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Abstract. Given a lattice path ν, the ν-Tamari lattice and the ν-Dyck lattice are two natural
examples of partial order structures on the set of lattice paths that lie weakly above ν. In
this paper, we introduce a more general family of lattices, called alt ν-Tamari lattices, which
contains these two examples as particular cases. Unexpectedly, we show that all these lattices
have the same number of linear intervals.
Keywords. Lattices, intervals, Tamari
Mathematics Subject Classifications. 06A07, 06B05, 05A19

1. Introduction

The classical Tamari lattice is a partial order on Catalan objects which has inspired a vast amount
of research in various mathematical fields [MHPS12]. One direction of research which has
received a lot of attention in recent years regards its number of intervals [Cha07], which is
conjectured to be equal to the dimension of the alternating component of an Sn-module in the
study of trivariate diagonal harmonics [Hai94]. Motivated by this intriguing connection, Bergeron
and Préville-Ratelle introduced a generalization of the Tamari lattice called the m-Tamari lattice,
and conjectured that its number of intervals again coincides with the dimension of the alternating
component of anSn-module in higher trivariate diagonal harmonics [BPR12]. A formula for their
enumeration and connections to representation theory can be found in [BMCPR13, BMFPR11].
A further generalization of the Tamari lattice, which includes the m-Tamari lattice, is the ν-Tamari
lattice introduced by Préville-Ratelle and Viennot [PRV17]. These lattices are indexed by a lattice
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path ν, and their number of intervals is connected to the enumeration of non-separable planar
maps as shown in [FPR17].

Inspired by the enumeration of intervals in the classical Tamari lattice and its generalizations,
and guided by computer experimentation, Chapoton proposed to study the enumeration of the
simpler class of linear intervals (intervals which are chains). This led to the work of the second
author in [Che22], where he provides an explicit simple formula for the number of linear intervals
in the classical Tamari lattice, and shows that their enumeration coincides with the enumeration
of linear intervals in the Dyck lattice. The Dyck lattice, sometimes called the Stanley lattice,
is perhaps the most natural poset on Dyck paths, defined by P ⩽ Q if Q is weakly above P .
In [Che22], the author also defines a new family of posets called alt Tamari posets, which contain
the Tamari lattice and the Dyck lattice as particular cases. He shows that all alt Tamari posets
have the same number of linear intervals of any given length.

In this paper, we generalize the results in [Che22] by introducing a new family of posets
called alt ν-Tamari posets. We show that they are lattices, and that they all have the same number
of linear intervals of any given length. Figure 1.1 and Figure 1.2 illustrate the three different
alt ν-Tamari lattices for ν = ENEENN . In each case, the number of linear intervals of length k
is given by ℓk where ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) = (16, 24, 16, 3). For instance, 16 represents the trivial
intervals of length 0, which are just the elements of each poset; there are 24 linear intervals
of length 1, which correspond to the cover relations (edges in the figures); there are 16 linear
intervals of length 2, and 3 linear intervals of length 3. The fact that these numbers coincide is
somewhat surprising, since the posets look quite different. As a warm up exercise, the reader is
invited to find the 3 linear intervals of length 3 in each of the figures. Figure 2.1 illustrates the
three different alt ν-Tamari lattices for ν = ENEEN .
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Figure 1.1: The ν-Tamari lattice and ν-Dyck lattice for ν = ENEENN . They are the
alt ν-Tamari lattices Tamν(δ) for δ = (2, 0, 0) and δ = (0, 0, 0), respectively.

As the figures suggest, the alt ν-Tamari lattices possess a rich underlying geometric structure,
which seems to be realizable as a polytopal complex in some Euclidean space. This was shown to
be true for ν-Tamari lattices in [CPS19], where polytopal complex realizations induced by some
arrangements of tropical hyperplanes are provided. The first author presented similar geometric
realizations in this general context for alt ν-Tamari lattices [Ceb24].
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Figure 1.2: The alt ν-Tamari lattice Tamν(δ) for ν = ENEENN and δ = (1, 0, 0).

2. The ν-Dyck lattice

Let ν be a lattice path on the plane from (0, 0) to (m,n), consisting of a finite number of
north and east unit steps. We may represent a path ν as a word in the letters E and N for
east and north steps respectively. We may as well represent ν as a sequence of non-negative
integers (ν0, ν1, . . . , νn), where n ∈ N is the number of north steps of ν, ν0 is the number of initial
east steps, and νi ⩾ 0 is the number of consecutive east steps immediately following the i-th north
step of ν. In particular, m = ν0 + · · · + νn is the total number of east steps. For instance, the
path ENEENNENEEE would correspond to the sequence (1, 2, 0, 1, 3), while ENEENN
corresponds to (1,2,0,0).

A ν-path µ is a lattice path using north and east steps, with the same endpoints as ν, that is
weakly above ν. Alternatively, µ = (µ0, . . . , µn) is a ν-path if and only if

∑j
i=0 µi ⩽

∑j
i=0 νi for

all 0 ⩽ j ⩽ n, with equality for j = n. The elements of the posets in Figure 1.1 and Figure 1.2
are labelled by ν-paths using this representation, where we omit the commas and parentheses
for simplicity. For instance, the label 1200 is the minimal path (1, 2, 0, 0), which corresponds
to ν = ENEENN .

Definition 2.1. The ν-Dyck lattice Dyckν is the poset on ν-paths where P ⩽ Q if Q is weakly
above P .

An example of the ν-Dyck lattice for ν = ENEEN is illustrated on the left of Figure 2.1.
Remark 2.2. The case where ν is (NE)n coincides with the classical Dyck lattice on Dyck paths
of size n.
Remark 2.3. Covering relations P ⋖Q in the ν-Dyck lattice consist of transforming a valley EN
in a peak NE in some ν-path P .
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Figure 2.1: Examples of alt ν-Tamari lattices Tamν(δ) for ν = ENEEN = (1, 2, 0). Left:
the ν-Dyck lattice, for δ = (0, 0). Middle: the lattice for δ = (1, 0). Right: the ν-Tamari
lattice, for δ = (2, 0). In each case, the number of linear intervals of length k is given by ℓk
where ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) = (7, 8, 4, 1). For instance, 7 represents the trivial intervals of length 0,
which are just the elements of each poset; there are 8 linear intervals of length 1, which correspond
to the edges; 4 linear interval of length 2, and 1 linear interval of length 3.

2.1. Left and right intervals in the ν-Dyck lattice

We focus on the special class of linear intervals of a poset. An interval [P,Q] is linear if it is
totally ordered, or equivalently if it is a chain of the form P = P0 < P1 < · · · < Pℓ = Q. The
length of such a linear interval is defined to be ℓ. A linear interval of length zero (containing
only one element) is said to be trivial. A linear interval of length one is by definition a covering
relation since it contains two elements. The non-trivial linear intervals of the ν-Dyck lattice can
be easily characterized into two different classes.

Definition 2.4. An interval [P,Q] in Dyckν is a left interval if Q is obtained from P by trans-
forming a subpath EℓN into NEℓ for some ℓ ⩾ 1. It is a right interval if Q is obtained from P
by transforming a subpath EN ℓ into N ℓE for some ℓ ⩾ 1.

Lemma 2.5. The linear intervals of length 2 are either left or right intervals.

Proof. Let P ⋖Q⋖R be a linear interval of length 2. The covering relations P ⋖Q transforms
a valley EN of P into a peak NE. If the next covering relation Q⋖R happens at a valley of Q
that is also a valley of P , then the [P,R] is a square. Thus, this second covering relation must
use either of the two steps of the peak NE that was created in Q.

Proposition 2.6. The left and right intervals in the previous definition are linear intervals of
length ℓ. Moreover, all non-trivial linear intervals in Dyckν are either left or right intervals.

Proof. If [P,Q] is an interval of this form with ℓ ⩾ 1, then there exists only one maximal chain
from P to Q. Indeed, there is only one valley of P that is not a valley of Q and thus, any maximal
chain from P to Q starts at this valley. We then obtain an interval of the same form, but ℓ has
decreased by 1 and we conclude by induction.
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Lemma 2.5 proves that all linear intervals of height k = 2 are either left or right intervals.
Suppose that [P,Q] is a linear interval of height k + 1 ⩾ 3. It is linear so Q has only one lower
cover Q′ in [P,Q]. Then [P,Q′] is linear of height k and thus by induction, it is of the prescribed
form.

Suppose that Q′ is obtained from P by transforming a subpath EkN into NEk, which creates
this peak NE in Q′ followed by k − 1 east steps. Then, Lemma 2.5 ensures that the covering
relation Q′ ⋖ Q has to use the north step N of this peak and thus, Q is obtained from P by
changing a subpath Ek+1N into NEk+1.

