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Abstract 

Background  The 313-variant polygenic risk score (PRS313) provides a promising tool for clinical breast cancer risk predic-
tion. However, evaluation of the PRS313 across different European populations which could influence risk estimation 
has not been performed.

Methods  We explored the distribution of PRS313 across European populations using genotype data from 94,072 females 
without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association 
Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank. The mean PRS was cal-
culated by country in the BCAC dataset and by country of birth in the UK Biobank. We explored different approaches 
to reduce the observed heterogeneity in the mean PRS across the countries, and investigated the implications of the dis-
tribution variability in risk prediction.

Results  The mean PRS313 differed markedly across European countries, being highest in individuals from Greece 
and Italy and lowest in individuals from Ireland. Using the overall European PRS313 distribution to define risk categories, 
leads to overestimation and underestimation of risk in some individuals from these countries. Adjustment for principal 
components explained most of the observed heterogeneity in the mean PRS. The mean estimates derived when using 
an empirical Bayes approach were similar to the predicted means after principal component adjustment.

Conclusions  Our results demonstrate that PRS distribution differs even within European ancestry populations leading 
to underestimation or overestimation of risk in specific European countries, which could potentially influence clinical 
management of some individuals if is not appropriately accounted for. Population-specific PRS distributions may be used 
in breast cancer risk estimation to ensure predicted risks are correctly calibrated across risk categories.

Keywords  Polygenic risk scores, Breast cancer, Risk prediction, Risk calibration

Background
Genetic susceptibility to breast cancer is influenced 
by multiple genetic variants that contribute to differ-
ent levels of risk [1–6]. Genome-wide association stud-
ies (GWAS) have identified a large number of common 
variants that each contribute a small risk to the disease 
but can be combined into polygenic risk scores (PRSs) 
with greater effects [7, 8]. PRSs provide a promising tool 
for clinical breast cancer risk prediction by stratifying 
women into different risk categories [9–11] and may be 
used to inform targeted screening and prevention strate-
gies [12–20].

Mavaddat et  al. [11] constructed a 313-variant PRS 
(PRS313) for breast cancer using data from women of 
European ancestry participating in the Breast Cancer 
Association Consortium (BCAC). In prospective valida-
tion studies, this PRS was estimated to be associated with 
a relative risk for breast cancer of ~ 1.6 per standard devi-
ation (SD) increase. The lifetime absolute risk of devel-
oping overall breast cancer for women in the 1% of the 
PRS313 risk distribution was ~ 2%; while for those in the 
99% was 32.6%. PRS313 has been incorporated into the 
CanRisk tool (www.​canri​sk.​org) [14, 21, 22] and together 
with other lifestyle and genetic risk factors, has been 
shown to improve risk stratification in European ancestry 
populations [14, 23–27]. Several large studies have inves-
tigated the transferability of PRSs developed in Euro-
pean ancestry population to non-European populations, 

finding that the strength of associations with breast can-
cer risk were attenuated, particularly among women of 
African ancestry, compared to association among women 
of European ancestry [28–30].

PRS distributions across different European coun-
tries have not, however, been extensively evaluated. Dif-
ferences in the PRS distribution, if not appropriately 
accounted for, could lead to inappropriate risk classifica-
tion, with implications for clinical management. Here, we 
examined the distribution of the PRS313 across 17 coun-
tries in Europe, together with individuals of European 
ancestry from Australia, Canada, Israel and the USA. 
Similar analyses were performed using data from the UK 
Biobank, stratifying individuals by country of birth. We 
explored different approaches to account for PRS313 dis-
tribution differences across countries, and investigated 
the implications of the observed variability for breast 
cancer risk prediction.

