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Abstract.

Given two ordered lists of the same elements, we define their
distance as the sum for each element of the absolute value of the
difference of each element's position in the two lists. Various properties
of this distance function are exhibited. 1In particular, a given list is

"far", on the average, from a random list of the same elements.




1. Introduction.

In numerous cases researchers are led to compare ordered lists of
the same elements. In particular, a mathematical measure of the closeness
of such lists is desired. Intuitive requirements for such a distance are
that two identical lists be a null distance apart and that a list and
its reverse be far apart. An additional requirement may be that a given
list be usually "far" from some random ordered list of tﬁe same elements.
This requirement insures that the closeness of two lists is a statistically
significant pProperty.

In chapter 2 of Mathematical models in the social sciences, Kemeny

and Snell show that the distance function that we shall discuss is the
only metric (up to scale factor) for preferences that allow equality
of choice and that satisfy the mid-point property. Our approach is in
the other direction; we postulate a distance and derive the fact that
it is a metriec, together with additional properties. This report is
consequently complementary to the work of Kemeny and Snell.

In all that follows, lists are assumed finite, ordered and containing
pairwise different elements. Unless otherwise specified, lists will

contain N elements, N > 1. Elements are ordered from left to right

as lst, 2nd, ..., Nth.

2. Elementary description.

Given two lists, we obtain their distance by summing over the
elements the absolute value of the difference of the position in the

two lists of each element.




Example: Consider the lists L1 = (A,C,B,D) and L2 = (C,D,B,A).

Element Position in 1st list Position in 2nd list Contribution to distance
A 1 4 3
C 2 1 1
B 3 3 0
D 4 2 2

The distance between the two lists is 6.

In general and more Precisely, given two lists L = (L,,L

and K = (K 2, ..,KN) of the same elements let P be a mapping of the
N-tuple L onto (1,2,...,N) defined by its projections P(L ) = We
define the distance between I and K as the distance between P(L) = 1,2,...,Mm

and P(K) = (P(Kl)aP(Kz)"")P(KN));

N
d(L,K) = d(P(L),P(K)) =j§l 3P I (1)
The special role of the identity permutation I = (1,2,...,N) is needed.

d( (AB C),(B A C) ) =2 =4d¢( (12 3),(21 3) ). However, if
we let PC (ABC) ) = (1 3 2) then P( (B A C) ) =(312)

but |1-3[+ |3-1|+ 12-2]=4.

We shall from now on consider only lists as permutations of I = (1,2,...,N).

For brevity we shall call the distance function sd.




N

sd (K,L) =§ I3 - &L L)) @)
j=1

.

where K—l is the inverse permutation of K and (KL)j; K

i
Note that by a change of variables we obtain:
X -1 -1
sd (K,L) = L 75 - K 4] (3)
j=1

3. Metric.

Given permutations K = (Kl,...,KN), L= (Ll,...,LN), M= (Mi,...,MN)
of (1,2,...,N):
a) sd(K,L) = 0 if and only if K = L. = (4)
b)  sd (K,L) = sd (L,K). (5)
Proof. Eq. (3) is symmetric in K and I.
¢ sd (K,L) < sd (K,M) + sd (M,L) (6)

Proof. Using (3) and a property of the absolute value, we have:

| =

X
D | S e P e 2t -1 ihich is the
i=1 J Iy i i=1 3 J

3

desired result.

Equations (4), (5) and (6) show that sd is a metric,

Another interesting property is:

d)  sd (I,K) = sd (I,K D ‘ (7)
Proof.
X N
sd(I,K)= =115k 1= K{im,K j-JJ=sd(I,K ).

, we

could define a distance from K to L as the restriction of K and L to

the elements of KnL (require KnL = ¢). However properties a) and

c) above fail to hold.




Example: K = (1,2), L = 2,1y, M= (1).

Then d (K,M) = sd ( (1), (1) ) =0 but K# M and d(X,L) = 2 while
d(K,M) = d(L,M) = 0.

4. Evenness.

Theorem. sd is even.

Proof. Given the permutations K and L, we can assume
L=1I= (1,2,...,N). We show that if sd (K,L) is even, so is sd (K,L')
where L' is obtained from L by a transposition. We proceed by case
analysis.
a) sd (I,I) = 0 is even.
b) Assume sd (I,K) is even.

N

sd (I,K) =E;l|1—Ki|
In K permute Ki and K.j to obtain K', sd (I,K') = sd (1,K) f o
where o = { -|j—Kj[—Ii—Ki|+|j-Kil+li-Kjl}

Case 1. 1i,j < Ki’Kj or Ki’ K, £ 1,j.

h|
a =0 (8)
Case 2. j <K, <i <K, or K1 = 1<K, £j.
J
lal= 2]i-xk, |
J
Case 3. 1 <K, <j <K, or K.j <3 < K:L < i
la]= 2]i-K, |
i
Case 4. 1 <K, £j <K, or K, < jsK =<i
hj i i hi
[al- 2l3-x, |
Case 5. j <K, <i<K, or K. <1ic< K, £ j

|o|= 2[1-Kil

Case 6. j < Ki’K' S 1iorisK,,K <j.

J
|a|= 2|K,-K, |
i3
Case 7. Ki £1i,j €K, orK, £1i,j < Ki.
laf= 2]i-3]




Since any permutation can be obtained by a finite number of

transpositions Successively applied to I, the proof is complete.