Suppose now that Q′ is obtained from P by transforming a subpath ENk into NkE. Similarly,
Lemma 2.5 ensures that Q′ ⋖Q has to use the east step E of this peak and Q is obtained from P
by transforming a subpath ENk+1 into Nk+1E.

Corollary 2.7. Left intervals of length ℓ in Dyckν are in bijection with ν-paths marked at a north
step preceded by ℓ east steps. Right intervals of length ℓ in Dyckν are in bijection with ν-paths
marked at an east step followed by ℓ north steps.

3. The ν-Tamari lattice

The ν-Tamari lattices are a generalization of the Tamari lattice. They were defined in terms
of ν-paths by Préville-Ratelle and Viennot in [PRV17]. An alternative description in terms
of ν-trees was presented in [CPS20].

3.1. On ν-paths

For a lattice point p on a ν-path µ, define its ν-altitude altν(p) to be the maximum number of
horizontal steps that can be added to the right of p without crossing ν. Given a valley EN of µ,
let p be the lattice point between the east and north steps. Let q be the next lattice point of µ such
that altν(q) = altν(p), and µ[p,q] be the subpath of µ that starts at p and ends at q. Let µ′ be the
path obtained from µ by switching µ[p,q] with the east step E that precedes it. The ν-rotation of µ
at the valley p is defined to be µ⋖ν µ

′. An example is illustrated in Figure 3.1.

1

3

3 2 1

3 2

2 1 0

⋖ν

1

3

3 2

34

3 2 01

Figure 3.1: The rotation operation of a ν-path. Each node is labelled with its ν-altitude.

Definition 3.1. The ν-Tamari poset Tamν is the reflexive transitive closure of ν-rotations on
ν-paths.
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An example of the ν-Tamari poset for ν = ENEEN is illustrated on the right of Figure 2.1.

Theorem 3.2 ([PRV17, Theorem 1]). The ν-Tamari poset is a lattice. The ν-rotations are exactly
its covering relations.

Another approach to define the ν-Tamari lattice is to introduce the notion of ν-elevation
of a subpath as the difference of ν-altitude between its ending point and its starting point. We
thus write elevν(E) = −1 for an east step E and elevν(Ni) = νi if Ni is the i-th north step of
a ν-path µ. For any subpath A of µ, we then have elevν(A) =

∑
a∈A elevν(a) as the sum of

the ν-elevation of the steps of A.
The ν-excursion of a north step N of a ν-path µ is defined as the shortest subpath A of µ that

starts with this N and such that elevν(A) = 0. It follows from the definition of the ν-excursion
that exchanging the east step E of a valley with the ν-excursion that follows it is exactly a covering
relation in Tamν .

3.2. On ν-trees

One can also define a poset on ν-trees which is isomorphic to the ν-Tamari lattice.
We denote by Fν the Ferrers diagram that lies weakly above ν in the smallest rectangle

containing ν. Let Lν denote the set of lattice points inside Fν . We say that two points p, q ∈ Lν

are ν-incompatible if p is strictly southwest or strictly northeast of q, and the smallest rectangle
containing p and q lies entirely in Fν . Otherwise, p and q are said to be ν-compatible. A ν-tree is
a maximal collection of pairwise ν-compatible elements in Lν . In particular, the vertex at the
top-left corner of Fν is ν-compatible with everyone else, and belongs to every ν-tree. Connecting
two consecutive elements (not necessarily at distance 1) in the same row or column allows us to
visualize ν-trees as classical rooted binary trees [CPS20]. The vertex at top-left corner of Fν is
always the root. An example of a ν-tree and the rotation operation which we now describe is
shown in Figure 3.2.

p

rq = p⌞r
⋖ν

q′ = p⌝rp

r

Figure 3.2: The rotation operation of a ν-tree.

Let T be a ν-tree and p, r ∈ T be two elements which do not lie in the same row or same
column. We denote by p□r the smallest rectangle containing p and r, and write p⌞r (resp. p⌝r)
for the lower left corner (resp. upper right corner) of p□r.

Let p, q, r ∈ T be such that q = p⌞r and no other elements besides p, q, r lie in p□r.
The ν-rotation of T at q is defined as the set T ′ =

(
T \ {q}) ∪ {q′}, where q′ = p⌝r, and we

write T ⋖ν T
′. As proven in [CPS20, Lemma 2.10], the rotation of a ν-tree is also a ν-tree.
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Definition 3.3. The rotation poset of ν-treesTamtr
ν is the reflexive transitive closure of ν-rotations.

An example of the rotation poset of ν-trees for ν = ENEEN is illustrated on the right
of Figure 3.3.

Figure 3.3: Examples of rotation lattices of (δ, ν)-trees for ν = ENEEN . Left: the ν-Dyck
lattice, for δ = (0, 0). Middle: the lattice for δ = (1, 0). Right: the ν-Tamari lattice, for δ = (2, 0).

Theorem 3.4 ([CPS20]). The ν-Tamari lattice is isomorphic to the rotation poset of ν-trees:

Tamν
∼= Tamtr

ν .

In particular, the rotation poset of ν-trees is a lattice.

A bijection between these two posets is given by the right flushing bijection flushν introduced
in [CPS20]. This bijection maps a ν-path µ = (µ0, . . . , µn) to the unique ν-tree with µi + 1
nodes at height i. This tree can be recursively obtained by adding µi + 1 nodes at height i from
bottom to top, from right to left, avoiding forbidden positions. The forbidden positions are those
above a node that is not the left most node in a row (these come from the initial points of the east
steps in the path µ). In Figure 3.4, the forbidden positions are the ones that belong to the zigzag
lines. Note that the order of the nodes per row is reversed.

The inverse flush−1
ν of the right flushing bijection is called the left flushing bijection, and

can be described similarly, adding points from left to right, from bottom to top, avoiding the
forbidden position given by the zigzag lines. In other words, the left flushing bijection of a ν-tree
is the ν-path that has as many nodes per row as the tree.

3.3. Left and right intervals in the ν-Tamari lattice

The description of the ν-Tamari lattice on ν-trees gives an easy description of its linear intervals.

Definition 3.5. An interval [T, T ′] in Tamtr
ν is a left interval if T ′ is obtained from T by ap-

plying ℓ > 0 rotations at the first ℓ nodes of a consecutive sequence q0, . . . , qℓ−1, qℓ in the
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2
3
3
3
1
3
1 p0

p1 p2 p3

p4

p5 p6 p7

p8 p9 p10

p11 p12 p13

p14 p15

right-flushing−→

2
3
3
3
1
3
1 p̄0

p̄3 p̄2 p̄1

p̄4

p̄7 p̄6 p̄5

p̄10 p̄9 p̄8

p̄11p̄13 p̄12

p̄15 p̄14

Figure 3.4: Right flushing bijection from ν-paths to ν-trees.

same row, from left to right. For example, applying two rotations at the first two nodes of the
sequence p̄13, p̄12, p̄11 in Figure 3.4 (right). It is a right interval if T ′ is obtained from T by
applying ℓ rotations at the first ℓ nodes of a consecutive sequence q0, . . . , qℓ−1, qℓ which are
consecutive in the same column, from bottom to top. For example, applying two rotations at the
first two nodes of the sequence p̄3, p̄4, p̄12 in Figure 3.4 (right).

Proposition 3.6. The left and right intervals in the previous definition are linear intervals of
length ℓ. Moreover, all non-trivial linear intervals in the rotation lattice on ν-trees are either left
or right intervals.

Proof. A left (resp. right) interval [T, T ′] is indeed linear because there is a unique maximal
chain from T to T ′ and ℓ is its length. Indeed, each element different from T ′ in the interval has
only one upper cover that is below T ′.

The converse is proven by induction, similarly as the simpler case of the Dyck lattice in
Proposition 2.6.

Intervals of length 1 are all covering relations and thus both left and right intervals.
An interval which contains a maximal chain T0 ⋖ T1 ⋖ T2 can be:

• a left interval when T1 ⋖ T2 is the rotation in the same row immediately on the right
of T0 ⋖ T1,

• a right interval when T1⋖T2 is the rotation in the same column immediately above T0⋖T1,

• a pentagon when T1 ⋖ T2 is the rotation in the same column immediately under T0 ⋖ T1,

• a square otherwise.

In particular, this proves that all linear intervals of length 2 are exactly left or right intervals.
A linear interval [T, T ′] of length k ⩾ 3 must contain a linear interval [T, T ′′] of length k− 1.

By induction, [T, T ′′] must be either a left interval and in this case [T, T ′] is a left interval as well
or a right interval and in this case [T, T ′] is also a right interval.

Remark 3.7. The left flushing of a left interval on the rotation lattice of ν-trees produces a left
interval [P,Q] of ν-paths in Tamν , where P is of the form AEkBC with B some ν-excursion
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and Q is of the form ABEkC. In other words, P is a ν-path with a valley preceded by k east
steps.

