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ABSTRACT OF THE DISSERTATION 

 

Highly Selective Changes in Chromatin Accessibility in Response to Pro-Inflammatory  

and Anti-Inflammatory Stimuli 

 

by 

Brandon Thomas 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2017 

Professor Siavash K. Kurdistani, Chair 

 

A major challenge in understanding complex rheumatologic and inflammatory diseases has 

been to understand the relative contributions and influences of multiple cytokines and cell types 

to disease pathogenesis. Progress has been limited by our inadequate knowledge of the 

underlying mechanisms responsible for regulating inflammatory responses, both in 

circumstances of human disease, but also at a fundamental level of how transcription factors 

(TFs), chromatin, and diverse stimuli regulate inducible transcription in immune cells. We have 

utilized in-vitro models of mouse macrophage activation combined with hi-throughput 

sequencing in order to provide a high-resolution view of the inflammatory response. The long-

term goal is to identify modes of regulation governing inducible gene expression with the 

expectation that the knowledge gained will provide insight into how the immune response can 

be manipulated in the setting of human disease. Here, we provide evidence for both broad 

trends governing inducible transcription as well as examples of highly specific forms of 

regulation occurring at individual genes. We further provide support for utilizing mouse models 

in relation to questions regarding human physiology, as well as address the role of Interluekin-

10 in the inhibition of inducible chromatin at sites upstream of inhibited genes. 
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DNA 

Life on earth depends upon the synthesis, maintenance, and propagation of deoxyribonucleic 

acid (DNA). DNA consists a sugar-phosphate backbone with one of four nitrogen containing 

chemical side chains; Adenine, Cytosine, Guanine, and Thymine (A,C,G,T). These side chains 

are attached to a sugar backbone and can be used to form a polymer consisting of alternating 

bases.  The nitrogenous bases on one polymer of DNA interact via hydrogen bonding with 

nucleobases on a complementary strand of DNA in a specific arrangement, which requires 

Adenine to hydrogen bond with Thymine on the complementary strand (and Cytosine with 

Guanine). DNA exists stably as a dimer with a bend in the backbone, which results in a double 

helical structure (Franklin and Gosling, 1953; Watson and Crick, 1953; Wilkins et al., 1953), and 

localizes to the nucleus of eukaryotic cells where it closely associates with histone proteins. The 

histone/DNA complexes that result from close association and wrapping of ~150 base pairs are 

termed nucleosomes. Nucleosomes contribute to the higher-order structure of DNA within the 

cell and can facilitate or impede biological processes acting on the DNA, such as transcription, 

replication, and repair.  

  The phasing of A,T,G,C base pairs along a strand of DNA represents a method of 

information storage, whereby specific arrangements of sequences act as high-affinity interaction 

sites for cellular machinery. Some segments of DNA act as binding sites for proteins, other 

segments of DNA are interconverted to Ribonucleic acid (RNA), another form of information 

storage that acts as a template for the synthesis of other macromolecular structures. RNA 

sequences arise from their DNA counterparts through the process of transcription, where a 

protein with DNA binding and polymerase ability contacts the DNA and synthesizes RNA using 

one DNA strand as template. RNA polymerases covalently attach the same four nitrogenous 

bases used in DNA with the exception of Thymine, which exists in a demethylated form in RNA 

called Uracil (U). Once formed, processed, and released from the nucleus of eukaryotic cells, 

RNA can be used as template for the generation of amino acid containing polymers called 
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proteins. Proteins vary in their functions; some enable the structural support needed within cells, 

some are released outside of the cell to act as complex chemical messengers, and others are 

transported back within the nucleus to act as DNA- and RNA-polymerases to ensure the 

continued generation of more DNA and RNA species within the cell.  

 

Transcriptional Regulation 

RNA transcription is a process that occurs continually during the life cycle of a cell. Constitutive 

expression is needed for basal cellular metabolism and functioning, while inducible transcription 

is the result of the cell’s ability to interact with and respond to the surrounding environment. This 

holds true in circumstances where a cell needs to mount a response to suit the specific needs 

brought on by the changing environment, but also during development and maturation of cells 

from a common stem cell progenitor. Muscle, skin, blood, and nerve cells all perform unique 

roles within the body, but all can be traced through a developmental lineage with a shared 

common origin. The gene expression programs have been established in each of these cells to 

best suit the needs and specific roles each plays in whole body homeostasis, with each ‘gene 

program’ providing the necessary proteins needed for carrying out cell-specific functions. 

Developmentally regulated expression on genes can feed-forward to further commit cells down 

a particular maturation pathway and the continued differentiation of a cell is directed by tissue 

specific expression of genes involved in regulating cellular identify. It is because of differential 

gene expression and strict regulation of transcriptional output that the diversity and uniqueness 

of cell types are able to emerge from a shared common origin, and therefore, is a pre-requisite 

for multicellular life. 

  Transcriptional responses following cellular stimulation or perturbation are targeted 

towards the generation of specific genes whose protein products may be used to help achieve 

homeostasis under a new environmental signal. This often arises from a stimulus-specific 

activation of DNA binding proteins with the ability to recruit RNA polymerases to the sites of 
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target genes. These proteins are called Transcription Factors (TFs), and while there are many 

varieties of TFs within the cell, nearly all biological responses rely on the cell’s ability to convert 

environmental signals to productive gene transcription through the use of differential TF 

activation.  

TFs often contain at least two sub-domains in their amino-acid sequence. One domain is 

used for DNA binding (DBD) and can be used for recognizing short DNA sequences, often with 

high affinity for specific DNA residues within the short stretch of DNA. The unique arrangement 

of DNA base pairs that preferentially associate with the DNA binding domain of a protein is 

referred to the ‘motif’, and protein binding can be predicted throughout the genome by 

comparing the motif strength found at any given locus in the genome and the computationally or 

biochemically determined protein-binding motif preferences of any TF of interest. Other domains 

of a TF can be specific for protein-protein interactions including dimerization with itself or with 

other proteins, a domain that can be used for regulation such as sites of potential ubiquitination, 

phosphorylation, or cleavage by proteases within the cell. These regulatory regions within the 

protein structure acts as sites that can be modified in response to an environmental signals and 

are able to convert the TF from an inactive state to an active state. TFs can be held in an 

inactive state by a variety of mechanisms. One common feature of stimulus responsive TFs are 

that they exist outside of the nucleus during basal conditions and are only transported into the 

nucleus following stimulation and subsequent protein modification. Phosphorylation, cleavage, 

and dimerization are all processes known to contribute to nuclear localization of TFs, but many 

other forms of TF regulation have been documented. 

 

Chromatin regulation of transcription 

Once an active TF has entered the nucleus it can make contact with the preferred DNA motif 

and has the ability to recruit other proteins that are needed for transcription to occur, including 

general transcription factors and RNA polymerase II (RNA Pol II). Chromatin configuration 
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within cells is highly dynamic, however, and if the target DNA sequence is located in an 

inaccessible region the activated TF may not be able to bind to facilitate transcription upon 

entering into the nucleus. Instead, before TF binding and transcription can occur, the inactive 

nucleosome must be modified and the underlying DNA sequence must be made accessible for 

protein binding (Li et al., 2007). Nucleosome remodeling, therefore, is an additional mechanism 

used by cells to control transcriptional responses to a stimulus and is a regulatory obstacle that 

must be overcome in order to TF binding to occur (Figure 1-1). Nucleosome remodeling can 

occur in a number of different ways (Calo and Wysocka, 2013). Some DNA binding proteins 

have the direct ability to recognize their motifs even when embedded within an inactive 

nucleosome structure. These proteins have been termed ‘pioneer factors’ for their ability to be 

among the first proteins to bind and begin the chromatin remodeling process so that subsequent 

binding from non-pioneering factors can be achieved. Alternatively, it is thought that if closed 

chromatin contains numerous binding sites for TF that can bind cooperatively, the non-

pioneering TF can bind together, potentially beginning at sites most distal to the core of the 

nucleosome where motifs could be partially exposed and accessible to binding. Regardless of 

the initiating events that lead to initial protein binding, the chromatin can be acted upon by 

chromatin remodeling complexes that add modifications leading to a sustained open chromatin 

configuration, often times these chromatin changes remain long after the initiating stimulus 

leading to nucleosome remodeling is withdrawn from the cell’s environment. Because chromatin 

changes are dynamic and maintained within the cell, they represent an additional layer of 

information storage and can further shape the cell’s response in the future. Remodeled 

nucleosomes can rapidly recruit TF binding and transcriptional initiation, and sites marked by 

open chromatin from the cells initial encounter with a stimulus can be acted upon more rapidly 

in response to subsequent challenges with similar stimuli. 

  Chromatin remodeling is facilitated by a number of proteins, often acting in concert as a 

multi-membered complex. Once remodeling complexes are recruited to DNA they can deliver 
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chemical modifications to the N-terminal tails of histone proteins at specific residues. Histone 

H3, as an example, contains a number of amino acid residues that can be modified with 

different chemical groups. Acetylation can occur at Lysine (K) at position 9, K27, and K36 by the 

histone-modifying enzyme GCN5, and these marks have been associated with regions 

demonstrating active transcription (Grant et al., 1999). These same sites can instead be 

methylated by a different group of histone modifiers including SETDB1, EZH2, and SET2 . 

Depending on the context and status of methylation (mono-, di-, or tri-methylation), these sites 

have been found associated with repression (H3K9me3) (Schultz et al., 2002), silencing 

(H3K27me) (Plath et al., 2002) or transcriptional elongation (H3K36me) (Krogan et al., 2003). 

Collections of histone marks have been documented and have been used to classify chromatin 

regions throughout the genome, and certain arrangements of histone marks are often used as 

surrogate markers for the chromatin configuration and accessibility to TF binding (Table 1-1). 

Alongside direct histone modification with chemical side-groups, the entire replacement of 

nucleosomes has been observed and depends upon an ATP-dependent activity of large 

remodeling complexes. One particularly well-studied ATP-dependent chromatin-remodeling 

complex is the Switch/Sucrose Non-Fermentable (SWI/SNF) complex that is conserved in 

bacteria, yeast, mice, and humans (Cairns et al., 1994; Côté et al., 1994; Peterson et al., 1994). 

This complex uses the high-energy molecule ATP to restructure and loosen the DNA/histone 

associations and allow for other TF and histone-modifying enzyme to act on the nucleosome.  

  Aside from protein-directed modification of chromatin structure, specific DNA content 

can directly shape nucleosome stability and therefore transcriptional regulation. The frequency 

of CG dinucleotides (CpG) observed in the genome is much less than the once per 16 bases 

that is expected if they were distributed randomly throughout the genome. The depletion of CpG 

content has been hypothesized to result from the deamination of methyl-cytosine to uracil and a 

stable mutation of CpG to TpG (Bird, 1980). There is, however, a preservation of CpG 

sequences in the promoter region upstream of many transcriptional start sites (TSSs). Upwards 
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of 70% of all gene promoters contain high CpG content near what would be expected if 

distributed at random, and nearly all housekeeping genes that are constitutively expressed in 

nearly all cell types contain numerous CpGs in close proximity to one another (Davuluri et al., 

2001). Many CpG island promoters have been found to associate with properties of open and 

active chromatin including active histone modifications and accessible DNA. Indeed, even under 

conditions of low or no transcriptional activity, many CpG island promoters can be found pre-

bound with a stalled RNA pol II (Hargreaves et al., 2009). There continues to be active 

investigation into determining whether the DNA has an intrinsic ability to direct nucleosome 

structure, or whether specific protein motifs are enriched in CpG islands and protein binding 

facilities the sustained open chromatin at these sites. Regardless of the precise determinants 

and mechanisms of achieving open chromatin at CpG islands, it has been shown that CpG 

content has the ability to directly prevent stable nucleosome formation and instead associates in 

regions of active chromatin (Ramirez-Carrozzi et al., 2009). Presumably, this allows rapid 

activation of CpG island promoters under a variety of contexts and further delays the activation 

of genes with low CpG content, which may exist in closed chromatin and require additional 

steps of chromatin remodeling for productive gene transcription to occur.  

 

Immune cell regulation of gene transcription 

While the DNA content of all cells within a human body are approximately equivalent, each cell 

type is responsible for completing specific roles and requires discrete sets of proteins to 

accomplish unique tasks. Individual cells from different lineages often function as a collection, 

with different gene expression programs established across different types of cells that together 

constitute a tissue. Blood can be considered as a tissue because it contains many different 

kinds of cells that posses specific functions. The differential gene expression programs that 

allow for unique functioning are achieved through developmental expression and regulation of 

key TFs.  These developmental TFs turn on specific target genes through a combination of 
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direct recognition of the DNA target sequences, interactions with other co-factors, and the 

overall chromatin structure of the host cell. 

  Analogous to how many different cells work together within a given tissue, many tissues 

and organs can work together to constitute a system. A system is a highly specialized collection 

of cells, organs, and tissues distributed across the body dedicated towards a common goal. The 

immune system is responsible for surveying the body for signs of foreign invasion and 

pathogenic substances. Furthermore, immune cells contain TFs that, once becoming activated, 

are able to interact with DNA near genes encoding inflammatory and microbiocidal proteins to 

promote their transcription. The immune system’s ultimate role, therefore, is to be able to 

distinguish host cells from those of another origin (self vs non-self). If an immune cell detects a 

foreign substance it determines to be potentially pathogenic, it must either eradicate the threat 

individually and/or recruit other cell types with an enhanced ability to resolve the threat. Innate 

immune cells are a type of immune cell that are considered the ‘first line’ defense against 

invading pathogens. These cells patrol the body at many environmental:host interfaces, such as 

the skin, the intestinal tract, the oral mucosa, and lungs. Innate immune cells also circulate in 

the blood and can be recruited to sites of injury or inflammation. Adaptive immune cells, 

including B-lymphocytes and T-lymphocytes, contribute to long lasting immunity through their 

ability to proliferate into cells with high affinity receptors against particles present on the 

invading pathogens. While distinct entities, innate and adaptive immune cells work together to 

protect the host against invading threats. Immune cells are able to communicate with one 

another through the transcription and synthesis of secreted proteins including cytokines and 

chemokines that activate specific signaling pathways once detected by other cells. 

 

Toll-like receptor 4 and pattern recognition 

The ability to sense and respond to foreign molecules and stress signals is of central 

importance to the protection conferred by innate immune cells. Cells are able to sense pathogen 
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associated molecular patterns (PAMPs) through one of their Pattern Recognition Receptors 

(PRRs). One well-studied family of PRRs are the Toll-like receptor family (TLR), of which TLR4 

is present on the cell surface and has high affinity for a PAMP found the gram negative bacterial 

cell wall component, lipopolysaccharide (LPS). TLR4 sits on the outer membrane of many 

immune cells and complexes with other proteins to form a signaling receptor complex (Park et 

al., 2009) (Figure 1-2). Myeloid Differentiation Factor 2 (MD2) and TLR4 form a heterodimer that 

interacts with LPS bound to CD14. This complex allows for efficient extracellular recognition of 

LPS and intracellular dimerization of the Toll Il-1 Receptor (TIR) domains on the TLR4 receptor. 

These domains are highly conserved across multiple animal and plant species, highlighting their 

important role in transmitting environmental signals to intracellular pathways. On the inside of 

the cell, a number of other accessory proteins associate with the TLR4 receptor complex and 

amplify the bacterial signal across many signaling pathways. Myeloid differentiation primary 

response gene 88 (MYD88) and TIR-domain-containing adapter-inducing interferon-B (TRIF) 

are two important adapter proteins used for TLR4 signaling. MYD88 activation leads to a rapid 

activation of kinases and ubiquitin ligases that feed into the activation of MAP kinases and NF-

κB signaling. The MYD88-independent activation following TLR4 stimulation signals through 

TRIF and leads to a partial restoration of NF-κB activation, but with delayed kinetics due to the 

requirement of endocytosis and activation at the endosome. TRIF signaling is unique to MYD88 

in that it leads to a potent activation of IRF3, which binds to a different set of target genes 

important for anti-viral immunity through the expression of type-I interferons.  

  Of all known TLRs, which include over 10 in human and 12 in mice, TLR4 is the only one 

to lead to the activation of both MYD88- and TRIF-dependent signaling pathways. This is one 

reason for why TLR4 has received attention for study; its dimerization and signaling results in 

the activation of a large range of TFs that can enter the nucleus and drive transcription of target 

genes. Of the many TFs that enter the nucleus to drive inducible transcription, members of the 

NF-κB and IRF family have been well studied. RelA, or p65, is an NF-κB family member that 
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localizes to the cytoplasm under resting conditions where it exists as a dimer with p50 and 

complexes with inhibitor NF-κB family members (IκBs). The IκBs mask the nuclear localization 

domain of RelA which prevents its shuttling into the nucleus. Upon stimulation, Inhibitor Kappa 

kinases (IKKs) become active and phosphorylate IκB. This promotes the ubiquitination and 

degradation of IκB and allows active NF-κB dimers to enter the nucleus and drive expression. 

The MYD88-dependent pathway is a stronger induced of NF-κB signaling because it promoters 

a greater activation of the IKKs. The TRIF-dependent pathway leads to activation of IRF3, which 

also remains in the cytoplasm until becoming phosphorylated and enters the nucleus to bind its 

distinct set of target motifs. 

 

Significance of understanding gene regulation 

The transcriptional response following PAMP recognition results in the induction of hundreds 

of genes; some genes encode proteins that promote inflammation while others communicate 

with other cells of the immune system to aide in polarization and development of the 

adaptive response. The immune response must be precisely regulated; it would be detrimental 

to the host, for example, if immune-stimulated cytokines were released from cells following 

weak stimulation by non-pathogenic stimuli. Similarly, poor responses to potential pathogens 

could result in lack of clearance and ultimate organ destruction or death of the host. The 

impressive control of immune activation has been of great interest to immunologists, 

biochemists, and physicians over the years and there has been a growing interest in 

understanding innate immune cell function since the first discovery of phagocytic antigen 

presenting cells over 100 years ago (Cavaillon, 2011) (Figure 1-3). Researchers have an 

immense interest in better understanding precisely how transcriptional responses are best 

tailored for a given stimulus so that we may subsequently manipulate and repurpose the system 

for our own goals. Furthermore, this knowledge could be used to explain cellular mechanisms 

responsible for disease pathogenesis. Examples of this can be seen throughout the history of 
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medicine, a specific example of advances in vaccination technologies emphasizes this point.  

  Initial vaccine therapies involved inoculation with low doses of live related pathogens of 

lower virulence. The immunological “training” on less virulent strains of pathogenic stimuli 

allowed for innate and adaptive immune cells to successfully resolve the threat and produce 

protective antibodies which could circulate and provide protection against repeat, or similar 

exposures. Cowpox inoculation was the first vaccine and was used to immunize against 

smallpox virus in the late 1700s. The name “vaccine” derives from the latin “vacca” meaning 

cow, highlighting the role of cowpox virus in providing immunologic protection. By exposing 

individuals to cowpox virus, protective immunity was built against both cowpox and smallpox. 

Similar efforts have been made across many human pathogens. Polio vaccines currently used 

today come in two forms, a live-attenuated version as well as a killed wild type version. There 

are pros and cons for each vaccine type; the live attenuated version can induce a much 

stronger immunity against the virus, but can become virulent itself in some individuals. The 

killed vaccine is considered safer, but fails to mount an adaptive immune protective response at 

mucosal sites in the body. This failure to induce a strong immunity in the safer, killed vaccine is 

due to a lack of strong induction of a specific transcriptional program in either the antigen-

presenting cell, or a lack of strong transcriptional response in the adaptive immune cell. The 

knowledge of which types of transcriptional responses necessary for mounting protection via the 

adaptive immune system has led to work investigating the use of vaccine adjuvants, which are 

stimulatory compounds included with vaccine preparations to allow for targeted immune 

activation. It has been shown, as an example, that innate immune dendritic cells (DCs) can be 

used as a target cell for delivery of antigens to be used for vaccination. DCs challenged with 

Hepatitis B virus surface antigens are able to mount a protective immune response when co-

infected with a modified LPS molecule with enhanced activation of the TRIF-dependent TLR4 

signaling pathway. This vaccine may be protective due to the activation of the IRF3 TF, which 

enables a robust activation of type-I interferon and downstream anti-viral immunity. Without the 
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knowledge of basic mechanisms of TLR4 induced gene expression programs, the rational 

design of vaccine adjuvants would be impossible (Levitz and Golenbock, 2012; Nabel, 2013). 

While there have been success stories such as these through history, there is much more to be 

learned about the basic mechanisms responsible for coordinating effective immune responses. 

  Another example of clinical observations being addressed with focused mechanistic 

questions in the lab includes the problem observed in preterm and neonatal infants being 

unable to combat infectious diseases as well as older aged babies (Kollmann et al., 2017). The 

immune system is established early in life, but continues to change through childhood and into 

adulthood. It has been known that specific pathogens pose a greater threat to neonates, and 

that vaccine responses tend to be reduced during early life. It has been hypothesized that the 

diminished immune response is due to immaturity of immune cells, a programmed anti-

inflammatory immune repertoire to enable early bacterial seeding of commensal sites in the skin 

and gut, as well as a chemical effect from hormones synthesized during fetal development. 

Regardless of the biological or evolutionary explanation for these findings, the clarity as to why 

this occurs at the cellular level only came about once researchers interested in understanding 

immune cells responses began to compare immune activation in neonatal cells compared to 

older individuals in the lab. It was shown that vaccine responses could be recovered to adult-like 

levels in young children with the use of adjuvant stimuli included in the vaccine (Siegrist, 2001). 

These results seemed to indicate that there was a particular hypo-responsiveness to stimuli in 

neonates compared to adults. Later studies comparing similar cell populations across different 

age groups were able to determine that interferon responses were diminished in neonates, 

while expression of the anti-inflammatory cytokine Interluekin-10 was enhanced and IRF3 

activation was diminished (Aksoy et al., 2007). These findings have been confirmed by multiple 

groups and will be a topic of discussion in chapter 2 of this thesis. 

  The beauty that comes from investigating basic questions regarding gene regulation is 

that the knowledge gained will likely be highly conserved across species and hold broad 
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implications spanning many organ systems. The ‘rules’ learned from such studies will allow for a 

richer understanding of disease pathogenesis and overall cellular physiology which will be 

essential for moving forward as we use these rules for understanding how to best manipulate 

cells and systems to achieve desired outcomes that promote human health and achieve whole 

body homeostasis.  

 

Gene regulation studies in the pre-genomics era 

Our general interest lies in better understanding how transcription is coordinated within cells 

following environmental changes. Our specific interest is focused on the transcriptional cascade 

induced by a well-studied pattern recognition receptor, Toll-like receptor 4 (TLR4), in mouse 

bone marrow- derived macrophages (BMDMs). The general rationale for the studies in our lab is 

that a reductionist approach toward understanding how a well-defined cell type mounts a 

transcriptional response will be essential for the long-term goals of understanding how the 

response differs in other cell types, how targeted inhibitors of inflammation achieve therapeutic 

activities, and how technological advances in biology can be utilized for addressing mechanistic 

questions. The methods that we use to address these questions are considerably different than 

the methods originally used to study mechanisms of gene expression. Early work that focused 

on understanding principles of gene regulation heavily relied upon the study of individual model 

genes that became potently activated in response to bacterial challenge. This was because 

many of the technologies and experimental techniques at the time were neither sensitive to 

detect low levels of expression or modest changes following stimulation, nor high-throughput to 

be able to monitor multiple genes simultaneously. Investigators from many fields used single-

gene studies to guide mechanistic work because it was believed that a detailed analysis of a 

single gene would provide a comprehensive view of how the gene is regulated and provide a 

framework that could be used to study other model genes. Emphasis was placed on identifying 

which regulatory sites both up- and downstream of the transcriptional start site were being 
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utilized for DNA-binding, as well identifying which DNA-binding factors were associated at these 

sites. Similarly, after mapping and characterizing the key regulatory domains, mutagenesis 

could be conducted to artificially change the genetic sequences of the regulatory sites and 

assay which individual nucleotide sequences were necessary for productive gene transcription. 

