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Introduction

In this talk I will outline some proofs of dispersion relations for

every order in perturbation theory.

After this I will indicate some further

topics thet can be studied by perturbation methods.

The following dispersion relations (DR) have now been proved in

perturbation théory:

Single~variable DR (a)
(b)
(c)
(a)
(e)
Partial-wave DR (a)
(b)
Mandelstam represent&tion (a)

(b)

Vertex parts
Forward scattering
Non-forward scattering (in a limited

range)

_Exterﬁalnmass DR

Internal-mass DR

Eqpal masses

General masses without anomalous thresholds
Equal masses

General masses without anomalous thresholds.

This work was done under the auspices of the U, S. Atomic Energy Commission.

Invited paper for the Tenth International Conference on High Energy Physies,

Rochester, New York, August 1960.

§

Normal address, Clare College, Cambridge, England from 1 September 1960.



UCRL-9345

e

The further topics in this talk will include some remarks about integral
representations with anomalous thresholds, and representations of production
amplitudes. I will alsQ mention some points connected with experiments on
final-state interactions in which production amplitudes are involved.

Before outlining the proofs I will indicate some of the mathematical
methods on which fhey are based, -

2. Methods

(a) Conditions for Singularities

An integral transform;,
B :
£(x) = [ e&lx, y)dy - (2.1)
. A . .

along a given contour C from A +to B, will be singular at x ='xO ifl

either a singularity yl(x) of g tends to an end point of the contour
v as x tends to XO s
or two singularities yl(x), yg(x) tend to coincidence from opposite

sides of the contour ésw b4 tén&s to Xg° The first condition is

described as an "end point" singularity, and the second as a "coincident"

singularity.

(b) Rules for Singularities of an Amplitude

These conditions lead to simple rules for the singularities of a
function defined froﬁ a Feynman diagram. It is sufficiently general to
consider only scalar particles. A scattering amplitude from a Feynman
diagram will depend on two of the invariant energies squared, s, t, and

u, where
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Denote the four-momentum in any line by 9 and the internal momentum

variables by kjo Then
-1
Fe(s, t) = N / dkyo0.dk, — " ; (2.2)
T (g = m~ +1e)
1
} ) 8(1 - X ai) (
= C do. .. .40 dk. o . .dk " 203)
o 2t e, 9 1°
} 81 - £ a Jlc(a) 7201 o)
= C da oooda = * - ) 9 201"
2 0 1 n [De(a, s, _t) ]n QE
where
e, q) = g a, ( 2 _n2. ie) (2.5)
S 1 ° \ e

The discriminant of ¥ as a quadratic form in the internal momenta kJ is
written Dega, s, t). TIts form when € is zero is D(c, s, t). The quantity
¢(a) 1is the discriminant of the quadratic part of V.

The rules for locating singularities of

F(s, t) = lim Fe(;, &) (2.6)
e-+0 . .

can be stated in two equivalent forms. The first isa’B’h

either gg = 0, or D=0 at a = 0O for all 1.

5 i
This includes the condition D = 0, since D is homogeneous in the «

variables.
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The second form i32’5
(l) Either . ai = Oy 9_1_'. qie = mie fOr all i = l;ooo,n;

and

(2) —g‘ﬁ—- .= 0, forall J=1,c0058 © :
. j ’

An alternative form of (2) is

(2a) & ay a = 0, summed around any closed circuit in the diagram.
The second form of these rules provides the basis for electric circuit

analogiess’é and for_ﬁhe method of dual diagrams°2’7’8’9 In this talk most

of my proofs will be based on the discriminant D and the first form of the

conditions.

(¢c) Reduced Diagrams

If we have an end-point singularity, D =0 for @, = 0 say, there
is no further condition on the momentum in the corresponding line. We can
therefore consider, instead of the initial Feynman diagram, a reduced diagram

in which the line «. is reduced to & point. It is sometimes convenient to

1

classify singularities in terms of the set of all possible reduced diagramsolo

For these we need consider only coincident singularities in the «a variables.

(d) Surfaces of Singularities

The - solution of the equations

-%’- =0, for i=1, 2,000, , : (2.7)

i
leads to a relation between s and 1,

o(s, t) = 0. _ (2.8)
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When s and T are tsken to be complex variables, this defines a two»dimensional_
surface in the four-dimensional space. If it has solutions with s and t

real these will give curves or straight lines in the real s, t plane. It

seems probable that some branch of F(s, t) will be singular at any given point
of the surface, but I do not think ényone hzs proved th%é; For this talk we

will need to consider only singularities of the physical branch and its analytic

continuation on the physical sheet.