The left flushing of a right interval on the rotation lattice of ν-trees produces a right inter-
val [P,Q] of ν-paths in Tamν , where P is of the form AEB1 . . . BkC with B1, . . . , Bk being k
consecutive ν-excursions, and Q is of the form AB1 . . . BkEC.

4. The alt ν-Tamari lattice

Given a fixed path ν, the ν-Dyck lattice and the ν-Tamari lattice are two posets defined on ν-paths
with quite similar covering relations. In both cases, a covering relation consists of swapping
the east step of a valley with a subpath that follows it. We can in fact define a whole family of
posets that are described in a similar way, and we call them the alt ν-Tamari posets. The term
“alt” stands for “altitude”, a notion that we use in order to define them. We prove that the resulting
posets are lattices and study their linear intervals.

4.1. On ν-paths

Let ν = (ν0, . . . , νn) be a fixed path. We say that δ = (δ1, . . . , δn) ∈ Nn is an increment vector
with respect to ν if δi ⩽ νi for all 1 ⩽ i ⩽ n. Note that the vector δ starts at index 1 whereas the
path ν starts at index 0.

Similarly as the ν-altitude, we introduce a notion of δ-altitude. For a lattice point p on
a ν-path µ, define its δ-altitude altδ(p) as follows. We set the δ-altitude of the initial lattice point
of µ to be equal to zero, and declare that the i-th north step of µ increases the δ-altitude by δi and
an east step decreases the δ-altitude by 1.

Given a valley EN of µ, let p be the lattice point between the east and north steps. Let q be
the next lattice point of µ such that altδ(q) = altδ(p), and µ[p,q] be the subpath of µ that starts
at p and ends at q. Let µ′ be the path obtained from µ by switching µ[p,q] with the east step E that
precedes it. The δ-rotation of µ at the valley p is defined to be µ⋖δ µ

′. An example is illustrated
in Figure 4.1.

0
0
2

1
0
0

0

0
0

-1

-3
-3 -4

-1
-1

-2
-1

-1 -2
-5
-5

⋖δ

0
0
2

1
0
0

0

1
1

-1

-3
-3 -4

-1
-1

0
0 -2

-5
-5

-1

Figure 4.1: The δ-rotation operation of a ν-path for δ = (0, 0, 2, 1, 0, 0). Each node is labelled
with its δ-altitude.

Note that a δ-rotation increases the number of boxes below the path, and therefore its reflexive
transitive closure induces a poset structure on the set of ν-paths.
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Definition 4.1. Let δ be an increment vector with respect to ν. The alt ν-Tamari poset Tamν(δ)
is the reflexive transitive closure of δ-rotations on the set of ν-paths.

The three examples of alt ν-Tamari posets for ν = ENEEN = (1, 2, 0) are illustrated
on Figure 2.1.
Remark 4.2. For a fixed path ν, there are two extreme choices for the increment vector δ. If δi = νi
for all 1 ⩽ i ⩽ n, the alt ν-Tamari lattice coincides with the ν-Tamari lattice. If δi = 0 for
all 1 ⩽ i ⩽ n, the alt ν-Tamari lattice coincides with the ν-Dyck lattice. We denote these two
cases by δmax and δmin, respectively.

Another approach to define the alt ν-Tamari poset is to introduce the notion of δ-elevation
of a subpath as the difference of the δ-altitude between its ending point and its starting point.
We thus write elevδ(E) = −1 for an east step E and elevδ(Ni) = δi if Ni is the i-th north step
of a ν-path µ. For any subpath A of µ, we then have elevδ(A) =

∑
a∈A elevδ(a) as the sum of

the δ-elevation of the steps of A.
The δ-excursion of a north step N of a ν-path µ is defined as the shortest subpath A of µ that

starts with this N and such that elevδ(A) = 0. It follows from the definition of the δ-excursion
that exchanging the east step E of a valley with the δ-excursion that follows it is exactly a covering
relation in Tamν(δ).
Remark 4.3. Note that for δ = δmax, the δ-altitude is the ν-altitude shifted by −ν0, but
the δ-elevation and the ν-elevation are equal.

For a general increment vector δ with respect to ν, it is not a priori clear that Tamν(δ) is a
lattice. This is a consequence of the following proposition.

Proposition 4.4. Let ν̌0 =
∑n

i=0 νi −
∑n

i=1 δi with δi ⩽ νi. Then ν̌ = (ν̌0, ν̌1, . . . , ν̌n) =
(ν̌0, δ1, . . . , δn) is a path below ν whose endpoints are the same as ν. Moreover, the following
properties hold:

1. δ-rotations of a ν-path µ coincide with ν̌-rotations of µ.

2. The alt ν-Tamari poset Tamν(δ) is the restriction of Tamν̌ to the subset of paths weakly
above ν.

3. The covering relations of Tamν(δ) are exactly the δ-rotations.

4. The alt ν-Tamari poset Tamν(δ) is the interval [ν, 1ν ] in Tamν̌ .

Here, 1ν = NnEm denotes the top path above ν and ν̌, where m = ν0+ · · ·+νn = ν̌0+ · · ·+ ν̌n.

Proof. The first part of the statement follows from
∑j

i=0 ν̌i −
∑j

i=0 νi =
∑n

i=j+1(νi − δi) ⩾ 0,
where equality holds for j = n.

Note that a ν-path µ is also a ν̌-path, and for a subpath A of µ we have elevδ(A) = elevν̌(A).
Since the δ-rotations (resp. ν̌-rotations) are determined by the δ-elevation (resp. ν̌-elevation),
then Item (1) follows. Items (2) and (3) follow from Item (1).

For Item (4) we need to show that the restriction of Tamν̌ to the subset of paths weakly
above ν is the interval [ν, 1ν ] in Tamν̌ . In other words, we need to show that every ν-path µ
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satisfies ν ⩽Tamν̌ µ. Note that this property does not hold for an arbitrary path ν̌ below ν, but
for our particular choice this is equivalent to show that ν ⩽Tamν(δ) µ (by Item (1)). This holds
because we can reach any ν-path µ by applying a sequence of δ-rotations: add the boxes between ν
and µ one at a time from bottom to top, from right to left. Each of these steps corresponds to
a δ-rotation because δi ⩽ νi.

Corollary 4.5. The alt ν-Tamari poset is a lattice.

Proof. By Proposition 4.4 (4), the alt ν-Tamari poset Tamν(δ) is isomorphic to the interval [ν, 1ν ]
in Tamν̌ . Since an interval in a lattice is also a lattice, we deduce that Tamν(δ) is a lattice.

Remark 4.6. If we chose any other path ν̌ weakly below ν that does not satisfy ν̌i ⩽ νi, for
all i > 0, then the restriction of Tamν̌ to the subset of ν-paths is not a lattice. It is an upper
set but it has several minimal elements. The results on the number of linear intervals that are
presented in the rest of the paper do not hold either with this weaker condition (see Remark 6.2).

We do not use the following proposition in this paper, but it is an interesting property that we
would like to highlight.

Proposition 4.7. Let δ and δ′ be two increment vectors with respect to ν such that δi ⩽ δ′i for
all i. If P < Q in Tamν(δ

′), then P < Q in Tamν(δ).

In other words, whenever δ ⩽ δ′, the poset Tamν(δ) is an extension of the poset Tamν(δ
′),

meaning that it can be obtained from Tamν(δ
′) by adding some relations.

Proof. It is sufficient to prove that the result is true for covering relations in Tamν(δ
′), namely

that if P ⋖δ′ Q, then P < Q in Tamν(δ).
We can write P = AEBC and Q = ABEC for some δ′-excursion B. Note that for any

north step N in B, the δ′ excursion of N is a subword of B and that the δ-excursion of any north
step is a prefix of its δ′-excursion since we have δ ⩽ δ′. Thus, we can build a chain of δ-rotations
from P to Q by exchanging this east step E with either the next δ-excursions if it is followed by a
north step or with the east step that follows it otherwise, which does not change the path.

4.2. On (δ, ν)-trees

The alt ν-Tamari lattice Tamν(δ) is the interval [ν, 1ν ] in Tamν̌ . So, it can be described as the
rotation lattice of ν̌-trees that are above the ν̌-tree Tν corresponding to ν in Tamν̌ . These trees
can be described as maximal collections of pairwise compatible elements in a shape Fδ,ν which
we will now describe. This point of view is useful to show that all alt ν-Tamari lattices have the
same number of linear intervals of any length.