  The experimental approaches for monitoring gene expression in the pre-genomics era 

included reporter gene assays where the promoter region of a gene of interest was placed in 

front of a transgene that contained a marker that could be measured, often times the readout 

would be a fluorescent signal from either recombinant fluorescent proteins or from the 

enzymatic activity of the transgene after being incubated with substrate. These studies were 

valuable for the ability to artificially generate multiple mutant promoter constructs to assay for 

specific DNA base pairs required for generating the fluorescent signal. The disadvantages for 

this system were that the transfection of recombinant DNA on a plasmid backbone or viral 

infection of the DNA would be introduced at unknown numbers within the cell in a genomic 

context unlike the native gene under study. The quantitative nature of this assay is often limited.  

  Northern blots attempt to measure the endogenous gene in a native chromatin context 

by first collecting all RNA species within the cell, then subjecting them to gel electrophoresis 

which will separate the RNA by size. After transferring the RNA to another membrane, the RNA 

is incubated with a radiolabeled oligonucleotide that share complimentary sequences to the 

gene one wants to study. After washing away unhybridized probe, radiometric evaluation of 

gene expression can be detected with x-ray film. The sensitivity achieved with northern blot 

assays was much greater than reporter gene detection, and it has the additional advantage of 

being able to uncover size-separated isoforms of genes as well as genes that share homology 

to the target if the oligo was designed for this purpose.  

  An alternative method for measure difference in nucleic acid content was developed 

from knowledge of primer based hybridization and polymerase-dependent extension occurring 

over cycling temperatures from the same reaction tube in a continuous fashion. This method, 
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polymerase chair reaction (PCR) could amplify massive amounts of targeted DNA from very low 

starting material and was soon adopted for the use of making semi-quantitative measurements 

of starting material concentrations. When coupled to fluorescent imaging of DNA products after 

each cycle of melting, hybridization, and extension, one is able to determine the cycle number 

needed to reach a threshold value or detection limit. This cycle number can be compared 

across samples to estimate amounts of DNA present. This semi-quantitative approach has 

been, and will continue to be, an important tool for scientists as it provides a relatively low cost 

approach for measuring gene expression in a semi-throughput manner. 

  The main disadvantages with the assays discussed above with a focus on studying a 

few model genes is that one must know which gene they want to study before performing the 

experiment. These approaches are similarly not an attractive option for those wishing to survey 

many genes under the same experimental condition. Importantly, even if investigators were able 

to fully describe all modes of regulation occurring at any individual gene, they were unable to 

determine how frequently these modes of regulation were being utilized by the cell genome-

wide. It was essentially impossible to address these issues with the current technologies of the 

time, and yet, model gene studies provided the evidence for nearly all of the fundamental 

aspects of transcriptional regulation that were later confirmed with more comprehensive 

genome-wide sequencing techniques now common in the genomics era. 

 

Gene regulation studies in the genomics era 

Technology continues to drive the advancement of understanding in the biological sciences. 

The introduction of DNA sequencing technologies in the 1970s ushered in an era in molecular 

biology that has been known as the genomics revolution as it allowed investigators to determine 

the precise DNA and RNA sequences of any sample of interest. The ability to sequence DNA 

allowed for an expanded understanding of a gene’s context within the genome, identification of 

distal regulatory sequences, document mutational diversity across samples, and infer function 
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through analysis of conservation across species. Not only did it allow for a greater opportunity to 

interrogate genome-level biological questions, it allowed for a high-throughput method to 

perform experiments that were already commonplace. For researchers interested in 

understanding questions relating to gene expression, there were now methods available for 

simultaneously monitoring of hundreds or even thousands of genes. DNA microarrays were 

borne out of the data generated from DNA sequencing, not to mention the technological 

advances in fields of micro-engineering and chemical synthesis. In this method, short 

oligonucleotides could be synthesized and attached in groups along a surface. DNA or 

complimentary DNA generated from RNA from a sample of interest could then labeled and 

allowed to hybridize to the surface-attached DNA. If the sample of interest contained sequences 

complimentary to a spot on the surface it would bind and remain attached giving off a signal in 

the area of binding. Subsequent imaging of the entire plate would demonstrate areas of strong 

binding, which would reflect high abundance of transcript/DNA in the sample preparation. The 

locations of strong hybridization could then be referenced back to the known DNA sequences 

that were originally attached to the plate allowing researchers to make abundance 

measurements across many genes/locations simultaneously.  

  Commercial hi-throughput sequencers superseded microarray technologies due to the 

higher sensitivity of detection using chemical sequencing technology in place of the fluorescent 

hybridization based quantitation required by microarrays. Sequencers also provided a level of 

de-novo discovery that was difficult to obtain with microarrays. Array based methods require the 

knowledge of sequences to be studied, while chemical sequencing machines could reconstruct 

the transcript of DNA identity without the need of a reference during the procedure. Reference 

genomes were often required for the downstream analysis, but the sequencing based methods 

allowed for greater ease in identification of novel insertion, deletion, and polymorphic mutations 

in samples. Additionally, like northern blot analysis, sequencing allowed for the detection of 

splice variants in a much more hi-throughout manner. Sequencing technologies continue to 
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evolve, and the price per sample sequenced continues to drop as improvements are made in 

sample preparation, sequencing chemistries, and imaging improves. Not only does this improve 

throughput, quality, and sensitivity, it also carries the advantage of being able to monitor gene 

activities from relatively small numbers of naïve cells taken directly from within the body, as 

compared to earlier methods of studying transcription (reporter genes) which required heavy 

manipulation of cell lines in culture. 

  With the explosion of available data in gene expression studies with the advent of hi-

throughput sequencing, bioinformatics techniques have been introduced to allow for efficient 

mapping of reads to the genome as well as categorized genes based on their expression 

profiles across samples and conditions. If groups of genes display similar expression patterns 

under a tested condition, they can be grouped together with the assumption that an underlying 

mechanism is responsible for their coordinated expression. This method of clustering is 

sometimes referred to as a ‘network analysis’ and often requires the grouping of hundreds or 

thousands of genes in order to perform statistical tests when making comparisons across 

different groups. One comparison that can be done, for example, is to hypothesize that if distinct 

clusters of genes are co-regulated there should be evidence of similar TF motifs embedded 

within the promoter or local region of DNA that is responsible for coordinating the genes activity. 

This sort of motif analysis can compute the observed frequency of motif matches across genes 

within the same group and compare the number of motif instances in one group compared to a 

background frequency which would be expected by random. Similar comparisons can be made 

based on the functional annotation of genes belonging to each cluster using gene ontology 

analysis, and eventually hypothesis that emerge from network analysis can be testing by 

modifying the system, predicting the response, and adjusting the classification of genes based 

on their observed behaviors in new contexts. 

 

Philosophies on scientific inquiry and the scientific method 
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Network analyses such as these have been incredibly useful for investigators who have sought 

information about a system or process using an unbiased genome-wide approach. Because 

data-collection is the first experiment done in many network analysis studies, it allows the 

investigator to approach the data without having a particular hypothesis in mind prior to 

performing the experiment. One can simply collect measurements and investigate the potential 

relationships between variables in the system and predict how the system will change in 

response to further perturbation. This data-driven research approach is in contrast with the 

popular scientific approach of hypothesis-driven work that requires extensive background on 

established theories. In hypothesis driven research, investigators attempt to infer associations 

from theory in context with new ideas. They then test those inferences using the scientific 

method, which consists of designing well-controlled experiments with results dependent on 

individual variables under the control of the investigator. The results obtained can either support 

or refute the original hypothesis and will contribute to or refine the approved working theory. It is 

through this method that many important insights have been made in science, but the advent of 

massively parallel sequencing has allowed resurgence in data-driven research, and this has 

been met with some hesitation among scientists. The hesitation can arises in many ways. For 

one, data-driven work often heavily relies upon statistics to drive associations, and statistics can 

be both misleading as well as ill applied for the situation at hand (Nuzzo, 2014). Secondly, data-

driven approaches that study genome-wide behaviors become extremely complicated and 

require mathematical algorithms to facilitate understanding, but the assumptions that must be 

made in generating the algorithms can introduce bias themselves. Lastly, because data-driven 

work usually transitions from the wet-lab (or experimental lab) to the dry-lab (computer based 

research), it has the potential to end with the proposal of a new hypothesis to explain the 

observed data. If the new hypothesis never returns back to the wet-lab to be testing under new 

conditions, it has the potential to gain traction in a scientific field without being adequately 

addressed using the scientific method.  
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  As more and more data-driven work gets published in the biomedical sciences, it will be 

important to transition back towards hypothesis driven work that is brought about by 

associations discovered with data-driven research. The two philosophies are not at odds with 

one another, and the scientific method is still an essential tool for work being done in the 

genomics era, but the advances in technology will continue to shape the approach that is used 

to conduct scientific investigation and it is important to understand the limitations and obstacles 

facing investigators using a primarily data-driven approach (Haufe, 2013).  

 

On the choice of a model system 

While our ultimate goal is directed at achieving knowledge useful for understanding and treating 

human disease, there are a number of limitations in using human cells as a research tool and 

make mouse cells an attractive model system to use. Before addressing the advantages of 

using mouse cells for the questions we are interested in investigating, it is worth briefly 

discussing the difficulties we have in predicting which kinds of studies will hold the greatest 

impact on human health and whether this should be a factor in determining which kinds of 

studies should be done in order to achieve our long-term, human-centric goals. As an example, 

the first reports on the discovery of DNA ligase enzymes began in 1961 by a group whose 

research was focused on understanding how viruses infect bacteria, without an immediate goal 

in understanding any human physiology or therapeutic endpoint. In the years following, many 

groups were able to show that bacteriophages infecting E.Coli bacteria had enzymes that would 

attach different strands of DNA together (Meselson and Weigle, 1961). The discovery of DNA 

ligases enabled researchers from all fields of biology to use this as a tool for performing 

molecular biology cloning, and this enzyme continues to be used today as a required step in the 

generation of samples for hi-throughput sequencing. Arguably, the advancement of molecular 

diagnostics and human disease screening has been transformed by the discovery of these and 

other related enzymes originally discovered by labs using model organisms far removed from 
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human physiology. It is because of a primarily basic science interest that we have advanced our 

ability to perform diagnostic and therapeutic work in translational studies. 

  Similarly, the most recent technology famed for holding the potential to revolutionize 

modern medicine did not come from research groups studying how human cells behave, rather 

the discovery and innovative work that resulted in CRISPR-Cas9 mediated DNA mutagenesis 

began in the archaen Haloferax mediterranei during the early 1990s (Mojica et al., 1993). A 

series of follow up studies occurring over the next two decades resulted in the observation that 

Cas9-induced DNA cleavage was a bacterial conserved adaptive immune response to viral 

infection. The understanding of this ancient process led to the repurposing for directed 

mutagenesis in mammalian cells, a process that until this discovery was laborious and 

inefficient. It is quite possible that the great advances in human therapeutics of our generation 

will be due to work that was focused on understanding how bacteria respond to viral infection. It 

remains important to acknowledge that we cannot reliably predict where the next breakthroughs 

will occur, instead we should value the work being done across multiple disciplines and to share 

this knowledge in a way that facilitates collaboration and innovation.  

 

Mouse macrophage model for understanding inducible transcription  

Mice are a valuable model system in part due to the ability to generate large amounts of 

genetically identical cells that can be grown under specific conditions that allow for high 

reproducibility between experiments. Mouse studies also benefit from the wealth of inbred 

strains that lack individual genes to allow for studies on gene function. We use mouse 

macrophages as a model for the reasons presented above, as well as because many of the 

signaling pathways and immune responses are conserved in humans. This simplified system 

allows us to precisely control the experimental conditions in order to investigate the immune 

response in great detail. Most of our studies have focused on the transcriptional cascade 

induced by a well-studied pattern recognition receptor, TLR4, in mouse bone marrow- derived 
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macrophages (BMDMs). Many of the induced genes are present at very low or undetectable 

levels before stimulation, yet they increase transcription hundreds or thousands of fold after the 

cell is stimulated which allows us to study the steps required for all stages of inducible 

transcription. Specifically, our lab has recently described an RNA sequencing (RNA-seq) 

approach involving nascent RNA transcript purification from chromatin as a means of monitoring 

active transcription in lipid A-stimulated macrophages. This approach has revealed, with high-

resolution, on-going transcription across clusters of genes displaying similar magnitudes and 

kinetics of induction. These co-expressed genes have been further scrutinized with 

computational analyses of promoter sequences and subsequent functional approaches to 

identify TFs that may be responsible for their coordinated expression. The fine resolution of 

chromatin RNA-seq has provided the level of detail necessary for deconstruction of the 

regulatory logic governing target gene activation, and this approach can be easily adapted to a 

variety of cell types and experimental settings, and would be extremely difficult to perform in 

human cells. 

 

Chromatin dynamics during transcriptional responses 

Previous work from our lab and others has resulted in an advanced understanding of how DNA, 

chromatin, and inducible TFs work together to shape the immune response following 

stimulation. Of the approximately thousand genes that are significantly induced above 2-fold in 

BMDM, a small proportion shows robust activation exceeding 10-fold. Of the > 10-fold induced 

genes, many are induced very rapidly in response to stimulation, often within the first hour. The 

early kinetics of activation for these genes are consistent with them being the direct targets of 

inducible TFs, and subsequent experiments conducted in the presence of a mammalian 

antibiotic, cyclohexamide (CHX), demonstrated no effect for the majority of the rapidly induced 

genes. These genes are termed primary response genes (PRGs) because they do not require 

any new proteins to be synthesized to become active, thus their CHX resistance. The other 
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inducible genes that failed to be induced in the presence of CHX need new proteins to be made 

in order to become activated and tend to be induced later during the course of stimulation are 

are termed secondary response genes (SRGs). Further evaluation revealed that PRGs more 

frequently contained CpG islands within their promoters, while this feature was less common in 

SRGs. Furthermore, SRGs were much more likely to require the presence of the chromatin 

remodeling complex containing Brg1/Brm, as siRNA knockdown of these subunits resulted in 

diminished expression for many SRGs and a much smaller number of PRGs. Of the PRGs that 

were affected by Brg1/Brm1 knockdown, all but two contained low CpG density within their 

promoters. The association of high CpG content at primary response genes lead to the 

hypothesis that the intrinsic DNA properties of CpG island promoters inhibits stable nucleosome 

assembly and allows for open chromatin and resistance to Brg1/Brm knockdown. Most SRGs 

would be expected to have stable nucleosome assembly due to their low CpG content. This 

hypothesis was investigated using an in-vitro assembly reaction where it was shown that high 

CpG content promoters had less affinity for associating with recombinant histone octomers 

while low CpG content sequences more efficiently assembled into nucleosomes.  

    While the general trend is true that most PRGs contain CpG islands and do not require 

chromatin remodeling enzymes for their maximal expression, there were a number of PRGs 

where this trend did not hold true. Many of these genes are known targets of IRF3 activation, 

but it remained unknown to what extent IRF3 could contribute to chromatin remodeling at these 

sites. A restriction enzyme accessibility assay was used to monitor chromatin changes at a few 

of the PRGs with dependence on chromatin remodeling and IRF3. BMDM from mice lacking 

IRF3 (Irf3-/-) were unable to remodel the promoters of Ccl5 and Ifit1, implicating IRF3 in the 

regulation of these genes through its effects on chromatin remodeling (Ramirez-Carrozzi et al., 

2009).  

  More recently, chromatin-associated RNA (caRNA) sequencing was performed every 5-

minutes during the first hour of the lipid A response in order to obtain a fine kinetic resolution of 
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the activation kinetics of the most potently induced genes (Tong et al., 2016). While the kinetic 

clustering was of use in grouping together large groups of genes displaying similar expression 

profiles, there was considerable heterogeneity of expression differences within genes classified 

together as co-regulated. Similarly, when promoter motif analysis were done in the different 

classified groups, significant enrichments could be observed, but manual inspection of genes 

classified together often revealed some genes with strong consensus sites while others had low 

strength motifs, indicating multiple mechanisms of activation may be used to regulate genes 

belonging to the same kinetic classification. For this reason, a gene-centric approach of 

classification was used in lieu of a statistical classification scheme. For this analysis, gene 

promoters were scored based on the presence of strong TF motifs in combination with 

chromatin immunoprecipitation (ChIP) sequencing of TFs to identify sites of binding. Both motif 

strength and motif score were used to infer functional binding events, and genes sharing similar 

TF dependence for activation were grouped together. Further support of the classifications 

came from genetic deletions of key TFs (RELA, IRF3, MYD88, TRIF) as well as through 

chemical inhibition of signaling pathways and alternative stimuli (Map Kinase inhibitors, TLR2 

ligand). The gene-centric analysis resulted in the classification of only 5 genes that showed 

strong dependence on both RelA and IRF3 TFs with strong motifs that were spaced within 55 

base pairs of one another. All of this would suggest that the 5 genes should display similar 

activation profiles since they are likely co-regulated by the same two TFs, but the kinetic profiles 

displayed heterogeneity in terms of when these genes become activated. Ccl5 displayed the 

slowest activation kinetics, and consistent with this, RelA binding to the promoter was delayed 

until 30 minutes following stimulation, but was bound to all other target genes by 15 minutes. 

This result suggested that RelA binding was dependent on remodeling by IRF3, but it remained 

unknown if remodeling was a unique characteristic among the 5 genes within this classification, 

and whether the other 4 genes within this gene group similarly required IRF3 for remodeling and 

subsequent RelA binding. A genome-wide accessibility assay was performed to investigate 



	 24	

these possibilities using the Assay for Transposase Accessible Chromatin (ATAC)-Sequencing, 

which provides information regarding open chromatin during the lipid A stimulation time course. 

Surprisingly, of the 132 primary response genes classified, the 5 within the NFKB-IRF3 

dependent class showed a distinct ability to remodel their promoters. To address whether the 

binding of RelA to the remodeled promoters required IRF3, ChIP-qPCR was performed on wild 

type cells and cells lacking IRF3. Remarkably, RelA binding was significantly decreased at the 

Ccl5 promoter, and partially reduced at the Ifnb1 promoter at late time points. These results 

indicate that even though small groups of genes may require the same two TFs, unique 

mechanisms may exist and require gene-centric approaches in the analysis of genomics data.  

   The entire analysis discussed above is highlighted in Appendix A of this thesis. It is 

important to note that while this analysis resulted in a classification scheme that can be used to 

guide and inform future work, the complete picture of mechanisms responsible for coordinating 

the LPS response is far from complete. The gene-centric approach from above relied upon a 

close examination of promoter elements to guide classification of regulatory factors required for 

transcription. This has been a powerful approach for understanding direct and immediate 

regulators, but gene regulation strategies extend far beyond the core promoter elements. It has 

been known since the early 1908s that distal DNA sequences in a plasmid construct could 

influence the behavior of genes in an orientation- and distance-independent manner (Banerji et 

al., 1981). These “enhancer” elements have been found embedded in mammalian genomes, 

where they associate with marks of open chromatin. Enhancers are thought to regulate genes 

via the recruitment of TFs that can interact with the target gene promoter via looping, tracking, 

or through protein-protein interactions. An exciting result of the prior analysis was the promoter 

remodeling was a rare event for PRGs, but it remains to be seen how frequently enhancer 

elements near PRGs remodel and how inducible remodeling genome-wide could be used to 

control gene regulation. Future analyses regarding these questions are discussed in chapter 4 

of this thesis. 
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Negative regulation of inflammatory signaling 

While it is critical for cells to be able to induced pro-inflammatory cytokines after an encounter 

with bacterial or viral product, it is perhaps even more important to be able to shut off 

inflammatory pathways once no longer needed. Indeed, many human diseases arise from an 

overactive immune response, and a large proportion of clinical drugs are used to limit excessive 

inflammation. Our cells have evolved ways to prevent sustained inflammation, and many 

inducible cytokines have anti-inflammatory properties. Since its original discovery over 25 years 

ago, the cytokine synthesis inhibitory factor (CSIF or Interleukin 10, IL10) has received much 

attention due to its potent inhibitory effects on the innate and adaptive immune system. In vitro 

studies have documented IL10’s ability to inhibit the synthesis of Ifng, Tnf, and Il12b from Th1 

cells while having limited effects on Th2-related cytokine production, indicating specificity in its 

inhibitory actions (Fiorentino et al., 1989). Furthermore, IL-10 functions in a non-redundant 

fashion in vivo, as genetic ablation of IL-10 protein leads to inflammatory bowel disease in both 

mice and humans (Glocker et al., 2009). IL-10 signaling involves a Janus Kinase / Signal 

Transducer of Activated Transcription (JAK/STAT) cascade where the IL10 receptor maintains 

constitutively associated JAK1 and TYK2 tyrosine kinases. These kinases become activated 

when IL-10 binds to the receptor and STAT3 is recruited and phosphorylated by the tyrosine 

kinases. Activated STAT3 proteins dimerize and enter the nucleus to drive transcription. The 

immediate targets of IL-10 induced STAT3 include many genes with putative roles as negative 

regulators of the immune response. Mice with a conditional knockout of STAT3 in macrophages 

fail to respond to IL-10 treatment, suggesting the STAT3 is essential for transmitting the IL-10 

signal for subsequent gene repression (Takeda et al., 1999). Furthermore, early reports have 

indicated that STAT3 acts indirectly through the synthesis of new proteins, as IL-10’s inhibition 

of selected target genes was abolished when cells were pre-incubated with CHX (Aste-

Amezaga et al., 1998). Because of the observations that STAT3 is required and acts indirectly 
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for IL-10’s inhibitory actions, the mechanisms involved in IL-10 signaling and gene inhibition 

have been largely focused on the identification of early STAT3 target genes that have the 

potential to feed forward as negative regulators (El Kasmi et al., 2007). These studies have 

been difficult to perform due to potential redundancies among IL10-inducible negative 

regulators. As an alternative strategy for identifying mechanism of IL-10 mediate gene 

repression, we have attempted to first survey the degree of inhibition across gene groups 

previously classified according to a gene-centric approach. The findings that emerged from an 

analysis of IL10-regulated genes are discussed in greater detail in chapters 3 and 4 of this 

thesis.  
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Figure Legends 

Figure 1-1: Chromatin Regulation in Transcription 

While it is critical for cells to be able to induced pro-inflammatory cytokines after an encounter 
with bacterial or viral product, it is perhaps	
	
Figure 1-2: Structure of TLR4:MD2:LPS Interactions 

Top (a) and side (b) view of the TLR4:MD2 dimer with LPS bound. The lipid A component of 
LPS is colored in red.	
	
Figure 1-3: Phagocytosis in Response to Injury 

Drawings reproduced from Metchnikoff during a time course of cellular injury depicting the 
recruitment of phagocytes to a site of inflammation.	
	
Table 1-1: Patterns of Histone Modification and Influence on Transcription 

Histone modifications are listed with the enzymes responsible for generating modifications, for 
recognizing modifications, and their association with transcription. 	
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Figure 1-1: Chromatin Regulation in Transcription 
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repair, it was concluded that spontaneous unwrapping of
nucleosomes, rather than histone dissociation or chroma-
tin remodeling can provide DNA access (Bucceri et al.,
2006). However, numerous examples (Workman and
Kingston, 1998) have made it apparent that chromatin-
remodeling complexes can further stimulate binding of
TFs to nucleosomal sites (Utley et al., 1997).