(e) The Physical Branch and the Physical Sheet

The physical branch of the amplitude is defined in physical scattering
regions by writing (m2 - i1 €) for the internal masses in F€(s, t) and

letting € tend to zero. Thé discriminant is
D la, s, t) = sf(a) + tg(a) - K(m, @) +1 € = a, o(a) . (2.9)

In the physical scattering regions the «a contours of integration are the
real range [0, 1], Then C{a) is positive, and hence Ds is never zero
on the contour, so the intégral is well defined.

I will show later that near the physical scattering region where s

is the energy, the discriminant
Dla, s + ie, t) = (s + i€)f + g - K (2.10)

has its zeros located relative to the contours of integration.in the same
way as those @f‘ De 011 This enables us to prove a dispersion relation in s,
which defines @he physical sheet for complex s.

In phyéieal scattering regions the singularities of the phys;cal
branch of F(s, t) can be identified by requiring fhe Feynman parameters

a to be positive. This positive «a condition cannot in general be assumed

to be true elsevwhere in the physical sheet. In fact, with anomalous
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thresholds of the second kind, the condition is not valid,le owing to
distortions of the « contour that include both complex and negative values

of these parameters,

3. Single-Variable Dispersion Relations
13

(a) Vertex Parts

The discriminant for any diagram has the form

'De(a, z) = 2 ?l(a) + M22 Pz(a) + M32 ?3(0):- Za m123c(a) +1le T a, C(a)
| ' | (3.1)
= Dla, z) + 1e€eZX @, Cla) (3.2)

The coefficient of 2z 1is positive for « real. Hence D(a, z) is never.
zero for 2 in the upper half plane. It is real for =z iargevand negati#e,
and it has the same form as De as z tends to the positive axis from the
upper half plane. The vertex function defined from D(a, z) dinstead of D€
is fherefore real oh the real axis and analytic in the'upper half plane.

It also is an analytic continuation of the vertex function defined for

feal z from De , and it satisfies a dispersion relation.

(b)_ Forward Scattering

(¢) Non-Forward Scatteringlh’l5

I will assume equal masses for simplicity. The amplitude is defined
from

De(a, s, t) = sf +tg-K+1ieZa cla) . (3.3)

Consider

D(a, s, t) = (s - bm2)f + (bm® £ + tg - K) . (3.14)

For s 1in a physical region s > hme , the first term in D is negative

when f 1is negative. The second term is also negative or zero for
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(—b,m2 <t< hm?)o When f is positive, D cannot be zero if s has a
positive imaginary part. Hence D(x, s + i€, t) has its zeros located in

the same way as those bf De relative to the «a contours of integration.
Further, D(a, s, t) is nonzero for s in the upper half plane and for

(--hm2 <t < hmg), and it is real when s is real in the range (-t <s < ¢m2).
This proves that. ‘the amplitude F(s, t) defined from D{@, s, t) satisfies

a dispersion relation. It also tends fo the physical branch of the amplitude,
defined from D€ , as s tends to the real axis from the upper half plane

in the physical region s > km?, This dispersion relation defines the
physical sheet in the complex variable s.

(4) External-Mass Dispersion Relation

(e) Internal-Mass Dispersion Relation

The coefficient of any external mass M 2 in D(a, s, t) 1s positive

J
when a is real. Hence we can replace Ane(a, s, t, Mja) by D(a, s, t, zj)

without changing F(s, t) in a physical scéttering regién, provided zj has

a small positive imaginary part. Now we have
; 2 ‘
D(g, s, t, zj) = (zj - MJ ) P(a) + sf +tg = K & (3.5)

This function is nonzero for real @ and zJ in the upper half plane (s and

t being real), It is real and nonzero for 2z, real and sufficiently negative.

J

Hence it satiéfies a dispersion relation in the external mass variable zj N

The coefficient in D of any internal mass m 2 is negative for

i
real . This leads to anlaytic continuation into the lower half plane and

gives a dispersion relation in the internal mass variable.
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4, Partial-Wave Dispersion Relations

(a) Equal Masses
Writing k for the three momentum and € for the scattering angle

in the center«of-mass system, we have

t = 4-'2k2(l - cos ©) , ' (4.1)
u = - 2k(1 + cos 8) , | (4,2)
s = hkg + hm? o | | (4.3)

The kinematics of the physical regions are indicated in Fig. 1.

