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The 21-cm Line as a Probe of Reionization

Steven R. Furlanetto

Abstract One of the most exciting probes of the early phases of structure formation
and reionization is the “spin-flip” line of neutral hydrogen, with a rest wavelength
of 21 cm. This chapter introduces the physics of this transition and the astrophysical
parameters upon which it depends, including discussions of the radiation fields that
permeate the intergalactic medium that fix the brightness of this transition. We de-
scribe the critical points in the evolution of the 21-cm background and focus on the
sky-averaged brightness and the power spectrum as representative measurements.
Finally, we include a discussion of observations and the challenges they face in the
near future.

1 Introduction

Although the Lyman-α line and the CMB are extremely powerful probes of reion-
ization, they suffer from several shortcomings. Most importantly, the Gunn-Peterson
optical depth is enormous, so that even a very small fraction of neutral hydrogen
(> 10−3) saturates the IGM absorption. The Lyman-α line is therefore difficult to
interpret during the middle and early stages of reionization. On the other hand, the
CMB probes are integrated measurements along the line of sight, offering no (direct)
discriminatory power between events at different redshifts.

These problems can be avoided by observing the spin-flip or hyperfine line of
neutral hydrogen, which is driven by the magnetic interactions of the proton and
electron – though of course such a strategy introduces a new set of problems. Hen-
drik van de Hulst first predicted the existence of this transition [1] (after a sugges-
tion by Jan Oort), and Harold Ewen and Ed Purcell first observed it from our own
Galaxy in 1951 [2]. This transition is extremely weak, making the effective IGM
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Fig. 1 Time evolution of the expected 21 cm signal from a semi-numeric simulation 750 Mpc on
a side, spanning the period before the first stars formed (at right) through the end of reionization
(at left).Galaxy parameters are similar to those of present-day galaxies. Coloration indicates the
strength of the 21 cm brightness as it transitions from absorption (red) to emission (blue) and
finally disappears (black) due to reionization. From [4].

optical depth only ∼ 1%. While the signal is therefore very faint, the neutral IGM
is accessible over the entire epoch of reionization. Moreover, the transition energy
is so low that it provides a sensitive calorimeter of the diffuse IGM, and – as a low-
frequency radio transition – it can be observed across the entire sky and be used
to “slice” the universe in the radial direction, thanks to the cosmological redshift.
With such three-dimensional observations, the 21-cm line allows tomography of the
neutral IGM, potentially providing a map of > 90% of the Universe’s baryonic mat-
ter during the Dark Ages and cosmic dawn [3]. As we shall see, however, there are
enormous obstacles to fully utilizing this signal.

Figure 1 shows an overview of the expected spin-flip signal (taken from [4]).
It can be observed in two fundamental ways. The first is the sky-averaged, or
monopole, brightness, which measures the average properties of the H I as a function
of redshift. The bottom panel shows this signal relative to the CMB. The top panel
shows the fluctuations in the 21-cm signal,1 which arise from the discrete, clustered
luminous sources. We will discuss these probes in detail later in this chapter after
introducing the physics of the 21-cm line. Finally, we conclude with a discussion of
this signal’s observational prospects. We refer the reader to several recent reviews
for more information [5, 6, 7, 8].

2 Fundamentals of the 21-cm Line

We begin with an introduction to the atomic physics and radiative transfer of the
spin-flip transition. The radiative transfer equation for the specific intensity Iν of a
line reads

dIν

d`
=

φ(ν)hν

4π
[n1A10− (n0B01−n1B10) Iν ] , (1)

where d` is a proper path length, φ(ν) is the line profile function normalized by∫
φ(ν)dν = 1, subscripts 0 and 1 denote the lower and upper atomic levels, ni are the

1 Following convention, we will often refer to the signal as “21-cm radiation,” although of course
the observed wavelengths are larger by a factor of (1+ z).
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number density of atoms in these levels, and Ai j and Bi j are the Einstein coefficients
for the transition (with i and j the initial and final states, respectively). In our case,
the line frequency is ν21 = 1420.4057 MHz, corresponding to a wavelength of λ21 =
21.1061 cm. For the 21-cm transition, A10 = 2.85×10−15 s−1 and g1/g0 = 3.

The relative populations of the two spin states define the spin temperature, TS,
through the relation, (

n1

n0

)
=

(
g1

g0

)
exp
{−T∗

TS

}
, (2)

where gi are the spin degeneracy factor of each state and T∗ ≡ E10/kB = 68 mK is
equivalent to the transition energy E10. We will always find that T? is much smaller
than the other relevant temperatures (TS and the CMB temperature Tγ ), so all expo-
nentials like this one can be expanded to leading order. Moreover, this also implies
that ∼ 3/4 of atoms are in the upper state at any time, making stimulated emission
an important process.

Following convention, we will quantify Iν by the equivalent brightness tem-
perature, Tb(ν), required of a blackbody radiator (with spectrum Bν ) such that
Iν = Bν(Tb). At the low frequencies of interest to us, Tb(ν)≈ Iν c2/2kBν2 according
to the Rayleigh-Jeans limit. Then the equation of radiative transfer along a line of
sight through a cloud of uniform excitation temperature TS becomes [3]

T ′b(ν) = TS(1− e−τν )+T ′R(ν)e
−τν (3)

where the optical depth τν ≡
∫

dsαν is the integral of the absorption coefficient (αν )
along the ray through the cloud, T ′R is the brightness of the background radiation
field incident on the cloud along the ray, and s is the proper distance. Because of
the cosmological redshift, the emergent brightness T ′b(ν0) measured in a cloud’s
comoving frame at redshift z creates an apparent brightness at the Earth of Tb(ν) =
T ′b(ν0)/(1+z), where the observed frequency is ν = ν0/(1+z). Henceforth we will
work in terms of these observed quantities. The absorption coefficient is determined
from the Einstein coefficients via

α = φ(ν)
hν

4π
(n0B01−n1B10), (4)

where the Bi j can be derived from the A10 given above using the standard Einstein
relations.

In an expanding Universe with a local hydrogen number density nH and with a
velocity gradient along the line of sight of dv‖/dr‖, the 21-cm optical depth can be
derived just like the Gunn-Peterson optical depth [9]. Writing φ(ν) ∼ 1/(∆ν), we
obtain [3]

τ10 =
3

32π

hc3A10

kBTSν2
10

xHInH

(1+ z)(dv‖/dr‖)
(5)

≈ 0.0092(1+δ )(1+ z)3/2 xHI

TS

[
H(z)/(1+ z)

dv‖/dr‖

]
, (6)
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In the second part we express TS in Kelvins and have scaled to the mean IGM density
at z and to the Hubble flow (so that ∆ Iν ∝ ∆`φ(ν)ν = |cdt/dz|[νdz/dν ] = c/H).

In practice, the background radiation source is usually the CMB, so T ′R = Tγ(z),
and we are observing the contrast between high-redshift hydrogen clouds and the
CMB. With τν � 1,

Tb(ν) ≈
TS−Tγ(z)

1+ z
τν0 (7)

≈ 9 xHI(1+δ )(1+ z)1/2
[

1− Tγ(z)
TS

] [
H(z)/(1+ z)

dv‖/dr‖

]
mK. (8)

Here Tb < 0 if TS < Tγ , yielding an absorption signal, while Tb > 0 otherwise, yield-
ing emission. Both regimes are important for the high-z Universe, though the con-
sensus is currently that emission will dominate during the reionization era. In that
case, δTb saturates if TS� Tγ (though this is not true in the absorption regime).

2.1 The Spin Temperature

Three processes compete to fix TS [10, 11, 12]: (i) interactions with CMB photons;
(ii) particle collisions; and (iii) scattering of UV photons. The CMB very rapidly
drives the spin states toward thermal equilibrium with TS = Tγ . However, the other
two processes break this coupling. We let C10 and P10 be the de-excitation rates (per
atom) from collisions and UV scattering, respectively (with corresponding excita-
tion rates C01 and P01). In equilibrium,

n1 (C10 +P10 +A10 +B10ICMB) = n0 (C01 +P01 +B01ICMB) , (9)

where ICMB is the specific intensity of CMB photons. In the Rayleigh-Jeans limit,
equation (9) becomes

T−1
S =

T−1
γ + xcT−1

K + xα T−1
c

1+ xc + xα

, (10)

where xc and xα are coupling coefficients for collisions and UV scattering, respec-
tively, and TK is the gas kinetic temperature. Here we have used the principle of
detailed balance through the relation

C01

C10
=

g1

g0
e−T?/TK ≈ 3

(
1− T?

