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This dissertation introduces a form of extremum seeking, traditionally employed for opti-

mizing unknown objective functions, now adapted to accommodate an unknown yet measurable

constraint. We consider the constraint to be a safety metric, which is maintained, practically,

throughout the optimization process. We demonstrate that our approach can ensure safety

violations be made arbitrarily small, parallel to how classical extremum seeking controllers

achieve stability near optimal points. The power of this algorithm is particularly underscored in

its application to particle accelerator systems, shown in several examples, where safety is critical

to prevent substantial financial losses and operational downtime. This work broadens the scope

of extremum seeking methods and establishing an approach for integrating safety considerations
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into optimization processes, useful in situations where balancing optimal performance with

stringent safety requirements is essential.
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Chapter 1

Introduction

1.1 Particle Accelerator Control: A Motivation for Safe
Extremum Seeking

Particle accelerators are sophisticated machines designed to accelerate charged particles,

such as electrons or protons, to high speeds and contain them in well-defined beams. At the heart

of numerous scientific endeavors, these accelerators are pivotal in pushing the boundaries of

fundamental physics, allowing researchers to delve into the structure of matter at the smallest

scales. Beyond their scientific applications, particle accelerators have practical uses in medical

therapy, such as in cancer treatment through radiation therapy, and in industry, where they are

used for materials processing and inspection.

Operating particle accelerators presents a significant challenge due to their complexity

and the precision required in controlling the particle beam. Steering the beam accurately is

critical; any deviation from its intended path can have severe consequences, including damage

to the accelerator’s components or in the worse case, burning a hole in the side of the beam

pipe containing the vacuum. Additionally, if the beam is not adequately contained in a tightly

formed bunch and are allowed to form a substantial halo around the center of the beam, stray

particles may be gradually lost as they contact the walls of the beampipe and other components.

Such incidents not only necessitate costly and time-consuming repairs but also pose safety risks.

Improperly controlled beams can lead to the generation of unwanted radiation, rendering parts of
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the accelerator radioactive and thus complicating maintenance efforts. The high level of precision

needed in beam control highlights the importance of safety in both protecting personnel and

ensuring the accelerator’s integrity.

Particle accelerators are marvels of engineering, comprised of complicated assemblies

that can stretch for miles and incorporate thousands of components, each playing a pivotal role in

the accelerator’s operation. The complexity is compounded by numerous unknown parameters

that drift over time, affected by factors such as aging, thermal effects, and other environmental

changes, posing significant challenges to maintaining optimal performance and beam quality.

Many of these parameters, such as the initial distribution of the particles at the beginning of

the accelerator, not only drift, but they are difficult to measure. This time-varying behavior

necessitates continuous adjustment of various control parameters to ensure the highest beam

quality, and often a critical part of the job of a beam operator is the manual hand tuning of these

control parameters. Beam quality can be assessed using metrics such as beam intensity, energy

uniformity, and spatial distribution. Optimizing these metrics are often crucial for maximizing

the accelerator’s performance, ensuring the success of its applications.

Extremum seeking control has been recently discovered as a useful tool in controlling

accelerators, given the often unknown, nonlinear, and time-varying nature of the relationship

between the various metrics describing the beam and the control parameters. Extremum seeking

(ES) control is a model-free, adaptive control strategy designed to optimize the performance of

dynamic systems in real-time by automatically adjusting control parameters to converge to the

extremum (maximum or minimum) of an unknown objective function directly from measured

output data. Many ES algorithms, and all ES algorithms applied to particle accelerator systems

in the literature, are designed to solve the following problem

min
𝜃

𝐽 (𝜃),

where 𝜃 is a vector containing the control parameters to be adjusted and 𝐽 is a measurement of
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the objective function describing the performance of the system.

Historically, extremum seeking (ES) control has found diverse applications in accelerator

technology, where the performance metric 𝐽 directly relates to with measurements of interest.

These objectives include beam loss, beam trajectory error, and the energy output of free electron

lasers—a type of light-producing accelerator that relies on the acceleration of electrons. These

goals can also be performed simultaneously, by summing two or more objectives to be minimized

(or maximized) into a single quantity 𝐽. In these applications, the parameter 𝜃 represents various

adjustable elements, including the strengths of quadrupole magnets (which confine the beam

within the vacuum of the beam pipe), the strengths of kicker magnets (which are used to steer the

beam), and the phase and amplitude values of radio-frequency (RF) cavities (which control the

electromagnetic waves that accelerate the particles). This framework allows for the tuning of

accelerator components to optimize performance, underlining the versatility and impact of ES in

enhancing accelerator operations.

But why “Safe” ES? Consider the scenario where we aim to adjust control parameters

but must also ensure the system’s safety. Essentially, this involves automatically optimizing

metrics of interest, all while maintaining the accelerator’s safety over time, as gauged by specific

signals we identify as indicators of safety. For instance, take the challenge of achieving a specific

beam shape, where beam loss serves as a safety indicator. Thus, the primary objective becomes

minimizing the error between the beam’s actual shape and its desired shape. In many accelerator

systems, a significant halo of particles inevitably forms due to internal repulsive forces, leading

to eventual particle loss as the beam reaches higher energies. We cannot minimize this perfectly

to zero and so we decide that if beam loss stays below a certain threshold, we deem the system

safe. This type of problem is common in many situations, not just with beam loss as a measure of

safety, but in any case where a measured signal must remain above or below a specific threshold.

There is almost never a known relationship between the control parameters and beam loss, as it

involves complex multi-particle dynamics, and innumerable unknowable quantities such as all

particle positions and velocities, which generate the beam halo. However, merely minimizing the
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combination of beam loss and the primary objective does not fully address the issue if optimizing

for the primary objective does not concurrently reduce beam loss. Therefore we actually need a

more general tool which can solve the following constrained optimization problem:

min
𝜃

𝐽 (𝜃) subject to ℎ(𝜃) ≥ 0,

where ℎ is a function which is designed positive when beam loss is below the threshold, and where

both ℎ and 𝐽 are analytically unknown. This tool should solve (1.1) while also guaranteeing 1)

the parameters are not steered outside the safe set, if they begin in a safe operating condition 2)

the parameters are steered toward the safe set, if they begin in an unsafe operating condition.

This dissertation introduces an ES tool that fundamentally tackles this issue. We

develop Safe ES to address this challenge, providing theoretical guarantees and demonstrating its

effectiveness across various accelerator problems.

1.2 Literature Review

The literature on extremum seeking is split into two subsections - a general overview

of ES and a specific look at various constrained forms of ES. Safety literature is given its own

section as the form of ES developed in this dissertation draws from the safety literature, and the

contributions we make can be considered as a part of the body of work on safe control. Finally,

we overview the set of methods used (which include ES methods) by the accelerator community

to tune and optimize particle accelerator systems.

1.2.1 Extremum Seeking

The first ever conception of an extremum seeking design was presented in a 1922 paper

by Leblanc [54]. Here a mechanism was described to maximize the power transfer from a

transmission line to an electric tram car, although it is unknown if the design was ever implemented.

In the 1940s the ES scheme gained popularity beginning in Russia [42, 43] and then in the
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1950s in the US [15, 25, 96]. After this work, ES was modified and applied in notable early

applications in the 1950s and 1960s [59, 62, 66, 68] and an early analysis was conducted in 1971

[57], although it did not provide a general guarantee of stability. The early history provided

here is credited to the survey [77], which also provides a wide ranging and thorough review of

extremum seeking over time, covering all significant contributions and their various applications.

The first formal stability proof for ES feedback was given in [52] combining results

on averaging and singular perturbation for ordinary differential equations (ODEs). Since then

various studies, extensions, and improvements of the ES algorithm have been made including the

development of algorithms for semiglobal convergence [92], for maps with multiple extrema [93],

extensions for multivariable maps [30], continuous and discrete stochastic generalizations [56],

performance improvements for parameter convergence [33, 3, 32, 65], for stabilizing open-loop

unstable time-varying systems with unknown control directions [85, 86], for application to Partial

Differential Equations (PDEs) [67], for fixed-time Nash equilibrium seeking in time-varying

networks [70], and for many more other problems [77]. ES methods have also enabled the use of

deep neural networks for time-varying systems without retraining [81], and have improved the

robustness of generative convolutional neural networks beyond the span of their training data

[79].

We point the reader to the survey [77] for a wide ranging and thorough review of extremum

seeking over time, covering many significant contributions and various applications of ES.

1.2.2 Constrained Extremum Seeking

Known constraints: constrained versions of various kinds of ES control laws have been

studied as well, including variants where the constraint is known. In the context of population

games, extremum seeking methods are useful when known simplex-like constraints must be

placed on optimization parameters [71]. ES algorithms with constrained inputs have also been

studied in [90] where the optimization parameters must always lie within a known domain as

exceeding them may cause undesirable actuator saturation. Switching frameworks have also been
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developed for constrained ES [72] where the optimization parameters must lie in a known set. A

form of ES is designed such that the update to the optimization parameter is constrained to a

known bound [86].

Unknown constraints: cases where the constraints are unknown have also been studied,

often assuming convexity. Switching type extremum seeking algorithms are also studied [20],

methods employing nonlinear programming techniques in [55] to solve convex problems by

smoothly switching between gradient based scheme of the constraint and objective, and an

approach which solves convex problems by designing an ES law which travels toward the saddle

point of a so called “modified barrier function” [53]. Authors in [27, 28] study saddle points

dynamics and a Lie bracket based analysis in their work. Authors in [13] use projections of

the gradient of the objective function on the direction of gradient of the constraint function to

determine a control law which satisfies the constraint.

Unknown constraint handling via data-sampled ES: a number of data sampled

optimization schemes have been studied which are notable. Steady state constraint satisfaction is

achieved in the framework of [34] as well as SPA stability, based on the data sampled schemes

of [95]. Other data sampled frameworks are presented in [45] studying a general class of

optimization schemes.

1.2.3 Control Barrier Functions and Safety Filters

The literature on safe control has boomed largely as of late due to the seminal work in

[9, 99]. A large number of applications and other inspired work has arisen due to the quadratic

program (QP) based control barrier function (CBF) designs, from incorporating it with learning

frameworks [24, 98], applications in robotic and automotive systems [97, 73, 6], designs involving

observers in the presence of disturbances in the dynamics and measurements [4], and more

[61, 1, 19] to name only a small set of inspired work.

Recent work has also studied input-to-state safety CBFs, by which the violation of a

safe set can bounded by the magnitude of the disturbance [49]. Inverse optimal safety filters,
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in the presence of disturbances, both deterministic and stochastic, of unlimited and unknown

magnitude, are introduced in [50]. Designs for CBFs of high relative degree are introduced in

[51]. Independently, high-order CBF conditions were also studied subsequently in [37, 103].

Higher order CBFs have been use in optimal trajectory planning, with application for autonomous

vehicles [104]. Prescribed-time safety filters are designed in [2]. As an alternative to the QP

based approach, approximate optimal controller are formulated, where violation of safety is a

part of value function [22].

1.2.4 Accelerator Tuning and Optimization

The Nelder-Mead simplex method [39] and ML based methods have been used to tune

accelerators [5]. Extremum seeking has been studied in simulation for accelerator applications

[89], and was first used experimentally in an accelerator tuning problem to minimize an objective

function [87]. Since then, a bounded form of ES with guaranteed limits on parameter update rates

[88], has been used extensively in several accelerator applications for free electron laser energy

maximization [78], electron beam trajectory control [84], real-time multi-objective optimization

[82], and for beam loss minimization [83].

Recently, various machine learning (ML)-based methods have been developed for control

and optimization of particle accelerator beams [12]. Bayesian optimization has become a popular

tool in tuning and in some cases has been used to design safety aware tuning algorithms [48, 47, 26].

Bayesian optimization (and methods based on it), unlike ES, constructs a probabilistic estimate

of the unknown functions, in the form of a Gaussian Process (GP), and determines a new point to

sample based the fitted function. Neural networks (NN) have been used as surrogate models

for magnet control [40] and for simulation-based optimization studies [29]. Neural networks

are also being used for uncertainty aware anomaly detection to predict errant beam pulses [17],

as virtual diagnostics for 4D tomographic phase space reconstructions [102], for predicting the

transverse emittance of space charge dominated beams [58], and for high resolution longitudinal

phase space virtual diagnostics [105]. Neural network-based deep reinforcement learning (RL)
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methods have been used for accelerator control [35], and in a sample efficient manner, which

trains a policy based on data at two beam lines at CERN [41].

Although many ML-based tools have been developed they all suffer major limitations

when it comes to time-varying systems. If a system changes then NN, GP, and RL methods all

require new data for re-training of their models in order to be applicable for accelerator control.

This major limitation is overcome by adaptive model-independent methods such as ES. Adaptive

machine learning frameworks combining ES with neural networks have been demonstrated to

extend the use of ML for time-varying systems. ES-based adaptive ML has been demonstrated

for automatically shaping the longitudinal phase space of short intense electron beams in the

LCLS FEL [81] and for creating virtual 6D diagnostics of time-varying charged particle beams

[76, 79].

In all the methods described above, including those using ES, the approach to safety

has been some expert-based combination of setting hard bounds on allowed parameter values,

adding additional terms to the cost function, and algorithm hyper-parameter tuning. The safe ES

methods we demonstrate in this dissertation reduces the amount of required hyper-parameter

tuning and removes the manual design of a tradeoff between safety and optimization which

depends on the weights given to safety-related cost function terms relative to objective-related

cost function terms. For example, in the real-time multi-objective ES optimization application in

[82], while the objective was beam spot size minimization, the safety-related term in the cost

function was the beam’s distance from a desired reference trajectory, and there was a tradeoff

between the two depending on the weights. In our approach, practical safety is always enforced.

1.3 Contributions and Organization

Chapter 2 unveils a safe ES algorithm, termed Assignably Safe Extremum Seeking

(ASfES), illustrating local stability and offering a guarantee of practical safety under initial

conditions close to the constrained optimizer. The term “practical safety” refers to a violation of
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safety which can be made arbitrarily small by selecting appropriate design constants. The safety

feature of ASfES offers a user specified “attractivity rate” to the set set, denoted as 𝑐, which

dictates the temporal behavior of ℎ. Essentially, this allows the user to control how ℎ—the metric

defining system safety—either asymptotically approaches the unsafe threshold or moves towards

safety if beginning from an unsafe state, with the behavior over time defined by the user assignable

time constant 𝑐. We introduce dynamic filters that, in an average and singularly perturbed sense,

mimic the feedback law typical of a quadratic programming (QP) and control barrier function

(CBF) based safety filter applied to a nominal extremum seeking (ES) controller. We also extend

ASfES to a Newton-based version (NB-ASfES) which has both assignable attractivity to and

from the set set, and an assignable nominal convergence rate of the parameter — if the attractivity

rate assignment is not violated.

Chapter 3 advances this work by making small adjustments to the algorithm – which will

be referred to simply as “Safe ES”, differentiating it from “ASfES” – offering proofs of semiglobal

practical asymptotic stability and semiglobal practical safety. The algorithms presented in

Chapter 2 and 3 are different in their design in two ways. First, the algorithm in Chapter 2 contains

an additional filter which provides an estimate of the inverse of the gradient of ℎ through the

use of a nonlinear Riccati filter. This elegant solution is used to handle instances in time where

the estimate of the gradient of ℎ is zero, and was also a key part of the design in Newton based

ES [30]. In contrast, the Chapter 3 algorithm adopts a more straightforward, albeit practical,

approach to this issue. Second, while Chapter 2’s algorithm employs a smooth control law,

Chapter 3’s version becomes nonsmooth. The analytical techniques employed in each chapter

are distinctly different, reflecting the variations in the algorithms, despite their overall similarity.

We note one final distinction in the safety result we present in Chapter 3, compared to the safety

result in Chapter 2. The attractivity rate (𝑐), which we describe in the prior paragraph, is not

user assignable in the algorithm presented in Chapter 3. This is because in order to achieve

semiglobality, and guarantee convergence of initial conditions farther and farther away from the

constrained optimum, the rate of the parameter must be slowed more and more. This therefore
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does not allow the luxury of a user assignable 𝑐.

Chapter 4 directly implements Safe ES in accelerator systems, showcasing its practical

applicability. We present several scenarios in which Safe ES is shown to be effective in solving

challenging tuning tasks relating to safely tuning accelerator parameters in order to achieve

performance while mitigating excessive risk. The first two examples are demonstrated in

simulation and the third example showcases the algorithm on a real tuning experiment conducted

at the linear accelerator at Los Alamos Neutron Science Center.

Acknowledgements

This chapter contains partial adaptations and snippets of the following works: A. Williams,

M. Krstic, A. Scheinker, “Safety-Filtered Extremum Seeking with Unknown CBFs” Under Review

2024. A. Williams, A. Scheinker, E. Huang, C. Taylor, M. Krstic, “Experimental Safe Extremum

Seeking for Accelerators” IEEE Transactions on Control System Technology 2024. A. Williams,

M. Krstic and A. Scheinker, “Semi-Global Practical Extremum Seeking with Practical Safety”

61st IEEE Conference on Decision and Control 2023. A. Williams, M. Krstic and A. Scheinker,

“Practically Safe Extremum Seeking” 61st IEEE Conference on Decision and Control 2022. The

dissertation author was the primary author in these publications.

10



Chapter 2

Practically Safe ES with Assignable Attrac-
tivity to the Safe Set

We present Assignably Safe Extremum Seeking (ASfES), an algorithm designed to

minimize a measured objective function while maintaining a measured metric of safety (a control

barrier function or CBF) be positive in a practical sense. We ensure that for trajectories with

safe initial conditions, the violation of safety can be made arbitrarily small with appropriately

chosen design constants. We also guarantee an assignable “attractivity” rate: from unsafe initial

conditions, the trajectories approach the safe set, in the sense of the measured CBF, at a rate no

slower than a user-assigned rate. Similarly, from safe initial conditions, the trajectories approach

the unsafe set, in the sense of the CBF, no faster than the assigned attractivity rate. The feature of

assignable attractivity is not present in the semiglobal version of safe extremum seeking (studied

in Chapter 3), where the semiglobality of convergence is achieved by slowing the adaptation.

We also demonstrate local convergence of the parameter to a neighborhood of the minimum

of the objective function constrained to the safe set. The ASfES algorithm and analysis are

multivariable, but we also extend the algorithm to a Newton-Based ASfES scheme (NB-ASfES)

which we show is only useful in the scalar case. The proven properties of the designs are

illustrated through simulation examples.
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2.1 Introduction

2.1.1 Motivation

We introduce an algorithm for Assignably Safe Extremum Seeking (ASfES), where both

a lower bound on the rate of convergence to the safe set and an upper bound on the rate of

convergence towards the unsafe set are user-assignable.

The algorithm combines traditional Extremum Seeking (ES) methods [52] [11] with the

quadratic program (QP)-based control barrier function (CBF) safety approach of [10]. This

work is essentially concerned with finding an algorithm which solves the following constrained

optimization problem:

min
𝜃

𝐽 (𝜃) subject to ℎ(𝜃) ≥ 0. (2.1)

The objective function 𝐽 should be minimized but safety, represented by an unknown, yet

measured, function ℎ(𝜃), should be maintained by keeping ℎ positive over the entire course of

time. The idea of “practical safety” has been described through the use of an inequality,

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (0))𝑒−𝑐𝑡 +𝑂 (𝜖) for all 𝑡 ∈ [0,∞), (2.2)

where 𝑐 > 0 is value we term the “attractivity” rate and 𝑂 (𝜖) is a violation of safety (in the

worst case 𝑂 (𝜖) is negative) which may be made small through appropriate choices of design

constants. This inequality and the value 𝑐 describes how quickly a trajectory, which starts safe —

𝜃 (0) ∈ {ℎ(𝜃) ≥ 0} — is allowed to approach the practical, marginally safe boundary ℎ =𝑂 (𝜖).

But, for trajectories which start unsafe — 𝜃 (0) ∈ {ℎ(𝜃) < 0} — it describes how fast (at least) a

trajectory converges to the safe set. It is therefore desirable to be able to assign the value 𝑐. In

our previous work [101], the value 𝑐 is fundamentally unknown to the user, and not assignable.

Because of the semiglobal design in [101], the parameter 𝜃 (𝑡) must travel slowly, in order to

achieve semiglobality, with a small adaptation gain. With a small adaptation gain, the estimates

of the unknown gradients of the optimization problem can be computed accurately such that
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convergence can be achieved from any initial condition — but this sacrifices the assignability of

the parameter 𝑐.

The design presented in this work allows the user to assign the value of 𝑐, achieving

practical safety with an assignable attractivity rate, giving more control by the user to specify

the dynamics of ℎ. In addition, we also demonstrate local convergence of the parameter 𝜃 to a

neighborhood of the constrained minimizer of the objective function on the safe set.

2.1.2 Safety-Filtered ES Applied on Average

The QP-CBF safety filter introduced in [9] is an obvious possibility for enforcing

constraints in ES. However, three problems arise.

First, the QP-CBF safety filter is nonsmooth. This makes it, in its original form,

incompatible with the classical averaging theory, in which the system’s vector field needs to be

at least continuously differentiable for the averaging theory to be applicable in the analysis. To

overcome this challenge, we introduce some important modifications in the QP-CBF safety filter.

In place of the nonsmooth maximum (max) operation, we introduce a smoothed approximation of

that operation. More importantly, in place of the division by a term like |𝐿𝑔ℎ |2 in the conventional

QP-CBF safety filter, we introduce a scalar Riccati differential equation, which generates the

reciprocal of |𝐿𝑔ℎ |2 dynamically, rather than by an algebraic division. To eliminate the need

for an analytically intractable computation of an average of a vector field with a maximum

operation, we introduce a filter of an estimate of the gradient of the map being optimized. All

these innovations in the QP-CBF approach are aimed not at improvements in the safeguarding

capabilities of the safety filter but are made for the sake of making the averaging analysis possible.

Second, classical ES teaches us that the gradient of the unknown map can be estimated

using perturbations. If the map’s gradient, used in the optimization, can be allowed to be

unknown and only estimated using measurements and perturbations, why would the barrier

function, namely, the constraint or safety characterization, not be allowed to also be functionally

unknown, and estimated using perturbations and measurements? This is indeed what we do. We
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only measure the value of the barrier function, we demodulate it using the same perturbation

signal as the one used to estimate the gradient of the map being optimized, and we generate an

estimate of the barrier function gradient. We then filter that estimate so that the hard-to-integrate

maximum operation does not act on the terms that need to be averaged.

Third, our design is motivated by a safety analysis of the time-averaged and filterless

version of the system. Our engineering interest is in the safety of the system actually implemented,

rather than of the system’s averaged and singularly perturbed reduced version. So, our analysis

needs to account for the minor violation in safety which arises due to the design being motivated by

the approximated model. We spend considerable effort capturing the effect of those approximation

errors on the lower bound of the CBF. Since the CBF can experience minor dips into the negative

range, i.e., minor violations of the safety boundary, what we achieve is, strictly speaking, not

safety but practical safety, a term we choose in the analogy with “practical asymptotic stability,”

where the attractivity is imperfect. The minor violations of the safety boundary are not fatal and

can be anticipated and prevented by adding a small negative constant bias in the measured value

of the barrier function. However, the amount of such a negative bias needed is not known a priori

because the functional form of the CBF is considered unknown.

2.1.3 Results and Contribution

The analysis we provide is based upon classical averaging and singular perturbation

techniques. The QP-CBF based safety filters presented in [10] are inherently nonsmooth, due to

the term max{𝑥,0} appearing in the safety filter term. Therefore our design contains a smooth

approximation of this quantity, max𝛿{𝑥} — a term which is inherently more conservative with

respect to safety, and makes our algorithm more conservative than the design presented in [101],

yielding convergence to a neighborhood of the constrained equilibrium with a bias favoring safety

(with conservativeness increasing with large 𝛿). Furthermore, our results are fundamentally local

in nature relying on more restrictive assumption of 𝐽 and ℎ than those used in [101], due to the

analysis techniques used. The design also relies on a dynamic estimate of the quantity | |𝐺ℎ | |−2
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by use of a Ricatti filter, reminiscent of [30].

What is gained by the ASfES algorithm presented here over its semiglobal cousin [101]

is that the user has enhanced control over the temporal behavior of ℎ. Namely, we show that

the value of 𝑐, the attractivity rate, in (2.2) can be assigned by the user. We achieve: 1) local,

practical asymptotic convergence to the constrained minimum of the objective function on the

safe set 2) practical convergence to the safe set at least as fast as the assignable attractivity, for

initial conditions which start unsafe 3) an approach towards the unsafe set, practically, no faster

than the assigned attractivity for initial conditions which start safe.

Furthermore, we also present an extension to a Newton-Based ASfES (NB-ASfES)

scheme which we show should only be used when considering a scalar parameter. NB-ASfES

shares all of the features of ASfES with the additional feature that the nominal convergence rate

of the parameter, 𝑘 , is also assigned. Therefore we achieve an assignable rate of convergence of

the parameter only if the assigned safety attractivity is not violated — otherwise the parameter

rate is slowed from its assigned rate in favor of maintaining the assigned safe attractivity rate.

This chapter elucidates a tradeoff: one can either use slow adaptation and achieve

semiglobality [101] or, as shown here, assign the attractivity rate locally.

The conference version of this work [100] studied the ASfES algorithm (see [100] for a

intuitive derivation of the dynamics), but with analysis only given in 1 dimension. This work

presents an extensive 𝑛 dimensional analysis. Other work in [101] studies a similar algorithm,

which is semiglobal in nature, but has nonassignable attractivity. Practical safety is a feature

shared by ASfES and the algorithm in [101]. Namely, that for an arbitrarily small violation of

safety (the 𝑂 (𝜖) term in (2.2)), there exist design constants which guarantee it for all time.

Organization: first we introduce the ASfES design and the main results in Sections 2.2

and 2.3, then we perform the averaging and convergence analysis in 𝑛 dimensions in Section 2.4.

In Section 2.5, the safety of the system is studied with the use of singular perturbation techniques,

showing that the attractivity rate, 𝑐, can be assigned a prior by the user. Finally, Section 2.7

presents simulations of the algorithms for 1 and 2 dimensions.
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2.2 Algorithm

2.2.1 Assignably Safe Extremum Seeking

We will first introduce the set of differential equations describing the ASfES algorithm in

𝑛 dimensions:

¤̂𝜃 = −𝑘𝐺𝐽 +𝛾max𝛿{𝑘𝐺𝑇
𝐽𝐺ℎ − 𝑐𝜂ℎ}𝐺ℎ (2.3)

¤𝐺𝐽 = −𝜔f𝐺𝐽 +𝜔f(𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡) (2.4)

¤𝜂𝐽 = −𝜔f𝜂𝐽 +𝜔f𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) (2.5)

¤𝐺ℎ = −𝜔f𝐺ℎ +𝜔f(ℎ(𝜃 (𝑡) + 𝑆(𝑡)) −𝜂ℎ)𝑀 (𝑡) (2.6)

¤𝜂ℎ = −𝜔f𝜂ℎ +𝜔fℎ(𝜃 (𝑡) + 𝑆(𝑡)) (2.7)

¤𝛾 = 𝜔f𝛾(1−𝛾 | |𝐺ℎ | |2) (2.8)

where the state variables 𝜃,𝐺𝐽 ,𝐺ℎ ∈ R𝑛 and 𝜂𝐽 , 𝜂ℎ, 𝛾 ∈ R so overall the dimension of the system

is 3𝑛+3. The map is evaluated at 𝜃, defined by

𝜃 (𝑡) = 𝜃 (𝑡) + 𝑆(𝑡) . (2.9)

The integer 𝑛 denotes the number of parameters one wishes to optimize over. The design

coefficients are 𝑘, 𝑐, 𝛿,𝜔f ∈ R>0. The perturbation signal 𝑆 and demodulation signal 𝑀 are given

by 𝑆𝑖 (𝑡) = 𝑎 sin(𝜔𝑖𝑡) and 𝑀𝑖 (𝑡) = 2
𝑎

sin(𝜔𝑖𝑡) the standard signals found in classical ES [11]. The

functions 𝐽, ℎ : R𝑛 ↦→ R are scalar valued functions defined over the optimization variables 𝜃.

To make the classical averaging theorem applicable, the algorithm must have a continuously

differential right-hand side. Because the standard maximum operation is nonsmooth in the

QP-CBF formulation we approximate it by the function max𝛿 : R ↦→ R>0 given by

max𝛿{𝑥} :=
1
2

(
𝑥 +

√︁
𝑥2 + 𝛿

)
≈ max{𝑥,0}, (2.10)
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-

Safety Filter

Figure 2.1. A block diagram of the ASfES algorithm. Removing the “Safety Filter” block
recovers the classical extremum seeking algorithm.

for a small parameter 𝛿 > 0. Note that max𝛿{𝑥} > max{𝑥,0} for all 𝑥 ∈ R.

2.2.2 Notation and Coordinate Transformations

The variable 𝜃, is transformed several times before averaging is performed, and then again

to the equilibrium of the constrained system. We summarize the various coordinates in Table 2.1

for clarity, using “param.” to mean “parameter”, “est.” to mean “estimate” or “estimation”, “err.”

to mean “error”, and “avg.” to mean “average”.

Table 2.1. Transformations of the parameter 𝜃.

Var. Definition Description

𝜃 (𝑡) n/a optimization param. (input to the map)
𝜃 (𝑡) = 𝜃 (𝑡) − 𝑆(𝑡) unconstrained param. est.
𝜃 (𝑡) = 𝜃 (𝑡) − 𝜃∗ unconstrained param. est. err.
𝜃a(𝑡) avg. of 𝜃 (𝑡) unconstrained avg. param est. err.
𝜃a,e eqm. of 𝜃a(𝑡) eqm. of unconstrained avg. param. est. err.

𝜃a
c (𝑡) = 𝜃a(𝑡) − 𝜃a,e constrained avg. param. est. err.