In different studies TF-binding sites have been mapped
either to the nucleosome-free region or within a nucleo-
some. Recent genome-wide studies found that nucleo-
some density at promoter regions is typically lower than
that in the coding region (Bernstein et al., 2004; Lee
et al., 2004; Sekinger et al., 2005). Strikingly, Yuan et al.
used high-resolution tiling microarrays to discover that in
yeast there exists a 200 bp nucleosome-free region posi-

tioned approximately over gene promoters (Figure 2). This
region is flanked on both sides by positioned nucleo-
somes (Yuan et al., 2005). The earlier analytical studies
and the recent rigorous mathematic modeling led to the
hypothesis that organizational information for positioning
nucleosomes is embedded within the sequence of the
genome (reviewed in Richmond, 2006). Remarkably, the
models predict that there is low-level nucleosome occu-
pancy at functional TF-binding sites and that there are
more stable nucleosomes at the nonfunctional sites.
Therefore, it seems that eukaryotic cells tend to position
sequence-specific TF-binding sites within accessible re-
gions. Thus, the first step of gene activation (activator
binding) could be more responsive to signaling pathways
than it would be if the binding sites were sequestered

Figure 2. Models of Chromatin Regulation during Transcription Initiation
At the silent promoter, Htz1-containing nucleosomes flank a 200 bp NFR on both sides. Upon targeting to the upstream-activation sequence (UAS),

activators recruit various coactivators (such as Swi/Snf or SAGA). This recruitment further increases the binding of activators, particularly for those

bound within nucleosomal regions. More importantly, histones are acetylated at promoter-proximal regions, and these nucleosomes become much

more mobile. In one model (left), a combination of acetylation and chromatin remodeling directly results in the loss of Htz1-containing nucleosome,

thereby exposing the entire core promoter to the GTFs and Pol II. SAGA and mediator then facilitate PIC formation through direct interactions. In the

other model (right), which represents the remodeled state, partial PICs could be assembled at the core promoter without loss of Htz1. It is the binding

of Pol II and TFIIH that leads to the displacement of Htz1-containing nucleosomes and the full assembly of PIC.

Cell 128, 707–719, February 23, 2007 ª2007 Elsevier Inc. 711
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Figure 1-2: Structure of TLR4:MD2:LPS Interactions 

	
	
(Park	et	al.,	2009)	
	
	

LETTERS

The structural basis of lipopolysaccharide recognition
by the TLR4–MD-2 complex
Beom Seok Park1, Dong Hyun Song1, Ho Min Kim1, Byong-Seok Choi1, Hayyoung Lee3 & Jie-Oh Lee1,2

The lipopolysaccharide (LPS) of Gram negative bacteria is a well-
known inducer of the innate immune response1. Toll-like
receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form
a heterodimer that recognizes a common ‘pattern’ in structurally
diverse LPS molecules. To understand the ligand specificity and
receptor activation mechanism of the TLR4–MD-2–LPS
complex we determined its crystal structure. LPS binding induced
the formation of an m-shaped receptor multimer composed of two
copies of the TLR4–MD-2–LPS complex arranged symmetrically.
LPS interacts with a large hydrophobic pocket in MD-2 and
directly bridges the two components of the multimer. Five of the
six lipid chains of LPS are buried deep inside the pocket and the
remaining chain is exposed to the surface of MD-2, forming a
hydrophobic interaction with the conserved phenylalanines of
TLR4. The F126 loop of MD-2 undergoes localized structural
change and supports this core hydrophobic interface by making
hydrophilic interactions with TLR4. Comparison with the struc-
tures of tetra-acylated antagonists bound to MD-2 indicates that
two other lipid chains in LPS displace the phosphorylated gluco-
samine backbone by 5 Å towards the solvent area2,3. This struc-
tural shift allows phosphate groups of LPS to contribute to
receptor multimerization by forming ionic interactions with a
cluster of positively charged residues in TLR4 and MD-2. The
TLR4–MD-2–LPS structure illustrates the remarkable versatility
of the ligand recognition mechanisms employed by the TLR
family4,5, which is essential for defence against diverse microbial
infection.

Minute amounts of LPS released from invading bacteria are an early
sign of infection and prepare the immune system to counteract further
infection1. They can also lead to fatal septic shock syndrome if the
inflammatory response is amplified and uncontrolled. LPS is a glyco-
lipid located in the outer membrane of Gram-negative bacteria. It is
composed of an amphipathic lipid A component and hydrophilic
polysaccharides of the core and O-antigen6,7. Lipid A represents the
conserved molecular pattern of LPS and is the main inducer of
immunological responses to LPS. TLR4 in association with MD-2 is
responsible for the physiological recognition of LPS8,9. So far, ten
members of the TLR family, recognizing a wide variety of microbial
products, have been identified in humans10. The extracellular domains
of TLRs consist of leucine-rich repeats (LRRs) with a horseshoe-
like shape2,4,11,12. Binding of agonistic ligands causes dimerization of
the extracellular domains and is believed to trigger the recruitment of
specific adaptor proteins to the intracellular domains, thus initiating a
signalling cascade4,5 (Supplementary Fig. 1). LPS is extracted from the
bacterial membrane and transferred to TLR4–MD-2 by two accessory
proteins, LPS-binding protein and CD1413. The TLR4–MD-2 hetero-
dimer has complex ligand specificity. It can be activated by structurally
diverse LPS molecules, and apparently minor changes in synthetic

derivatives of LPS can abolish their endotoxic potency7,14,15. The lack
of a high-resolution structure is in part responsible for incomplete
understanding of the basis of receptor specificity and of the activation
mechanism. We have therefore determined the crystal structure of the
TLR4–MD-2–LPS complex at 3.1 Å resolution.

The receptor multimer is composed of two copies of the TLR4–
MD-2–LPS complex arranged in a symmetrical fashion (Fig. 1a).

1Department of Chemistry and 2Institute for the BioCentury, KAIST, Daejeon, 305-701, Korea. 3Department of Biology, School of Bioscience & Biotechnology, Chungnam National
University, Daejeon, 305-764, Korea.
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Figure 1 | Overall structure of the TLR4–MD-2–LPS complex. a, Top view
of the symmetrical dimer of the TLR4–MD-2–LPS complex. The primary
interface between TLR4 and MD-2 is formed before binding LPS, and the
dimerization interface is induced by binding LPS. b, Side view of the
complex. The lipid A component of LPS is coloured red, and the inner core
carbohydrates of LPS are coloured pink. The module numbers of the LRRs in
TLR4 and the names of the b strands in MD-2 are written in black. TLR4 is
divided into N-, central and C-terminal domains2. The LRRNT and LRRCT
modules cover the amino and carboxy termini of the LRR modules.
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Figure 1-3: Phagocytosis in Response to Injury 

	
	

	
	
	
(Tauber,	2003)	
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Table 1-1: Patterns of Histone Modification and Influence on Transcription 

	

	
	
	
(Li	et	al.,	2007)	
	
	
	
	
	
	
	
	
	
	
	
	

Histone Modifications and Transcription
Both histone tails and globular domains are subject to
a vast array of posttranslational modifications (see Review
by T. Kouzarides, page 693 of this issue). These modifica-
tions include methylation of arginine (R) residues; methyl-
ation, acetylation, ubiquitination, ADP-ribosylation, and
sumolation of lysines (K); and phosphorylation of serines
and threonines (Table 1). Modifications that are associ-
ated with active transcription, such as acetylation of his-
tone 3 and histone 4 (H3 and H4) or di- or trimethylation
(me) of H3K4, are commonly referred to as euchromatin
modifications. Modifications that are localized to inactive
genes or regions, such as H3 K9me and H3 K27me, are
often termed heterochromatin modifications. Most modifi-
cations are distributed in distinct localized patterns within
the upstream region, the core promoter, the 50 end of the
open reading frame (ORF) and the 30 end of the ORF (Fig-
ure 1). Indeed, the location of a modification is tightly reg-
ulated and is crucial for its effect on transcription. For

instance, as we will discuss later in more detail, Set2-
mediated methylation of histone H3K36 normally occurs
within the ORF of actively transcribed genes. However, if
Set2 is mistargeted to the promoter region through artifi-
cial recruitment, it represses transcription (Landry et al.,
2003; Strahl et al., 2002).

Typically, histone acetylation occurs at multiple lysine
residues and is usually carried out by a variety of histone
acetyltransferase complexes (HATs; Brown et al., 2000).
Distinct patterns of lysine acetylation on histones have
been proposed to specify distinct downstream functions
such as the regulation of coexpressed genes (Kurdistani
et al., 2004). Another view posits that the biological func-
tions of histone acetylation rely primarily on the number
of lysines modified (e.g., a cumulative effect) with the
one known exception of H4K16Ac (Dion et al., 2005). In
contrast to acetylation, histone methylation, phosphoryla-
tion, ubiquitination, etc. are often catalyzed by a specific
enzyme at a specific site and result in unique functions

Table 1. Histone Modifications Associated with Transcription

Enzymes Recognition
Module(s)a

Functions in
TranscriptionModifications Position S. cerevisiae S. pombe Drosophila Mammals

Methylation H3 K4 Set1 Set1 Trx, Ash1 MLL, ALL-1,
Set9/7,
ALR-1/2,
ALR, Set1

PHD,
Chromo,
WD-40

Activation

K9 n/a Clr4 Su(var)3-9,
Ash1

Suv39h, G9a,
Eu-HMTase I,
ESET, SETBD1

Chromo
(HP1)

Repression,
activation

K27 E(Z) Ezh2, G9a Repression

K36 Set2 HYPB,
Smyd2,
NSD1

Chromo(Eaf3),
JMJD

Recruiting the
Rpd3S to
repress
internal
initiation

K79 Dot1 Dot1L Tudor Activation

H4 K20 Set9 PR-Set7,
Ash1

PR-Set7,
SET8

Tudor Silencing

Arg Methylation H3 R2 CARM1 Activation

R17 CARM1 Activation

R26 CARM1 Activation

H4 R3 PRMT1 (p300) Activation

Phosphorylation H3 S10 Snf1 (Gcn5) Activation

Ubiquitination H2B K120/123 Rad6, Bre1 Rad6 UbcH6,
RNF20/40

(COMPASS) Activation

H2A K119 hPRC1L Repression

Acetylation H3 K56 (Swi/Snf) Activation

H4 K16 Sas2, NuA4 dMOF hMOF Bromodomain Activation

Htz1 K14 NuA4, SAGA Activation

a The proteins that are indicated within the parentheses are shown to recognize the corresponding modifications but specific
domains have yet to be determined.

708 Cell 128, 707–719, February 23, 2007 ª2007 Elsevier Inc.
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Abstract
A variety of age-related differences in the innate and adaptive immune systems have been
proposed to contribute to the increased susceptibility to infection of human neonates and
older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to
obtain an unbiased, comprehensive, and quantitative view of gene expression differences
in defined cell types from different age groups. An examination of ex vivo human monocyte
responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-
seq revealed extensive similarities between neonates, young adults, and older adults,
with an unexpectedly small number of genes exhibiting statistically significant age-depen-
dent differences. By examining the differentially induced genes in the context of transcrip-
tion factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously
described deficiency in interferon response factor-3 activity could be implicated in most of
the differences between newborns and young adults. Contrary to these observations, older
adults exhibited elevated expression of inflammatory genes at baseline, yet the responses
following stimulation correlated more closely with those observed in younger adults. Nota-
bly, major differences in the expression of constitutively expressed genes were not
observed, suggesting that the age-related differences are driven by environmental influ-
ences rather than cell-autonomous differences in monocyte development.

Introduction
Age-related differences in clinical susceptibility to infection have been extensively documented,
with diminished protective responses and enhanced susceptibility observed in pre-term and
term infants, as well as in older adults when compared to young adults [1–5]. This clinical
observation of an age-dependent risk for infectious morbidity and mortality has led to an
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interest in identifying the underlying mechanisms and deriving strategies to enhance protective
immune responses at the extreme ends of life [1–3].

Differences in innate immune responses are thought to contribute to the overall susceptibil-
ity observed in neonates and older adults [2,6]. Neonates have been reported to produce lower
levels of effector molecules, such as oxygen radicals [2,7]. A number of other proteins have also
been reported at reduced levels in innate immune cells, including reduced expression of IFNα,
CD40, CD80, CD83, and CD86 in neonatal plasmacytoid dendritic cells [5]. Furthermore,
newborns and older adults produce altered levels of cytokines that regulate the development of
adaptive immunity (reviewed in [2]). For example, the heterodimeric, Th1-inducing innate
cytokine, interleukin(IL)-12, is expressed at reduced levels in neonates, due to the reduced
expression of its p35 subunit [8–10]. In contrast, the anti-inflammatory cytokine, IL-10, and
the Th17-inducing cytokines, IL-6 and IL-23, have been observed at elevated levels in neonates
[9,11]. In older adults, a variety of innate effector responses appear to be reduced, including
superoxide generation and the phagocytosis of microorganisms [12,13]. Systemic low-level
inflammation is another common characteristic of older adults that may alter their response to
infection (reviewed in [2]).

The approaches used to identify age-dependent differences that lead to an increased risk to
suffer from infection at the extreme ends of life have been largely balkanized and focused on a
few particular components, the choice of which appears to depend on the expertise of a given
group of investigators. What has been missing is an unbiased yet comprehensive interrogation
of the events that occur in the very young and the very old following recognition of an infec-
tious threat. In addition to our deficiency in knowledge of age-dependent differences in the
immune system, little is known about the molecular mechanisms responsible for these differ-
ences. Reduced activation of transcription factors such as interferon response factor 3 (IRF3),
defects in nucleosome remodeling, and differences in the expression of pattern recognition
receptors and signaling molecules (e.g. MyD88) are among the mechanisms that have been
proposed to be responsible for the diminished innate immune responses observed in neonates
[2,14–16].

Age-dependent differences in hematopoietic stem cells and in the development of hemato-
poietic lineages have also been observed, providing one possible explanation for the immune
response differences [17–19]. According to this scenario, myeloid cell types may be fundamen-
tally different in neonates, adults, and older adults, resulting in different gene expression
responses following stimulation or infection. As an alternative, the myeloid cell populations
may be similar, but age-related differences in the blood or tissue microenvironment may lead
to different responses [20]. The response differences may be lost when cells from different age
groups are cultured under the same conditions, or they may be retained via epigenetic mecha-
nisms or other memory mechanisms [3].

DNA microarrays were previously used to obtain genome-scale insight into age-dependent
differences in gene expression following infectious exposure [15]. More recently, RNA
sequencing (RNA-seq) has emerged as a more quantitative method for examining transcrip-
tomes [21]. The availability of the RNA-seq method provides an opportunity to unravel, with
greater precision, the age-dependent differences in the immune system that increase risk for a
serious outcome following infection. As a first step, the identification of age-related differences
in gene expression following ex vivo infectious exposure of defined cell populations, along with
the identification of differences in constitutive gene expression in these populations, would be
of considerable value.

In this study, RNA-seq was used to compare the gene expression responses to LPS stimula-
tion or Listeria monocytogenes (Lm) infection in cord blood monocytes and in peripheral
blood monocytes from young and older adults. LPS provides an example of a well-defined
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innate immune stimulator; Lm causes suffering and dying in the very old and the very young,
while most young adults rarely even display symptoms if infected [22]. Our data reveal exten-
sive similarities in constitutive gene expression and in the response to stimulation or infection
in monocytes from the three age groups. Furthermore, most of the differences identified
between neonates and young adults could be connected to the previously reported reduction in
IRF3 activity in neonates [15]. In contrast, most differences between young adults and older
adults appeared to result from a low-level inflammatory state (‘inflammaging’) that character-
ized monocytes from older adults. Interestingly, large differences in the expression of constitu-
tively expressed genes, which would be expected if blood monocytes from neonates, adults, and
older adults were fundamentally different, were not identified. This finding supports a hypoth-
esis in which age-related environmental differences are responsible for the inability of neonatal
monocytes to mount a robust IRF3-mediated response.

Materials and Methods
Isolation of cells and stimulation conditions
This study was specifically approved by the Research Ethics Board of the University of British
Columbia (Protocol H13-00347). Informed written consent from all enrolled adult participants
or the next of kin, care givers, or guardians on the behalf of the cord blood participants
involved in our study was obtained for all study participants. Animal research for this study
was specifically approved by the UCLA Chancellor’s Animal Research Committee (Protocol
1999-073-53E).

Samples of cord blood from healthy, full-term elective Caesarean sections without labor and
samples of healthy young adult (ages 19–45) and older adult (aged 65 and older) peripheral
blood were collected directly into sodium heparin-containing vacutainers (BD Biosciences).
Mononuclear cells were isolated by density gradient centrifugation within two hours of blood
collection to avoid alterations of cell properties [11]. Positive selection of monocytes from
mononuclear cells was then carried out using Miltenyi microbeads according to the manufac-
turer’s protocol with some revisions. Briefly, mononuclear cells were incubated with 800 uL
MACS buffer and 200 uL anti-human CD14 microbeads at 4°C. Cells were then washed with
MACS buffer prior to positive selection of monocytes using Miltenyi selection columns. Puri-
fied monocytes from each donor were cultured in RPMI 1640 medium supplemented with
Glutamax (Gibco, Life Technologies) and 10% human AB serum (Gemini Bio Products). The
monocytes were counted and plated onto 96 well plates at a density of 1x106 cells/well. Mono-
cytes were immediately stimulated with LPS (10 ng/ml) (InvivoGen tlrl-eblps) for 0, 1, and 6
hrs, or were infected with Lm at MOI = 5 for 0, 2, and 6 hrs. These time points were selected on
the basis of pilot experiments, which showed that they capture the first and second major
waves of gene activation in response to LPS stimulation and Lm infection. Wild-type (WT) Lm
strain 10403s was provided by Dr. D. Portnoy (University of California, Berkeley, CA) and
grown as described [23]. For the Lm experiment, uninfected cells (referred to as 0-hr time
point) were collected after culturing without Lm for 2 hrs; in contrast, the unstimulated cells in
the LPS experiment were collected immediately after isolation.

Mouse macrophages were prepared from the bone marrow of 6-week-old C57BL/6, IRF3-/-,
or IFNAR-/- mice as described [24,25], and were stimulated with lipid A (100 ng/mL) (Sigma)
after 6 days of differentiation.

RNA isolation, library preparation, and sequencing
Human monocyte RNA was purified using the RNeasy Mini Kit (Qiagen) according to the
manufacturer’s protocol. Strand-specific libraries were prepared using 120 ng RNA input
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according to the “deoxyuridine triphosphate (dUTP)”method [26]. Mouse macrophage exper-
iments involved analyses of chromatin-associated RNAs, as previously described [25]. A HiSeq
2000 (Illumina) was used for sequencing, with a single end sequencing length of 50 nucleotides.
Sequencing data have been submitted to GEO under accession number GSE60216.

Bioinformatic analyses
All bioinformatic analyses were conducted using the Galaxy platform [27]. Reads were aligned
to the human GRCh37 or mouse mm9 reference genomes with Tophat [28] using most default
parameters. Alignments were restricted to uniquely mapping reads with two possible mis-
matches permitted. RPKM (reads per kilobase pair per million mapped reads) were calculated
using Seqmonk (http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Coexpressed
gene classes were evaluated with Cluster3 by applying k-means clustering to mean-centered
log2(RPKM) expression values [29]. Statistically significant gene expression differences were
evaluated using DESeq [30]. Mouse orthologs of human genes were identified using BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Pscan was used to detect DNAmotifs overrepresented
in each class between nucleotides -450 and +50 relative to the transcription start site [31].

Results
Gene expression cascades induced in monocytes by LPS and Lm
An attractive starting point toward a full understanding of age-related differences in immune
responses is to employ RNA-seq to carefully examine mRNA transcript levels following stimu-
lation or infection of defined cell types. Toward this goal, peripheral blood monocytes were
obtained from healthy young adults and healthy older adults. In addition, neonatal monocytes
were obtained from umbilical cord blood samples; cord blood is known to consist almost exclu-
sively of neonatal cells [32]. Monocytes from three individuals of each age group were stimu-
lated with LPS or infected with Lm. For the LPS experiments, samples were collected 0, 1, and
6 hrs post-stimulation. For the Lm experiments, samples were collected 0, 2, and 6 hrs post-
infection. After mRNA isolation and cDNA library preparation, RNA-seq was performed. The
number of mapped reads ranged from 3.4 x 106 to 1.3 x 107 per sample.

An examination of the data sets from the LPS experiment identified 1147 annotated RefSeq
genes that were induced by at least five-fold at the 1- or 6-hr time point (relative to the unsti-
mulated sample) in at least one sample from any age group, and that exhibited a transcript
level exceeding four RPKM following induction. To examine the relationship between the dif-
ferent time points and age groups in the response to LPS, hierarchical clustering was performed
with these 1147 genes (Fig 1A). This analysis revealed that each of the nine samples from a
given time point was more closely related to the other samples from the same time point than
to any sample from the other two time-points. The most significant difference that showed a
possible relationship to age was that the three unstimulated samples from older adults (OA1.0,
OA2.0, and OA3.0) and one young adult unstimulated sample (A1.0) clustered separately from
the remaining unstimulated samples from young adults and neonates.

Small age-related differences were also observed with the 6-hr time-point data, in that,
with only one exception (neonatal sample N3.6), each age group clustered separately from
the others. In contrast, the nine 1-hr time-point samples correlated closely, with no apparent
age-related differences. The Pearson correlation values (R values) used for the hierarchical clus-
tering are shown in Fig 1B. These results provide initial evidence that the vast majority of LPS-
induced genes are induced similarly in the three age groups.

Examination of the Lm data sets identified 865 annotated RefSeq genes that were induced
by at least five-fold at the 2-hr or 6-hr time point in at least one sample, and that exhibited a
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Fig 1. Hierarchical clustering of LPS-stimulated monocyte transcriptomes from human neonates, adults, and older adults. (A) RNA-seq
experiments were performed with three independent humanmonocyte samples from cord blood (N), young adult peripheral blood (A), and older adult
peripheral blood (OA) stimulated with LPS for 0, 1, and 6 hrs. Hierarchical clustering was performed with the 1147 genes found to be induced by at least
5-fold at the 1- or 6-hr time point in at least one sample and with an induced RPKM of at least 4 (genes smaller than 200 bp were also excluded from the
analysis). Sample codes correspond to the age abbreviation followed by the sample number (1 through 3 for each age); the time point (0, 1, or 6 hr) is
indicated after the period. Inducible transcriptomes exhibit strong time-dependent clustering, with much less age-dependent clustering. (B) Pearson
correlation values (R) used for the hierarchical clustering in panel A are shown. Each time point from each sample was compared to every other sample and
time point. R values are color-coded from low (green) to high (red). Samples on the X and Y axes are grouped first according to age group, then time point (0,
1, or 6), and then sample number (1–3).

doi:10.1371/journal.pone.0132061.g001
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transcript level exceeding four RPKM following induction. The hierarchical clustering results
and the Pearson correlation values revealed even stronger correlations between age groups at
each time point than were observed with the LPS data (Fig 2). That is, although strong time-
dependent clustering was observed, no consistent age-related differences were observed at any
of the time points.

K-means cluster analysis of LPS- and Lm-induced genes
To extend the analysis of age-related differences in inducible gene expression, k-means cluster-
ing was used to define groups of genes that exhibited similar expression patterns among the
three age groups and three time points. The k-means algorithm considers induction kinetics,
induction magnitudes, and differences among age groups. Fig 3A shows the results obtained
when the 1147 LPS-induced genes (using the average expression values from the three inde-
pendent samples analyzed for each age group and each time point) were assigned to one of ten
distinct clusters. As expected on the basis of the hierarchical clustering, extensive similarities
were apparent in the three age groups in almost all of the clusters. The similarities are also
apparent in line graphs showing the average relative expression levels for all genes in a given
cluster (Fig 3B).