TK

)
. (11)

We have also defined the effective color temperature of the UV radiation field Tc via

P01

P10
≡ 3

(
1− T?

Tc

)
. (12)
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In the limit in which Tc→ TK (a reasonable approximation in most situations of
interest), equation (10) may be written as

1− Tγ

TS
=

xc + xα

1+ xc + xα

(
1− Tγ

TK

)
. (13)

Thus, particle collisions and photons both tend to drive TS→ TK ; to understand the
signal, we must understand how strong these coupling processes are and the IGM’s
thermal history.

The collisional coupling coefficient for collisions with species i is

xi
c ≡

Ci
10

A10

T?
Tγ

=
ni κ i

10
A10

T?
Tγ

, (14)

where κ i
10 is the rate coefficient for spin de-excitation in collisions with that species

(with units of cm3 s−1). The total xc is the sum over all species i, which are gener-
ally dominated by collisions with (1) other hydrogen atoms [13] and (2) free elec-
trons [14]. Although the atomic cross-section is small, in the unperturbed IGM col-
lisions between neutral hydrogen atoms nearly always dominate these rates because
the ionized fraction is small. Free electrons can be important in partially ionized
gas.

Crucially, the collisional coupling is quite weak in a nearly neutral, cold medium.
Thus, the overall density must be large in order for this process to effectively fix TS.
A convenient estimate of their importance is the critical overdensity, δcoll, at which
xc = 1 for H–H collisions:

1+δcoll = 0.99
[

κ10(88 K)

κ10(TK)

] (
0.023
Ωbh2

) (
70

1+ z

)2

, (15)

where we have inserted the expected temperature at 1 + z = 70. In the standard
picture, at redshifts z < 70, xc � 1 and TS → Tγ ; by z ∼ 30 the IGM essentially
becomes invisible.

We therefore require a different process to break the coupling to the CMB during
the era of galaxy formation. The Wouthuysen-Field mechanism [10, 11, 15] provides
just such an effect. Figure 2 shows the process, where we have drawn the hyperfine
sub-levels of the 1S and 2P states of HI. Suppose a hydrogen atom in the hyperfine
singlet state absorbs a Lyman-α photon. The electric dipole selection rules allow
the electron to jump to either of the central 2P states. However, these states can
decay to the upper hyperfine level, changing the hyperfine populations through the
absorption and spontaneous re-emission of a Lyman-α photon (or any other Lyman-
series photon, though those only contribute significantly if they produce Lyman-α as
a cascade product [15, 16]).

The Wouthuysen-Field coupling strength depends on the total rate (per atom) at
which Lyman-α photons scatter through the gas,
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Fig. 2 Level diagram illus-
trating the Wouthuysen-Field
effect. We show the hyper-
fine splittings of the 1S and
2P levels. The solid lines
label transitions that mix the
ground state hyperfine levels,
while the dashed lines label
complementary allowed tran-
sitions that do not participate
in mixing. From [16].

Pα = 4πσ0

∫
dν Jν(ν)φα(ν), (16)

where σν ≡ σ0φα(ν) is the local absorption cross section, σ0 ≡ (π e2/me c) fα ,
fα = 0.4162 is the oscillator strength of the Lyman-α transition, φα(ν) is the
Lyman-α absorption profile, and Jν is the angle-averaged specific intensity of the
background radiation field, in units of photons cm−2 Hz−1 s−1 sr−1 here.

Not all of these scattered photons contribute to hyperfine level changes, how-
ever, so we must relate Pα to the indirect excitation and de-excitation rates P01 and
P10 [17]. To do so, we first relabel the 1S and 2P hyperfine levels a–f, in order of
increasing energy, and let Ai j and Bi j be the spontaneous emission and absorption
coefficients for transitions between these levels. We write the background flux at the
frequency corresponding to the i→ j transition as Ji j. Then

P01 ∝ BadJad
Adb

Ada +Adb
+BaeJae

Aeb

Aea +Aeb
. (17)

The first term contains the probability for an a→d transition (BadJad), multiplied by
the probability for the subsequent decay to terminate in state b; the second term is
the same for transitions to and from state e. Next we need to relate the individual Ai j
to Aα = 6.25×108 Hz, the total Lyman-α spontaneous emission rate (averaged over
all the hyperfine sublevels). This can be accomplished using a sum rule stating that
the sum of decay intensities (giAi j) for transitions from a given nFJ to all the n′J′

levels (summed over F ′) is proportional to 2F +1 [18]. The relative strengths of the
permitted transitions are then (1, 1, 2, 2, 1, 5), where we have ordered the lines (bc,
ad, bd, ae, be, bf). Assuming that the background radiation field is constant across
the individual hyperfine lines, we find P10 = (4/27)Pα .

The coupling coefficient xα may then be written
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xα =
4Pα

27A10

T?
Tγ

= Sα

Jα

Jc
ν

, (18)

where in the second equality we evaluate Jν at line center and set Jc
ν ≡ 1.165×

10−10[(1+ z)/20] cm−2 s−1 Hz−1 sr−1. We include here a correction factor Sα < 1
that accounts for variations in the intensity near the line center that is typically of
order unity [19, 15, 20]. (Intuitively, a flat input spectrum develops an absorption
feature because of the increased scattering rate near the Lyman-α resonance. Pho-
tons continually lose energy by redshifting, but they also lose energy through recoil
whenever they scatter.) This coupling threshold for xα = Sα can also be written in
terms of the number of Lyman-α photons per hydrogen atom in the Universe, which
we denote J̃c

ν = 0.0767 [(1+z)/20]−2. This threshold is relatively easy to achieve in
practice.

The remaining challenge is to compute Tc, the effective temperature of the UV ra-
diation field. A simple argument shows that Tc ≈ TK [10, 21]: so long as the medium
is extremely optically thick, the enormous number of Lyman-α scatterings must
bring the Lyman-α profile to a blackbody of temperature TK near the line center.
This condition is easily fulfilled in the high-redshift IGM, where τα � 1. In de-
tail, atomic recoils during scattering tilt the spectrum to the red and are primarily
responsible for establishing this equilibrium.

3 The Brightness Temperature of the 21-cm Background

Next we consider the astrophysical processes that drive the 21-cm background. In
general terms, three important radiation backgrounds affect the signal: (1) the meta-
galactic field near the Lyman-α resonance, which determines the strength of the
Wouthuysen-Field effect; (2) the X-ray background, which determines the amount
of IGM heating; and (3) the ionizing background, which eventually (nearly) elimi-
nates the signal at the completion of reionization. We will discuss each of these in
turn in this section.

3.1 The Lyman-α Background

After z ∼ 30, when collisional coupling becomes unimportant, the spin tempera-
ture is determined by the scattering of Lyman-α photons. In practice, the relevant
photons do not start at the Lyman-α wavelength, because those redshift out of reso-
nance very soon after they are created and do not contribute to the coupling except
very near their sources. Instead, the important photons begin in the ultraviolet and
redshift into a Lyman-series line, possibly cascading down to a Lyman-α photon.

To compute Jα , we therefore begin with the proper ultraviolet emissivity at a
frequency ν , ε(ν ,z). For the purposes of a simple global estimate, we will consider
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the limit in which this emissivity is nearly uniform. Then

Jα(z) =
nmax

∑
n=2

J(n)α (z)

=
c

4π

nmax

∑
n=2

frec(n)
∫ zmax(n)

z
dz′
∣∣∣∣ dt
dz′

∣∣∣∣( 1+ z
1+ z′

)3

4π
c

H(z′)
ε(ν ′n,z

′), (19)

where ν ′n is the frequency at redshift z′ that redshifts into the Lyman-n resonance
at redshift z, zmax(n) is the largest redshift from which a photon can redshift into
the Lyman-n resonance, and frec(n) is the fraction of Lyn photons that produce a
Lyman-α photon as part of their cascade. The sum must be truncated at some large
nmax that is determined by the typical size of ionized regions around the sources, but
the result is not sensitive to the precise cutoff value.