Let δ, ν and ν̌ as in Proposition 4.4. Let Fν̌ be the Ferrers diagram that lies weakly above ν̌.
We consider the lattice path ν̂ that starts at the lowest right corner of Fν̌ (the point with coordi-
nates (ν̌0, 0)) which consists of the sequence of west and north steps

W ν0NW γ1NW γ2 . . . NW γn , for γi = νi − δi. (4.1)

We define Fδ,ν to be the subset of Fν̌ consisting of the boxes that are weakly above ν̂, and denote
by Lδ,ν its set of lattice points. A (δ, ν)-tree is a maximal collection of pairwise ν̌-compatible
elements in Lδ,ν . An example is illustrated at the bottom of Figure 4.2.
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ν3 = 3
ν2 = 2

ν1 = 1
ν0 = 2

Fδmax,ν

δ3 = 2
δ2 = 1

δ1 = 1γ1 = 0
γ2 = 1

γ3 = 1

Fδ,ν

T

Figure 4.2: Top left: The Ferrers diagram Fδmax,ν and its corresponding lattice points Lδmax,ν

for ν = EENENEENEEEN = (2, 1, 2, 3, 0) and δmax = (1, 2, 3, 0). Top right: The Ferrers
diagram Fδ,ν and its corresponding lattice points Lδ,ν for the same ν and δ = (1, 1, 2, 0); the
path ν̌ = EEEENENENEEN and ν̂ = WWNNWNWN . Bottom: a (δ, ν)-tree.

Lemma 4.8. The (δ, ν)-trees are exactly the ν̌-trees that are contained in Lδ,ν .

Proof. A ν̌-tree that is contained in Lδ,ν is automatically a (δ, ν)-tree by definition. So, we just
need to check that (δ, ν)-trees are ν̌-trees. By definition, a (δ, ν)-tree is a maximal collection of
pairwise ν̌-compatible elements in Lδ,ν . As Lδ,ν ⊆ Lν̌ , we want to prove that the maximality
in Lδ,ν implies the maximality in Lν̌ .

Recall that the paths ν and ν̌ have the same starting point (0, 0) and the same ending
point (m,n), and that every ν-tree and every ν̌-tree has exactly m + n + 1 nodes (equal to
the number of lattice points in ν and ν̌). Furthermore, the shape Fδ,ν fits in the m×n box with the
top corners being (0, n) and (m,n). In our example in Figure 6.1, m = 11 and n = 7. The ν-tree
and the (δ, ν)-tree shown in this figure both have m+ n+ 1 = 19 nodes. We want to show that
every (δ, ν)-tree has exactly m+ n+ 1 elements.

Let T be a (δ, ν)-tree. Label its elements p0, p1, . . . , pr from bottom to top, from right to left.
We will show that r = m+ n, which implies that T has m+ n+ 1 elements as desired.

Let us reconstruct T recursively, by adding the elements p0, p1, . . . , pr one at a time in order.
Note that if pi is not the left most element in its row, then all the lattice points above pi are
forbidden in the next steps, because they are incompatible with an element pj ∈ T that is to the
left of pi in the same row.

Now, when we add an element pj in the process of reconstructing T , then pj is necessarily
located at the right most position of its row that is not forbidden by any element before. Otherwise,
let pj ∈ T be the node with smallest label that does not satisfy that property, and let q be the
right most lattice point in the same row that is not forbidden by any element pi with i < j. In
particular, q is on the right of pj by assumption, and q is compatible with every pi with i < j.
Moreover, q is also compatible with pk ∈ T with k > j, otherwise pk, pj would be incompatible.
So, we can add the element q to T , creating a new compatible set, contradicting the maximality
of T .
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Furthermore, the following relation holds,

j = forb(pj) + height(pj)

where height(pj) is the height of pj ∈ T and forb(pj) is the number of pi ∈ T with i < j such
that pi is not the left most node of T in its row. That is, forb(pj) is the number of nodes before pj
that forbid the positions above them. This formula is clear because the j nodes p0, . . . , pj−1

appearing before pj either forbid positions above them (not the left most node of their row) or
increase the height by one (the left most node of their row).

If we apply this formula to the last node pr and assume that r < m+ n, then

forb(pr) + height(pr) < m+ n.

We can assume that height(pr) = n (maximum possible height), otherwise we could add the
top left corner of Fδ,ν to T , creating a bigger compatible set and contradicting the maximality
of T . This implies that forb(pr) < m, which means that on the top row there are still some lattice
points that are not forbidden. Adding one of these points contradicts the maximality of T . As a
consequence, we have proven that r = m+ n as desired.

We define the (δ, ν)-right flushing flushδ,ν as the restriction of the right flushing bijec-
tion flushν̌ (with respect to ν̌) to set of ν-paths (thought as the subset of ν̌-paths that are above ν).

Proposition 4.9. The map flushδ,ν is a bijection between the set of ν-paths and the set of
(δ, ν)-trees. Moreover, two ν-paths are related by a δ-rotation µ⋖δ µ

′ if and only if the corre-
sponding trees are related by a ν̌-rotation T ⋖ν̌ T

′.

Proof. By Proposition 4.4, δ-rotations of a ν-path µ coincide with ν̌-rotations of µ, and the right
flushing bijection flushν̌ transforms ν̌-rotations on paths to ν̌-rotations on the corresponding trees.
Therefore, the second part of the proposition is clear. It remains to show that µ is a ν-path if and
only if flushν̌(µ) is a (δ, ν)-tree, or equivalently a ν̌-tree that is contained in Lδ,ν .

We start by proving the forward direction. First, note that the image of the bottom
path Tν = flushν̌(ν) is contained in Lδ,ν . More precisely, the shape Fδ,ν has νk east steps
on its boundary at height k. For k > 0, some of these east steps (exactly νk − δk) are on the left
boundary, and some (exactly δk) are on the right boundary. The νk + 1 nodes of Tν at height k
consist of the νk − δk + 1 points on the left boundary, and the δk end points of the east steps of
the right boundary. At height k = 0, the ν0 + 1 nodes of T are all the lattice points at the bottom
of Fδ,ν . This shows that Tν is contained in Lδ,ν .

Now, every ν-path µ can be obtained by applying a sequence of ν̌-rotations to the bottom
path ν. Its image flushν̌(µ) is a ν̌-tree that can be obtained by applying the corresponding
sequence of ν̌-rotations to the tree Tν . Since Tν is contained in Lδ,ν and such rotations preserve
this property, then flushν̌(µ) is also contained in Lδ,ν . This finishes the proof of the forward
direction.

The backward direction is equivalent to the following statement: if T is a ν̌-tree contained
in Lδ,ν then µ = flush−1

ν̌ (T ) is weakly above ν. This is equivalent to show that the number of
nodes in T at heights less than or equal to k is at most ν0 + · · ·+ νk + k + 1.
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For 0 ⩽ k ⩽ n, let Lk (resp. Fk) be the the restriction of Lδ,ν (resp. Fδ,ν) to the points with
height less than or equal to k. The width of Fk is equal to ν0 + · · ·+ νk. The maximal number of
compatible lattice points inside Lk is equal to ν0 + · · ·+ νk + k + 1. The restriction of T to Lk

is a compatible set (not necessarily maximal). The result follows.

The (δ, ν)-right flushing bijection from ν-paths to (δ, ν)-trees is described in exactly the same
way as in Section 3.2: we recursively add µi + 1 nodes to the tree inside the shape Fδ,ν from
right to left, from bottom to top, while avoiding the forbidden positions above a node which is
not the left most node in a row. Figure 6.1 shows the image of the path µ = (1, 0, 1, 1, 3, 2, 1, 2)
for δmax = (1, 0, 2, 2, 0, 3, 0) (left) and for δ = (0, 0, 1, 2, 0, 1, 0) (right), where the base path
is ν = (3, 1, 0, 2, 2, 0, 3, 0).

Definition 4.10. The rotation poset of (δ, ν)-trees Tamtr
ν (δ) is the reflexive transitive closure

of ν̌-rotations on (δ, ν)-trees.

The three examples of the rotation poset of (δ, ν)-trees for ν = ENEEN = (1, 2, 0) are
illustrated on Figure 3.3.

Theorem 4.11. The alt ν-Tamari lattice is isomorphic to the rotation poset of (δ, ν)-trees:

Tamν(δ) ∼= Tamtr
ν (δ).

In particular, the rotation poset of (δ, ν)-trees is a lattice.

Proof. The alt ν-Tamari lattice is the poset on ν-paths whose covering relations are given
by δ-rotations. The rotation poset of (δ, ν)-trees is poset on (δ, ν)-trees whose covering re-
lations are ν̌-rotations. The result is then a consequence of Proposition 4.9. The lattice property
was proven for the alt ν-Tamari lattice in Corollary 4.5.

5. Left and right intervals in the alt ν-Tamari lattice

Since Tamν(δ) is an interval in Tamν̌ , its linear intervals are linear intervals in Tamν̌ . In terms
of trees, this gives the following simple characterization.

Definition 5.1. An interval [T, T ′] in Tamtr
ν (δ) is a left interval (resp. right interval) if [T, T ′] is

a left interval (resp. right interval) in Tamtr
ν̌ .

