak interaction between h 

In the impulse approximation the scattering amplitude for 

excitation of the nucleus to state n is 

A 
\' 
'-­

a::l 

iq·r . 
<nlf (q) e ~,vaIO> 

a .. ",. 
(B.l) 

where fa is the scattering amplitude on the ~h nucleon, treated 

as a free wrticle) and q is the momentum transfer. For a high 

energy proton we take f (q) 
a '". 

:: 

the given nucleon. Then we have 

do 
d~L 1 

~ne 

:: 

f(q) independent of the state a of 

iq·(r-r') 
I\;V "IV J>H' 

e 

(B.2 ) 
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Here dO" 
d~f 

is the free particle differential cross section 
A 

stationary nucleon target, per) ~ 
.w 

L (0 18(,~. - .r.a ) 10) is the 
a=l 

for a 

nucleon density distribution in the target, and p (2) (r, r') _ 
A . 

AN /w 

Y' (018(r'- r A ) 8(r - 'r )10) -
a%=l Mi 'WI-' IW-wa 

per) p(r')+6(r - r') per) + 
AN.W ;VI'"W Jh. 

C (r, r') is the two-nucleon density 
V''Y ..w 

distribution. C (r,r') 
v',, "'" 

is 

the Van Hove-McVoy two-nucleon correlation function.27 Its inventors 

argue that it sholud vanish for large separation of its argl~ents. 

In contrast, Goldberger and Watson1write 

(2) (~ .''l,) P r, r A - 1 
-A- per) per') + 5(r - r') per) 

.'V"..vv ,'VI"W AIV 

(B.3 ) 

(B. 4) 

and they suggest that C
G 

should vanish for large separation of its 

arguments. Their form is certainly appropriate for a box containing 

a uniform gas of non-interacting particles. However, for a medium with 

strong short range repulsion the Van Hove-McVoy ansatz appears more 

plausible, and we shall use it below. 

We have, then 

dcr 

d~. 1 1ne 

IV 

C (q) 
v NV 

= A dO' 
dQ

f 

(B.5 ) 



One may easily obtain the result C (0) 
v 

-1 which implies 

(B.6) 

This follows directly from (B.l), since FnO(O) vanishes: 

== (nIAf(O)lo) == A f(O) 8 0 • 
n 

In other words, if ~ touches only one nucleon and gives no momentum 

to that nucleon, then :::)t remains in the ground state. 

We now consider the case of strong interaction between hand 

'/L. Let us make the assumption that inelastic excitation occurs i.n a 

collision with a single nucleon, and that the interaction of h with 

the nuclear medium before and after the collision is accounted for by 

the wave number shift K fAP(r), with h assumed to follow a 
/VV -

straight path through the nucleus. Then we have 

FnO(.~) f(,~) J d3
r 

25(b) 

dO' 
dQ 

== 

iq:r 

;= 
e N_'-'\"V 

0: 

00 r dz rAp J 
-00 

(nI5(r - r )10) 2i5(b) 
e 

/W ,..0: 

(r) ,,.,.. 

(B.8 continued) 
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d.Q
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Here, we use 

~CS(q) 
v"'" 

== 
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iq'(r-r') 
e 1'0/ ".. ...... ",2i(5(b)-5*(b l 

)) ... 

dO' (B.8 ) 

e 
-4Im5(b) 

e 
iq. (r-r' ) 

I\tY "" JW 

)( e 2i(5(b)-5*(b')) per) per') C (r, r'). 
/WV /10:-.' V .~. I'\N' 

In all the above, we ignore spin and isospin dependence. The 

appropriate modifications to include these are easy to deduce. See 

Goldberger~nd Watson (Ref. 1). 

We consider some special cases of correlation functions. First, 

assume tha,t only a "Teak long range correlation is present, i.e. 

C
G 

== 0, or 

C (r, r') 
v r", ...... 

1 
== A 

p(r) 
JW 

p(r' ) 
M' 

(B.lO ) 
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Then we find 

= 

. 'Vs 
o ~ c (q) ~ -1 • 

v "'" 
(B.li) 

In fact, for p.- Ph 
N 

scattering} this C:\ 0) 
v 

is close to 

dO' ( 0) zero and dU 0 is finite. How is this compatible with our previous 

result in the absence of absorpt:i.on effects? Since h now interacts 

with many nucleons it may transfer momentum from several nucleons to 

one which makes a transition out of the ground state without any net 

momentum transfer q to the whole nucleus. 
"'" 

""l\.S J~.Jlother possibility, we take C (r, r') = 3p(r)1l(r-r') . v ;~\ M IN""~ '" 

4 
- A- p(r) p(r'). This is an a-particle cluster model} and 6( s) is 

/Vv IV/ I'tIv 

the density distribution with respect to a given nucleon of the other 

nucleons in the a-particle. If 6 is sharply peaked compared to a 

nuclear mean free path} we have 

dO' 
dUo 1 

~ne 

dO' 
dU free 

(B.12) 

N 
where 6(q) is the form factor of the a-particle} and we neglect the 

small term due to long-range (p - p) cCTrelations. This expression 

should be fairly accurate at moderate q if a-clusters dominate the 

surface region. 
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Finally, if the correlations are all of short range compared 

to the mean free path, we have. 

dO". ~ dO" _A ~ 
dQ d~. §f(l + Cv(~» 

inel !~free -
(B.13) 

This is just (B.8) with A changed to~, so that in the short range 

limit, even with absorption, the inelastic cross section vanishes at q = O. 
""'" 

This fact could be used to test the range of correlations in the nucleus, 

by observing the behavior of (dO"/dn). I at small angles. 
lne 
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