5. Maxima.

Theorem. sd (X,I) is a maximum if K is the reversed permutation

of I.

Proof. We assume K = (N,N—l,...,Z,l) and proceed by induction

over N.

a) The theorem holds for N=1 and N = 2 by inspection of all possible

cases.

b) With N > 2, assume the theorem holds for ’N—2)

N
sd(I,K)= Z_l 11—((N+1) -i)|=|1-§ + L [i-((N+1)- ~1) [+|N-1| (9)
i= i
N- 2 ‘
The second term in (9) equals ll—((N 1)- 1)’ and is the maximum

distance between (1,2,.;.,N-2) and (N—2,...,2 1.

’

_ The two other terms in (9) both equal (N-1) and are the maximum

possible contribution of a single summand of the expression for sd (I,K).
Theorem. The maximum value of gd (1,8 is

1

a) (N -1) for N odd and b) é’ N2 for N even.

Proof. The calculations are for I and itg reverse,

N/2 2

for N even, sd =2> (N+1-2i) = N
i=1 2
N+1

2
for N odd, sd = 2 :E (N+1—2i)=l(N2—l).
max =1 5




Theorem. A necessary and sufficient condition for K = (Kl,...,KN)

to be a maximum distance from I is that:

a) for N even: (K ’K2""’KN) be a permutation of 1,2,...,M).
1 5 2

and ( s+-«,Ko . ,K ) be a permutation of (1,2,...,N).

gg +1 -1y 2

b) for N odd: (Kl’KZ”"’KJ) be a permutation of (N-J+1,...,N-1,N)
. ti f (1,2,...,3
and (KJ+1) ’KN—l’KN) be a permutation of ( s )
where J has the same value N-1 or N+1 in all four expressionms.

2 2
Proof. We give the proof for N even. The proof for N odd is

a slight variation.

Sufficiency. (N,N—l,...tg +1, N-1,...,2,1) is at a maximum
2 2
distance from I. We proceed by induction. Let K = (Kl,...,KN) be
at a maximum distance from I and satisfy condition a) above.

Transpose Ki and Kj in K such that

i,j>N+1 and K, ,K,<N+1 or i,j<N+l1 and K,,K >N+l. The resultant
a 1= = 1y
permutation K' satisfies a) above and by equation (9) sd (I,K)=sd(I,K").
All the above transpositions will generate exactly all the
permutations satisfying a).
Necessity. Assume a permutation K is at a maximum distance from I in
such a way that a) above is not satisfied. Then there are at least a pair

of indices i and J such that:

i,K, <N+1<j,K,
l“——2 J

Let K' be obtained from K by transposing Ki and K, .

sd(I,K')=sd(I,K)+a, where

= ho g =3 o g, )




Case analysis:

i> i2K, : = 2 .—1)>0.
12K, KJ o (KJ i)

, isw . _
15Ki,J_Kj. a= 2 (Kj Ki)>0.
isKi,jsKj: a= 2 (j-Ki)>O.

iZKi,jSKj: a= 2 (§-1)>0.
It follows that g4 (I,K')>sdmax, a contradiction.

Theorem.

The number of maxima is:

a) for N even:

b) for N odd: . (/%) 1)2

Proof. We use the previous theorem. a) follows immediately.

For b): 1let N=2k+1. The contributions for J = N+l and J = N-1

2 2

=t

are each k,(k+l)l but we counted twice the Permutations where KN+1-N;l

2

Since there are (k[)2 such cases, we obtain the desired result:
2 2
2k](k+1)[-(kl> =(2k+1) (k|)“.

6. Average,

Theorem. The sum, over all NJ permutatlonsa of the distances

to I is 1 N|(n%o1).
3 -

Proof. Let Pj denote 3 Pérmutation. The gup is:

A N
sum = %% =) =2 -1 fioq1e
Jél i=1 | J i i=1 "j=l Sl
N i-1 N-i 2
-1 5 2. s+ Ts|=1n| w1y,
Toi=1 s=1 ;;1’ 3




Corollarz.

Assuming all permutations equally probable, the average distance

between two permutations is lﬁNz—l).
3

Note. Half the maximum possible distance is yﬁi
4

so that for N>1 the average distance is larger than half the maximum

distance: our distribution is therefore skewed towards the right.

/. Comparison with rank order correlation.
Rank order correlation has been used to test the statistical

proximity of ordered lists. In our notation, the Spearman coefficient of a

permutation K is: \ 3
N 5
6 S {axp /
r, = 1- %=l .
N~ -N

The computational difficulty is larger since an extra squaring is

required. Moreover, the sum :{l(j-Kj)z grows much faster than
ZZM fj—Kj,; in fact the maxima arefﬁi + o(N) and gi + o (N) so that a

2 3
problem of integer overflow may occur.

=

It is to be noticed moreover that for r(I,K)= ?w (j—Kj)z, the
triangle inequality does not hold. -

Example:

r((1,2,3),(3,1,2))=6> r((1,2,3),(1,3,2))+r((1,3,2),(3,1,2))=242=4. ©
This proves that r is not a metric.

These combined reasons, ease of calculation and metric properties,

make sd a more desirable function to work with.

*Note that r( (1,3,2),(3,1.2) ) - v( (1,2,3),(2,1,3) ) = 2.

8
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d=12
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Distribution of the distances for permutations

Table 1.

of length N, 2<N<8,