Only one cluster (Cluster I) was identified that showed substantial age-related differences
(Fig 3). Genes in this cluster were generally expressed at a lower level in both unstimulated and
LPS-stimulated monocytes from neonates in comparison to the young adult and older adult
samples. Although the average induction magnitude for genes in this cluster was comparable
among the age groups, the average expression level of these genes was significantly lower in
neonates than in young adults at all three time points.

K-means clustering of the Lm-induced genes also revealed extensive similarities among the
three age groups (Fig 4). Only one cluster (Cluster G) showed slightly reduced average expres-
sion in the neonatal and older adult samples in comparison to the young adult samples.

Analysis of genes exhibiting statistically significant expression
differences
Because the clustering results described above revealed extensive similarities with limited age-
related differences, we envisioned that meaningful insights would require the use of defined
parameters to identify genes that exhibited the greatest differential expression. Toward this
end, we first focused our attention on genes induced to a statistically significant extent
(p<0.01) that also exhibited differential expression between neonates and young adults at a
high level of statistical significance (p<0.01). Only 118 of the 1147 LPS-induced genes met
these criteria.

The 118 genes (gene identities listed in S1 Fig) were separated into groups according to the
time point at which their maximum mRNA level was observed (Fig 5A: 1-hr peak expression
for Groups I and II; 6-hr peak expression for Groups III-VI). The genes were then further
grouped according to their expression level in neonates relative to their expression level in
young adults (Fig 5A, column 7). (For this calculation, the baseline and maximum expression
levels in young adults were defined as 0% and 100%, respectively; the maximum expression
level in neonates was then determined as a percentage relative to that range.) This analysis
revealed 35 genes that exhibited enhanced expression in the neonatal samples (Groups I and
III, lightest shade of purple) and 83 genes that exhibited reduced expression (Groups II, IV,
V, and VI, three darker shades of purple). Group VI contains the 34 genes that exhibited
the greatest difference between neonates and young adults. For these genes, the maximum
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Fig 2. Hierarchical clustering of Lm-infected monocyte transcriptomes from human neonates, adults, and older adults. (A) RNA-seq experiments
were performed with three independent humanmonocyte samples from cord blood (N), young adult peripheral blood (A), and older adult peripheral blood
(OA) infected with Lm for 0, 2, and 6 hrs. Hierarchical clustering was performed with the 865 genes found to be induced by at least 5-fold at the 2- or 6-hr time
point in at least one sample and with an induced RPKM of at least 4 (genes smaller than 200 bp were also excluded from the analysis). Sample codes
correspond to the age abbreviation followed by the sample number (1 through 3 for each age); the time point (0, 2, or 6 hr) is indicated after the period.
Inducible transcriptomes exhibit strong time-dependent clustering, with much less age-dependent clustering. (B) Pearson correlation values (R) used for the
hierarchical clustering in panel A are shown. Each time point from each sample was compared to every other sample and time point. R values are color-
coded from low (green) to high (red). Samples on the X and Y axes are grouped first according to age group, then time point (0, 2, or 6), and then sample
number (1–3).

doi:10.1371/journal.pone.0132061.g002
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LPS-induced mRNA level in neonates was less than 20% of the maximum level observed in
young adults.

A parallel analysis with the Lm samples identified 123 genes (listed in S2 Fig) that were
inducible and differentially expressed between neonates and young adults with a high level of
statistical significance (p<0.01 for both induction and differential expression). Grouping of
these genes using the same strategy as above revealed 13 genes that were expressed more highly
in neonates than young adults (Fig 6A, Groups I and V) and 110 genes that were expressed

Fig 3. Analysis of LPS-induced genes in monocytes by K-means cluster analysis. (A) The 1147 genes that exceeded 200 bp in length, exhibited an
RPKM of at least 4 in one sample, and were induced by LPS by at least 5-fold in the same sample were divided into 10 clusters by k-means cluster analysis,
which considers similarities in transcript levels for each gene across all 27 samples (3 age groups, 3 samples for each age group, and 3 time points for each
sample). The three independent samples are shown in parallel for each age group. Colors indicate the percentile of the relative expression level (based on
the log-transformed mean-centered RPKM for each gene), as indicated at the bottom. (B) The average relative transcript levels for genes within each cluster
are shown for each age group (neonates, blue diamonds; young adults, red squares; older adults, green triangles).

doi:10.1371/journal.pone.0132061.g003

Age-Related Monocyte Gene Expression Differences

PLOS ONE | DOI:10.1371/journal.pone.0132061 July 6, 2015 8 / 18



	 44	

 

 

more highly in young adults than neonates (Groups II-IV and VI-VIII). Forty-seven of these
later genes exhibited mRNA levels in neonates that were less than 20% of the young adult levels
(Groups IV and VIII).

Fig 4. Analysis of Lm-induced genes in monocytes by K-means cluster analysis. (A) The 865 genes that exceeded 200 bp in length, exhibited an
RPKM of at least 4 in one sample, and were induced by Lm infection by at least 5-fold in the same sample were divided into 10 clusters by k-means cluster
analysis, which considers similarities in transcript levels for each gene across all 27 samples (3 age groups, 3 samples for each age group, and 3 time points
for each sample). The three independent samples are shown in parallel for each age group. Colors indicate the percentile of the relative expression level
(based on the log-transformed mean-centered RPKM for each gene), as indicated at the bottom. (B) The average relative transcript levels for genes within
each cluster and are shown for each age group (neonates, blue diamonds; young adults, red squares; older adults, green triangles).

doi:10.1371/journal.pone.0132061.g004
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A prominent role for IRF3 and Type I IFN signaling in the neonate-adult
differences
To gain insight into the mechanisms responsible for differential gene expression in neonatal
and young adult monocytes, we first examined the requirements for expression of the mouse
orthologs of the differentially expressed genes. This analysis took advantage of a large number
of RNA-seq data sets that have been generated in our laboratory using mouse bone marrow-
derived macrophages stimulated with the Lipid A component of LPS. This collection of data
sets includes kinetic analyses of lipid A-induced gene expression in macrophages from a variety
of mutant mouse strains lacking key signaling molecules or transcription factors thought to be
important for inducible transcription ([25] and unpublished results).

Fig 5. Genes that exhibit the greatest expression deficit in LPS-stimulated cord bloodmonocytes in comparison to adult monocytes are regulated
by IRF3 and/or Type I IFNs. (A) LPS-induced genes exhibiting statistically significant differential expression in neonates and adults (n = 118) were grouped
according to the time point at which their maximum transcript levels were observed (1 or 6 hrs). They were then grouped according to their relative maximum
transcript levels in cord blood (neonates) versus young adults. Induced genes with a higher maximum transcript level in neonates than young adults (with
statistically significant differential expression) are included in classes I (1-hr peak) and III (6-hr peak) (column 7). Genes exhibiting a maximum transcript level
in neonates that was 50–100% of the young adult transcript level (but with statistically significant differential expression) are included in class IV (no genes
with peak transcript levels at 1-hr fit this criterion). Genes exhibiting a maximum transcript level in neonates that was 20–50% of the young adult transcript
level are in classes II (1-hr) and V (6-hr). Genes with a maximum transcript level in neonates below 20% of the young adult transcript level are in class VI. The
differential expression of six of these genes was confirmed by quantitative RT-PCR (data not shown). Columns 1–6 show the relative transcript levels (based
on the log-transformed mean-centered RPKM) for these 118 classified genes in all samples and all time points from both neonates and young adults. Column
8 indicates genes that lack obvious mouse orthologs (lightest pink), genes that contain mouse orthologs that are either not expressed or not induced in
mouse bone marrow-derived macrophages (dark pink), and genes containing mouse orthologs that are both expressed and induced by LPS (red). Columns
9 and 10 show relative expression of the mouse ortholog of the human gene in Lipid A-stimulated macrophages from IRF3-/- and IFNAR-/- mice, respectively
(see blue scale at right). Note that these columns are only relevant for genes shown in red in Column 8. Column 11 indicates genes with promoters that
contain an IRF1 transcription factor binding motif between -450 and +50 bps relative to the transcription start site. (B) Enrichment of transcription factor
binding sites determined using the Pscan program is shown for each gene class from panel A. Color intensity is proportional to the negative log(p-value).

doi:10.1371/journal.pone.0132061.g005
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By examining the expression requirements for the mouse orthologs of the genes that were
differentially expressed in human neonates and young adults, evidence was obtained that these
genes frequently require the transcription factor IRF3 or Type I IFN receptor signaling. That is,
many of the age-dependent differentially expressed genes were expressed at substantially
reduced levels in Irf3-/- and/or Ifnar-/- macrophages stimulated with Lipid A.

To document the extent to which IRF3 and IFNAR signaling might contribute to the differ-
ential expression of LPS-induced genes in neonates and adults, human genes for which mouse
orthologs could clearly be identified (114 of 118 genes; Fig 5A, column 8, dark pink and red)
were first separated from the small number of genes lacking obvious mouse orthologs (Fig 5A,
column 8, lightest pink). Then, the RNA-seq data sets were analyzed to identify genes that were
both expressed (RPKM> 4 when maximally expressed) and induced (>5-fold) in both the
human monocytes and wild-type mouse macrophages. The 38 genes that met these criteria
(Fig 5A, column 8, red) were then evaluated for their dependence on IRF3 and IFNAR in

Fig 6. Genes that exhibit the greatest expression deficit in Lm-stimulated cord bloodmonocytes in comparison to adult monocytes are regulated
by IRF3 and/or Type I IFNs. (A) Lm-induced genes exhibiting statistically significant differential expression in neonates and young adults (n = 123) were
grouped according to the time point at which their maximum transcript levels were observed (2 or 6 hrs). They were then grouped according to their relative
maximum transcript levels in cord blood (neonates) versus young adults. Induced genes with a higher maximum transcript level in neonates than young
adults (with statistically significant differential expression) are included in classes I (2-hr peak) and V (6-hr peak) (column 7). Genes exhibiting a maximum
transcript level in neonates that was 50–100% of the young adult transcript level (but with statistically significant differential expression) are included in
classes II (2-hr) and VI (6-hr). Genes exhibiting a maximum transcript level in neonates that was 20–50% of the young adult transcript level are in classes III
(2-hr) and VII (6-hr). Genes with a maximum transcript level in neonates below 20% of the young adult transcript level are in classes IV (2-hr) and VIII (6-hr).
Columns 1–6 show the relative transcript levels (based on the log-transformed mean-centered RPKM) for these 123 classified genes in all samples and all
time points from both neonates and young adults. Column 8 indicates genes that lack obvious mouse orthologs (lightest pink), genes that contain mouse
orthologs that are either not expressed or not induced in mouse bone marrow-derived macrophages (dark pink), and genes containing mouse orthologs that
are both expressed and induced by LPS (red). Columns 9 and 10 show relative expression of the mouse ortholog of the human gene in Lipid A-stimulated
macrophages from IRF3-/- and IFNAR-/- mice, respectively (see blue scale at right). Note that these columns are only relevant for genes shown in red in
Column 8. Column 11 indicates genes with promoters that contain an IRF1 transcription factor binding motif between -450 and +50 bps relative to the
transcription start site. (B) Enrichment of transcription factor binding sites determined using the Pscan program is shown for each gene class from panel A.
Color intensity is proportional to the negative log(p-value).

doi:10.1371/journal.pone.0132061.g006
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mouse bone marrow-derived macrophages stimulated with Lipid A. The results revealed
IRF3-dependence for 14 of the 16 genes in Group VI (Fig 5A, column 9, dark blue if<10% of
the wild-type expression level in Irf3-/- macrophages and light blue if 10–33% of the wild-type
level in Irf3-/- macrophages). 14 of the 16 genes also exhibited reduced expression in Ifnar—/-

macrophages (column 10). IRF3- and/or IFNAR-dependence was also observed for most
Group V genes for which mouse orthologs were both expressed and induced in mouse macro-
phages (Fig 5A).

As an independent strategy, a transcription factor binding site motif analysis was performed
using the Pscan program [31] with the promoter regions of all genes in Groups I through VI.
The goal of this analysis was to identify transcription factors whose binding sites are over-rep-
resented in the promoters of specific clusters of genes. The small number of transcription fac-
tors for which significant enrichment was observed are shown in Fig 5B. Transcription factor
binding motif enrichment generally was not observed for Groups I through V. However, highly
significant enrichment of binding sites for IRF1, IRF2, STAT1, and a STAT2:STAT1 heterodi-
mer was found at the promoters of Group VI genes (Fig 5B). The IRF1 and IRF2 binding sites
used by the Pscan program are similar to the experimentally defined consensus IRF3 binding
motif [33], which is not assessed by Pscan. Importantly, IRF and STAT motifs were identified
in the promoters of the vast majority of Group VI genes, including most genes whose mouse
orthologs could not be examined for IRF3 and IFNAR dependence due to lack of inducible
expression in both mice and humans (Fig 5A, column 11).

Thus, both the functional analysis and motif analysis strongly support the hypothesis that
reduced activation of IRF3- and IFNAR-dependent genes explains most gene expression differ-
ences between neonatal and adult monocytes. It is noteworthy that a previous study which doc-
umented reduced IRF3 activity in neonatal dendritic cells found that neonatal and adult cells
were similarly responsive to IFNβ stimulation, suggesting that the reduced expression of
IFNAR-dependent genes is due to reduced IRF3 activity (resulting in reduced IFNβ expression)
rather than a reduction in IFNAR signaling [15].

Consistent with the analysis of the LPS-induced genes, mouse orthologs of the human genes
that exhibited differential expression upon Lm infection were generally found to exhibit IRF3-
and/or IFNAR-dependence (Fig 6A). Furthermore, binding sites for IRF1, IRF2, STAT1, and
the STAT2:STAT1 heterodimer were greatly enriched in the Group VIII genes and to a lesser
extent in Group VII genes (Fig 6A and 6B). Thus, although IRF3 is thought to be activated by
different pathways in LPS-stimulated and Lm-infected cells [34,35], a common reduction in
IRF3 activity is likely to be responsible for the strongest gene expression differences between
neonatal and adult monocytes.

Low-level inflammation in older adults
To evaluate gene expression differences between young adults and older adults, we first used
the strategy described above to identify differentially induced genes. This analysis revealed
smaller differences in transcriptional induction than were observed when comparing the neo-
natal and young adult profiles (data not shown), suggesting that the pathways involved in the
responses to LPS and Lm in monocytes in young adults and older adults are highly similar.
Instead, the largest differences were observed when examining transcript levels for inducible
genes prior to stimulation. Specifically, 189 LPS-induced genes (>5-fold induction magnitude;
induction significance p<0.01; maximum induced transcript level>4 RPKM) exhibited tran-
script levels that were significantly different (p<0.01) in unstimulated cells from young adults
in comparison to older adults (Fig 7A; gene list in S3 Fig). For these 189 genes, Fig 7A, column
7 shows the ratio of the unstimulated transcript level in older adults to that in younger adults
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(OA0/A0). In this figure, the genes are grouped on the basis of their time point of maximum
expression, and the genes were then rank-ordered by the ratio of the unstimulated transcript
level. This analysis revealed that a large majority of the differentially expressed genes are
expressed at an elevated level in unstimulated cells from older adults (shown as shades of red,
see vertical color scale at right). In fact, 52% of the differentially expressed genes exhibited
unstimulated transcript levels in older adults that were at least 3-fold higher than in young
adults, whereas only 3% exhibited transcript levels that were at least 3-fold higher in young
adults than in older adults. Similar results were observed in the Lm experiment (data not
shown), but the number of genes showing differential expression was lower, probably because
the unstimulated cells for the Lm experiment were cultured for 2 hrs prior to collection,
whereas the unstimulated cells in the LPS experiment were collected without culturing.

Importantly, although relatively large differences in expression between young adults and
older adults were observed in the unstimulated cells, the magnitudes of the differences were
generally lower after stimulation. This is apparent in Fig 7A, column 8 (max OA/max A),
which shows the ratio between the maximum induced transcript levels in older adults versus
young adults. Because the same color scale is used for columns 7 and 8, it is readily apparent
that the transcript level ratios move toward 1 after stimulation for many genes that are

Fig 7. Elevated expression of a broad range of inflammatory genes prior to stimulation of freshly isolatedmonocytes from older adults. (A) LPS-
induced genes exhibiting differential basal expression between adults and older adults (n = 189) are grouped according to maximummRNA level. Columns 7
and 8 show the ratio of transcript levels between older adults and young adults before stimulation and at maximum transcript levels, respectively. (B) The
average relative transcript levels within each cluster and for each age are shown.

doi:10.1371/journal.pone.0132061.g007
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differentially expressed prior to stimulation. Fig 7B, which displays average transcript levels for
all genes in Groups I and II, also shows that transcript levels in older adults were elevated to a
greater extent prior to stimulation than after stimulation. It is important to note, however, that
although the differences between young adults and older adults are smaller after stimulation,
many of these inflammatory genes are still expressed slightly higher after stimulation in the
older adult samples than in the young adult samples. This differential expression causes the
older adult 6-hr time point samples to cluster separately from the young adult and neonatal
6-hr samples in Fig 1A, although the separation is smaller that than observed with the unstimu-
lated samples (see Fig 1A). Thus, an inflammatory state is readily apparent in unstimulated
monocytes from older adults. This inflammatory state in unstimulated cells may influence
transcript levels observed after stimulation or infection, but to a limited extent relative to the
differences observed in the basal state.

Discussion
The diminished capacity of human neonates and older adults to mount an immune response
to infectious agents has been well documented [1,2]. However, because of the complexity of the
human immune system and limitations in the experimental approaches that are available for
studying immune responses in humans, insights into the underlying mechanisms have been
difficult to obtain. One starting point toward a mechanistic understanding can be characterized
as reductionist, in which the goal is to first delineate age-related differences intrinsic to defined
immune cell types in an ex vivo setting, with subsequent experiments focusing on how these
intrinsic differences contribute to clinical observations in the far more complex in vivo setting.

In this study, RNA-seq was used to examine the intrinsic response of blood monocytes to
LPS stimulation and Lm infection. The improved dynamic range of the RNA-seq method in
comparison to microarray methods [21] led to the expectation that the results might reveal
extensive differences among the age groups. Given this expectation, the most striking finding is
perhaps the extensive similarity in both constitutive and inducible gene expression. The results
suggest that a single mechanism–variable induction of IRF3 –may be responsible for most and
perhaps all differences between neonatal and young adult monocytes. Another defined mecha-
nism, variable low-level inflammation prior to induction, may explain most of the differences
between young adults and older adults.

Our results strengthen previous evidence that reduced IRF3 activity makes a major contri-
bution to the deficient innate responses of neonates to infectious stimuli [15]. The previous
study was performed with LPS-stimulated dendritic cells differentiated from cord blood or
adult peripheral blood, whereas the current study was performed with freshly isolated mono-
cytes stimulated with LPS or infected with Lm. In the previous study, a large number of IRF3-
and Type 1 IFN-dependent genes were found to be expressed at reduced levels in neonates.
The reduced expression of these genes was attributed to reduced IRF3 activity because the neo-
natal and adult cells responded similarly to direct stimulation with IFNβ. Reduced IRF3 activity
would lead to a broad reduction in the expression of IFN-dependent genes because IRF3 is crit-
ical for the initial induction of IFNB transcription in LPS-stimulated cells.

Interestingly, the previous study found that IRF3 translocated to the nucleus similarly in
neonatal and adult cells, and its in vitro DNA-binding activity was similarly induced [15].
However, its ability to bind endogenous target genes was reduced, suggesting that an additional
event–possibly an additional post-translational modification–is needed for binding to target
genes and may be reduced in neonatal cells. Of relevance, a separate study identified a major
defect in IRF7 activation in neonatal plasmacytoid dendritic cells and, in this cell type, a defect
in nuclear translocation of IRF7 was observed in neonates [36]. An additional clue into the
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underlying mechanism is our finding of a similar deficiency in both LPS-stimulated and Lm-
infected cells. LPS and Lm activate IRF3 via different signaling pathways–the TRIF pathway for
LPS and the STING pathway for Lm [34,35]–suggesting that the reduced IRF3 activity in neo-
natal cells involves a mechanism that influences the activation of IRF3-dependent genes via
both of these pathways.

In addition to elucidating the specific mechanism, it will be important to understand why
this difference exists between neonatal and adult monocytes. The simplest model is that neona-
tal monocytes are fundamentally different from adult monocytes and represent a developmen-
tally distinct monocyte subtype. However, this model predicts that prominent gene expression
differences would be observed prior to stimulation. The differentially expressed genes would
be expected to include cell-surface markers that define different myeloid cell populations and
genes that might help regulate IFN responses. Surprisingly, the expression profiles of the unsti-
mulated monocytes from neonates and adults were remarkably similar (data not shown), with
no large differences suggesting that they represent different myeloid subtypes, and no differ-
ences that would be predictive of the differential induction of IRF3-dependent genes.

One possible explanation for this apparent paradox is that the differences between neonatal
and adult monocytes are due to the differential expression of micro-RNAs or long noncoding
RNAs, which were not examined in this analysis. However, the differential expression or pro-
cessing of non-coding RNAs would be expected to require the differential expression of tran-
scription factors that regulate the non-coding RNA genes, or the differential expression of
processing enzymes; these protein-coding genes would have been included in our analysis. Dif-
ferences in alternative pre-mRNA splicing also were not examined in our analysis. Once again,
differential splicing would be expected to require the differential expression of genes encoding
splicing factors. A more likely possibility is that the pronounced difference in the induction of
IRF3-dependent genes is regulated by genes whose expression levels vary by only a small and
statistically insignificant amount.

Because the RNA-seq profiles failed to provide evidence that the neonatal and adult cells
represent developmentally distinct monocyte subtypes, the neonatal-adult differences may
instead be due to environmental differences that act on the fully differentiated cells to influence
their capacity to induce IRF3 activity. Such a mechanism would need to influence IRF3’s capac-
ity for induction for a prolonged time period, because the IRF3 difference has been observed in
dendritic cells differentiated for several days in vitro [15]. This environmental difference may
lead to small and stable differences in the expression of genes that regulate IRF3 activity. Alter-
natively, the neonatal microenvironment may alter the structure of chromatin at IRF3-depen-
dent genes, resulting in a reduced capacity for IRF3 binding in response to a stimulus.

To summarize, the results of this study will help guide future efforts to understand the
mechanisms responsible for the immune deficiencies observed in neonates and older adults.
The results suggest that the intrinsic properties of blood monocytes are remarkably stable
throughout life and vary to only a limited extent. The reduced capacity of neonatal monocytes
to activate IRF3-dependent genes could play an important role in the deficient response of neo-
nates to many microbial pathogens. Furthermore, the low-level inflammation that is readily
apparent in monocytes from older adults could also influence anti-microbial responses. RNA-
seq studies to quantitatively characterize intrinsic age-related differences in other innate and
adaptive immune cell types should provide additional insights and should ultimately suggest
strategies to enhance immune responses in deficient populations.
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Supporting Information
S1 Fig. LPS-induced genes exhibiting statistically significant differences in transcript levels
in cord blood and young adult monocytes. An expanded version of Fig 5A is shown, which
includes the identities of the LPS-induced genes that are differentially expressed in cord blood
and young adult monocytes. RefSeq IDs and gene names are shown for human genes and their
mouse orthologs.
(TIF)

S2 Fig. Lm-induced genes exhibiting statistically significant differences in transcript levels
in cord blood and young adult monocytes. An expanded version of Fig 6A is shown, which
includes the identities of the Lm-induced genes that are differentially expressed in cord blood
and young adult monocytes. RefSeq IDs and gene names are shown for human genes and their
mouse orthologs.
(TIF)

S3 Fig. LPS-induced genes that exhibit statistically significant differences in basal tran-
script levels in monocytes from young and older adults. An expanded version of Fig 7A is
shown, which includes the identities of LPS-induced genes that are differentially expressed in
unstimulated young and older adult monocytes. Human RefSeq IDs and gene names are
shown.
(TIF)
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Abstract 

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the 

physiologic limiters of energy expenditure are largely unknown. Here we show that loss of the 

anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced 

obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone 

marrow cells as the source of the IL-10 signal and mature adipocytes as the target cell type 

mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is 

induced in response to cold, obesity and aging. ATAC-seq and RNA-seq reveal that IL-10 

represses the transcription of thermogenic genes in adipocytes by altering chromatin 

accessibility and inhibiting ATF and PGC-1alpha recruitment to key enhancer regions. These 

findings identify the IL-10 axis as a critical and potentially targetable regulator of thermogenesis, 

and expand our understanding of the links between inflammatory signaling and adipose tissue 

function in the setting of obesity.  