To estimate the background, we need to understand the sources of Lyman-α pho-
tons, most likely star-forming galaxies (though X-rays can also produce them as fast
electrons scatter through the IGM and collisionally excite hydrogen atoms). In the
simplest model, in which the star formation rate traces the rate at which matter col-
lapses into galaxies, the comoving emissivity at frequency ν is

ε(ν ,z) = f?
ρb

mp
εLn(ν)

d fcoll

dt
, (20)

where f? is the fraction of baryonic material converted to stars, ρb is the average
baryon density, εLn(ν) is the number of photons produced in the frequency interval
ν±dν/2 per baryon incorporated into stars, and fcoll is the fraction of matter inside
star-forming halos. Although real spectra are rather complicated, a useful quantity
is the total number Nα of photons per baryon in the interval 10.2–13.6 eV. For
low-metallicity Pop II stars and very massive Pop III stars, this is Nα = 9690 and
Nα = 4800, respectively [22].

The Lyman-α background at any given point in space samples a very large back-
ground of sources: the effective “horizon” within which a given galaxy is visible is
∼ 250 comoving Mpc [23, 24]. The fractional fluctuations in the Lyman-α back-
ground thus tend to be relatively smaller than those in later eras, but the large ab-
solute value of the absorption signal means that the actual level of fluctuations (as
measured in mK, for example) can still be relatively large [16, 25]. Moreover, this
horizon is comparable to the scales over which the relative baryon and dark matter
velocities vary [26], so those velocity features can induce much stronger variations
in the Wouthuysen-Field coupling in some circumstances [27, 28]. In §5 we will
consider how variations in this background translate into fluctuations in the 21-cm
signal.
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3.2 The X-Ray Background

The Wouthuysen-Field background couples the spin temperature to the gas kinetic
temperature, so we must also compute the latter. A number of processes may con-
tribute to it: shock heating from structure formation [29, 30, 31], ultraviolet photons
[19, 20], and X-rays [32, 33]. The last is thought to dominate in nearly all cases
– whether from active galactic nuclei, supernova remnants [34], stellar-mass black
holes [34, 35, 36, 37, 38, 39], or hot ISM thermal emission [40]. We will consider
stellar-mass black hole remnants of massive stars as a fiducial model, but any or all
of these can be significant.

The simplest way to parameterize this emissivity is with the local correlation
between the star formation rate (SFR) and the X-ray luminosity in the photon energy
band of 0.5–8 keV [36],

LX = 3×1039 fX

(
SFR

M� yr−1

)
erg s−1, (21)

where fX is an unknown renormalization factor appropriate for high redshifts. We
can only speculate as to the appropriate value at higher redshifts. Certainly the scal-
ing is appropriate so long as recently-formed remnants dominate, but fX will likely
evolve through several factors. Qualitatively, for example: (1) a decreasing metallic-
ity appears to increase the relative efficiency of X-ray production [41]; (2) if the IMF
becomes more top-heavy, the total X-ray luminosity will increase as the abundance
of stellar remnant black holes increases, but the spectra may also harden and thereby
decrease the fraction of X-ray energy that can be absorbed by the IGM [39, 38]; (3)
smaller galaxies at high-redshifts may systematically change the column density of
neutral gas that absorbs the X-rays (as required by suggestions that the escape frac-
tion of UV photons increase toward higher redshift; [42, 43]); and (4) the increasing
CMB energy density at high redshifts may make inverse-Compton emission from
supernova remnants more important [34].

Once the source properties are established (or, more likely, guessed), it is straight-
forward to compute the evolving IGM temperature through a framework analogous
to equation 19). The key difference is that X-rays are not absorbed in resonance
lines but through photoionization of H or He, for which the cross section is a strong
function of frequency (varying approximately as ν−3 near the ionization threshold).
The comoving mean free path of an X-ray photon with energy E through the neutral
IGM is

λ ≈ 4.9
(

1+ z
15

)−2( E
300eV

)3

Mpc. (22)

This is much smaller than the typical path length of a photon redshifting into a
Lyman resonance, so the (low-enegy) X-ray background fluctuates quite strongly,
with the heating preferentially occurring near the X-ray sources [33]. On the other
hand, the steep energy dependence of this expression suggests that the universe is
transparent to the hard X-ray background. For hard sources (as in some models of
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X-ray binaries with strong local absorption; [37, 39]), the effective value of our fX
parameter may be much less than unity.

An additional complication is that X-rays deposit only a fraction of their en-
ergy as heat: they initially interact with the IGM by ionizing a neutral atom. The
high-energy photoelectron then scatters through the IGM, ionizing more atoms, col-
lisionally exciting others, and heating the gas through scattering off of other elec-
trons. The fraction of energy deposited in each of these processes varies with photon
energy and the ambient conditions [44, 45], but as a rule of thumb each gets about
1/3 of the total for nearly-neutral gas.

3.3 The Ionizing Background

The process of reionization is discussed in great detail elsewhere in this volume,
so we only touch upon the major issues here. For stellar sources of reionization,
the photons are sufficiently close to the ionization threshold that they are very
quickly absorbed by the neutral IGM. This creates (at least to first-order) a two-
phase medium, with highly-ionized regions surrounding the sources surrounded by
a sea of neutral gas.

In that case, the key issue is the spatial distribution of these ionized regions rather
than the local amplitude of the ionizing background. How big are they? How do they
correlate with the underlying density field? How do they connect to each other?
These issues were first attacked through analytic models [46, 47] but are now gener-
ally addressed through “semi-numeric” simulations [48, 49], which apply analytic
arguments to generate the ionization field in a large slice of the universe.

Of course, the H II regions are neither homogeneous nor perfectly ionized: dense
clumps can recombine and remain neutral, especially near the edges of the region
where the ionizing background is small. The interaction of sources and the IGM
likely regulates the later stages of reionization and may be important for under-
standing the properties of the ionized bubbles [47, 50].

Currently, the most important unknown is the overall ionizing efficiency of the
sources responsible for reionization. Stellar sources are regarded as the most likely
candidates. Recent surveys in the Hubble Ultradeep Field suggest that galaxies can,
under plausible assumptions, keep the Universe ionized at z ∼ 7 [51], but those as-
sumptions require that most of the photons come from galaxies too faint to have
been detected to date. Models generally construct the overall ionizing efficiency
with f? fescNion/b, where f? is the overall star formation efficiency, fesc is the fraction
ionizing photons able to escape their source, and Nion/b is the number of ionizing
photons produced per baryon in stars. Plausible values of f? are < 10%. Measure-
ments of fesc in galaxies at z < 4 also show that fesc < 10%, but there is an expec-
tation in much of the community that the values increase in the smaller galaxies
prevalent at z > 6 [42]. Nion/b depends on the stellar IMF, metallicity, and other fac-
tors like the fraction of binaries, so it is uncertain by a factor of order unity (see the
discussion in, e.g., [8]).
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Fig. 3 Top panel: Amplitude
of the 21-cm power spectrum
at k = 0.1 Mpc−1 in several
representative models (as la-
beled in the bottom panel).
We also plot the (1σ ) sensi-
tivities of 2000h observation
with an expanded MWA with
twice the current collecting
area, PAPER, and the full
HERA array The recent upper
limit from [55] is shown at
z = 7.7. Bottom panel: The
corresponding sky-averaged
21-cm brightness tempera-
ture (relative to the CMB)
for these models. The input
parameters are labeled in
the bottom panel. Mmin is
the minimum halo mass al-
lowed to form stars, fX is the
X-ray efficiency, and the ma-
genta dot-dashed curve uses
a cosmology with warm dark
matter (which delays structure
formation). From [25].

There is, as yet, no direct evidence that stars are primarily responsible for reion-
ization, but the only other astrophysically-motivated source – quasars – decline very
rapidly past z∼ 4 [52]. If another population of (faint) accreting black holes existed
at high redshifts, they could have profound effects on the ionizing background and
the morphology of reionization [53, 54].

4 The Average Brightness Temperature

With the basics in place, we can now compute the time evolution of the bright-
ness temperature Tb in some simple models. We will begin in this section with the
monopole, or sky-averaged brightness, as a function of frequency. The bottom panel
of Figure 3 shows the results (as a function of redshift) for several models of early
star formation (the upper panel shows the corresponding fluctuations, which we will
discuss next). The principal parameters varied here are Mmin, the minimum halo
mass to host star formation, and fX , the X-ray heating efficiency. We will take the
solid black curve as our fiducial model: these choices are simplistic but represen-
tative of many models. Nevertheless, the Figure clearly shows that the signal can
plausibly range by orders of magnitude over most of this range. It also illustrates
several important points about the 21-cm background. The most crucial is the pres-
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ence of five critical points in the spin-flip background, at least in simple models like
this one [35, 56].