The partial-wave amplitude is

1
Az(s) = { d(cos 8) A(s, ~2k2(1 - cos 6)) Pz(cos e) o (kl)
1 tjo at A(s, t) P (1 £) (%.5)
= . 8, t + —5 ) - (4.
2k2 u=0 ) ) £ 2k2 .
Now, we have
Als, £) = [ dg «e- n(a) el (4.6)

[D(a, s, t)
{ ,
where "D is linearly depeﬁdent on t., Hence Az(s) cannot contain any
coincident singularities in the integration over t. It follows that A,(s)
can be singular only when the integrand in Eq. (k.5) gives end-ﬁoint
singularities in t. Hence for Az(s) to be sipguiar either A(s, t=0) or
A(s, u=0) must be singular. From fhé forward-scattering dispersion relations
we know that these amblitudes are singular only when s is real. We also
know that Az(s) is real when s is real and in the range 0 < s < hmec

This proves a dispersion relation for the partial-wave amplitude,l6
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0 o0 A l(s')
A (s) = [ as' + f as'| L—0r o (4.7)
£ 2 (s' - 8)

T hm

(b) Unequal Masses

-For illustration I will consider piqn—nucleon scatteriﬁg._ Take

. .
8 = (pn + pﬁ) 5 (4.8a)
o,
t = (p + p) (4.8b)
n n ]
1 2 8
w = (p, + 2,) . (4.8¢)

Using the same argumenté as in the equal-~mass case, we need to consider only

the end-point singularities in the integration over cos @ . Making a change

of variable to u, these end-point singularities occur at17 t=0 or
u o5 M 4+ on® - s , (4.9)
2
and at t = -« bk~ or
o
2 2
w= M -mn . (%.10)

The first surface t =0 glves forward scattering for which we have a
dispersion relstion. However, the second end pqint is on a curved hypersurface
on which s, t, and u can all be compiexo‘.Hence in addition to the known
normal thresholds in u and t we have to consider complex singulerities.

It is possible to show that none exists, but the method is more complicated
than first proving the Mandelétam represenﬁation and then dedueing that there
'are no complex singularities on this hypersurface. I will therefore adopt

the latter procedure.
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For completeness I should mention the well~-known fact that the (real)
normal thresholds in t lead to complex singularities in s +through the

equation

2 _ _[s-M+m)®s - (-mP] . C(k11)
. . 8 - o

5. The Mandelstam Representation

The Mandelstam representationlB assumes that the amplitude A(s, t)
can be continued analytically so that there are no"singularities in the

physical sheets of the variables s, t, and u, where
2 .
s + t + u = M . (5.1)

The singularities are aésumed to occur only on the boundaries of the physical
sheets where the variables are real.

In my proofl9 of the Mandelstam representation’I'will assume that
there are no anomalous thresholds. This condition‘is satisfied by terms of
all orders when it is satisfied by the fourth-order term. I will indicate
later how it may be possible to relax this condition to allow a proof of the
Mandelstam representation when there is one type of anomalous threshold.

In order to simplify the kinematics I will illustrate the proof by reference
to the equal-mass case. I will begin by obtaining a fevaroperties of the
scattering amplitude that will be required for the proof. Then I will use
the method of analytic completioneo to extend the region of analyticity that
is given by the single~variable dispersion relations. This will thén permit
a double application of Cauchy'’s theofem, which establishes the Mandelstam

representation for every order in perturbation theory.
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The main points in the proof are

(1) There are no anomalous thesholds. This'follows from the result
that D is negative for s < hma, t < hme, u < hmae Hence any line of
singularities s = constént mist intersect 8 physical region. In these
regions the only singularities are at normal thresholds.

(2) The slope of a curve of singularities is given by

dt fla : .
R Ol (5.2)
where the «Q variables satisfy
oD
R = 0, Z‘;ai = 1, (503)
i .

I will call these the critical values of the Feynman parameters,
(3) A curve of singularities on the boundary of the physical sheet

can touch & normal threshold only at infinity. We have

D(a, s, t) = sf + tg - n° K 5 ' (5.4)

where g contains as a factor a product of at least two Feynman parameters

that are zero at the normal threshecld singularity. Iet these be al and a2.