 

Introduction 

Mammals contain specialized types of adipose tissue, including white adipose tissue (WAT) and 

brown adipose tissue (BAT) (Attie and Scherer, 2009; Rosen and Spiegelman, 2014). WAT 

stores energy in times of nutritional excess and its dysfunction contributes to metabolic 

disorders such as type 2 diabetes (Camp et al., 2002; Guilherme et al., 2008). BAT is 

specialized to dissipate stored chemical energy in the form of heat (Seale et al., 2009; 

Townsend and Tseng, 2014). BAT mass inversely correlates with body mass index and has 

been ascribed a potential anti-obesity function (van Marken Lichtenbelt et al., 2009; Virtanen et 

al., 2009). Recent studies have revealed the inherent plasticity of WAT and its ability to activate 

thermogenesis upon exposure to cold, thiazolidinediones, and hormonal stimuli (Ohno et al., 

2012; Tiraby and Langin, 2003; Ye et al., 2013). A subpopulation of cells in inguinal WAT 
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(iWAT) known as “beige” cells expresses uncoupling protein 1 (UCP1) and carries out 

thermogenesis (Lee et al., 2012; Rosenwald et al., 2013; Wu et al., 2012). UCP1 is crucial for 

thermogenesis in both brown and beige adipocytes, and control of its activity contributes to 

regulation of body weight and energy balance (Feldmann et al., 2009).  

  Adipose tissue is composed of a heterogeneous cell population that includes adipocytes, 

endothelial cells, preadipocytes, and immune cells. Immune-adipose crosstalk has pronounced 

effects on the expansion and the thermogenic activation of beige adipose tissue. Recent studies 

have highlighted the importance of anti-inflammatory (type II) cytokines in promoting adipose 

thermogenesis. Production of IL4/IL13 by eosinophils upon stimulation by cold or exercise 

stimulates adipose tissue macrophages to secrete catecholamines and activate thermogenesis 

(Qiu et al., 2014; Rao et al., 2014). Activation of type 2 innate lymphoid (ILC2) cells by IL-33 

acts via IL4Rα in preadipocytes to promote beige fat biogenesis (Lee et al., 2015). Furthermore,  

IL-33 was shown to license adipocytes for uncoupled respiration by regulating splicing of UCP1 

(Odegaard et al., 2016). An ILC2-positive population was recently identified in human WAT, and 

activation of ILC2 by IL-33 was reported to stimulate production of a methionine- enkephalin 

peptide that directly acts on adipocytes to increase UCP1 expression (Brestoff et al., 2015). 

Despite these advances, endogenous pathways that antagonize thermogenesis in adipose 

tissue are relatively poorly understood.  

  IL-10 is a type II cytokine with anti-inflammatory properties and its loss is associated with 

autoimmune pathologies (Couper et al., 2008; Hutchins et al., 2013). IL-10 is secreted by 

multiple immune cells, including macrophages, dendritic cells, B cells, and T cells (Saraiva and 

O'Garra, 2010). It signals through a receptor complex of IL-10Rα and IL-10Rβ to trigger the 

activation of signal transducer and activator of transcription 3 (STAT3) (Moore et al., 2001). 

STAT3 is known to be essential for the anti-inflammatory activity of IL-10 (Lang et al., 2002), but 

the mechanisms by which IL-10 regulates gene expression remain very poorly understood. The 

biological effects of IL-10 are multifaceted, and it can simultaneously turn on and off specific 
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gene programs. Mechanisms proposed to underlie the anti-inflammatory actions of IL- 10 

include: regulation of mRNA and protein stability, post-translational modification, microRNA-

mediated RNA-interference, and transcriptional repression through intermediary proteins (El 

Kasmi et al., 2007; Hammer et al., 2006; Kuwata et al., 2003; Rossato et al., 2012; Schaljo et 

al., 2009; Smith et al., 2011). However, inhibition of transcription is widely believed to be the 

primary mode of IL10 anti-inflammatory actions (Murray, 2005; Murray and Smale, 2012)  

The function of IL-10 in inflammation is well established, but its role in adipose biology and 

energy homeostasis is largely unknown. Some studies have suggested that IL-10 might  

function to create an anti-inflammatory milieu in adipose tissue by promoting the activity of anti- 

inflammatory M2 macrophages (Fujisaka et al., 2009; Gao et al., 2013; Hong et al., 2009; 

Lumeng et al., 2007; Nakata et al., 2016; Xie et al., 2014). However, IL10 is dispensable for M2 

macrophage activation, and IL-10 loss-of-function studies have not supported an anti-obesity 

role for IL-10 (den Boer et al., 2006; Mauer et al., 2014; Miller et al., 2011). Furthermore, 

ablation of IL-10 from the hematopoietic system does not cause insulin resistance (Kowalski et 

al., 2011). One complicating factor in the study of the metabolic effects of IL-10 is the propensity 

of the Il10–/– mice to develop colitis and systemic inflammation (Kuhn et al., 1993). 

Spontaneous colitis in Il10–/– mice is dependent on several factors, including age, strain, and 

vivarium conditions; thus, these conditions may have a major impact on systemic metabolism in 

Il10–/– mice (Keubler et al., 2015).  

  Here we report the delineation of an unexpected role for IL-10 signaling in directing 

transcriptional responses in adipose tissue that limit thermogenesis. Inhibition of IL-10 action 

promotes energy expenditure and protects mice from diet-induced obesity. We show that bone 

marrow-derived IL-10 acts on adipocytes directly via IL-10Rα to repress thermogenic gene 

expression by altering the chromatin landscape at ATF-binding transcriptional regulatory 

regions. These findings challenge prior assumptions regarding the relationship between 
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inflammatory signaling pathways and adipose tissue function and provide insight into 

physiological control of thermogenesis that could inform future therapy for metabolic diseases.  

 

Results 

Ablation of IL-10 protects mice from diet-induced obesity  

To begin to dissect the role of IL-10 in systemic metabolic homeostasis we analyzed young 

Il10–/–mice (10 weeks of age) on a C57B/6 background. Importantly, IL-10 deficiency on this 

genetic background is associated with a relatively low incidence of colitis (Keubler et al., 2015). 

There was no overt evidence of systemic inflammation in Il10–/– mice, and they had 

comparable body weights, serum cytokine profiles, and colon morphology to WT controls 

(Figure 3-8 A-D). However, on visual inspection, iWAT from Il10–/– mice appeared redder than 

that from WT littermate controls. Histological analysis revealed smaller adipocytes and 

increased numbers of cells with multilocular lipid droplets in iWAT from Il10–/– mice (Figure 3-

1A). We further found that Il10–/– mice exhibited markedly improved glucose tolerance and had 

lower serum triglyceride levels (Figure 3-1B and 3-8E) compared to controls. Interestingly, 

ablation of IL-10 had no influence on the total macrophage or activated M1 macrophage 

populations in adipose tissues (Figure 3-8F).  

  We next addressed how this phenotype progressed as Il10–/– mice aged. Chow-fed 

Il10–/– mice at 8 months of age were grossly leaner than WT controls and had less total body 

mass and fat mass (Figure 3-1 C-E and Figure 3-8G). Furthermore, the size and weight of 

individual adipose depots (iWAT and eWAT) were reduced compared to controls. Livers of Il10–

/– mice also appeared to be protected from hepatic steatosis (Figure 3-1D). We further 

assessed how loss of IL- 10 would affect the development of diet-induced obesity. WT and Il10–

/– mice of 10 weeks of age were fed a high-fat-diet (HFD; 60% calories from fat) for 6 weeks. 

After this regimen, Il10– /– mice were grossly much leaner and gained markedly less weight 

than WT mice (Figure 3-1F and 3-1G). MRI analysis of body composition confirmed reduced 
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body fat in Il10–/– mice compared to WT controls with no difference in lean mass (Figure 3-1H). 

Il10–/– mice were also protected from diet-induced hepatic steatosis, and the size and weight of 

individual adipose depots were reduced compared to WT mice (Figure 3-1G-1I, 3-9C and 3-9D). 

Mice lacking IL-10 had improved glucose tolerance and insulin tolerance as revealed by IP 

glucose and insulin tolerance tests, respectively (Figures 3-1J,K). Despite the well-established 

role of IL-10 as a limiter of inflammatory responses, we observed no evidence of acute or 

chronic inflammation in Il10–/– mice. With the exception of the loss of IL-10 and an increase in 

GCSF, they had comparable levels of serum pro-inflammatory cytokines, and colon morphology 

and histology revealed no apparent signs of colitis (Figure 3-9 A-C). Thus, the improved 

metabolic phenotype of Il10–/– mice could not be linked with the development of colitis or 

obvious systemic inflammation.  

 

Increased energy expenditure and mitochondrial respiration in IL-10-deficient mice  

Adipose tissue is an important determinant of systemic energy balance. Given that the changes 

in adipose tissue morphology in Il10–/– mice were consistent with increased thermogenic 

activity, we probed the influence of IL-10 expression on energy homeostasis. Chow-fed mice at 

ten weeks of age were individually housed in metabolic chambers for 72 hours. Oxygen 

consumption rate (VO2) and energy expenditure (EE) were higher in Il10–/– mice compared to 

WT controls (Figure 3-2 A-C). Food consumption was also markedly increased in Il10–/– mice 

(Figure 3-2D). Metabolic cage studies performed on an independent cohort of high-fat diet-fed 

mice revealed similar elevations in VO2, and EE in mice lacking IL-10 (Figure 3-2 G-H). We 

next examined if the increase in EE in Il10–/– mice might reflect altered mitochondrial activity. 

We isolated mitochondria from iWAT from WT and Il10–/– mice and measured rates of oxygen 

consumption (OCR) to assess differences in mitochondrial respiration between the genotypes. 

Mitochondrial respiration was measured with substrate present (basal respiration), and in the 

presence of ADP (complex V respiration), or FCCP (maximal respiration) (See methods 
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section). Sequential treatments with these compounds revealed marked increase in basal, 

complex V, coupled and uncoupled respiration, and maximal mitochondrial respiration in Il10–/– 

mice compared to controls (Figure 3-2E). Next, we assessed the activity of the respiratory chain 

complexes I-IV by performing electron flow assays. The activity of all complexes was 

augmented in Il10–/– mitochondria compared to controls (Figure 3-2F). These findings strongly 

suggest that increased systemic energy utilization and enhanced mitochondrial respiration 

contribute to the improved metabolic profile of IL-10-deficient mice.  

 

Increased adipose thermogenesis in IL-10 KO mice  

Certain WAT depots have the capacity to undergo “beiging”, and thereby increase their 

thermogenic activity (Ohno et al., 2012; Tiraby and Langin, 2003; Ye et al., 2013). To address 

whether the loss of IL-10 expression affected adipose phenotype at the level of gene 

expression, we performed RNA-seq on iWAT from chow-fed, ten week-old mice. Remarkably, 

as depicted by the volcano plot in Figure 3-3A, genes linked to adipocyte thermogenesis were 

highly upregulated in iWAT from Il10–/– mice compared to WT controls. Such genes included 

Ucp1, Cidea and Pm20d1–a recently identified secreted factor that increases thermogenesis 

through synthesis of lipidated amino acids (Long et al., 2016). Conversely, genes selectively 

expressed in WAT and those associated with obesity, including Mmp12, Trem2, Celec4d, and 

Atp6v0d2 (Fujimoto et al., 2011; Lee et al., 2014; Park et al., 2015; Xu et al., 2013), were 

downregulated in Il10–/– mice. We further analyzed the correlation between the gene 

expression signatures of WT or Il10–/– iWAT and reference BAT and WAT RNA-seq data from 

publicly available datasets (Sun et al., 2013). The data plot in Figure 3-3B shows that the gene 

expression profile of Il10–/– iWAT more closely resembled BAT than did WT control iWAT. 

Quantitative analysis of the number of genes as well as percentage of all adipose subtype-

selective genes shown in Figure 3-3B demonstrated a ~4.5-fold increase in brown/beige-

selective markers in Il10–/– iWAT compared to control (Figure 3-3C and 3-3D). Comparing the 
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BAT/WAT ratio and Il10–/–/WT ratio from the dataset in Figure 3-3D showed that BAT-selective 

genes such as Ucp1 and Cidea were highly upregulated in the absence of IL-10 (Figure 3-3E). 

Congruent with these data, gene ontology analysis of our RNA-seq data further showed that 

markers indicative of brown differentiation were highly enriched in Il10–/– iWAT (Figure 3-3F). 

Finally, we validated these bioinformatic analyses with directed real-time PCR and found that 

markers of adipose beiging/browning were increased in Il10–/– mice, whereas inflammatory 

markers were reduced or unchanged (Figure 3-3G). Overall, these data suggest that ablation of 

IL-10 in mice leads to the remodeling of iWAT to a more beige-like phenotype.  

 

Reconstitution of IL-10 rescues the thermogenic phenotype of IL-10-deficient mice  

To determine the source of the IL-10 signal leading to these metabolic effects, we performed 

bone-marrow transplantation (BMT) studies. We reconstituted lethally-irradiated Il10–/– mice 

with either WT bone-marrow (WT➞KO) or Il10–/– bone-marrow (KO➞KO) (Figure 3-10A). 

Genotyping of blood seven weeks post-BMT showed that the WT allele was fully reconstituted 

in Il10–/– mice (Figure 3-10A). Interestingly, following the transplant WT➞KO mice gained more 

weight and accumulated more fat mass than KO➞KO controls (Figure 3-4A and 3-4B). The 

iWAT depots were larger in WT➞KO mice compared to KO➞KO controls (Figure 3-4C). 

WT➞KO mice also had higher blood glucose levels and were glucose intolerant relative to 

KO➞KO mice (Figure 3-10B and 3-4D). Importantly, neither group showed apparent signs of 

colitis (Figure 3-10C).  

  To investigate whether the thermogenic phenotype of IL-10-deficient mice was rescued 

by WT bone marrow, we individually housed the transplanted mice in metabolic chambers. This 

analysis revealed that WT➞KO mice had reduced VO2 and EE compared to KO➞KO mice 

(Figure 3-4E). Consistent with this finding, thermogenic gene expression and mitochondrial 

respiration were repressed in WT➞KO mice (Figure 3-4F-H). Together these data point to a 

hematopoietic origin of the IL-10 signal controlling thermogenesis and energy expenditure.  
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The IL-10 axis directly represses adipocyte thermogenesis  

To explore if bone marrow-derived IL-10 could act on adipose tissue directly, we first 

characterized IL-10Rα expression in fat. We found that IL-10Rα was highly enriched in the 

mature adipocyte fraction of mouse adipose tissue and Il10ra but not Il10rb was upregulated 

during adipocyte differentiation (Figure 3-5 A-B and 3-11A). Furthermore, Il10ra expression was 

increased in response to cold exposure, high-fat diet, genetic obesity (db/db and ob/ob mice), 

and aging (Figure 3-5C and 3-11A). IL-10Rα protein was correspondingly increased during 

adipocyte differentiation (Figure 3-11B). Furthermore, IL-10 treatment caused activation of 

STAT3 (pSTAT3), demonstrating that IL-10 signaling is functional in mature adipocytes (Figure 

3-11B). We also identified Il10ra as a direct PPARγ target gene in adipocytes. Il10ra expression 

was induced in response to PPARγ activation, and publically available ChIP-seq data from 

analysis of adipose depots revealed robust enrichment of PPARγ at the enhancer region of the 

Il10ra gene locus (Figure 3-11C) (Siersbaek et al., 2012). Collectively, these observations 

suggested that IL- 10Rα might be upregulated in adipose tissue as a negative feedback 

mechanism to maintain adiposity and limit thermogenesis.  

  To test this idea, we knocked down IL-10Rα in iWAT of WT mice using an adenoviral 

vector expressing an shRNA directed against Il10ra. Interestingly, even partial knockdown of 

IL10Rα protein was sufficient to cause a substantial increase in thermogenic gene expression in 

iWAT (Figure 3-5D and 3-5E). To further test our hypothesis, we harvested iWAT from mice and 

treated it ex vivo with vehicle or IL-10. We found that IL-10 decreased levels of UCP1 protein 

and its corresponding mRNA (Figure 3-5F and 3-5G). To establish that these effects were due 

to direct actions of IL-10 on adipocytes and did not require the presence of other cell types in 

adipose tissue (such as macrophages), we studied primary beige adipocytes differentiated in 

vitro. Treatment with IL-10 also led to a robust downregulation of thermogenic genes in these 

cells (Figure 3-11D).  
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  To facilitate our analysis of IL-10 signaling in cultured adipocytes we established an 

immortalized brown/beige-like preadipocyte cell line that expressed IL-10Rα and was capable of 

inducing thermogenic genes in response to differentiation cocktail (iBAd cells). We confirmed 

that IL-10 signaling was operative in these cells by assessing the induction of the canonical IL- 

10-responsive gene Socs3 (Figure 3-11E). Reciprocal with the induction of Socs3, we observed 

a dose-dependent decrease in UCP1 levels in response to IL-10. Pretreatment of the cells with 

an IL-10Rα antibody partially rescued the effect (Figure 3-11F). We also observed decreased 

mitochondrial respiration upon IL-10 treatment, consistent with the effects observed in iWAT 

(Figure 3-11G).  

  After validating our in vitro model, we assessed global gene expression in 

undifferentiated and differentiated iBAd cells in the presence or absence of IL-10. Genes 

induced in vehicle-treated cells more than 5-fold on day 5 (D5) of differentiation compared to D0 

were plotted as a heat-map (Figure 3-5H). Analysis of the dataset showed that thermogenic 

genes such as Ucp1, Cidea, and Pppargc1α were among the highest induced genes on D5. 

Moreover, these same genes were also among the most highly inhibited by IL-10 (Figure 3-5H). 

Interestingly given the repressive effect of IL-10 on thermogenic gene expression, several 

genes that were highly induced by IL-10 encoded for transcriptional repressors including Ncor2 

and Hdacs (Figure 3-5H and 3-11H). Pathway analysis revealed that brown fat cell 

differentiation and lipid metabolic processes were highly compromised in the presence of IL-10 

(Figure 3-5I). Blockade of the browning program by IL-10 was further validated by plotting the 

RNA-seq vehicle/IL-10 ratio as a function of WAT/BAT ratio. We found that 70% of the genes 

inhibited by IL-10 were brown-selective genes, suggesting a high degree of specificity for IL-10 

action on the browning program (Figure 3-5J).  

 

IL-10 affects transcription of thermogenic genes by altering chromatin architecture  
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The primary mode of IL-10 action in macrophages is believed to be inhibition of transcription, 

although the underlying mechanisms are not well understood. We set out to explore the basis 

for IL-10 effects on adipocyte gene expression. We found that IL-10 inhibited the abundance of 

primary transcripts of thermogenic genes (Figure 3-12A). Furthermore, IL-10 inhibited the 

expression of putative enhancer RNAs (eRNAs) from the Ucp1 gene locus (Figure 3-12A). 

These findings indicated that IL-10 was acting to block transcription of certain adipocyte genes.  

To test whether IL-10-dependent repression of transcription was due to action at the regulatory 

regions of thermogenic genes, we performed genome-wide ATAC-Seq on differentiated iBAd 

cells treated with vehicle or IL-10. ATAC-seq peaks correspond to genomic regions that are 

sensitive to cleavage by transposase due to their open chromatin configuration; these sites 

serve as markers of regulatory DNA sequences including enhancers and promoters (Buenrostro 

et al., 2013). Using a parallel approach to the RNA-seq analysis of Figure 3-5H, we identified 

3174 ATAC peaks that were enriched more than five-fold on D5 compared to D0 in vehicle 

treated cells and represented them as a heat map (Figure 3-6A). Peaks indicative of open 

chromatin appearing at D5 included those at the enhancer/promoter regions of thermogenic 

genes such as Ucp1and Cidea, consistent with the induction of these genes during brown/beige 

differentiation. In line with the inhibitory effects of IL-10 on thermogenic gene repression, IL- 10 

treatment reduced ATAC peak enrichment at the regulatory regions of thermogenic genes 

(Figure 3-6A).  

  To qualitatively assess the changes in ATAC-seq peaks, we plotted the data as a 

bedgraph on the UCSC genome browser. As shown in Figure 3-6B, on D5 of brown 

differentiation a discreet set of new peaks emerged (Peaks 1 and 3), indicative of newly opened 

chromatin at putative enhancer regions of the Ucp1 gene locus. Remarkably, IL-10 treatment 

caused an almost complete loss of these differentiation-dependent peaks, indicating that the 

chromatin remained closed in response to IL-10 signaling (Figure 3-6B). These changes in 

ATAC peaks were consistent with the RNA-seq data showing a decreased Ucp1 transcript in IL-
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10- treated cells and increased transcript in IL-10-deficient mice compared to controls (Figure 3-

6B). Importantly, there were a number of prominent ATAC peaks at the Ucp1 locus that were 

not affected by IL-10 (e.g. Peak 2), indicating that IL-10 was selectively altering chromatin at 

specific sites. Specificity was further confirmed by aligning the adipocyte results with ATAC- seq 

data from Il10–/– bone marrow-derived macrophages (Macs) treated with and without IL-10 

(Figure 3-6B). Most of the peaks present at the Ucp1 locus in adipocytes were absent in 

macrophages.  

  Directed qPCR analysis of the ATAC seq samples further validated the repressive 

effects of IL-10 at Peaks 1 and 3 but not 2 (Figure 3-6D). Remarkably, IL-10 treatment also 

altered chromatin configuration at the regulatory regions of a battery of other thermogenic 

genes, including Cidea, Ppargc1α, Elovl3, and Cox8b (Figure 3-6E and 3-12B). Furthermore, 

examination of ATAC signals at genes whose expression was not altered by IL-10, including 

Fabp4 and Ephx1, showed that these ATAC peaks were virtually unchanged by IL-10 treatment 

(Figure 3-6F and 3-12B). The expected increase in ATAC signals at the Socs3 gene locus 

served as a positive control for IL-10-mediated transcriptional effects (Figure 3-6F). Finally, we 

plotted the ratio of vehicle/IL-10 from our ATAC-seq data as a function of gene expression 

(RNA-Seq) to correlate the changes in chromatin regions with active transcription mediated by 

IL-10. Changes in ATAC peaks did not necessarily correlate with transcript abundance, 

suggesting that chromatin configuration does not necessarily translate into transcriptional 

regulation. However, we found a small cluster of genes in the quadrant 2 of the data plot shown 

in Figure 3-6G with particularly high ATAC/RNA-seq correlation. This cluster turned out to 

include thermogenic genes such as Ucp1 and Cidea, further underscoring the specificity of IL-

10 action in remodeling chromatin specific for the thermogenic gene program.  

