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Abstract
Efforts to develop vaccines that can elicit mucosal immune responses in the female genital

tract against sexually transmitted infections have been hampered by an inability to measure

immune responses in these tissues. The differential expression of adhesion molecules is

known to confer site-dependent homing of circulating effector T cells to mucosal tissues.

Specific homing molecules have been defined that can be measured in blood as surrogate

markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of

adhesion molecules by circulating effector T cells following mucosal infection of the female

genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2,

CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia
infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial

vaginosis in women. Other homing molecules previously suggested as required for homing

to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these

patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T

cell immunity, was the most consistently elevated in all activated effector CD8+ T cell sub-

sets analyzed. This molecule was also induced after systemic infection in mice, suggesting

that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital

tract disorders may represent a novel surrogate marker of mucosal immunity in women, and

warrants further exploration for diagnostic and therapeutic purposes.
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Introduction
Female genital tract (FGT) infections, including common sexually transmitted infections (STI),
seriously compromise the health of women. Worldwide, more than 340 million new cases of
treatable STI occur each year and they are estimated to be the leading cause of morbidity in
women in developing countries [1]. Furthermore, pre-existing FGT infections affect the devel-
opment and pathogenesis of other STI, as occurs with the pro-inflammatory environment gen-
erated by bacterial vaginosis (BV) and the enhancement of human immunodeficiency virus
(HIV) replication [2]. The long-term consequences of STI, including pelvic inflammatory dis-
ease, cancer, infertility, stillbirth, etc. not only are highly relevant at the social and health level,
but also have a major economic impact.

Although effective vaccines exist for human papilloma virus and hepatitis B virus, efforts
to develop vaccines against herpes simplex virus type 2 (HSV-2), HIV and bacterial STI have
been hampered by an inability to effectively measure immune responses in the genital tract.
Such vaccines need to be able to generate robust immune responses at site of potential expo-
sure in order to provide rapid control of primary infection [3, 4]. Mucosal T cells and, nota-
bly, cytotoxic T lymphocytes play a critical role in the clearance of sexually transmitted
pathogens [4]. For instance, studies in human have confirmed the association of T cell-medi-
ated immunity with clearance of Chlamydia infection [5] and susceptibility to re-infection
[6]. Moreover, the presence of antiviral effector CD8+ T cells in the vagina of immunized
monkeys correlates with protection from uncontrolled viremia after pathogenic challenge
with simian immunodeficiency virus [7]. In these models of genital infection, the induction
of effector memory T (TEM) cells and antibodies that are able to mount fast responses upon
re-challenge is critical to control the pathogen. However, current assays used to understand
the magnitude and quality of immune responses in the FGT rely primarily on blood samples
and thus provide an incomplete picture of localized immune control.

The capacity of distinct subsets of antigen-experienced lymphocytes to traffic preferentially
into specific compartments is termed homing. TEM cell entry into inflamed non-lymphoid tis-
sues is an active process involving members of the integrin, selectin-ligand and chemokine-
receptor families, which mediate selective interactions of circulating lymphocytes with the spe-
cialized vascular endothelium [8]. While some adhesion molecules are enriched for a given tis-
sue, e.g. α4β7 integrin and CC chemokine receptor CCR9 are associated with homing of T cells
to the gut and cutaneous lymphocyte-associated antigen (CLA) and CCR4/CCR10 with T cell
homing to the skin, other molecules are specialized for tissue-inflammatory functions to multi-
ple tissues, such as CXCR3 or αLβ2 [9, 10]. Importantly, many properties that enable T cells to
traffic to specific locations are programmed during the early stages of the infection [11]. Analy-
sis of blood samples during the primary immune response to yellow fever immunization in
humans suggests that human virus-specific CD8+ T cells express a dynamic pattern of homing
molecules early after immune activation [12]. Thus, analysis of lymphocytes in blood will not
reflect the quantity/quality of non-recirculating resident memory T cells [11], and sampling
directly from mucosal surfaces will be required to define correlates of protection after vaccina-
tion. However, after activation, there is a window of opportunity to examine circulating lym-
phocytes in blood as they are homing to a specific mucosal tissue.

In contrast to the gastrointestinal tract or the skin, our understanding of homing receptors
that are required for cells migrating to the FGT is limited. α4β7 was proposed to recruit CD4+

T cells to the vaginal mucosa of mice infected with Chlamydia [13]. Yet, a recent paper demon-
strated that this integrin is not necessary for CD4+ T cell-mediated protection against Chla-
mydia trachomatis infection, while α4β1 appears to drive homing of protective cells into the
murine upper genital tract [14]. Other papers using animal models support these findings [15]
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and expression of vascular cell adhesion molecule-1, which binds this integrin, has been
detected in the human vagina [16, 17]. Nonetheless, another recent paper demonstrated that
circulating CD4+ T cells from asymptomatic HSV-2-infected patients express higher levels of
α4β7 than uninfected patients [18]. Lastly, other investigators have described homing receptors
that are shared between immune cells migrating to the skin and the FGT [16, 19]. Here, we
hypothesized that defining the homing profiles of lymphocytes migrating towards the genital
tract could potentially be used as a surrogate marker of FGT immunity. We found that TEM

cells from mice intravaginally-infected with Chlamydia muridarum expressed high levels of
CCR2, CCR5, CXCR6 and CD11c. When comparing these homing profiles to women with dif-
ferent mucosal or skin disorders, unique features were detected in each of the cohorts, com-
pared to healthy patients. Of particular interest, CD11c was strikingly increased in CD8+ TEM

cells from patients with BV and thus could serve as a novel indirect marker of FGT immunity.