In unconstrained extremum seeking, the equilibrium 𝜃a,e = 0. This is not true for the

dynamics we present. The final transformation in Table 2.1 defines a new state with equilibrium

of zero 𝜃
a,e
c = 0. The rest of the states in the algorithm, 𝐺𝐽 , 𝜂𝐽 , 𝐺ℎ, 𝜂ℎ, and 𝛾, undergo fewer
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transformations than 𝜃.

We use the variable ‘𝑥’ to describe the full state of the solutions or equilibrium:

𝑥 = [𝜃;𝐺𝐽 ;𝜂𝐽 ;𝐺ℎ;𝜂ℎ;𝛾], (2.11)

𝑥 = [𝜃;𝐺𝐽 ;𝜂𝐽 ;𝐺ℎ;𝜂ℎ;𝛾], (2.12)

𝑥 = [𝜃;𝐺𝐽 ;𝜂𝐽 ;𝐺ℎ;𝜂ℎ;𝛾], (2.13)

𝑥a = [𝜃a;𝐺a
𝐽 ;𝜂a

𝐽 ;𝐺a
ℎ;𝜂a

ℎ;𝛾a], (2.14)

𝑥a,e = [𝜃a,e;𝐺a,e
𝐽

;𝜂a,e
𝐽

;𝐺a,e
ℎ

;𝜂a,e
ℎ

;𝛾a,e], (2.15)

𝑥a
𝑐 = [𝜃a

c;𝐺a
𝐽,c;𝜂a

ℎ,c;𝐺a
ℎ,c;𝛾a

c;𝜂a
𝐽,c] . (2.16)

Notation: the superscript “a” always denotes a variable defined from an averaged system, and

the superscript “e” always denotes an equilibrium value. For example, 𝑥a,e is the equilibrium of

the state 𝑥a, which is the averaged version of 𝑥 (shown in the next section). Here, “averaged” is

in the sense in the standard averaging theory [44]. The subscript “c” relate to the “constrained”

dynamics of ASfES, shown later to be defined as 𝑥a
𝑐 := 𝑥a − 𝑥a,e. Note that the ordering of

the state variables have also been changed in 𝑥a
𝑐, which will help identify block structures

in a linearization procedure later on. Also, when stacking vectors 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑚 we

denote 𝑧 = [𝑥; 𝑦] := [𝑥1, ..., 𝑥𝑛, 𝑦1, ..., 𝑦𝑚]𝑇 ∈ R𝑛+𝑚. We define the signum function as: sgn(𝑥) :=

−1 for 𝑥 < 0,0 for 𝑥 = 0,1 for 𝑥 > 0. We define the unit step function as: 𝑢(𝑥) := 0 for 𝑥 <

0,0.5 for 𝑥 = 0,1 for 𝑥 > 0.

2.3 Main Results

We consider the analysis of ASfES under the following assumptions.

Assumption 2.1. With the symmetric Hessian matrix 𝐻 ≻ 0 and unconstrained minimum 𝜃∗ ∈ R𝑛,
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the objective function is unknown and has the quadratic form

𝐽 (𝜃) = 𝐽∗ + 1
2
(𝜃 − 𝜃∗)𝑇𝐻 (𝜃 − 𝜃∗). (2.17)

Assumption 2.2. With ℎ0 ∈ R and ℎ1 ∈ R𝑛≠0, the barrier function is unknown and has the linear

form

ℎ(𝜃) = ℎ0 + ℎ𝑇1 (𝜃 − 𝜃∗). (2.18)

Since the results are local, a linear form of the barrier function is assumed essentially

with no loss of generality. In (2.18), ℎ0 ≥ 0 implies the unconstrained minimum of 𝐽 is safe, and

ℎ0 < 0 implies the unconstrained minimum is unsafe.

Assumption 2.3. The design constants are chosen as 𝜔f,𝜔𝑖, 𝛿, 𝑎, 𝑘, 𝑐 > 0, where 𝜔𝑖/𝜔 𝑗 are

rational with frequencies 𝜔𝑖 chosen such that 𝜔𝑖 ≠ 𝜔 𝑗 and 𝜔𝑖 +𝜔 𝑗 ≠ 𝜔𝑘 for distinct 𝑖, 𝑗 , and 𝑘 .

The first main result of this chapter concerns convergence of the parameter to the

(constrained) minimizer of the objective function 𝐽 on the safe set.

Theorem 2.1 (Local Convergence to the Safe Optimum). Under Assumptions 2.1–2.3, there

exists positive constants 𝜌,𝜔∗ such that if | |𝑥(0) − 𝑥a,e | | < 𝜌 then for all 𝜔 ∈ [𝜔∗,∞),

limsup
𝑡→∞

𝐽 (𝜃 (𝑡)) = 𝐽∗𝑠 +𝑂 (1/𝜔+ 𝑎 + 𝛿), (2.19)

where 𝐽∗𝑠 is the minimum of 𝐽 (𝜃) on the safe set C = {𝜃 : ℎ(𝜃) ≥ 0}.

The local region | |𝑥(0) − 𝑥a,e | | < 𝜌 describes initial conditions which are close to the

constrained minimizer. This implies 𝜃 (0) must be close to 𝜃∗ + 𝜃a,e — a quantity which is the

global minimizer (𝜃∗) and a large offset, describing the shift of the parameter into the safe set.

Additionally the filtered estimates 𝐺𝐽 , 𝜂𝐽 ,𝐺ℎ, 𝜂ℎ, 𝛾 must also lie close to the true values.

In the second main result, we show that the violation of safety of the original system is of

order 𝑂 (1/𝜔+1/𝜔f + 𝑎) and the decay of the time dependent term has a time constant 𝑐, which
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is specified by the user and contained in the algorithm dynamics (2.3) - (2.8).

Theorem 2.2 (Practical Safety with Assignable Attractivity Rate). Under Assumptions 2.1–2.3,

there exists positive constants 𝜌,𝜔∗
f ,𝜔

∗ such that if | |𝑥(0) − 𝑥a,e | | < 𝜌, then for all 𝜔f ∈ [𝜔∗
f ,∞)

and 𝜔 ∈ [𝜔∗,∞),

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (0))e−𝑐𝑡 +𝑂 (1/𝜔f +1/𝜔+ 𝑎). (2.20)

2.4 Convergence

The next subsections present the main steps in deriving Theorem 2.1. First an average

system is derived, with a unique equilibrium, and then linearization is performed to conclude the

convergence result.

2.4.1 Deriving the Average System

With the change of variables, introducing 𝜃 and 𝜃, we have the relations

𝜃 (𝑡) = 𝜃 (𝑡) − 𝜃∗ (2.21)

𝜃 (𝑡) = 𝜃 (𝑡) + 𝑆(𝑡) = 𝜃 (𝑡) + 𝑆(𝑡) + 𝜃∗ (2.22)

𝜃 (𝑡) − 𝜃∗ = 𝜃 (𝑡) + 𝑆(𝑡) (2.23)

where

𝑆𝑖 (𝑡) = 𝑎 sin(𝜔𝑖𝑡), (2.24)
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and with the time transformation 𝜏 = 𝜔𝑡 we have

𝜔
𝑑𝑥

𝑑𝜏
=



−𝑘𝐺𝐽 +𝛾max𝛿{𝑘𝐺𝑇
𝐽
𝐺ℎ − 𝑐𝜂ℎ}𝐺ℎ

−𝜔f𝐺𝐽+

𝜔f(𝐽 (𝜃 + 𝑆( 𝜏𝜔 ) + 𝜃
∗) −𝜂𝐽)𝑀 ( 𝜏

𝜔
)

−𝜔f𝜂𝐽 +𝜔f𝐽 (𝜃 + 𝑆( 𝜏𝜔 ) + 𝜃
∗)

−𝜔f𝐺ℎ+

𝜔f(ℎ(𝜃 + 𝑆( 𝜏𝜔 ) + 𝜃
∗) −𝜂ℎ)𝑀 ( 𝜏

𝜔
)

−𝜔f𝜂ℎ +𝜔fℎ(𝜃 + 𝑆( 𝜏𝜔 ) + 𝜃
∗)

𝜔f𝛾(1−𝛾 | |𝐺ℎ | |2)



(2.25)

= 𝑓 (𝑥, 𝜏). (2.26)

Now the system is in the correct form to perform averaging. We express the the signals 𝑆 and 𝑀

with frequencies scaled by 𝜔 as 𝑆𝑖 ( 𝜏𝜔 ) = 𝑎 sin(𝜔′
𝑖
𝜏) and 𝑀𝑖 (𝜏) = 2

𝑎
sin(𝜔′

𝑖
𝜏), with 𝜔𝑖 := 𝜔𝜔′

𝑖
. We

compute the average of the right-hand side given by the formula (2.26), taking the period to be Π

given as

Π = 2𝜋×LCM
{

1
𝜔′
𝑖

}
, 𝑖 ∈ {1,2, ..., 𝑛}, (2.27)

where LCM denotes the least common multiple. We compute the average system as

𝑓 a(𝑥a) :=
1
Π

∫ Π

0
𝑓 (𝑥a, 𝜏)𝑑𝜏, (2.28)

𝑥a := [𝜃a;𝐺a
𝐽 ;𝜂a

𝐽 ;𝐺a
ℎ;𝜂a

ℎ;𝛾a] . (2.29)
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Original System
Average System

(Stable)

Reduced Order System
(Safe)

approx.
(averaging)

approx.
(sing. pert.)

implies practical safety

Figure 2.2. Road map of the analysis steps for ASfES. The approximation between the original
system and average is performed via linearization of the average system (Section 2.4) and the
approximation between the average system and the reduced order system is performed via singular
perturbation (Section 2.5) by taking 𝜔f large.

Using classical averaging [44], we arrive at the average system

𝜔
𝑑𝑥a

𝑑𝜏
=



−𝑘𝐺a
𝐽
+𝛾amax𝛿{𝑘𝐺a𝑇

𝐽
𝐺a

ℎ
− 𝑐𝜂a

ℎ
}𝐺a

ℎ

−𝜔f𝐺
a
𝐽
+𝜔f𝐻𝜃a

−𝜔f𝜂
a
𝐽
+𝜔f(𝐽 (𝜃a + 𝜃∗) + 𝑎2

4 Tr(𝐻))

−𝜔f𝐺
a
ℎ
+𝜔fℎ1

−𝜔f𝜂
a
ℎ
+𝜔fℎ(𝜃a + 𝜃∗)

𝜔f𝛾
a(1−𝛾a | |𝐺a

ℎ
| |2)



(2.30)

= 𝑓 a(𝑥a). (2.31)
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2.4.2 Equilibrium of the Average System

We find the equilibrium of the average system (2.31), taking the positive equilibrium

point of 𝛾a. Immediately we calculate the following equilibria

𝜂
a,e
𝐽

= 𝐽∗ + 1
2
𝜃a,e𝑇𝐻𝜃a,e + 𝑎2

4
Tr(𝐻) (2.32)

𝐺
a,e
ℎ

= ℎ1 (2.33)

𝛾a,e =
1

| |ℎ1 | |2
. (2.34)

for three components of the system state. And we have the following relations:

0 = −𝑘𝐺a,e
𝐽

+𝛾a,emax𝛿{𝑘𝐺a,e𝑇
𝐽

𝐺
a,e
ℎ
− 𝑐𝜂

a,e
ℎ
}𝐺a,e

ℎ
(2.35)

𝐺
a,e
𝐽

= 𝐻𝜃a,e (2.36)

𝜃a,e = 𝐻−1𝐺a,e
𝐽

(2.37)

𝜂
a,e
ℎ

= ℎ(𝜃∗ + 𝜃a,e) = ℎ0 + ℎ𝑇1 𝜃
a,e. (2.38)

From (2.35) we have the following quadratic vector equation in 𝐺
a,e
𝐽

𝑘 | |ℎ1 | |2𝐺a,e
𝐽

= ℎ1max𝛿 (𝑘𝐺a,e𝑇
𝐽

ℎ1 − 𝑐ℎ0 − 𝑐ℎ𝑇1𝐻
−1𝐺a,e

𝐽
). (2.39)

To solve (2.39), we use the following fact: for some 𝜈 > 0 we have

𝑘 | |ℎ1 | |2𝐺a,e
𝐽

= ℎ1𝜈 (2.40)

because max𝛿 (𝑥) > 0. Writing 𝐺
a,e
𝐽

= ℎ1
𝜈

𝑘 | |ℎ1 | |2
, and using the definition of max𝛿, we achieve the

expansion of (2.39):

ℎ1𝜈 = ℎ1
1
2
(𝜈− 𝑐ℎ0 − 𝑑𝜈) + ℎ1

1
2
√︁
(𝜈− 𝑐ℎ0 − 𝑑𝜈)2 + 𝛿 (2.41)
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letting the quantity 𝑑 > 0 (because 𝐻 ≻ 0) be

𝑑 =
𝑐

𝑘 | |ℎ1 | |2
ℎ𝑇1𝐻

−1ℎ1. (2.42)

After solving for the positive solution of the quadratic equation in 𝜈, the (unique) equilibrium of

the average system can be written as below

𝜃a,e = 𝐻−1𝐺a,e
𝐽
, (2.43)

𝐺
a,e
𝐽

=
|ℎ0 |

2ℎ𝑇1𝐻−1ℎ1

(
−sgn(ℎ0) +

√︄
1+ 𝛿 𝑑

𝑐2ℎ2
0

)
ℎ1, (2.44)

𝜂
a,e
𝐽

= 𝐽∗ + 𝑎2

4
Tr(𝐻)+

ℎ2
0

8ℎ𝑇1𝐻−1ℎ1

(
−sgn(ℎ0) +

√︄
1+ 𝛿 𝑑

𝑐2ℎ2
0

)2

,

(2.45)

𝐺
a,e
ℎ

= ℎ1, (2.46)

𝜂
a,e
ℎ

=
|ℎ0 |
2

(
sgn(ℎ0) +

√︄
1+ 𝛿 𝑑

𝑐2ℎ2
0

)
, (2.47)

𝛾a,e =
1

| |ℎ1 | |2
, . (2.48)

We see that no matter the sign of ℎ0, this equilibrium always lies in the interior of the

safe region because 𝜂
a,e
ℎ

= ℎ(𝜃∗ + 𝜃a,e) > 0. Also, we can think of 𝜂a,e
𝐽

as the equilibrium value

of the filtered measurement of the objective function. It settles to 𝐽∗ with a small error due to

the dithering amplitude, and a possibly large offset if ℎ0 < 0, resulting from the safety dynamics

constraining the equilibrium to the safe set.
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2.4.3 Linearization

Using the in error variables of the average system (to the constrained equilibrium) we

define the following coordinates with new ordering as

𝑥a
𝑐 (𝑡) := [𝜃a(𝑡) − 𝜃a,e;𝐺a

𝐽 (𝑡) −𝐺
a,e
𝐽

;𝜂a
ℎ (𝑡) −𝜂

a,e
ℎ

;

𝐺a
ℎ (𝑡) −𝐺

a,e
ℎ

;𝛾a(𝑡) −𝛾a,e;𝜂a
𝐽 (𝑡) −𝜂

a,e
𝐽
]

= [𝜃a
c (𝑡);𝐺a

𝐽,c(𝑡);𝜂
a
ℎ,c(𝑡);𝐺

a
ℎ,c(𝑡);𝛾

a
c (𝑡);𝜂a

𝐽,c(𝑡)], (2.49)

and the system

𝜔
𝑑𝑥a

𝑐

𝑑𝜏
= 𝑔(𝑥a

𝑐), (2.50)

from (2.31). We have changed the ordering of the dynamic equations to help identify block

triangular structures and have therefore have defined the system under with a new function 𝑔,

instead of 𝑓 a. For example, 𝜔 ¤𝐺a
ℎ,c = 𝑔3(𝑥a

𝑐) = −𝜔f(𝐺a
ℎ,c +𝐺

a,e
ℎ
) +𝜔fℎ1, with a slight abuse of

notation as 𝑔𝑖 denotes the the vector valued function associated with the dynamics of the 𝑖th

vectored valued components of 𝑥a
𝑐 (𝑡) listed in (2.49).

The Jacobian matrix of (2.50) which is 𝐽 =
𝜕𝑔

𝜕𝑥a
𝑐
, is a matrix of size (3𝑛+3) × (3𝑛+3)

25



with structure:

𝐽 =



0
𝜕𝑔1
𝜕𝐺a

𝐽,c

𝜕𝑔1
𝜕𝜂a

ℎ,c

𝜕𝑔1
𝜕𝐺a

ℎ,c

𝜕𝑔1
𝜕𝛾a

c
0

𝜕𝑔2

𝜕𝜃a
c

𝜕𝑔2
𝜕𝐺a

𝐽,c
0 0 0 0

𝜕𝑔3

𝜕𝜃a
c

0
𝜕𝑔3
𝜕𝜂a

ℎ,c
0 0 0

0 0 0
𝜕𝑔4
𝜕𝐺a

ℎ,c
0 0

0 0 0
𝜕𝑔5
𝜕𝐺a

ℎ,c

𝜕𝑔5
𝜕𝛾a

c
0

𝜕𝑔6

𝜕𝜃a
c

0 0 0 0
𝜕𝑔6
𝜕𝜂a

𝐽,c



(2.51)

Evaluating at the equilibrium yields

𝐽 |𝑥a
𝑐=0 =


𝐽11 |𝑥a

𝑐=0 𝐽12 |𝑥a
𝑐=0 0

0 𝐽22 |𝑥a
𝑐=0 0

𝐽31 |𝑥a
𝑐=0 0 𝐽33 |𝑥a

𝑐=0


. (2.52)

The eigenvalues of this block triangular matrix are the eigenvalues of the diagonal blocks.

Therefore we analyze 𝐽11 of size (2𝑛+1) × (2𝑛+1), 𝐽22 of size (𝑛+1) × (𝑛+1), and the scalar

𝐽33 separately. We can easily compute

𝐽33 |𝑥a
𝑐=0 =

𝜕𝑔6
𝜕𝜂a

𝐽,c

�����
𝑥a
𝑐=0

= −𝜔f (2.53)
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and the block 𝐽22 evaluated at the origin can be written as

𝐽22 |𝑥a
𝑐=0 =


−𝜔f𝐼 0

𝑙 −𝜔f

 (2.54)

where 𝑙 need not be calculated. Because this matrix is itself block triangular, it’s eigenvalues lie

on the diagonal and are 𝜆𝑖 = −𝜔f for 𝑖 ∈ {1,2, ..., 𝑛+1}, therefore (2.54) is Hurwtiz. We have

discovered 2𝑛+1 eigenvalues equal to −𝜔f.

After careful algebra and differentiation we express

𝐽11 |𝑥a
𝑐=0 =


0 −𝑀 −𝑐𝛼 | |ℎ1 | |−2ℎ1

𝜔f𝐻 −𝜔f𝐼 0

𝜔fℎ
𝑇
1 0 −𝜔f


, (2.55)

with the symmetric, positive definite matrix 𝑀 ≻ 0 and the scalar 0 < 𝛼 < 1 defined as

𝑀 = 𝑘

(
𝐼 −𝛼

ℎ1ℎ
𝑇
1

| |ℎ1 | |2

)
, (2.56)

𝛼 =
1
2
©­­«

𝑘𝑐1 | |ℎ1 | |2 − 𝑐𝜂
a,e
ℎ√︃

(𝑘𝑐1 | |ℎ1 | |2 − 𝑐𝜂
a,e
ℎ
)2 + 𝛿

+1
ª®®¬ , (2.57)

𝑐1 =
|ℎ0 |

2ℎ𝑇1𝐻−1ℎ1

(
−sgn(ℎ0) +

√︄
1+ 𝛿 𝑑

𝑐2ℎ2
0

)
. (2.58)

We provide an extensive analysis of matrices in the form of (2.55) in Lemma 2.2 the

appendix, but present the most essential result below.

Corollary 2.1. Under Assumptions 2.1–2.3 and for 𝛼 ∈ [0,1], the matrix 𝐽11 |𝑥a
𝑐=0 in (2.55) is

always Hurwtiz, and therefore the Jacobian of the constrained average error system 𝐽11 |𝑥a
𝑐=0 in

(2.52) is always Hurwtiz.

This result is slightly more general than what absolutely necessary for the convergence
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analysis because it gives results for 𝛼 potentially being equal to zero or one, even though the

assumption of 𝛿 > 0 precludes this possibility. This is still nonetheless useful knowledge because

it tells us that as 𝛿→ 0, the eigenvalues of the linearization do not tend to undesirable values and

provides hope for the future in developing a nonsmooth version of this algorithm with 𝛿 = 0.

From Theorem 10.4 in [44], Corollary 2.1, and Proposition 2.5 given in the appendix, we

conclude the following results.

Proposition 2.1 (Approximation by the Average System). Consider the exponentially stable

equilibrium point 𝑥a,e (2.43)–(2.48) of the average system in (2.31). Under Assumptions 2.1–2.3,

there exists positive constants 𝜌,𝜔∗ such that if | |𝑥(0) − 𝑥a,e | | < 𝜌 then for all 𝜔 ∈ [𝜔∗,∞),

| |𝑥a(𝑡) − 𝑥(𝑡) | | =𝑂 (1/𝜔) for all 𝑡 ∈ [0,∞), (2.59)

| |𝜃 (𝑡) − (𝜃a(𝑡) + 𝜃∗) | | =𝑂 (1/𝜔+ 𝑎) for all 𝑡 ∈ [0,∞). (2.60)

The equilibrium of the average system (2.31), given in (2.43)–(2.48), resides in the

interior of the safe set regardless of whether the unconstrained minimizer 𝜃min of 𝐽 lies in the

safe set or not. One can show this by evaluating ℎ in the original coorindates at the value 𝜃a,e.

Additionally, as evident from (2.47), the parameter 𝛿 in the softened max operation, (2.10),

creates a bias in the equilibrium that favors safety.

The proof of Theorem 2.1 utilizes the results of Section 2.4, and is shown in the appendix.

2.5 Safety

This section provides a description of safety, through the use of singular perturbation

results. The following results also motivates the addition the max𝛿 safety term which differentiates

ASfES from standard extremum seeking. In the previous section we showed that through a

linearization of the average system, the dynamics of ASfES are locally stable in 𝑛 dimensions.

We also showed that the average system and the original system are close. In the this section,
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we begin by showing that the parameter 𝜃a(𝑡) of the average system is close to a reduced order

model, denoted by its parameter 𝜃r(𝑡) - this reduced model is created by taking the the filter gains

𝜔f →∞. These results are used in the proof of Theorem 2.2 shown in the appendix. See Fig. 2.2

for a visual depiction of the high level steps in the analysis.

Consider the singular perturbation as 𝜔f approaches ∞. We can express (2.50) in the

form of the standard singular perturbation model with 𝜖 = 1
𝜔f

in the original time 𝑡 = 𝜔/𝜏 with

the original ordering:

¤̃𝜃a
c = 𝑤(𝑧), (2.61)

𝜖 ¤𝑧 = 𝑝(𝜃a
c, 𝑧), (2.62)

where 𝑧 = [𝐺a
𝐽,c;𝜂a

𝐽,c;𝐺a
ℎ,c;𝜂a

ℎ,c;𝛾a
c] and

𝑤(𝑧) = −𝑘 (𝐺a
𝐽,c +𝐺

a,e
𝐽
) + (𝛾a

c +𝛾a,e) (𝐺a
ℎ,c +𝐺

a,e
ℎ
)max𝛿{𝛽}, (2.63)

𝑝(𝜃a, 𝑧) =



−𝜔f(𝐺a
𝐽,c +𝐺

a,e
𝐽
) +𝜔f𝐻 (𝜃a

c + 𝜃a,e)

−𝜔f(𝜂a
𝐽,c +𝜂

a,e
𝐽
) +𝜔f(𝐽 (𝜃a

c + 𝜃a,e + 𝜃∗)+
𝑎2

4 Tr(𝐻))

−𝜔f(𝐺a
ℎ,c +𝐺

a,e
ℎ
) +𝜔fℎ1

−𝜔f(𝜂a
ℎ,c +𝜂

a,e
ℎ
) +𝜔fℎ0 +𝜔 𝑓 ℎ1(𝜃a

c + 𝜃a,e + 𝜃∗)

𝜔f(𝛾a
c +𝛾a,e) (1− (𝛾a

c +𝛾a,e) | |𝐺a
ℎ,c +𝐺

a,e
ℎ
| |2)



, (2.64)

with the quantity

𝛽 = 𝑘 (𝐺a
𝐽,c +𝐺

a,e
𝐽
)𝑇 (𝐺a

ℎ,c +𝐺
a,e
ℎ
) − 𝑐(𝜂a

ℎ,c +𝜂
a,e
ℎ
) (2.65)

In an effort to meet the conditions of Theorem 11.2 ‘Singular Perturbation on the Infinite Interval’

in [44], we must show that the reduced model and the boundary layer model are exponentially
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stable. Let us denote the root of 0 = 𝑝(𝜃a
c, 𝑧) as the quasi-steady state

𝑧 =



𝐺a
𝐽,c

𝜂a
𝐽,c

𝐺a
ℎ,c

𝜂a
ℎ,c

𝛾a
c


= 𝑟 (𝜃a

c) =



𝐻𝜃a
c

1
2𝜃

a𝑇
c 𝐻𝜃a

c

0

ℎ𝑇1 𝜃
a
c

0


. (2.66)

The reduced model is 𝑛-dimensional differential equation

¤𝜃r = 𝑤(𝑟 (𝜃r)). (2.67)

To show stability of the reduced order model we must determine if the Jacobian

𝐽𝑟 =
𝜕𝑤(𝑟 (𝜃r))

𝜕𝜃r

����
𝜃r=0

(2.68)

is Hurwtiz. We are able to use the calculations in Section 2.4.3 to help us differentiate, using the

terms

𝜕𝑔1(𝑥a
𝑐)

𝜕𝐺a
𝐽,c

�����
𝑥a
𝑐=0

= −𝑀 (2.69)

𝜕𝑔1(𝑥a
𝑐)

𝜕𝜂a
ℎ,c

�����
𝑥a
𝑐=0

= −𝑐𝛼 | |ℎ1 | |−2ℎ1 (2.70)

from (2.55). Equation (2.69) is simply 𝜕𝑤(𝑧)
𝜕𝐺a

𝐽,c
and (2.70) is 𝜕𝑤(𝑧)

𝜕𝜂a
ℎ,c

, both evaluated at 𝑧 = 0. Now

consider the following boundary layer variable as functions of 𝜃r as follows: 𝐺a
𝐽,c =𝐺a

𝐽,c(𝜃r) =𝐻𝜃r
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and 𝜂a
ℎ,c = 𝜂a

ℎ,c(𝜃r) = ℎ𝑇1 𝜃r. Therefore we can write the RHS of (2.67) as

𝑤(𝑟 (𝜃r)) = −𝑘 (𝐺a
𝐽,c(𝜃r) +𝐺a,e

𝐽
) + (𝛾a

c +𝛾a,e) (𝐺a
ℎ,c +𝐺

a,e
ℎ
)max𝛿{𝛽}, (2.71)

𝛽 = 𝑘 (𝐺a
𝐽,c(𝜃r) +𝐺a,e

𝐽
)𝑇 (𝐺a

ℎ,c +𝐺
a,e
ℎ
) − 𝑐(𝜂a

ℎ,c(𝜃r) +𝜂a,e
ℎ
) (2.72)

where we have yet to use the relations in (2.66). Computing the Jacobian, and linearizing (2.67),

we can write (2.68) as

𝐽𝑟 =

(
𝜕𝑤(𝑟 (𝜃r))
𝜕𝐺a

𝐽,c

𝜕𝐺a
𝐽,c

𝜕𝜃r
+ 𝜕𝑤(𝑟 (𝜃r))

𝜂a
ℎ,c

𝜂a
ℎ,c

𝜕𝜃r

)�����
𝜃r=0

(2.73)

=
𝜕𝑤(𝑟 (𝜃r))
𝜕𝐺a

𝐽,c

�����
𝜃r=0

𝜕𝐺a
𝐽,c

𝜕𝜃r
+ 𝜕𝑤(𝑟 (𝜃r))

𝜂a
ℎ,c

�����
𝜃r=0

𝜂a
ℎ,c

𝜕𝜃r
(2.74)

= −𝑀𝐻 − 𝑐𝛼
ℎ1ℎ

𝑇
1

| |ℎ1 | |2
(2.75)

By Lemma 2.1 we conclude the eigenvalues of 𝐽𝑟 are real and negative and the reduced model is

exponentially stable at the origin.

The boundary layer model is

¤𝑧b = 𝑝(𝜃, 𝑧b + 𝑟 (𝜃)) (2.76)

for a fixed 𝜃. The boundary layer model can be shown to be

¤𝑧b =



−𝑧b,1

−𝑧b,2

−𝑧b,3

−𝑧b,4

(𝑧b,5 + 1
| |ℎ1 | |2

) (1− (𝑧b,5 + 1
| |ℎ1 | |2

) | |𝑧b,3 + ℎ1 | |2)


. (2.77)

with a slight notation abuse denoting 𝑧b,i as either a vector or scalar variable corresponding with
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the vectors and scalars 𝐺a
𝐽,c, 𝜂

a
𝐽,c, ... , 𝛾a

c . It is evident by inspection that the linearization of (2.77)

at the origin has 2𝑛+3 eigenvalues at −1. (Note that the linearization of the last row will yield a

cross term due to 𝑧b,3, but since the linearization is triangular we need only consider the diagonal

entrees.) Hence, the boundary layer model is exponentially stable.

The reduced order model in (2.78)

¤𝜃r = −𝑘 (𝐻𝜃r +𝐺a,e
𝐽
) + 1

| |ℎ1 | |2
max𝛿{𝑘 (𝐻𝜃r +𝐺a,e

𝐽
)𝑇ℎ1 − 𝑐(ℎ𝑇1 𝜃r +𝜂a,e

ℎ
)}, (2.78)

can be expressed in the coordinates 𝜃r = 𝜃r − 𝜃a,e, as

¤̃𝜃r = −𝑘𝐻𝜃r +
ℎ1

| |ℎ1 | |2
max𝛿{𝑘𝜃𝑇r 𝐻ℎ1 − 𝑐(ℎ0 + ℎ𝑇1 𝜃r)}, (2.79)

using the relations 𝜂a,e
ℎ

= ℎ0 + ℎ𝑇1𝐻
−1𝐺a,e𝑇

𝐽
and 𝜃a,e = 𝐻−1𝐺a,e

𝐽
. We can now state the following

result having satisfied the conditions in [44].

