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Soil Moisture Stress as a Major Driver of Carbon
Cycle Uncertainty
A. T. Trugman1 , D. Medvigy2 , J. S. Mankin3,4 , and W. R. L. Anderegg1

1Department of Biology, University of Utah, Salt Lake City, UT, USA, 2Department of Biological Sciences, University of Notre
Dame, Notre Dame, IN, USA, 3Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory of Columbia
University, Palisades, NY, USA, 4Department of Geography, Dartmouth College, Hanover, NH, USA

Abstract Future projections suggest an increase in drought globally with climate change. Current
vegetation models typically regulate the plant photosynthetic response to soil moisture stress through an
empirical function, rather than a mechanistic response where plant water potentials respond to changes in
soil water. This representation of soil moisture stress may introduce significant uncertainty into projections
for the terrestrial carbon cycle. We examined the use of the soil moisture limitation function in historical and
future emissions scenarios in nine Earth system models. We found that soil moisture-limited productivity
across models represented a large and uncertain component of the simulated carbon cycle, comparable to
3–286% of current global productivity. Approximately 40–80% of the intermodel variability was due to the
functional form of the limitation equation alone. Our results highlight the importance of implementing
mechanistic water limitation schemes in models and illuminate several avenues for improving projections of
the land carbon sink.

Plain Language Summary Understanding the environmental controls of terrestrial ecosystem
productivity is of critical importance because terrestrial ecosystems directly impact the concentration of
CO2 in the atmosphere. However, model projections disagree on the future sign and magnitude of terrestrial
ecosystem CO2 drawdown, so it is uncertain if terrestrial ecosystems will continue to mitigate climate change
in the future. Here we show that the current representation of water-limited productivity across
state-of-the-art vegetation models is a large and uncertain component of terrestrial productivity, comparable
in magnitude to current global productivity. Our results provide a foundation for improved projections of
climate change impacts on terrestrial ecosystems, ranging from vegetation growth to
agricultural productivity.

1. Introduction

Terrestrial ecosystems currently sequester ~2.4 Pg C annually (Pan et al., 2011), but their ability to maintain
these sequestration rates is uncertain and depends on potentially compensating impacts of both CO2

fertilization and increased hydrologic stress (Allen et al., 2015). A number of regional observational studies
have attributed recent declines in forest growth and increases in mortality over a wide range of latitudes
to climate change-induced drought stress (Allen et al., 2010; Brienen et al., 2015; Trugman et al., 2018; van
Mantgem et al., 2009). Yet global estimates observe an overall strengthening of land carbon uptake
(Ballantyne et al., 2012), gross primary productivity (GPP; Campbell et al., 2017), vegetation leaf area (Zhu
et al., 2016), and plant water use efficiency (Keeling et al., 2017) over the past several decades. Process-based
global vegetation models (VMs), either run offline or incorporated into Earth system models (ESMs), are a
practical tool for bridging this scaling gap and understanding the response of terrestrial ecosystems to
changes in atmospheric CO2 and climate, but such VMs must include the appropriate physiological
mechanisms for them to be useful for this purpose.

Current estimates project an increase in the land carbon sink over the next century due mainly to CO2

fertilization (Friend et al., 2014; Huntingford et al., 2013; Sitch et al., 2015). However, predictions vary widely
depending on both VM (Friedlingstein et al., 2014; Friend et al., 2014; Sitch et al., 2015) and climate model
(Huntingford et al., 2013). The large intermodel variability highlights the need for a better understanding
of the water stress mechanisms incorporated into VMs. This need is urgent given that water stress is
projected to increase and soil moisture is projected to decrease inmany regions under all emissions scenarios
(Berg et al., 2016; Dai et al., 2004; Sheffield & Wood, 2007).
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Key Points:
• Most global vegetation models

represent plant water limitation with
a rarely tested empirical function
based solely on soil moisture

• Carbon cycle uncertainty associated
with such soil moisture stress
functions is comparable to current
global gross primary productivity