Materials and Methods

Ethics statement
All mice were maintained in accordance with the recommendations of the Association for
Assessment and Accreditation of Laboratory Animal Care International Standards and with
the recommendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The Institutional Animal Use and Care Committee of the University of
California, Davis, approved these experiments (Protocol # 18299).

Informed written consent was obtained from all participants and the study protocol and ques-
tionnaire was approved by the University Hospital Germans Trias i Pujol (HUGTP, Badalona,
Spain) Clinical Research Ethics Committee (reference # EO-11-074). The study was undertaken
in accordance with the Declaration of Helsinki and the requirements of Good Clinical Practice.

Animal model
Chlamydia muridarum strain Weiss was purchased from ATCC (Manassas, VA) and propa-
gated in HeLa 229 cells in Dulbecco's modified Eagle's medium (Life Technologies, Grand
Island, NY) supplemented with 10% fetal bovine serum (FBS). C.muridarum elementary bod-
ies (EBs) were purified by discontinuous density gradient centrifugation as previously
described and stored at -80°C [20]. The number of inclusion-forming units of purified EBs was
determined by infection of HeLa 229 cells and enumeration of inclusions that were stained
with anti-Chlamydiamajor outer membrane protein antibody (a kind gift from Dr. Harlan
Caldwell). Eight weeks old C57BL/6 mice were purchased from The Jackson Laboratory (Bar
Harbor, ME). For systemic infection, mice were intravenously (IV) injected in the lateral tail
vein with 1x105 C. muridarum. For vaginal infection, estrus was synchronized by subcutaneous
injection of 2.5 mg medroxyprogesterone acetate (Greenstone, NJ). Seven days after, 1x105 C.
muridarum in 5μL sucrose/phosphate/glutamate buffer were deposited directly into the vaginal
vaults with a blunted pipet tip [21]. Seven, 10 and 14 days post-infection, blood was collected
by retro-orbital bleeding. Immediately after collection, blood samples for cell sorting and vali-
dation analyses were air-shipped from the laboratory of Dr. McSorley (CCM, UC Davis, CA)
to the laboratory of Dr. Genescà (IGTP, Badalona, Spain). Samples arrived refrigerated and in
good conditions 48 hours later and were immediately processed.

Cell sorting
Circulating TEM cells were sorted from six 7 days Chlamydia-infected mice (VAG group) and
six contemporary sham-treated mice (control group). Blood samples (~500μl) were
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immediately lysed using an in-house red blood cell lysis buffer. After washing, cells were
stained with antibodies against CD3-Vioblue (145-2C11), CD62L-PE (MEL-14-H2.100) and
CD44-FITC (IM7.8.1; all fromMiltenyi Biotec, Madrid, Spain). Cells suspended in cold FACS
flow buffer (0.5% FBS-PBS with 0.5mM EDTA) were immediately sorted into 350μl of chilled
RLT buffer (QIAGEN, Valencia, CA) using a BD FACSAria™ Cell Sorter (Flow Cytometry Plat-
form, IGTP). Purity of sorted CD62L- CD44+ activated TEM cells was>99%. Once sorted, sam-
ples were mixed for a minute and after a short spin, the volume of RLT was adjusted (3.5:1
ratio of RLT to sheath fluid) using filtered tips. Samples were mixed and spun again and imme-
diately frozen at -80°C.

Gene expression analyses
Total RNA was isolated from cells using RNA easy Mini kit (QIAGEN). After qualitative
assessment of RNA integrity, samples were amplified using Whole Transcriptome Amplifica-
tion 2 (Sigma-Aldrich, Madrid, Spain). We chose four samples in each group that qualified for
microarray analyses, yet one sample from the VAG and control group were discarded after as
outliers, thus microarray analyses were performed in n = 3 for the VAG group and n = 3 for
the control group (which were actually contemporary samples). The number of sorted cells in
each group was similar (15,207 ± 2,339 cells for the VAG group and 20,793 ± 2,443 cells for the
control group; not significant).

Affymetrix microarray hybridization was performed using the Mouse Genome 430 PM
Strip platform. Images intensities were extracted using GeneAtlas System software (Affyme-
trix), normalized and summarized using Robust Multi-array Average algorithm. Differential
gene expression analysis was assessed by fitting to an empirical Bayesian linear model. Statisti-
cal significance in differential gene expression was computed with a false discovery rate multi-
ple testing adjustment correction. For this analysis we used the Limma package and the R
statistical programming environment [22]. The ‘compute overlaps’ function in the ‘investigate
gene sets web application (http://www.broadinstitute.org/gsea/msigdb/annotate.jsp) of the
Molecular Signatures Database v4.0 (MaSigDB) was used to explore functions enriched among
the top regulated genes defined as having a nominal (non-adjusted) p-value<0.005. The lists
of gene symbols up-regulated and down-regulated in infected versus uninfected samples were
scrutinized for significant overlaps with pathway (C2: CP, KEGG) and immunologic signatures
(C7) in MaSigDB [23].

Flow cytometry validation analyses in mice
Blood samples (~500μl) were immediately lysed, washed, suspended in PBS and incubated
with Aqua vital dye to distinguish live from dead cells (Invitrogen, Burlington, ON, Canada).
Following two more washes, cells were suspended in washing and staining buffer (1% bovine
serum albumin-PBS) and incubated for 20 minutes with the following cocktail of pre-titrated
anti-mouse antibodies: CD3-Vioblue (145-2C11), CD4-APC-H7 (GK1.5), CD62L-PE (MEL-
14-H2.100) (Miltenyi Biotec), CD44-Brilliant Violet 570 (IM7; BioLegend, San Diego, CA),
CD11c-PE-Cy7 (HL3; BD Biosciences) and CCR5-FITC (CTC5), CXCR6-PerCP (221002) and
CCR2-APC (475301) (R&D Systems Inc., Minneapolis, MN). All events were acquired in a BD
FACSAria™ Cell Sorter and analyzed with FlowJo vX.0.7 software (TreeStar, Ashland, OR).