Proposition 5.2. The non-trivial linear intervals in Tamtr
ν (δ) are either left or right intervals.

Proof. This is a direct consequence of Proposition 3.6.

In this section, we aim to characterize the left and right intervals in terms of certain row
and (reduced) column vectors associated to the (δ, ν)-trees. This will be used in Section 6, to
show that the number of linear intervals in the alt ν-Tamari lattice Tamν(δ) is independent of the
choice of δ.
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5.1. Row vectors and left intervals

The row vector of a (δ, ν)-tree T is the vector

r(T ) = (r0, . . . , rn),

where ri + 1 is the number of nodes of T at height i.

Proposition 5.3. A (δ, ν)-tree T is completely characterized by its row vector. More-
over, (r0, . . . , rn) is the row vector of some (δ, ν)-tree if and only if

1. ri ⩾ 0 for all i,

2.
∑j

i=0 ri ⩽
∑j

i=0 νi for all j, and

3.
∑n

i=0 ri =
∑n

i=0 νi.

Proof. By Proposition 4.9, the map flushδ,ν is a bijection between the set of ν-paths and the set
of (δ, ν)-trees. Moreover, this map preserves the number of points at each height, and therefore the
row vector. Since ν-paths are characterized by their row vectors, then (δ, ν)-trees are characterized
by their row vectors as well.

Furthermore, via the map flushδ,ν , characterizing the row vectors of (δ, ν)-trees is equivalent
to characterizing the row vectors of ν-paths. Condition (1) just says that every ν-path µ has at least
one lattice point at each height. Condition (2) says that µ is weakly above ν, and Condition (3)
says that µ and ν have the same ending points.

Given a (δ, ν)-tree T , we say that an ordered set L = {p, q0, q1, . . . , qℓ} ⊆ T is a horizontal L
of T if L is the restriction of T to a rectangle R of the grid, such that p is the top-left corner of R,
and q0, q1, . . . , qℓ appear in this order on the bottom side of R with q0 being its left-bottom corner
and qℓ its right-bottom corner. Note that no other elements of T belong to R. We say that the
length of L is equal to ℓ. We denote by T + L the (δ, ν)-tree obtained from T by rotating the
nodes q0, q1, . . . , qℓ−1 in T in this order. An example of these concepts is illustrated in Figure 5.1.

q1 q2 qℓ−1 qℓ

p

q0 ...
T |R

q′1 q′ℓ−1

qℓ

p q′0 ... q′ℓ−2

(T + L)|R

Figure 5.1: Schematic illustration of a horizontal L and the tree T + L.

Lemma 5.4. Let L be a horizontal L of length ℓ of a (δ, ν)-tree T . Then, [T, T + L] is a left
interval of length ℓ in Tamtr

ν (δ). Moreover, every left interval of Tamtr
ν (δ) with bottom element T

is of this form.
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Proof. This follows by the definition of left intervals.

Proposition 5.5. Let T be a (δ, ν)-tree with row vector r(T ) = (r0, . . . , rn). The number of left
intervals of length ℓ with bottom element T in Tamtr

ν (δ) is equal to

|{0 ⩽ i ⩽ n− 1 : ri ⩾ ℓ}|.

Proof. By Lemma 5.4, the left intervals of length ℓ with bottom element T are of the
form [T, T + L] where L is a horizontal L of length ℓ of T . There is one such L for
each ri ⩾ ℓ with 0 ⩽ i ⩽ n − 1, where q0, . . . , qℓ are the ℓ + 1 left most nodes of T at
height i and p is the parent of q0 in T .

The previous two results, Lemma 5.4 and Proposition 5.5, characterize the left intervals
in Tamtr

ν (δ) with respect to the row vectors of (δ, ν)-trees. Our next goal is to have a similar
characterization for the right intervals with respect to certain column vectors. As we will see,
column vectors are not enough for such a characterization, and we will need to consider a notion
of reduced column vectors. Before going into that, we first introduce column vectors and present
some of their properties.

5.2. Column vectors

Given a path ν from (0, 0) to (m,n), the reversed path ←−ν is the path from (0, 0) to (n,m)
obtained by reading ν from right to left and replacing east steps by north steps and vice versa.
Equivalently, ←−ν = (←−ν 0, . . . ,

←−ν m) where ←−ν i is the number of north steps of the path ν in
column m − i. For instance, if ν = ENEEN = (1, 2, 0) then←−ν = ENNEN = (1, 0, 1, 0).
This notion is convenient to characterize column vectors.

In order to define the column vector of a (δ, ν)-tree, it is convenient to assign an
order j0 ≺δ · · · ≺δ jm to the columns of Lδ,ν , obtained by reading the columns from short-
est to longest, from right to left, as illustrated in Figure 5.2 (left). See also the three examples
in Figure 5.3.

j0j3j1 j2

1221

j̄0j̄1 j̄2

121

Figure 5.2: Left: the columns j0, j1, j2, j3 of Lδν , their lengths are 1,1,2,2. Right: the reduced
columns j̄0, j̄1, j̄2 of Lδν with lengths 1,1,2, where the relevant points are filled brown and the
non-relevant points are unfilled green. In both cases, the columns are read from shortest to
longest, from rigth to left.

The column vector of a (δ, ν)-tree T is the vector

cδ(T ) = (c0, . . . , cm),
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where ci + 1 is the number of nodes of T in column ji. For instance, the three (δ, ν)-trees (for
the three choices of δ) in Figure 5.3, all have column vector (0, 1, 0, 1). This means, in each of
the cases, there are 0 + 1 nodes of the tree in column j0, 1 + 1 nodes in column j1, 0 + 1 nodes
in column j2, and 1 + 1 nodes in column j3. Equivalently, ci counts the number of edges of T in
column ji.

j0j2j3 j1 j0j3j1 j2 j2j0j1 j3

Figure 5.3: The columns j0, j1, j2, j3 of Lδ,ν for ν = ENEEN and the three possible choices
of δ = (2, 0), (1, 0) and (0, 0). The columns are read from shortest to longest, from right to left.
The column vector of the shown trees is cδ(T ) = (0, 1, 0, 1) in all three cases.

Proposition 5.6. A (δ, ν)-tree T is completely characterized by its column vector. More-
over, (c0, . . . , cm) is the column vector of some (δ, ν)-tree if and only if

1. ci ⩾ 0 for all i,

2.
∑j

i=0 ci ⩽
∑j

i=0
←−ν i for all j, and

3.
∑m

i=0 ci =
∑m

i=0
←−ν i.

We prove this proposition in several steps.

Lemma 5.7. A (δ, ν)-tree T can be reconstructed from its column vector.

Proof. Let T be a (δ, ν)-tree. Label the elements of the tree p0, p1, . . . , pr from right to left, from
bottom to top, as illustrated in Figure 5.4.

We reconstruct T recursively, by adding the elements p0, p1, . . . , pr one at a time in order.
Note that if pi is not the top most element in its column, then all the lattice points on the left of pi
are forbidden in the next steps, because they are incompatible with an element pj ∈ T that is
above pi in the same column.

Now, when we add an element pj in the process of reconstructing T , then pj is necessarily
located at the bottom most position of its column that is not forbidden by any element before.
Otherwise, let pj ∈ T be the node with smallest label that does not satisfy that property, and
let q be the bottom most lattice point in the same column that is not forbidden by any element pi
with i < j. In particular, q is below pj by assumption, and q is compatible with every pi with i < j.
Moreover, q is also compatible with pk ∈ T with k > j, otherwise pk, pj would be incompatible.
So, we can add the element q to T , creating a new compatible set, contradicting the maximality
of T .
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The tree T can therefore be constructed by adding nodes from right to left, from bottom to
top, avoiding forbidden positions. The forbidden positions are those to the left of a node that is
not the top most node in a column. The number of points in each column is determined by the
column vector.

20 1 1 0 0 0 0 0 03

p3

p2 p1

p6

p7

p5 p4

p10 p9 p8

p11

p13p14

p15

p17 p16

p0

p12

Figure 5.4: The down flushing algorithm.

We call the algorithm described in the previous proof the down flushing algorithm. Its input
is a valid column vector (c0, . . . , cm) (or the number of nodes in each column), and its output is
the unique (δ, ν)-tree such that cδ(T ) = (c0, . . . , cm). Figure 5.4 illustrate an example, where
the labels on top represent the number of nodes, minus 1, in each column, and the forbidden
positions are the ones that belong to the zigzag lines.

Lemma 5.8. Let δ, δ′ be two increment vectors with respect to ν, such that δ′ is obtained by
either adding or subtracting 1 to one of the entries of δ. For every (δ, ν)-tree T , there is a
unique (δ′, ν)-tree T ′ such that

cδ(T ) = cδ′(T
′).