• Forty to eighty percent of the soil
water stress-driven uncertainty in
productivity among models is due to
the functional form of the stress
equation alone
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Most global VMs have simplistic representations of the effects of soil water stress on vegetation growth over
long time scales (Powell et al., 2013). In many cases, either photosynthesis or stomatal conductance is
downregulated using an empirical function (β) that ranges between 0 and 1, with β = 0 analogous to full
stomatal closure due to soil moisture limitation. β is generally dependent on available soil moisture and root
distribution, and the functional form of β varies between models (supporting information Text S1). Several
significant shortcomings result from this representation of plant hydraulic stress: First, β does not capture
widely documented differences in vulnerability to soil moisture stress across plant species, heights, or
functional types (Xu et al., 2016). Second, the use of β in models decouples the plant water potential response
to atmospheric vapor pressure deficit (VPD; Ball et al., 1987) from the plant soil moisture stress response. This
representation of plant water stress is unlikely to capture the complex and nonlinear interactions between
soil water potential and VPD that affect stomatal conductance through the influence on leaf water potential
(Sperry et al., 2016). Third, the effects of different β functions have generally not been evaluated against
empirical data or compared across models, and thus their influence on simulated terrestrial carbon dynamics
is largely unknown. Most importantly, lacking a mechanistic grounding, β may not accurately capture
ecosystem response to water stress (Powell et al., 2013), and thus increasing β-constrained GPP with climate
change could introduce significant uncertainty into future projections of the terrestrial carbon cycle.

We quantified the prevalence of β use in historical and the Representative Concentration Pathway (RCP) 8.5
future emissions scenarios in nine ESMs used in the Coupled Model Intercomparison Project, Phase 5 (CMIP5).
Collectively, the models used seven different β functions, seven unique soil grids, and four different spatial
resolutions (Table S1). β was not archived as a standard CMIP5 output, so we calculated its average value
using monthly-level soil moisture, the known β functional form (Table S1), and soil texture from the Global
Soil Wetness Project 2 (Dirmeyer et al., 2002). Additionally, all models except the MIROC-ESM (Sato et al.,
2007) require root biomass for each soil layer to calculate β. Root biomass by soil layer is not available in
the CMIP5 archive, so we instead used established curves for rooting depth based on Jackson et al. (1996).
A validation of this inversion approach against direct model output of β and sensitivity analyses on inputs
to the inversion approach are available in the supporting information Texts S1–S6. In each model, we further
calculated the maximum amount that the derived β could constrain potential GPP (referred to as GPPc)
according to the following relation:

GPPc ¼ GPPm� 1
max β; 0:1ð Þ � 1

� �
: (1)

In equation (1), GPPm is the model output GPP. GPPc is designed to quantify first-order uncertainty in
estimates of productivity constrained by β where GPPm + GPPc ~ potential GPP. Note, however, that GPPc
should not be interpreted as the GPP that could have been supported without β because it does not include
land-atmosphere feedbacks (i.e., the influence of vegetation productivity on surface energy fluxes and the
hydrological cycle, and the subsequent feedbacks on climate and future vegetation productivity). We asked
the following: (i) What are the global patterns of β and in what regions does β constrain potential GPP? (ii) Is
the average β lower in RCP 8.5 (i.e., more water stress) compared to historical simulations? (iii) Is intermodel
variation due mainly to variation in the functional form of β or variation in other model structures and/or
climate? (iv) How large is the uncertainty in GPPm due to GPPc and what are the drought implications for
terrestrial carbon cycle uncertainty?