Participant enrolment and inclusion criteria for human samples
All participants for this study (20–40 year old women) were classified in the following different
cohorts: normal donors (ND, n = 13, median age of 25 years with interquartile range (IQR) of
23–28 years), psoriasis (PS, n = 5, median of 35 with IQR 30–37), ulcerative colitis (UC, n = 4,
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median of 26 with IQR 22–38), and BV (n = 5, median of 30 with IQR 25–36). Healthy ND vol-
unteers were recruited from the clinical trials unit of the University Hospital Germans Trias i
Pujol (HUGTP, Badalona, Spain). Patient recruitment for the PS and UC cohorts was carried
in the corresponding services of Dermatology and Gastroenterology of the HUGTP. BV
patients were recruited at the Unit of Attention to Sexual and Reproductive Health from the
Primary Health Care centers of Sabadell and Cerdanyola in Catalonia (Spain).

Participants completed a questionnaire in order to detect possible exclusion criteria (other
chronic or acute diseases, allergies or infections, immunosuppressive treatment, etc.) and regis-
ter menstrual cycle and birth control data. Patients included in each cohort presented either an
active burst (for PS and UC groups) or symptoms compatible with a recent infection within
the last 7 days (for BV group). Inclusion criteria for the PS group consisted on women with
acute psoriasis vulgaris that suffered a relapse of less than two weeks, with no treatment for at
least six weeks. UC subjects were women with active ulcerative colitis: the extent of pathology
was defined based on the Montreal classification [24] and the severity of disease on the Mayo’s
Disease Activity Index [25]. Only patients with active burst (index>9) off immunosuppressive
treatment were included. Lastly, not-treated and symptomatic BV infections defined by Nugent
scoring of>7 and suspected of Gardnerella vaginalis origin were confirmed by microscopic
examination (more than 20% of clue cells). Patients with other STI were excluded.

Human T cell phenotype
Blood was collected and processed within 4 hours maximum. An ammonium chloride-based
lysing reagent (BD Pharm Lyse, BD Biosciences) was used for erythrocyte deletion of 1ml of
blood. After washing, cells were suspended in PBS and stained with Aqua Dye (Invitrogen) for
cell viability. Cells were washed again, suspended in staining buffer and divided in four tubes.
The four different panels assessed contained some common and some specific antibodies.
Common antibodies were: CD3-eFluor 605, CD4-Alexa700 (eBioscience, San Diego, CA),
CCR7-Horizon PE-CF594, CD38-Brillant Violet 421, HLA-DR-PerCP-Cy5.5 and CD11c-
PE-Cy7 (BD Biosciences). Specific for each panel were: 1) CCR2-PE, CCR5-APC-Cy7,
CXCR6-APC (R&D Systems Inc.) and CXCR3-FITC (BioLegend); 2) CD49d (α4)-FITC,
β7-APC, CCR9-PE (BD Biosciences) and CD29 (β1)–APC-Cy7 (BioLegend); 3) CD103-FITC,
CD54-APC, CD49a (α1)-PE and CD29–APC-Cy7 (BioLegend); 4) CD18-APC, CLA-FITC
(BD Biosciences) and CCR10-PE (BioLegend). Cells were acquired using a BD LSRFortessa
SORP flow cytometer (Flow Cytometry Platform, IGTP) and analyzed with FlowJo 9.3.2 soft-
ware (TreeStar). Gates were drawn based on fluorescence minus one-controls and isotypes,
and CD3+ CD4- phenotype was considered CD8+ T cells.

Tissue processing and flow cytometry
Mouse spleen and iliac lymph nodes were harvested and a single-cell suspension prepared.
Peripheral blood was collected by retro-orbital bleeding. Red blood cells were removed by ACK
lysing buffer (Life Technologies). Leukocytes were washed with FACS buffer (PBS with 2%
FBS) and stored on ice until use. Mouse genital tract were removed and leukocytes isolated as
described [26]. Briefly, mouse genital tract (vagina, cervix, uterine horns, oviducts) were
minced into small pieces, digested in 500mg/L collagenase IV (Sigma) for 1 hour at 37°C with
constant stirring. Leukocytes were purified by percoll density gradient centrifugation (GE
Healthcare), washed with FACS buffer and stored on ice until use.

Single cell suspensions from spleen, dLNs, blood and genital tract were prepared in FACS
buffer and blocked with Fc block (culture supernatant from the 24G2 hybridoma, 2% mouse
serum, 2%, rat serum, and 0.01% sodium azide). Cells were then stained with anti-CD11b,
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F4/80 and B220-FITC together with MHCII PerCP-Cy5.5 (as dump channels), CD4-APC-
eFluor780, CD8-Pacific Orange, CD44-Alexa 700 and CD11c-APC. All flow antibodies were
obtained from eBiosciences. Samples were acquired on an LSRFortessa flow cytometer and
analyzed using FlowJo software (TreeStar).

Statistical Analysis
Data are reported as the median and IQR for each animal group or cohort using Prism 4.0 soft-
ware (GraphPad Software). Statistical analyses were performed by non-parametric Mann
Whitney test to compare single time points between two groups (case vs. control) using SPSS
software for Windows version 13.0 (Chicago, IL). P value of<0.05 was considered significant.

Accession codes
Microarray data presented in this article are deposited into the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE67147.