Proposition 2.2 (Singular Perturbation of Average System). Let the solution of (2.31) be given

by 𝑥a(𝑡), with its first component 𝜃a(𝑡) in the time scale 𝑡, the solution of reduced model (2.79)

be given by 𝜃r(𝑡), and suppose Assumptions 2.1–2.3 hold. Then there exist positive constants

𝜇1, 𝜇2 and 𝜔∗
f such that for all

| |𝜃a
c (0) | | < 𝜇1, | |𝑧(0) − 𝑟 (𝜃a

c (0)) | | < 𝜇2, 𝜔f > 𝜔∗
f (2.80)

the singular perturbation problem (2.61)–(2.62) has a unique solution for all 𝑡 > 0 and

| |𝜃a(𝑡) − 𝜃r(𝑡) | | =𝑂 (1/𝜔f) for all 𝑡 ∈ [0,∞). (2.81)

We omit other bounds given by [44] (those based on the quasi-steady state (2.66)) as they

do not relate to safety. Proposition 2.1 describes closeness of the original system with that of the

average system. Proposition 2.2 describes a closeness in the average system and the reduced
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model of the average system (2.78) (with 𝜔f large). Now we show the reduced order model (2.79)

is indeed safe.

Proposition 2.3 (Safety of the Reduced System). Under the dynamics of the system (2.79), the set

{𝜃r ∈ R : ℎ(𝜃r + 𝜃∗) ≥ 0} is forward invariant and ℎ(𝜃r(𝑡) + 𝜃∗) ≥ ℎ(𝜃r(0) + 𝜃∗)𝑒−𝑐𝑡 for all 𝑡 ≥ 0.

Proof. We can verify that (2.79) renders the set forward invariant by showing ¤ℎ(𝜃r+ 𝜃∗) +𝑐ℎ(𝜃r+

𝜃∗) ≥ 0 [10]:

¤ℎ+ 𝑐ℎ = −𝑘ℎ𝑇1𝐻𝜃r + 𝑐ℎ(𝜃r + 𝜃∗) +max𝛿{𝑘ℎ𝑇1𝐻𝜃r − 𝑐ℎ(𝜃r + 𝜃∗)} > 0 (2.82)

where we use the relation ℎ0 + ℎ𝑇1 𝜃r = ℎ(𝜃r + 𝜃∗). The inequality holds because for any 𝑥,

−𝑥 +max𝛿{𝑥} > 0.

The safety of the reduced system, and its closeness to that of the average system provide

the key intermediate results in achieving Theorem 2.2 — the proof is shown in the appendix.

2.6 Newton-Based Assignably Safe Extremum Seeking

One might imagine that if we can assign a bound on the rate of ℎ, while conducting

gradient-based optimization, then we should be assign safety when performing Newton-based

optimization [30], which has an assignable rate of convergence of the parameter itself. A

Newton-Based Assignably Safe ES (NB-ASfES) scheme would conceivably achieve 1) assignable

safety and 2) assignable convergence of the parameter. In NB-ASfES we hope for a convergence

rate of the parameter to be assigned a rate 𝑘 when the assigned safety condition (with rate 𝑐) is

not violated – and if the safety condition is violated, the convergence of the parameter is such

that the safety rate assignment is maintained. We show in this section that this is not possible

with the NB-ASfES approach in multiple dimensions, because the NB-ASfES scheme will not

solve the optimization problem in (2.1) in general. Furthermore, we also show that a NB-ASfES

scheme is only useful for 𝑛 = 1.
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To understand the basic dynamics of the ASfES scheme, we can think of the algorithm

approximating the following dynamics:

¤𝜃 = 𝑢0 +
∇ℎ(𝜃)

| |∇ℎ(𝜃) | |2
max{−𝑢𝑇0∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}, (2.83)

with 𝑢0 = −𝑘∇𝐽 (𝜃). The form of (2.83) guarantees safety and can be derived for a nominal

control law 𝑢0 using the standard QP formulation given in [10]. Now consider a NB-ASfES

controller, with the nominal control 𝑢0 = −𝑘𝐻−1∇𝐽 (𝜃) = −𝑘 (𝜃 − 𝜃∗) where 𝑘 > 0 is the assigned

rate of convergence. Note that in the extremum seeking form of (2.83), the NB-ASfES algorithm

contains a state Γ(𝑡) which provides the estimate of 𝐻−1 [30].

Consider the case of ℎ0 < 0 where the minimizer of 𝐽 on {ℎ(𝜃) ≥ 0} is unsafe and given

by

𝜃smin =
|ℎ0 |𝐻−1ℎ1

ℎ𝑇1𝐻
−1ℎ1

+ 𝜃∗. (2.84)

See the proof of Proposition 2.5 in the Appendix for this fact. Now let us ask the question: is the

equilibrium of (2.83) equal to 𝜃smin when 𝑢0 = −𝑘 (𝜃 − 𝜃∗) and ℎ0 < 0 under Assumptions 2.1 -

2.3? Solving for

−𝑘 (𝜃smin − 𝜃∗) + ∇ℎ(𝜃smin)
| |∇ℎ(𝜃smin | |2

max{𝑘 (𝜃smin − 𝜃∗)𝑇∇ℎ(𝜃smin) − 𝑐ℎ(𝜃smin),0} = 0 (2.85)

yields the condition

𝐻−1ℎ1 =
ℎ1𝐻

−1ℎ1

| |ℎ1 | |2
ℎ1. (2.86)

This is nothing more than an eigenvector equation stating that ℎ1 must be an eigenvector of

𝐻−1. Because 𝐻 and 𝐻−1 share eigenvectors, ℎ1 must also be an eigenvector of 𝐻. This is a

restrictive condition, stating that the gradient of ℎ, must point along one of the principle axes of

the ellipsoids formed by the levels of 𝐽.

One can also come to the conclusion that NB-ASfES will not solve the constrained
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optimization problem with some geometric intuition for the case 𝑛 = 2. Intuition says that ASfES,

with the nominal control law of 𝑢0 = −𝑘∇𝐽, causes trajectories to descend down the level curves

of 𝐽, finding the smallest level curve of 𝐽 which intersects the safe set at some point 𝑝 = 𝜃smin.

The level curve 𝐽 (𝜃) = 𝐽 (𝜃smin) will in general be an ellipse in 2 dimensions. If the nominal

control law 𝑢0 = −𝑘 (𝜃 − 𝜃∗) is used instead, trajectories will now travel down level curves of

some other function 𝐽 (𝜃) = 1
2 (𝜃− 𝜃∗)𝑇 (𝜃− 𝜃∗) because (𝜃− 𝜃∗) is the gradient of 𝐽. The smallest

level set of 𝐽 touching the safe set is, in general, a circle and will intersect at some other point 𝑝,

different from the point 𝑝 given by the ellipse generated from 𝐽.

We cannot assume that the restrictive condition (2.86) holds when ℎ1 and 𝐻 are unknown

to the user, and therefore we do not present a NB-ASfES scheme for the generic 𝑛 dimensional

case. The only situation where (2.86) holds is in the 1 dimensional case.

Based on this discussion, we propose a NB-ASfES scheme only for the case of 𝑛 = 1, as

¤̂𝜃 = −𝑘Γ𝐺𝐽 +𝛾max𝛿{𝑘Γ𝐺𝐽𝐺ℎ − 𝑐𝜂ℎ}𝐺ℎ (2.87)

¤𝐺𝐽 = −𝜔f𝐺𝐽 +𝜔f(𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡) (2.88)

¤𝜂𝐽 = −𝜔f𝜂𝐽 +𝜔f𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) (2.89)

¤𝐺ℎ = −𝜔f𝐺ℎ +𝜔f(ℎ(𝜃 (𝑡) + 𝑆(𝑡)) −𝜂ℎ)𝑀 (𝑡) (2.90)

¤𝜂ℎ = −𝜔f𝜂ℎ +𝜔fℎ(𝜃 (𝑡) + 𝑆(𝑡)) (2.91)

¤𝛾 = 𝜔f𝛾(1−𝛾 |𝐺ℎ |2) (2.92)

¤Γ = 𝜔fΓ(1−Γ𝐽 (𝜃 (𝑡) + 𝑆(𝑡))𝑁 (𝑡)) (2.93)

where 𝑁 (𝑡) = 16
𝑎2 (sin2(𝜔𝑡) − 1

2 ).

The resulting theory is identical to that of Theorem 2.1 and 2.2 for the scalar algorithm

given in (2.87) - (2.93), and follow similar analysis steps (but for 𝑛 = 1) shown in Section 2.4 and

Section 2.5. The scalar NB-ASfES algorithm shares the assignable safety property with that of

the gradient-based algorithm ASfES, with the additional feature that the nominal convergence
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Figure 2.3. A demonstration of the algorithm in 1D with the optimizer lying in the unsafe
region — trajectories of the original and reduced system of ASfES are given by 𝜃 and 𝜃𝑟 and the
NB-ASfES trajectory is given by 𝜃𝑁 . The classical ES solution is given by 𝜙, and the red shaded
region marks the unsafe set where ℎ < 0.

rate of the parameter can also be assigned.

In Section 2.7.1 we illustrate the behavior of the NB-ASfES algorithm.

2.7 Simulations

2.7.1 Scalar System

To demonstrate the closeness of trajectories provided by our analysis, we show the solutions

of the original ASfES algorithm (2.3)–(2.8) and reduced system (2.78), under Assumptions

2.1–2.3 in Figure 2.3. The unknown function parameters are 𝜃∗ = 0 (so 𝜃 = 𝜃), 𝐽∗ = 0, 𝐻 = 0.1,

ℎ0 = −1 and ℎ1 = −1. The ASfES and NB-ASfES controller parameters are 𝑎 = 0.25, 𝑘 = 0.3,

𝑐 = 0.1, 𝛿 = 10−3, 𝜔 = 200, and 𝜔f = 3. The initial conditions are 𝜃 (0) = 𝜃𝑁 (0) = 𝜃𝑟 (0) = −3,

while all other estimator states are initialized to their exact quantities. The trajectories of the
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ASfES and NB-ASfES algorithm parameters are denoted by 𝜃 (𝑡) and 𝜃𝑁 (𝑡) respectively. Note

that although we do not know the gradients of 𝐽 and ℎ to initialize 𝐺𝐽 and 𝐺ℎ to exactly ∇𝐽 (𝜃 (0))

and ∇ℎ(𝜃 (0)), we can generate an accurate estimate by “warming up” the algorithm in (2.3)–(2.8)

by setting ¤̂𝜃 = 0, and integrating over time until the states 𝐺𝐽 , 𝜂𝐽 ,𝐺ℎ, 𝜂ℎ𝛾 (and Γ for NB-ASfES)

converge adequately.

We compare the ASfES and NB-ASfES algorithms with the classical ES algorithm

denoted by solution 𝜙(𝑡) which obey the dynamics

¤̂𝜙 = −𝑘𝐺𝐽

¤𝐺𝐽 = −𝜔f𝐺𝐽 +𝜔f(𝐽 (𝜙(𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡)

¤𝜂𝐽 = −𝜔f𝜂𝐽 +𝜔f𝐽 (𝜙(𝑡) + 𝑆(𝑡))

with 𝜙 = 𝜙+ 𝑆(𝑡). The initial condition is 𝜙(0) = −3 and other filtered estimates are initialized

to their exact quantities. The gains 𝑎, 𝑘,𝜔f,𝜔 are set the same as in the ASfES and NB-ASfES

schemes.

The reduced system in the upper part of Fig. 2.3 maintains safety while the ASfES and

NB-ASfES schemes maintain practical safety. In the lower part of Fig. 2.3 we observe the

behavior of ℎ(𝜃 (𝑡)) and ℎ(𝜃𝑁 (𝑡)) have the assigned time constant 𝑐 bound associated with its

approach to the barrier. The NB-ASfES exhibits faster convergence due to the cancellation of the

small Hessian, 𝐻 = 0.1, yet maintains the assigned practical safety bound, which can be observed

by the closeness between the plots of ℎ(𝜃𝑁 (𝑡)) and ℎ(𝜃 (0))𝑒−𝑐𝑡 .

2.7.2 Quadratic Objective and Linear CBF in 2 Dimensions

In this final example we illustrate the effect of 𝑐 on ASfES in 2 dimensions. The unknown

functions are ℎ = 𝜃1 + 𝜃2 − 1 and 𝐽 = 𝜃2
1 + 𝜃

2
2. The controller parameters are 𝑎 = 0.25, 𝑘 = 0.1,

𝛿 = 10−3, 𝜔1 = 75, 𝜔2 = 100, and 𝜔f = 3. Trajectories are plotted in Fig. 2.4 for various initial

conditions for 𝑐 = 1 and 𝑐 = 0.1 with all other controller states are initialized to their exact
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Figure 2.4. Trajectories of 𝜃 in 2D with a linear ℎ and quadratic 𝐽. Six initial conditions, starting
both inside and outside the safe set, and their trajectories are plotted for both 𝑐 = 1 and 𝑐 = 0.1.
The global optimizer 𝜃∗ is outside of the safe set.

quantities.

Notice that a larger value of 𝑐 allows a direct approach (and a truly faster approach in

time, see Theorem 2.2) to the unsafe region when starting from the safe region but a more direct

approach to the safe region when starting from the unsafe region.

2.7.3 Barrier Islands and the Effect of the Attractivity Rate

In this setting we utilize the 2D algorithm given in (2.3)–(2.8). The unknown functions

are ℎ = cos(0.2𝜋𝜃1) + 𝜃1 sin(0.3𝜋𝜃2) and 𝐽 = (𝜃1 −4)2 + (𝜃2 −4)2. The controller parameters are

𝑎 = 0.25, 𝑘 = 0.1, 𝑐 = {1.00,0.10,0.01}, 𝛿 = 10−3, 𝜔1 = 75, 𝜔2 = 100, and 𝜔f = 3. The initial

conditions are 𝜃 (0) = [0,−4]𝑇 , while all other controller states are initialized to their exact

quantities.

The behavior demonstrated in Fig. 2.5 shows behavior that the classical safety filter

design often yields, with the trajectory ‘smoothly sliding’ around the unsafe barrier island. In

this case the trajectory manages to stabilize near the optimizer with a small conservative bias due

to 𝛿. This simulation also illustrates, qualitatively, that ASfES may have stronger convergence
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Figure 2.5. Trajectory of 𝜃1, 𝜃2 in 2D with island-shaped barriers and the optimizer lying in an
unsafe region. The global optimizer 𝜃∗ is selected outside of the safe set.

properties than the local properties proved here, and may be used for the constrained optimization

of 𝐽 from a larger set of initial conditions and not merely within a ball of initial conditions near

the constrained optimum - this is an open problem. Additionally we see the effect that 𝑐 has

qualitatively. Namely, that a lower 𝑐 value takes a more conservative route around the parameter

space, being more cautious to avoid unsafe regions.

2.8 Conclusion

We present ASfES and NB-ASfES which achieve an assignable safety attractivity rate,

specifying a bound on the rate at which ℎ, the measurement of safety, is allowed to decay — with

trajectories moving towards the safe set from the unsafe region, or moving towards the unsafe set

from a safe region. We demonstrate that the NB-ASfES scheme is only useful in the case of a

scalar parameter, and may lead to non-optimal convergence if used in multiple dimensions, yet

features an assignable rate of parameter convergence which is favored only if it agrees with the

safety attractivity rate.

The algorithms presented here are local in nature, but provide benefits over their semiglobal

versions (studied in Chapter 3), with assignable safety attractivity and assignable (nominal)
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parameter convergence.

2.9 Chapter Appendix

This section includes the analysis of the matrix (2.55) and the proof of Lemma 2.1. It also

includes additional details on the spectrum of matrices of this form. The first result describes a

general algebraic relationship between the spectra of two matrices, 𝑋 and 𝑍 . The second result

show the eigenvalues of a particular 𝑍 are real and positive. These two results and Proposition

2.5 are used in Theorem 2.1. We then present the proof of Theorem 2.2. We use the notation of a

unit vector ℎ̂1 = ℎ1 | |ℎ1 | |−1.

2.9.1 Eigenvalues of 𝑋 and 𝑍

Proposition 2.4. Consider the R2𝑛+1×2𝑛+1 matrix

𝑋 =


0 −𝑀 −𝑐ℎ1

𝜔f𝐻 −𝜔f𝐼 0

𝜔fℎ
𝑇
1 0 −𝜔f


with 𝜔f, 𝑐 > 0, ℎ1 ∈ R𝑛 and matrices 𝑀,𝐻 ∈ R𝑛×𝑛.

Then, for all 𝜆 ∈ 𝜎(𝑋) such that 𝜆 ≠ −𝜔f, there exists a 𝜆̄ ∈ 𝜎(𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 )

satisfying 𝜆2 +𝜔f𝜆+ 𝜆̄ = 0.

Proof. Any eigenvalue 𝜆 ≠ −𝜔f, of the matrix 𝑋 , must satisfy the eigenvalue expression for a

nonzero eigenvector, 
0 −𝑀 −𝑐ℎ1

𝜔f𝐻 −𝜔f𝐼 0

𝜔fℎ
𝑇
1 0 −𝜔f


©­­­­­«
𝑢

𝑣

𝑤

ª®®®®®¬
= 𝜆

©­­­­­«
𝑢

𝑣

𝑤

ª®®®®®¬
(2.94)
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with 𝑢, 𝑣 ∈ C𝑛, 𝑤 ∈ C. From the second and third rows of (2.94) we have

𝜔f𝐻𝑢 = (𝜆+𝜔f)𝑣 (2.95)

𝜔fℎ
𝑇
1𝑢 = (𝜆+𝜔f)𝑤 (2.96)

and from the first row of (2.94) we have

−(𝜆+𝜔f)𝑀𝑣− (𝜆+𝜔f)𝑐ℎ1𝑤 = (𝜆+𝜔f)𝜆𝑢, (2.97)

where we have multiplied on both sides 𝜆+𝜔f ≠ 0. Now we substitute expressions in (2.97) for

(𝜆+𝜔f)𝑤 and (𝜆+𝜔f)𝑣,

(𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 )𝑢 = −(𝜆2 +𝜔f𝜆)𝑢. (2.98)

What we arrive at, is another eigenvalue equation describing the scaling of the vector 𝑢 by the

value −(𝜆2 +𝜔f𝜆).

It is also guaranteed that 𝑢 ≠ 0 for the eigenvector equation (2.94) under the following

argument: suppose not and 𝑢 = 0, which implies in that 𝑣 = 0 and 𝑤 = 0 from (2.95) and (2.96)

because 𝜆+𝜔f ≠ 0. Because the equation (2.94) must have nonzero eigenvector then we have a

contraction which implies 𝑢 ≠ 0.

Therefore we can say that 𝜆̄ is an eigenvalue of 𝑍 defined as

𝑍 := 𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 , (2.99)

where

𝜆̄ = −(𝜆2 +𝜔f𝜆). (2.100)
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2.9.2 Eigenvalues of 𝑍 are real and positive

Lemma 2.1. Consider the matrix 𝑍 := 𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 with the following parameters: 𝐻 ≻ 0,

𝑀 = 𝑘

(
𝐼 −𝛼

ℎ1ℎ
𝑇
1

| |ℎ1 | |2

)
, 𝑘,𝜔f > 0, 𝑐 ≥ 0, 0 ≤ 𝛼 ≤ 1, and ℎ1 ∈ R𝑛≠0 such that if the scalar 𝛼 = 1 then

𝑐 > 0 strictly. Then, each 𝜆̄ ∈ 𝜎(𝑍) is real and strictly positive.

Proof. We consider three cases of 𝛼 in this proof. Case 1 is when 𝛼 = 0, Case 2 is 𝛼 ∈ (0,1),

and Case 3 is when 𝛼 = 1.

Case 1: If 𝛼 = 0, the matrix 𝑍 can readily be shown to have real and strictly positive

eigenvalues because it is the sum of a positive definite matrix and a positive semi definite matrix.

Case 2: Consider 𝛼 ∈ (0,1). The positive definite matrix 𝑀 ≻ 0 is recalled below and

its’ inverse is also shown:

𝑀 = 𝑘 (𝐼 −𝛼ℎ̂1 ℎ̂
𝑇
1 ) ≻ 0, (2.101)

𝑀−1 = 𝑘−1
(
𝐼 + 𝛼

1−𝛼
ℎ̂1 ℎ̂

𝑇
1

)
≻ 0, (2.102)

where ℎ̂1 = ℎ1 | |ℎ1 | |−1. The reader can check by hand that 𝑀𝑀−1 = 𝑀−1𝑀 = 𝐼 holds, see [60]

for background. We use (2.102) to derive the expression

ℎ̂1 ℎ̂
𝑇
1 =

(1−𝛼)
𝛼

𝑘𝑀−1 − (1−𝛼)
𝛼

𝐼 for 𝛼 ≠ 0, (2.103)

and rewrite 𝑍 as

𝑍 = 𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 , (2.104)

𝑍 = 𝜔f𝑀𝐻 + 𝛽

(
(1−𝛼)𝑘𝑀−1 − (1−𝛼)𝐼

)
. (2.105)

for some positive scalar 𝛽 =𝜔f𝑐/𝛼 ≥ 0. Now we perform a similarity transformation 𝑍′ = 𝑇−1𝑍𝑇 .
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Let us take 𝑇 = 𝑀1/2 ≻ 0 and compute

𝑍′ = 𝑀−1/2𝑍𝑀1/2 = 𝜔f𝑀
1/2𝐻𝑀1/2 + 𝛽𝛼ℎ̂1 ℎ̂

𝑇
1 . (2.106)

The matrix 𝑍′ is the sum of a positive definite matrix 𝜔f𝑀
1/2𝐻𝑀1/2 (which can be shown by

definition) and a positive semi definite matrix 𝛽𝛼ℎ̂1 ℎ̂
𝑇
1 . Because two similar matrices have the

same eigenvalues, it follows that 𝑍 shares its’ eigenvalues with that of a symmetric, positive

definite matrix 𝑍′ which is known to have real and positive eigenvalues.

Case 3: Let us consider the case of 𝛼 = 1, 𝑐 > 0 and rewrite 𝑍 as

𝑍 = 𝜔f𝑘

(
𝐼 −

ℎ1ℎ
𝑇
1

| |ℎ1 | |2

)
𝐻 +𝜔f𝑐ℎ1ℎ

𝑇
1 (2.107)

= 𝜔f𝑘
(
𝐼 − ℎ̂1 ℎ̂1

)
𝐻 + 𝜇ℎ̂1 ℎ̂

𝑇
1 (2.108)

with 𝜇 = 𝜔f𝑐 | |ℎ1 | |2 > 0 .The symmetric, rank 1 matrix ℎ̂1 ℎ̂1, with spectrum 𝜎( ℎ̂1 ℎ̂1) =

{1,0,0, ...,0}, is diagonalizable by an orthogonal matrix 𝑈 such that 𝑈𝑇 = 𝑈−1. We can

write

ℎ̂1 ℎ̂
𝑇
1 =𝑈𝐷𝑈𝑇 =𝑈


1 01×𝑛−1

0𝑛−1×1 0𝑛−1×𝑛−1

𝑈
𝑇 (2.109)

with 𝐷 having a single nonzero element 𝑑11 = 1. Then it follows that

𝑍 = 𝜔f𝑘 (𝐼 −𝑈𝐷𝑈𝑇 )𝐻 + 𝜇𝑈𝐷𝑈𝑇

=𝑈

(
𝜔f𝑘 (𝐼 −𝐷)𝑈𝑇𝐻𝑈 + 𝜇𝐷

)
𝑈𝑇

=𝑈
(
𝜔f𝑘 (𝐼 −𝐷)𝐻̃ + 𝜇𝐷

)
𝑈𝑇 (2.110)

where 𝐻̃ ≡𝑈𝑇𝐻𝑈 ≻ 0 is a matrix similar to 𝐻. Therefore 𝑍 is similar to 𝑍′ ≡𝜔f𝑘 (𝐼 −𝐷)𝐻̃ + 𝜇𝐷
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which can be written as block triangular:

𝑍′ = 𝜔f𝑘 (𝐼 −𝐷)𝐻̃ + 𝜇𝐷

= 𝜔f𝑘


0 0

0 𝐼



ℎ̃11 𝐻̃𝑇

12

𝐻̃12 𝐻̃22

 + 𝜇


1 0

0 0


=


𝜇 0

𝜔f𝑘𝐻̃12 𝜔f𝑘𝐻̃22

 . (2.111)

The matrix 𝐻̃22 is a diagonal block of a positive definite matrix, and is positive definite itself [36].

Because 𝑍′ is block triangular with positive definite diagonal blocks, 𝑍 has real and positive

eigenvalues.

2.9.3 Properties of 𝑋

In the next lemma, we extend the conclusions from the prior two results in this section and

make more specific claims on the eigenvalues of the linearizing matrix. Statement 2 assigns each

eigenvalue of 𝑍 to a pair of eigenvalues of 𝑋 . This is an extension of the results in Proposition

2.4, which only concerns the existence of an eigenvalue of 𝑍 .

Lemma 2.2. Under Assumptions 2.1 - 2.3, consider

𝑋 =


0 −𝑀 −𝑐ℎ1

𝜔f𝐻 −𝜔f𝐼 0

𝜔fℎ
𝑇
1 0 −𝜔f


, (2.112)

with 0 ≤ 𝛼 ≤ 1, 𝑀 = 𝑘

(
𝐼 −𝛼ℎ̂1 ℎ̂

𝑇
1

)
, and 𝑐 = 𝑐𝛼 | |ℎ1 | |−2. Then

1. X is Hurwtiz.

2. The spectrum 𝜎(𝑋) = {−𝜔f,𝜆
+
1 ,𝜆

−
1 , ...,𝜆

+
𝑛 ,𝜆

−
𝑛 } where 𝜆+

𝑖
/𝜆−

𝑖
≠ −𝜔f are the positive and
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negative solutions to 𝜆2
𝑖
+𝜔f𝜆𝑖 + 𝜆̄𝑖 = 0 for each 𝜆̄𝑖 ∈ 𝜎(𝑍) and for all 𝛼 ∈ [0,1], where

𝑍 := 𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 .

(a) If 𝛼 = 0 then 𝜎(𝑍) = 𝜎(𝜔f𝑘𝐻).

(b) If 𝛼 = 1 then 𝜎(𝑍) = {𝜔f𝑐}∪𝜎(𝜔f𝑘𝐻̃22) where 𝐻̃22 ≻ 0 is the lower right 𝑛−1×𝑛−1

block of 𝐻̃ =𝑈𝑇𝐻𝑈 for an orthogonal matrix 𝑈 which diagonalizes ℎ̂1 ℎ̂
𝑇
1 .

Proof. Statement 1 follows directly from Proposition 2.4 and Lemma 2.1. From Proposition 2.4:

each eigenvalue 𝜆 ∈ 𝜎(𝑋), for which 𝜆 ≠ −𝜔f, there exists a 𝜆̄ ∈ 𝜎(𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 ) satisfying

𝜆2 +𝜔f𝜆+ 𝜆̄ = 0. Because 𝜆̄ > 0 (Lemma 2.1), by the Routh-Hurwtiz criterion 𝑋 is Hurwtiz.

Statement 2 can be shown by taking an eigenvalue of 𝑍 , denoted as the positive scalar

𝜆̄ > 0 (positivity is shown in Lemma 2.1) and showing that it generates 2 eigenvalues of 𝑋 . Take

the logic and algebra of Proposition 2.4 in reverse. Express 𝜆̄ = −(𝜆2
𝑖
+𝜔f𝜆𝑖) for either 𝜆𝑖 = 𝜆+

𝑖
or

𝜆𝑖 = 𝜆−
𝑖

satisfying 𝜆2
𝑖
+𝜔f𝜆𝑖 + 𝜆̄ = 0. The eigenvalue equation is

(𝜔f𝑀𝐻 +𝜔f𝑐ℎ1ℎ
𝑇
1 )𝑢 = −(𝜆2

𝑖 +𝜔f𝜆𝑖)𝑢. (2.113)

for some distinct eigenvector 𝑢 ∈ C𝑛
≠0. We introduce 𝑣 ∈ C𝑛,𝑤 ∈ C satisfying

𝜔f𝐻𝑢 = (𝜆𝑖 +𝜔f)𝑣, (2.114)

𝜔fℎ
𝑇
1𝑢 = (𝜆𝑖 +𝜔f)𝑤, (2.115)

and make substitutions to get

−(𝜆𝑖 +𝜔f)𝑀𝑣− (𝜆𝑖 +𝜔f)𝑐ℎ1𝑤 = (𝜆𝑖 +𝜔f)𝜆𝑖𝑢. (2.116)

where 𝜆𝑖 ≠ −𝜔f because 𝜆2
𝑖
+𝜔f𝜆𝑖 + 𝜆̄ = 0 and 𝜆̄ > 0. Then we recover the eigenvector equation in

(2.94) with the eigenvalue 𝜆𝑖 satisfying 𝑋𝜈 = 𝜆𝑖𝜈 with 𝜈 = [𝑢𝑇 , 𝑣𝑇 ,𝑤]𝑇 . Because this holds for

2𝑛 eigenvalues (𝜆𝑖 = 𝜆+
𝑖

and 𝜆𝑖 = 𝜆−
𝑖

for each 𝜆̄ ≠ −𝜔f), we have accounted for all but one of the
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2𝑛+1 eigenvalues in 𝜎(𝑋).

Finally, the spectrum of 𝑋 always contains an eigenvalue −𝜔f, the last unaccounted

eigenvalue. When 𝛼 = 0, the matrix 𝑌 has an eigenvalue of −𝜔f, due to the triangular structure.