Methods
Study populations
Breast Cancer Association Consortium dataset
The BCAC dataset used here consisted of 110,260 female 
invasive breast cancer cases and 94,072 female controls 
of European ancestry who were recruited into 84 studies 
from 21 countries participating in the BCAC (Table S1A). 
For simplicity and in an attempt to explore the effect on 

http://www.canrisk.org
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Fig. 1  Standardized PRS313 distribution across countries for overall, ER-positive and ER-negative breast cancer in BCAC. The squares represent 
the mean PRS by country, and the error bars represent the corresponding 95% confidence intervals. ER, Oestrogen receptor; FE Model, Fixed-effects 
Model; PRS, Polygenic risk score

Table 1  Mean standardized PRS313 by country in controls of the pooled BCAC dataset

This table presents the mean PRS by country when adjusted for array type, 6 PCs and array type, using fitted values adjusted for 6 PCs and array type, and when using 
an empirical Bayes approach adjusted for array type
a Mean PRS313 after adjustment for array type
b Mean PRS after adjustment for 6 PCs. Since PC adjustment explains much of the variation, these values are typically close to 0
c Mean PRS313 by country based on averaging the predicted PRS of each individual; estimated using linear predictor of PRS versus 6 PCs and the command predict () in 
R
d Country-specific estimates, means β, using the empirical Bayes approach, adjusted for array type

Country Number of 
controls

Mean PRS313
a Mean PRS adjusted for 

array and 6 PCsb
PRS adjusted for 6 PCs, 
fitted valuesc

Empirical Bayes 
Posterior Meand

Australia 4049  − 0.005 0.01  − 0.005  − 0.003

Belarus 342 0.07 0.071 0.016 0.064

Belgium 1823  − 0.006  − 0.007 0.010  − 0.002

Canada 2277 0.018 0.019 0.013 0.02

Denmark 5241  − 0.013 0.012  − 0.031  − 0.012

Finland 2083 0.031 0.008 0.010 0.032

France 1372 0.0003  − 0.008 0.008 0.004

Germany 8563 0.011 0.004 0.013 0.011

Greece 607 0.232 0.043 0.208 0.199

Ireland 719  − 0.118  − 0.015  − 0.112  − 0.092

Israel 724 0.047 0.001 0.062 0.047

Italy 1554 0.115  − 0.007 0.131 0.11

Netherlands 4407 0.021 0.043  − 0.019 0.022

Norway 217 0.077 0.094  − 0.027 0.066

Poland 2554 0.013 0.025 0.010 0.015

Republic of North 
Macedonia

92 0.25 0.134 0.140 0.129

Russia 120 0.18 0.166 0.044 0.11

Spain 2098 0.057  − 0.006 0.057 0.056

Sweden 16,680  − 0.015 0.005  − 0.017  − 0.014

UK 16,854  − 0.01 0.019  − 0.023  − 0.01

USA 21,696 0.029 0.033 0.013 0.029
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the general female population, only the control data were 
used. Samples were genotyped using the iCOGS [1] or 
OncoArray [3, 31] genotyping arrays. The iCOGS and 
OncoArray datasets were imputed separately and ances-
try-informative principal components (PCs) were calcu-
lated, as described previously [2, 3, 31].

UK Biobank dataset
Genotype data from females (genetically reported sex) 
participating in the UK Biobank were used. Individu-
als were excluded if they had a recorded breast cancer 
diagnosis (malignant neoplasm or carcinoma in  situ of 
the breast) or had a personal history of malignant neo-
plasm of the breast, based on the cancer registry or self-
reported. Individuals with a SNP call rate < 0.95 were 
removed from the analysis. Genetic ancestry was inferred 
using FastPop software [32]. Individuals self-reported as 
“white” and with an estimated European ancestry pro-
portion ≥ 80% were retained in the analysis. Individu-
als were subsequently stratified by the “country of birth” 
field in the UK Biobank; only countries with at least 
100 participants were included. After filtering, 223,316 
females from 21 countries were included in the analyses 
(Table S1B). More details on the genotyping, quality con-
trol, imputation procedures used, and calculation of PCs 
are given elsewhere [33, 34].

All participants provided written informed consent, 
and all the studies were approved by the relevant eth-
ics committees. The use of UK Biobank data has been 
approved under the application with ID102655, and 
BCAC data under the application with access number 
712.