 

IL-10 alters transcription factor occupancy at regulatory regions of thermogenic genes  
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Thermogenic gene transcription during adipose tissue browning is orchestrated by multiple 

transcription factors, including CREB/ATF, CEBPs and PPARγ (Harms and Seale,  

2013). To investigate if IL-10 signaling in adipocytes selectively affected accessibility at sites of 

transcription factor binding, we performed in silico analysis. We plotted all the ATAC-seq data 

peaks from D0 and D5 as a function of fold-induction to assess what percentage of peaks 

showed an increase or decrease in accessibility during differentiation. About 10% of the ATAC 

peaks show an increase of 5-fold or more on D5 (Figure 3-12C). Furthermore, we found that the 

distribution of ATAC peaks that were highly enriched during BAT differentiation favored 

intergenic regions that could possibly contain enhancer elements (Figure 3-7A and 3-7B). We 

separated the ATAC peaks into 10 equivalently sized bins to assess the peak strength (RPKM) 

within each category of samples (D0, D5, and D5 + IL-10). Accessibility markedly increased 

across the bins from D0 to D5, and IL-10 treatment blunted these changes (Figure 3-7C). Next 

we quantitatively assess transcription factor binding sites in the intergenic/enhancer regions 

where ATAC peaks were highly enriched. Interestingly, motifs associated with the binding of 

canonical thermogenic transcription factors such as CREB/ATF, CEBPs, NFIs, and PPARγ 

were highly enriched on D5 (Figure 3-7D). By contrast AP-1 (Fos/Jun) motifs were highly 

downregulated during browning. To further investigate the effect of IL-10 on transcription factor 

enrichment, we analyzed the same regions from panel C-D and divided the motifs into three 

groups based on the level of IL-10 inhibition. Interestingly, IL-10 caused a substantial loss of 

enrichment for motifs associated with the same group of thermogenesis-associated transcription 

factors (Figure 3-7E).  

  To complement these in silico analyses, we directly tested the functional relevance of 

the transcription factor motifs identified by the ATAC-seq studies. We performed directed ChIP- 

qPCR analysis on the regulatory regions of the Ucp1 gene locus (Figure 3-7F). We confirmed 

that Peaks 1 and 3 in Figure 3-7F, which changed markedly upon IL-10 treatment, contained 

sequences known to recruit CREB/ATF and its cofactor PGC-1α (Abe et al., 2015; Cao et al., 
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2004; Chen et al., 2009). ATF-2 plays a key role in mediating the thermogenic effects of β-

adrenergic signaling. PGC-1α is a master regulator of mitochondrial biogenesis and directly 

increases thermogenic gene transcription. We found that both ATF-2 and PGC1α showed 

robust enrichment on chromatin in the region of Peaks 1 and 3, but not Peak 2. IL-10 treatment 

compromised the recruitment of PGC-1α and ATF-2 to the Ucp1 regulatory regions 

corresponding to Peaks 1 and 3, but not to the constitutively present Peak 2 region (Figure 3-

7F).  

 

Discussion 

Although multiple signaling pathways that stimulate adipose tissue “beiging/browning” have 

been characterized, the physiologic limiters of energy expenditure programs have largely 

remained unknown. Here we have outlined an unexpected role for IL-10 in altering the 

adipocyte transcriptional landscape to limit thermogenesis. Loss of IL-10 in mice increased 

energy expenditure, promoted mitochondrial respiration, improved glucose tolerance and 

protected against diet-induced obesity, and did so in the absence of overt systemic or adipose 

tissue inflammation. We further showed that IL-10 acts directly on adipocytes to repress the 

expression of thermogenic genes by altering the chromatin landscape. These findings challenge 

conventional assumptions regarding the links between immune and inflammatory signaling and 

adipocyte metabolism. They further suggest that blockade of IL-10 receptor signaling in fat 

could represent a tractable approach to de-repress thermogenic gene expression in a 

therapeutic context.  

  Immune cells within adipose tissue are increasingly being recognized as important 

contributors to metabolic homeostasis that can modulate adipocyte function (Osborn and 

Olefsky, 2012). A number of pro-inflammatory cytokines have been shown to impair lipid 

storage and to exacerbate insulin resistance in mouse models, leading to the suggestion that 

inhibition of adipose tissue inflammation might be beneficial in the setting of diabetes (Romeo et 



	 71	

al., 2012; Shoelson et al., 2006). IL-10 is a major anti-inflammatory factor with a well- 

established role in countering the pro-inflammatory actions of other cytokines (Couper et al., 

2008; Hutchins et al., 2013; Saraiva and O'Garra, 2010). Contrary to the expectation that loss of 

this key anti-inflammatory factor might lead to unrestrained adipose inflammation, IL-10- 

deficient mice had improved metabolic profiles and were resistant to obesity. It is important to 

note that this phenotype is distinct from that observed with elevation of pro-inflammatory stimuli 

such as TNFα and IL-6, which promote weight loss but exacerbate insulin resistance (Petruzzelli 

et al., 2014; Romeo et al., 2012; Shoelson et al., 2007).  

  Repressive signals provide critical balance in cellular homeostasis. Such feedback is 

highly prevalent in immune cell interactions. Anti-inflammatory pathways participate in negative 

feedback loops during inflammation to block excessive synthesis of pro-inflammatory molecules 

and promote resolution. It is widely believed that transcriptional repression underlies many of 

the effects of anti-inflammatory signals such as Type II cytokines, TGF-β, and type I interferons 

(Murray and Smale, 2012). However, the precise mechanisms whereby these factors silence 

gene expression have remained poorly understood. Murray and colleagues have postulated that 

STAT3 is essential for all known IL-10-mediated signaling and that IL-10 elicits its anti-

inflammatory action primarily through transcription (Murray, 2005). Several factors induced by 

the pSTAT3/IL-10 axis, including Bcl-3, Sbno2, Etv3 and NFIL3, have been shown to contribute 

to IL-10’s anti-inflammatory effects (El Kasmi et al., 2007; Hutchins et al., 2013; Kuwata et al., 

2003; Murray and Smale, 2012; Smith et al., 2011).  

  Here we have built upon prior work in macrophages to dissect the actions of IL-10 in a 

different cell type, where it acts on a largely distinct set of transcriptional target genes. We 

showed that the IL-10 signaling axis is intact in adipocytes. We found that IL-10 selectively 

represses the expression of a battery of thermogenic genes in adipocytes, including the critical 

uncoupling mediator Ucp1. To understand the mechanism for this effect we employed a 

combinatorial approach using ATAC- and RNA-Seq on brown/beige differentiated preadipocytes 
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treated with and without IL-10. These studies revealed that chromatin at specific sites the 

regulatory regions of thermogenic genes remained closed during browning in the presence of 

IL-10. Importantly, this effect was highly selective for the thermogenic program, as the 

chromatin structure at adipocyte genes not related to beiging/browning was not altered by IL- 

10. Thus, IL-10 is not a general inhibitor of differentiation-dependent adipocyte transcription, but 

rather a specific modifier of thermogenesis.  

  Our analysis further allowed us to identify specific transcription factors whose 

interactions with regulatory regions of thermogenic genes was dependent on IL-10 signaling. 

ATAC accessibility at ATFs/CREB and C/EBP motifs was highly enriched during 

beiging/browning, and IL-10 caused an almost complete reversal of accessibility at these motifs. 

Consistent with the IL-10-dependent changes in accessibility at ATF motifs, directed ChIP 

analysis showed reduced occupancy of ATF2 and its cofactor PGC-1α at Ucp1 regulatory 

regions in the presence of IL-10. Interestingly, expression of PGC-1α expression itself was also 

repressed in response to IL-10, potentially contributing to the effects on thermogenic gene 

expression. Finally, our gene expression analysis identified inhibitory transcriptional regulators 

that were induced in adipocytes in response to IL-10, including such as HDAC7/5 and NCOR2. 

It is possible that such factors may also be involved in mediating repressive actions on 

chromatin accessibility in response to IL-10.  

  The striking metabolic phenotype of IL-10-deficient mice indicates that basal IL-10 

signaling provides a tonic brake that limits thermogenic gene expression. WAT undergoes 

continuous remodeling under chronic cold exposure. In addition to canonical thermogenic genes 

(Ucp1, Elovl3, Cidea, Ppargc1α), a specific set of thermogenic genes such as Pm20d1, Otop1, 

Elovl6, and Slc27a2 are turned on that typically serve as markers for cold exposure. Our RNA- 

Seq data show that this same set of genes was highly upregulated (~5-fold) in the iWAT of IL- 

10-deficient mice, even thought they were not exposed to cold (Long et al., 2016; Rosell et al., 

2014). Mice housed at ambient temperature are under thermal stress and have more browning 
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of WAT compared to mice housed at thermoneutrality (Qiu et al., 2014). One consequence of 

thermal stress is increased local adipose catecholamine signaling, which directly acts on β- 

adrenergic receptors to activate thermogenic gene expression (Qiu et al., 2014; Rao et al., 

2014). Adipose adrenergic signaling initiates a cascade leading to the activation of transcription 

factors including ATFs, CREBs, PGC1α, and PRDM16 that bind to regulatory regions of 

thermogenic genes (Harms and Seale, 2013). Our data suggest that IL-10 signaling 

antagonizes adrenergic signaling and inhibits thermogenesis in adipose tissue.  

  What is the biological relevance of adipose IL-10 signaling? One important clue to this 

question is the dynamic expression pattern of IL-10Rα. The expression of IL-10Rα is highly 

upregulated during adipocyte differentiation, consistent with an important physiological function 

for IL-10 signaling in adipose tissue. In addition, IL-10Rα expression is further elevated in 

response to cold exposure, obesity and aging, implying that changes in the activity of the IL-10 

axis are also relevant in these contexts. Since the gene encoding IL10Rα is a direct target of 

PPARγ, it is reasonable to hypothesize that the adipocyte IL-10 axis could serve to facilitate lipid 

storage and maintain adiposity. Given the central role that IL-10 plays in inflammation and 

immunity, we further speculate that the IL-10 signaling might function as a mechanism to 

conserve energy in the setting of increased systemic energy demands such as during infection. 

Finally, our data suggest that blockade of IL-10 signaling in adipose tissue might have beneficial 

effects in the context of obesity and insulin resistance. Our finding that adenoviral-mediated 

knockdown of IL10Rα expression in iWAT was sufficient to induce thermogenic genes supports 

further research in to the potential therapeutic utility of targeting the adipose IL-10 axis.  

  Adipose tissue inflammation is widely regarded to be a contributory factor in the 

development of obesity and metabolic dysfunction. However, paradoxical increases in obesity 

and insulin resistance in mice depleted of various pro-inflammatory signals, and the 

development of age-related obesity upon anti-inflammatory ablation suggest a more complex 

relationship between the immune system, adipose tissue function and systemic metabolism 
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(Bapat et al., 2015; Mauer et al., 2014; Wallenius et al., 2002; Wernstedt Asterholm et al., 

2014). Here we have reported an unexpected role for the anti-inflammatory cytokine IL-10 in 

regulating adipose thermogenesis, obesity, and insulin sensitivity. Together with prior work, our 

data support a model in which immune mediators exert complex effects on adipose tissue 

function, depending upon the physiological signal and microenvironment. They further 

underscore the view that proper balance of inflammatory and anti-inflammatory molecules is key 

in maintaining adipose and metabolic homeostasis.  

 

Experimental Procedures  

Reagents and Plasmids Dexamethasone (D2915), 3-isobutyl-1-methylxanthine (IBMX, I7018), 

PPARγ agonist Rosiglitazone (R2408), indomethacin (I7378), T3 (3,3',5-Triiodo-L-thyronine; 

T2877), and isoproterenol (I6504) were from Sigma-Aldrich. Insulin (12585-014) was from Gibco 

and recombinant mouse IL-10 (210-10) was purchased from Peprotech. IL10Rα shRNA 

sequences were designed using BLOCK-iT RNAi designer tool (Invitrogen). Sense and 

antisense oligos were annealed and cloned into pENTR/U6 plasmid (Invitrogen). Using LR 

recombination (Invitrogen), shRNA constructs were subcloned into a Gateway-adapted 

pBLOCK-IT adenovirus vector. The following shRNA oligos were used: lacZ shRNA (control) 

CACCGGGCCAGCTGTATAGACATCTCGAAAGATGTCTATACAGCTGGCCC; IL10Rα shRNA 

CACCGCATCTTAGTCATATCTATGCCGAAGCATAGATATGACTAAGATGC. Only sense 

strands are shown here. Adenovirus was amplified, purified and tittered by Viraquest Inc.  

 

Cell Culture  

Murine white and brown preadipocytes were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented 10% fetal bovine serum (FBS). For in vitro brown adipocyte 

differentiation, preadipocytes were grown to confluence in DMEM with 10% FBS plus insulin (5 

µg/ml) and T3 (1 nM). Confluent cells were induced to differentiate with dexamethasone (1 µM), 
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IBMX (0.5 mM), insulin (5 µg/ml), indomethacin (125 nM) and Rosiglitazone (1 µM) for 2 days, 

followed by insulin, T3 and Rosiglitazone alone. On the fourth day, cells were pretreated for 

overnight with and without 100 ng/ml IL-10 and next day treated with 10 µM isoproterenol for 5-

6 h. White and brown preadipocytes were isolated and immortalized as previously described 

(Villanueva et al., 2013). Beige/Brown preadipocytes IL10Rα expressing stable cells  

(iBAd) were generated using the pBabe retroviral system (Hummasti and Tontonoz, 2006). 

Retrovirus was obtained by transfection of Phoenix E cells with the pBabe vector and harvest of 

growth media 72 h later. Preadipocytes were transduced with retrovirus overnight and selected 

with particular antibiotics.  

 

Gene Expression Analysis  

Total RNA was isolated using TRIzol reagent (Invitrogen) and reverse transcribed with the 

iScript cDNA synthesis kit (Biorad). cDNA was quantified by real-time PCR using SYBR Green 

Master Mix (Diagenode) on an ABI 7900 instrument. Gene expression levels were determined 

by using a standard curve. Each gene was normalized to the housekeeping gene 36B4 and was 

analyzed in duplicate. Primers used for real-time PCR are available upon request.  

 

Protein Analysis  

Whole cell lysate was extracted using RIPA lysis buffer (Boston Bioproducts) supplemented with 

complete protease inhibitor cocktail (Roche). Proteins were diluted in Nupage loading dye 

(Invitrogen), heated at 95°C for 5 min, and run on 4–12% NuPAGE Bis-Tris Gel (Invitrogen). 

Proteins were transferred to hybond ECL membrane (GE Healthcare) and blotted with IL10Rα 

(AF-474-SP, R&D Systems), PGC1α (H-300 sc-13067, Santa Cruz Biotechnology), pATF-2 (F1 

sc-8398, Santa Cruz Biotechnology), ATF-2 (C-19 sc-187, Santa Cruz Biotechnology), pSTAT3 

(9131, Cell Signaling), TLE3 (11372-1-AP, Proteintech Group), and αTubulin (CP06, 

Calbiochem) antibodies.  
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Animal Studies  

Breeding pairs of Il10–/– mice (#002251) and WT (#000664) controls were acquired from 

Jackson Laboratory and colony maintained in pathogen-free barrier-protected environment 

(12:12 h light/dark cycle, 22°C-24°C) at UCLA animal facility. Experimental mice were sacrificed 

at ages mentioned in figure legends for histological and gene expression analysis. For the 

IL10Rα shRNA adenovirus delivery to fat pads, 2X109 PFU of adenovirus was percutaneously 

injected into each inguinal fat depot of WT mice at 8-10 weeks of age. In each mouse, Ad-

IL10Rα shRNA was injected into iWAT on one side, and Ad-Lacz shRNA (control) was injected 

into the contralateral side as a control. 4-5 days after the injection, iWAT were resected for gene 

expression analysis. For ex vivo iWAT IL-10 treatment, 10 weeks old WT mice were housed at 

cold room (4-6°C) for 6 h and iWATs were isolated and minced, placed in KREB’s Ringer Buffer 

(12 mM HEPES, 121 mM NaCl, 4.9 mM KCl, 1.2 mM MgSO4, 0.33 mM CaCl2) supplemented 

with 0.1% glucose and incubated with and without IL10 for 30 mins-1h at 37°C. For bone 

marrow transplantation studies, recipient WT or Il10–/– mice (10 weeks of age) were lethally 

irradiated with 900 rads and transplanted with 3 × 106 bone marrow cells from 8- week-old or 

older donors (Il10–/–) via tail vein injection. At 10 weeks of age, Il10–/– and WT mice were fed a 

60% high-fat diet (Research Diets) for the indicated times. For glucose tolerance tests, mice 

were fasted for 6 hr and challenged with an i.p. injection of glucose (2 g/kg). For insulin 

tolerance tests, mice were fasted for 6 hr and given an i.p. injection of insulin (1 U/kg). Blood 

glucose levels were monitored using the ACCUCHEK active glucometer (Roche). Body 

composition was determined by EchoMRI analysis. Indirect calorimetry was performed using a 

Columbus Instruments Comprehensive Lab Animal Monitoring System (CLAMS, Columbus 

Instruments). Animals were placed individually in chambers for 3 consecutive days at ambient 

temperature (26.5°C) with 12 hr light/dark cycles. Animals had free access to food and water. 

Respiratory measurements were made in 20 min intervals after initial 7-9 hr acclimation period. 
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Energy expenditure was calculated from VO2 and RER using the Lusk equation, EE in Kcal/hr = 

(3.815 + 1.232 X RER) X VO2 in ml/min. Statistical significance for EE, VO2, and VCO2 

measurements was determined by using two-way ANOVA. Serum triglyceride was measured 

using Wako L-Type TG M Test kit. Serum cytokines were determined by multiplex 

immunoassay (Milliplex Kit, Millipore). Animal experiments were conducted in accordance with 

the UCLA Institutional Animal Care and Research Advisory Committee.  

 

Cellular and mitochondrial respiration  

Cell were seeded in a XF24 plate, differentiated, and analyzed in a XF24 analyzer (Seahorse 

Bioscience/Agilent) as described (Wu et al., 2007). Briefly, oxygen consumption rate (OCR) was 

measured before and after the sequential injection of 0.75 µM oligomycin, 1 µM FCCP, and 1 

µM of rotenone/myxothiazol. Mixing, waiting, and measurement times were 5, 2, and 2 min, 

respectively. Measures were normalized by total protein. In another set of experiments, 

mitochondria were isolated from fresh tissues and immediately used in a XF24 analyzer as 

previously described (Rogers et al., 2011). Briefly, mitochondria were isolated in MSHE+BSA 

buffer using a 800g/8000g dual centrifugation method and resuspended in MAS buffer. Protein 

concentration was determined using a Bradford Assay reagent (Bio-Rad) and 20 µg of protein 

were seeded per well by centrifugation. Coupling and electron flow assays were performed as 

described (Rogers et al., 2011). For the coupling assay, basal oxygen consumption rate (OCR) 

was measured in the presence of 10 mM succinate and 2 µM rotenone, and after sequential 

addition of 4 mM ADP (Complex V substrate), 2.5 µg/ml oligomycin (Complex V inhibitor), 4 µM 

FCCP (mitochondrial uncoupler) and 4 µM antimycin A (Complex III inhibitor). Coupled 

respiration was calculated as the difference between basal and response to oligomycin. 

Uncoupled respiration was the difference between oligomycin and antimycin A injections. For 

electron flow assays, basal OCR was measured in presence of 10 mM pyruvate (Complex I 

substrate), 2 mM malate and 4 µM FCCP, and after sequential addition of 2 µM rotenone 
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(Complex I inhibitor), 10 mM succinate (Complex II substrate), 4 µM antimycin A (Complex III 

inhibitor) and 1mM TMPD containing 10 mM ascorbate (Complex IV substrate). Complex III 

respiration corresponds to the antimycin A-sensitive respiration.  

 

Chromatin Immunoprecipitation (ChIP)  

ChIP experiments were performed according to standard protocols (Villanueva et al., 2013; 

Villanueva et al., 2011). Lysed cells were sonicated using a Bioruptor (Diagenode) according to 

the manufacturer’s protocol, and chromatin was immunoprecipitated with antibodies against 

PGC1α (H-300 sc-13067, Santa Cruz Biotechnology), ATF-2 (C-19 sc-187, Santa Cruz 

Biotechnology), and IgG (PP64, Millipore) overnight at 4°C in the presence of Protein A beads 

(GE Healthcare). DNA enrichment was quantified by real-time PCR (ABI 7900, ABI, Carlsbad, 

CA) using SYBR Green Master Mix (Diagenode or Sigma-Aldrich). Primers used for these 

studies available upon request. Occupancy was quantified using a standard curve and 

normalized to input DNA.  

 

RNA-seq  

Total RNA was prepared as described (Tong et al., 2016). Strand-specific libraries were 

generated from 500 ng total RNA using the TruSeq Stranded Total RNA Library Prep Kit 

(Illumina). cDNA libraries were single-end sequenced (50bp) on an Illumina HiSeq 2000 or 

4000. Reads were aligned to the mouse genome (NCBI37/mm9) with TopHat v1.3.3 and 

allowed one alignment with up to two mismatches per read. mRNA RPKM values were 

calculated using Seqmonk’s mRNA quantitation pipeline.  

All RPKMs represent an average from three biological replicates for in-vitro studies, and pooled 

RNA representation for tissue samples where equal amounts of RNA were pooled from 11 Il10-

/- animals and 9 WT animals prior to library construction. A gene was included in the analysis if 

it met all of the following criteria: The maximum RPKM reached 4 at any time point, the gene 
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length was >200bp, and for in-vitro studies was induced at least 3-fold from Day 0 samples, and 

the expression was significantly different from the basal (P<0.01) as determined by the DESeq2 

package in R Bioconductor. P-values were adjusted using the Benjamini-Hochberg procedure of 

multiple hypothesis testing (Benjamini and Hochberg, 1995)  

 

ATAC-seq  

ATAC-seq libraries were prepared using the Nextera Tn5 Transposase kit (Illumina) as 

described (Buenrostro et al., 2015) with slight modifications. Libraries were single-end 

sequenced (50bp) on an Illumina HiSeq 2000. Reads were mapped to the mouse genome 

(NCBI37/mm9) using Bowtie2. Reads were removed from the subsequent analysis if they were 

duplicated, mapped to mitochondrial genome, or aligned to unmapped contiguous sequences. 

Peak calling was performed using MACS2 using parameters callpeak --nomodel -g mm --keep-

dup all -q .01 -- llocal 10000. The reads were converted to reads per thousand base pairs peak 

per million mapped reads (RPKM) by dividing by the total number of reads per sample.  

 

Motif Analysis  

MACS2 called ATAC peak regions were used for motif analysis. JASPAR2016 Position Weight 

Matrices were used to identify binding sites in ATAC peaks using Pscan-ChIP (Zambelli et al., 

2009).  

 

Statistics  

All data are presented as mean ± SEM and analyzed using Prism (Graphpad). Unpaired two- 

tailed Student’s t test was used for single variable comparison between two groups. One-way 

ANOVA followed by Dunnett post hoc test was used for multiple comparisons versus the control 

group. Two-way ANOVA followed by Bonferroni posttests was used to examine interactions 
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between multiple variables. p <0.05 was considered to be statistically significant and is 

presented as * p < 0.05, ** p <0.01, *** p <0.001, or **** p <0.0001.  
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Figure Legends 

Figure 3-1. IL-10-deficient mice are protected against obesity. (A) Representative images of 

10-week-old chow-fed WT and Il10–/– mice showing gross adipose tissue appearance (iWAT 

and eWAT) and histology (H&E staining). (B) IP glucose tolerance test performed on 10-week-

old chow-fed WT and Il10–/– mice, n = 7 per group. Comparisons at each time point were made 

against WT control mice by repeated measure ANOVA. (C) Body weight of 32-week-old chow-

fed WT and Il10–/– mice, n=8,4 per group. (D) Gross appearance of representative 32-week-old 

chow-fed WT and Il10–/– mice and their tissues. (E) Body fat % of 32-week-old chow-fed WT 

and Il10–/– mice determined by Echo MRI, n=8,4 per group. (F) Body weight of WT and Il10–/– 

mice fed chow diet for 10 weeks and then 60% high-fat diet (HFD) for 6 weeks. n = 16,12 per 

group. Statistical analysis was performed using Student’s t- test. (G) External and gross 

(adipose tissues and liver) appearance of representative 6 weeks HFD-fed 16 weeks old WT 

and IL10 KO mice. (H) Body fat and lean mass of mice in F. Statistical analysis was performed 

using Student’s t-test. (I) Representative histology of iWAT and BAT from mice in F. (J) IP 

glucose tolerance test (GTT) performed on WT and Il10–/– mice fed chow diet for 10 weeks and 

then 60% high-fat diet (HFD) for 6 weeks, n = 7 per group. Comparisons at each time point 

were made against WT control mice by repeated measure ANOVA. (K) IP insulin tolerance test 

(ITT) performed on mice in J. n = 7 per group. Comparisons at each time point were made 

against WT control mice by repeated measure ANOVA. *, P< 0.05; **, P<0.01; n.s, not 

significant.  