2. Materials and Methods
2.1. Soil Moisture Limitation in CMIP5 Simulations

We obtained soil moisture at the monthly time scale from historical runs and RCP 8.5 from the CMIP5
multimodel ensemble archive available at the Centre for Environmental Data Archival (https://services.
ceda.ac.uk/) for one realization for each of nine models—BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4,
CESM1-BGC, GISS-E2-R-CC, HadGEM2-ES, MIROC-ESM, and NorESM1-ME. Only one realization was used in this
analysis because the soil moisture equation used to limit photosynthesis (β) is a product of model structure
rather than initial conditions. However, using only one realization neglects possible multidecadal variability in
soil moisture between different model realizations. To avoid confounding short-term variability in soil
moisture and GPPm, we computed the average soil moisture for each model for each month over the
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period from 1981 to 2000 and from 2080 to 2099 for the historical and RCP 8.5 simulations, respectively. For
ease of comparison, model output was regridded to a 1° grid and the soil column was regridded to the
CCSM4 grid that extends through 4.7 m. Our regridding calculations were performed in MATLAB using a
nearest neighbor method from the interp function to preserve the spatial distribution of soil moisture as best
as possible for each individual model.

The functional form of β generally requires a metric of soil moisture, soil field capacity, and soil wilting point
(supporting information Text S1). Thus, we downloaded global maps at 1° resolution of volumetric soil water
content at saturation, wilting point, and field capacity as well as soil water potential at saturation, and rooting
depth encompassing 50% of root biomass from the GWSP2 database (Dirmeyer et al., 2002), a soil texture
database used in a number of Earth system models (Sato et al., 2007). We further calculated soil water
potential at field capacity and wilting point using the Clapp-Hornberger equation and downloaded soil
parameters from the GWSP2. Additionally, all models except the MIROC-ESM (Sato et al., 2007) require the
amount of root biomass in each soil layer. This output was not available for individual models in the CMIP5
archive, so we instead calculated the root biomass fraction in each soil layer by fitting an established rooting
depth curve from Jackson et al. (1996; one of the primary references from which global vegetation root
distribution are based on VMs; Zeng, 2001) to the 50% root biomass fraction from the GWSP2 database.
Finally, we masked out all locations covered in ice year-round circa year 2000. After post-processing, we aver-
aged monthly-level values of β over the year for both the historical and RCP 8.5 simulations to obtain two
global maps of β for comparison with each model, one representing average conditions circa 2000 and
one circa 2100.

2.2. Estimated Impacts of Soil Moisture Limitation on Simulated GPP

We downloaded average daily minimum temperature and GPP, averaged to the monthly scale, from
historical runs and RCP 8.5. For NorESM1-ME only, we used averagemonthly temperature rather than average
daily minimum temperature because daily minimum temperature was not available. We processed and
regridded these model outputs in the same manner as soil moisture. Because we were interested in
examining the water limitation impact of β on GPP, we masked out GPP during months when average
minimum temperature decreased below 273.15 K.

We then calculated the simulated global GPP (GPPm) that was reduced by β (GPPc) in each model according
equation (1). For numerical purposes, in our calculation of GPPc, we limited the minimum value of β to 0.1.
Though in some models β is used to regulate the maximum rate of photosynthesis and in others it is used
to regulate canopy conductance (supporting information Text S1), GPPm scales roughly linearly with β in
either case and we treated both identically in our first-order estimates of GPPc. After obtaining estimates
of monthly-level GPPc, we summed monthly-level values during the growing season over the year for both
the historical and RCP 8.5 simulations to obtain global maps of GPPc (using β functions associated with their
own respective CMIP5 model) for average conditions circa 2000 and circa 2100. To quantify the effect that
different β functions used across models has on GPPc, we applied all seven different β equations (supporting
information Text S1) to a single model’s soil moisture output. We compared the variability in globally
integrated β for a given model soil moisture using the seven different β functions to the variability in globally
integrated β across models (each with their own model-specific β function) to attribute the first-order
variability in β and GPPc associated with the functional form of the β equation alone, thus enabling a better
understanding the role of β in carbon cycle uncertainty.