Results

Differentially expressed genes after genital tract infection in mice
To address the homing profile of TEM cells shortly after vaginal infection, blood CD3+ CD62L-

CD44+ T cells were sorted from Chlamydia-infected mice (VAG group) and sham-treated
mice (control group) 7 days post-infection in a pilot experiment. After qualitative assessment
of the sample RNA integrity and amplification, we chose three samples in each group that qual-
ified for microarray analyses. We detected highly significant differences in genes involved in
interferon signaling, synthesis of DNA, cell cycle and activation of the immune system between
the two groups (Table 1). Regarding adhesion molecules, several chemokine receptors and
integrin genes were significantly up-regulated in infected animals compared to the control
group and the four most significant genes were selected for further validation: Ccr5, Itgax,
Cxcr6 and Ccr2 (Fig 1).

Higher frequency of circulating CD11c+ CD8+ T cells is detected early
after Chlamydia infection
In order to confirm the expression of these molecules, we analyzed a 10-color panel by flow
cytometry at 7, 10 and 14 days post-infection. In general, the percentage of CCR2, CCR5,
CXCR6 and CD11c (Itgax) in live CD4+ or CD4- (putative CD8+) T cells peaked 10 days after
infection, when in most cases their total frequency was significantly higher than in the control
group (S1 Fig). Of note, there was a significant increase in the frequency of TEM cells (CD62L-)
in the VAG groups compared to control animals. While CD4+ T cells only had a significant
increase in the percentage of CD44+ activated TEM cells (S1e Fig), CD8+ T cells demonstrated a
significant increase in both, CD44+ and CD44- subsets after infection (S1e and S1f Fig). When
analyzing the expression of the selected homing molecules in the activated TEM cell subset,
there was a higher percentage of CCR5, CCR2 and CD11c in the CD4+ CD44+ TEM cells at 10
and/or 14 days post-infection than in the control group (Fig 2a, 2g, 2e and 2c). In contrast, we
detected a higher percentage of CXCR6 seven days after infection and of CD11c at all-time
points in the CD8+ CD44+ TEM cells compared to the control group (Fig 2e and 2g). Although
expression of these markers was also increased in the non-activated fraction of both TEM cell
subsets, the magnitude of expression was much lower (Fig 2b, 2d, 2f and 2h). Thus, all the
selected up-regulated genes were confirmed by protein expression. While CCR2 and CCR5
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were only increased in the CD4+ TEM cell subset after infection, expression of CXCR6 and
CD11c was much more abundant in CD8+ TEM cells.

CD11c expression increases in human circulating CD8+ TEM during
symptomatic vaginosis
We next addressed the expression of these and other potentially relevant mucosal homing mol-
ecules in peripheral blood TEM cells from healthy young women (ND) in comparison to
women with psoriasis (PS), ulcerative colitis (UC) and BV. First, we analyzed the expression of
the different molecules by CD4+ and CD4- (putative CD8+) T cells in CCR7- TEM cells from
thirteen ND, as shown in the general gating strategy (Fig 3 and S2 Fig). All these molecules
were also analyzed based on the activation markers included (CD38/HLA-DR) in order to
detect associations between them. We observed a higher percentage of circulating CCR7- CD4+

T cells expressing the CCR2, CCR9 and CCR10 chemokine receptors compared to CD8+ T
cells, while there was a higher percentage of circulating CD8+ TEM cells expressing CCR5 and
CXCR6 compared to CD4+ TEM cells (Fig 4). Regarding integrins and other molecules, the fre-
quency of α1β1, α4β7 and CLA was in general higher in CD4+ TEM cells than in CD8+, while
the frequency of α4β1 and CD11c was higher in CD8+ TEM cells (Fig 4). Finally, the frequency

Table 1. Functions enriched among the top up-regulated genes in activated effector T cells fromChlamydia-infected vs. uninfectedmouse sam-
ples with Canonical pathways.

Gene Set Name # Genes in
Gene Set (K)a

Description # Genes in
overlap (k)b

k/Kc FDRd q-
value

REACTOME_SYNTHESIS_OF_DNA 92 Genes involved in Synthesis of
DNA

7 0.0761 7.02E-05

REACTOME_INTERFERON_SIGNALING 159 Genes involved in Interferon
Signaling

8 0.0503 7.02E-05

REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIM.
GENES

66 Genes involved in Antiviral
mechanism by IFN-stimulated

genes

6 0.0909 7.02E-05

REACTOME_S_PHASE 109 Genes involved in S Phase 7 0.0642 7.02E-05

REACTOME_IMMUNE_SYSTEM 933 Genes involved in Immune
System

16 0.0171 1.33E-04

PID_TCPTP_PATHWAY 43 Signaling events mediated by
TCPTP

5 0.1163 1.33E-04

REACTOME_CELL_CYCLE 421 Genes involved in Cell Cycle 11 0.0261 1.33E-04

REACTOME_CYTOKINE_SIGNALING_
IN_IMMUNE_SYSTEM

270 Genes involved in Cytokine
Signaling in Immune system

9 0.0333 1.69E-04

REACTOME_CELL_CYCLE_MITOTIC 325 Genes involved in Cell Cycle,
Mitotic

9 0.0277 6.65E-04

REACTOME_DNA_STRAND_ ELONGATION 30 Genes involved in DNA strand
elongation

4 0.1333 6.65E-04

REACTOME_ACTIVATION_OF_THE_
PRE_REPLICATIVE_COMPLEX

31 Genes involved in Activation of
the pre-replicative complex

4 0.129 6.92E-04

REACTOME_DNA_REPLICATION 192 Genes involved in DNA
Replication

7 0.0365 1.02E-03

a K indicates the number of genes in the set from MSigDB.
b k indicates the number of genes in the intersection of the query set with a set fromMSigDB.
c k/K indicates the proportion of gene set genes present in the query set.
d FDR corresponds to false discovery rate.

doi:10.1371/journal.pone.0156605.t001
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of CXCR3 did not show any differences between these subsets, while CD103 was only higher in
the HLA-DR+ fraction of circulating CCR7- CD4+ T cells compared to CD8+ T cells (S4 Fig).