Figure 3-2. IL-10 deficiency promotes energy expenditure and enhances mitochondrial 

respiration.  

(A-D) Energy expenditure (EE) rate (kCal/kg/hr), VO2 (ml/kg/hr), VCO2 (ml/kg/hr), and food 

intake (g) of chow-fed 10-week-old WT and Il10–/– mice were analyzed by Columbus Oxymax 
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metabolic chambers. 12 hr light/dark cycles, 72 hr total duration, each light/dark bar represents 

12 h duration. n = 7 per group. Statistical analysis was performed using two-way ANOVA. (E 

and F) Average oxygen consumption rate (OCR) of mitochondria isolated from iWAT of WT and 

Il10–/– mice in mitochondrial coupling (E) and electron flow assays (F). Samples were treated 

with different substrates or inhibitors to obtain specific respiration states as indicated (see 

Methods). Data are averages of six internal replicates and are representative of two 

independent experiments. Statistical analysis was performed using Student’s t-test. (G and H) 

EE rate (kCal/kg/hr), VO2 (ml/kg/hr), and food intake (g) of 6-week-HFD-fed WT and Il10–/– 

mice, n = 7 per group. Statistical analysis was performed using two-way ANOVA.  

 

Figure 3-3. IL-10-deficient mice have increased browning of white adipose tissue.  

(A) Scatter plot of gene expression differences between WT and Il10–/– mice as determined by 

RNA-sequencing of iWAT. Genes with at least 4 RPKM are shown. The log2 ratio of KO/WT 

expression (x-axis) is shown as a function of max RPKM (y-axis), with select genes indicated 

with vertical text. Shades of blue correspond to genes downregulated in the Il10–/– mice, and 

shades of red indicate upregulation in Il10–/– mice. n = 9,11 per group. (B) Gene expression 

scatter plot of those genes demonstrating >1.5 fold difference in expression between WT and 

Il10–/– mice (y-axis) as a function of Max expression (x-axis). Genes are color coded based on 

their expression profile in published WAT vs BAT tissue (Sun et al., 2013) with shades of red 

indicating increasing degrees of BAT-selectivity and shades of blue indicating increasing 

amounts of WAT-selectivity. Black open circles represent genes demonstrating either no-  

selectivity, or are lowly expressed in the WAT/BAT dataset (below 4 RPKM). (C) Genes in Panel 

B are quantitatively shown in a table, both as numbers of genes within each adipose- subtype 

(WAT or BAT) category, as well as the percent of all strain-selective genes (WT v.s. Il10–/–). (D) 

Genes at least 1.5-fold enriched in either WT (top) or Il10–/– mice (bottom) are classified based 

on their WAT/BAT-selectivity, with darkening shades of red indicating increasing BAT-selectivity 
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and increasing shades of blue indicating increased WAT-selectivity. There was an ~4.8-fold 

enrichment for genes showing WAT-selectivity in the iWAT of WT mice, and an ~4.5-fold 

enrichment of genes showing BAT-selectivity in the iWAT of Il10–/– mice mice. (E) Selected 

genes (y-axis) demonstrating BAT/WAT selectivity as a function of their Il10–/–/WT expression 

ratio (x-axis). (F) Log2 ratio of expression for all the genes with RPKM expression above 4 

within the Gene Ontology category for Brown Fat Differentiation (GO:0050873). (G) Directed 

real-time analysis of gene expression in iWAT from WT and Il10– /– mice. n = 9,11 per group.  

 

Figure 3-4. Reconstitution of bone marrow IL-10 expression reverses the thermogenic 

phenotype of IL-10-deficient mice. (A) Body weight of lethally-irradiated chow-fed Il10–/– mice 

reconstituted with WT (WT➞KO) or Il10–/– (KO➞KO) bone marrow 7 weeks post-transplant. n 

= 10,10 per group. Statistical analysis was performed using Student’s t-test. (B) Body fat and 

lean mass of WT➞KO and KO➞KO mice determined by Echo MRI. n=10,10 per group. 

Statistical analysis was performed using Student’s t-test. (C) Gross appearance of iWAT 19 

weeks post-BMT. (D) IP GTT performed on WT➞KO and KO➞KO mice; n = 10 per group. 

Comparisons at each time point were made by repeated measure ANOVA. (E) EE rate 

(kCal/kg/hr), VO2 (ml/kg/hr), and food intake (g) analyzed by Columbus Oxymax metabolic 

chambers. 12 hr light/dark cycles, 72 hr total duration, each light/dark bar represents 12 h 

duration. n = 10 per group. Statistical analysis was performed using two-way ANOVA. (F) 

Normalized gene expression in iWAT determined by real-time PCR. n = 9 per group. Statistical 

analysis was performed using Student’s t-test. (G-H) Average oxygen consumption rate (OCR) 

in coupling (E) and electron flow (F) assays of mitochondria isolated from iWAT of WT➞KO and 

KO➞KO mice. Data are averages of six internal replicates and are representative of two 

independent experiments. Statistical analysis was performed using Student’s t-test.  
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Figure 3-5. IL-10 acts directly on adipocyte IL-10Rα to inhibit thermogenesis. (A) Real-time 

PCR analysis of mRNA encoding IL10Rα during the differentiation of primary  

stromal vascular fraction (SVF) derived from WT chow-fed 10 week-old mice. Cells were 

stimulated to differentiate with dexamethasone (1 µM), IBMX (0.5 mM), insulin (5 µg/ml), and 

GW1929 (20 nM) for 2 days followed by insulin and GW1929 for 5 days. (B) Immunoblot 

analysis of IL10Rα in SVF and mature adipocyte (adipo) fraction of iWAT from chow-fed 10 

week-old mice. (C) Real-time PCR analysis of Il10ra mRNA from iWAT of mice at room 

temperature (RT) and 4° C, 12 weeks chow or HFD-fed mice, and 12 week-old WT and db/db 

animals. Statistical analysis was performed using Student’s t-test. n = 10-15 per condition. (D) 

Immunoblot analysis of IL10Rα and UCP1 protein from iWAT of 10 week-old mice injected with 

adenovirus expressing control shRNA (shCtrl) or shRNA targeting IL10Rα for 72 h. Each lane 

represents an individual animal. (E) Real-time PCR analysis of gene expression in iWAT 

transduced with shCtrl or shIL10Rα adenovirus. Data represent averages of 12 mice/group. 

Statistical analysis was performed using Student’s t-test. (F) Immunoblot analysis of protein 

extracts from iWAT of 10 week-old mice treated ex vivo with vehicle (veh) or 100 ng/ml IL-10. n 

= 4-6 per treatment/cohort. Results are representative of three independent experiments. (G) 

Real-time PCR of indicated genes from iWAT of 10 weeks old mice ex vivo treated with control 

(NT) or 100 ng/ml IL-10. n = 4-6 per treatment/cohort. (H) Heatmap representation of genes that 

changed >3-fold (p-value <0.01) by RNA-seq on day 5 (D5) of differentiation of immortalized 

BAT preadipocytes stably expressing IL10Rα. Each sample is shown in triplicate and compared 

to expression at Day 0 (D0). Genes are grouped as either induced upon differentiation (top), or 

repressed during differentiation (bottom). The far right column shows the effect of IL-10 

treatment on gene expression at Day 5 of differentiation. Genes are ranked based on IL-10 

inhibition, with select genes shown in the text at right. (I) Genes that were induced upon 

differentiation were divided based on their response to IL-10 treatment, either inhibited >2-fold 

(red bars) or not effected (black bars) and Gene Ontology analysis was performed with –log10 
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(p-value) plotted (x-axis) as a function of classifications meeting a p-value of < 0.001. See also 

Figure 3-12. (J) RNA-Seq data from WAT/BAT ratio plotted as a function of RNA-Seq data from 

(H) NT/IL10 ratio. The fourth quadrant shows that 70% of the genes repressed by IL-10 are 

BAT-expressed genes.  

 

Figure 3-6. IL-10 signaling remodels chromatin architecture at thermogenic genes.  

(A) Heatmap analysis of ATAC-Seq performed on D0 or D5 of brown preadipocyte 

differentiation with and without IL-10 treatment for all called peaks demonstrating >5-fold 

induction (n=3177 sites). Peaks were assigned to the nearest gene, and selected genes are 

shown in the text. (B) Top: ATAC-Seq bedgraph panels of the Ucp1 locus showing peak 

locations relative to the TSS as underlined. Panels compare ATAC signals between 

immortalized brown preadipocytes (preAd) treated with or without IL-10 to signals from Il10–/– 

bone marrow-derived macrophages (macs) treated with and without IL10 and illustrate the 

specificity of the adipocyte peaks. Below: RNA-Seq bedgraph of Ucp1 gene demonstrating 

expression profile during IL-10 stimulation of iBAd cells and in iWAT tissue from WT and Il10–/– 

mice. (C) ATAC peak strength (y-axis) for selected peaks within the Ucp1 locus under the 

indicated conditions. (D) Real-time PCR analysis of Ucp1 gene expression from ATAC-Seq 

samples. (E) ATAC-Seq bedgraph panels from thermogenic gene loci (Cidea, Cox8b, 

Ppargc1α) showing peak locations relative to the TSS (black arrow). Green arrows indicate 

peaks differentially affected by vehicle or IL10 treatment. (F) ATAC-Seq bedgraph panel of non-

thermogenic gene loci (Socs3 and Fabp4. (G) Correlation plot of ATAC-Seq (y-axis) and RNA-

Seq (x-axis) data. Selected genes are shown in red in the 2nd quadrant, providing evidence of 

correlation between IL-10 inhibitory effects on mRNA expression and chromatin accessibility.  

 

Figure 3-7. IL-10 limits enrichment of thermogenic transcriptional regulators at key 

enhancer elements. (A-B) Localization of all called ATAC peaks, grouped as either maturation-
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induced (D5 vs D0) (B) or all others (A). The data reveal an enrichment of intronic and 

intergenic localized peaks. (C) ATAC peaks were ranked and binned into 10 groups based on 

fold accessibility. Average RPKM (y-axis) from D0, D5, D5 + IL-10 samples are plotted as a 

function of each bin where each sample is indicated by a filled solid color. (D) The 10 bins were 

ranked by order of increasing fold accessibility and used to perform transcription factor (TF) 

motif analysis using the ChIP-Pscan JASPAR 2016 database (Zambelli et al., 2009). The –

log(p-value) is plotted for each TF identified as indicted by the legend with red values indicating 

high significance of detection. (E) TF Motif analysis of 10 bin containing 3174 ATAC peaks 

demonstrating the highest fold induction during maturation was separated into three groups of 

1058 peaks based on the degree of IL-10 inhibition. (F) ChIP-qPCR was performed for PGC1α 

and ATF-2 on iBAd cells treated with and without IL-10. qPCR primers were designed spanning 

the underlined Ucp1 ATAC peaks shown in the bedgraph in Figure 3-6B. Statistical analysis 

was performed using Student’s t-test.  

 

Supplemental Figure Legends  

Figure 3-8. Protection against age-related obesity and absence of systemic inflammation 

in IL-10-/- mice. (A) Body weight of 10 week old chow-fed WT and IL10-/- mice, n=20 per 

group. (B) Representative colon histology from 10 week old chow-fed WT and IL10-/- mice. (C) 

Gross appearance of colon tissue from 10 weeks old chow-fed WT and IL10-/- mice. (D) Serum 

cytokines levels of 10-week-old chow-fed WT and IL10-/- mice measured by multiplex 

immunoassay. (E) Serum triglyceride levels of 10 weeks old chow-fed WT and IL10-/- mice. (F) 

FACS analysis of macrophage population from stromal vascular fraction isolated from iWAT of 

10 week old chow-fed WT and IL10-/- mice. (G) Weight of iWAT and eWAT from 32-week-old 

chow-fed WT and Il10–/– mice, n=4,4 per group.  
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Figure 3-9. Protection against diet-induced obesity and absence of systemic 

inflammation in high-fat fed IL-10-/- mice. (A) Serum cytokines levels of WT and Il10–/– mice 

fed chow diet for 10 weeks and then 60% high-fat diet (HFD) for 6 weeks measured by multiplex 

immunoassay. n = 16,12 per group (B) Gross appearance of colon tissue from HFD-fed WT and 

Il10–/– mice. (C) Representative histology of liver and colon from HFD-fed WT and Il10–/– mice. 

(D) Weight of iWAT and eWAT from HFD-fed WT and Il10–/– mice. n=7,7 per group.  

 

Figure 3-10. Decreased blood glucose and absence of ulcerative colitis in bone-marrow 

transplanted mice  

 (A) Cartoon representation of bone marrow transplantation experiment and genotyping of 

WT➞KO and KO➞KO mice for WT or IL10–/– allele. (B) Fasting blood glucose levels of 

WT➞KO and KO➞KO mice. n=10,10 per group. (C) Gross appearance of colon tissue from 

WT➞KO and KO➞KO.  

 

Figure 3-11. IL10Rα expression in various adipogenic models and direct inhibition of 

thermogenic genes and cellular respiration by recombinant IL-10. (A) Real-time PCR 

analysis of mRNA encoding IL10Rβ during the differentiation of primary stromal vascular 

fraction (SVF) derived from WT chow-fed 10 week-old mice and real-time PCR analysis of 

mRNA encoding IL10Rα in iWAT of chow-fed WT 4weeks and 12 week mice and WT and ob/ob 

mice and 4 weeks ob/ob and 12 weeks ob/ob mice. (B) Immunoblot showing activation of 

STAT3 (pSTAT3) in response to IL10 and induction of IL10Rα protein in response to 

differentiation of brown preadipocytes. (C) Bedgraph showing PPARγ and DNAse 

hypersensitivity (DHS) ChIP-Seq peaks on the enhancer region of IL10Rα gene locus 

(Siersbaek et al., 2012). (D) Real-time PCR analysis of mRNA encoding Ucp1, Cidea, Cox8b, 

and Pgc1α on D0 and D8 of brown differentiation of primary stromal vascular fraction (SVF) 

derived from WT chow-fed 10 week-old mice. (E) Real-time PCR analysis of mRNA encoding 
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Socs3 and Ucp1 on D5 of brown differentiated preBAT IL10Rα treated with and without 

indicated concentration of recombinant IL10. (F) Real-time PCR analysis of mRNA encoding 

Ucp1 and Cidea on D5 of brown differentiated preBAT IL10Rα treated with and without IL-10 

and IL10Rα neutralizing antibody. (G). Oxygen consumption rate (OCR) in D5 differentiated 

preBAT IL-10Rα cells treated with and without IL-10. (H) Scatter plot of gene expression 

differences between NT and IL-10 treatment as determined by RNA-sequencing of iWAT.  

 

Figure 3-12. Inhibition of thermogenic gene primary transcript expression and chromatin 

accessibilities by IL-10. (A) Real-time PCR analysis of primary mRNA of UCP1, Cidea, and 

Elovl3 and UCP1 eRNA on D5 of brown differentiated preBAT IL10Rα treated with and without 

indicated concentration of recombinant IL-10. (B) ATAC-Seq bedgraph panels from indicated 

genes and treatment conditions. (C) Graph showing 100% ATAC peaks plotted as a function of 

fold induction in accessibility during brown differentiation. 10% peaks show a 5-fold or more 

increase. (D) Quantification of the ATAC peak pie chart from Figure 3-7A and 3-7B.  
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Figure 3-1: IL-10-deficient mice are protected against obesity 
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Figure 3-2: IL-10 deficiency promotes energy expenditure and enhances mitochondrial 

respiration.  

** 
** ** 

Rajbhandari*Fig.*2*

0.015 

0.020 

0.025 

0.030 

0.035 

0.040 
WT 

EE
 k

ca
l/k

g/
hr

) 

A B

0 

10 

20 

30 

40 
Coupling Assay 

O
C

R
 (p

m
ol

/m
in

) 

Basal respiration 

ADP (Complex V)  

FCCP 

WT IL10–/– 
0 

5 

10 

15 

20 

25 

WT 

Complex I 
Complex II 
Complex III 
Complex IV 

O
C

R
 (p

m
ol

/m
in

) 

Electron flow assay 

*"

*"

*"
*"

*"

*"

*"

C

0 

5 

10 

15 WT 

Fo
od

 in
ta

ke
 (g

) 

D

E F 

1400 

1600 

1800 

2000 

2200 

0.010 

0.015 

0.020 

0.025 

0.030 

0 

1000 

2000 

EE
 k

ca
l/k

g/
hr

) 

VO
2 (

m
l/k

g/
hr

) 

VC
O

2 (
m

l/k
g/

hr
) 

VO2 VCO2 EE 

1500 

2000 

2500 

3000 WT 

VO
2 (

m
l/k

g/
hr

) 

WT 
0 

0.01 

0.02 

0.03 

** 

0 

1000 

2000 
** 

0 

1000 

2000 
** 

WT WT 

EE
 k

ca
l/k

g/
hr

) 

VC
O

2 (
m

l/k
g/

hr
) 

VO
2 (

m
l/k

g/
hr

) 

G VO2 VCO2 EE H

WT 

Fo
od

 in
ta

ke
 (g

) 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

** 

Food intake 

Food intake 

IL10–/– IL10–/– IL10–/– 
IL10–/– 

IL10–/– 

IL10–/– IL10–/– 

WT IL10–/– WT IL10–/– WT IL10–/– 

Il10–/– 

p<0.001 p<0.001 



	 91	

Figure 3-3: IL-10-deficient mice have increased browning of white adipose tissue 
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Figure 3-4: Reconstitution of bone marrow IL-10 expression reverses the thermogenic 

phenotype of IL-10-deficient mice  
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Figure 3-5: IL-10 acts directly on adipocyte IL-10Rα to inhibit thermogenesis  
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Figure3-6: IL-10 signaling remodels chromatin architecture at thermogenic genes  
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Figure 3-7: IL-10 limits enrichment of thermogenic transcriptional regulators at key 

enhancer elements 
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Figure 3-8: Protection against age-related obesity and absence of systemic inflammation 

in IL-10-/- mice  
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Figure 3-9: Protection against diet-induced obesity and absence of systemic 

inflammation in high-fat fed IL-10-/- mice  
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Figure 3-10: Decreased blood glucose and absence of ulcerative colitis in bone-marrow 

transplanted mice  
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Figure 3-11: IL10Rα expression in various adipogenic models and direct inhibition of 

thermogenic genes and cellular respiration by recombinant IL-10  
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Figure 3-12: Inhibition of thermogenic gene primary transcript expression and chromatin 

accessibilities by IL-10  

0 

0.5 

1.0 

1.5 

0 

1 

2 

3 

0 

1 

2 

0.0 
0.5 
1.0 
1.5 

N
or

m
al

iz
ed

 e
xp

re
ss

io
n 

Ucp1 
Primary transcript 

Cidea 
Primary transcript 

Elovl3 
Primary transcript 

A

NT 40 80 100 

IL-10 (ng/ml) 

NT 40 80 100 

IL-10 (ng/ml) 
NT 40 80 100 

IL-10 (ng/ml) 

Rajbhandari*Fig.*S5*

Elovl3 

0 

1 

2 

3 

4 Elovl3 

   
   

   
   

0 

0.5 

1.0 

1.5 

Ephx1 

Ephx1 

Ucp1 
24kb eRNA 

NT 40 80 100 

IL-10 (ng/ml) 

D0 

D5 Veh 

D5 IL-10 

Veh 

IL-10  

iBAd   
 

IL10–/– 

Macs 

D0 

D5 Veh 

D5 IL10 

Veh 

IL-10  

iBAd 

IL10–/– 

Macs 

B

  All Others Mature 

  32762 3639 
Intergenic 34.6 41.2 

Non-Coding 0.3 0.2 
Promoter-TSS 23.4 8.6 

5' UTR  2.0 0.6 
Exon 2.1 1.8 
Intron 35.7 45.7 
3' UTR  0.7 0.7 

TTS  1.2 1.2 

0.01 

0.1 

1 

10 

100 

0 20 40 60 80 100 

5 

Fo
ld

 In
du

ct
io

n 

Percent of Peaks 
(n=36,401) 

C

D

N
or

m
al

iz
ed

 e
xp

re
ss

io
n 



	 101	

References 

Abe, Y., Rozqie, R., Matsumura, Y., Kawamura, T., Nakaki, R., Tsurutani, Y., Tanimura- 
Inagaki, K., Shiono, A., Magoori, K., Nakamura, K., et al. (2015). JMJD1A is a signal-sensing 
scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. 
Nature Communications 6, 7052.  
 
Attie, A.D., and Scherer, P.E. (2009). Adipocyte metabolism and obesity. J Lipid Res 50 Suppl, 
S395-399.  
 
Bapat, S.P., Myoung Suh, J., Fang, S., Liu, S., Zhang, Y., Cheng, A., Zhou, C., Liang, Y., 
LeBlanc, M., Liddle, C., et al. (2015). Depletion of fat-resident Treg cells prevents age- 
associated insulin resistance. Nature 528, 137-141.  
 
Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B 
(Methodological) 57, 289-300.  
 
Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg, G.F., Thome, 
J.J., Farber, D.L., Lutfy, K., Seale, P., et al. (2015). Group 2 innate lymphoid cells promote 
beiging of white adipose tissue and limit obesity. Nature 519, 242-246.  
 
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). 
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, 
DNA-binding proteins and nucleosome position. Nat Methods 10, 1213-1218.  
 
Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for 
Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 21-29.  
 
Camp, H.S., Ren, D., and Leff, T. (2002). Adipogenesis and fat-cell function in obesity and 
diabetes. Trends Mol Med 8, 442-447.  
 
Cao, W., Daniel, K.W., Robidoux, J., Puigserver, P., Medvedev, A.V., Bai, X., Floering, L.M., 
Spiegelman, B.M., and Collins, S. (2004). p38 mitogen-activated protein kinase is the central 
regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol 
Cell Biol 24, 3057-3067.  
 
Chen, W., Yang, Q., and Roeder, R.G. (2009). Dynamic interactions and cooperative functions 
of PGC-1alpha and MED1 in TRalpha-mediated activation of the brown-fat-specific UCP-1 
gene. Mol Cell 35, 755-768.  
 
Couper, K.N., Blount, D.G., and Riley, E.M. (2008). IL-10: the master regulator of immunity to 
infection. J Immunol 180, 5771-5777.  
 
den Boer, M.A., Voshol, P.J., Schroder-van der Elst, J.P., Korsheninnikova, E., Ouwens, D.M., 
Kuipers, F., Havekes, L.M., and Romijn, J.A. (2006). Endogenous interleukin-10 protects 
against hepatic steatosis but does not improve insulin sensitivity during high-fat feeding in mice. 
Endocrinology 147, 4553-4558.  
 
El Kasmi, K.C., Smith, A.M., Williams, L., Neale, G., Panopoulos, A.D., Watowich, S.S., Hacker, 
H., Foxwell, B.M., and Murray, P.J. (2007). Cutting edge: A transcriptional repressor and 



	 102	

corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol 
179, 7215-7219.  
 