2.3. Validations of Soil Moisture Limitation Estimates

In this study, β was calculated via inversion using model output soil moisture, assumed root biomass curves
(for all models except the MIROC model), assumed soil hydraulic parameters, and assumed soil moisture
variability at a monthly time scale. We validated the inversion approach using monthly average β calculated
directly with a fully coupled simulation of the CESM model (supporting information Text S2). We used this
information to assess whether our inversion approach to obtaining β is a reasonable proxy in estimating β
strength and spatial distribution for models with β dependent on root biomass. For the MIROC model, β is
calculated exclusively from soil moisture and so is analogous to our estimates (supporting information
Text S1). We found that in using the inversion approach, we were able to capture both the spatial variability
and strength of β.
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In a separate analysis, we applied the soil moisture stress function to indi-
vidual months in each 20-year period and then computed the mean
monthly β, given that β is sometimes a nonlinear function of soil moisture
levels. Our calculations using monthly soil moisture instead of climatologi-
cal soil moisture led to slightly lower values of β - particularly in semiarid
areas (e.g., South Africa and central United States; see supporting informa-
tion Text S3 for details). Thus, the climatological results presented in the
main text are actually a conservative estimate of β stress and GPPc in
some regions.

Finally, we quantified the sensitivity of our results to assumptions for
plant rooting depth and timescale of analysis (supporting information
Text S4–6).

2.4. Feedback of Soil Water Stress Factor (β) on GPP in an Earth
System Model

Soil moisture stress is not the only water stress that can impact plant pro-
ductivity. High atmospheric VPD stress can also decrease GPP through a
downregulation of stomatal conductance. Further complicating this is
the fact that low soil moisture is often correlated with high VPD in a
number of locations. In this case, the inversion method for estimating
GPPc from β could overestimate GPPc as VPD-induced stomatal closure
would further constrain GPP, thus confounding our estimate of GPPc. To
disassociate these two drivers, we performed a novel set of two 20-year,
fully coupled Earth system model integrations: one with and one without
the soil moisture (β) effect on GPP under high greenhouse gas emissions
(years 2080–2100 in RCP8.5) for the CESM model only (model #5 in
Table S1). In the test simulation we turned β off (i.e., set β = 1, which
represents no soil water stress) for land areas that do not have ice cover,
removing soil moisture stress from influencing GPP. In this test simulation,
we increased the error tolerance that conserves the land surface water

budget in CESM because β is critical to maintaining the water budget in the CESM model. We compared
the test (β = 1) simulation to a control simulation where β was allowed to respond to soil water and root resis-
tances. We then calculated the simulated average annual difference in GPP (GPPdiff) between the fully coupled
test simulation (β = 1) from the control simulation over the years 2080–2099. It should be noted that GPPdiff is
not analogous to GPPc. GPPc is defined as the uncertainty associated with GPP due to the model β parameter-
ization, whereas GPPdiff is the change in GPP without β but including land-atmosphere feedbacks on GPP.

3. Results and Discussion
3.1. Global Patterns in β and GPPc

Values of β were smallest (hereafter strongest water limitation) in RCP 8.5 in the desert regions. In northern
and parts of southern Africa, the Arabian Peninsula, central Asia, and much of Australia, extensive portions
of the land area had photosynthesis suppressed by 40% (β ~ 0.6; Figure 1a). Substantial portions of Central
America, the Brazilian Cerrado, Argentina, and the American West experienced β ~ 0.7. However, individual
models varied significantly, and some projected much stronger β signals than others (Figures S1a, S1b,
and S2).