Proof. Uniqueness follows by Lemma 5.7, so we just need to prove existence.
Let T be a (δ, ν)-tree with column vector cδ(T ) = (c0, . . . , cm), and assume that δ′ is obtained

by subtracting 1 to a non-zero entry δa of δ. This operation produces a small transformation to
the columns of Lδ,ν . All the columns of length larger than n− a are moved one step to the right,
while the subsequent column (of length n− a) is moved one step to their left. All other columns
stay the same. The result is the new set Lδ′,ν . An example is illustrated in Figure 5.6.

Consider the labeling j0, . . . , jm of the columns of Lδ,ν (and also of the columns of Lδ′,ν)
obtained by reading the columns from shortest to longest, from right to left, as before. Assume
that ji1 is the label of the column that was moved to the left under the small transformation that
changes δ to δ′. We also consider the columns ji2 , . . . , jik , consisting of the columns of Lδ,ν ,
from right to left, of length bigger than n− a that contain at least one node of T at height bigger
than or equal to a. The restriction of the tree T to the nodes at height bigger than or equal to a in
columns ji1 , . . . , jik is marked as a bold red path on the left of Figures 5.5 and 5.6. It is a subpath
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of the unique path of the tree from column ji1 to the root of the tree. We will describe a small
transformation to T that produces a (δ′, ν)-tree T ′ with the same column vector as T . The result
of this is illustrated on the right of Figures 5.5 and 5.6, and affects the tree at the red marked
nodes. The brown points in the columns between j̄ik and j̄i1 are also moved one step to the right,
together with their column.

Note that the columns ji2 , . . . , jik of Lδ′,ν are positioned one step to the right of co-
lumns ji2 , . . . , jik of Lδ,ν , while column j1 was moved to some position to the left, see Fig-
ures 5.5 and 5.6.

Let A be the set of rows that contain at least one node of the marked bold red path of T .
We apply the following transformation to T . For each node T in a column jib , for 2 ⩽ b ⩽ k,
that belongs to A, we draw a node in T ′ in column jib but shifted down cji1 positions withing A.
The cji1 + 1 nodes in column ji1 are moved to the top rows of A. All other nodes of T remain
intact in their columns. A schematic illustration of this transformation is shown in Figure 5.5,
and an explicit example in Figure 5.6.

The result is a (δ′, ν)-tree T ′ with the same column vector as T : cδ(T ) = cδ′(T
′). The reason

why this procedure works is guaranteed by a direct analysis of the down flushing algorithm.
Moreover, we can also recover T from T ′ by a similar transformation in the reverse direction.

δa ⩾ 1

ji1ji2ji3jik

δa − 1

ji1 ji2ji3jik

Figure 5.5: Schematic illustration of the transformation in the proof of Lemma 5.8.

Lemma 5.9. Let δ, δ′ be two increment vectors with respect to ν. For every (δ, ν)-tree T , there is
a unique (δ′, ν)-tree T ′ such that

cδ(T ) = cδ′(T
′).

Proof. Any two increment vectors with respect to ν can be connected by a sequence of increment
vectors, such that each vector is obtained from the previous one by either adding or subtracting 1
to one of its entries. The result then follows by Lemma 5.8.

Proof of Proposition 5.6. By Lemma 5.7, a (δ, ν)-tree T is completely characterized by its col-
umn vector. Furthermore, the characterization of column vectors of (δ, ν)-trees is independent
of the choice of increment vector δ, by Lemma 5.9. So, we just need to prove the three condi-
tions of the proposition for one particular choice of δ. We choose the extreme case δ = δmax,
where δi = νi. In this case (δ, ν)-trees are just the classical ν-trees.
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δa = 2

ji1ji2ji3ji4

δ′a = 1

ji1 ji2ji3ji4

Figure 5.6: Example of the transformation in the proof of Lemma 5.8.

Classifying the column vectors of ν-trees is the same as classifying the row vectors of←−ν -trees,
because reversing the path transforms column vectors to row vectors, and vice versa. The three
conditions of the proposition are then equivalent to the three conditions of Proposition 5.3 (for
the extreme maximal case δ).

5.3. Reduced column vectors

We say that a lattice point p ∈ Lδ,ν is non-relevant if it is the leftmost point of a row of Lδ,ν .
All other points in Lδ,ν are called relevant. Figure 5.2 (right) illustrates an example where the
relevant points are filled brown, and the non-relevant points are unfilled green.

The reduced columns are the columns of relevant points in Lδ,ν . These are shown in yellow
in Figure 5.2 (right). The three examples for ν = ENEEN and all possible choices of δ are
shown in Figure 5.7. The reduced columns are colored yellow here as well for easier visualization.

In order to define the reduced column vector of a (δ, ν)-tree, it is convenient to assign an
order j0 ≺δ · · · ≺δ jm−1 to the reduced columns of Fδ,ν , obtained by reading the reduced columns
from shortest to longest, from right to left, as illustrated in Figure 5.2 (right). See also the three
examples in Figure 5.7.

The reduced column vector of a (δ, ν)-tree T is the vector

cδ(T ) = (c0, . . . , cm−1),

where ci+1 is the number of nodes of T in reduced column ji. For instance, the three (δ, ν)-trees
(for the three choices of δ) in Figure 5.7, all have reduced column vector (0, 1, 0). This means, in
each of the cases, there are 0 + 1 nodes of the tree in reduced column j0, 1 + 1 nodes in reduced
column j1, and 0 + 1 nodes in reduced column j2. Note that the green nodes are non-relevant
and do not belong to the reduced columns, and so are not counted here.
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j̄1 j̄0j̄2 j̄2 j̄0j̄1 j̄0 j̄2j̄1

Figure 5.7: The ordering j0 ≺δ · · · ≺δ j2 of the reduced columns of Lδ,ν for ν = ENEEN and
the three possible choices of δ = (2, 0), (1, 0) and (0, 0). The reduced columns (colored yellow)
are read from shortest to longest, from right to left. The reduced column vector of the shown
trees is cδ(T ) = (0, 1, 0) in all three cases.

Proposition 5.10. A (δ, ν)-tree T is completely characterized by its reduced column vector.
Moreover, (c0, . . . , cm−1) is the reduced column vector of some (δ, ν)-tree if and only if

1. ci ⩾ 0 for all i,

2.
∑j

i=0 ci ⩽
∑j

i=0
←−ν i for all j.

The proof of this proposition follows the same steps as the proof of Proposition 5.6 for column
vectors. We write all the (somewhat repeated) details for self containment.

Lemma 5.11. A (δ, ν)-tree T can be reconstructed from its reduced column vector.

Proof. We proceed in a similar way as in the proof of Lemma 5.7, with the small difference that
we need to be careful what to do with the non-relevant positions, which are not counted by the
reduced column vector.

Let c̄δ(T ) = (c̄0, . . . , c̄m−1) be the reduced column vector of T . Similarly as before, the
tree T can be reconstructed by adding nodes from right to left, from bottom to top, avoiding
the forbidden positions that are to the left of a node that is not the top most node of its column.
Here comes the tricky part. When we want to add the nodes in column j̄i, there are two possible
scenarios:

(1) If there are non-relevant positions in column j̄i that are not forbidden by any of the nodes
added before in the process, then these non-relevant positions are automatically compatible with
all the nodes of the tree T (the ones that were already added, and all the future ones). Therefore,
all the non-relevant nodes in column j̄i that are not forbidden by any previously added node
should be added to T . After this we proceed adding c̄i + 1 nodes from bottom to top in the
positions that are not forbidden in column j̄i.

(2) If all the non-relevant positions in column j̄i are forbidden, then we simply proceed
adding c̄i + 1 nodes from bottom to top in the positions that are not forbidden in that column.

This procedure reconstructs the tree T and only depends on the reduced column vector.
An example is illustrated in Figure 5.8. Note that the unfilled green point p14 is non-relevant,

and was forced to be added to T because it is not forbidden by any of the previously added
nodes p1, . . . , p13. At this step of the process, one proceeds adding the 1+1 relevant points p15, p16
in that column, which are counted by the corresponding entry plus one of the reduced column
vector.
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Figure 5.8: The reduced down flushing algorithm.

We call the algorithm described in the previous proof the reduced down flushing algorithm.
Its input is a valid reduced column vector (c0, . . . , cm−1) (or the number of relevant nodes in each
column), and its output is the unique (δ, ν)-tree such that cδ(T ) = (c0, . . . , cm−1).

Lemma 5.12. Let δ, δ′ be two increment vectors with respect to ν, such that δ′ is obtained by
either adding or subtracting 1 to one of the entries of δ. For every (δ, ν)-tree T , there is a unique
(δ′, ν)-tree T ′ such that

cδ(T ) = cδ′(T
′).

Moreover, the heights of the non-relevant nodes of T and T ′ coincide.