Next we compared the expression of these adhesion molecules in ND with their expression
in different mucosal and skin disorders. Of note, there was an overall decrease of the percent-
age of CD4+ T cells in the different groups of patients that was only significant for the BV
cohort (S5 Fig). When analyzing the TEM cell fractions, we detected a significant increase in at
least one of the activation markers in each cohort, which denoted the pathological condition of
the patients (Fig 5). The comparison on the expression of the different adhesion molecules was
performed in the TEM cell fraction as a total (S6 Fig), as well as in each of the activated fractions
(S7 and S8 Figs). The main findings in total fractions were a general decrease on the frequency
of CCR2 in CD4+ TEM cells and an increase on the frequency of CCR10 in CD8+ TEM cells
from all groups of patients (S6 Fig). Also, there was a significant increase on the percentage of
α1β1 expression in CD4+ TEM cells from the PS group and a decrease on the percentage of
CLA in the same cells compared to ND (S6c Fig). The UC group presented an increase on the
percentage of α1β1 expression in CD8+ TEM cells (S6d Fig), while the BV group had an increase
on CCR5 and α4β1 expression in CD4+ TEM cells and of CD11c in CD8+ TEM cells when com-
pared to ND (S6 Fig).

Since activated TEM cells more likely contain specific T cells migrating towards the inflamed
tissues [27], we focused on the differences detected in the double activated fraction (Fig 6).
This way, the only significant changes within CD38+ HLA-DR+ TEM cells from the PS group
compared to ND were: increased frequency of CCR9 in CD8 TEM cells, increased frequency of
α1β1 in CD4+ TEM cells, and a significant decrease of α4β1 and α4β7 in CD8+ TEM cells

Fig 1. Adhesion molecule related genes overexpressed in circulating activated TEM cells from
vaginallyChlamydia-infectedmice.Median centered log 2 intensity values derived from Affymetrix
microarray hybridization experiments comparing non-infected control mice (n = 3, x symbol) vs. vaginally-
infected mice (n = 3, * symbol) for theCcr5, Itgax, Cxcr6 andCcr2 genes are shown. Fold change: Average
fold change of vaginally-infected vs. control mice. P value: Nominal p-value. Adj p val: false discovery rate
adjusted p-value.

doi:10.1371/journal.pone.0156605.g001
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Fig 2. Kinetics of CCR2, CCR5, CXCR6 and CD11c frequency after vaginalChlamydia infection in mice.
The frequency of CCR5 (a, b), CCR2 (c, d), CXCR6 (e, f) and CD11c (g, h) was determined in activated
CD44+ (left graphs) and CD44- (right graphs) effector memory T (TEM) cells from blood by flow cytometry at 7,
10 and 14 days after vaginal infection withC.muridarum in mice. After gating on live CD3+ cells and CD4+ or
CD4- (putative CD8+) T cells, the frequency of CCR5, CCR2, CXCR6 and CD11c was quantified in the CD62L-
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CD44+/CD44- T cell subsets. Each time point represents the median ± interquartile range of three or seven
infected animals and all controls (n = 12).

doi:10.1371/journal.pone.0156605.g002

Fig 3. Gating strategy and representative plots of adhesionmolecule analysis in circulating TEM cells fromwomen. The overall
gating strategy for a representative single normal donor is shown. (a) General gating strategy for effector memory T (TEM) cells consist of
the following consecutive gates: lymphocytes, singlets and live CD3+ T cells (top row); CD4+ and CD4- (putative CD8+) T cells, and the
effector CCR7- fraction for each of these subsets (bottom row). (b) Representative plots of molecules analyzed in TEM cells in one of the
panels are shown: activated CD38 and/or HLA-DR TEM cells, expression of CCR5 and CCR2, expression of CXCR6, and expression of
CXCR3 and CD11c for CD4+ TEM cells (top row) and CD8+ TEM cells (bottom row). Isotype controls are shown in S3 Fig.

doi:10.1371/journal.pone.0156605.g003
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Fig 4. Comparison of adhesionmolecule frequency in CD4 and CD8 TEM cells from healthy women. A
comparison between the frequency of (a) CCR5, (b) CCR2, (c) CCR9, (d) CCR10, (e) CXCR6, (f) α1β1, (g)
α4β1, (h) α4β7, (i) CD11c and (j) CLA in CD4 (white bars) and CD8 (grey bars) effector memory T (TEM) cells
was determined by flow cytometry. The frequency of each molecule was analyzed in total CD3+ TEM cells and
CD38+, CD38+ HLA-DR+ or HLA-DR+ activated fractions. General gating strategy is shown in Fig 3 and S2
Fig. Each bar represents the median ± interquartile range of the mean of healthy young women (n = 13).

doi:10.1371/journal.pone.0156605.g004
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(Fig 6). In fact, the decrease of α4β7 in CD8+ TEM cells was a general observation in all groups
of patients (Fig 6d), which was predominantly significant in the CD38+ fraction (S7 Fig). UC
group characteristic profile in CD38+ HLA-DR+ TEM cells was an increase of α1β1 percentage
in CD4+ TEM cells (as occurred in the PS group) (Fig 6c). Lastly, the BV group shared the
decrease in the percentage of α4β7 expression in CD8+ TEM cells with the PS group. As for the
unique features in BV patients, we detected higher frequency of CCR5 and α4β1 in CD4+ TEM

cells with a concomitant decrease in the frequency of α4β7 in these cells, and also exclusive
high percentage of CD11c in CD8+ TEM cells (Fig 6). In summary, increased expression of
CCR5 and CD11c on CD4+ and CD8+ TEM cells respectively was confirmed in women with
symptomatic BV.