Patterns of GPPc differed from those of β due to the relationship between β and GPPm (Figure 1b). Specifically,
desert regions with extremely water-stressed photosynthesis hadminimal GPPm, diminishing the importance
of strong β values there. However, semiarid grassland and savanna regions under moderate β stress had a
much higher total GPPm, and in these locations GPPc exceeded 0.2 kg C·m�2·year�1 for relatively large
regions and 0.8 kg C·m�2·year�1 at smaller scales (Figure 1b), a substantial fraction of the multimodel
median GPPm of ~0.5–2 kg C·m�2·year�1 for similar regions. Additionally, the large intermodel variation in
β globally resulted in considerable variability in GPPc (Figures S1c, S1d, and S3), due to both intermodel

Figure 1. Regions with projected soil moisture limitation on photosynthesis
comprise a large portion of the land surface area in vegetation models.
Global maps of the multimodel median (a) soil water limitation coefficient (β)
and (b) GPP constrained by β (GPPc). Maps show the average annual β and
GPPc (using β functions associated with their own respectivemodel) over the
years 2080–2099 for RCP 8.5 for nine model members of the CMIP5 (Table S1).
GPP = gross primary productivity; RCP = Representative Concentration
Pathway; CMIP5 = Coupled Model Intercomparison Project, Phase 5.
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variation in β and GPPm (Figures S2 and S3). Semiarid regions have been identified as a major source for
variability in the land carbon sink in ecosystem models (Ahlström et al., 2015; Poulter et al., 2014). This
could be partially attributable to the relatively strong β stress across semiarid regions in models.

3.2. Future Changes in β and GPPc

Plant water limitation increased globally between 2000 and 2100 in all models. Median β decreased on aver-
age by ~0.003, corresponding to a median increase in average GPPc by ~0.088 kg C·m�2·year�1 due to both
decreased soil moisture and increased GPPm from atmospheric CO2 fertilization (Figure 2). Notably, β
increased at ~20°N due to a moistening of the Sahel in most models (Figures 2a and S4). However, a number
of regions with moderate to high productivity, particularly in South America, experienced decreases in β due
to projected decreases in soil moisture (Figure S4). These regional decreases in β in productive areas corre-
sponded to substantial increases in GPPc (Figures 2b and S5).

Collectively, the future changes in GPPc intimate at the potential utility of β and GPPc as complementary
metrics of monthly scale drought. Much of the drought impacts literature is concerned with the appropriate-
ness of present-day drought measures to assess future drought risks (Mankin et al., 2017; Milly & Dunne, 2016;
Roderick et al., 2015; Swann et al., 2016; Trenberth et al., 2013). By contrast, the estimation of β is (1) internally
consistent within eachmodel between historical and future climates and (2) is directly relevant to plant water
stress and simulation of global carbon and water fluxes. Thus, the combined use of β and GPPc gives both the
physiological (β) and carbon cycle (GPPc) relevance of projected changes in water stress. Our results for pro-
jected changes in β show a systematic increase in physiological water stress in future projections in regions
where there is moderate to high productivity such as South America. Though there is substantial intermodel
variability, there is a routine decrease in water stress (increase in β) in drier locations such as the Sahel and a

Figure 2. Drought limitation on photosynthesis is projected to increase in the future; however, substantial spatial variability
in the strength and extent is apparent. Global maps of the multimodel median difference in (a) soil water limitation
coefficient (β) and (b) GPP constrained by β (GPPc). Maps show themedian annual β and GPPc over the years 2080–2099 for
RCP 8.5 minus the median for years 1981–2000 in historical simulations for nine model members of the CMIP5 (Table S1).
Side panels illustrate zonal means for individual models. See Figure S6 for the corresponding individual models. GPP =
gross primary productivity; RCP = Representative Concentration Pathway; CMIP5 = Coupled Model Intercomparison
Project, Phase 5.
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routine increase in water stress (decrease in β) in much of South America,
Europe, West Asia, and parts of North America (Figures 2 and S4). Both the
decrease in β and the increase in GPPm lead to a substantial increase in
GPPc that can be threefold to fourfold, depending on the model and loca-
tion (Figure S5). These results indicate that despite decreased productivity
due to physiological response to increased water stress circa 2100, gains in
productivity associated with CO2 fertilization may compensate for the
increased physiological stress. However, an increase in uncertainty in
future carbon cycle projections (i.e., an increase in GPPc) is concomitant
with both increased water stress and increased GPPm.