Statistical analysis
PRS313 was developed previously [11] and included vari-
ants independently associated with breast cancer risk at a 
P cut-off < 10−05. The PRS313 was calculated for each study 
participant using the following formula:

where PRSj is the PRS of individual j, xjk is the estimated 
effect allele dosage for SNPk carried by individual j and 
can take values between 0 and 2, and βk is the weight for 
SNPk in the PRS for overall breast cancer, as derived by 
Mavaddat et al. [11] PRS313 was standardized to have unit 
SD in controls in the pooled dataset. Mavaddat et al. also 
derived specific versions of PRS313 for oestrogen receptor 
(ER) subtypes, with weights optimised for predicting ER-
positive or ER-negative breast cancer risk (Table S2). The 
main analyses focused on calculating the mean standard-
ized PRS313 in BCAC controls using both the iCOGS and 
OncoArray datasets. These values were derived using 

PRSj = β1xj1 + · · ·βkxjk + β313xj;313

Fig. 2  PRS distribution across countries for overall breast cancer in the UK Biobank. Distribution of the mean PRS306 and “standard” PRS for breast 
cancer, as defined in the UK Biobank, across countries of origin for participating white females. The squares represent the mean PRS by country, 
and the error bars represent the corresponding 95% confidence intervals. FE Model, Fixed-effects Model; PRS, Polygenic risk score
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Fig. 3  PRS313 distribution by percentiles in the pooled BCAC dataset, Greece, Ireland and Italy. The dashed line corresponds to the 95th percentile 
of the PRS313 distribution in controls of the pooled BCAC dataset

Table 2  Risk estimation examples using the CanRisk tool

Mean and SD used to standardize PRS313 of a 50-year-old woman with a raw PRS313 equal to 0.34 from Greece and another 50-year-old woman with a raw PRS313 equal 
to 0.27 from Ireland; the risk estimation and categorization were performed when using the CanRisk tool
a Standardized based on the mean and SD specified in the second column
b Absolute risk of developing breast cancer by the age of 80
c These breast cancer risk categories provided from the CanRisk tool are based on the risk assessment and according to the National Institute for Health and Care 
Excellence guideline (NICE-CG164) on familial breast cancer and correspond to “Near population risk”, “Moderate risk” and “High risk”
d When a variant call format (vcf ) file is uploaded to the CanRisk tool, a raw PRS313 can be calculated and standardized using the mean (SD): − 0.424 (0.611)
e Adjusted for array type

Samples used for the standardization Mean (SD) Standardized 
PRSa

Percentage based 
on CanRisk tool 
(%)

Lifetime risk based 
on CanRisk toolb 
(%)

NICE Risk categoryc

Individual from Greece with raw PRS313 = 0.34 (falling into the 90–95% percentile category in the full BCAC dataset)

 CanRisk toold  − 0.424 (0.611) 1.253 89.5 14.1 Moderate

 Controls Greece (raw)e  − 0.305 (0.612) 1.056 85.5 13.3 Population

 Controls Greece adjusted for 6 PCs (raw)e  − 0.420 (0.696) 1.094 86.3 13.5 Population

 Controls Greece, using Empirical Bayes 
methode

 − 0.325 (0.554) 1.204 88.6 13.9 Moderate

Individual from Ireland with raw PRS313 = 0.27 (falling into the 85–90% percentile category in the full BCAC dataset)

 CanRisk toold  − 0.424 (0.611) 1.14 87.3 13.7 Population

 Controls Ireland (raw)e  − 0.519 (0.624) 1.27 89.8 14.2 Moderate

 Controls Ireland adjusted for 6 PCs (raw)e  − 0.456 (0.74) 0.985 83.8 13 Population

 Controls Ireland, Empirical Bayes methode  − 0.503 (0.562) 1.38 91.7 14.7 Moderate
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linear regression with array type as a covariate and no 
intercept (so that estimates were generated for every 
country). Heterogeneity in the mean PRS313 between 
countries was assessed using I2 statistics and Q statistic 
P-values.