CD11c expression in blood after vaginal infection correlates with an
increase in the genital tract but is not exclusive of infection in these
tissues
Considering that CD11c was the most striking and novel marker of genital tract condition in
both, mice and women, we performed additional experiments to address if this increase was
exclusive of productive infection in these tissues or, in contrast, was a consequence of bacterial
infection in general. Therefore, we performed a new set of animal experiments in which we
included an intravenously (IV) Chlamydia-infected group. It is important to note that IV infec-
tion induces bacterial replication in different systemic and also mucosal tissues, including
spleen and lung [21]. Interestingly, seven days post-infection the frequency of CD11c+ cells on
blood T cells was much higher in the IV group (median: 13.1% [IQR: 10.9–16.3]) than in any
other group (median: 1.51%, [IQR: 0.9–2.2] in the controls or median: 5.23% [IQR: 3.4–8.4] in
the VAG group) (Fig 7). In the control and the VAG groups we obtained cell suspensions from
the genital tract to determine the frequency of CD11c+ T cells. As shown (Fig 7), seven days
after infection, the total frequency of CD3+ CD11c+ in genital tract increased from a median of

Fig 5. Comparison of activationmarkers frequency in TEM cells from different conditions affecting women. The frequency of activated
CD38+, CD38+ HLA-DR+ or HLA-DR+ CD4+ (a) and CD8+ (b) effector memory T (TEM) cells determined by flow cytometry is shown for normal
donors (ND) and the different groups of patients. General gating strategy is shown in Fig 3 and S2 Fig. Each bar represents the
median ± interquartile range of healthy young women (ND; white bars, n = 13), women with psoriasis (PS; grey bars, n = 5), ulcerative colitis
(UC; checkered bars, n = 4) and bacterial vaginosis (BV; dark bars, n = 5). P values indicate: *<0.05; **<0.01.

doi:10.1371/journal.pone.0156605.g005
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0.46% [IQR: 0.28–0.74] in the control group to a median of 4.43% [IQR: 2.68–5.33] in the
VAG group. Additional assessment of the expansion of CD11c+ CD44+ cells in different tis-
sues, including spleen, draining lymph nodes (dLNs), blood and genital tract of the VAG
infected animals 14 days post-infection demonstrated that most of these cells are CD8+ that
expand in spleen, blood and, mainly, in the genital tract (Fig 8). This way, while CD11c+

CD44+ represented 0.37% [IQR: 0.47–0.85] of the CD4+ cells in spleen, 0.61% [IQR: 0.40–0.82]
in dLNs, 0.83% [IQR: 0.17–0.41] in blood and 4.2% [IQR: 2.3–4.7] in genital tract of the VAG-
infected mice, these CD11c+ CD44+ cells were more frequent in the CD8+ cell fraction from all
these tissues: 6.4% [IQR: 6.3–10] in the spleen, 1.9% [IQR: 1.5–2.1] in the dLNs, 23% [IQR: 15–
42] in blood and 53% [IQR: 46–53] in the genital tract. Thus, 7 and 14 days after infection,
CD11c expression increases in the genital tract of mice correlating with the increase observed
in blood. However, CD11c increased expression is not specific to infection in the genital tract,
since systemic infection also expands this subset.

Discussion
We interrogated the expression of multiple adhesion molecules in circulating TEM cells from
different groups of women with disorders affecting primarily peripheral tissues. We report for
the first time that women with BV have higher frequency of CD8+ TEM expressing CD11c. This

Fig 6. Frequency of adhesionmolecules in CD38+ HLA-DR+ TEM cells from different conditions affecting women. Percentages of the
expression of chemokine receptors in CD38+ HLA-DR+ (a) CD4+ effector memory T (TEM) cells and (b) CD8+ TEM cells determined by flow
cytometry are shown for normal donors (ND) and the different groups of patients. Percentages of the expression of integrins and other adhesion
molecules in CD38+ HLA-DR+ (c) CD4+ TEM and (d) CD8+ TEM cells determined by flow cytometry are shown for ND and the different groups of
patients. General gating strategy is shown in Fig 3 and S2 Fig. Each bar represents the median ± interquartile range of healthy young women
(ND; white bars, n = 13), women with psoriasis (PS; grey bars, n = 5), ulcerative colitis (UC; checkered bars, n = 4) and bacterial vaginosis (BV;
dark bars, n = 5). P values indicate: *<0.05; **<0.01.

doi:10.1371/journal.pone.0156605.g006
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increase was not observed during inflammatory pathologies affecting the gastrointestinal tract
or the skin. Importantly, we also detected an increase in CD11c gene and protein expression in
a mouse model of Chlamydia reproductive tract infection in both, blood and genital tract.
Other patterns of integrin and chemokine receptor expression were also observed in patients
with BV. In particular, the expression of CCR5 and α4β1 was increased in circulating CD4+

TEM cells of these women compared to healthy donors.
The increased expression of CD11c in TEM cell subsets soon after vaginal infection or during

an episode of vaginosis was a strong and consistent finding in mice and women. Although the
expression of CD11c has been classically used to identify dendritic cells, this α-chain integrin is
also expressed in other myeloid cells, NK cells and populations of activated T and B cells [28].
Specifically within the activated T cell fraction, CD11c expression has been associated to effec-
tor and regulatory T cells in different mouse models [29–33], as well as with intraephitelial
lymphocytes in the small gut [34, 35]. More recently, some authors have described the exis-
tence of a unique subset in mice and importantly, in humans, that combine key features of T
and dendritic cells [36]. These cells are positive for T cell receptor, major histocompatibility
complex II and CD11c+ and, regardless of their lymphocyte morphology, posses antigen pre-
senting cell and innate-like properties [36]. However, to our knowledge, no specific report on
expression of CD11c in human T cells in association to a mucosal condition has ever been
published.