Proof. Uniqueness follows by Lemma 5.11, so we just need to prove existence.
Let T be a (δ, ν)-tree with reduced column vector c̄δ(T ) = (c̄0, . . . , c̄m−1), and assume

that δ′ is obtained by subtracting 1 to a non-zero entry δa of δ. This operation produces a small
transformation to the reduced columns of Lδ,ν (which is sligthly different to the transformation in
the proof on Lemma 5.8). All the reduced columns of length larger than n−a are moved one step
to the right, while the subsequent reduced column (of length n− a) is moved one step to their
left. All other columns stay the same. An example is illustrated in Figure 5.10. Here, we have
chosen the same example as in Figure 5.6, to highlight the differences with the transformation
described in the proof of Lemma 5.8.

Consider the labeling j̄0, . . . , j̄m−1 of the reduced columns of Lδ,ν (and also of the reduced
columns of Lδ′,ν) obtained by reading the reduced columns from shortest to longest, from right
to left, as before. Assume that j̄i1 is the label of the reduced column that was moved to the left
under the small transformation that changes δ to δ′. We also consider the columns j̄i2 , . . . , j̄ik ,
consisting of the reduced columns of Lδ,ν , from right to left, of length bigger than n − a that
contain at least one node of T at height bigger than or equal to a. The restriction of the tree T to
the nodes at height bigger than or equal to a in the reduced columns j̄i1 , . . . , j̄ik is marked as a
bold red path on the left of Figures 5.9 and 5.10. It is a subpath of the unique path of the tree
from column j̄i1 to the root of the tree.
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Note that column ji4 , of length bigger than n− a in Figure 5.6, is now a reduced column of
length n− a. That is why there is no j̄i4 in our example in Figure 5.10.

We will describe a small transformation to T that produces a (δ′, ν)-tree T ′ with the same
reduced column vector as T . The result of this is illustrated on the right of Figures 5.9 and 5.10,
and affects the red marked nodes of the tree. The brown and green points between the columns j̄ik
and j̄i1 are also moved one step to the right.

Note that the columns j̄i2 , . . . , j̄ik of Lδ′,ν are positioned one step to the right of co-
lumns j̄i2 , . . . , j̄ik of Lδ,ν , while column j̄1 was moved to some position to the left, see Fig-
ures 5.9 and 5.10.

Let A be the set of rows that contain at least one node of the marked bold red path of T . We
apply the following transformation to T . For each node T in a reduced column j̄ib , for 2 ⩽ b ⩽ k,
that belongs to A, we draw a node in T ′ in the reduced column j̄ib but shifted down c̄ji1 positions
withing A. The c̄ji1 + 1 nodes in reduced column j̄i1 are moved to the top rows of A. All other
relevant nodes of T remain intact in their reduced columns, and all non-relevant nodes remain
intact in their “not reduced” columns. A schematic illustration of this transformation is shown
in Figure 5.9, and an explicit example in Figure 5.10.

The result is a (δ′, ν)-tree T ′ with the same reduced column vector as T : c̄δ(T ) = c̄δ′(T
′),

and such that the heights of the non-relevant nodes are preserved. The reason why this procedure
works is guaranteed by a direct analysis of the reduced down flushing algorithm. Moreover, we
can also recover T from T ′ by a similar transformation in the reverse direction.

δa ⩾ 1

j̄i1j̄i2j̄ik

δa − 1

j̄i1 j̄i2j̄ik

Figure 5.9: Schematic illustration of the transformation in the proof of Lemma 5.12.

Lemma 5.13. Let δ, δ′ be two increment vectors with respect to ν. For every (δ, ν)-tree T , there
is a unique (δ′, ν)-tree T ′ such that

cδ(T ) = cδ′(T
′).

Moreover, the heights of the non-relevant nodes of T and T ′ coincide.

Proof. Any two increment vectors with respect to ν can be connected by a sequence of increment
vectors, such that each vector is obtained from the previous one by either adding or subtracting 1
to one of its entries. The result then follows by Lemma 5.12.
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δa = 2

j̄i1j̄i2j̄i3

δa = 2− 1 = 1

j̄i1 j̄i2j̄i3

Figure 5.10: Example of the transformation in the proof of Lemma 5.12.

Proof of Proposition 5.10. A (δ, ν)-tree T is completely characterized by its reduced column vec-
tor by Lemma 5.11. Furthermore, the characterization of reduced column vectors of (δ, ν)-trees
is independent of the choice of increment vector δ, by Lemma 5.13. So, we just need to prove
the two conditions of the proposition for one particular choice of δ. We choose the extreme
case δ = δmax, where δi = νi. In this case (δ, ν)-trees are just the classical ν-trees.

The reduced column vector (c0, . . . , cm−1) of a ν-tree T is obtained from the row vec-
tor (r0, . . . , rm) of the corresponding←−ν -tree

←−
T by removing its last entry rm. The two conditions

of the proposition are then equivalent to the first two conditions of Proposition 5.3 (for the extreme
maximal case δ). The third condition of Proposition 5.3 is an equation involving the removed
term rm, and is irrelevant for Proposition 5.10. That is why we now have only two conditions.

5.4. Reduced column vectors and right intervals

We are finally ready to provide our characterization of right intervals in Tamtr
ν (δ) in terms of

reduced column vectors.
Given a (δ, ν)-tree T , we say that an ordered set L = {p, q′0, q′1, . . . , q′ℓ} ⊆ T is a vertical L

of T if L is the restriction of T to a rectangle R ⊆ Fδ,ν of the grid, such that p is the top-left
corner of R, and q′0, q

′
1, . . . , q

′
ℓ appear in this order from top to bottom on the right side of R,

with q′0 being its top-right corner and q′ℓ its bottom-right corner. Note that no other elements
of T belong to R. We say that the length of L is equal to ℓ. We denote by T − L the (δ, ν)-tree
obtained from T by rotating down the nodes q′0, q′1, . . . , q′ℓ−1 in T in this order.

Note that the condition R ⊆ Fδ,ν is crucial here, to guaranty that the result after applying these
rotations is still contained in the Ferrers diagram Fδ,ν , otherwise T −L would not be a (δ, ν)-tree.
In particular, if R ⊆ Fδ,ν then q′0, q

′
1, . . . , q

′
ℓ are all relevant nodes in T , and contribute to the

reduced column vector. Vice versa, if q′ℓ is relevant then p⌞q′ℓ ∈ Fδ,ν because of the reduced down
flushing algorithm, and thus R ⊆ Fδ,ν .

An example of these concepts is illustrated in Figure 5.11.
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...

q′ℓ

q′ℓ−1

q′2

q′1

q′0p

T |R

p

...

q0

q1

qℓ−2

qℓ−1 q′ℓ
(T − L)|R

Figure 5.11: Schematic illustration of a vertical L and the tree T − L.

Lemma 5.14. Let L be a vertical L of length ℓ of a (δ, ν)-tree T . Then, [T − L, T ] is a right
interval of length ℓ in Tamtr

ν (δ). Moreover, every right interval of Tamtr
ν (δ) with top element T

is of this form.

Proof. This follows by the definition of right intervals.

Proposition 5.15. Let T be a (δ, ν)-tree with reduced column vector cδ(T ) = (c0, . . . , cm−1).
The number of right intervals of length ℓ with top element T in Tamtr

ν (δ) is equal to

|{0 ⩽ i ⩽ m− 1 : ci ⩾ ℓ}|.

Proof. By Lemma 5.14, the right intervals of length ℓwith top element T are of the form [T−L, T ]
where L is a vertical L of length ℓ of T . There is one such L for each ci ⩾ ℓ with 0 ⩽ i ⩽ m− 1,
where q′0, . . . , q′ℓ are the ℓ+1 top most nodes of T at column ji and p is the parent of q0 in T .

6. Bijections between linear intervals

Using the tools developed in the previous section, we are now ready to prove one of our main
results.

Theorem 6.1. For a fixed path ν, all alt ν-Tamari lattices Tamν(δ) have the same number of
linear intervals of length ℓ.

This is a direct consequence of Proposition 5.2 and Corollaries 6.5 and 6.7, which show that
the number of left intervals and the number of right intervals of length ℓ are preserved for any
choice of δ. Indeed, we prove more refined versions of these results in Propositions 6.4 and 6.6.
Remark 6.2. If we chose any other path ν̌ weakly below ν that does not satisfy ν̌i ⩽ νi, for
all i > 0, then the restriction of Tamν̌ to the subset of ν-paths does not satisfy the enumerative
result of Theorem 6.1.
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More precisely, this poset still has the same number of left intervals (the left flushing argument
presented afterwards still works) as all alt ν-Tamari lattices. But based on computational exper-
iments, it seems to have fewer right intervals. For instance, for ν = (1, 2, 0) and ν̌ = (1, 2, 0),
the distribution of linear intervals in the resulting poset is (5, 5, 1) but the distribution of linear
intervals in Tamν is (5, 5, 2).
Remark 6.3. Theorem 6.1 generalizes the results obtained in [Che22] for the staircase ν = (NE)n.
However, in this more general case, we usually do not have a closed formula counting the linear
intervals of length ℓ similar to the one presented in [Che22].