We also evaluated the distribution of the mean PRS by 
country of birth in the UK Biobank dataset. Seven of the 
313 variants were not available in the UK Biobank data; 
thus, we used the remaining 306 variants in the analysis 
(PRS306) (Table S2). PRS306 was standardized to have unit 
SD in controls in the pooled UK Biobank dataset. We 
also evaluated a “standard” breast cancer PRS available in 
the UK Biobank data, previously generated from external 
GWAS data [35] and was available for 222,989 individu-
als (Table S1B). This PRS was also standardized to have 
unit SD in controls in the pooled UK Biobank dataset.

Potential sources of the variability in the mean PRS313 
across the countries were explored in the BCAC dataset 
using three approaches. The PRS was first recalculated 
excluding variants in the CHEK2 region. The protein 
truncating variant CHEK2 c.1100delC is a relatively com-
mon founder variant that exhibits a large variation in fre-
quency across Europe [36]. Although it is not included in 
PRS313, other variants in PRS313 are correlated with this 
variant (Table S2) and were removed.

Second, we examined the effect of removing variants 
with the most variable frequency across countries. The 
mean and SD of the effect allele frequency across coun-
tries, in controls of the pooled dataset were calculated 
for each of the 313 variants. Variants with a coefficient of 
variation (SD/mean) > 0.3 were removed.

Third, we explored the effect of adjusting for up to 10 
ancestry-informative PCs, in addition to array type. As 
the PCs derived from the iCOGS and OncoArray data-
bases are not comparable, separate PCs for each were 
included in the regression. We explored the number of 
PCs that were required to eliminate heterogeneity in the 
adjusted mean PRS313 using the thresholds I2 < 10% and 
P > 0.05. Similarly, for the UK Biobank dataset, PRS306 
was adjusted for up to 10 PCs, which were available in 
the UK Biobank.

As a complementary approach to generating popula-
tion-specific estimates, we explored an empirical Bayes 
approach similar to that described by Clayton and Kaldor 
[37] for mapping disease rates (details in Additional File 
1).

To investigate the implications of PRS distribution dif-
ferences in breast cancer risk prediction, we explored the 
proportion of women by country by percentile based on 
the distribution cut-offs of either the full dataset or coun-
try-specific values, separately in the BCAC and the UK 
Biobank. We also examined two specific risk estimation 
examples using the CanRisk tool [14, 21, 22].

All analyses were performed in R (version 4.2.1).

Results
Geographic diversity in the mean PRS313 across European 
ancestry populations
The mean PRS313 in the BCAC controls differed 
markedly across European countries, with I2 = 80% 
(P = 5.6× 10

−13 ). The mean was highest in the Republic 
of North Macedonia and Greece and lowest in Ireland. 
A similar level of heterogeneity was observed for the 
ER-positive (I2 = 84%) and ER-negative (I2 = 64%) PRSs. 
There was no evidence of a difference in the SD of the 
PRS between countries (Fig. 1; Tables 1, S3).

The mean PRS306 in female UK Biobank participants, 
stratified by country of birth, was also calculated. There 
was strong evidence of heterogeneity in the PRS distri-
bution (I2 = 63%, P = 1.7× 10

−05 ). The pattern was gen-
erally similar to that seen in the BCAC dataset, with a 
higher mean PRS in individuals born in Cyprus, Russia, 
and Italy) and a lower PRS in Ireland). Similar results 
were found for the “standard” UK Biobank PRS (I2 = 85%, 
P = 8.5× 10

−21 ) (Fig. 2; Table S4).

Exploring potential reasons for differences in the mean 
PRS between countries
Potential sources of the variability in the mean PRS313 
across the countries were explored in the BCAC data-
set using three approaches. After removing variants 
in the CHEK2 region, the variation in the mean PRS 
across countries remained similar to PRS313 (I2 = 83%, P 
= 9.4 × 10

−16 ). We next identified the variants with the 
most variable frequency among the countries. Seventeen 
variants had a coefficient of variation > 0.3 (Table  S2). 
Excluding these 17 variants did not reduce the variation 
in the mean PRS (I2 = 80%, P = 2.4 × 10

−12).
We next explored the effect of adjusting for PCs. 