3.3. The β, GPPc, and Terrestrial Carbon Cycle Uncertainty

Both the functional form of β and variability in soil moisture betweenmod-
els contributed to the large intermodel variation in global average β. When
β was calculated for individual models circa 2100, the global median β ran-
ged from ~0.6 to 0.9 (Figure 3a). However, when we applied the range of β
functional forms (supporting information Text S1) to soil moisture output
from a given model, the global median β often varied by ~0.2 and up to
~0.3 with lower values of β corresponding to β functions using soil moist-
ure and higher values corresponding to β functions using soil water poten-
tial. This variability in the intramodel range in global mean β, given the
seven β functions, was due to variability in model-predicted soil
moisture (Figure 3a).

Next, we quantified how variability due solely to the functional form of β
affected GPPc. In many models, we found that GPPc varied by ~0.3–0.5
and up to ~2 kg C·m�2·year�1 (Figure 3b). Further, we found that the func-
tional form of β alone explained ~40–80% of the intermodel variance in
soil moisture stress on vegetation productivity (GPPc), indicating that β
variability among models could be a substantial source of intermodel
variation documented for projected changes in land productivity
(Friedlingstein et al., 2014).

GPPc represented a large and uncertain term relative to other components
of the projected terrestrial carbon budget for all models. In the historical
simulations, total GPPc ranged from 4.0 to 353.0 Pg C year�1 with a
median of 34.7 Pg C year�1 (Figures 4a and 4b). For context, GPPc is of
the same magnitude as observation-based estimates of total GPP
(123 ± 8 Pg C year�1; Beer et al., 2010) and GPPm (Figure S7a), and 0.4- to
36-fold larger than annual fossil fuel emissions for 2014 (9.8 Pg C year�1;
Le Quéré et al., 2015; Figure 4a). In the RCP 8.5 simulations, total GPPc ran-
ged from 5.56 to 595.5 Pg C/year with a median of 64.2 Pg C year�1

(Figures 4c and 4d). In some cases, future projected GPPc exceeded
model-based projections of GPP (Mystakidis et al., 2016; Figure S7b) and

was roughly equivalent to projected fossil fuel emissions (29 Pg C year�1) in the highest emissions scenario
(Sanford et al., 2014; Figure 4c). For both historical and future projections, GPPc was of the same magnitude
as nitrogen-constrained GPP (Thornton et al., 2007). Depending on model and time period, GPPc was equiva-
lent to 3–286% of GPPm (Figure S7b). This increase in GPPc globally was attributable to both increased water
limitation in moderately to highly productive regions (depending on the model; Figure S4) and an increase in
total global productivity (Figure S7).

3.4. Caveats

Vegetation in regions exposed to high VPD stress also experiences decreased GPP through a downregulation
of stomatal conductance. Thus, VPD stress could result in an overestimate of GPPc because GPP constrained
by VPD-induced stomatal closure would be included our calculation of GPPc. However, an Earth system

Figure 3. Variation in the functional form of the soil water limitation coeffi-
cient contributes to the large uncertainty in soil moisture-constrained GPP.
Intermodel and intramodel variability in the global average (a) soil water
limitation coefficient (β) and (b) GPP constrained by β (GPPc) for RCP 8.5
future projections. In both panels, we computed the intermodel range for
each model given its own β function (Total; Table S1) and the intramodel
range for each model given the range of the seven β functions applied to
individual model-predicted soil moisture and GPP (supporting information
Text S1). Central dots indicate the median model value; thick bars define the
interquartile range; thin lines represent 2.7 standard deviations; open circles
indicate outliers. GPP = gross primary productivity; RCP = Representative
Concentration Pathway.