In the m-Tamari lattice, where ν = (NEm)n, one can adapt the decomposition given
in [Che22] in order to find a closed formula for the number of right intervals of length ℓ:

m

(
mn+ n− ℓ

n− ℓ− 1

)
.

We were not able to find a simple formula for the number of left intervals in this case. For n = 5
and m = 2, the distribution of left intervals in this lattice is (728, 442, 222, 112, 47, 18, 5, 1).
Since 47 is a prime number, no such a nice product formula seems to exist.

However, one can easily express the number of left intervals for general ν as a sum (and
similarly for right intervals). Indeed, this number is independent of the choice of δ, so we can
consider the case δ = (0, . . . , 0) giving rise to the ν-Dyck lattice. In this case, the number of left
intervals is ∑

p,q∈Lν

q=p+(k,1)

C(ν, p) C̃(ν, q),

where C(ν, p) (resp. C̃(ν, q)) is defined as the number of lattice paths weakly above ν, from the
initial point of ν to p (resp. from q to the final point of ν). The numbers C(ν, p) and C̃(ν, q) can
be calculated using Kreweras determinantal formula in [Kre65], which states that the number of
partitions fitting a partition λ = (λ1, . . . , λℓ) is

det

(
λj + 1

j − i+ 1

)
.

It would be interesting to compute the number of left or right intervals over all ν-paths of
a given length n. Computational experiments seem to indicate that these numbers might be
nice. For related work (counting all intervals) in connection with non-separable planar maps,
see [FPR17].

6.1. The horizontal flushing and left intervals

We define the horizontal flushing fh
δ,δ′ as the map between the set of (δ, ν)-trees and the set

of (δ′, ν)-trees characterized by the property

fh
δ,δ′(T ) = T ′ ←→ r(T ) = r(T ′).
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That is, the map that preserves the row vector of the tree. This map is uniquely determined by
this property, and can be computed as the composition

fh
δ,δ′(T ) = flushδ′,ν ◦ flush−1

δ,ν ,

which sends a (δ, ν)-tree to the unique ν-path with the same row vector, and then to the corre-
sponding (δ′, ν)-tree. In particular, fh

δ,δ′ is a bijection, and can be described using a horizontal
flushing algorithm:

If r(T ) = (r0, . . . , rn), then T ′ can be reconstructed by adding ri + 1 nodes, from bottom to
top, from right to left, avoiding the forbidden positions that are above the nodes that are not the
left most nodes in their row.

This gives a natural correspondence between the horizontal L’s of T and the horizontal L’s
of T ′: an L of length ℓ in row i1 of T corresponds to the unique horizontal L of the same length
in row i of T ′. By abuse of notation, we denote by fh

δ,δ′(L) = L′ the horizontal L of T ′ associated
to L, a horizontal L of T .

Proposition 6.4. Let T be a (δ, ν)-tree and T ′ = fh
δ,δ′(T ) be its corresponding (δ′, ν)-tree. We

also denote by L′ = fh
δ,δ′(L) the horizontal L of T ′ associated to L, a horizontal L of T .

1. The number of left intervals of length ℓ in Tamtr
ν (δ) with bottom element T is equal to the

number of left intervals of length ℓ in Tamtr
ν (δ

′) with bottom element T ′.

2. The map
[T, T + L]→ [T ′, T ′ + L′]

is a bijection between the left intervals of Tamtr
ν (δ) and the left intervals of Tamtr

ν (δ
′).

Proof. By Proposition 5.5, the number of left intervals with bottom element T depends only of
the row vector r(T ). Since the r(T ) = r(T ′), then Item (1) follows. Item (2) is straight forward
from the characterization of left intervals in Lemma 5.4.

An example of the bijection between left intervals is illustrated in Figure 6.1. The maximal
horizontal L’s are marked red for easier visualization.

Corollary 6.5. The number of left intervals of length ℓ in Tamtr
ν (δ) and Tamtr

ν (δ
′) are the same.

Proof. This is a direct consequence of Proposition 6.4.

6.2. The reduced vertical flushing and right intervals

We define the vertical flushing f v
δ,δ′ as the map between the set of (δ, ν)-trees and the set

of (δ′, ν)-trees characterized by the property

f v
δ,δ′(T ) = T ′ ←→ c̄δ(T ) = c̄δ′(T

′).

That is, the map that preserves the reduced column vector of the tree.
1here we mean that the bottom part of the L is in row i
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Figure 6.1: Bijection between left intervals for δmax=(1, 0, 2, 2, 0, 3, 0) and δ=(0, 0, 1, 2, 0, 1, 0).
Both trees have row vector (1, 0, 1, 1, 3, 2, 1, 2), whose entries plus one count the number of nodes
in each of the rows.

This map is uniquely determined by this property by Lemma 5.13. In particular, f v
δ,δ′ is a

bijection, and can be described using a vertical flushing algorithm:
If c̄δ(T ) = (c̄0, . . . , c̄m−1), then T ′ can be reconstructed by adding nodes, from right to left,

from bottom to top, avoiding the forbidden positions that are to the left of the nodes that are not
the top most nodes in their column. The difference here is that the number of nodes that we add
to a column, whose reduced column is labeled j̄i, is not necessarily equal to c̄ji + 1: we first
add all the non-relevant nodes that are not forbidden by any of the previously added nodes; then
we continue adding c̄ji + 1 relevant nodes from bottom to top in the non-forbidden available
positions.

This also gives a natural correspondence between the vertical L’s of T and the vertical L’s
of T ′: an L of length ℓ in reduced column j̄i

2 of T corresponds to the unique vertical L of the
same length in reduced column j̄i of T ′. By abuse of notation, we denote by f v

δ,δ′(L) = L′ the
vertical L of T ′ associated to L, a vertical L of T .

Proposition 6.6. Let T be a (δ, ν)-tree and T ′ = f v
δ,δ′(T ) be its corresponding (δ′, ν)-tree. We

also denote by L′ = f v
δ,δ′(L) the vertical L of T ′ associated to L, a vertical L of T .

1. The number of right intervals of length ℓ in Tamtr
ν (δ) with top element T is equal to the

number of right intervals of length ℓ in Tamtr
ν (δ

′) with top element T ′.

2. The map
[T, T − L]→ [T ′, T ′ − L′]

is a bijection between the right intervals of Tamtr
ν (δ) and the right intervals of Tamtr

ν (δ
′).

Proof. By Proposition 5.15, the number of right intervals with top element T depends only of
the reduced column vector c̄δ(T ). Since the c̄δ(T ) = c̄δ′(T

′), then Item (1) follows. Item (2) is
straight forward from the characterization of right intervals in Lemma 5.14.

2here we mean that the right part of the L is in reduced column j̄i
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Examples of the bijection between right intervals are illustrated in Figures 6.2 and 6.3. The
maximal vertical L’s are marked red for easier visualization. The green nodes are the non-relevant
nodes.

j̄0j̄1j̄2j̄3j̄4j̄5j̄6j̄7j̄8j̄9j̄10 j̄0j̄3j̄4j̄5j̄8j̄9j̄10j̄7j̄6j̄1j̄2

Figure 6.2: Bijection between right intervals for δmax and δ = (0, 0, 1, 2, 0, 1, 0). Both trees have
reduced column vector (0, 1, 0, 0, 0, 0, 1, 1, 0, 3, 0), whose entries plus one count the number of
relevant nodes in the reduced columns. The green non-relevant nodes are not counted.

Corollary 6.7. The number of right intervals of length ℓ in Tamtr
ν (δ) and Tamtr

ν (δ
′) are the

same.

Proof. This is a direct consequence of Proposition 6.6.
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j̄0j̄1j̄2j̄3j̄4j̄5j̄6j̄11j̄12j̄13j̄14j̄15j̄16 j̄7j̄8j̄9j̄10

j̄0j̄1j̄3j̄4j̄5j̄6j̄7j̄15j̄16j̄14j̄10j̄8j̄2 j̄9j̄11j̄12j̄13 j̄0j̄3j̄6j̄9j̄12j̄15j̄16j̄7j̄8j̄5j̄4j̄2j̄1 j̄13j̄14j̄11j̄10

Figure 6.3: Bijection between right intervals for ν = (2, 3, 0, 1, 2, 3, 0, 1, 0, 2, 1, 2, 0), and
for δmax, δ = (2, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 0), and δ′ = (1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0). The three
trees have reduced column vector (0, 1, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1).
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