For 𝛼 ∈ (0,1], the determinant det(𝑋 +𝜔f𝐼) is

|𝑋 +𝜔f𝐼 | =

��������
𝐼𝜔f −𝑀 −𝑐ℎ1

𝜔f𝐻 0 0
𝜔fℎ

𝑇
1 0 0

�������� = 𝜔𝑛
f

������� 𝐻𝑀 𝑐𝐻ℎ1

ℎ𝑇1 𝑀 𝑐 | |ℎ1 | |2

�������
= 𝑐 | |ℎ1 | |2𝜔𝑛

f det(𝐻𝑀 − 𝑐𝐻ℎ1(𝑐 | |ℎ1 | |2)−1ℎ𝑇1 𝑀)

= 𝑐 | |ℎ1 | |2𝜔𝑛
f det(𝐻 (𝐼 − ℎ̂1 ℎ̂

𝑇
1 )𝑀) = 0 (2.117)

using rules for determinants of block matrices. Because (𝐼− ℎ̂1 ℎ̂1
𝑇 ) is singular and the determinant

of a product is the product of the determinants, then det(𝑋 +𝜔f𝐼) = 0 and −𝜔f is an eigenvalue.

Statement 2a can be shown by noting that 𝑍 for 𝛼 = 0, simply reduces to 𝑘𝜔f𝐻.

Statement 2b can be shown by looking at the analysis of this case in the proof in Lemma

2.1, Case 3. The matrix 𝑍 is similar to the block diagonal matrix 𝑍′ which has spectra of its

diagonal blocks: 𝜎(𝜇) ∪𝜎(𝜔f𝑘𝐻̃22). The matrix 𝐻̃22 ≻ 0 is the lower right 𝑛−1×𝑛−1 block of

𝐻̃ =𝑈𝑇𝐻𝑈 for a orthogonal matrix𝑈 which diagonalizes ℎ̂1 ℎ̂
𝑇
1 . Finally, making the substitutions

for 𝜇 and 𝑐, Statement 2b is shown.

2.9.4 Constrained Minimum

Proposition 2.5. The minimum of 𝐽 on the set C = {𝜃 : ℎ(𝜃) ≥ 0}, for 𝐽 and ℎ given in Assumptions

2.1-2.2, is

𝐽∗𝑠 = 𝐽∗ +
ℎ2

0

2ℎ𝑇1𝐻−1ℎ1
𝑢(−ℎ0)

where 𝑢 is the unit step function.

Proof. We use the following convex analysis result: “A point 𝜃smin is the minimum of 𝐽 relative

to 𝑆 if and only if −∇𝐽 (𝑥) is normal to 𝑆 at 𝜃smin”. This result is restated from Theorem 27.4
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[74]. Additionally, one can find this result in [18] Section 4.2.3.

When ℎ0 ≥ 0 the minimum of 𝐽 on 𝑆 is simply 𝐽∗.

When ℎ0 < 0, we use the normality condition to yield

𝑝ℎ1 = 𝐻 (𝜃smin − 𝜃∗) (2.118)

for some 𝑝 using the fact that ∇𝐽 (𝜃) = 𝐻 (𝜃 − 𝜃∗) and ∇ℎ(𝜃) = ℎ1. Also,

ℎ(𝜃smin) = ℎ0 + ℎ𝑇1 (𝜃smin − 𝜃∗) = 0. (2.119)

Solving, we get

𝑝 = − ℎ0

ℎ𝑇1𝐻
−1ℎ1

. (2.120)

The value of 𝐽 at 𝜃smin is

𝐽 (𝜃smin) = 𝐽∗ + 1
2
(𝜃smin − 𝜃∗)𝑇𝐻 (𝜃smin − 𝜃∗)

= 𝐽∗ + 𝑝2

2
ℎ𝑇1𝐻

−1ℎ1 = 𝐽∗ +
ℎ2

0

2ℎ𝑇1𝐻−1ℎ1
. (2.121)

Combining cases ℎ ≥ 0 and ℎ < 0 we reach the result.

2.9.5 Proof Theorem 2.1

Proof. From 𝜃 (𝑡) − 𝜃∗ = 𝜃 (𝑡) + 𝑆(𝑡) = 𝜃 (𝑡) +𝑂 (𝑎) we have

𝐽 (𝜃 (𝑡)) = 𝐽∗ + 1
2
𝜃 (𝑡)𝑇𝐻𝜃 (𝑡) +𝑂 (𝑎). (2.122)

From Proposition 2.1, because ∥𝜃 (𝑡) − 𝜃a(𝑡)∥ =𝑂 (1/𝜔) and 𝜃a(𝑡) → 𝜃a,e, then

limsup
𝑡→∞

𝐽 (𝜃 (𝑡)) = 𝐽∗ + 1
2
𝜃a,e𝑇𝐻𝜃a,e +𝑂 (𝑎) +𝑂 (1/𝜔). (2.123)
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Before expanding 𝜃a,e above, we use the Taylor series approximation for small 𝛿 to derive
√

1+ 𝑟𝛿 = 1+𝑂 (𝛿) (for constant 𝑟) and derive the expression

(−sgn(ℎ0) +
√

1+ 𝑟𝛿) = 1− sgn(ℎ0) +𝑂 (𝛿)

= 2(1−𝑢(ℎ0)) +𝑂 (𝛿)

= 2𝑢(−ℎ0) +𝑂 (𝛿) (2.124)

where 𝑢 is the unit step function. We can write

𝜃a,e =
∥ℎ0∥𝑢(−ℎ0)
ℎ𝑇1𝐻

−1ℎ1
𝐻−1ℎ1 +𝑂 (𝛿) (2.125)

from the approximation above and (2.43). Expanding part of (2.123) we have

1
2
𝜃a,e𝑇𝐻𝜃a,e =

ℎ2
0

2ℎ𝑇1𝐻−1ℎ1
𝑢(−ℎ0) +𝑂 (𝛿). (2.126)

Using Proposition 2.5, we achieve the result.

2.9.6 Proof of Theorem 2.2

Proof. From Proposition 2.1 we have | |𝜃 (𝑡) − (𝜃a(𝑡) + 𝜃∗) | | = 𝑂 (1/𝜔 + 𝑎) for all 𝑡 ≥ 0. From

Proposition 2.2 we have | |𝜃a(𝑡) −𝜃r(𝑡) | | =𝑂 (1/𝜔f) for all 𝑡 ≥ 0. Therefore | |𝜃 (𝑡) − (𝜃r(𝑡) +𝜃∗) | | =

𝑂 (1/𝜔f +1/𝜔+ 𝑎) for all 𝑡 ≥ 0. Because ℎ is Lipschitz, | |ℎ(𝜃 (𝑡)) − ℎ(𝜃r(𝑡) + 𝜃∗) | | = 𝑂 (1/𝜔f +

1/𝜔+ 𝑎) for all 𝑡 ≥ 0. Using Proposition 2.3 we have the result.
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Chapter 3

Semiglobal Practically Safe ES

We introduce a safe extremum-seeking (Safe ES) algorithm which achieves the minimiza-

tion of an unknown objective function while ensuring that an unknown, yet measured, control

barrier function (CBF) remains above an arbitrarily small negative value for all time. In other

words, “practical safety” is maintained during the entire period of convergence to the constrained

extremum. Our design is based on quadratic program (QP) CBF style filters for safety, which

is applied in an average and estimated sense. Using nonsmooth analysis tools, we guarantee

semiglobal practical asymptotic (SPA) stability of the global constrained optimum, practical

convergence to the safe set if starting in a condition violating the CBF, and practical safety

for all time—semiglobally—if starting in safe set. The safety result of the paper is analogous

with modern notions of SPA stability, guaranteeing that, for any small violation of safety, there

exist design coefficients which guarantee that such a small violation is not exceeded. The paper

outlines a set of sufficient conditions on the barrier and objective functions, and by way of a

Lyapunov argument, we demonstrate that nonconvex constrained optimization problems can

be solved. We present these results in the setting of a static map and a dynamical system. A

simulation example illustrates the results.
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3.1 Introduction

3.1.1 The Goal and How it is Achieved

This chapter presents an ES algorithm designed to minimize an unknown objective

function 𝐽 (𝜃) over parameters 𝜃, while ensuring system safety. Safety, represented by an

unknown, yet measured, function ℎ(𝜃), is maintained by keeping ℎ positive. Therefore our

algorithm tackles the following problem:

min
𝜃

𝐽 (𝜃) subject to ℎ(𝜃) ≥ 0.

In essence, the classical unconstrained extremum seeking algorithm approximates the following

dynamics, in an average sense, on the parameter: ¤𝜃 = −∇𝐽 (𝜃) i.e. it imparts a gradient descent

term on the parameter dynamics in order to minimize 𝐽. In the framework of [10] using the

QP-CBF safety filter designs, the term −∇𝐽 (𝜃) can be considered a “nominal control” and

therefore a safety term 𝑢𝑠, can be algebraically computed in terms of ℎ(𝜃),∇ℎ(𝜃),∇ℎ(𝜃) [100].

The safety filtered dynamics, ¤𝜃 = −∇𝐽 (𝜃) +𝑢𝑠, now satisfies a safety inequality ¤ℎ(𝜃) + 𝑐ℎ(𝜃) ≥ 0

thereby guaranteeing that the safe set remain forward invariant. A prime achievement of ES

comes from the fact that it is capable of estimating ∇𝐽 (𝜃), and therefore it is also capable of

estimating gradients of other unknown functions, given measurements, such as ∇ℎ(𝜃). This

allows the safety term to be computed and applied (in an approximated and average sense) to the

standard ES dynamics. In the end, the Safe ES algorithm approximates ¤𝜃 = −∇𝐽 (𝜃) +𝑢𝑠, where

𝑢𝑠 is an approximation of the QP-derived safety term which would result if ∇ℎ(𝜃) was known.

3.1.2 Main Results of Semiglobal Safe ES

The framework from [64] and significant prior works [91, 92, 94] establishes semiglobal

practical asymptotic (SPA) stability properties of extremum seeking. Using these results, we

demonstrate that the Safe ES algorithm achieves SPA stability to the constrained optimum, and
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furthermore we demonstrate that “practical safety” may be achieved in addition to practical

stability. Practical safety guarantees that for any violation of safety, however small, there exist

design constants which can achieve it for all time. We make use of the two time scales built into

the design, in which the estimated gradients converge fast, relative to the convergence of the

parameter 𝜃. Due to the approximation that ES provides us, we therefore do not expect to exactly

solve the constrained optimization problem. Overall the results are encompassed by the following

three statements: 1) practical asymptotic stabilization—semiglobally 2) practical convergence to

the safe set—semiglobally 3) practical safety for all time—semiglobally—if starting in the safe

set.

Safe ES allows the designer two degrees of freedom concerning safety: 1) the choice of

the 𝑐, and 2) the design of CBF ℎ. Choosing 𝑐 small slows the overall movement of the parameter

towards the unsafe region when initialized in the safe set, and specifies the tradeoff between

the favoring of safety and the favoring the objective. The design of ℎ may be derived from

any signal such that a sufficient safety margin is already built in. For example, consider some

safe signal 𝑠(𝑡) ∈ [0,1] which must never go below 0.5. Then one may conservatively design

ℎ(𝑡) = 𝑠(𝑡) −0.6 if one is sure that the chosen perturbation signal and transient of the algorithm

will not cause a large safety violation. Furthermore, the conditions on 𝐽 and ℎ we provide, allow

for various kinds of nonconvex constrained optimization problems to be solved. We provide one

such example at the end of this chapter.

3.1.3 Differences from ASfES

In the Chapter 2 we presented ASfES which was shown to have an assignable attractivity

which was previously denoted with the parameter 𝑐. In “Safe ES”, which is the name we give to

the algorithm presented here, the parameter 𝑐 has a slightly different characterization due to small

differences between the algorithms. Due to the design of Safe ES we achieve a safety result which

is essentially given by the inequality ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (0))𝑒−𝑐𝑘𝜔f (𝑡) +𝑂 (𝛿) for all 𝑡 > 0 – in contrast

with the ASfES result of ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (0))𝑒−𝑐𝑡 +𝑂 (𝛿) for all 𝑡 > 0. The adaptation gain, 𝑘𝜔f,
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appears in the time constant in the safe inequality of Safe ES, whereas it does not in ASfES. This

means that the user of the Safe ES algorithm does not have control over the attractivity – which

has been sacrificed in order to achieve theoretical semiglobality. It is an open problem to design

a safe ES algorithm which achieves both assignable attractivity and (semi)global convergence.

3.1.4 Notation

We denote R>0 and R≥0 as the set of positive and non-negative real numbers, respectively.

For a differentiable function 𝑄 : R𝑛 → R we denote the gradient as ∇𝑄 : R𝑛 → R𝑛. For a vector

𝑣 ∈ R𝑛, the notation ∥𝑣∥ denotes the Euclidean norm. The continuous function 𝛽 : R≥0 → R≥0 is

of class K if 𝛽(0) = 0 and it is strictly increasing. The continuous function 𝛽 : R≥0 ×R≥0 → R≥0

is of class KL if it is strictly increasing in its first argument and strictly decreasing to zero in

its second argument. The image of a function ℎ is denoted by Im(ℎ). The open ball around

a point 𝑝 is 𝐵𝑟 (𝑝) = {𝜃 ∈ R𝑛 : ∥𝜃 − 𝑝∥ < 𝑟} and the closed ball is 𝐵̄𝑟 (𝑝). For some nonzero

vector 𝑣 we may denote the normalized vector as 𝑣̂ = 𝑣/∥𝑣∥. The boundary and interior of a set

C are denoted as bd(C) and Int(C) respectively. We use the term “SPA stability” to refer to

the notion of semiglobal practical asymptotic stability [91]. A function 𝑓 (𝑥, 𝜖) is 𝑂 (𝜖) if for

any compact set Ω there exists a positive pair (𝜖∗, 𝑘) such that ∥ 𝑓 (𝑥, 𝜖)∥ ≤ 𝑘𝜖 for all 𝜖 ∈ (0, 𝜖∗]

for all 𝑥 ∈ Ω. The convex hull of a set S is co(S). Given 𝑎 ∈ R𝑛 and 𝑏 ∈ R𝑚 we often use the

notation 𝑢 = (𝑎, 𝑏) = [𝑎𝑇 , 𝑏𝑇 ]𝑇 ∈ R𝑛+𝑚 when stacking vectors, and a slight abuse of notation

when indexing components of a stacked vector so that 𝑢1 = 𝑎 ∈ R𝑛 and 𝑢2 = 𝑏 ∈ R𝑚.

3.2 Assumptions

We define

C = {𝜃 ∈ R𝑛 : ℎ(𝜃) ≥ 0} (3.1)
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called the ‘safe set’. We also define the notation of a superlevel set of ℎ, parameterized by the

parameter 𝜌 ≤ 0 as

C𝜌 = {𝜃 ∈ R𝑛 : ℎ(𝜃) ≥ 𝜌, 𝜌 ∈ Im(ℎ) ∩R≤0}. (3.2)

The sets of the form C𝜌 always contain C along with some unsafe region given by 𝜌, a non-positive

value in the image of ℎ. We also use the following assumptions throughout.

Assumption 3.1 (Objective Function Conditions). The objective function 𝐽 : R𝑛 → R is differen-

tiable with locally Lipschitz Jacobian and satisfies:

1. 𝜃∗𝑐 ∈ C is the unique constrained minimizer of 𝐽 on C denoted as 𝐽∗ = 𝐽 (𝜃∗𝑐),

2. if there exists a 𝜃 such that ∇𝐽 (𝜃) = 0 for 𝜃 ∈ C, then 𝜃 = 𝜃∗𝑐.

Assumption 3.2 (Barrier Function Conditions). The barrier (or safety) function ℎ : R𝑛 → R is

differentiable with locally Lipschitz Jacobian and satisfies:

1. the safe set C is non-empty,

2. for any C𝜌, there exists a 𝐿 ∈ (0,∞) such that ∥∇ℎ(𝜃)∥ > 𝐿 for 𝜃 ∈ {ℎ(𝜃) ≤ 0} ∩C𝜌.

Assumption 3.3 (Optimizer Condition). If ∇ℎ(𝜃)𝑇∇𝐽 (𝜃) = ∥∇ℎ(𝜃)∥ ∥∇𝐽 (𝜃)∥ (∇ℎ(𝜃) and ∇𝐽 (𝜃)

are collinear) for 𝜃 ∈ bd(C), then 𝜃 = 𝜃∗𝑐.

Assumption 3.4 (Angle Condition). For any 𝜌 ∈ Im(ℎ) ∩R<0, there exists a 𝑟∗ > 0 and 𝑓 ∗ ∈ [0,1)

such that
∇𝐽 (𝜃)𝑇∇ℎ(𝜃)

∥∇𝐽 (𝜃)∥ ∥∇ℎ(𝜃)∥ ≤ 𝑓 ∗, (3.3)

for 𝜃 ∈ {𝜌 ≤ ℎ(𝜃) ≤ 0}, 𝜃 ∉ 𝐵𝑟∗ (𝜃∗𝑐).

Assumption 3.5 (Radial Unboundedness). The function 𝑉 (𝜃) = max{−ℎ(𝜃),0} +max{𝐽 (𝜃) −

𝐽∗,0} is positive definite and ∥𝜃 − 𝜃∗𝑐∥ →∞ =⇒ 𝑉 →∞.

Assumption 3.6 (Bounded Levels of ℎ). All sets C𝜌 are compact.
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Figure 3.1. Depiction of sets and levels of ℎ and 𝐽 with 𝐽1 < 𝐽∗ < 𝐽2. The safe set C is shaded in
dark green, which is contained by the set C𝜌 defined by both dark and light green shading. The
radius 𝑟∗ relates to the “angle condition” given in Assumption 3.4.

Assumption 3.7 (ES Constants). The design constants are chosen as 𝜔f,𝜔𝑖, 𝛿, 𝑎, 𝑘, 𝑐 > 0, where

𝜔𝑖/𝜔 𝑗 are rational with frequencies 𝜔𝑖 chosen such that 𝜔𝑖 ≠ 𝜔 𝑗 and 𝜔𝑖 +𝜔 𝑗 ≠ 𝜔𝑘 for distinct

𝑖, 𝑗 , and 𝑘 .

In our analysis we use Assumptions 3.1, 3.2, and 3.3 to establish a unique equilibrium in

the dynamics of a so called ‘exact system’, which our ES scheme approximates. This equilibrium

is identically the constrained optimizer 𝜃∗𝑐. Assumptions 3.4, 3.5, and 3.6 facilitate the subsequent

Lyapunov analysis.

Assumption 3.3 ensures a single equilibrium by imposing constraints on the gradients of

𝐽 and ℎ at their boundary. This condition aligns with principles from optimization solutions,

such as the ‘method of Lagrange multipliers’. The gradient condition is also apparent in Fig. 3.1
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in the tangency of the levels of 𝐽 with ℎ = 0.

Assumption 3.4 focuses on the cosine of the angle between ∇𝐽 (𝜃) and ∇ℎ(𝜃) far away

from the constrained equilibrium, but only in the unsafe set, 𝜃 ∈ {𝜌 ≤ ℎ(𝜃) ≤ 0}. It aids in

deriving a Lyapunov function with a universally negative time derivative, applicable, for instance,

in scenarios with semi-infinite safe sets, as depicted in Fig. 3.1. Proposition 3.1 illustrates that

for a large class of problems, quadratic and positive definite 𝐽 with linear ℎ, Assumption 3.4

holds. The proof is given in the appendix.

Proposition 3.1. If 𝐽 is quadratic, positive definite function and ℎ is a linear function satisfying

Assumption 3.2, then Assumption 3.4 is satisfied.

Assumption 3.5 ensures that the objective function does not asymptotically plateau as 𝜃

extends away from the equilibrium in safe directions. Our main results hinge upon the satisfaction

of either Assumptions 3.4-3.5 or Assumption 3.6. The latter, asserting all sets C𝜌 are compact,

exhibits sufficient strength to establish Semiglobal Practical Asymptotic (SPA) stability in the

reduced system. However, for scenarios with semi-infinite safe sets, the Assumptions 3.4-3.5

become necessary for our main results to hold.

The assumptions listed here a minimal set of a non restrictive conditions we have

gathered which guarantee the main results of the chapter. There are indeed slightly less

restrictive assumptions that may be taken instead, relaxing some of the conditions. For example,

Assumptions 3.4 is truly only necessary if some C𝜌 is an unbounded set and ∥∇𝐽 (𝜃)∥ grows

unbounded on C𝜌. If ∥∇𝐽 (𝜃)∥ does not grow unbounded on this C𝜌 (a set which can be bounded

or not), Assumption 3.4 is unnecessary.

3.3 Preliminaries on Nonsmooth Lyapunov Analysis

In this section we introduce concepts of regularity, the set-valued Lie derivative, and

stability theorems. Nonsmooth analysis tools are necessary as we use the Lyapunov function

𝑉𝛼 (𝜃) = max{−𝛼ℎ(𝜃),0} +max{𝐽 (𝜃) − 𝐽∗,0} for the main stability results of the chapter.
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3.3.1 The Generalized Gradient and Set-Valued Lie Derivative

Definition 3.1. Let𝑉 :R𝑛 →R be locally Lipschitz and let Ω𝑉 be a set of measure zero containing

the points where 𝑉 is not differentiable. The generalized gradient is defined as

𝜕𝑉 (𝑥) = co
{

lim
𝑖→∞

∇𝑉 (𝑥𝑖) : 𝑥𝑖 → 𝑥, 𝑥𝑖 ∉ Ω𝑉

}
. (3.4)

Regularity of a Lyapunov function proves to be very useful in calculating generalized

derivatives. The classical definition of regularity can be seen in [21], but the following known

class of regular functions is sufficient background for this chapter, rewritten from [21, Proposition

2.3.12].

Proposition 3.2. For 𝑘 ∈ {1, . . . ,𝑚}, let 𝑔𝑘 : R𝑛 → R be differentiable functions. Let 𝑉 : R𝑛 → R

be defined as

𝑉 (𝑥) = max{𝑔𝑘 (𝑥) : 𝑘 ∈ {1, . . . ,𝑚}}. (3.5)

Then:

1. 𝑉 is regular and locally Lipschitz.

2. Let 𝐼𝑉 (𝑥) denote the set of indices 𝑘 for which 𝑉 (𝑥) = 𝑔𝑘 (𝑥), then

𝜕𝑉 (𝑥) = co {∇𝑔𝑖 (𝑥) : 𝑖 ∈ 𝐼𝑉 (𝑥)} . (3.6)

The generalized gradient has been defined and a rule given to calculate it for functions of

the form (3.5).

We now define a set-valued form of the Lie derivative, utilizing the generalized gradient.

It can be more generally defined for a differential inclusion, but we have defined it below for a

differential equation,

¤𝑥 = 𝑓 (𝑥) (3.7)
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with 𝑓 : R𝑛 → R𝑛 locally Lipschitz.

Definition 3.2. Let 𝑉 : R𝑛 → R be locally Lipschitz. The set-valued Lie derivative of 𝑉 with

respect to 𝑓 in (3.7) is defined as

L 𝑓𝑉 (𝑥) = {𝑎 ∈ R : 𝑓 (𝑥)𝑇 𝑝 = 𝑎 for all 𝑝 ∈ 𝜕𝑉 (𝑥)}. (3.8)

If 𝑉 (𝑥) is differentiable at 𝑥, then the usual time derivative coincides with the set-valued Lie

derivative ¤𝑉 =L 𝑓𝑉 (𝑥) = { 𝑓 (𝑥)𝑇∇𝑉 (𝑥)}. However, if𝑉 (𝑥) is not differentiable at x then L 𝑓𝑉 (𝑥)

will represent the convex hull of the set of all possible time derivatives obtained at 𝑥 when

approaching 𝑥 from all possible directions as defined by the generalized gradient.

3.3.2 Stability and Invariance Results

The next two stability results are nonsmooth versions of Lasalle’s invariance principle

and Nagumo’s theorem. The following result is based on [14, 23].

Theorem 3.1. Let 𝑉 : R𝑛 → R be locally Lipschitz and regular. Let S ⊂ R𝑛 be compact and

positively invariant for (3.7). Suppose max𝐿 𝑓𝑉 (𝑥) ≤ 0 for all 𝑥 ∈ S. Then all solutions of (3.7),

with 𝑥(𝑡0) ∈ S, converge to the largest invariant set M contained in

S∩ {𝑥 ∈ R𝑛 : 0 ∈ 𝐿 𝑓𝑉 (𝑥)}. (3.9)

The next result is a statement of Nagumo’s theorem [63], more simply reformulated from

[16, Section 4.2].

Theorem 3.2. Suppose S ⊆ R𝑛 is a closed set. Then S is invariant with respect to (3.7) if and

only if

𝑓 (𝑥) ∈ TS (𝑥) for all 𝑥 ∈ bd(S), (3.10)
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where TS (𝑥) is Bouligand’s tangent cone defined as

TS (𝑥) =
{
𝑧 : liminf

𝜏→0

dist(𝑥 + 𝜏𝑧,S)
𝜏

= 0
}

(3.11)

with the distance from a set defined as dist(𝑦,S) = inf𝑤∈S ∥𝑦−𝑤∥ for some 𝑦 ∈ R𝑛.

The tangent cone TS (𝑥) essentially describes the set of vectors pointing tangent along the

boundary of S or “inward”. For example, consider C = {ℎ(𝜃) ≥ 0}, for ℎ with properties given

in Assumption 3.2. Then for 𝜃 ∈ bd(C), TC (𝜃) = {𝑧 : ∇ℎ(𝜃)𝑇 𝑧 ≥ 0}.

The following lemma makes clear many of the assumptions and restrictions on 𝐽 and ℎ

we have considered in this chapter.

Lemma 3.1. Consider the locally Lipschitz function 𝑉𝛼 : R𝑛 → R defined as

𝑉𝛼 (𝜃) = max{−𝛼ℎ(𝜃),0} +max{𝐽 (𝜃) − 𝐽∗,0}, (3.12)

for some parameter 𝛼 > 0 under the Assumptions 3.1 - 3.3. Then

1. 𝑉𝛼 is regular and can be written as

𝑉𝛼 (𝜃) = max {−𝛼ℎ(𝜃), 𝐽 (𝜃) − 𝐽∗,−𝛼ℎ(𝜃) + 𝐽 (𝜃) − 𝐽∗} . (3.13)

2. Let either Assumption 3.4 - 3.5 hold, or 3.6 hold. Then for any 𝜌 < 0, there is a sufficiently

large 𝛼 > 0 such that the following holds for the set R = {𝑉𝛼 (𝜃) ≤ 𝑉̄} ∩C𝜌 for any 𝑉̄ > 0:

(a) the tangent cone TR (𝜃) is:

TR (𝜃) = {𝑣 : max{𝜉𝑇𝑣 : 𝜉 ∈ 𝜕𝑊 (𝜃)} ≤ 0}, (3.14)
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for 𝜃 ≠ 𝜃∗𝑐, with

𝑊 (𝜃) = max{ − ℎ(𝜃) +max{𝜌,−𝑉̄/𝛼},

𝐽 (𝜃) − 𝐽∗− 𝑉̄ ,

𝐽 (𝜃) − 𝐽∗− 𝑉̄ −𝛼ℎ(𝜃)}. (3.15)

(b) the set R = {𝜃 : 𝑊 (𝜃) ≤ 0} is compact and {𝑊 (𝜃) = 0} ≡ bd(R).

(c) for 𝑊 (𝜃) = 0, 0 ∉ 𝜕𝑊 (𝜃).

The above lemma shows the regularity of 𝑉𝛼, under the assumed properties of 𝐽 and ℎ,

when 𝛼 is chosen sufficiently large. It also provides simple expressions for tangent cones on sets

involving the levels of 𝑉𝛼 using mainly the results of [21], and useful properties of these sets.

3.4 Global Convergence of the Exact Algorithm

Before conducting analysis of the ES scheme for unknown functions, we study the

optimization algorithm in its exact form in which we assume that all gradients are known, in

order to find the appropriate Lyapunov function which will be used in the next section. Consider

the following dynamics:

¤𝜃 = 𝐹 (𝜃) = −∇𝐽 (𝜃) + ∇ℎ(𝜃)
∥∇ℎ(𝜃)∥2 max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}. (3.16)

Note that there is no risk of dividing by zero in the expression of (3.16) as ∇ℎ(𝜃) = 0 =⇒ ℎ(𝜃) > 0

by Assumption 3.2. Therefore, lim∥∇ℎ(𝜃)∥→0 𝐹 (𝜃) = −∇𝐽 (𝜃) on compact sets.

The differential inequality ¤ℎ+ 𝑐ℎ ≥ 0 is commonly used to show the forward invariance

of the safe set [10], where it is assumed that the initial condition of any given trajectory is safe.

But it also shows attractivity to the safe set in the case where ℎ(𝜃 (𝑡)) < 0, for some 𝑡, implying

that ¤ℎ(𝜃 (𝑡)) > 0 and therefore ℎ is increasing. So unsafe trajectories become ‘more safe’ in an
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exponential fashion. Therefore, the family of sets C𝜌 is also positively invariant, and not just the

case of 𝜌 = 0. We state this formally below.

Proposition 3.3. Under Assumption 3.2, the dynamics (3.16) satisfy 𝑑ℎ(𝜃 (𝑡))
𝑑𝑡

+ 𝑐ℎ(𝜃 (𝑡)) ≥ 0

for all 𝜃 ∈ R𝑛 and C is forward invariant. Moreover, all sets C𝜌 are forward invariant and

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑐𝑡 for all 𝜃 (𝑡0) ∈ R𝑛.

Proof. We can express the exact dynamics as (3.16) under Assumption 3.2 and simply compute

𝑑ℎ(𝜃 (𝑡))
𝑑𝑡

+ 𝑐ℎ(𝜃) = −∇𝐽 (𝜃)𝑇∇ℎ(𝜃) + 𝑐ℎ(𝜃) +max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0} ≥ 0 (3.17)

where we use the fact that −𝑥 +max{𝑥,0} ≥ 0 for any 𝑥 ∈ R. By the comparison principle,

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑐𝑡 for all 𝜃 (𝑡0) ∈ R𝑛 and all sets C𝜌 are forward invariant.