As the curve of singuiarities tends to the normal threshold, al and a2
both give coincident singularities that tend to end-point singularities at
the point of tangency. For example, on the curve, at the critical wvalues

of the « variables, we have

oblg, 5. t) . 3£ . 23K, 28 _ o | (5.5)
! 1 " 1 1 1

On the normal threshold, al = 0 1is anerd-point singularity, and
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s$E - o2 &K 4o, (5.6)
1 1
If this term were zero, in the simplest case we could construct an anomalous
threshold with al £ O and aé = 0. More generally we might be able to

construct & curve of singularities with al # 0 and the line a2 reduced
to a.lpoint° Such a curve would be tangent to the threshold at the same point.
By choosing the most fully reduced of these curves we can apply the preceding
argument. Now, Bg/aal contains a factor X, which tends to zero at the
point of tangency. But t gag is finite at the point of tangency. Hence t
tends to infinity as the curvi tends to the normal threshold.

(4) A singularity at a norﬁal threshold in s can be.avoided by
continuation of F(s, t), giving a small positive or negative imaginary part
to 8. This is in&epen&ént of whether t has an imaginsry part. Similarly
8 threshold in t can bé avoided by t % ie .

(5) The curve of singularities that touches a normal threshold in
t, say t = hma, connects to & surface of singulerities. This surface is
not encountered when we éontinue F(s, t) on the physical sheet near
(sl +ie, t, ie') where 81 and t. are real in the neighborhood of

1
the curve of singulérities. We have

D(a, s, + i€, t, £ ie') = (s + i€)f + (¢t * ie')g - K . (5.7)

1 1

On the curve, g is positive. To be definite we take also s positive,
so that f is positive but tends to zero near +t = hmz (the curve lies above
this threshold). Then it is clear that the function F ‘is analytic at

(sl +ie, t. + i€')., Given any ,e > €' > 0, we can always choose a point

1
s’ on the curve such that
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Q_'E, €’ 1
I < < for s>s' . ‘ (5.8)
Then using the relation %& = - g , We obtain, for the critical values of a,
ief - 1e g # 0, for s > 8 . (5.9)

Hence F 1is analytic up to some point t. > hme, alsoc at (sl + i€, tl - ie').

1
This argumenf can be applied to any curve touching a higher normal threshold,

by working with the suitably reduced diagram.

(6) Tne dispersion relation in s.shows that for real values of t
in the range -hm2 <t < hm? ; the amplitude F(s, t) has no singularities
either in the upper 6r lower half planes of the variables s .

(7) A curve of singularities in the real s, t plane has real
slope %g « If the gslope is positive then at points on the neighboring
complex surface L , s and % wiil have imaginary parts of the same sign.

Thus

%—Z— > 0 leads to (s + i€, t + ie'), and (s - 1€, t - 1€') on I .

Similarly

%2 < 0 leads to (s + ie, t « ie'), and (s - i€, t + i€') on

Howe#er, it is important to note that these neighboring points are not
necessarily on the physical sheet when the curve of singularities is on its
boundary.

The next part of the prooflg makes use of the method of analytic
completionzo for a function of two complex variables. We begin with the

information given by the single~vériable dispersion relations in s , and

L.
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use this to provide a contour that can be moved past the threshold in +t.
(8) For hm® < £ < hm , PF(s, t) is analytic in the upper half

s plane. Hence we can write

P(s, t) = oy | D tlz (5.10)
c

"where the contour C 1is an arbitrarily large semicircle in the upper half

s plane.

. The method of analytic completion now allows us to extend the region

of analyticity of F(s, t) by displacing the contour C parallel to itself
(in the complex space of s and t), provided the contour moves entirely
in an analytic region of F(s, t).

(9) First we displace the contour to give the function
F(s, t o+ iet) ,

which is analytic in the upper half s plane, by sﬁep (%) in this proof.

(10) Next we displace the contour C to & point where t, 1is
greater than km®, This is possible by step (5). |

(11) We now displace C by continuously increasing tl; this is:
illustrated in Fig. 2. It will not meet any complex singularities, since
these would correspond to horns projecting into the contour. Analytic
complétion shows that we can continug intc horns. We therefore need
consider only singularities that might distort the contour. Since these
lie initially withih ie of real s, and 1i€' of real +t, they must come
from surfaces associated yith curves of singularities, if they exist at

all. From step (7) only curves of positive slope can give trouble.
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(12) A éurve of singularities cannot have a minimum except possibly
a£ é spurious turning point, since there are no anomalous thresholds. A
éﬁprious turning point has at/ds = 0, with f = O, but all its a singularities
are coincident (and are not also end-point singularities as at an anomalous
turning point). Thus a minimum in the curve as a function of t would lead
to a horn projecting down into C. It therefore cannot exist. There cannot.
be a maximum of a curve of singularities, since by continuity it would also
be asgociated with a minimumvwhich-would be encountered first by C. We can
use continuity, since a curve of singularities can leave the boundafy of the
physical sheet only by touching another curve of the same slope, or asymptotically
through a normal threshold. This proves that there are no spurious turning
points.