When individuals in the BCAC dataset genotyped with 
OncoArray were plotted by the first two PCs, those from 
the same country separated clearly in a pattern consist-
ent with their geographical relationship (Fig.  S1). This 
finding suggested that adjusting for PCs maybe an effec-
tive approach for reducing the variation in PRS distri-
bution. When we adjusted the PRS for the leading PCs 
in the BCAC dataset, the I2 decreased as each PC was 
added to the model and reached < 10% when adjusted 
for the first six PCs (Table 1, Table S3, Fig. S2). A simi-
lar result was obtained for the ER-positive PRS, after 
adjustment for the first six PCs (I2 = 0%, P = 0.69). For 
the ER-negative PRS, however, heterogeneity was not 
eliminated even when the PRS was adjusted for 10 PCs 
(I2 = 56%, P = 0.001) (Table  S3). The predicted PRS of 
each individual, as derived from the fitted values of the 
linear regression model of PRS adjusted for the first six 
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PCs and array type, was subsequently used to calculate 
a predicted mean PRS313 by country (Tables  1, S3). We 
repeated these analyses for PRS306 using the UK Biobank 
dataset. I2 decreased as each PC was added to the model 
and reached < 10% and ~ 0% when adjusted for the first 
seven and eight PCs, respectively (Fig. S3, Table S4).

Mean PRS estimates by country calculated using 
an empirical Bayes approach
The empirical Bayes estimates by country for the mean 
PRS were calculated in the BCAC dataset (Table  1, 
Table S5). Compared with the unadjusted estimates, the 
estimates shrunk toward the overall mean, with shrinkage 
being greatest for countries with small available sample 
sizes. The adjusted mean PRS by country were gener-
ally similar to those predicted by the model adjusted for 
six PCs. When PRSs were adjusted for the first six PCs, 
applying the empirical Bayes approach made little differ-
ence in the estimates.

Implications for Breast Cancer Risk Prediction
To explore the effect of PRS distribution differences 
among European populations on risk stratification, we 
first defined risk thresholds based on the distribution 
of the controls in the full BCAC and the UK Biobank 
datasets separately. We then calculated the percent-
age of controls by country that would be categorized 
in each percentile based on the distribution in the full 
dataset and compared these to the percentages based 
on the country-specific distributions (Tables  S6, S7, 
S8). PRS313 percentile distribution in the full BCAC 
dataset, Greece, Italy (highest PRS313 and includ-
ing > 100 controls) and Ireland (lowest PRS313) are 
illustrated (Fig.  3, Table  S7). Based on the overall dis-
tribution, ~ 1.3% and ~ 0.5% additional women from 
Greece, and Italy, respectively, were incorrectly classi-
fied in the 95–99th percentile instead of in the 90–95th 
percentile, while ~ 1.4% additional women from Ireland 
were incorrectly classified in the 90–95th instead of the 
95–99th percentile (Table  S6C). Similar results were 
observed for the UK Biobank (Fig. S4).

An example a 50-year-old female from Greece with a 
raw PRS313 of 0.34 (falling into the 90–95th percentile-in 
the full BCAC dataset) and no other risk factors known 
was considered. Using the CanRisk tool she would be 
classified in the moderate risk category. If the PRS were 
standardized based on the mean and SD of the controls 
from Greece or based on the values of PRS for Greece 
predicted by adjustment for the first six PCs, she would 
be classified into the population risk category. If the PRS 
were standardized based on the values of the empirical 
Bayes approach she would be classified into the moderate 
risk category (Table 2).