1. The first, at z ∼ 80, occurs long before star formation becomes significant (and
is not shown in this panel). Over this time, collisional coupling becomes increas-
ingly ineffective, and the turning point occurs roughly when the δcoll falls below
unity (see equation 15), at which point TS → Tγ and the IGM signal begins to
fade. This transition is well-specified by atomic physics and the standard cos-
mology, at least in the absence of any exotic dark sector processes that may input
energy into the IGM at z > 50. This signal therefore provides a clear probe of
cosmology, at least in principle, but it will be extraordinarily difficult to detect.

2. The remaining transition points are determined by the properties of luminous
sources, so their timing is much more uncertain. In typical models, the next cru-
cial event is the formation of the first stars (at z∼ 25), which generate Lyman-α
photons and so re-activate the 21-cm background. Interestingly, the timing of this
transition is relatively insensitive to the luminosity of these sources, because (at
least in this model) the abundance of the massive halos hosting them is increasing
so rapidly that their formation is mostly determined by the rate of halo collapse
[56].

3. In most models, the next feature is the minimum in Tb, which occurs just before
IGM heating begins to become significant and is determined primarily by the
relative amplitudes of fX , Nα , and the ionization efficiency. (If the first is very
large, this heating transition can precede strong coupling, while if it is very small
it may not occur until reionization is already underway.) In simple models like
we use here, in which both the X-ray and UV luminosities trace fcoll, the net
X-ray heat input ∆Tc when xα = 1 is

∆Tc

Tγ

∼ 0.08 fX

(
fX ,h

0.2
fcoll

∆ fcoll

9690
Nα

1
Sα

)(
20

1+ z

)3

, (23)

where ∆ fcoll ∼ fcoll is the effective collapse fraction appearing in the integrals of
equation (19) and fX ,h is the fraction of the X-ray energy that goes into heating
(typically ∼ 1/3; [45]). Note that ∆Tc is independent of f? because we have
assumed that both the coupling and heating rates are proportional to the star
formation rate. Clearly, for our fiducial (Population II) parameters the onset of
Wouthuysen-Field coupling precedes the point at which heating begins, which is
ultimately the reason for the strong absorption in our fiducial model.

4. The fourth turning point occurs at the maximum of Tb. In the fiducial model, this
marks the point at which TK� Tγ , so that the temperature portion of equation (8)
saturates. The signal then starts to decrease rapidly once reionization begins in
earnest. Most likely, this happens after coupling is already strong and heating is
significant. Again, in the simple models used here the ionized fraction at xα = 1
is given by

x̄i,c ∼ 0.05
(

fesc

1+ n̄rec

Nion

Nα

fcoll

∆ fcoll

1
Sα

)(
20

1+ z

)2

, (24)
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where n̄rec is the mean number of recombinations per baryon. For Population II
stars with a normal IMF, Nion/Nα ≈ 0.4 [22]; thus, even in the worst case of
fesc = 1 and n̄rec = 0 coupling would become efficient during the initial stages
of reionization. However, very massive Population III stars have much harder
spectra, with Nion/Nα ≈ 7. In principle, it is therefore possible for Pop III stars
to reionize the universe before xα = 1, although this is rather unlikely given their
fragility.
Whether the IGM will appear in absorption or emission during reionization is
more controversial. We find

∆T
Tγ

∼
(

x̄i

0.025

) (
fX

fX ,h

fesc

4800
Nion

10
1+ z

)
(1+ n̄rec) (25)

for the heat input ∆T as a function of x̄i. Thus, provided fX > 1, the IGM will
be much warmer than the CMB during the bulk of reionization. But this is by no
means assured, and some models predict that the IGM will remain cold until the
midpoint of reionization [39].

5. The monopole signal (nearly) vanishes when reionization completes.

Several efforts to observe this monopole signal are either completed or now un-
derway, including the Cosmological Reionization Experiment (CoRE), the Experi-
ment to Detect the Global Epoch of Reionization Signal (EDGES)2 [57], the SCI-HI
experiment [58], the Large Aperture Experiment to Detect the Dark Ages (LEDA)3,
and an ambitious program to launch a radio telescope to the moon in order to ob-
serve the high-redshift signal is also being planned (the Dark Ages Radio Telescope,
or DARE)4 [59].

Because global experiments aim to detect an all-sky signal, single-dish measure-
ments (even with a modest-sized telescope) can easily reach the required mK sensi-
tivity [60]. However, the much stronger synchrotron foregrounds from our Galaxy
nevertheless make such observations extremely difficult: they have Tsky > 200–
104 K over the relevant frequencies (see the map in Figure 4). The fundamental strat-
egy for extracting the cosmological signal relies on the expected spectral smooth-
ness of the foregrounds (which primarily have power law synchrotron spectra), in
contrast to the non-trivial structure of the 21-cm background. Nevertheless, isolat-
ing the high-redshift component will be a challenge that requires extremely accurate
calibration over a wide frequency range and, most likely, sharp localized features in
Tb(z) that can be distinguished from smoother foreground features.

Current estimates show that rapid reionization histories which span a redshift
range ∆z < 2 can be constrained, provided that local foregrounds can be well mod-
eled [57]. Observations in the frequency range 50-100 MHz can potentially con-
strain the Lyman-α and X-ray emissivity of the first stars and black holes: even
though the foregrounds are significantly worse at these lower frequencies, the strong

2 See http://www.haystack.mit.edu/ast/arrays/Edges/
3 http://www.cfa.harvard.edu/LEDA/
4 http://lunar.colorado.edu/dare/

http://www.haystack.mit.edu/ast/arrays/Edges/
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Fig. 4 Brightness temperature of the radio sky at 150 MHz in Galactic coordinates. Contours
are drawn at 180 (dashed), 270, 360, 540, 1100, 2200, 3300, 4400, and 5500 K. A potential survey
field at the North celestial pole is cross-hatched. Heavy lines indicate constant declinations:−26.5◦,
+35◦, and +54◦ with dots to mark 2 hour intervals of time (these are ideal for two other existing
experiments, the Murchison Wide-field Array or MWA and LOFAR). Star symbols indicate the
coordinates of four bright z > 6.2 quasars. From [5], based on data in [62]. Copyright 2006 by
Elsevier.

absorption signal present in many models may be easier to observe than the gently-
varying reionization signal. However, it may be necessary to perform such obser-
vations from space, in order to avoid systematics from terrestrial interference and
the ionosphere, whose properties strongly vary spatially, temporally, and with fre-
quency (in particular, the ionosphere crosses from absorption to emission in this
range; [61]). In fact the best observing environment is the far side of the moon
(though also the most expensive!), where the moon itself blocks any radio signals
from Earth; this is the primary motivation for DARE.

5 Statistical Fluctuations in the Spin-Flip Background

While the 21 cm monopole contains a great deal of information about the mean
evolution of the sources, every component in equation (8) can also fluctuate sig-
nificantly. The evolving cosmic web imprints growing density fluctuations on the
matter distribution. Ionized gas is organized into discrete H II regions (at least in the
most plausible models), and the Lyman-α background and X-ray heating will also
be concentrated around galaxies. The single greatest advantage of the 21-cm line is
that it allows us to separate this fluctuating component both on the sky and in fre-
quency (and hence cosmic time). Thus, we can study the sources and their effects on
the IGM in detail. It is the promise of these “tomographic” observations that makes
the 21 cm line such a singularly attractive probe.

Observing the 21-cm fluctuations has one practical advantage as well. The dif-
ficulty of extracting the global evolution from the enormously bright foregrounds
shown in Figure 4 lies in its relatively slow variation with frequency. On the small
scales relevant to fluctuations in the signal, the gradients increase dramatically: for
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example, at the edge of an H II region Tb drops by ∼ 20 mK essentially instanta-
neously. As a result, separating them from the smoothly varying astronomical fore-
grounds may be much easier. Unfortunately, constructing detailed images will re-
main extremely difficult because of their extraordinary faintness; telescope noise is
comparable to or exceeds the signal except on rather large scales (see §7 below).
Thus, a great deal of attention has recently focused on using statistical quantities
readily extractable from low signal-to-noise maps to constrain the IGM properties.
This is motivated in part by the success of CMB measurements and galaxy surveys
at constraining cosmological parameters through the power spectrum.5

We first define the fractional perturbation to the brightness temperature, δ21(x)≡
[Tb(x)− T̄b]/T̄b, a zero-mean random field. We will be interested in its Fourier trans-
form δ̃21(k). Its power spectrum is defined to be〈

δ̃21(k1) δ̃21(k2)
〉
≡ (2π)3

δD(k1−k2)P21(k1), (26)

where δD(x) is the Dirac delta function and the angular brackets denote an ensemble
average. Power spectra for other random fields (such as the fractional overdensity δ ,
the ionized fraction, etc.), or cross-power spectra between two different fields, can
be defined in an analogous fashion.