This proposition will help us later establish global convergence of the algorithm for

trajectories starting outside of C.

We now discuss the equilibrium of (3.16). The previous proposition has guaranteed

that the equilibrium of the algorithm cannot lie in an unsafe region, as ¤ℎ(𝜃) > 0 for ℎ(𝜃) < 0.

Therefore, consider solving for 𝐹 (𝜃𝑒) = 0 for ℎ(𝜃𝑒) ≥ 0 under Assumptions 3.1, 3.2, and 3.3.

Clearly if ∇𝐽 (𝜃𝑒) = 0 then 𝜃𝑒 = 𝜃∗𝑐 by Assumption 3.1. If ∇𝐽 (𝜃𝑒) ≠ 0 for ℎ(𝜃𝑒) ≥ 0, computing

the inner product ∇𝐽 (𝜃𝑒)𝑇𝐹 (𝜃𝑒) shows that 𝐹 (𝜃𝑒) = 0 only when the following two things are

true at the same time: 1) ℎ(𝜃𝑒) = 0 and 2) ∇ℎ(𝜃𝑒) and ∇𝐽 (𝜃𝑒) are collinear. Then, by Assumption

3.3 this implies 𝜃𝑒 = 𝜃∗𝑐. All in all, we have that

𝐹 (𝜃𝑒) = 0 =⇒ 𝜃𝑒 = 𝜃∗𝑐 . (3.18)

It turns out that the inner product ∇𝐽 (𝜃)𝑇𝐹 (𝜃) is also always negative for ℎ(𝜃) ≥ 0 and

𝜃 ≠ 𝜃∗𝑐. Therefore we can formulate the Lyapunov function 𝑉1(𝜃) = 𝐽 (𝜃) − 𝐽 (𝜃𝑒) in order to prove
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stability for 𝜃 ∈ C. Computing ¤𝑉1 = ∇𝐽 (𝜃)𝑇𝐹 (𝜃) we have,

¤𝑉1 = −∥∇𝐽 (𝜃)∥2 + ∇𝐽 (𝜃)𝑇∇ℎ(𝜃)
∥∇ℎ(𝜃)∥2 max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0} (3.19)

which is clearly negative definite if ∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃) ≤ 0. If not,

¤𝑉1 = −∇𝐽 (𝜃)𝑇
(
𝐼 − ∇ℎ(𝜃)∇ℎ(𝜃)𝑇

∥∇ℎ(𝜃)∥2

)
∇𝐽 (𝜃) − 𝑐

∇𝐽 (𝜃)𝑇∇ℎ(𝜃)
∥∇ℎ(𝜃)∥2 ℎ(𝜃). (3.20)

The quadratic first term is negative (unless 𝜃 = 𝜃∗𝑐) and the second term is negative semidefinite

on 𝜃 ∈ {ℎ(𝜃) ≥ 0} ∪ {∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃) > 0}, 𝜃 ≠ 𝜃∗𝑐. Because the set C B {ℎ(𝜃) ≥ 0} is

forward invariant, and 𝑉1 is a smooth Lyapunov function on C, we have the following Lemma.

Lemma 3.2. Let Assumptions 3.1-3.3 hold. The function 𝑉1(𝜃) = 𝐽 (𝜃) − 𝐽 (𝜃𝑒) is a Lyapunov

function for the equilibrium 𝜃∗𝑐 on C, yielding strictly ¤𝑉1 < 0 for all 𝜃 ∈ C \ {𝜃∗𝑐}. The dynamics

(3.16) are asymptotically stable to the constrained minimizer 𝜃∗𝑐 for 𝜃 (𝑡0) ∈ C.

Proof. Step 1: construct a forward invariant set R = {𝑉1(𝜃) ≤ 𝑉̄} ∩ C for any 𝑉̄ > 0. We

represent this set as R = {𝑊 (𝜃) ≤ 0} with 𝑊 (𝜃) = max{𝑉1(𝜃) − 𝑉̄ ,−ℎ(𝜃)}. The set is compact,

and can be shown to be forward invariant with Theorem 3.2 by showing 𝐹 (𝜃) ∈ T𝑅 (𝜃). The

tangent cone can be expressed using generalized gradients of 𝑊 :

TR (𝜃) = {𝑣 : max{𝜉𝑇𝑣 : 𝜉 ∈ 𝜕𝑊 (𝜃)} ≤ 0}, (3.21)

For details showing that R has the regularity properties necessary to prove the statement above, see

the arguments in the proof of Statement 2a, Lemma 3.1 - we omit demonstrating these regularity

properties due to space. Now, check the negativity of 𝐹 (𝜃)𝑇 𝑝 where 𝑝 ∈ 𝜕𝑊 (𝜃) for 𝜃 ∈ bd(R).

If 𝜃 ∉ {ℎ(𝜃) = 0} then 𝐹 (𝜃)𝑇 𝑝 = ¤𝑉1 < 0, as shown in (3.19) and (3.20). If 𝜃 ∈ {ℎ(𝜃) = 0} then

𝑝 = −𝜆1∇ℎ(𝜃) +𝜆2∇𝐽 (𝜃), for 𝜆1+𝜆2 = 0,𝜆1 ≥ 0,𝜆2 ≥ 0. Then 𝐹 (𝜃)𝑇 𝑝 = −𝜆1 ¤ℎ(𝜃) +𝜆2 ¤𝑉1(𝜃) < 0

by Proposition 3.3 and using the fact that ¤𝑉1(𝜃) < 0. By Theorem 3.2, R is forward invariant
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Step 2: apply Theorem 3.1. The result holds because ¤𝑉1(𝜃) < 0 on the compact invariant

set R \ {𝜃∗𝑐}.

Because Theorem 3.1 requires a compact invariant set, the proof above uses the boundary

of the safe set (a potentially unbounded set) and a level of the Lyapunov function 𝑉1 = 𝑉̄ in order

to construct this compact invariant set. This idea is used again in the next lemma where we use

the boundary ℎ = 𝜌 of a set C𝜌 and the levels of a different Lyapunov function 𝑉𝛼.

In light of Proposition 3.3 (attractivity to C) and Lemma 3.2 (convergence within C), it

should be intuitive to the reader that all trajectories eventually converge on the equilibrium point

𝜃∗𝑐. We can demonstrate this fact with the following Lyapunov argument on any invariant set in

Lemma 3.3.

We use Theorem 3.1 in the following lemma to prove global asymptotic stability. In order

to use Theorem 3.1 we first construct a compact invariant set R using the intersection of C𝜌 and

a sublevel set of the Lyapunov function 𝑉𝛼. A function 𝑊 is used to define the set R and check

that the dynamics 𝐹 (𝜃) point ‘inward’ to R at it’s boundary. The boundary is not smooth, which

is why generalized gradients are key tool. Based on the assumptions on the functions 𝐽 and ℎ, an

essential idea in achieving global stability is the fact that we can design the set R to be arbitrarily

large, encompassing any initial condition.

Lemma 3.3. Let Assumptions 3.1-3.3 hold, and either Assumptions 3.4-3.5 or Assumption 3.6.

Consider the Lypaunov function

𝑉𝛼 (𝜃) = max{−𝛼ℎ(𝜃),0} +max{𝐽 (𝜃) − 𝐽 (𝜃∗𝑐),0}. (3.22)

For any invariant set C𝜌, there exists 𝛼 ∈ (0,∞) such that max𝐿 𝑓𝑉𝛼 (𝑥) < 0 for 𝜃 ∈ C𝜌 \ {𝜃∗𝑐}.

The dynamics (3.16) are globally asymptotically stable to the constrained minimizer 𝜃∗𝑐.

Proof. Step 1: show that for any set C𝜌 there is a sufficiently large 𝛼 > 0 such that

R = {𝑉𝛼 (𝜃) ≤ 𝑉̄} ∩C𝜌 is compact and invariant for any 0 < 𝑉̄ <∞. From Lemma 3.1, 𝑉𝛼 is
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regular and R is compact, therefore we can determine if 𝐹 (𝜃) lies in TR (𝜃) by showing that

𝐹 (𝜃)𝑇 𝑝 < 0 for 𝑝 ∈ 𝜕𝑊 (𝜃) and 𝜃 ∈ {𝑊 (𝜃) = 0} \ {𝜃∗𝑐} with

𝑊 (𝜃) = max{−ℎ(𝜃) +max{𝜌,−𝑉̄/𝛼}, 𝐽 (𝜃) − 𝐽∗− 𝑉̄ , 𝐽 (𝜃) − 𝐽∗− 𝑉̄ −𝛼ℎ(𝜃)}. (3.23)

Also in Lemma 3.1 we showed that for sufficiently large 𝛼 > 0, 𝑝 ≠ 0 for 𝑊 (𝜃) = 0. Therefore we

assume, by default, in the following cases of ℎ that 1) 𝛼 > 0 is sufficiently large based on any

fixed 𝜌 < 0 and 2) 𝜃 ∈ {𝑊 (𝜃) = 0} \ {𝜃∗𝑐}.

Case 1): ℎ(𝜃) > 0. Then 𝑊 (𝜃) = 𝐽 (𝜃) − 𝐽∗ − 𝑉̄ and 𝜕𝑊 (𝜃) = {∇𝐽 (𝜃)} ≠ {0}. With

𝑝 = ∇𝐽 (𝜃) it is clear from (3.19) and (3.20) that ¤𝑉1 = 𝐹 (𝜃)𝑇 𝑝 < 0 for any 𝛼 > 0.

Case 2): ℎ(𝜃) = 0. Then 𝜕𝑊 (𝜃) = co{∇𝐽 (𝜃),∇𝐽 (𝜃) −𝛼∇ℎ(𝜃)}. For some 𝑝 ∈ 𝜕𝑊 (𝜃),

𝑝 = ∇𝐽 (𝜃) −𝛼𝜆∇ℎ(𝜃), for 0 ≤ 𝜆 ≤ 1. If ∇𝐽 (𝜃)𝑇∇ℎ(𝜃) ≤ 0 then

𝐹 (𝜃)𝑇 𝑝 = −∥∇𝐽 (𝜃)∥2 +𝛼𝜆∇𝐽 (𝜃)𝑇∇ℎ(𝜃) < 0 (3.24)

for any 𝛼 > 0.

If ∇𝐽 (𝜃)𝑇∇ℎ(𝜃) > 0 then by Assumption 3.3,

𝐹 (𝜃)𝑇 𝑝 = ∇𝐽 (𝜃)𝑇
(
∇ℎ(𝜃)𝑇∇ℎ(𝜃)
∥∇ℎ(𝜃)∥2 − 𝐼

)
∇𝐽 (𝜃) −𝛼𝜆∇𝐽 (𝜃)𝑇∇ℎ(𝜃) < 0 (3.25)

for any 𝛼 > 0.

Case 3): ℎ(𝜃) < 0. So 𝜕𝑊 (𝜃) = co{−∇ℎ(𝜃),∇𝐽 (𝜃) −𝛼∇ℎ(𝜃)}. For some 𝑝 ∈ 𝜕𝑊 (𝜃),

we have 𝑝 = −𝜆1∇ℎ(𝜃) +𝜆2(−𝛼∇ℎ(𝜃) +∇𝐽 (𝜃)), with 0 ≤ 𝜆1,𝜆2 ≤ 1 and 𝜆1 +𝜆2 = 1.

We define the lumped quantities

𝑚(𝜃) = ∇ℎ(𝜃)𝑇∇𝐽 (𝜃) − 𝑐ℎ(𝜃), (3.26)

𝑓 (𝜃) = ∇𝐽 (𝜃)𝑇∇ℎ(𝜃)/(∥∇𝐽 (𝜃)∥∥∇ℎ(𝜃)∥) ≤ 1. (3.27)
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If 𝜃 lies in a region where 𝑚(𝜃) ≤ 0 then ∇𝐽 (𝜃)𝑇ℎ(𝜃) ≤ 𝑐ℎ(𝜃) < 0 and one can easily show

𝐹 (𝜃)𝑇 𝑝 < 0. Otherwise, if 𝑚(𝜃) > 0 then

𝐹 (𝜃)𝑇 𝑝 = 𝑐 |ℎ(𝜃) |
(
−𝜆1 +𝜆2

(
−𝛼+ 𝑓 (𝜃) ∥∇𝐽 (𝜃)∥∥∇ℎ(𝜃)∥

))
−𝜆2∥∇𝐽 (𝜃)∥2

(
1− 𝑓 2(𝜃)

)
. (3.28)

We consider 𝜃 to lie in a region such that 𝑚(𝜃) > 0 in the following two sub-cases.

Case 3a): Assumption 3.6 holds. Then set C𝜌 is compact so choose

𝛼 > sup
𝜃∈C𝜌

∥∇𝐽 (𝜃)∥
𝐿

, (3.29)

using Assumption 3.2 (which states ∥∇ℎ(𝜃)∥ > 𝐿 > 0 for ℎ(𝜃) < 0). This yields 𝐹 (𝜃)𝑇 𝑝 < 0 for

all 𝜃 ∈ C𝜌 \ {𝜃∗𝑐}, therefore R is forward invariant by Theorem 3.2. Note that this argument also

holds if ∥∇𝐽 (𝜃)∥ is bounded on a potentially unbounded set C𝜌.

Case 3b): Assumptions 3.4 - 3.5 hold. Assume the non trivial scenario where ∥∇𝐽 (𝜃)∥ is

unbounded on C𝜌. Then from Assumption 3.4, there exists a scalar 𝑓 ∗ and set 𝐵𝑟∗ (𝜃∗𝑐) such that

0 < 𝑓 (𝜃) ≤ 𝑓 ∗ < 1 for all 𝜃 ∉ 𝐵𝑟∗ (𝜃∗𝑐). Let 𝑓 = 1− 𝑓 ∗2 with 𝑓 ∈ (0,1). Then for any 𝜃 ∉ 𝐵𝑟∗ (𝜃∗𝑐),

𝐹 (𝜃)𝑇 𝑝 = −𝑐 |ℎ(𝜃) | (𝜆1 +𝛼𝜆2) +𝜆2∥∇𝐽 (𝜃)∥
(
𝑐 |𝜌 |
𝐿

− 𝑓 ∥∇𝐽 (𝜃)∥
)
, (3.30)

using Assumption 3.2. From the expression in the equation above, ∥∇𝐽 (𝜃)∥ > |𝜌 |𝑐/𝐿 𝑓 implies

𝐹 (𝜃)𝑇 𝑝 < 0 for 𝜃 ∉ 𝐵𝑟∗ (𝜃∗𝑐) regardless of 𝛼. Therefore, consider ∥∇𝐽 (𝜃)∥ ≤ |𝜌 |𝑐/𝐿 𝑓 . From

(3.28) we have

𝐹 (𝜃)𝑇 𝑝 ≤ 𝑐 |ℎ(𝜃) |
(
−𝜆1 +𝜆2

(
−𝛼+ 𝑐 |𝜌 |

𝐿2 𝑓

))
−𝜆2∥∇𝐽 (𝜃)∥2

(
1− 𝑓 2(𝜃)

)
(3.31)

for any 𝜃 such that ∥∇𝐽 (𝜃)∥ ≤ |𝜌 |𝑐/𝐿 𝑓 . Therefore choosing

𝛼 > max

{
sup

𝜃∈𝐵𝑟∗ (𝜃∗𝑐)

∥∇𝐽 (𝜃)∥
𝐿

,
𝑐 |𝜌 |
𝐿2 𝑓

}
(3.32)
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yields 𝐹 (𝜃)𝑇 𝑝 < 0 for all 𝜃 ∈ C𝜌 \ {𝜃∗𝑐}.

So 𝐹 (𝜃)𝑇 𝑝 < 0 for all 𝜃 ∈ C𝜌 \ {𝜃∗𝑐}, and R is forward invariant by Theorem 3.2. Note

that 𝛼 does not depend on 𝑉̄ , see (3.29) and (3.32), although 𝛼 in general depends on 𝜌. This is

very important, because otherwise the set R cannot be guaranteed to be made arbitrarily large

(by means of choosing a large 𝑉̄) in order to encompass any initial condition of (3.16).

For any Δ > 0 and initial condition, 𝜃 (𝑡0) ∈ 𝐵̄Δ(𝜃∗𝑐), we are always able to find a C𝜌 such

that 𝐵̄Δ(𝜃∗𝑐) ⊆ C𝜌. Then we choose 𝛼 > 0 as in the cases 1-3, as a function of 𝜌. Then we

find a 𝑉̄ > 0 such that 𝐵̄Δ(𝜃∗𝑐) ⊆ R, recalling that R = {𝑉𝛼 (𝜃) ≤ 𝑉̄} ∩C𝜌. In the case 3b we use

Assumption 3.5 to guarantee the existence of this 𝑉̄ . In Case 3a, any chosen set C𝜌 is compact

by assumption and 𝑉̄ can be taken as the maximum of 𝑉𝛼 on C𝜌. So any trajectory of (3.16) is

contained on R. See Fig. 3.2 for the depiction of the sets.

Step 2: show max𝐿 𝑓𝑉𝛼 (𝜃) < 0 for all 𝜃 ∈ R \ {𝜃∗𝑐}. Now that we have demonstrated,

using the generalized gradient of 𝑊 , that R is a compact forward invariant set, we must show that

max𝐿 𝑓𝑉𝛼 (𝜃) < 0 for all 𝜃 ∈ R \ {𝜃∗𝑐} in order to claim asymptotic stability to 𝜃∗𝑐 using Theorem

3.1. Using Proposition 3.2, for any 𝑝 ∈ 𝜕𝑉𝛼 (𝜃), 𝑝 takes the same form as that of 𝑝 ∈ 𝜕𝑊 (𝜃)

using the the three cases in Step 1. This is due to the similar form of 𝑉𝛼 in (3.13) and 𝑊 in

(3.15) and the rule for computing the generalized gradients in Proposition 3.2. We showed in

Step 1 that 𝐹 (𝜃)𝑇 𝑝 < 0 in each case, therefore for the same 𝛼 chosen in Step 1, max𝐿 𝑓𝑉𝛼 (𝜃) < 0

for all 𝑥 ∈ R \ {𝜃∗𝑐}. Therefore the dynamics (3.16) are asymptotically stable to the constrained

minimizer 𝜃∗𝑐.

The proof above relies on the invariance of C𝜌 where we are guaranteed that for any unsafe

initial condition ℎ(𝜃 (0)) = 𝜌 we will never leave the set C𝜌 and additionally, the boundaries of

the sublevel set of Lyapunov function 𝑉𝛼. The choice of 𝛼 is simple if sets C𝜌 are compact as

we know trajectories will never leave the bounded super-level sets of ℎ, and the supremum in

(3.29) exists. If C𝜌 are not all compact, then we must have a radially unbounded 𝑉𝛼 to argue that

trajectories will never leave the bounded sublevel sets of 𝑉 and some other set, C𝜌.
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The Lyapunov function parameter 𝛼 depends on the size of the set of the initial conditions,

because it is dependant on the invariant set C𝜌. The parameter 𝛼 used to prove stability of some

initial condition ℎ(𝜃 (0)) = −1 may be insufficient to prove the stability of the initial condition

ℎ(𝜃 (0)) = −2. But, a Lyapunov function with 𝛼 chosen to prove the stability of the initial

condition ℎ(𝜃 (0)) = −2, will indeed be sufficient in showing the stability of ℎ(𝜃 (0)) = −1.

This Lyapunov function has an interesting connection to recent literature and we note that a

similar Lyapunov function for ‘gradient flow’ systems in a more general (nonlinear programming)

setting was also discovered and can be used to show local stability [7].

3.5 Safe Extremum Seeking

We introduce the Safe ES scheme for analytically unknown functions ℎ and 𝐽 in this

section. We will then derive a ‘reduced model’ following the framework of [64]. The reduced

model is essentially derived from (3.33)-(3.37), making the filtered estimate equations (3.34)-

(3.37) algebraic under the appropriate time transformation and singular perturbation. The authors

in [64] showed that the reduced model must be SPA stable in 𝑎 for the algorithm itself in

(3.33)-(3.37) to be SPA stable. We demonstrate that indeed SPA stability can be shown with the

help of an invariant set from the boundaries of a sub level set of the Lyapunov function used in

Lemma 3.3, {𝑉𝛼 (𝜃) ≤ 𝑉̄}, and a sufficiently large set C𝜌. Then we present our notion of practical

safety and extend the results to dynamical systems for a complete picture of the set of applications

of this ES scheme.
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3.5.1 Algorithm Design

We introduce the algorithm:

¤̂𝜃 = 𝑘𝜔f(−𝐺𝐽 +min{∥𝐺ℎ∥−2, 𝑀+}max{𝐺𝑇
𝐽𝐺ℎ − 𝑐𝜂ℎ,0}𝐺ℎ) (3.33)

¤𝐺𝐽 =−𝜔f(𝐺𝐽 − (𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡)) (3.34)

¤𝜂𝐽 =−𝜔f(𝜂𝐽 − 𝐽 (𝜃 (𝑡) + 𝑆(𝑡))) (3.35)

¤𝐺ℎ =−𝜔f(𝐺ℎ − (ℎ(𝜃 (𝑡) + 𝑆(𝑡)) −𝜂ℎ)𝑀 (𝑡)) (3.36)

¤𝜂ℎ =−𝜔f(𝜂ℎ − ℎ(𝜃 (𝑡) + 𝑆(𝑡))) (3.37)

where the state variables 𝜃,𝐺𝐽 ,𝐺ℎ ∈ R𝑛, 𝜂𝐽 , 𝜂ℎ ∈ R. The overall the dimension of the system is

3𝑛+2. The map is evaluated at 𝜃, defined by

𝜃 (𝑡) B 𝜃 (𝑡) + 𝑆(𝑡) . (3.38)

The integer 𝑛 denotes the number of parameters one wishes to optimize over. The design

coefficients are 𝑘, 𝑐, 𝛿,𝜔f, 𝑀
+ ∈ R>0. The perturbation signal 𝑆 and demodulation signal 𝑀 are

given by

𝑆(𝑡) = 𝑎 [sin(𝜔1𝑡), . . . , sin(𝜔𝑛𝑡)]𝑇 , (3.39)

𝑀 (𝑡) = 2
𝑎
[sin(𝜔1𝑡), . . . , sin(𝜔𝑛𝑡)]𝑇 , (3.40)

and contain additional design parameters 𝜔𝑖, 𝑎 ∈ R>0.

3.5.2 Deriving the Reduced Model

First, we derive the reduce model. Defining

𝐹0 (𝜉) B −𝜉1 +min{∥𝜉2∥−2, 𝑀+}max{𝜉𝑇1 𝜉2 − 𝑐𝜉4,0}𝜉3, (3.41)
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with

𝜉𝑇 B [𝐺𝑇
𝐽 , 𝜂𝐽 ,𝐺

𝑇
ℎ , 𝜂ℎ], (3.42)

𝜁𝑇 (𝑡, 𝜃, 𝜉, 𝑎) B [(𝐽 (𝜃) − 𝜉2)𝑀 (𝑡)𝑇 , 𝐽 (𝜃),

(ℎ(𝜃) − 𝜉4)𝑀 (𝑡)𝑇 , ℎ(𝜃)],

(3.43)

we can rewrite (3.33) - (3.37) as

¤̂𝜃 = 𝑘𝜔f𝐹0(𝜉), (3.44)

¤𝜉 = −𝜔f(𝜉 − 𝜁 (𝑡, 𝜃, 𝜉, 𝑎)), (3.45)

recalling 𝜃 = 𝜃 + 𝑆(𝑡). Letting 𝜏 = 𝜔f𝑡, the system in the new time scale is

𝑑𝜃

𝑑𝜏
= 𝑘𝐹0(𝜉), (3.46)

𝑑𝜉

𝑑𝜏
= −

(
𝜉 − 𝜁

(
𝜏

𝜔f
, 𝜃 + 𝑆

(
𝜏

𝜔f

)
, 𝜉, 𝑎

))
. (3.47)

We can take the average of the system (see Proposition 3.4 in Appendix) to compute

𝑑𝜃𝑎𝑣

𝑑𝜏
= 𝑘𝐹0(𝜉𝑎𝑣), (3.48)

𝑑𝜉𝑎𝑣

𝑑𝜏
= −

(
𝜉𝑎𝑣 − 𝜇(𝜃𝑎𝑣, 𝑎)

)
, (3.49)

𝐷 (𝜃𝑎𝑣) B [∇𝐽 (𝜃𝑎𝑣)𝑇 , 𝐽 (𝜃𝑎𝑣),∇ℎ(𝜃𝑎𝑣)𝑇 , ℎ(𝜃𝑎𝑣)]𝑇 , (3.50)

𝜇(𝜃𝑎𝑣, 𝑎) B 𝐷 (𝜃𝑎𝑣) +𝑂 (𝑎). (3.51)

Making another time transformation 𝑠 = 𝑘𝜏 we have

𝑑𝜃𝑎𝑣

𝑑𝑠
= 𝐹0(𝜉𝑎𝑣), (3.52)

𝑘
𝑑𝜉𝑎𝑣

𝑑𝑠
= −

(
𝜉𝑎𝑣 − 𝜇(𝜃𝑎𝑣, 𝑎)

)
. (3.53)
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Taking 𝑘 = 0, we now derive the singularly perturbed (or “reduced”) system with a quasi steady

state

𝑧𝑠 B 𝜉𝑎𝑣 = 𝜇(𝜃𝑎𝑣, 𝑎). (3.54)

Defining

𝑦 = 𝜉𝑎𝑣 − 𝜇(𝜃𝑎𝑣, 𝑎), (3.55)

the boundary layer system (with 𝜏 = 𝑠/𝑘) is

𝑑𝑦

𝑑𝜏
= −

(
𝜉𝑎𝑣 − 𝜇(𝜃𝑎𝑣, 𝑎)

)
= −𝑦. (3.56)

The boundary layer system is UGAS uniformly in 𝜉𝑎𝑣 and 𝑡0. The reduced system is

𝑑𝜃𝑟

𝑑𝑠
= 𝐹0(𝜇(𝜃𝑟 , 𝑎)) = 𝐹0 (𝐷 (𝜃𝑟) +𝑂 (𝑎)) . (3.57)

The reduced order model is an estimate of the original system (3.33)-(3.37) (in a different

time scale) because we will later choose 𝑘 to be small. A small 𝑘 implies the slowness of the

dynamics of (3.33) relative to (3.34)-(3.37). Therefore, the singular perturbation makes the

filters in (3.34)-(3.37) fast, capturing the effect of a small 𝑘 . Note that the singular perturbation

is actually performed on an averaged version of the original system.

3.5.3 SPA Stability of the Reduced Model

The reduced system in (3.57) and (3.16) are similar with the distinct difference that the

gradients and measurements of 𝐽 and ℎ are perturbed by a small 𝑂 (𝑎) disturbance. We make the

claim below that under a sufficiently small 𝑎, the reduced model is SPA stable. Using results

from [64], this demonstrates that the algorithm itself in (3.33)-(3.37) to be SPA stable.

Lemma 3.4. Let Assumptions 3.1-3.3, 3.7 hold. Also, let either 3.4 and 3.5 hold or 3.6 hold.

Then there exists a 𝛽𝜃 ∈ KL such that: for any positive pair Δ, 𝜈, there exists a 𝑎∗ > 0 such that
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Figure 3.2. Depiction of 𝑉𝛼 = 𝑉̄ subsuming the set of initial conditions in ∥𝜃 − 𝜃∗𝑐∥ ≤ Δ, where
the shaded region marks R.
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for all 𝑎 ∈ (0, 𝑎∗) the reduced system (3.57) satisfies

∥𝜃 (𝑡) − 𝜃∗𝑐∥ ≤ 𝛽𝜃 (∥𝜃 (0) − 𝜃∗𝑐∥, 𝑠) + 𝜈 (3.58)

for all ∥𝜃 (0) − 𝜃∗𝑐∥ ≤ Δ.

Proof. To show the SPA stability of (3.57) we make use of analogous arguments used in the

proof of Lemma 3.3, assuming either Assumptions 3.4-3.5 or Assumption 3.6. Consider a set of

initial conditions around the constrained minimizer 𝜃𝑟 (𝑡0) ∈ 𝐵̄Δ(𝜃∗𝑐), then there exist a larger ball

𝐵̄Δ(𝜃∗𝑐) ⊂ 𝐵̄Δ∗ (𝜃∗𝑐) with 0 < Δ < Δ∗. There must exist a C𝜌 such that 𝐵̄Δ(𝜃∗𝑐) ⊂ 𝐵̄Δ∗ (𝜃∗𝑐) ⊂ C𝜌. Then,

there exists an 𝛼 > 0, corresponding to 𝑉𝛼 (𝜃), and a 𝑉̄ such that such that R = {𝑉𝛼 (𝜃) ≤ 𝑉̄} ∩C𝜌

is compact and invariant for (3.16) any 0 < 𝑉̄ <∞ by Lemma 3.3. Therefore we choose a 𝑉̄ such

that 𝐵̄Δ(𝜃∗𝑐) ⊂ 𝐵̄Δ∗ (𝜃∗𝑐) ⊂ R. See the depiction in Fig. 3.2 - the set R subsumes the ball of initial

conditions along with a slightly larger ball around the Δ ball.

Under Assumptions 3.1 - 3.2, there exists a 𝑀+, 𝑎𝑚𝑎𝑥 > 0 such that for all 𝑎 ∈ (0, 𝑎𝑚𝑎𝑥)

the disturbed dynamics in (3.57) can be written as

𝑑𝜃𝑟

𝑑𝑠
= 𝐹0(𝐷 (𝜃𝑟) +𝑂 (𝑎)) = 𝐹 (𝜃𝑟) +𝑂 (𝑎) (3.59)

for all 𝜃𝑟 ∈ R, Lemma 3.5 in the appendix.

In other words, if one chooses 𝑎 small enough and 𝑀+ large enough, then the reduced

dynamics (3.57) are simply the exact dynamics in (3.16) with an additive 𝑂 (𝑎) disturbance.