A second example based on a 50-year-old female from 
Ireland with a raw PRS313 equal to 0.27 (falling into the 
85–90th percentile-in the full BCAC dataset), and no 
other risk factors known was considered. Using the Can-
Risk tool, she would be classified in the population risk 
category. If the PRS were standardized based on the 
mean and SD of PRS313 as derived from the controls in 
Ireland or based on the values of the empirical Bayes 
approach, she would be classified in the moderate risk 
category. If the PRS was standardized based on values of 
PRS for Ireland predicted by adjustment for the first six 
PCs, she would be classified in the population risk cat-
egory (Table 2).

Discussion
The transferability of PRSs across different populations 
remains a major challenge in the field of personalized 
cancer risk prediction [38, 39]. Here, we explored the dis-
tribution of PRS313 for breast cancer in women of Euro-
pean ancestry from 21 countries using data from studies 
participating in the BCAC and further investigated how 
the observed variability might be accounted for in breast 
cancer risk prediction.

The results indicated that the PRS313 distribution var-
ies markedly even within European ancestry populations, 
with a higher mean in Greece and Italy and a lower mean 
in Ireland. We observed a very similar pattern in females 
participating in the UK Biobank based on country of 
birth. If not accounted for, these differences could lead 
to an over- or underestimation of risk, thus affecting the 
risk categorization and possibly the clinical management 
of some women. This may be important not only at the 
individual country level but also for individuals living in a 
different country than their origin.

The variability in the mean PRS313 could not be 
explained by removing variants with the most variable 
frequency, indicating that a large number of variants may 
contribute to this difference. Removing such variants to 
reduce heterogeneity would not be desirable, as it would 
reduce the risk discrimination provided by the PRS. The 
results do, however, indicate that most, if not all, of the 
variability in the mean PRS313 across countries in con-
trols can be explained by adjusting for the leading ances-
try-informative PCs.

We also explored generating country-specific mean 
PRS using an empirical Bayes approach. This approach 
considers both the uncertainty due to the small sample 
size and the true variation in the means across the coun-
tries; these country-specific mean PRSs were similar to 
those generated by adjusting for PCs. These values can 
then be used to standardize the PRS before, for exam-
ple, it is implemented in the CanRisk tool. CanRisk is 
an online tool that enables healthcare professionals to 
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calculate an individual’s future risk of developing breast 
and ovarian cancer using a combination of genetic fac-
tors (including the PRS), lifestyle/hormonal risk factors, 
breast density and family history. The risks are provided 
both over a period of time (e.g. 10 years) and lifetime, and 
these risks can be used to classify an individual accord-
ing to management guidelines, including the National 
Institute for Health and Care Excellence guideline 
(NICE-CG164) on familial breast cancer (which classifies 
individuals as “Near population risk”, “Moderate risk” and 
“High risk”) [40].

The optimal approach to calibration will depend 
on what data are available. If a large control sample 
(n > 1,000) is available, it will be preferable to utilise esti-
mates from this. If sample sizes are smaller, there seems 
little to choose between adjustment for PCs or an empiri-
cal Bayes approach. Adjustment for PCs has the advan-
tage into account spatial variation. Using PCs has the 
advantage that they do not require any prior data from 
the population in question, and the approach naturally 
takes into account spatial variation in the PRS. A dis-
advantage, however, is that PCs require array genotyp-
ing data to generate, making them less attractive when 
implemented using sequencing panels. Moreover, the 
PCs generated using different genotyping arrays are not 
necessarily comparable. We also note that the heteroge-
neity of the ER-negative specific PRS was not eliminated 
even with the adjustment for 10 PCs. The empirical Bayes 
approach is simpler to implement, providing some con-
trol data are available for the population of interest.

The risk categorization of the two examples when using 
the CanRisk tool in the Results section, was changed 
depending on the mean and SD of the sample used for 
the standardization of the PRS. According to the NICE 
guideline CG164, women classified in the “Moderate 
risk” category have different managing guidelines than 
women classified in the “Near population risk” category 
[40].