Expanding equations (8) and (10) to linear order in each of the perturbations, we
can write

δ21 = βδb +βxδx +βα δα +βT δT −δ∂v, (27)

where each δi describes the fractional variation in a particular quantity: δb for the
baryonic density (for which the total density is an adequate approximation on large
scales), δα for the Lyman-α coupling coefficient xα , δx for the neutral fraction,
δT for TK , and δ∂v for the line-of-sight peculiar velocity gradient. The expansion
coefficients βi can be written explicitly [22]; for example,

β = 1+
xc

xtot(1+ xtot)
, (28)

βα =
xα

xtot(1+ xtot)
, (29)

(30)

where xtot ≡ xc + xα . These expressions have simple physical interpretations. For
β , the first term describes the increased matter content and the second describes the
increased collisional coupling efficiency in dense gas, while βα simply measures the
fractional contribution of the Wouthuysen-Field effect to the coupling. By linearity,
the Fourier transform δ̃21 can be written in a similar fashion.

Based on equation (26), the power spectrum contains all possible terms of the
form Pδiδ j ; some or all could be relevant in any given situation. Of course, in most

5 Other statistical measures, such as higher-order correlations, may also offer additional informa-
tion.
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circumstances the various δi will be correlated in some way; statistical 21 cm obser-
vations ideally hope to measure these separate quantities.

In all of these expansions, one must bear in mind that δx is always of order unity
if the ionization field is built from H II regions, because xi = 0 or 1. In that case
terms such as δδx are in fact first order and must be retained in detailed calculations
[63]. This is a general limitation of the linear theory approach in equation (27),
as nonlinear effects play a very important role during reionization and sometimes
before

In general, we expect the fluctuations in density, ionization fraction, Lyα flux,
and temperature to be statistically isotropic, because the physical processes respon-
sible for them have no preferred direction [e.g., δ (k) = δ (k)]. However, peculiar
velocity gradients introduce anisotropic distortions. Bulk flows on large scales, and
in particular infall onto massive structures, compress the signal in redshift space (the
so-called Kaiser effect; [64]), enhancing the apparent clustering amplitude. On small
scales, random motions in virialized regions create elongation in redshift space (the
“finger of God” effect), reducing the apparent clustering amplitude (though only on
scales irrelevant to 21-cm observations). If we label the coordinates in redshift space
by s, it is straightforward to show that [64]

δs(k) = δ (k)[1+β µ
2
k ] (31)

where µk = k̂ · x̂ is the cosine of the angle between the wave vector and the line of
sight, β ≈ Ω 0.6

m (z) corrects for a possible bias between the tracers we are studying
and the growth rate of dark matter perturbations.

The redshift-space distortions therefore provide an anisotropic amplification to
the background signal [65]. The anisotropy occurs because only modes along the
line of sight are affected. To understand the amplification, consider a spherical over-
dense region. Its excess gravitational force causes it to recollapse. Along the radial
direction, the collapse decreases the velocity width of the object relative to the Hub-
ble flow (at least in linear theory), compressing the overdensity in redshift space.
Similarly, a spherical underdensity expands faster than average, causing it to appear
elongated in the radial direction. Averaged over all modes, these distortions amplify
the signal by a factor ≈

〈
(1+µ2)2

〉
≈ 1.87.

However, the anisotropies are actually even more helpful in that they provide an-
gular structure to the signal, which may allow us to separate the many contributions
to the total power spectrum. Schematically, brightness temperature fluctuations in
Fourier space have the form [66]

δ21 = µ
2
βδ +δiso (32)

where we have collected all the statistically isotropic terms in equation (27) into
δiso. Neglecting “second-order” terms (see below) and setting β = 1, the total power
spectrum can therefore be written as [66]

P21(k) = µ
4Pδδ +2µ

2Pδisoδ +Pδisoδiso
. (33)
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By separately measuring these three angular components (which requires, in princi-
ple, estimates at just a few values of µ), we can in principle isolate the contribution
from density fluctuations Pδδ . This would not have been possible without peculiar
velocity flows: comparison to equation (27) shows that, in the most general case,
Pδisoδ and Pδisoδiso

contain several different power spectra, including those of the
density, neutral fraction, and spin temperature as well as their cross power spectra.
However, in practice nonlinear evolution and/or the combination of other effects can
dominate the behavior quite easily [49, 67, 68]. It is not yet clear how useful these
redshift space distortions will be in practice.

6 Spin-Flip Fluctuations During the Cosmic Dawn

Figure 5 shows several snapshots of a “semi-numerical” computer simulation of
the spin-flip background (essentially, a realization of a model universe using linear
theory to determine the locations of luminous sources and ionized bubbles and the
framework described above to calculate the inhomogeneous radiation backgrounds;
[48, 49]), including both snapshots of the fields (in the left column) and the cor-
responding (spherically-averaged) power spectra (in the right column). The under-
lying model is very similar to the fiducial model whose mean signal is shown in
Figure 3, though the redshifts of the critical points differ slightly.

The top row of Figure 5 shows the point where Lyman-α pumping begins to be
significant. The hydrogen gas is cold (TK � Tγ ), and the spin temperature is just
beginning to decouple from the CMB. In this case the fluctuations are driven by the
discrete, clustered first galaxies: their radiation field drives TS → TK around those
first sources, while leaving most of the IGM transparent.

In this calculation, the Lyman-α radiation field very quickly builds up the bright-
ness temperature fluctuations. We also illustrate this in the top panel of Figure 3,
which shows the evolution of the amplitude of the power spectrum at one partic-
ular wavenumber (k = 0.1 Mpc−1, near the peak sensitivities of most arrays). The
rightmost peak of the solid curve shows the effects of the Lyman-α fluctuations:
they build up to a peak, with amplitude ∼ 10 mK, before decreasing again once
the Lyman-α background becomes strong throughout the universe (at which point
βα ∝ 1/xα → 0).

The second row in Figure 5 shows a map shortly after X-ray heating commences.
At this point in the model, the Lyman-α coupling is strong nearly everywhere, so
most of the IGM appears in absorption. But near the first X-ray sources, the gas has
TS � Tγ , so these regions appear in emission. The net effect is a very large fluctu-
ation amplitude, with a strong contrast between emitting and absorbing regions, as
we see in the middle peak of the solid curve in Figure 3.

The third row in Figure 5 shows the 21-cm signal after heating has saturated
(TS� Tγ ) throughout the IGM. At this point, spin temperature fluctuations no longer
contribute to Tb, and only the density field affects the overall signal. The fluctuations
are thus relatively modest (also seen in Figure 3). (Note that this is a feature of our
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Fig. 5 Slices through a “semi-numerical” simulation (left), and the corresponding spherically-
averaged power spectra (right), for a model of the spin-flip background at z = 30.1, 21.2, 17.9,
10.0 (top to bottom). The slices were chosen to highlight various epochs in the cosmic 21-cm
signal (from top to bottom): the onset of Lyman-α pumping (here the blue regions show the cold
gas around the first galaxies), the onset of X-ray heating (here the blue regions are cold gas, while
the compact red regions represent hot gas around the first black holes), the completion of X-ray
heating (where all the gas is hot), and the mid-point of reionization (where black regions are ionized
bubbles). All comoving slices are 1 Gpc on a side and 3.3 Mpc deep. From [49]. Copyright 2011
by the Royal Astronomical Society.

parameter choices here: if X-ray heating is weaker, it can overlap with reionization,
mixing the types of fluctuations.)
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Fig. 6 Dimensionless power
spectra ∆ 2

21(k) of spin-flip
background during the reion-
ization era in a numerical
simulation. The curves show
the power spectrum through
a sequence of mean ion-
ized fractions; the redshifts
at which these points are
achieved (not listed) do not
significantly affect the sig-
nal, except through the mean
brightness temperature. From
[69]. Reproduced with per-
mission of the American
Astronomical Society.