(13) From step (7) the only curves that would not lead to horns
extending into C, for s = s, + ie (and with t = 5+ i€') on the straight
edge of C, have negative slope and go asymptotically t0 the normsl threshold.
Thus there may be curves of singularities of F(sl + ie, tl + i€') in the
limit of e, €' teﬁding to zero, only in the region s > hmg, t > hme,
and not in the region u > hm?, t > hmao Any continuous curve in the

latter region would lead to complex singularities that are disallowed by our

‘analytic completion.

(14) Similerly there are no complex singularities of F(s, 5 - ie?)
in the upper half s plane, and no curves of singularities in the region
1> hme, % > 4m® that can be reached by allowing € and €' to tend to
zero in F(sl + i€, t

8

1" ie'). However, this function may have curves of

singularities in u > hmg, t > hm? in this limit. We must keep € > €'

during analytic completion to avoid normal thresholds in u.
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(15) We can now deduce the Mandelstam representation by making a
AN - ‘

11,19

_double application of Cauchy®s theorem. We have established a single

dispersion relation,

: -S e s : 9 - "
F(s, t) = -——-2;:1 [ at* + [ atr s, t Lif)t TS L)
-® im® '

(5.11)

We have shown that in the 1imit, as € tend to zero, F(s, t + ie) has

no singularities in the upper half s plane. Also in this limit

'éli' F(s, t* + i€e) - F(s, t* - ie)}

is real for 0 < s < hme , at least., This permits a second application of
Cauchy's theorem from the upper contour t' in the range hmg» to infinity.
The integrand on the lower half contour can be expressed by a dispersion
relation with the variable u kept constant. The contours used in this
double application of Cauchy's theorem are shown in Fig. 3. Finally the
obligue axes of integrationll can be combiqu to give the Maﬁdelstam
representation.,

The arguments on which this proof is based require only that there
exist a single dispersion relation, and that the consequent analyticity
can be continued by analytic completion thrdughout the physical sheet.
This analytic completion depends on the properties of the amplitude near
normal thresholds. The basic reqpirement is that there be no anomalous
thresholds. Provided this condition is satisfied the proof applies also
to the general mass case, |

I will discuss next the properties of amplitudes with anomalous

thresholds.
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6. Anomalous Thresholds

(a) Anomalous Type I

I will consider first anomalous thresholds whose surfaces of
singularities.do not enter the physical sheet. The conditions on the
masses under which this holds for fourth-order terms have been investigated
by Tarski¢5 The same conditions will probably suffice to keep singularities
from higher-order terms off the physical sheet;, but this has not yet been
proved.

One can prove, however, that the existence of anomalous thresholds
can be determined from the fourth-order term. The proof is obtained by noting
that removal of an internal line from a Feynman diagram will not réise'the

lowest threshold valueozl We havelo

(e, st =1 2 2 -1
P& 88 o, o, M s, t) - m” Cla) - o, m°cla, a7,

i

(6.1)

where ai-l denotes that the line 1 is removed. Thus, if D(c, aipl, s, t)

is negative for all real «a, so is (e, s, . Since we have
: N ’

p =21z &, (6.2)
- |

it follows that if every fourth-order diagram has D(a, s, t) < 0,
(for s, t, u below the first threshold), then the same is true for every
higher-order diagram. Hence the region of real A(s, t) in the s, t
plane is determined by the fourth-order term.

From my choice of definition of this type of anomalous threshold,

the Mandelstam representatibn applies. The singular curves of a fourth-order
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diagram have the form shown in Fig. 4. The amplitude A(s + ie, 1t + ie')
is singular as € and €' tend to zero, on the singular curves whefe their
slope is negative. The amplitude A(s + i€, t - i€') is singular in the
same 1imit, where the curves have positiverlmpe.