Furthermore, one can make the set R forward invariant with sufficiently small 𝑎 under the same

arguments used in Step 1 in the proof of Lemma 3.3. The vector 𝐹 (𝜃𝑟) +𝑂 (𝑎) lies in TR (𝜃𝑟) if

(𝐹 (𝜃𝑟) +𝑂 (𝑎))𝑇 𝑝 < 0 for each 𝜃𝑟 on bd(R). Since 𝐹 (𝜃𝑟)𝑇 𝑝 < 0 on this compact region (Lemma

3.3) there exists a sufficiently small 𝑎 that that (𝐹 (𝜃𝑟) +𝑂 (𝑎))𝑇 𝑝 < 0 for 𝜃 ∈ bd(R). This proves

semiglobal stability of (3.57). To achieve the ‘practical’ part of the SPA stability of (3.57), a

further reduction of 𝑎 is needed and an analogous argument to that used in Step 2 in the proof
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of Lemma 3.3. Recall for 𝑝 ∈ 𝜕𝑉𝛼 (𝜃𝑟) we have that 𝐹 (𝜃𝑟)𝑇 𝑝 < 0 and we are interested in the

negativity of 𝐹 (𝜃𝑟)𝑇 𝑝 +𝑂 (𝑎)𝑇 𝑝 < 0. For any 𝛿 > 0 ball, 𝐵̄𝛿 (𝜃∗𝑐), there exists a 𝑉̄𝛿 > 0 such that

{𝑉𝛼 (𝜃𝑟) ≤ 𝑉̄𝛿} ⊆ 𝐵̄𝛿 (𝜃∗𝑐) and a sufficiently small 𝑎 > 0 such that trajectories of (3.57) converge to

the set {𝑉𝛼 (𝜃𝑟) ≤ 𝑉̄𝛿} by Theorem 3.2. This can be accomplished, with R′ = R \ {𝑉𝛼 (𝜃𝑟) ≤ 𝑉̄𝛿}

by choosing 𝑎 such that ∥𝑂 (𝑎)𝑇 𝑝∥ < |𝐶 | for 𝜃𝑟 ∈ bd(R) where 𝐶 is the maximum of 𝐹 (𝜃𝑟)𝑇 𝑝

on the set R′. Therefore (3.57) is SPA stable for small 𝑎.

3.5.4 Main Results in Static Plants

We make the conclusion below with 𝑧 = 𝜉 − 𝜇(𝜃, 𝑎) and 𝜃 = 𝜃 − 𝜃∗𝑐.

Theorem 3.3 (Semiglobal Practical Asymptotic Stability). Let Assumptions 3.1-3.3, 3.7 hold.

Also, let either 3.4 and 3.5 hold or 3.6 hold. Then there exists 𝛽𝜃 , 𝛽𝜉 ∈ KL such that: for any

positive pair (Δ, 𝜈) there exist 𝑀+,𝜔∗
f , 𝑎

∗ > 0, such that for any 𝜔f ∈ (0,𝜔∗
f ), 𝑎 ∈ (0, 𝑎∗), there

exists 𝑘∗(𝑎) > 0 such that for any 𝑘 ∈ (0, 𝑘∗(𝑎)) the solutions to (3.44)-(3.45) satisfy

∥𝜃 (𝑡)∥ ≤ 𝛽𝜃
(
∥𝜃 (𝑡0)∥, 𝑘 ·𝜔f · (𝑡 − 𝑡0)

)
+ 𝜈, (3.60)

∥𝑧(𝑡)∥ ≤ 𝛽𝜉 (∥𝑧(𝑡0)∥,𝜔f · (𝑡 − 𝑡0)) + 𝜈, (3.61)

for all ∥(𝜃 (𝑡0), 𝑧(𝑡0))∥ ≤ Δ, and all 𝑡 ≥ 𝑡0 ≥ 0.

Sketch of proof: the proof of Theorem 3.3 follows the proof of Theorem 1 in [64] - we

will summarize it this paragraph using terminology from [91]. The reduced system (3.57) is

SPA stable in 𝑎 uniformly in small 𝑎, demonstrated in Lemma 3.4. Using Lemma 1 in [92], this

implies the average system (3.48) - (3.49) is SPA stable in 𝑘, 𝑎. This further implies the original

system (3.46) - (3.47) is SPA stable in 𝑘, 𝑎,𝜔f uniformly in 𝑘, 𝑎,𝜔f in time scale 𝑠. Performing

the appropriate transformations in from 𝑠 to 𝑡 we achieve the result of Theorem 3.3.

Clarifying some key points: this argument uses the two results, Lemma 2 in [91] and

Lemma 1 in [92], which are fundamentally based on Theorem 1 in [94]. Theorem 1 in [94]
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states several important key facts: 1) There is a time scale separation (by a factor 𝑘) between the

convergence of parameter 𝜃 and the convergence of the boundary layer variable 𝑧. 2) The class

KL functions governing the convergence of the reduced model and boundary layer model are

the same functions which govern the slow and fast states of the actual system (see Remarks 8 and

15 in [94] for the choice of measuring functions). 3) We use may use the same KL function to

describe the convergence of an average system as that of the actual system, see [94, Section V,

“Classical Averaging”].

Equation (3.61) tell us about convergence of estimated quantities 𝜉 (𝑡) to their exact values

𝐷 (𝜃 (𝑡) + 𝜃∗𝑐). Using (3.51) we can write

𝑒 B 𝜉 −𝐷 (𝜃 + 𝜃∗𝑐), (3.62)

∥𝑒(𝑡)∥ ≤ 𝛽𝜉 (∥𝑧(𝑡0)∥,𝜔f(𝑡 − 𝑡0)) + 𝑣 + |𝑂 (𝑎) |. (3.63)

The variable 𝑒 can be thought of as the error of the estimated quantities - various measurements

and gradients of the static maps. Note, the functions 𝛽𝜃 , 𝛽𝜉 are independent of 𝑎, 𝑘,𝜔f [91].

Because ¤̃𝜃 is proportional to 𝑘 (3.44), we can choose a 𝑘 such that the change in 𝜃 (𝑡) over some

time interval can be small relative to the change in 𝑒(𝑡) over the same interval. The steady state

offset in the error 𝑒(𝑡) can also be made small after some amount of time, with a small 𝑎. From

Lemma 3.5 we know that there must be a small enough disturbance in the estimated quantities

such that the dynamics can be written linearly (in the disturbance), but only after the transient of

𝛽𝜉 has been sufficiently diminished. Therefore we make the following claim.

Theorem 3.4. (Semiglobal Practical Convergence to Safe Set and Semiglobal Practical Safety)

Let Assumptions 3.1–3.3, 3.7 hold. Also, let either 3.4 and 3.5 hold or 3.6 hold. For any Δ > 0

and any 𝛿 > 0: there exists 𝑀+, 𝑎∗∗,𝜔∗∗
f > 0 such that for any 𝑎 ∈ (0, 𝑎∗∗), 𝜔f ∈ (0,𝜔∗∗

f ), there

exists 𝑘∗∗(𝑎) > 0 such that for any 𝑘 ∈ (0, 𝑘∗∗(𝑎)),

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑐𝑘𝜔f (𝑡−𝑡0) +𝑂 (𝛿) (3.64)
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for all 𝑡 ∈ [𝑡0,∞] and there exists a 𝑇 ∈ [𝑡0,∞] such that

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0)) − 𝛿 for 𝑡0 ≤ 𝑡 ≤ 𝑇, (3.65)

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑇) − 𝛿 for 𝑇 ≤ 𝑡 <∞ (3.66)

for all ∥ [𝜃 (𝑡0)𝑇 , 𝑧(𝑡0)𝑇 ] ∥ ≤ Δ

Proof. Step 1: show for appropriate ranges of design coefficients, there exists a 𝑇 > 0 such

that for 𝑡 ≥ 𝑇 , the dynamics of 𝜃 simplify.

Consider (3.44)-(3.45) written as,

¤̂𝜃 = 𝑘𝜔f𝐹0
(
𝐷 (𝜃) + 𝑒(𝑡)

)
, (3.67)

∥𝑒(𝑡)∥ ≤ 𝛽𝜉 (∥𝑧(𝑡0)∥,𝜔f(𝑡 − 𝑡0)) + 𝑣 + |𝑂 (𝑎) |. (3.68)

with the bounds (3.63) restated, for some Δ, 𝜈 > 0 using Theorem 3.3, which follows from the

assumptions. Theorem 3.3 states that there exist ranges of coefficients of 𝑀+, 𝑎,𝜔f, 𝑘 achieving

the bound above, as well as the existence of an invariant set R which contains the set of initial

conditions. Furthermore, there exists an 𝜖∗, such that we can choose a 𝜈 > 0 and restrict 𝑎 to a

smaller range such that 𝜈 + |𝑂 (𝑎) | < 𝜖 in (3.68), for 0 < 𝜖 < 𝜖∗ by Lemma 3.5.

In summary, for an appropriate 𝜈 and 𝑎 (and appropriate ranges for the other design

coefficients), there exist a time 𝑇 > 0, after which (3.67) can be written as

¤̂𝜃 = 𝑘𝜔f
(
𝐹 (𝜃) + 𝑟 (𝑡)

)
(3.69)

where 𝑟 (𝑡) =𝑂 (𝜈 + 𝑎) =𝑂 (𝜖).

We will summarize the contents of Step 1 in this paragraph. After a time 𝑇 > 0, the

dynamics of the parameter can be written as the sum of the ‘exact’ gradient based scheme and

a time dependent disturbance. The time 𝑇 > 0 depends on the first choosing 𝑣 (by Theorem
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3.3, this choice defines the ranges of coefficients) and then restricting 𝑎 further. The time 𝑇 > 0

represents the time during which the estimated quantities’ error below a threshold 𝜖∗ > 0, which

exists by Lemma 3.5.

Step 2: construct an approximate safe inequality for 𝑇 ≤ 𝑡 ≤ ∞.

For any 𝛿 > 0, take 𝜈 and 𝑎, satisfying the condition 𝜈 + |𝑂 (𝑎) | < 𝜖 in Step 1, and

sufficiently small to satisfy ∥𝑟 (𝑡)∥ < 𝛿𝑐/𝑏 because 𝑟 (𝑡) = 𝑂 (𝜈 + 𝑎). The quantity 𝑏 > 0 is the

supremum of ∥∇ℎ(𝜃)∥ on R. From the result of Step 1, there exists a 𝑇 > 0 such that (3.69) is

true.

Next, compute ¤ℎ+ 𝑐𝑘𝜔fℎ:

¤ℎ(𝜃) + 𝑐𝑘𝜔fℎ(𝜃) = 𝑘𝜔f(𝐹 (𝜃)𝑇∇ℎ(𝜃) + 𝑐ℎ(𝜃) + 𝑟 (𝑡)𝑇∇ℎ(𝜃)), (3.70)

¤ℎ(𝜃) + 𝑐𝑘𝜔fℎ(𝜃) ≥ −𝛿𝑐𝑘𝜔f, (3.71)

because 𝐹 (𝜃)𝑇∇ℎ(𝜃) + 𝑐ℎ(𝜃) ≥ 0 by Proposition 3.3 and because 𝑟 (𝑡)𝑇∇ℎ(𝜃) ≥ −𝛿𝑐.

The approximate safety inequality ¤ℎ + 𝑐𝑘𝜔fℎ + 𝛿𝑐𝑘𝜔f ≥ 0 implies, by the comparison

principle, for 𝑇 ≤ 𝑡 <∞,

ℎ(𝜃 (𝑡)) ≥ (ℎ(𝜃 (𝑇)) + 𝛿)𝑒−𝑘𝜔f𝑐(𝑡−𝑇) − 𝛿. (3.72)

Step 3: summarize and refine bounds.

For the period of time 𝑡0 ≤ 𝑡 ≤ 𝑇 , one can find a range of 𝑘 , sufficiently small, to achieve

an arbitrarily small change the parameter (without affecting 𝑇 > 0). Using the range of 𝑘 given

by Theorem 3.3, take 𝑘 small such that

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0)) − 𝛿, (3.73)

for 𝑡0 ≤ 𝑡 ≤ 𝑇 . Using ℎ(𝜃 (𝑇)) + 𝛿 ≥ ℎ(𝜃 (𝑡0)) which follows from above, we summarize the
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bounds for all 𝑡 > 0:

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0)) − 𝛿 for 𝑡0 ≤ 𝑡 ≤ 𝑇, (3.74)

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑇) − 𝛿 for 𝑇 ≤ 𝑡 <∞ (3.75)

Already, one can simply stop here and present the result as is. In summary, for any 𝛿 > 0,

one achieves the bounds above by means of further restriction of the design coefficients that are

given in Theorem 3.3.

Step 5: when ℎ(𝜃 (𝑡0)) ≥ 0, bound ℎ(𝜃 (𝑡)) with a single inequality.

Consider first (3.74). Because 𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) ≤ 1 on 𝑡0 ≤ 𝑡 ≤ 𝑇 , we multiply the term ℎ(𝜃 (𝑡0))

by 𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) in (3.74) to yield

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) − 𝛿 for 𝑡0 ≤ 𝑡 ≤ 𝑇. (3.76)

Next, consider (3.75), and using the fact that 𝑒−𝑘𝜔f𝑐(𝑡0−𝑇) ≤ 1, we have the following, similarly:

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) − 𝛿 for 𝑇 ≤ 𝑡 <∞. (3.77)

Step 6: construct a single inequality which holds for 𝑡0 ≤ 𝑡 <∞ and all ℎ(𝜃 (𝑡0)).

Consider the Taylor expansion of 𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) about 𝑘 = 0 for 𝑡0 ≤ 𝑡 ≤ 𝑇 , which is

𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) = 1+𝑂 (𝑘). Then, ℎ(𝜃 (𝑡0)) = ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) +𝑂 (𝑘) and

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) − 𝛿+𝑂 (𝑘) for 𝑡0 ≤ 𝑡 ≤ 𝑇, (3.78)

following from (3.76). Using a similar argument with 𝑒−𝑘𝜔f𝑐(𝑡0−𝑇) = 1+𝑂 (𝑘), we achieve

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) − 𝛿+𝑂 (𝑘) for 𝑇 ≤ 𝑡 <∞. (3.79)
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from (3.77). With an appropriately small 𝑘 , we have

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑘𝜔f𝑐(𝑡−𝑡0) +𝑂 (𝛿) for 𝑡0 ≤ 𝑡 <∞. (3.80)

Note that this result makes use of the fact that the time 𝑇 is independent of 𝑘 . Because

the the estimator error convergence rate given by 𝛽𝜉 (Δ,𝜔f(𝑡 − 𝑡0)) is independent of 𝑘 , there will

be some finite time at which estimators are very close to their true values. During this finite time,

we are able to shrink the change in ℎ by restricting 𝑘 . This result also relies on Theorem 3.3

and a specific choice of 𝜈 to select particular intervals on 𝑎,𝜔f, 𝑘 which yield us the exponential

safety result we seek. Therefore the intervals of 𝑎,𝜔f, 𝑘 given in Theorem 3.4 are perhaps a more

strict set of intervals than the ones given in Theorem 3.3 - if the user desires the type of safety

given in (3.64).

Furthermore, this safety result is analogous to the statement on stability. The stability

result says that for any set of initial conditions, one should be able to adjust 𝑎,𝜔f, 𝑘 such that

trajectories are 𝜈-practically stable. The safety result says that for any set of initial conditions,

one should be able to adjust 𝑎,𝜔f, 𝑘 such that trajectories are 𝛿-practically stable.

3.5.5 Main Results for Dynamical Systems

We follow a similar outline of the transformations and problem formulation given in [64].

Consider the dynamic system

¤𝑥 = 𝑓 (𝑥,𝑢), 𝑦ℎ = 𝑔ℎ (𝑥), 𝑦𝐽 = 𝑔𝐽 (𝑥), (3.81)
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where 𝑓 : R𝑛×R→ R and 𝑔ℎ, 𝑔𝐽 : R𝑛 → R. We will take 𝑦𝐽 as our signal of performance and 𝑦ℎ

as a measure of safety. Assume there exist the control law parameterized by 𝜃 as

𝑢 = 𝛽(𝑥, 𝜃), (3.82)

where 𝜃 ∈ R𝑛. The closed loop system is

¤𝑥 = 𝑓 (𝑥, 𝛽(𝑥, 𝜃)). (3.83)

Assumption 3.8. There exists a function 𝑙 : R𝑛 → R𝑛 such that 𝑓 (𝑥, 𝛽(𝑥, 𝜃)) = 0 if and only if

𝑥 = 𝑙 (𝜃). And, for each 𝜃 ∈ R𝑛, the equilibrium 𝑥 = 𝑙 (𝜃) of (3.83) is global asymptotically stable,

uniformly in 𝜃.

Under a singular perturbation and time scale transformation, the performance map

will take the form 𝐽 (·) = 𝑔𝐽 (𝑙 (·)) and the barrier function ℎ(·) = 𝑔ℎ (𝑙 (·)). We allow the

perturbation frequencies 𝜔𝑖 to be scaled by a parameter 𝜔𝑠. This is necessary to achieve

results for dynamical systems, as the perturbation frequencies must adjusted to be slower

than the plant. Set the 𝑖th component of the perturbation and demodulation signals as 𝜔𝑠𝑡 as

𝑆𝑖 (𝜔𝑠𝑡) = 𝑎 sin(𝜔𝑖𝜔𝑠𝑡), 𝑀𝑖 (𝜔𝑠𝑡) = (2/𝑎) sin(𝜔𝑖𝜔𝑠𝑡).

We must redefine 𝜁 using the measurements of safety and performance as 𝑦ℎ, 𝑦𝐽 .

𝜁𝑇 (𝜔𝑠𝑡, 𝜃, 𝜉, 𝑎) B [(𝑦𝐽 − 𝜉2)𝑀 (𝜔𝑠𝑡)𝑇 , 𝑦𝐽 , (𝑦ℎ − 𝜉4)𝑀 (𝜔𝑠𝑡)𝑇 , 𝑦ℎ] . (3.84)

The definition of 𝜉 and 𝐹0 are given by (3.42) and (3.41). Under the transformation 𝜃 = 𝜃 +𝑆(𝜔𝑠𝑡)
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we have the proposed scheme for dynamical systems as

¤𝑥 = 𝑓 (𝑥, 𝛽(𝑥, 𝜃 + 𝑆(𝜔𝑠𝑡))),

¤̂𝜃 = 𝑘𝜔f𝜔𝑠𝐹0(𝜉),

¤𝜉 = −𝜔f𝜔𝑠 (𝜉 − 𝜁 (𝜔𝑠𝑡, 𝜃 + 𝑆(𝜔𝑠𝑡), 𝜉, 𝑎)). (3.85)

Letting 𝜎 = 𝜔𝑠𝑡 in the new time scale we write the system as

𝜔𝑠

𝑑𝑥

𝑑𝜎
= 𝑓 (𝑥, 𝛽(𝑥, 𝜃 + 𝑆(𝜎))),

𝑑𝜃

𝑑𝜎
= 𝑘𝜔f𝐹0(𝜉),

𝑑𝜉

𝑑𝜎
= −𝜔f(𝜉 − 𝜁 (𝜎,𝜃 + 𝑆(𝜎), 𝜉, 𝑎)). (3.86)

We construct a reduced system by letting 𝜔𝑠 = 0 and taking 𝑥 = 𝑙 (𝜃 + 𝑆(𝜎)). Using the time scale

𝜏 = 𝜎𝜔f:

𝑑𝜃𝑠

𝑑𝜏
= 𝑘𝐹0(𝜉𝑠),

𝑑𝜉𝑠

𝑑𝜏
= −

(
𝜉𝑠 − 𝜁

(
𝜏

𝜔f
, 𝜃𝑠 + 𝑆

(
𝜏

𝜔f

)
, 𝜉𝑠, 𝑎

))
. (3.87)

Also, we have that 𝑦ℎ = 𝑔ℎ (𝑙 (𝜃 + 𝑆(𝜏/𝜔f))) and 𝑦𝐽 = 𝑔𝐽 (𝑙 (𝜃 + 𝑆(𝜏/𝜔f))) appearing as terms in 𝜁 .

With 𝐽 (𝜃)B 𝑔𝐽 (𝑙 (𝜃)) and ℎ(𝜃)B 𝑔ℎ (𝑙 (𝜃)), the system (3.87) is the same as (3.46) - (3.47).

The system was demonstrated to be SPA stable. Therefore we make the following conclusion

based on similar arguments using averaging and singular perturbation results in Theorem 3.3, and

the safety result in Theorem 3.4. Let 𝑧1(𝑡) = 𝜉 (𝑡) − 𝜇(𝜃 (𝑡), 𝑎), 𝑧2(𝑡) = 𝑥(𝑡) − 𝑙 (𝜃 (𝑡) + 𝑆(𝜔𝑠𝑡)),

𝜃 (𝑡) = 𝜃 (𝑡) − 𝜃∗𝑐.

Theorem 3.5 (Stability and Safety for Dynamical Systems). With 𝐽 (𝜃) B 𝑔𝐽 (𝑙 (𝜃)) and ℎ(𝜃) B

𝑔ℎ (𝑙 (𝜃)) let Assumptions 3.1-3.3, 3.7-3.8 hold. Also, let either 3.4 and 3.5 hold or 3.6 hold.
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Then there exist 𝛽𝜃 , 𝛽𝜉 , 𝛽𝑥 ∈ KL such that for any positive triple (Δ, 𝜈, 𝛿) there exists 𝑎∗ > 0 and

𝜔∗
f > 0 such that for any 𝑎 ∈ (0, 𝑎∗) and 𝜔f ∈ (0,𝜔∗

𝑓
) there exists 𝑘∗(𝑎) > 0 such that for any

𝑘 ∈ (0, 𝑘∗(𝑎)), there exists 𝜔∗
𝑠 (𝑎,𝜔f, 𝑘) > 0 such that for any 𝜔𝑠 ∈ (0,𝜔∗

𝑠 (𝑎,𝜔f, 𝑘)) the solutions

to (3.85) satisfy

∥𝜃 (𝑡)∥ ≤ 𝛽𝜃
(
∥𝜃 (𝑡0)∥, 𝑘𝜔f𝜔𝑠 (𝑡 − 𝑡0)

)
+ 𝜈 (3.88)

∥𝑧1(𝑡)∥ ≤ 𝛽𝜉 (∥𝑧1(𝑡0)∥,𝜔f𝜔𝑠 (𝑡 − 𝑡0)) + 𝜈 (3.89)

∥𝑧2(𝑡)∥ ≤ 𝛽𝑥 (∥𝑧2(𝑡0)∥, (𝑡 − 𝑡0)) + 𝜈 (3.90)

and

ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑐𝑘𝜔f𝜔𝑠 (𝑡−𝑡0) +𝑂 (𝛿) (3.91)

for all ∥(𝜃 (𝑡0), 𝑧1(𝑡0), 𝑧2(𝑡0))∥ ≤ Δ, and all 𝑡 ≥ 𝑡0 ≥ 0.

The proof of (3.88) - (3.90) follows that of [64]. The proof of (3.91) follows naturally

using the arguments in Theorem 3.4 (the argument is made in exactly the same manner when

considering the bounds (3.88) - (3.89) in time scale 𝜎). The only difference in the result compared

to the static case follows from the fact that the parameter dynamics are scaled by the factor 𝑘𝜔f𝜔𝑠

resulting in the time constant in (3.91) as 𝑐𝑘𝜔f𝜔𝑠 instead of 𝑐𝑘𝜔f as in (3.64).

3.6 Simulation

We present an example which demonstrates the capability of the Safe ES algorithm as well

as the geometry of the Lyapunov function which proves the main stability result of this work. The

unknown CBF is ℎ(𝜃) = cos(𝜃1) − 𝜃2. This barrier function yields a nonconvex, semi-infinite safe

set. The objective function is 𝐽 (𝜃) = 𝜃2
1 + (𝜃2 −2)2 with an unconstrained optimum at 𝜃 = (0,2).

See Fig. 3.3 for the depiction of the problem with the safe set in the bottom half of the plot.

One can check, for this problem, that our assumptions hold. First, we check Assumption

3.3 by computing the expression for ∇ℎ(𝜃)𝑇∇𝐽 (𝜃) = ∥∇ℎ(𝜃)∥∥∇𝐽 (𝜃)∥ for ℎ(𝜃) = 0. After some
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algebra, we arrive at the following condition in 𝜃1:

𝑞(𝜃1) = 2𝜃1 sin(𝜃1) +2cos(𝜃1) −4+2
√︃
𝜃2

1 + (cos(𝜃1) −2)2
√︁

sin(𝜃1)2 +1 = 0, (3.92)

which can be shown to have a unique solution at 𝜃1 = 0 and a corresponding value 𝜃2 = 1 which

is the single constrained minimizer of 𝐽 on C.

Next, we check that Assumption 4 holds – perhaps one of the more unintuitive assumptions.

After some algebra,
∇𝐽 (𝜃)𝑇∇ℎ(𝜃)

∥∇𝐽 (𝜃)∥∥∇ℎ(𝜃)∥ = 𝑑1(𝜃2)
𝜃1 + 𝑑2(𝜃2)√︃
𝜃2

1 + 𝑑
2
2 (𝜃2)

, (3.93)

where 𝑑1(𝜃2) = −sin(𝜃2)/
√︁

sin(𝜃2)2 +1 and 𝑑2(𝜃2) = 𝜃2 − 2. Recall we must check (3.93) is

strictly less than 1 for 𝜌 ≤ ℎ(𝜃) ≤ 0, for any 𝜌 < 0, far away from constrained minimizer of 𝐽 on

C - this implies 𝜃2 must be bounded, but 𝜃1 can be large. This means that 𝑑1(𝜃2), 𝑑2(𝜃2) must be

bounded with 𝑑2(𝜃2) having a more strict bound - approximately ∥𝑑2(𝜃2)∥ ≤ 0.707. As ∥𝜃1∥

grows large it is clear than (3.93) tends towards 0.707, strictly less than 1. Other assumptions are

straightforward to check.

In Fig. 3.3 we plot trajectories of the Safe ES algorithm, 𝜃 (𝑡), from various initial

conditions. Design constants are chosen as 𝑎 = 0.3, 𝑐 = 1, 𝑘 = 0.0005, 𝜔f = 10, 𝑀+ = 104,

𝜔1 = 10, and 𝜔2 = 13. We also show the shape of the level sets of a hypothesized Lyapunov

function 𝑉𝛼 for a value of 𝛼 = 20. (Note: we prove in this work that a sufficiently large 𝛼 exists to

demonstrate SPA stability, but it is complicated to check analytically if 𝛼 = 20 is sufficient for the

specific region of interest shown in Fig. 3.3.) We see that in the unsafe region, the contribution

of ℎ in 𝑉𝛼 becomes noticeable in the wiggles of the level of 𝑉𝛼. This is because the practical

safety result guarantees that trajectories “climb” the levels of ℎ in order to escape to a safe region

as 𝑡 →∞, and therefore ℎ appears as a term in 𝑉𝛼 in the unsafe region. Recall the main result of

practical safety, ℎ(𝜃 (𝑡)) ≥ ℎ(𝜃 (𝑡0))𝑒−𝑐𝑘𝜔f (𝑡−𝑡0) +𝑂 (𝛿).

The trajectories shown are typical of safety filtered control, with 𝜃 (𝑡) slithering smoothly
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Figure 3.3. Various trajectories plotted of 𝜃 along with the safe boundary ℎ(𝜃) = 0 and various
level sets of 𝑉𝛼 with 𝛼 = 20. The safe set is below the curve ℎ(𝜃) = 0.

around unsafe regions. The geometric conditions on the static maps of the problem also allow

the constrained optimizer to be found, globally, with minor violations of safety along the way.

Trajectories that start safe (or become safe) do not wander far out of the safe set for the rest of

time, and all trajectories converge to a small region around the constrained optimum.

3.7 Conclusion

This chapter presents Safe ES, an ES controller designed to minimize an unknown

objective function while ensuring the practical positivity of an unknown, yet measured CBF.

In our approach, we add an approximation of a QP-based safety filter in the dynamics of the

controller, advancing the current set of ES methodologies used to solve nonconvex constrained

optimization problems. We use nonsmooth analysis tools and a key Lyapunov argument to help
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us achieve our main theoretical results. The notion of practical safety, akin to practical stability,

uses known results which tell us that the estimates of the unknown gradients of the problem

converge relatively fast (with respect to the parameter).

Future work may include understanding the role of delays in the measurements on the

safety of the system, and handing multiple constraints including equality constraints.

3.8 Chapter Appendix

3.8.1 Proof of Proposition 3.1

Proof. Let 𝐽 (𝜃) = 1
2𝜃

𝑇𝑃𝜃 with 𝑃 ≻ 0 and ℎ(𝜃) = ℎ𝑇1 𝜃 + ℎ0, with some constrained minimizer 𝜃∗𝑐.

We assume the the quadratic 𝐽 has a global minimizer at 0 w.l.o.g. as we can always shift the

coordinates to the form assumed.

Suppose Assumption 3.4 is not satisfied. Then ∃𝜌 < 0 for all 𝑟 > 0 for all 𝑓 ∈ [0,1) such

that

𝑓 < ℎ̂𝑇1
𝑃𝜃

∥𝑃𝜃∥ ≤ 1, (3.94)

for 𝜃 ∈ {𝜌 ≤ ℎ𝑇1 𝜃+ℎ0 ≤ 0}∩{∥𝜃−𝜃∗𝑐∥ ≥ 𝑟}. Note ℎ̂1 B ℎ1/∥ℎ1∥. Take 𝑟 = 1 and 𝑓 = 1− 1
8 (

𝜆min
𝜆max

)2

where 0 < 𝜆min ≤ 𝜆max are the smallest and largest eigenvalues of 𝑃. For two unit vectors 𝑢, 𝑣

we can write ∥𝑢− 𝑣∥ =
√︁

2(1−𝑢𝑇𝑣). Therefore, with the inner product bound in (3.94) and the

choice of 𝑓 , we have





ℎ̂1 −
𝑃𝜃

∥𝑃𝜃∥





 = √︄
2
(
1− ℎ̂𝑇1

𝑃𝜃

∥𝑃𝜃∥

)
∈ [0,𝜆min/2𝜆max) . (3.95)

The closeness relation between the two unit vectors ℎ̂1 and 𝑃𝜃/∥𝑃𝜃∥ implies that, for any point 𝜃

there is a unit vector 𝑑 = 𝑑 (𝜃) such that

ℎ̂1 = 𝑃𝜃/∥𝑃𝜃∥ + 𝜖𝑑 (3.96)
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for 𝜖 ∈ [0,𝜆min/2𝜆max).