Finally, the fluctuations increase again once reionization begins in earnest, as
shown in the bottom row of Figure 5: here the contrast between the ionized bubbles
and fully neutral gas in between them dominates the features. These bubbles are the
key observable during reionization, as their pattern depends on the properties of the
ionizing sources.

The other curves in the top panel of Figure 3 show how the fluctuations on this
scale can vary in a plausible range of models. Note that most provide the same
overall structure,with three consecutive peaks, but their timing and amplitudes vary.
Moreover, the blue short dashed-dotted curve, which assumes very weak X-ray heat-
ing, has only two peaks, as the IGM is not heated substantially until reionization is
already underway. The broad range of possible signals makes the 21-cm line a pow-
erful probe.

Figure 6 shows the evolution of the power spectrum during reionization in con-
siderably more detail (it assumes TS � Tγ throughout) [69]. In particular, it plots
the dimensionless power spectrum ∆ 2

21(k) = k3P21(k)/(2π2) (or the power per log-
arithmic interval in wavenumber of the 21-cm signal) over the course of a radiative
transfer simulation of the reionization process. (To recover the 21-cm signal one
needs to multiply these values by the mean brightness temperature in a fully neutral
medium, T 2

0 ≈ [282(1+ z)/10] mK2.) The different curves show a sequence of ion-
ized fractions, from nearly neutral (〈xi〉= 0.02) to almost fully ionized (〈xi〉= 0.96).
In this model, these go from z ∼ 11.5–6.8, but the curves change little if one holds
〈xi〉 constant but chooses a different redshift.

At first, the 21-cm power spectrum simply traces the matter power spectrum, as
ionized regions have not yet significantly affected the IGM. But fairly quickly, the
power decreases on large scales because the ionized bubbles appear first in the dens-
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est regions, suppressing the signal there and hence decreasing the overall contrast in
the 21-cm maps.

This is simplest to understand if we decompose the power spectrum into parts
that describe perturbations in each relevant physical parameter and retain only the
terms that dominate during reionization (see equation 27) [70]

∆
2
21(k) = T 2

0 〈xH〉2
[
∆

2
δδ
(k)+2∆

2
xδ
(k)+∆

2
xx(k)

]
. (34)

Here, ∆ 2
δδ

and ∆ 2
xx are the dimensionless power spectra of the density field and ion-

ized fraction, and ∆ 2
xδ

is the cross-power spectrum of these two quantities. Because
∆ 2

xδ
is a cross-power, it can be negative – i.e., the neutral fraction xH is small when

δ is large in most reionization models. In the early phases of reionization, this term
dominates the ionized power itself, ∆ 2

xx, and so the net power declines as xH initially
increases.

However, by 〈xi〉 ∼ 0.5, the ∼ 20 mK contrast between ionized and neutral gas
dominates the maps, and the power increases rapidly on large scales: now the ion-
ized bubbles fill a wide range of density, so ∆ 2

xx � ∆ 2
xδ

. The power from this term
peaks on the characteristic scale of the ionized bubbles. In combination with the
contribution from the matter power spectrum itself, this leads to a strong enhance-
ment of power on moderate scales (k∼ 0.1 Mpc−1), followed by a decline at smaller
wavenumbers (not shown clearly in this figure because of the finite size of the sim-
ulation box).

At the same time, on scales much smaller than the bubble size, the 21-cm power
is significantly smaller than expected from the matter power spectrum alone. This is
largely because of the higher-order terms that we have ignored: within an ionized re-
gion, the ionized fraction is uncorrelated with the small-scale density perturbations.
Effectively then the contrast on these scales is decreased because many of the small-
scale overdensities no longer appear in the 21-cm map. The net effect is an overall
flattening in ∆ 2

21 throughout reionization. The flattening shifts to larger scales as the
process unfolds. Meanwhile, the overall amplitude of the signal decreases as less of
the gas can emit 21-cm photons.

7 Observing the Spin-Flip Background

The potential rewards of studying the early phases of galaxy formation with the 21-
cm spectral line – illustrated as predicted constraints on the reionization history in
Figure 7 – have motivated the construction of several arrays of low-frequency radio
antennae over the past several years, with plans for bigger and better instruments in
the near future. For redshifts z∼ 6–50, the corresponding observed frequencies are
νobs ∼ 30–200 MHz. The technology for such telescopes has existed for decades –
and is essentially the same that we use every day for TV or radio communication. In
fact, efforts to detect the 21-cm background have been made several times over the
last half-century (e.g., [9, 71, 72, 73, 74]). However – in addition to the challenge of
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Fig. 7 Existing constraints
on neutral fraction (xHI) ver-
sus redshift (adapted from
[51]) along with a pair of
fiducial reionization histo-
ries (black lines). The solid
curve with error bars is a
typical theoretical model of
reionization consistent with
WMAP measurements, while
the dashed line is estimated
from galaxy measurements at
z < 8 and is consistent with
most other constraints. The
black markers with error bars
show predicted HERA-331
constraints on the former
model. Courtesy HERA Col-
laboration.

having little theoretical guidance – these early experiments failed because of three
obstacles that still challenge us today:

• This band is heavily used by humans (as it includes the FM radio band, analog TV
stations, and a host of satellite and aircraft communications channels), and the
resulting radio frequency interference (or RFI) is as many as ten orders of mag-
nitude brighter than the 21-cm background. Most of the efforts therefore place
the observatories in isolated locations far from the contaminating sources, though
some rely on excising the interference from narrow frequency bands. Even then,
the presence of such bright foregrounds places serious requirements on the dy-
namic range of the low-frequency observatories.

• The ionosphere is refractive over most of this band and opaque at the lower fre-
quencies. This causes sources to jitter across the sky as patches of the ionosphere
move across the telescope beam. The refraction phenomenon is similar to atmo-
spheric seeing in optical astronomy, although the timescale for the jitter is much
slower (several seconds in this case). It can be corrected in software by calibrat-
ing to the locations of a set of point sources distributed across the field of view,
although this is by no means a trivial computing effort. The ionosphere is more
active during the day and during times of high solar activity. This – together with
the large brightness of the sun itself at these frequencies – restricts observations
to the nighttime hours.

• Most significantly, the spin-flip background is far from the only astronomical
source in the sky. Nearly all non-thermal radio sources are bright in the low-
frequency band, especially the synchrotron radiation from the Milky Way galaxy,
as we have already seen in Figure 4. But other extragalactic sources – includ-
ing AGN, galaxy clusters, and even normal star-forming galaxies – also con-
tribute. As a rule of thumb, typical high-latitude, “quiet” portions of the sky have
a brightness temperature [5]
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Tsky ≈ 180
(

ν

180 MHz

)−2.6
K. (35)

We immediately see that 21-cm mapping will require large integration times
and large collecting area to overcome this “noise,”, which is at least 104 times
stronger than the reionization signal.

Currently, several experiments are either in the early phases of operations or final
phases of construction, including:

• The Giant Metrewave Radio Telescope (GMRT; in India) is an array of thirty 45-
m antennas operating at low radio frequencies. This large collecting area makes
it a powerful instrument, but the instrument’s narrow field of view and difficult
radio environment present challenges. Nevertheless, the GMRT team was the first
to put limits on the spin-flip background in the summer of 2010 [75, 76].

• The Low Frequency Array (LOFAR; with the core in the Netherlands and outly-
ing stations throughout Europe) is a large, general-purpose low-frequency radio
telescope that began science operations in 2010. While its many other science
goals mean that LOFAR is not completely optimized to observe the spin-flip
background, its large collecting area (especially inside a compact “core” most
useful for these observations) makes it a powerful machine for this purpose. Its
location in Western Europe means that LOFAR will face by far the most difficult
terrestrial radio environment. Moreover, it uses an enormous number of dipole
antennae, combining their individual signals into “stations” that are then used as
interferometers. While this allows for a large collecting area, it presents analysis
challenges in understanding the instruments sufficiently well to extract the tiny
cosmological signal.

• The Murchison Widefield Array (MWA) in Western Australia is an interfer-
ometer built almost entirely to observe the 21-cm background. As such, the
project hopes to leverage the relatively small experiment into limits competitive
with larger first-generation experiments. Like LOFAR, MWA uses thousands of
dipoles grouped into “tiles,” which increase the collecting area at the cost of
complexity. Because MWA’s tiles are smaller, though, it achieves a larger field of
view than LOFAR, which partially compensates for the much smaller collecting
area.