While adjustment of the PRS distribution at the popu-
lation level is clearly necessary, the results raise the ques-
tion as to whether it is appropriate in general to adjust 
the PRS for PCs at the individual level, which gives dif-
ferent scores and potentially different risk classifica-
tions. This is a difficult question to address and hinges on 
whether the PCs should be regarded as nuisance parame-
ters correcting for confounding factors, such as screening 
or lifestyle factors. Reanalysis of prospective studies with 
the BCAC OncoArray dataset showed that the first two 
PCs are associated with the PRS (PC1 negatively, PC2 
positively) and are also associated with risk (in the same 
direction). The PRS effect size (OR per 1 SD) was essen-
tially unchanged whether or not adjustment was made 
for PCs (data not shown). This finding implies that risk 

discrimination could be slightly improved by including 
the effect of PCs in the PRS and that adjusting the PRS 
for PCs further reduces the discrimination ability. Fortu-
nately, the association between PC1 and risk is weak, and 
within a country, the variation in PC1 is not large enough 
to materially change risk categories.

The differences in the PRS distribution across Europe 
are a manifestation, on a continental scale, of the larger 
intercontinental differences—the mean PRS is higher 
in both East Asian and African populations than in the 
European dataset examined here [28, 29, 41]. Interest-
ingly, the pattern within European ancestry women 
appears to be unrelated to population-specific incidence 
which is lower in Italy and Greece than in north-western 
Europe, including Ireland, UK, and Scandinavia [42], 
presumably because the effect on disease incidence is 
counterbalanced by greater effects of lifestyle (or other 
genetic) factors. It remains unclear whether the differ-
ences in PRS can be attributed purely to random genetic 
drift or whether selection pressures relevant to breast 
cancer aetiology are involved.

We should emphasise that, while adjustment for the 
PRS distribution is clearly important, there is no evidence 
for variation in the effect size (relative risk per standard 
deviation). Different effect sizes could result from differ-
ent variant allele frequencies and (since most of the SNPs 
in the PRS are not causal) differences in linkage disequi-
librium patterns. However, there is no evidence for this—
the effect sizes (relative risks per standard deviation) are 
very similar across prospective validation studies [11, 
26], though there is admittedly not yet good prospective 
data for southern/eastern-European populations. Whilst 
attenuation of the effect size is seen in non-European 
populations, the any different in effect size among Euro-
pean populations is likely to be very small.

We would like to acknowledge several potential limita-
tions of our study. The dataset we used was genetically 
homogeneous and may not be completely representa-
tive of the population of each country. How to interpret 
the PRS in individuals classified as mixed ancestry is an 
important issue that could be explored. Furthermore, 
evaluation of the country-specific calibrated PRS in com-
bination with classical breast cancer risk factors should 
be performed to explore the ability of these findings to 
predict the final risk. Finally, while we have evaluated the 
variation in PRS among European populations, similar 
issues will apply to PRS in other ancestries and in other 
countries, and to groups of more mixed ancestry. Similar 
approaches, using a combination of population-specific 
control data, principal component adjustment and/or 
empirical Bayes estimation, should also be useful for PRS 
calibration more generally.
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In summary, these results demonstrate that the imple-
mentation of the PRS313 in risk prediction models such 
as CanRisk/BOADICEA could require country-specific 
calibration. This can be achieved by genotyping a large 
control group to obtain population-specific means, by 
using a PC adjustment, or the empirical Bayes approach 
described here.

Conclusions
In this study, we observed a remarkable difference in 
the mean breast cancer PRS within European ancestry 
populations, when we used data from more than 300,000 
women with no previous breast cancer diagnosis. This 
heterogeneity could influence the classification of some 
individuals if not appropriately accounted for, leading to 
risk overestimation in some individuals and risk under-
estimation inothers, with potential implications for clini-
cal management. Adjusting for principal components 
seems to correct distribution differences across popula-
tions. Therefore, the implementation of PRS for breast 
cancer risk prediction in European ancestry popula-
tions, will required population-specific calibration, for 
more accurate risk estimation. This is particularly impor-
tant for countries not represented in the original PRS 
development.
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