Because 𝜃 ∈ {𝜌 ≤ ℎ𝑇1 𝜃 + ℎ0 ≤ 0} we have

𝜌− ℎ0 ≤ ∥ℎ1∥∥𝜃∥𝜃𝑇 ℎ̂1 ≤ −ℎ0,

𝜌− ℎ0 ≤ ∥ℎ1∥∥𝜃∥
(
𝜃𝑇𝑃𝜃

∥𝑃𝜃∥ + 𝜖𝜃
𝑇𝑑

)
≤ −ℎ0, (3.97)

substituting ℎ̂1. The following quantity is strictly positive,

𝜃𝑇𝑃𝜃

∥𝑃𝜃∥ + 𝜖𝜃
𝑇𝑑 >

𝜆min
𝜆max

− 𝜆min
2𝜆max

=
𝜆min

2𝜆max
> 0. (3.98)

Therefore (3.97) can not hold for sufficiently large ∥𝜃∥ because 𝜃 ∈ {∥𝜃 − 𝜃∗𝑐∥ ≥ 1}.

3.8.2 Proof of Lemma 3.1

Proof. Statement (1) follows from that fact that max{𝑎,0} +max{𝑏,0} = max{𝑎, 𝑏, 𝑎 + 𝑏,0} for

any real 𝑎, 𝑏. In our case 𝑎 = −𝛼ℎ(𝜃) and 𝑏 = 𝐽 (𝜃) − 𝐽∗. We also have that max{−𝛼ℎ(𝜃), 𝐽 (𝜃) −

𝐽∗,−𝛼ℎ(𝜃) + 𝐽 (𝜃) − 𝐽∗,0} = max{−𝛼ℎ(𝜃), 𝐽 (𝜃) − 𝐽∗,−𝛼ℎ(𝜃) + 𝐽 (𝜃) − 𝐽∗} because ℎ(𝜃) ≥ 0 im-

plies 𝐽 (𝜃) − 𝐽∗ ≥ 0, by Assumption 3.1. By Proposition 2.3.12 in [21], 𝑉𝛼 is regular because

ℎ(𝜃), 𝐽 (𝜃) each are regular because they are differentiable, and𝑉𝛼 can be expressed as a point-wise

maximum of regular functions.

Statement (2a) follows directly from Proposition 2.1.2 and Theorem 2.4.7 in [21], if

two conditions are met. The first condition is that the set R can be written as a sublevel set of a

Lipschitz and regular function, as in R = {𝑊 (𝜃) ≤ 0}. The second condition is that for 𝑊 (𝜃) = 0,

0 ∉ 𝜕𝑊 (𝜃).

First, let 𝐽 (𝜃) = 𝐽 (𝜃) − 𝐽∗. We can express R as

R = {𝜃 : 𝑊 (𝜃) ≤ 0}
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where

𝑊 (𝜃) = max{−ℎ(𝜃) + 𝜌∗, 𝐽 (𝜃) − 𝑉̄ , 𝐽 (𝜃) − 𝑉̄ −𝛼ℎ(𝜃)},

and 𝜌∗ = max{𝜌,−𝑉̄/𝛼}. So, 𝑊 is Lipschitz and regular by Proposition 2.3.12 [21].

Now we must show for 𝑊 (𝜃) = 0, 0 ∉ 𝜕𝑊 (𝜃). We consider 𝜃 lying in the three sets

spanning R𝑛. We use Proposition 3.2 to compute the generalized gradients of 𝑊 .

Case 1) ℎ(𝜃) > 0. Then 𝑊 (𝜃) = 𝐽 (𝜃) − 𝑉̄ and 𝜕𝑊 (𝜃) = {∇𝐽 (𝜃)} ≠ {0} by Assumption

3.1.

Case 2) ℎ(𝜃) = 0. Then 𝑊 (𝜃) = 𝐽 (𝜃) − 𝑉̄ = 𝐽 (𝜃) − 𝑉̄ − 𝛼ℎ(𝜃). Therefore we can

write 𝜕𝑊 (𝜃) = co{∇𝐽 (𝜃),∇𝐽 (𝜃) −𝛼∇ℎ(𝜃)}. For some 𝑝 ∈ 𝜕𝑊 (𝜃), 𝑝 = ∇𝐽 (𝜃) −𝛼𝜆∇ℎ(𝜃), for

0 ≤ 𝜆 ≤ 1. Because 𝜃 ≠ 𝜃∗𝑐, by Assumption 3.3 we have that 𝑝 ≠ 0.

Case 3) ℎ(𝜃) < 0. So 𝜕𝑊 (𝜃) = co{−∇ℎ(𝜃),∇𝐽 (𝜃) −𝛼∇ℎ(𝜃)}. For some 𝑝 ∈ 𝜕𝑊 (𝜃), we

have the expression 𝑝 = −𝜆1∇ℎ(𝜃) +𝜆2(−𝛼∇ℎ(𝜃) +∇𝐽 (𝜃)), with 0 ≤ 𝜆1,𝜆2 ≤ 1 and 𝜆1 +𝜆2 = 1.

If Assumption 3.6 holds, clearly 𝑝 ≠ 0 for sufficiently large 𝛼 because ∥∇ℎ(𝜃)∥ > 𝐿 by

Assumption 3.2. Choosing 𝛼 > 𝐿−1 max𝜃∈C𝜌 ∥∇𝐽 (𝜃)∥, guarantees that −𝛼∇ℎ(𝜃) + ∇𝐽 (𝜃) ≠ 0

and therefore 𝑝 ≠ 0.

If Assumptions 3.4 - 3.5 hold, then ∇ℎ(𝜃) ≠ 𝑠∇𝐽 (𝜃) for 𝑠 > 0 outside some ball around

𝜃∗𝑐. We can choose 𝛼 > 𝐿−1 sup𝜃∈𝐵𝑟∗ (𝜃∗𝑐) ∥∇𝐽 (𝜃)∥. Then 𝑝 ≠ 0. This demonstrates Statement

(2a) and Statement (2c).

Statement (2b): R is compact due to either Assumption 3.4- 3.5 holding, or 3.6 holding.

Now we prove {𝑊 (𝜃) = 0} ≡ bd(R). Step 1: show if 𝜃 ∈ bd(R) then 𝜃 ∈ {𝑊 (𝜃) = 0}.

By contradiction, suppose 𝜃 ∈ bd(R) and 𝜃 ∈ {𝑊 (𝜃) < 0}. By continuity of 𝑊 , there exists a

𝐵𝜖 (𝜃) such that 𝑊 (𝑦) < 0 for all 𝑦 ∈ 𝐵𝜖 (𝜃). Therefore 𝐵𝜖 (𝜃) ⊆ {𝑊 (𝜃) < 0}. But 𝐵𝜖 (𝜃) ∩R𝑐 =

𝐵𝜖 (𝜃) ∩ {𝑊 (𝜃) > 0} = ∅, which contradicts 𝜃 ∈ bd(R). Step 2: show if 𝜃 ∈ {𝑊 (𝜃) = 0} then

𝜃 ∈ bd(R). By contradiction, suppose 𝜃 ∈ {𝑊 (𝜃) = 0} and 𝜃 ∉ bd(R). Then 𝜃 ∉ R̄ or 𝜃 ∈ Int(R).

If 𝜃 ∉ R̄ then 𝜃 ∉ R because R is closed, which implies 𝑊 (𝜃) > 0 which is a contradiction. If

𝜃 ∈ Int(R) then there exists a 𝐵𝜖 (𝜃) such that 𝐵𝜖 (𝜃) ⊆ Int(R) ⊆ R. Since 𝜃 ∈ {𝑊 (𝜃) = 0} then
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𝑊 (𝜃) achieves a local maximum on 𝐵𝜖 (𝜃) which implies 0 ∈ 𝜕𝑊 (𝜃) by Proposition 2.3.2 in [21],

which is a contradiction as 0 ∉ 𝜕𝑊 (𝜃) by Statement (2a).

3.8.3 Lemma 3.5

We group the quantities as the function 𝑄,

𝑄(𝜃)𝑇 B [∇𝐽 (𝜃)𝑇 ,∇ℎ(𝜃)𝑇 , ℎ(𝜃)] . (3.99)

representing (3.16) as a function of the estimated variables 𝐹 = 𝐹 (𝑄(𝜃)). And with a small

disturbance 𝑤(𝑡)𝑇 = [𝑤1(𝑡)𝑇 ,𝑤2(𝑡)𝑇 ,𝑤3(𝑡)] we can consider a system, with disturbances to 𝑄,

written as

¤𝜃 = 𝐹 (𝑄(𝜃) +𝑤(𝑡)). (3.100)

Lemma 3.5 (Additive Disturbance). Under Assumptions 3.1 - 3.2, for any compact set Ω there

exists a 𝑀+, 𝜖∗ > 0 such that for all 𝜖 ∈ (0, 𝜖∗) and ∥𝑤∥ < 𝜖 , the disturbed dynamics in (3.100)

can be written as

𝐹 (𝑄(𝜃) +𝑤(𝑡)) = −∇𝐽 (𝜃)+
∇ℎ(𝜃)

∥∇ℎ(𝜃)∥2 max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0} +𝑂 (𝜖). (3.101)

for all 𝜃 ∈ Ω.

Proof. Step 1 (Rewrite Dynamics, Grouping Terms): Note that terms 𝑤(𝑡),𝑤𝑖 (𝑡) =𝑂 (∥𝑤∥)
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for 𝑖 ∈ {1,2,3}. We write the perturbed dynamics 𝐹 (𝑄(𝜃) +𝑤(𝑡)) = 𝐹𝑤 as

𝐹𝑤 =−∇𝐽 (𝜃) −𝑤1(𝑡) + min{(∇ℎ(𝜃) +𝑤2(𝑡))−2, 𝑀+}·

max{(∇𝐽 (𝜃) +𝑤1(𝑡))𝑇 (∇ℎ(𝜃) +𝑤2(𝑡))−

𝑐(ℎ(𝜃) +𝑤3(𝑡)),0}(∇ℎ(𝜃) +𝑤2(𝑡)),

=−∇𝐽 (𝜃) +min{(∇ℎ(𝜃) +𝑤2(𝑡))−2, 𝑀+}·

max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}∇ℎ(𝜃) +𝑂 (∥𝑤∥),
(3.102)

where we group terms proportional to 𝑤𝑖 as 𝑂 (∥𝑤∥) and note that the max term is proportional

(or zero) to its’ argument.

Step 2 (Find Large Enough M+, Small Enough w): Next, we find a suitably large 𝑀+

such that the max term is not active when min{(∇ℎ(𝜃) +𝑤2(𝑡))−2, 𝑀+} = 𝑀+. First, Consider

the infimum

𝐺 = inf
𝜃∈S

∥∇ℎ(𝜃)∥ > 0 (3.103)

S = Ω∩ {∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃) ≥ 0}. (3.104)

We have that 𝐺 > 0 because for {ℎ(𝜃) ≤ 0} ∩S, ∥∇ℎ(𝜃)∥ > 𝐿 > 0 (Assumption 3.2) and for

S \ {ℎ(𝜃) ≤ 0} we have that ∇𝐽 (𝜃)𝑇∇ℎ(𝜃) > 0 which implies ∥∇ℎ(𝜃)∥ > 0.

Now, we choose ∥𝑤2(𝑡)∥ < 𝐺/2 and 𝑀+ > 4/𝐺2. Therefore,

1
∥∇ℎ(𝜃) +𝑤2(𝑡)∥2 ≤ 1

(𝐺/2)2 =
4
𝐺2 < 𝑀+ (3.105)

for 𝜃 ∈ S. Taking 𝜖∗ = 𝐺/2, we can express the dynamics without the min term as

𝐹𝑤 = −∇𝐽 (𝜃) + max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}
∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 ∇ℎ(𝜃)+

𝑂 (𝜖),
(3.106)
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for 0 < 𝜖 < 𝜖∗. Note also the bound for the term

1
∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 < 𝑀+ (3.107)

holding for 𝜃 ∈ S, for all 0 < 𝜖 < 𝜖∗. In (3.106), we have now also taken the whole vector 𝑤(𝑡)

as 𝜖-small for simplicity. Note we also could have chosen 𝜖∗ = 𝜇𝐺 (and the bound on ∥𝑤2(𝑡)∥)

for any 𝜇 ∈ (0,1). If taking 𝜇 to be larger than 1/2 (we took it as exactly 1/2), this would have

forced a larger choice of 𝑀+.

Step 3 (Find an O(𝜖) Approximation of ∥∇h(𝜃) +O(𝜖)∥−2): We now state two results.

The first follows from the triangle inequality, and then squaring both sides of the resulting

inequality:

∥∇ℎ(𝜃) +𝑂 (𝜖)∥ ≤ ∥∇ℎ(𝜃)∥ + ∥𝑂 (𝜖)∥,

=⇒ ∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 ≤ ∥∇ℎ(𝜃)∥2 + ∥𝑂 (𝜖)∥2+

2∥𝑂 (𝜖)∥∥∇ℎ(𝜃)∥,

=⇒ ∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 − ∥∇ℎ(𝜃)∥2 =𝑂 (𝜖). (3.108)

The second next result uses the previous result, and determines a bound on 𝑑 (𝜃), with

𝑑 (𝜃) =




 1
∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 −

1
∥∇ℎ(𝜃)∥2





 . (3.109)
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We have,

𝑑 (𝜃) =




 ∥∇ℎ(𝜃)∥2 − ∥∇ℎ(𝜃) +𝑂 (𝜖)∥2

∥∇ℎ(𝜃) +𝑂 (𝜖)∥2∥∇ℎ(𝜃)∥2





 , (3.110)

=





 ∥∇ℎ(𝜃)∥2 − ∥∇ℎ(𝜃)∥2 +𝑂 (𝜖)
∥∇ℎ(𝜃) +𝑂 (𝜖)∥2∥∇ℎ(𝜃)∥2





 , (3.111)

=
∥𝑂 (𝜖)∥

∥∇ℎ(𝜃) +𝑂 (𝜖)∥2∥∇ℎ(𝜃)∥2 ,

=⇒ 1
∥∇ℎ(𝜃) +𝑂 (𝜖)∥2 −

1
∥∇ℎ(𝜃)∥2 =𝑂 (𝜖), (3.112)

for 𝜃 ∈ S. We used the fact in the final line that 1/(∥∇ℎ(𝜃) +𝑂 (𝜖)∥2∥∇ℎ(𝜃)∥2) < 𝑀+/𝐺2 is

bounded (see (3.107)) for 𝜃 ∈ S. We now use (3.112) to express 1/(∥∇ℎ(𝜃) +𝑂 (𝜖)∥2) in (3.106)

as

𝐹𝑤 = −∇𝐽 (𝜃) +max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}·(
1

∥∇ℎ(𝜃)∥2 +𝑂 (𝜖)
)
∇ℎ(𝜃) +𝑂 (𝜖),

(3.113)

= −∇𝐽 (𝜃) + max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}
∥∇ℎ(𝜃)∥2 ∇ℎ(𝜃)+

𝑂 (𝜖).
(3.114)

3.8.4 Averaging

Proposition 3.4 (Averaging in C1). Suppose 𝑄 : R𝑛 → R is differentiable with locally Lipschitz

Jacobian, then under Assumption 3.7 the following averages can be computed as

1
Π

∫ Π

0
𝑄(𝜃 + 𝑆(𝑡))𝑀 (𝑡)𝑑𝑡 = ∇𝑄(𝜃) +𝑂 (𝑎), (3.115)

1
Π

∫ Π

0
𝑄(𝜃 + 𝑆(𝑡))𝑑𝑡 =𝑄(𝜃) +𝑂 (𝑎2). (3.116)
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Proof. With 𝑆𝑖 (𝑡) = 𝑎 sin(𝜔′
𝑖
𝑡) and 𝑀𝑖 (𝑡) = 2

𝑎
sin(𝜔′

𝑖
𝑡), we take the period to be Π given as

Π = 2𝜋×LCM
{

1
𝜔′
𝑖

}
, 𝑖 ∈ {1,2, . . . , 𝑛}, (3.117)

where LCM denotes the least common multiple. For use later, we write the following useful

averaging relations

1
Π

∫ Π

0
𝑆𝑖 (𝑡)𝑀 𝑗 (𝑡)𝑑𝑡 =


1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

(3.118)

1
Π

∫ Π

0
𝑆𝑖 (𝑡)𝑆 𝑗 (𝑡)𝑑𝑡 =


𝑎2

2 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

(3.119)

and note that 𝑄(𝜃 + 𝑆(𝑡)) can be Taylor expanded [31, Theorem B.6] around 𝜃 as

𝑄(𝜃 + 𝑆(𝑡)) =𝑄(𝜃) + 𝑆(𝑡)𝑇𝐷𝑄(𝜃) +𝑂 (𝑎2). (3.120)

Now let us expand the LHS of (3.115) as

1
Π

∫ Π

0
𝑄(𝜃 + 𝑆(𝑡))𝑀 (𝑡)𝑑𝑡 = 1

Π

∫ Π

0

(
𝑄(𝜃)𝑀 (𝑡) + 𝑆(𝑡)𝑇𝐷𝑄(𝜃)𝑀 (𝑡) +𝑂 (𝑎2)𝑀 (𝑡)

)
𝑑𝑡 (3.121)

into three terms. The term 𝑄(𝜃)𝑀 (𝑡) averages to zero because 𝑀 has zero average. The term

𝑆(𝑡)𝑇𝐷𝑄(𝜃)𝑀 (𝑡) averages to 𝐷𝑄(𝜃) by (3.118). The last term can be written as 𝑂 (𝑎) because

𝑀 ∝ 1/𝑎. Therefore
1
Π

∫ Π

0
𝑄(𝜃 + 𝑆(𝑡))𝑀 (𝑡)𝑑𝑡 = 𝐷𝑄(𝜃) +𝑂 (𝑎). (3.122)
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Expanding (3.116) we have

1
Π

∫ Π

0
𝑄(𝜃 + 𝑆(𝑡))𝑑𝑡 = 1

Π

∫ Π

0

(
𝑄(𝜃) + 𝑆(𝑡)𝑇𝐷𝑄(𝜃)+

𝑂 (𝑎2)
)
𝑑𝑡 (3.123)

=𝑄(𝜃) +𝑂 (𝑎2) (3.124)

because 𝑆(𝑡) averages to 0.
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Chapter 4

Safe Extremum Seeking for Accelerators

We demonstrate the recent designs of Safe Extremum Seeking (Safe ES) on the 1 kilometer-

long charged particle accelerator at the Los Alamos Neutron Science Center (LANSCE). Safe

ES is a modification of ES which, in addition to minimizing an analytically unknown cost, also

employs a safety filter based on an analytically unknown control barrier function (CBF) safety

metric.

Tuning is necessitated by accelerators being large complex systems, with many drifting

parameters due to thermal effects and degradation. At the same time, safe operation (the

maintenance of state constraints) is crucial, as damage brings astronomical costs, both financially

and in operation downtime.

Our measured (but analytically unknown) safety metric is the beam current. We perform

multivariable Safe ES on three accelerator applications, in which we adapt 4, 6, and 3 magnet

strength parameters, respectively. Two of the three applications are for validated simulation

models of beamlines at LANSCE: the first for the Proton Radiography (pRad) beamline of 800

MeV protons for spot size tuning; the second on a high performance code, HPSim, for tuning the

low energy beam transport (LEBT) region which contains a beam of 750 keV protons. The third

is an experimental tuning of the steering magnets in the LEBT at LANSCE.
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4.1 Introduction

4.1.1 Motivation

At Los Alamos Neutron Science Center (LANSCE) the 800-MeV proton linear accelerator

requires weeks of tuning every year following an outage during a maintenance period, as well as

hundreds of hours of tuning during operation, due to unknown drifting of components along the

approximately 1 km beamline. It is often not possible to use a simulation tool or a model to tune

the accelerator offline, due to the complexity of the system and because the system changes with

time. Therefore, there is need for real-time optimization of parameters such as magnet strengths,

radio-frequency (RF) cavity phases, RF cavity amplitudes, steering devices, etc. to correct the

beam towards optimal performance. In this chapter we consider beam loss to be our measure of

safety, as it arises often in scenarios relating to machine safety. Furthermore, it can easily be

measured in the form of beam current. One may also consider other accelerator applications

with a different measure of safety (or unknown constraint) like power draw or radiation level.

In this work, we use a novel modification of Extremum Seeking (ES) called Safe Extremum

Seeking (Safe ES) to solve the problem of safe optimization or constrained optimization. The

motivation for our use of Safe ES is the combination of complexity and lack of diagnostics in

challenging charged particle beam tuning tasks in high energy accelerators. The need for a safe

tuning algorithm is clearly demonstrated by the beam power of the LANSCE accelerator, which

reaches 800 kW, a factor of 80 greater than a typical welding torch. Such a powerful charged

particle beam, if not safely and carefully controlled, can instantly burn a hole in the beam pipe of

a particle accelerator, destroying the high vacuum system and irradiating nearby components.

In this work we focus on two very important sections of the LANSCE accelerator, low

energy beam transport (LEBT) near the front end of the accelerator and the Proton Radiography

facility (pRad) experimental beam line at the very end of the accelerator.

Almost all large particle accelerators have LEBT sections in which the phase space (the

collection of positions and velocities of all charged particles) of a relatively low energy beam
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is first shaped and refined before it is accelerated to high energies in subsequent acceleration

sections. The LEBT sections of accelerators are some of the most difficult to tune and control

because low energy beam dynamics are dominated by complex collective effects such as space

charge forces, which become much less relevant as the beams are accelerated to highly relativistic

energies.

Our in-hardware demonstration of the Safe ES approach takes place in the LEBT section

of the LANSCE accelerator. The LEBT is directly after the accelerator’s beam source and

transforms the 750 keV 𝐻− ion beam from a continuous stream of particles into a roughly 600

𝜇s long beam of individual bunches of ions that are each separated by approximately 5 ns. The

bunched beam then enters the first resonant structures of the linear accelerator with the ∼5 ns

bunch-to-bunch spacing matching the period of the 201.25 MHz resonant electromagnetic fields

for subsequent acceleration up to 800 MeV. Tuning of the LEBT region is crucial for LANSCE

operations because it sets the initial conditions of the beam that define the rest of the beam

transport. Tuning in the LEBT is also challenging because of a lack of diagnostics and because

the beam has very low kinetic energy and is very space charge dominated, resulting in a halo

of particles around the beam which intercept the beam pipes and accelerator components. We

demonstrate experimentally that multi-variable Safe extremum seeking, adapting 3 steering

magnet strengths, proved useful in recovering the safe operating condition of the LEBT region.

We also demonstrate the Safe ES approach via a simulation study of the pRAD experimental

facility at LANSCE which is used to characterize the behavior of high explosives, materials under

high strain rate, and probe the 3-dimensional density of objects [46]. Under normal operation of

pRAD, beam operators view CCD cameras which are pointed at phosphor screens inside the

beam pipe. The screens, located at various points along the beamline, illuminate when impacted

by the beam, showing its spot size. Daily, several magnet strengths must be manually tuned such

that the beam is appropriately sized at one or more of the screens. We show how Safe ES can

shape the beam quickly and automatically, while remaining safe conditions as defined by low

beam loss.
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Figure 4.1. A diagram of Line B of the LEBT containing many components including current
monitors, bending magnets, steering magnets, focusing magnets, bunchers, and more. Line B
delivers 𝐻− beam to the first tank of the drift tube linac. Line A, shown partially in the top
quarter of the image, delivers 𝐻+. In Sections 4.3.2 and 4.3.3 we tune several components in this
section of the accelerator.

Safe ES, like classical ES, is 1) real-time 2) easily implementable 3) computationally

simple. Yet, it can handle an unknown constraint which may be approximately maintained over

the course of tuning. It minimizes an unknown objective function 𝐽 (𝜃), over the parameters 𝜃,

while also ensuring that some measure of safety ℎ(𝜃) is kept positive. Therefore, our algorithm

approximately solves the following problem

min
𝜃

𝐽 (𝜃) subject to ℎ(𝜃) ≥ 0, (4.1)

where ℎ and 𝐽 are directly measured signals - or are constructed from directly measured signals,

but are analytically unknown. The algorithm also guarantees, approximately, invariance of the

safe set and escape from unsafe initial conditions. We say that we solve the above problem

“approximately” because ES (and Safe ES) fundamentally relies on approximating of the gradient

of unknown functions. Violations of the safety of the system may be made arbitrarily small

(or zero in some cases) by appropriately choosing design constants. The design of ℎ is then

especially useful in this regard as one may design it such that it provides a ‘soft’ limit on the safe

signal of interest. For example, if some safe signal 𝑠(𝑡) ∈ [0,1] must never go below 0.5, then

one may conservatively design ℎ = 𝑠(𝑡) −0.6 if one is sure that the chosen small perturbation
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signal and transient of the ES scheme will not cause a deep excursion of 𝜃 (a change in ℎ more

than 0.1) into unsafe territory. For preventing catastrophic failure to a system in practice, one

would implement a higher-level controller to shut down the system once ℎ is sufficiently negative.

At LANSCE, high level systems like this will kill all beam if radiation levels spike or beam

current is lost to a large degree.

We require the optimization to be done such that a trajectory remains practically safe

for all time, or during the entire length of the tuning episode. Methods such as particle swam

optimization and genetic algorithms cannot be applied to such scenarios unless a modification is

made to ensure that the violation of the trajectory into an unsafe region does not occur.

Note, that we can indeed describe particle accelerators as two unknown, time varying static

maps - 𝐽 (𝜃, 𝑡) and ℎ(𝜃, 𝑡). We imagine that for given parameters 𝜃 at time 𝑡, we instantly receive

a reading of both 𝐽 and ℎ. This is true in many cases when tuning accelerators, as we are not

able to do any feedback while the beam is traveling near the speed of light through the beampipe.

We assume that only after the beam has completed its journey, will we have measurements of 𝐽

and ℎ, after which time we can perform the update to the parameters 𝜃. Additionally, oscillations

introduced by the ES scheme are therefore considerably slower compared to the dynamics of the

plant/accelerator and do not interfere with its operation. The oscillations that we are introducing

are changing the voltage or current set points of power supplies which result in changes in the

magnetic fields of electromagnets, they are not mechanical oscillations and therefore do not wear

out any components.

4.1.2 Accelerator Tuning and Optimization Literature

The Nelder-Mead simplex method [39] and ML based methods have been used to tune

accelerators [5]. Extremum seeking has been studied in simulation for accelerator applications

[89], and was first used experimentally in an accelerator tuning problem to minimize an objective

function [87]. Since then, a bounded form of ES with guaranteed limits on parameter update rates

[88], has been used extensively in several accelerator applications for free electron laser energy
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maximization [78], electron beam trajectory control [84], real-time multi-objective optimization

[82], and for beam loss minimization [83].

Recently, various machine learning (ML)-based methods have been developed for control

and optimization of particle accelerator beams [12]. Bayesian optimization has become a popular

tool in tuning and in some cases has been used to design safety aware tuning algorithms [48, 47, 26].

Bayesian optimization (and methods based on it), unlike ES, constructs a probabilistic estimate

of the unknown functions, in the form of a Gaussian Process (GP), and determines a new point to

sample based the fitted function. Neural networks (NN) have been used as surrogate models

for magnet control [40] and for simulation-based optimization studies [29]. Neural networks

are also being used for uncertainty aware anomaly detection to predict errant beam pulses [17],

as virtual diagnostics for 4D tomographic phase space reconstructions [102], for predicting the

transverse emittance of space charge dominated beams [58], and for high resolution longitudinal

phase space virtual diagnostics [105]. Neural network-based deep reinforcement learning (RL)

methods have been used for accelerator control [35], and in a sample efficient manner, which

trains a policy based on data at two beam lines at CERN [41].

Although many ML-based tools have been developed they all suffer major limitations

when it comes to time-varying systems. If a system changes then NN, GP, and RL methods all

require new data for re-training of their models in order to be applicable for accelerator control.

This major limitation is overcome by adaptive model-independent methods such as ES. Adaptive

machine learning frameworks combining ES with neural networks have been demonstrated to

extend the use of ML for time-varying systems. ES-based adaptive ML has been demonstrated

for automatically shaping the longitudinal phase space of short intense electron beams in the

LCLS FEL [81] and for creating virtual 6D diagnostics of time-varying charged particle beams

[76, 80].

In all the methods described above, including those using ES, the approach to safety

has been some expert-based combination of setting hard bounds on allowed parameter values,

adding additional terms to the cost function, and algorithm hyper-parameter tuning. The Safe ES
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method we demonstrate in this chapter reduces the amount of required hyper-parameter tuning

and removes the manual design of a tradeoff between safety and optimization which depends on

the weights given to safety-related cost function terms relative to objective-related cost function

terms. For example, in the real-time multi-objective ES optimization application in [82], while

the objective was beam spot size minimization, the safety-related term in the cost function was

the beam’s distance from a desired reference trajectory, and there was a tradeoff between the two

depending on the weights. In the approach here, practical safety is always enforced.