• The Precision Array to Probe the Epoch of Reionization (PAPER, with instru-
ments in Green Bank, West Virginia and South Africa) combines signals from
single dipoles into an interferometer. Without tiles, PAPER has a much smaller
total collecting area than the other efforts but the advantages of a well-calibrated
and well-understood instrument and an enormous field of view. It placed the first
physically relevant limits on the IGM at z ∼ 8 in 2013 [55], ruling out a cold,
neutral IGM at that time (shown in Figure 3).

In addition to this impressive suite of ongoing efforts, larger experiments are
planned for the future, with their designs and strategies informed by this present gen-
eration. These include the Hydrogen Epoch of Reionization Array (HERA), which
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will eventually have hundreds of 14-m dishes optimized to use the strategies devel-
oped to analyze PAPER and MWA data (currently beginning the first stage of the
array, with an eye toward completion by the end of the decade) and the Square Kilo-
meter Array-Low, which will have an order of magnitude more collecting area than
HERA and an instrument design well-suited to imaging.

We will next briefly describe the sensitivity of these arrays to the cosmologi-
cal signal. We will see that the signal-to-noise per pixel is very small, except on
the largest scales. Thus, imaging is not possible: measurements focus on statistical
quantities like the power spectrum. For the sake of brevity, we will skip most of the
relevant derivations and refer the reader to more thorough sources (e.g., [5, 77, 78]).

7.1 Sensitivity to the 21-cm Signal

The sensitivity of a radio telescope depends on the competition between the signal
strength (Tb) and the noise, which we express as Tsys, the system temperature, de-
fined as the temperature of a matched resistor input to an ideal noise-free receiver
that produces the same noise power level as measured at the actual receiver’s out-
put. The system temperature includes contributions from the telescope, the receiver
system, and the sky; the latter dominates in our case. For a single dish, noise fluctu-
ations ∆T N decline with increased bandwidth ∆ν and integration time tint according
to the radiometer equation,

∆T N = κc
Tsys√
∆ν tint

≈ Tsys√
∆ν tint

, (36)

where κc ≥ 1 is an efficiency factor accounting for the details of the signal detection
scheme; for simplicity we will set κc = 1, which is a reasonable approximation for
the telescopes discussed here.

Using equation (35) with Tsys ≈ Tsky to estimate the telescope noise ∆T N for a
single-dish measurement of an unresolved source, we find

∆T N |sd ≈ 0.6 mK
(

1+ z
10

)2.6 (MHz
∆ν

100 hr
tint

)1/2

. (37)

The mean 21-cm signal has T0∼ 20 mK; thus, single dish telescopes can easily reach
the sensitivity necessary to detect the global 21-cm background. In this regime, the
challenge is instead to separate the slowly varying cosmological signal from the
foregrounds.

However, at meter wavelengths the angular resolution of single dipoles or dishes
is generally extremely poor, so mapping or statistical experiments require interfer-
ometers. In that case,

∆T N |int ∼ 2 mK
(

Atot

105 m2

) (
10′

θD

)2 (1+ z
10

)4.6 (MHz
∆ν

100 hr
tint

)1/2

. (38)
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The angular resolution scale of θD ∼ 10′ and the frequency resolution scale of ∆ν ∼
1 MHz correspond to ∼ 20 comoving Mpc.6 The current generation of telescopes
have Atot < 105 m2, so imaging (i.e., mapping pixels with a signal-to-noise much
greater than unity) will only be possible on large scales that exceed the typical sizes
of bubbles during most of reionization. Thus near-term imaging experiments focus
primarily on giant H II regions, such as those generated by extremely luminous
quasars, where the contrast between the large ionized bubble and the background
IGM is largest [79, 80].

Although equation (38) provides a simple estimate of an interferometer’s sen-
sitivity, the rate at which interferometers sample different physical scales actually
depends on the antenna distribution, making the sensitivity a function of angular and
frequency scales. Thus, equation (38) only provides a rough guide. A more precise
estimate of the sample variance and thermal errors on the power spectrum is [63, 81]

δP21(ki) = P21(ki)+
T 2

sys

Btint

D2∆D
n(k⊥)

(
λ 2

Ae

)2

. (39)

This expression requires some unpacking. First, we assume we are observing a mode
with wavenumber ki in an observation that spans tint total time. We separate the
components of that mode into those on the plane of the sky (k⊥) and those along the
line of sight k‖. The former are affected by the angular resolution of the telescope,
while the latter depend on the frequency resolution. They have fundamentally dif-
ferent systematics that are crucial for foreground removal strategies, as we will see
below. In any case, only a fraction of the total integration time is spent observing
any given mode; the factor n(k⊥) incorporates that, is it is the number density of
baselines observing a given wave mode, normalized to the total number of baselines
in the instrument. D is the comoving distance to the observed volume, and ∆D is
the line-of-sight depth of that volume (which depends on the bandwidth of the ob-
servation). Finally, Ae is the area of a single antenna in the array; the factor Ae/λ 2

is the angular resolution of the telescope in Fourier space (where the power spec-
trum lives). In equation (39), the first term represents the sample variance within the
observed volume, and the second is thermal noise.

In a real measurement, we will bin closely-spaced Fourier modes together to
estimate the power spectrum. The number of Fourier cells in each power spectrum
bin, which depends on the Fourier-space resolution of the instrument, is

Nc(k)≈ 2π k2
∆k ∆ µ×

[
Vsurv

(2π)3

]
, (40)

where the last term represents the Fourier space resolution and we have grouped
Fourier cells into annuli of constant (k, µ) (following the discussion of redshift-

6 More precisely, a bandwidth ∆ν corresponds to a comoving distance ∼
1.8 Mpc(∆ν/0.1 MHz)[(1 + z)/10]1/2, while an angular scale θD corresponds to
2.7(θD/1′)[(1+ z)/10]0.2 Mpc.
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space distortions above). The total errors from all estimates within a bin simply add
in quadrature.

To make estimates we must determine the baseline distribution n(k⊥) as well as
the sampling density (equation 40 for a measurement in annuli). These two quan-
tities depend sensitively on the design of the experiment. To develop intuition, it is
therefore useful to consider the simple thermal noise-dominated case [82]. Substi-
tuting for Nc in equation (39), ignoring the first term (which is equivalent to working
on small scales), and assuming bin sizes ∆k ∝ k and constant ∆ µ , we find

δP∆T ∝ A−3/2
e B−1/2

[
1

k3/2 n(k, µ)

] (
T 2

sys

tint

)
. (41)

This implies [82]:

1. δP21 ∝ t−1
int , because the power spectrum depends on the square of the intensity.

2. We can increase the collecting area in two ways. One is to add antennae while
holding the dish area Ae constant. Recall that n(k, µ) is normalized to the total
number of baselines NB ∝ N2

a : thus, adding antennae of a fixed size decreases the
errors by the total collecting area squared. (Of course, the number of correlations
needed also increases by the same factor, so this strategy is costly in terms of
computing.) The other method is to make each antenna larger but hold their total
number fixed. In this case, the total number of baselines, and hence n(k, µ),
remains constant, so δP∆T ∝ A−3/2

e . Increasing the collecting area in this way
is not as efficient because it decreases the total field of view of the instrument,
which is set by the field of view of each antenna.

3. Adding bandwidth increases the sensitivity relatively slowly: δP∆T ∝ B−1/2, be-
cause it adds new volume along the line of sight without affecting the noise on
any given measurement. Of course, one must be wary of adding too much band-
width because of systematics (especially foregrounds).

4. As a function of scale k, δP∆T ∝ k−3/2 n(k, µ)−1. The first factor comes from the
increasing (logarithmic) volume of each annulus as k increases. But in realistic
circumstances the sensitivity actually decreases toward smaller scales because of
n. This is most obvious if we consider a map at a single frequency. In that case,
high-k modes correspond to small angular separations or large baselines; for a
fixed collecting area the array must therefore be more dilute and the sensitivity
per pixel decreases as in equation (38). In the (simple but unrealistic) case of
uniform uv coverage, the error on a measurement of the angular power spectrum
increases like θ

−2
D for a fixed collecting area.