A considerable constraint in our study is the comparison between the cohorts evaluated.
Although all these disorders have a clear Th1 component [37–39], they have very different

Fig 7. CD11c expression in T cells from blood and genital tract after vaginal or systemicChlamydia infection. The frequency of CD11c in
CD3+ T cells was determined by flow cytometry 7 days after vaginal (VAG) or intravenous (IV) infection with C.muridarum in blood or genital tract
frommice. Each time point represents the median ± interquartile range of controls (n = 6), VAG-infected animals (n = 8) and IV-infected animals
(n = 4).

doi:10.1371/journal.pone.0156605.g007
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origins and associated inflammation, and no other mucosal disorder with a bacterial compo-
nent could be compared to the BV group. This fact, the Chlamydia systemic infection experi-
ment results (Fig 7) and supporting animal models that demonstrate CD11c expression in T
cells after systemic vaccination and infection [29–33], indicates that CD11c expression is not
specific to genital tract infection, rather indicative of activation and recirculation in general.

Fig 8. CD11c expression in activated CD4 /CD8 cells from different tissues after vaginalChlamydia infection in mice. The frequency of
CD44+ CD11c+ in CD4+ (left panels) and CD8+ cells (right panels) was determined by flow cytometry 14 days after vaginal (VAG) infection with
C.muridarum in spleen, draining lymph nodes (dLNs), blood and genital tract (GT) frommice. Examples from one infected and one control
animal are shown.

doi:10.1371/journal.pone.0156605.g008
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Moreover, there was a trend towards higher percentage of CD11c+ in T cells from patients with
UC that was significant in the HLA-DR fraction (S8 Fig). Although we acknowledge the limita-
tion of the sample size for the cohorts included in the study, the present results represent a
unique comparison between peripheral tissue alterations that provide adhesion molecules of
interest for each of the different disorders to further explore. In any case, this is the first report
demonstrating enhanced CD11c expression in CD8+ TEM cells after intravaginal Chlamydia
infection in mice and symptomatic BV in women, and we are currently working on defining
the phenotype and role of these cells in these models.

The differential expression of certain adhesion molecules can induce a site-dependent hom-
ing profile that may work together with some other generic signals (such as CXCR3, CCR3,
CCR5 and CCR6) [10]. Previous studies have examined adhesion molecules necessary for
homing to the upper genital tract in a mouse model of C. trachomatis infection by directly
infecting the uterine horns [14, 40]. In this model, CXCR3, CCR5 and α4β1 are required for
homing of protective T cells to the murine upper genital tract [14, 40]. Interestingly, samples
from women with symptomatic BV, confirmed two of these molecules as potentially involved
in FGT homing in humans. The frequency of integrin α4β1 was indeed up regulated in CD4+

TEM cells, which correlates with high expression of this integrin in the genital mucosa of
women [41]. Moreover, BV patients did also showed a higher percentage of CCR5 expression
in their CD4+ TEM cells compared to ND, indicating that CCR5 might indeed be necessary for
FGT homing as suggested [40]. Asymptomatic genital HSV-2 infection is also associated with
increased expression of CCR5 by endocervical CD4+ T cells and similar trends were observed
in circulating CD4+ T cells [18]. Further, a live-attenuated vaccine that continuously replicates
in systemic and mucosal tissues in macaques also induces increased frequency of peripheral
CD4+ T cells expressing CCR5, and the two animals with the highest percentage of this popula-
tion had the highest number of specific T cells in the genital tract [42]. However, a recent
report on the effect of vaginal immunization in women showed a clear down-regulation of
CCR5 on CD4+ T cells after immunization [43]. Nevertheless, the first time-point analyzed in
that study was 4 weeks post-immunization, when major recirculation and infiltration of T cells
may have already occurred [12]. Of great importance is the fact that this increment is detected
in the CD4+ TEM cell population, since CCR5 is a co-receptor for HIV and thus could have
highly detrimental effects favoring HIV infection susceptibility [44, 45]. If higher numbers of
CCR5 expressing CD4+ TEM cells are indeed infiltrated in the genital tissue during BV episodes,
this could partially explain its association with higher risk of HIV-1 acquisition [46].

Finally, while CLA expression in total CD4+ TEM cells of the PS group was unexpectedly
reduced compared to ND (S1c Fig), we detected higher frequency of CLA on CD8+ HLA-DR+

TEM cells from the BV group (S8d Fig). Due to their migration to skin, the number of CLA+ T
cells in the periphery decreases inversely to disease severity during acute psoriasis [47]. Further,
CLA interacts with E-selectin expressed on venular endothelial cells not only from inflamed
skin, but also from oral mucosa and FGT, and genital HSV-specific CD8+ T cells in the periph-
eral blood express high levels of CLA [16, 19]. Yet α4β7, another molecule described in asymp-
tomatic HSV-2-infected patients but not in uninfected patients [18], was down regulated in
activated TEM cells from BV patients (Fig 6). While this decrease could also indicate selective
infiltration of these cells into the infected tissues early after infection, the existence of a mecha-
nism that would actually down-regulate some of these molecules cannot be discarded.

Many properties that enable T cells to traffic to specific locations are programmed during
the early stages of the infection [11]. Thus, in order to understand the homing patterns and
dynamics of the mucosal response associated to vaccination and infection, we need to analyze
specific and activated T cells responses early after activation [4, 12]. In summary, in this study
we define adhesion molecules, namely CCR5, α4β1 and CD11c, which may be desirable to
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induce in order to generate an effective mucosal response in vaccine candidates against STI.
Special attention should be given to CD11c as a novel marker of T cell mucosal immunity in
response to genital tract disorders.