(v) Anomalous Type II

The anomalous thresholds of the second type have singularity surfaces
entering the physiéal sheeto5 The intersection with the real s, t plane
is shown in Fig. 5. The curves AB and CD are connected by complex
singular curves in the upper half s &and t planes, and in the lower half
planes. Below CD +the amplitude is real and the < integration is real
in the range 0O, 1 . On following the singularity from a point on CD where
the contour is real to a point on AB, we find thét_the contour of integration
becomes distorted so that on AB +the singularities are duerto a pinching
of the contour at negative value of «. 12 Thus in this case both negativev
and complex values of Q@ are relevant to singularities in the physical sheet.
I woﬁld like also to remark on an iﬁtegral representation with
anomalous thresholds of this type which is plausible but not yet proved in
perturbation theory. The addition of.internal lines quite clearly moves
the normal thresholds to h;gher values., It almost obviously moves anomalous
thresholds to higher values. It is plausible that this will result in the
disappearance of anomalous thresholds of Type II for terms of sufficiently
high order. It will not remove anomalous thresholds of Type I; this can be
easily seen from ladder diagrams. This suggests that the amplitude can be
expressed by a finite number of terms in perturbation theory with physical

masses and coupling constants together with a remainder that satisfies the

Mandelstam representation.
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One further point about anomalous thresholds is.that an ancmalous~type
diagram intérnal to a diagram not otherwise anomalous does not cause an
anomalous threshold. This follows from the fact that the removal of an
internal line camnot lower the leading threshold. By sultably reduecing lines,

we see that the lowest threshold is given by the appropriate fourth-order term.

(¢) Partial-Wave Dispersion Relation with Anomalous Thresholds
These can be studied by perturbation methodso22 The most useful
approach appears to be analytic continuation in the external, or internal,

masses from a situation in which no anomalous thresholds occur. I have no

special results on this, but mention it only for completeness.

T. Production Amplitudes

(a) Complex Singularities

When we reduce lines in any closed-lodp‘diagram as indicated in Fig. 6,
it is at once obvious that the five~point function will in general have
singularities in the complex parts of the physical sheet, It does not follow
that they will be complex, say for the five-point function, if four of the
independent variables are held at their physical values, but each individual
case requires investigation on this pointo23
jb) Closed-Loop Poles and Resonances

It has been shown2h

that the closed-loop diagram of the five~point
function gives rise to a pole in each variable when the other four independent
variables are held fixed., I wish to note here that an internal resonance

may be approximated by a single line with complex mass. This will lead to a
complex pole in the five-point closed-loop diagram. In particular cases this
may lead to a resonance in a physical region. This may cause considerable

complications in the interpretation of resonances in final-state interactions.
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(¢) Experiments on Final-State Interactions

I will mention two ekperiments in ﬁhiéh the cémplicgtion §f\éio;ed-
loop reéonénces may cause difficulties. One is the pion«préductioﬁ.v
experiment25 illustrated in Fig. T. The simple pion resonancé is shown
in diagram (a). The closed~loop pole is shown in diagram (p) and the lowest
closed-loop resonance is indicated in diagram (¢). The problem of locatihg
these poles is cémplicated, but should be completed for some cases in the

26

near future.”

27

The second experiment is on the reaction

3

p + d - He” + neutral system.

The diagram that may be related to a simple pion-pion resonance is shown

in Fig. 8(a). The corresponding closed-loop resonance is shown in Fig. 8(b).
It seems probable that the closed~loop.resonance will be below the two-pilon
threshold, but it will occur in both the s and p states of the outgoing
pions. The simple pion-pion resonance may be above the threshold but is

likely to be in the p wave only028
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FIGURE LEGENDS

Kinematics for equal masses.

Displacement of the contour used for analytic completion.

Contours used in the double application of Cauchy's theorem.

Curve of singularities for anomalous thresholds of Type Io‘

Curve of singulafities for anomalous thresholds of Type II.
Reduced diagrams giving complex singularities.

Closed-loop poles and resonances in the pion-production experiment.

A final-state resonance and a closed-loop resonance in the reaction

3

-

+
p+d—+He’ +x -m



t=4m?2

t=0

Physical
region

| I
u=0

s=0 s=4m? u=4m?2

MU=-21102

Fig. 1



Fig.

MU=21103



MU=-21104

Fig. 3



Yoq (8)

MU-21105

Fig. 4



—>

Yoqa(s)

S

b

1
-z

MU-21106

Fig. b



(a) (b)
(c) (d)
MU-21107

Fig. 6



-

- -
-

-

(b)

MU-21108

Fig. 7



(a)

MU-21109

Fig. 8



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