4.2 Algorithm

4.2.1 Safe Extremum Seeking

The goal of our Safe ES algorithm is to approximately solve the problem in (4.1) where

𝜃 ∈ R𝑛 and 𝐽, ℎ : R𝑛 → R. We will first recap the (semiglobal) Safe ES algorithm presented in

Chapter 3. Given the static maps 𝐽 : R𝑛 → R and ℎ : R𝑛 → R we define the algorithm dynamics

as:

¤̂𝜃 =𝑘𝜔 𝑓 (−𝐺𝐽 +min{| |𝐺ℎ | |−2, 𝑀+}max{𝐺𝑇
𝐽𝐺ℎ − 𝑐𝜂ℎ,0}𝐺ℎ), (4.2)

¤𝐺𝐽 =−𝜔 𝑓 (𝐺𝐽 − (𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡)), (4.3)

¤𝜂𝐽 =−𝜔 𝑓 (𝜂𝐽 − 𝐽 (𝜃 (𝑡) + 𝑆(𝑡))), (4.4)

¤𝐺ℎ =−𝜔 𝑓 (𝐺ℎ − (ℎ(𝜃 (𝑡) + 𝑆(𝑡)) −𝜂ℎ)𝑀 (𝑡)), (4.5)

¤𝜂ℎ =−𝜔 𝑓 (𝜂ℎ − ℎ(𝜃 (𝑡) + 𝑆(𝑡))) (4.6)

The maps is evaluated at 𝜃, defined by

𝜃 (𝑡) = 𝜃 (𝑡) + 𝑆(𝑡) . (4.7)
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The perturbation signal 𝑆 and demodulation signal 𝑀 are given by

𝑆(𝑡) = 𝑎 [sin(𝜔1𝑡), ... , sin(𝜔𝑛𝑡)]𝑇 , (4.8)

𝑀 (𝑡) = 2
𝑎
[sin(𝜔1𝑡), ... , sin(𝜔𝑛𝑡)]𝑇 . (4.9)

4.2.2 Intuition Behind the Design

The tuning parameter vector, 𝜃, is imparted with gradient descent dynamics acting on the

objective function and gradient ascent dynamics acting on the safety function:

¤𝜃 =𝑘𝜔 𝑓 ( −𝐺𝐽︸︷︷︸
Gradient Descent of the Objective

+

Gradient Ascent of the Safety︷︸︸︷
𝐴𝐺ℎ) + ¤𝑆(𝑡)︸︷︷︸

Exploration Signal

. (4.10)

The quantity 𝐴 is a non-negative, state-dependent, scalar function defined as

𝐴 := min{| |𝐺ℎ | |−2, 𝑀+}max{𝐺𝑇
𝐽𝐺ℎ − 𝑐𝜂ℎ,0} ≥ 0, (4.11)

≈ max{∇𝐽 (𝜃)𝑇∇ℎ(𝜃) − 𝑐ℎ(𝜃),0}
∇ℎ(𝜃)2 . (4.12)

It turns “on/off” to determine whether to consider safety and how much to consider it. Note

that 𝜂𝐽 , 𝜂ℎ,𝐺𝐽 ,𝐺ℎ are estimator states which are meant to converge close to the true quantities

𝐽, ℎ,∇𝐽,∇ℎ.

To understand the design of 𝐴, consider the case when the true quantities are known and

there is no need for the exploration/perturbation signal. So,

¤𝜃 (𝑡) = 𝑢, (4.13)

for 𝜃 and 𝑢 in 𝑛-dimensions. If we consider the gradient descent term 𝑢(𝜃) = −∇𝐽 (𝜃) to be the

nominal controller, we can employ the formulation given by a QP [9, 8] to find an additive safety

term which, when combined with the nominal, yields an provably safe controller (i.e. the safe set
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{ℎ(𝜃) ≥ 0} is said to be positively invariant). The safety aware control law is 𝑢𝑠 = −∇𝐽 (𝜃) + 𝑢̄,

and 𝑢̄ is given by the QP

𝑢̄ = argmin
𝑣∈R𝑛

| |𝑣 | |2 subject to (4.14)

𝑐ℎ(𝜃) +∇ℎ(𝜃)𝑇 (−∇𝐽 (𝜃) + 𝑣) ≥ 0, (4.15)

for some positive constant 𝑐. It was showed that there is an explicit solution for 𝑢̄:

𝑢̄(𝜃) = ∇ℎ(𝜃)
| |∇ℎ(𝜃) | |2

max{∇ℎ(𝜃)𝑇∇𝐽 (𝜃) − 𝑐ℎ(𝜃),0}. (4.16)

It can now be seen that 𝑢̄(𝜃) ≈ 𝐴∇ℎ(𝜃) ≈ 𝐴𝐺ℎ.

Safe ES has a number of desirable properties, the most notable of which is practical safety.

Another desirable property is that the control law is smooth, and trajectories avoid crashing into

an unsafe region without first trying to skirt around them while they are some distance away.

Additionally the formulation of the QP in (4.14) - (4.15) guarantees that the modification to

the nominal control always yields the final control law smaller than the nominal (𝑢𝑠 ≤ 𝑢), for

ℎ > 0. This is a practical benefit for the control designer who must choose the design parameters

such that the adaptation dynamics, given in the right-hand side of (4.2), must be made sufficient

small for stability purposes. Yet another benefit is that when the trajectory starts in the unsafe

region (ℎ < 0), the value of ℎ is guaranteed to monotonically increase in time (provided certain

assumptions like the gradient of ℎ does not vanish), escaping to more safe parts of the state space.

4.2.3 Implementation and Design Parameter Choices

To implement the extremum seeking algorithm we integrate the differential equations (4.2)

- (4.6) numerically. Expressing the equations using 𝑥𝑇 = [𝜃𝑇 ,𝐺𝑇
𝐽
, 𝜂𝐽 ,𝐺

𝑇
ℎ
, 𝜂ℎ], we have ¤𝑥 = 𝑓 (𝑥).

With some initial condition 𝑥(0) = 𝑥0, we compute 𝑥𝑛 = 𝑥𝑛−1 + 𝑓 (𝑥)𝑑𝑡 and the parameters 𝜃

can be set with new values iteratively. The value 𝑑𝑡 is chosen such that period of oscillation
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𝑇 = 2𝜋/𝜔𝑖 ≫ 𝑑𝑡. For all implementations of Safe ES shown in this chapter, we specify 𝑀+ = 104.

Note that unlike the version of ES in [86], we rely on the explicit estimation of gradients.

Therefore, in all the results and plots given we “warm up” the algorithm first by settings 𝑘 = 0 for

the first 1-3 periods of the perturbations 𝑆(𝑡), before turning on the algorithm and simulating

with a nonzero value of 𝑘 . This allows the estimated quantities to converge more closely to their

true values before the adaptation of the parameter of 𝜃 begins. This technique can be thought of

as a trick to more accurately initialize the estimator states 𝐺𝐽 , 𝜂𝐽 ,𝐺ℎ, and 𝜂ℎ.

We choose a value of 𝑎 that causes the oscillatory response in the measurements of

𝐽 (𝜃 (𝑡)), ℎ(𝜃 (𝑡)) corresponding to the frequencies 𝜔𝑖. We set 𝜔 𝑓 roughly the same order of

magnitude as 𝜔𝑖 - a smaller 𝜔 𝑓 can be chosen if one wishes to add more smoothing to the

estimator states. Finally, we gradually increase 𝑘 from zero until sufficient performance is

observed 𝐽 (𝜃 (𝑡)), ℎ(𝜃 (𝑡)). Choosing 𝑘 too large may cause instability.

4.3 Accelerator Applications

4.3.1 Simulated pRad Tuning

For experimental studies on the tuning of Line C, which is the section of the accelerator

responsible for delivering beam to pRad, we use the particle beam dynamics code TRANSPORT,

which has been validated with measurement data and is shown to give accurate predictions of the

LANSCE beam profile [75]. The code contains relevant quadrupole magnet strengths - which in

practice are manually tuned by hand to achieve a spot size required for an optimal delivery of

beam to the experiment.

The TRANSPORT model is a beam envelope model, that models the bulk behavior of the

beam which is represented as an ellipse in 6 dimensions (3 spatial lengths and 3 spatial velocities).

Even though it can model space charge effects, it cannot simulate particle loss. Therefore, we

introduce a model of loss which is applied after TRANSPORT computes the beam dynamics

solutions. This model is not based on data but gives us sufficient complexity to demonstrate our
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algorithm. We model the percentage of beam remaining 𝑏 [%] as a function of the integrated

beam size of the TRANSPORT solution:

𝑏 = 1− 𝑘1

∫ 𝑠𝑒𝑛𝑑

0
(𝑋 (𝑠) +𝑌 (𝑠))𝑑𝑠− 𝑘2

∫ 𝑠𝑒𝑛𝑑

0
[((𝑋 (𝑠) − 𝑟𝑝)+)2 + ((𝑌 (𝑠) − 𝑟𝑝)+)2]𝑑𝑠, (4.17)

where 𝑋+ := max{𝑋,0} and 𝑟𝑝 is the radius of the beampipe. We choose 𝑘1 << 𝑘2 and the

equation describes 1) a small linear loss on the size of the beam that always applies at any point 𝑠

2) a large quadratic loss applying only when the ellipse contacts the beam pipe. The small linear

loss models the persistent loss which always occurs due to beam halo, and the large quadratic

loss describes the sharp and sudden loss which only occurs when the central mass of the bunch

comes close to the beam pipe. This model provides sufficient complexity which captures the

dynamics of loss realistically, although it has not been thoroughly validated with data, as the

TRANSPORT code itself has, which only describes the dynamics of the beam ellipse. We also

provide the LANSCE magnet names used in this study: “AQM1”,“AQM2”, “XQM3”, “XQM4”.

The strength of these four magnets correspond to the components of 𝜃 ∈ R4. Given a

the parameter 𝜃, the function 𝑏 = 𝑏(𝜃 (𝑡)) because only changes in magnet strengths give rise to

changes in the simulation.

The goal for this simulation study relates exactly to a tuning problem which must usually

be performed in the control room. We desire to track a specific spot size of beam as a point in the

beamline, directly preceding the pRad experimental dome. Operators usually are tasked with this

job, but we will show Safe ES is capable of performing the task safely. We will track the size at

the end of the simulation 𝜎𝑥 , 𝜎𝑦 [m] and define the objective as

𝐽 (𝜃 (𝑡)) = (𝜎𝑥 (𝜃 (𝑡)) −0.025)2 + (𝜎𝑦 (𝜃 (𝑡)) −0.025)2, (4.18)

and so the desired spot size is a 2.5 cm circle. We use values of 𝑘1 = 0.02, 𝑘2 = 100. We make
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Figure 4.2. For 100 episodes, we plot both the initial and final error and beam remaining values
for safe and unsafe extremum seeking.

the simple choice of

ℎ((𝜃 (𝑡)) = 𝑏(𝜃 (𝑡)) −0.80, (4.19)

with no scaling to either ℎ and 𝐽, which was done earlier in the HPSim study to achieve the same

order of magnitude of 𝐽 and ℎ.

To understand the design of ℎ some additional information about the accelerator system

in question is needed. Due to the underlying engineering physics of accelerators (of kind at

LANSCE), the task of guaranteeing that near 100% of the beam survives is impossible. From

experience, accelerator operators understand that if roughly 80% of the beam survives, then this

is as close to ‘safe’ as one can hope for. This limitation is due to a combination of beam loss

in the form of beam halo intercepting collimators and the limited acceptance of the resonant

accelerating structures. Therefore, in our case we place the boundary of ‘marginal’ safety at 80%

of beam remaining.

We randomly initialize the magnet settings at up to 20% of their default settings, keeping

points which have at least 20% beam remaining. This is so that we do not assume we start
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Figure 4.3. Percentage of beam remaining and error for safe and unsafe extremum seeking, for
one given trajectory.

the simulation in an unrealistic initial condition (catastrophic beam loss) which may crash the

simulation. Then we run both Classical ES and Safe ES (with coefficients above) for 2,500 steps

and compute the objective error and beam remaining values at the end of the episodes. We do this

for 100 different initial conditions and show the initial condition and final condition of both the

Safe ES and Classical ES trajectories in Fig. 4.2. The Safe ES parameters used are 𝑑𝑡 = 0.012,

𝑎 = 0.005, 𝑘 = 0.04, 𝜔 𝑓 = 10, 𝜔1 = 5, 𝜔2 = 7, 𝜔3 = 11, 𝜔4 = 13 and 𝑐 = 1.

To construct the Classical ES algorithm, we simply use the dynamics of (4.2) - (4.4)

without the safety term in the dynamics of (4.2):

¤̂𝜃 =− 𝑘𝜔 𝑓𝐺𝐽 , (4.20)

¤𝐺𝐽 =−𝜔 𝑓 (𝐺𝐽 − (𝐽 (𝜃 (𝑡) + 𝑆(𝑡)) −𝜂𝐽)𝑀 (𝑡)), (4.21)

¤𝜂𝐽 =−𝜔 𝑓 (𝜂𝐽 − 𝐽 (𝜃 (𝑡) + 𝑆(𝑡))). (4.22)

We choose the parameters of the Classical ES scheme to be the same as those used in the Safe ES
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Figure 4.4. The change in magnet strength trajectories, 𝜃 − 𝜃0, of Safe ES compared with
Classical ES.

scheme - apart from the irrelevant value 𝑐 which does not appear in (4.20) - (4.22).

Fig. 4.2 depicts the effectiveness of the algorithm with respect to various initial conditions.

We show for a 100 randomly chosen initial conditions, which have small and large values of

both performance and safety, all trajectories of Safe ES eventually achieve approximately 20% or

better beam remaining - albeit with various levels of performance. Classical ES shows better

performance in general (more red arrows are grouped on the left-hand side of the plot) but various

levels of safety.

In Fig. 4.3 and 4.4 we choose one trajectory of the 100 episodes and plot the magnet

trajectories as well as the beam remaining signal and error signal along the trajectory. As

expected, the Classical ES trajectory in Fig. 4.3 finds itself traveling into an unsafe region in

favor of better performance, while the Safe ES trajectory still achieves good performance but

does so while keeping the system safe. Running the simulation for longer than 2,500 steps may

also indeed show that Safe ES in this case may ultimately achieve near perfect performance by

taking a longer path through parameter space.
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4.3.2 Simulated LEBT Tuning

HPSim [69] is a GPU accelerator particle tracking code that simulates all of the RF and

magnetic devices used at LANSCE and accurately describes the physics of beams, including

challenging collective effects like “space charge”. It has been used to demonstrate tuning

algorithms [87] and is currently being developed as an online digital twin of the LANSCE linear

accelerator (linac) [38].

The LEBT section delivers the 750 keV beam from the source to the drift tube linac

(DTL) accelerating structures of the linac. In the example presented here, we apply Safe ES to

automatically tune 6 of the quadrupole magnets in LEBT which are responsible for confining the

beam to the pipe as it is transported. We have specified that we want the smallest possible beam

entering the DTL, yet we must attain approximately greater than 80% of the beam while doing

so. Although this is not precisely the goal of the tuning the LEBT beamline, it gives us with a

realistic scenario showing the benefits of Safe ES when we are not sure if gradient descent of the

objective function leads the parameters in a safe direction or not.

In this simulation study we compare Safe ES with Classical ES with a cost function

modified with a small weight on the safety of the system, as this is often a trick used to incorporated

safety considerations in the Classical ES scheme. We will also demonstrate the qualitative

behavior of the 𝑐 parameter in the Safe ES design and show that Safe ES in general leads to a

configuration of the accelerator which leads to less contact with the beam and sensitive structures

in the beampipe.

Given the goals and safety concerns we have described, we choose the following cost

function to minimize,

𝐽 (𝜃 (𝑡)) = 𝑤𝐽 (𝜎𝑥 (𝜃 (𝑡))2 +𝜎𝑦 (𝜃 (𝑡))2), (4.23)

and we also choose the function ℎ as

ℎ(𝜃 (𝑡)) = 𝑤ℎ (𝑏(𝜃 (𝑡)) −0.80), (4.24)
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where 𝑏,𝜎𝑥 ,𝜎𝑦 are signals measured in time and𝑤𝐽 ,𝑤ℎ are chosen such that 𝐽, ℎ are approximately

on the order of 10. Using HPSim we determine 6 quadrupoles along the beamline to use for

tuning which are roughly equally spaced in 𝑠 - the variable used to describe the longitudinal

positive along the beamline. We provide the LANSCE magnet channel names used in this

study: “TBQL005V01”, “TBQL005V02”, “TBQL005V03”, “TBQL005V04”, “TBQL006V03”,

“TBQL006V04” with corresponding magnet strengths 𝜃 ∈ R6. The physical locations of the

components can be shown in Fig. 4.1 as “TBQL05-1”, “TBQL05-2”, ..., “TBQL06-4”.

It is a common strategy to handle the safety problem in Classical ES with a modified cost:

𝐽 (𝜃 (𝑡)) = 𝑤𝐽 (𝜎𝑥 (𝜃 (𝑡))2 +𝜎𝑦 (𝜃 (𝑡))2) −𝑤𝑏(𝑡) (4.25)

where 𝑤 is chosen sufficiently large to (with some luck) yield a safe trajectory. We compare our

algorithm with this strategy and show that in this case it is not possible to know exactly how to

specify 𝑤 without achieving some loss in performance or loss of safety. While for any choice of

our hyper-parameter 𝑐 (which is the most analogous hyper parameter to 𝑤 and in some sense

governs the safety-versus-performance tradeoff), we achieve approximate safety in all cases. This

is because 𝑐 does not change whether or not we maintain approximate safety, but simply how fast

the trajectory is allowed to approach the unsafe region.

The Safe ES parameters used are 𝑑𝑡 = 0.005, 𝑎 = 0.1, 𝑘 = 0.05, 𝜔 𝑓 = 10, 𝜔1 = 5, 𝜔2 = 7,

𝜔3 = 11, 𝜔4 = 13, 𝜔5 = 17, 𝜔6 = 19. We choose 𝑤𝐽 = 50 and 𝑤ℎ = 100 so that the functions ℎ

and 𝐽 are roughly of the same order.

The Classical ES algorithm uses the same parameters (apart from 𝑐) and is implemented

in the same way as in the pRad tuning example using (4.20) - (4.22).

In Fig. 4.5 we show that for various values of 𝑐, approximate safety is enforced. The

smaller values of 𝑐 dictate a slower rate of approach of the trajectory towards the barrier. Fig. 4.6

shows that Classical ES with a modified cost function, in (4.25), does not always remain safe and

the weight 𝑤 cannot be known ahead of time to guarantee best performance and safety. It turns
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out that choosing 𝑤 ≈ 0.07 in the Classical ES scheme would deliver performance and safety

comparable to that of the Safe ES controllers, but this choice would require excessive effort, or

extra system knowledge, on the part of the control designer.

In Fig. 4.7 we compare the beam ‘envelope’ which was found with Safe ES versus

Classical ES. The coordinate 𝑠 runs longitudinally along the beam path, and Fig. 4.7 plots the

transverse size of the beam, which is the actual height (𝜎𝑦) and width (𝜎𝑥) of the beam if one

were to look down the beam pipe. The algorithm has no knowledge of this information, only the

measurement of 𝐽 and ℎ. The figure also provides information about at which point beam loss

is occurring as the sharp change in the size of the beam marks where the start of the first DTL

modules lies. The Classical ES trajectory used was for that of 𝑤 = 0 which yielded approximately

a final loss value of about 30%. It was compared to the envelope found using Safe ES with 𝑐 = 1.

Fig. 4.7 demonstrates that the transverse size of the beam along the beam pipe was smaller in the

case of Safe ES. This is physically what we expect given that large beam losses are expected to

occur when the beam contacts the beampipe.

4.3.3 Experimental LEBT Tuning

For the in-hardware LEBT demonstration, the ES objective function, 𝐽, was a measure of

beam remaining 𝐼𝑏 (negatively proportional to beam loss), while the safety constraint, ℎ, was a

measure of how much beam is being lost at a collimator in the LEBT, 𝐼𝑐. The amount of beam

that hits the collimator is proportional to the transverse beam size in this section of the accelerator

and it is crucial to keep that beam size small enough to reduce how much beam is intercepted.

At the same time, pinching the beam down to too small of a size at the collimator creates very

large divergence of the beam, as particle become highly repellent to each other, and would cause

downstream beam loss. The Safe ES method was set up to dynamically balance the trade-off

between beam size at the collimator and overall beam loss.

The safety of the system is a function of the measured current 𝐼𝑐 at the collimator and

the performance of the system is a function of a measured current 𝐼𝑏 farther downstream. The
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signals 𝐼𝑐 and 𝐼𝑏 are the raw readings from sensors. Both signals in their raw form are negative

as the 𝐻− ion beam has a negative current. If the magnitude of 𝐼𝑐 becomes too large, or too

negative, then a larger fraction of beam is contacting the collimator leading to lack of safety.

On the other hand, if 𝐼𝑏 becomes large (more negative) then we have a large fraction of beam

surviving at the end of the line - therefore we desire that 𝐼𝑏 be minimized as much as possible.

Note that in this tuning problem, it is not possible to tune 𝐼𝑐 identically to zero. 𝐼𝑐 should merely

be constrained approximately within some small range, which is why Safe ES is an ideal choice

of algorithm in this scenario.

The safety goal was to keep the measured current intercepted at the LEBT collimator, 𝐼𝑐,

at a value greater than approximately −0.5 mA. The reading of 𝐼𝑐 (𝑡) lies in the range [−2.5,0],

and we define the safety function defined as

ℎ(𝜃 (𝑡)) = 𝑤ℎ (0.5+ 𝐼𝑐 (𝜃 (𝑡)), (4.26)

with 𝑤ℎ = 10 so that ℎ ≥ 0 corresponds to the region of safety where −0.5 ≤ 𝐼𝑐 ≤ 0. We implement

a 10 point average of the raw data (shown in Fig. 4.10) to smooth the measurements of 𝐽 and

ℎ - see the smoothed measurements in Fig. 4.8. The beam loss was minimized by simply

defining 𝐽 (𝜃 (𝑡)) = 𝐼𝑏 (𝜃 (𝑡)). Minimizing loss in this case is the same as minimizing the beam

current because 𝐼𝑏 is always negative. The tuning parameters used are the three LEBT steering

magnet strengths, given by the channels “TBSM402P01”, “TBSM502P01”, and “TBSM602P01”

with the corresponding strengths 𝜃 ∈ R3. The physical locations of the components can be

shown in Fig. 4.1 as “TBSM04”, “TBSM05”, and “TBSM06”. 𝐼𝑏 and 𝐼𝑐 have channel labels

“TDCM001102” and “TDBA001101” respectively. The Safe ES parameters used are 𝑑𝑡 = 0.359,

𝑎 = 0.1, 𝑘 = 0.03, 𝜔 𝑓 = 1, 𝜔1 = 1, 𝜔2 = 1.375, 𝜔3 = 1.75 and 𝑐 = 1.

Results of tuning in the first 100 steps are are shown in Fig. 4.8 and 4.9. In Fig. 4.10

we show that initially the steering magnets are manually tuned to achieve a desirable operating

condition. We then detune the magnets and run the algorithm around minute 4. The algorithm
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demonstrates it can recover the original operating condition, minimizing 𝐼𝑏 to -1.8 mA and

driving 𝐼𝑐 to near -0.5 mA. The data from Fig. 4.8 - 4.9 is generated using a 10-point average of

the data during the times shown between the dotted lines in Fig. 4.10.

This is an example of multi-variable Safe ES where the parameters of the algorithm

converge to the barrier of ℎ, achieving practical safety, while also minimizing the objective.

Additionally, we have demonstrated that this algorithm can save an accelerator system operating

unsafely and drive the system towards a safe operating condition.

4.4 Conclusion

In this chapter we demonstrate that Safe ES has several uses in tuning various accelerator

systems and subsystems. We have shown that in two validated simulations of beamlines at

LANSCE, we can use Safe ES to perform tuning. Additionally, we present an in-hardware

demonstration of tuning the LEBT section of the accelerator. The advantage of this method is

that we require no knowledge or prior gathering of data of the underlying accelerator system and

can guarantee practically safe operation. Furthermore, compared to other methods commonly

used in particle accelerator systems, Safe ES is very simple to implement.
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Figure 4.5. Percentage of beam loss and error for Safe ES with different values of 𝑐.
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Figure 4.6. Percentage of beam loss and error for Classical ES with various weights 𝑤, plotted
against one trajectory of Safe ES. Note that the Error values shown in the bottom plot is
𝑤𝐽 (𝜎𝑥 (𝑡)2 +𝜎𝑦 (𝑡)2), for each of the 4 trajectories given.
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Figure 4.7. The beam envelope along 𝑠, depicting the transverse size of the beam throughout the
LEBT region and through the first 4 DTL modules in Classical ES with 𝑤 = 0 and Safe ES with
𝑐 = 1.
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Figure 4.8. Barrier function and objective function over the first 100 steps using a 10 point
average of the noisy measurements of 𝐼𝑏 and 𝐼𝑐.

Figure 4.9. Parameter trajectories over the first 100 steps using a 10 point average of the noisy
measurements of 𝐼𝑏 and 𝐼𝑐.
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Figure 4.10. Raw plot of 𝐼𝑏 and 𝐼𝑐 taken from the LANSCE control room monitor for process
variables. The first dotted vertical line marks the start of the algorithm, the second dotted line
marks where recordings in Fig. 4.8 and Fig. 4.9 finish.
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Chapter 5

Conclusions

5.1 Summary

In Chapter 1, we set the stage for this dissertation with an exploration of particle

accelerators. The operation of accelerators is a challenging process, requiring continuous, precise

control over the particle beam to prevent severe consequences, such as damage to the accelerator

or safety hazards from unwanted radiation generation. Large accelerators, extending over miles

with thousands of components, are subject to time varying drifts from aging, thermal effects,

and environmental changes, necessitating constant adjustments to maintain beam quality. Often,

operators must manually adjust control settings to fine-tune performance indicators such as beam

intensity and energy distribution, all while ensuring the safety of both the accelerator itself and

human operators.

To address these concerns, we introduce an algorithm known as “Assignably Safe ES”

(ASfES) in Chapter 2. This controller, the first safe ES controller that we explore, is local in

nature but includes several key innovations. One notable aspect is the high degree of control it

offers over the safety behavior, allowing the user to assign the ”attractivity rate” of the algorithm

– a time constant that governs system’s approach to and from the safe set, as measured by the

safety metric ℎ. Our analysis leverages classical averaging and singular perturbation theorems,

and introduces the notion of “practical safety”, which permits that the small safety violation

can be made arbitrarily small with appropriate selection of design constants. We also extend
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this algorithm to a Newton-based version of the ASfES algorithm, which we show should only

be used in the case of a scalar parameter. The Newton-based version has an assignable rate of

convergence of the parameter, only if the safety attractivity rate is not violated. Otherwise the

convergence rate is modified to satisfy the attractivity rate requirement.

Another safe ES algorithm is offered next in Chapter 3 termed simply as “Safe ES”, with

guaranteed semiglobal stability and practical safety properties. The algorithm’s design is different

than that of ASfES, sacrificing user specified attractivity in favor of semiglobal convergence

to an arbitrarily small neighborhood of the safe optimum. We make use of the current state of

the art results on the semiglobal properties of ES combined with a Lypaunov based argument

to achieve the key results of Chapter 3, and provide a general class of nonconvex constrained

optimization problems which may be solved by Safe ES.

Finally we demonstrated the usefulness of Safe ES in Chapter 4, providing further

rationale to real world problems in the operation of particle accelerators. The first two examples

we present are conducted in validated simulators used to study beam dynamics of the linear

accelerator at Los Alamos Neutron Science Center. In the simulated examples, we show that Safe

ES can be used to perform spot size tuning (altering the size of the beam in the 𝑥 and 𝑦 directions,

perpendicular to its direction of travel) in a safe manner, and compare its effectiveness relative

to that of classical ES. In the third example of this chapter, we described a real experiment on

the beam where Safe ES successfully tunes three bending magnets to steer the beam through a

collimator safely. In this final example, we specify that the maximum beam survive through the

collimator, and consider the measurement of the impact of the beam with the collimator to be a

measure of safety, not allowing it to exceed a certain value too a large degree.

5.2 Future Work

There are several key areas surrounding the research presented in this dissertation which

may be explored. The first is the consideration of delays into the measurements of the objective
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and safety metrics. Delays have been studied in several ES settings although they have not been

studied in an ES setting where safety is of concern. The need for the study of delays in systems

where safety is required has many obvious applications – some of which arise in accelerator

systems. For example, delays may arise where a diagnostic tool placed inside of the beam

pipe requires several bunches (or passes of the beam through the tool) before it can produce a

reading. Another common situation arises in large accelerator facilities where the reading of

a measurement happens on a local wireless network, with a fixed update rate at which process

variables can be read.

Another theoretical question concerns the semiglobality of the ASfES presented in

Chapter 2. We showed that only local stability holds, although simulations show that indeed

initial conditions (especially safe initial conditions) which are far away from the constrained

optimum may still converge with the appropriate design constants. The design of Safe ES in

Chapter 3 achieves semiglobality by slowing the movement of the parameter, which is achieved

by choosing 𝑘𝜔f small. If this property can be demonstrated rigorously for the design of ASfES

it may provide a way forward in demonstrating stronger convergence properties.

We also imagine that Safe ES can be utilized in more complex settings involving the

simultaneous tuning of a machine learning model, which provides an estimate of a system metric,

and the safe tuning of the the accelerator parameters in order to track this diagnostic metric.

Here, both the tuning of this machine learning model and the beam parameters can be performed

by classical ES and Safe ES on different time scales – the estimate provided by the diagnostic

is provided fast, while the tuning of the accelerator parameters are performed slowly, in a safe

manner. This work is presently ongoing and will be presented in 2024 at the International Particle

Accelerator Conference (IPAC). Safe ES may prove a useful addition to the tool box for many

other accelerator applications as accelerator systems are such complex machines, relationships

between tuning parameters and the various system metrics are extremely difficult to know. We

also hope to explore many other real life experiments applying Safe ES in accelerator facilities in

the future. We are currently trying to make Safe ES more accessible as a tuning algorithm which
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can be used by beam operators – individuals whose job is to continually monitor the performance

of the beam. Developing a graphical user interface for this purpose is a currently ongoing project.
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