10.1029/2018GL078131Geophysical Research Letters

TRUGMAN ET AL. 6500



simulation with freely varying β relative to a simulation with no β influence (β = 1, section 2.4) shows patterns
of substantially decreased GPP globally and particularly in arid and semiarid regions where high VPD
regulates photosynthesis (Figure S8). These simulations illustrate that there is a meaningful
downregulation of GPP by β, regardless of VPD downregulation of photosynthesis. Overall, these
simulations provide an estimate of the soil moisture effect on GPP independent of GPP regulation by
atmospheric VPD, and they further validate the potential for β to propagate substantial uncertainty in
model estimates of terrestrial GPP.

4. Conclusions

Collectively, these results illustrate that soil moisture stress on photosynthesis is a large and uncertain term
affecting estimates of the terrestrial carbon cycle, comparable in magnitude to observed estimates of global
GPP, simulated GPPm, and the effects of nitrogen limitation on photosynthesis. These results also highlight
several avenues for improving the representation of (a) soil hydraulic processes and (b) water limitation on
photosynthesis. We found substantial intermodel variability in soil moisture, which resulted in a large inter-
model variation in β globally (Figures 3a and S1–S3). Models with lower soil moisture (CanESM2, GISS-E2-R-
CC, and HadGEM2-ES; Figure S2) also exhibited a wider variability in β due to the functional form alone
(Figure 3a). Drier soils in models were associated with coarser-resolution soil grids within the rooting zone
(Table S1). It has already been recognized that soil column depth and resolution is crucial in capturing perma-
frost dynamics (Lawrence et al., 2008). Our results indicate that increased vertical resolution may also be
important in capturing the impacts of soil moisture stress on the terrestrial carbon cycle.

These results indicate that the β soil moisture scheme is responsible for ~40–80% of the intermodel variability
in GPPc, indicating that the β parameterization is likely an important mechanism responsible for the large
intermodel spread in carbon cycle projections, particularly in semiarid ecosystems. Specifically, the practice
of tuning individual models to historical observations of GPP, given model-specific β equations and other

Figure 4. GPP constrained by soil water limitation represents a key uncertainty in the terrestrial carbon cycle, comparable
in magnitude to global GPP. (a) Historical GPP constrained by soil water stress (GPPc) compared to observation-based
estimates of GPP (GPPo), global CO2 emissions (Emis.) in 2014, and GPP constrained by nitrogen limitation (Nit.), and
(b) individual model GPPc. (c) Projected GPPc compared to projected GPP (GPPp), projected global CO2 emissions, and GPP
constrained by nitrogen limitation, and (d) individual model GPPc. Panels (a) and (c) show model median and range
between the 0.159 and 0.841 quantiles for GPPc andmean ± 1 standard deviations for GPPo and GPPp. Calculations of GPPc
were performed using β functions associated with their own respective model. GPP = gross primary productivity.
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processes, likely results in compensating errors that manifest themselves as diverging future projections in
the carbon cycle. These results provide a unique and important rationale and guidance for a broad audience
of scientists working to improve the representation of hydrologic stress in global vegetation models, as well
as many of the more detailed uncoupled models that also use a simple soil moisture stress scheme similar to
β. Further, such β-induced carbon cycle uncertainties likely influence hydrologic uncertainties, as CO2-ferti-
lized vegetation siphons water from both runoff and soil moisture in Earth system models over some
~40% of the globe, notably in semiarid regions (Mankin et al., 2017, 2018). Trait-driven representations of
water limitation, whereby leaf and stemwater potential are explicitly resolved and used to estimate root zone
water uptake, transport of water vertically through the sapwood, and transpiration of water into the atmo-
sphere, are beginning to be used by the modeling community (Christoffersen et al., 2016; Trugman et al.,
2016; Xu et al., 2016). Recent studies also indicate that including water stress-induced loss of living carbon,
such as sapwood used for water transport (Shevliakova et al., 2009), may allow VMs to better capture drought
legacy effects on growth (Anderegg et al., 2015). These findings motivate consistent, process-based represen-
tations of water limitation in all VMs as a fundamental component to our ability to accurately capture impacts
of water limitation on the terrestrial carbon cycle with global climate change.
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