Fortunately, the three-dimensional nature of the true 21-cm signal moderates
this rapid decline toward smaller scales: even a single dish can measure struc-
ture along the line of sight on small physical scales. Mathematically, because
n(k, µ) = n(k⊥), each baseline can image arbitrarily large k‖, at least in prin-
ciple. For an interferometer, this implies that short baselines still contribute to
measuring large-k modes. Thus, provided that they have good frequency resolu-
tion, compact arrays are surprisingly effective at measuring small-scale power .



26 Steven R. Furlanetto

There is one important caveat: if short wavelength modes are only sampled along
the frequency axis, we can only measure modes with µ2 ≈ 1. Thus we recover
little, if any, information on the µ dependence of the redshift-space distortions.
Studying this aspect of the signal does require baselines able to measure the short
transverse modes with µ2 ≈ 0.

Figure 3 shows the expected errors (including only thermal noise and cosmic
variance, not systematics) on the spherically-averaged power spectrum for an ex-
panded version of the MWA (with double the current number of antenna elements),
PAPER, and HERA. (For the latter, see also Fig. 9 below for a more detailed es-
timate.) Current instruments may detect the signal, if they reach their design lim-
its, but in most plausible scenarios it will be a tentative detection at best. Next-
generation experiments will be necessary for precision constraints.

Because the sky noise increases rapidly with redshift (see eq. 35), the first gen-
eration of experiments lose sensitivity at z ∼ 11–12. However, relatively modest
expansions, like the HERA telescope now under development, can be optimized to
make high-precision measurements out to z∼ 15. One trick has become popular in
the community for such purposes, which is to use redundant baselines [77]. Given
a fixed array design, the best sensitivity for a statistical measurement is achieved
when the signal-to-noise per mode is unity. Because a typical 21-cm machine is
well below this threshold, it is useful to use redundant baselines – in which many
different antenna pairs measure the same modes on the sky – to move closer to the
optimal measurement. Thus, rather than distribute baselines randomly to achieve
maximal uv coverage, as in a traditional interferometer, many 21-cm instruments
follow very regular spacings. Under some circumstances, this can also greatly ac-
celerate the correlation computations by using a Fast Fourier Transform or one of
its cousins [83], as pioneered by the OmniScope [84].

Significantly larger instruments will be necessary to measure anisotropies (such
as redshift-space distortions) in the spin-flip background, because they require sep-
arate measurements of power along the line of sight and across the plane of the sky
[63]. Although compact experiments can achieve high sensitivity on small scales by
measuring frequency structure, they will not achieve the requisite sensitivity on the
plane of the sky to measure angular fluctuations. The Square Kilometer Array may
have the collecting area and angular resolution to perform such tests.

7.2 Systematics and Foregrounds

Raw sensitivity to the cosmic 21-cm background is hard enough to achieve, but
an additional difficulty is separating that signal from the many (and much, much
brighter) astrophysical foregrounds, especially synchrotron emission from our Galaxy.
Conceptually, the way to separate these is straightforward (e.g., [85, 86]): most
known foregrounds have very smooth spectra, while the cosmological signal varies
rapidly as any given line of sight passes through density and temperature fluctua-
tions and/or ionized bubbles. If one imagines transforming the data into an “image
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Fig. 8 A schematic of the EoR window in the cylindrical k⊥-k‖ Fourier plane. At the smallest k⊥,
errors increase because of the instruments finite field of view. The largest k⊥ that can be probed
is determined by the interferometer’s longest baseline. Similarly, the measurement’s spectral reso-
lution limits the sensitivity at large k‖. In principle, cosmic variance determines the smallest mea-
surable k‖, but in practice the finite bandwidth and foreground contamination are more restrictive.
As one moves towards larger k⊥, however, the foregrounds leak out to higher k‖ in a characteristic
shape known as the foreground wedge. The remainder of the Fourier plane has errors dominated by
thermal noise, allowing (with a large collecting area or a long integration time) a clean measure-
ment of the power spectrum in this EoR window. From [78].

cube” (with observed frequency a proxy for radial distance), one ought to be able to
fit a smooth function to each line of sight, subtract that smooth component, and be
left with a measurement of the rapidly-varying cosmological component (plus any
rapidly varying foregrounds).

Figure 8 illustrates how this limits the signal in Fourier space:7 small k‖ modes
have very large errors because they get confused with variations in the foregrounds.
Other more prosaic issues also limit the range of k-space to be sampled, including
the finite bandwidth of the instrument, the field of view, the longest baselines in the
array (which determine the largest measurable k⊥), and the spectral resolution.

As a mathematical exercise applied directly to, e.g., simulation boxes, these
strategies work extremely well: they do indeed impose a minimum k‖ but do not
contaminate the data in the remainder of the measured region [63, 87]. However,

7 Here we think of the data as a “Fourier cube,” with k‖ (derived by transforming the frequency)
standing in for the radial direction.
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Fig. 9 HERA’s power-
spectrum sensitivity (solid
lines) relative to a fiducial
ionization model (dotted line;
xHI = 0.37 at z = 9; from
[49]). The blue curve rep-
resents a partial array with
127 dishes. The red curve
represents the full array, with
331 dishes. Both of these
curves assume that measure-
ments cannot be made within
the foreground wedge. The
black curve assumes that fore-
grounds can be removed in
that area of the Fourier cube.
Courtesy A. Liu, J. Pober, and
J. Dillon.

the practical details of this foreground removal are quite challenging (e.g., [88]),
and there has not yet been a successful application of these removal strategies to
real-world data. The simplest challenge to understand is the intrinsic chromaticity of
the interferometer: each baseline measures k⊥ ∝ D/λ , where D is the physical dis-
tance between the interferometer elements. Thus the instrument response changes
across the measurement band, introducing spurious frequency-dependent features
from foregrounds.

Chromatic effects such as these manifest themselves along a “wedge” in Fourier
space at large k⊥ and small k‖ [89, 90, 91], as shown schematically in Figure 8 (see
[92] and [93] for examples with real data from PAPER and the MWA). Crucially, at
least to the limits of current MWA and PAPER data, the “extra” foreground contami-
nation only appears in this wedge. This can be understood most simply by analyzing
the data on a “per-baseline” basis, by Fourier transforming each of the interferome-
ter’s baselines separately along the frequency axis: it arises from the relative delay
between signals entering the two antennae in each baseline from different direc-
tions. This understanding (which can be described analytically [78, 94] can be used
to minimize the impact of the wedge in new experiments (a key motivation in the
design of HERA, for example).

In the near-term, the community’s focus has thus shifted from foreground re-
moval to foreground avoidance: if the problematic area is the wedge in Fourier
space illustrated by Figure 8, the simplest approach is to simply ignore data in that
region and work inside the EoR window that remains uncontaminated. In practice,
of course, there will be some residual contamination even here, from such factors
as baseline gridding [95], ionospheric refraction and reflection, and polarized fore-
ground leakage (which has strong frequency dependence due to Faraday rotation).
But the PAPER team has already demonstrated a four order-of-magnitude reduction
in foreground contamination [55], as illustrated by Figure ??.
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Still, the foreground wedge itself contains a great deal of astrophysical informa-
tion: we can see this in Figure 9, which shows the sensitivity of the full HERA array
assuming that foregrounds can be modeled accurately (black curve) versus a sce-
nario where data within the wedge must be ignored (red curve). Thus the avoidance
strategy is by no means optimal, and removal algorithms are still an active field of
research. Many strategies appeal to careful calibration and image-based model sub-
traction [85, 96, 97, 98]. Others rely on optimal estimators and/or decorrelation to
expand the window within which foregrounds are suppressed [94]. The challenge
is greatly eased in the imaging regime, where the ability to isolate ionized bubbles
allows one also to isolate the foregrounds at several discrete frequencies along each
line of sight [99]. These strategies are useful not only for future analyses that hope to
work within the wedge but also for experiments that focus on foreground avoidance,
because they also minimize leakage from the wedge into the EoR window.

Working within this area will ultimately be important not only for statistical de-
tections but also for imaging campaigns, a key focus of the SKA telescope, as a full
reconstruction of the signal with an interferometer requires dense coverage through-
out the Fourier cube. The SKA should have a large enough collecting area for such
efforts, which are especially important in relating the large-scale morphology of the
reionization process to source maps produced with other telescopes.

Acknowledgements I thank Adrian Liu for helpful comments on the manuscript.
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