Supporting Information
S1 Fig. Kinetics of the frequency of adhesion molecules and effector T cells after vaginal
infection in mice. The frequency of CCR5 (a), CCR2 (b), CXCR6 (c), CD11c (d), CD62L-

CD44+ (e) and CD62L- CD44- (f) was determined in T cells from blood by flow cytometry at 7,
10 and 14 days after vaginal infection with C.muridarum in mice. After gating on live CD3+

cells and CD4+ or CD4- (putative CD8+) T cells, the frequency of CCR5, CCR2, CXCR6,
CD11c, CD62L- CD44+ and CD62L- CD44- was quantified. Each time point represents the
median ± interquartile range of three or seven infected animals and all controls (n = 12).
(TIF)

S2 Fig. Representative plots of adhesion molecule analysis in circulating TEM cells from
women. The overall gating strategy for a representative single normal donor is shown in Fig 3.
Representative plots of molecules analyzed in TEM cells in each of the panels are shown for
CD4+ TEM cells (top row) and CD8+ TEM cells (bottom row): (a) expression of CCR9, α4 and
β7;(b) expression of α1, β1 and CD103 and (c) expression of CCR10 and CLA. Isotype controls
are shown in S3 Fig.
(TIF)

S3 Fig. Isotype controls for the molecules analyzed in circulating CD4- TEM cells from
women. The cut-off determined by the isotype control for each adhesion or activation mole-
cule analyzed is shown in zebra plots for the CD4- CCR7- T cells.
(TIF)

S4 Fig. Comparison of CXCR3 and CD103 frequencies in CD4 and CD8 TEM cells from
healthy women. A comparison between the frequency of (a) CXCR3 and (b) CD103 in CD4
(white bars) and CD8 (grey bars) effector memory T (TEM) cells was determined by flow
cytometry. The frequency of each molecule was analyzed in total CD3+ TEM cells and CD38+,
CD38+ HLA-DR+ or HLA-DR+ activated fractions. General gating strategy is shown in Fig 3
and S2 Fig. Each bar represents the median ± interquartile range of healthy young women
(n = 13).
(TIF)

S5 Fig. Frequency of CD4+ T cells during different conditions affecting peripheral tissues
in women. The percentage of CD4+ T cells determined by flow cytometry is shown for ND and
the different groups of patients. General gating strategy is shown in Fig 3. Each bar represents
the median ± interquartile range of healthy young women (ND; white bars, n = 13), women
with psoriasis (PS; grey bars, n = 5), ulcerative colitis (UC; checkered bars, n = 4) and bacterial
vaginosis (BV; dark bars, n = 5). P value indicates: �<0.05.
(TIF)

S6 Fig. Frequency of adhesion molecules in TEM cells from different conditions affecting
women. Percentages of the expression of chemokine receptors in total (a) CD4+ effector mem-
ory T (TEM) cells and (b) CD8

+ TEM cells determined by flow cytometry are shown for normal
donors (ND) and the different groups of patients. Percentages of the expression of integrins
and other adhesion molecules in total (c) CD4+ TEM and (d) CD8+ TEM cells determined by
flow cytometry is shown for ND and the different groups of patients. General gating strategy is
shown in Fig 3 and S2 Fig. Each bar represents the median ± interquartile range of healthy
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young women (ND; white bars, n = 13), women with psoriasis (PS; grey bars, n = 5), ulcerative
colitis (UC; checkered bars, n = 4) and bacterial vaginosis (BV; dark bars, n = 5). P values indi-
cate: �<0.05; ��<0.01; ���<0.001.
(TIF)

S7 Fig. Frequency of adhesion molecules in CD38+ TEM cells from different conditions
affecting women. Percentages of the expression of chemokine receptors in CD38+ (a) CD4+

effector memory T (TEM) cells and (b) CD8
+ TEM cells determined by flow cytometry are

shown for normal donors (ND) and the different groups of patients. Percentages of the expres-
sion of integrins and other adhesion molecules in CD38+ (c) CD4+ TEM and (d) CD8+ TEM

cells determined by flow cytometry are shown for ND and the different groups of patients.
General gating strategy is shown in Fig 3 and S2 Fig. Each bar represents the
median ± interquartile range of healthy young women (ND; white bars, n = 13), women with
psoriasis (PS; grey bars, n = 5), ulcerative colitis (UC; checkered bars, n = 4) and bacterial vagi-
nosis (BV; dark bars, n = 5). P values indicate: �<0.05; ��<0.01; ���<0.001.
(TIF)

S8 Fig. Frequency of adhesion molecules in HLA-DR+ TEM cells from different conditions
affecting women. Percentages of the expression of chemokine receptors in HLA-DR+ (a)
CD4+ effector memory T (TEM) cells and (b) CD8

+ TEM cells determined by flow cytometry
are shown for normal donors (ND) and the different groups of patients. Percentages of the
expression of integrins and other adhesion molecules in HLA-DR+ (c) CD4+ TEM and (d)
CD8+ TEM cells determined by flow cytometry are shown for ND and the different groups of
patients. General gating strategy is shown in Fig 3 and S2 Fig. Each bar represents the
median ± interquartile range of healthy young women (ND; white bars, n = 13), women with
psoriasis (PS; grey bars, n = 5), ulcerative colitis (UC; checkered bars, n = 4) and bacterial vagi-
nosis (BV; dark bars, n = 5). P values indicate: �<0.05; ��<0.01; ���<0.001.
(TIF)
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