Feldmann, H.M., Golozoubova, V., Cannon, B., and Nedergaard, J. (2009). UCP1 ablation 
induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress 
by living at thermoneutrality. Cell Metab 9, 203-209.  
 
Fujimoto, S., Goda, T., and Mochizuki, K. (2011). In vivo evidence of enhanced di-methylation of 
histone H3 K4 on upregulated genes in adipose tissue of diabetic db/db mice. Biochem Biophys 
Res Commun 404, 223-227.  
 
Fujisaka, S., Usui, I., Bukhari, A., Ikutani, M., Oya, T., Kanatani, Y., Tsuneyama, K., Nagai, Y., 
Takatsu, K., Urakaze, M., et al. (2009). Regulatory mechanisms for adipose tissue M1 and M2 
macrophages in diet-induced obese mice. Diabetes 58, 2574-2582.  
 
Gao, M., Zhang, C., Ma, Y., Bu, L., Yan, L., and Liu, D. (2013). Hydrodynamic delivery of mIL10 
gene protects mice from high-fat diet-induced obesity and glucose intolerance. Mol Ther 21, 
1852-1861.  
 
Guilherme, A., Virbasius, J.V., Puri, V., and Czech, M.P. (2008). Adipocyte dysfunctions linking 
obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367-377.  
 
Hammer, M., Mages, J., Dietrich, H., Servatius, A., Howells, N., Cato, A.C., and Lang, R. 
(2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and 
protects mice from lethal endotoxin shock. J Exp Med 203, 15-20.  
 
Harms, M., and Seale, P. (2013). Brown and beige fat: development, function and therapeutic 
potential. Nat Med 19, 1252-1263.  
 
Hong, E.G., Ko, H.J., Cho, Y.R., Kim, H.J., Ma, Z., Yu, T.Y., Friedline, R.H., Kurt-Jones, E., 
Finberg, R., Fischer, M.A., et al. (2009). Interleukin-10 prevents diet-induced insulin resistance 
by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58, 2525-2535.  
 
Hummasti, S., and Tontonoz, P. (2006). The peroxisome proliferator-activated receptor N- 
terminal domain controls isotype-selective gene expression and adipogenesis. Molecular 
endocrinology 20, 1261-1275.  
 
Hutchins, A.P., Diez, D., and Miranda-Saavedra, D. (2013). The IL-10/STAT3-mediated anti- 
inflammatory response: recent developments and future challenges. Brief Funct Genomics 12, 
489-498.  
 
Keubler, L.M., Buettner, M., Hager, C., and Bleich, A. (2015). A Multihit Model: Colitis Lessons 
from the Interleukin-10-deficient Mouse. Inflamm Bowel Dis 21, 1967-1975.  
 
Kowalski, G.M., Nicholls, H.T., Risis, S., Watson, N.K., Kanellakis, P., Bruce, C.R., Bobik, A., 
Lancaster, G.I., and Febbraio, M.A. (2011). Deficiency of haematopoietic-cell-derived IL-10 
does not exacerbate high-fat-diet-induced inflammation or insulin resistance in mice. 
Diabetologia 54, 888-899.  
 
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. (1993). Interleukin-10-deficient 
mice develop chronic enterocolitis. Cell 75, 263-274.  



	 103	

 
Kuwata, H., Watanabe, Y., Miyoshi, H., Yamamoto, M., Kaisho, T., Takeda, K., and Akira, S. 
(2003). IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in 
macrophages. Blood 102, 4123-4129.  
 
Lang, R., Patel, D., Morris, J.J., Rutschman, R.L., and Murray, P.J. (2002). Shaping gene 
expression in activated and resting primary macrophages by IL-10. J Immunol 169, 2253-2263.  
 
Lee, J.T., Pamir, N., Liu, N.C., Kirk, E.A., Averill, M.M., Becker, L., Larson, I., Hagman, D.K., 
Foster-Schubert, K.E., van Yserloo, B., et al. (2014). Macrophage metalloelastase (MMP12) 
regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide 
synthase. Endocrinology 155, 3409-3420.  
 
Lee, M.W., Odegaard, J.I., Mukundan, L., Qiu, Y., Molofsky, A.B., Nussbaum, J.C., Yun, K., 
Locksley, R.M., and Chawla, A. (2015). Activated type 2 innate lymphoid cells regulate beige fat 
biogenesis. Cell 160, 74-87.  
 
Lee, Y.H., Petkova, A.P., Mottillo, E.P., and Granneman, J.G. (2012). In vivo identification of 
bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat 
feeding. Cell Metab 15, 480-491.  
 
Long, J.Z., Svensson, K.J., Bateman, L.A., Lin, H., Kamenecka, T., Lokurkar, I.A., Lou, J., Rao, 
R.R., Chang, M.R., Jedrychowski, M.P., et al. (2016). The Secreted Enzyme PM20D1 
Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell 166, 424-435.  
 
Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in 
adipose tissue macrophage polarization. J Clin Invest 117, 175-184.  
 
Mauer, J., Chaurasia, B., Goldau, J., Vogt, M.C., Ruud, J., Nguyen, K.D., Theurich, S., Hausen, 
A.C., Schmitz, J., Bronneke, H.S., et al. (2014). Signaling by IL-6 promotes alternative activation 
of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 
15, 423-430.  
 
Miller, A.M., Wang, H., Bertola, A., Park, O., Horiguchi, N., Ki, S.H., Yin, S., Lafdil, F., and Gao, 
B. (2011). Inflammation-associated interleukin-6/signal transducer and activator of transcription 
3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient 
mice. Hepatology 54, 846-856.  
 
Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the 
interleukin-10 receptor. Annu Rev Immunol 19, 683-765.  
 
Murray, P.J. (2005). The primary mechanism of the IL-10-regulated antiinflammatory response 
is to selectively inhibit transcription. Proc Natl Acad Sci U S A 102, 8686-8691.  
 
Murray, P.J., and Smale, S.T. (2012). Restraint of inflammatory signaling by interdependent 
strata of negative regulatory pathways. Nat Immunol 13, 916-924.  
 
Nakata, M., Yamamoto, S., Okada, T., Gantulga, D., Okano, H., Ozawa, K., and Yada, T. 
(2016). IL-10 gene transfer upregulates arcuate POMC and ameliorates hyperphagia, obesity 
and diabetes by substituting for leptin. Int J Obes (Lond) 40, 425-433.  
 



	 104	

Odegaard, J.I., Lee, M.W., Sogawa, Y., Bertholet, A.M., Locksley, R.M., Weinberg, D.E., 
Kirichok, Y., Deo, R.C., and Chawla, A. (2016). Perinatal Licensing of Thermogenesis by IL-33 
and ST2. Cell 166, 841-854.  
 
Ohno, H., Shinoda, K., Spiegelman, B.M., and Kajimura, S. (2012). PPARgamma agonists 
induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 
395-404. Osborn, O., and Olefsky, J.M. (2012). The cellular and signaling networks linking the 
immune system and metabolism in disease. Nat Med 18, 363-374.  
 
Park, M., Yi, J.W., Kim, E.M., Yoon, I.J., Lee, E.H., Lee, H.Y., Ji, K.Y., Lee, K.H., Jang, J.H., Oh, 
S.S., et al. (2015). Triggering receptor expressed on myeloid cells 2 (TREM2) promotes 
adipogenesis and diet-induced obesity. Diabetes 64, 117-127.  
 
Petruzzelli, M., Schweiger, M., Schreiber, R., Campos-Olivas, R., Tsoli, M., Allen, J., Swarbrick, 
M., Rose-John, S., Rincon, M., Robertson, G., et al. (2014). A switch from white to brown fat 
increases energy expenditure in cancer-associated cachexia. Cell Metab 20, 433-447.  
 
Qiu, Y., Nguyen, K.D., Odegaard, J.I., Cui, X., Tian, X., Locksley, R.M., Palmiter, R.D., and 
Chawla, A. (2014). Eosinophils and type 2 cytokine signaling in macrophages orchestrate 
development of functional beige fat. Cell 157, 1292-1308.  
 
Rao, R.R., Long, J.Z., White, J.P., Svensson, K.J., Lou, J., Lokurkar, I., Jedrychowski, M.P., 
Ruas, J.L., Wrann, C.D., Lo, J.C., et al. (2014). Meteorin-like is a hormone that regulates 
immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279-1291.  
 
Rogers, G.W., Brand, M.D., Petrosyan, S., Ashok, D., Elorza, A.A., Ferrick, D.A., and Murphy, 
A.N. (2011). High throughput microplate respiratory measurements using minimal quantities of 
isolated mitochondria. PLoS One 6, e21746.  
 
Romeo, G.R., Lee, J., and Shoelson, S.E. (2012). Metabolic syndrome, insulin resistance, and 
roles of inflammation--mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 32, 
1771-1776.  
 
Rosell, M., Kaforou, M., Frontini, A., Okolo, A., Chan, Y.W., Nikolopoulou, E., Millership, S., 
Fenech, M.E., MacIntyre, D., Turner, J.O., et al. (2014). Brown and white adipose tissues: 
intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol 
Endocrinol Metab 306, E945-964.  
 
Rosen, E.D., and Spiegelman, B.M. (2014). What we talk about when we talk about fat. Cell 
156, 20-44.  
 
Rosenwald, M., Perdikari, A., Rulicke, T., and Wolfrum, C. (2013). Bi-directional interconversion 
of brite and white adipocytes. Nat Cell Biol 15, 659-667.  
 
Rossato, M., Curtale, G., Tamassia, N., Castellucci, M., Mori, L., Gasperini, S., Mariotti, B., De 
Luca, M., Mirolo, M., Cassatella, M.A., et al. (2012). IL-10-induced microRNA-187 negatively 
regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl 
Acad Sci U S A 109, E3101-3110.  
 
Saraiva, M., and O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nat 
Rev Immunol 10, 170-181.  



	 105	

 
Schaljo, B., Kratochvill, F., Gratz, N., Sadzak, I., Sauer, I., Hammer, M., Vogl, C., Strobl, B., 
Muller, M., Blackshear, P.J., et al. (2009). Tristetraprolin is required for full anti-inflammatory 
response of murine macrophages to IL-10. J Immunol 183, 1197-1206.  
 
Seale, P., Kajimura, S., and Spiegelman, B.M. (2009). Transcriptional control of brown 
adipocyte development and physiological function--of mice and men. Genes Dev 23, 788-797. 
Shoelson, S.E., Herrero, L., and Naaz, A. (2007). Obesity, inflammation, and insulin resistance. 
Gastroenterology 132, 2169-2180.  
 
Shoelson, S.E., Lee, J., and Goldfine, A.B. (2006). Inflammation and insulin resistance. J Clin 
Invest 116, 1793-1801.  
 
Siersbaek, M.S., Loft, A., Aagaard, M.M., Nielsen, R., Schmidt, S.F., Petrovic, N., Nedergaard, 
J., and Mandrup, S. (2012). Genome-wide profiling of peroxisome proliferator-activated receptor 
gamma in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding 
correlated with gene expression. Mol Cell Biol 32, 3452-3463.  
 
Smith, A.M., Qualls, J.E., O'Brien, K., Balouzian, L., Johnson, P.F., Schultz-Cherry, S., Smale, 
S.T., and Murray, P.J. (2011). A distal enhancer in Il12b is the target of transcriptional 
repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J 
Biol Chem 286, 23582-23590.  
 
Sun, L., Goff, L.A., Trapnell, C., Alexander, R., Lo, K.A., Hacisuleyman, E., Sauvageau, M., 
Tazon-Vega, B., Kelley, D.R., Hendrickson, D.G., et al. (2013). Long noncoding RNAs regulate 
adipogenesis. Proc Natl Acad Sci U S A 110, 3387-3392.  
 
Tiraby, C., and Langin, D. (2003). Conversion from white to brown adipocytes: a strategy for the 
control of fat mass? Trends Endocrinol Metab 14, 439-441.  
 
Tong, A.J., Liu, X., Thomas, B.J., Lissner, M.M., Baker, M.R., Senagolage, M.D., Allred, A.L., 
Barish, G.D., and Smale, S.T. (2016). A Stringent Systems Approach Uncovers Gene-Specific 
Mechanisms Regulating Inflammation. Cell 165, 165-179.  
 
Townsend, K.L., and Tseng, Y.H. (2014). Brown fat fuel utilization and thermogenesis. Trends 
Endocrinol Metab.  
 
van Marken Lichtenbelt, W.D., Vanhommerig, J.W., Smulders, N.M., Drossaerts, J.M., 
Kemerink, G.J., Bouvy, N.D., Schrauwen, P., and Teule, G.J. (2009). Cold-activated brown 
adipose tissue in healthy men. N Engl J Med 360, 1500-1508.  
 
Villanueva, C.J., Vergnes, L., Wang, J., Drew, B.G., Hong, C., Tu, Y., Hu, Y., Peng, X., Xu, F., 
Saez, E., et al. (2013). Adipose subtype-selective recruitment of TLE3 or Prdm16 by 
PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab 17, 423-
435.  
 
Villanueva, C.J., Waki, H., Godio, C., Nielsen, R., Chou, W.L., Vargas, L., Wroblewski, K., 
Schmedt, C., Chao, L.C., Boyadjian, R., et al. (2011). TLE3 is a dual-function transcriptional 
coregulator of adipogenesis. Cell Metab 13, 413-427.  
 



	 106	

Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., 
Laine, J., Savisto, N.J., Enerback, S., et al. (2009). Functional brown adipose tissue in healthy 
adults. N Engl J Med 360, 1518-1525.  
 
Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S.L., Ohlsson, C., 
and Jansson, J.O. (2002). Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 
8, 75-79.  
 
Wernstedt Asterholm, I., Tao, C., Morley, T.S., Wang, Q.A., Delgado-Lopez, F., Wang, Z.V., and 
Scherer, P.E. (2014). Adipocyte inflammation is essential for healthy adipose tissue expansion 
and remodeling. Cell Metab 20, 103-118.  
 
Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, 
K.A., Nuutila, P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic 
fat cell in mouse and human. Cell 150, 366-376.  
 
Wu, M., Neilson, A., Swift, A.L., Moran, R., Tamagnine, J., Parslow, D., Armistead, S., Lemire, 
K., Orrell, J., Teich, J., et al. (2007). Multiparameter metabolic analysis reveals a close link 
between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in 
human tumor cells. Am J Physiol Cell Physiol 292, C125-136.  
 
Xie, L., Fu, Q., Ortega, T.M., Zhou, L., Rasmussen, D., O'Keefe, J., Zhang, K.K., and Chapes, 
S.K. (2014). Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic 
switch in adipose tissue environments. PLoS One 9, e86541.  
 
Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J., and Ferrante, A.W., Jr. (2013). 
Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue 
macrophages independently of classic activation. Cell Metab 18, 816-830.  
 
Ye, L., Wu, J., Cohen, P., Kazak, L., Khandekar, M.J., Jedrychowski, M.P., Zeng, X., Gygi, S.P., 
and Spiegelman, B.M. (2013). Fat cells directly sense temperature to activate thermogenesis. 
Proc Natl Acad Sci U S A 110, 12480-12485.  
 
Zambelli, F., Pesole, G., and Pavesi, G. (2009). Pscan: finding over-represented transcription 
factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids 
Res 37, W247-252.  
 
 

 

 

 

 

 

 



	 107	

CHAPTER 4 

 

 

 

 

 

 

 

Highly Selective Changes in Chromatin Accessibility in Response to Pro-Inflammatory  

and Anti-Inflammatory Stimuli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 108	

Summary  

Chromatin remodeling events that alter the accessibility of DNA to transcriptional regulators are 

known play important roles in the transcriptional response of mammalian cells to extracellular 

stimuli. However, much remains to be learned about the extent to which chromatin remodeling 

contributes to the activation of promoters and enhancers for inducible genes, as well as the 

determinants of chromatin remodeling. Here, we used Assay for Transposase-Accessible 

Chromatin sequencing (ATAC-seq) to characterize chromatin changes that occur in mouse 

macrophages following stimulation with both pro- and anti-inflammatory agents. Although small 

changes in transposase access occurred at most inducible control regions, large changes that 

appear to represent robust nucleosome remodeling events were observed at only a few dozen 

inducible promoters, but at several thousand intergenic sites. Nucleosome remodeling at 

promoters was associated with highly specific transcriptional regulatory events. Notably, 

whereas NF-kB largely binds inducible promoters with constitutively accessible chromatin, NF-

kB binding motifs were greatly enriched at distant enhancers that exhibited robust remodeling, 

suggesting that NF-kB either contributes to inducible remodeling or that inaccessible 

nucleosomes play a common role in restricting access of NF-κB to intergenic enhancers. An 

analysis of the impact of the potent anti-inflammatory cytokine, IL-10, revealed pronounced 

effects on chromatin accessibility at a surprisingly small number of enhancers in close proximity 

to the target genes that are most strongly suppressed. 
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Introduction 

Eukaryotic control of inducible gene expression involves a complex array of regulators including 

stimulus induced transcription factors (TFs), the pre-configured distribution of TF consensus 

sites scattered throughout the genome, and the accessibility of those consensus sites to TF 

binding. Chromatin accessibility is a property that arises from dynamic DNA:histone 

associations that are both cell type- and signal-dependent (Weintraub and Groudine, 1976). 

Accessible regions of DNA form in regions of high transcriptional activity, and result from the 

association of DNA binding factors, histone variants, and permissive histone modifications 

thought to either directly influence nucleosome dynamics or establish a favorable environment 

for TF binding and accessibility via indirect mechanisms (Calo and Wysocka, 2013).  Some TFs 

contain “pioneering” abilities and exhibit a partial or complete affinity for target motifs embedded 

within stable nucleosomes. Pioneer factor binding is thought to alter the DNA-histone structure 

to allow for subsequent TF binding from occurring and further establish regions of open 

chromatin. When signal-dependent non-pioneer factors enter the nucleus upon activation, they 

rapidly associate with target motifs previously made available for binding and are restricted in 

their ability bind motifs in a closed chromatin environment. Nucleosome remodeling can be 

achieved through a number of mechanisms, but the functional consequences converge on the 

same goal of allowing TF recognition of target consensus sites and subsequent participation in 

regulating gene expression.  

  Bone marrow-derived macrophages have been extensively studied as a model system 

for understanding mechanisms of transcriptional control. Microarrays and RNA-Sequencing 

(RNA-Seq) has been used to monitor global gene expression changes in response to 

stimulation, and a number of important insights relating to transcriptional control have emerged 

from these studies. When macrophages become active, they potently induced hundreds of 

genes demonstrating early transient, sustain, and late induction kinetics. Early-induced 

Lipopolysacchardie (LPS) or lipid A response genes are enriched for CpG island promoters and 

contain feature suggestive of open chromatin including basal DNAse I sensitivity, RNA Pol II 
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association, and permissive histone marks (Hargreaves et al., 2009; Ramirez-Carrozzi et al., 

2009). Late induced genes contain a greater proportion of the cyclohexamide (CHX)-sensitive 

secondary response genes (SRGs) that are more likely to contain promoters depleted of CpG 

dinucleotides and require interferon signaling or yet to be discovered inducible protein activators 

for their expression. The low CpG content at these promoters favor stable nucleosome 

assembly, which adds an additional barrier for transcription at these sites. Previously, we have 

used model gene studies on the Il12b gene promoter to understand how chromatin dynamics 

occur in response to stimulation. Rapid remodeling of a well-positioned nucleosome over the 

transcriptional start site (TSS) of Il12b precedes or coincides with transcriptional activation 

(Weinmann et al., 1999). The ability to classify genes with the additional requirement for 

nucleosome remodeling will be key to better understanding the stepwise progression of gene 

activation, and provide a framework for carrying out future mechanistic studies.   

Methods of profiling accessible chromatin genome-wide became possible with the 

advent of DNAse Hypersensitive Site sequencing (Crawford et al., 2005), and later with the 

Assay for Transposase Accessible Chromatin (ATAC-Seq) (Buenrostro et al., 2013). Others 

have utilized this approach to study determinants of enhancer selection in macrophages from 

distinct developmental lineages and in response to environmental signals (Gosselin et al., 2014; 

Lavin et al., 2014). What has not been extensively studied is how chromatin accessibility 

changes occur in response to an acute stimulation. We therefore have utilized ATAC-Seq to 

monitor chromatin changes in macrophages following a short time course of stimulation and 

analyze the data in context with the large body of work that has already been performed. This 

framework is then used to address how an important physiologic inhibitor of inflammation, IL-10, 

influences the induction of open chromatin. This analysis has reveled the selectivity in potent 

sensitivity to IL-10 treatment at both the level of transcriptional inhibition and repression of 

inducible ATAC sites, and will be useful for further mechanistic studies aimed at identifying the 

players responsible for achieving the observed selectivity. 
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Results   

Mapping Inducible Chromatin Changes During an Acute Stimulation 

To gain insights into the properties, regulation, and function of inducible chromatin 

during the macrophage response to stimulation, we first performed ATAC-seq in BMDMs 

treated with lipid A for 0, 30, 60, and 120 minutes. From an analysis of at least two biological 

replicates per time point, we identified 101,448 called peaks (FDR <0.01) of accessible 

chromatin during the time course. 11,456 (11.3%) peaks were significantly induced and 4,292 

peaks were identified as significantly repressed (p<0.05, Figure 1A). The vast majority of the 

remaining peaks (81.9%) were constitutive and changed less than 2 fold of their basal 

accessibility. The induced ATAC peaks ranged in fold accessibility as low as 1.4 to as high as 

68.3, but 64.5% of all induced peaks were less than 5 fold induced. This continuum of fold 

accessibility likely indicates that either some induced peaks occur in regions of pre-existing 

open chromatin that undergo either small structural changes of the nucleosome or these small 

changes are not reflective of chromatin modification and instead represent increased 

accessibility due to TF binding. Consistent with this notion, 77.5% of peaks induced < 3 fold had 

a detectable ATAC peak in the basal state as compared to 5.3% of peaks induced  > 5 fold 

(data not shown). When scanning the DNA of the called peaks we observed a bias in CpG di-

nucleotide content across peaks classified as stable or dynamic (induced and repressed). While 

the mean CpG density demonstrate an aggregate trend towards lower CpG content at inducible 

sites, there is a marked reduction of high CpG content sites in the induced regions, and to a 

lesser extent, the repressed sites compared to constitutive sites that change <2 fold (Figure 1E). 

We next addressed where the accessible regions reside in the genome, with a specific 

interest in understanding how inducible peaks differ from constitutive sites. Approximately 10% 

of all peaks overlap promoters, and an additional 44% and 40% occur within introns and 

intergenic sites respectively. Inducible peaks less frequently associate with promoters (3%), with 

the majority of sites contained within introns or at intergenic sites (93%). Repressed peaks 

demonstrate an intermediate association with promoters as compared to all peaks and inducible 
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peaks (Figure 1B), and represent a small fraction (2-5%) of the type of ATAC peak found across 

all genomic locations (Figure 1D). Of all classified regions, promoters most frequently 

associated with stable chromatin, with 94% called constitutive, 4% induced, and 2.5% 

repressed. Upon visual inspection of the promoter-associated peaks we observed that some 

inducible peaks overlap the transcriptional unit of known lipid A induced genes. These peaks 

often extend beyond the length of the annotated gene and likely reflect broad accessibility 

changes reflective of activate transcription rather than TF binding or nucleosome remodeling 

(Figure 1C), highlighting the need to additional scrutiny of peaks classified as inducible. 

 

Initial Analysis of Inducible Chromatin and Transcription Factor Binding Sites 

To complement the statistical approach used to initially characterize inducible peaks, we ranked 

all called peaks based on their maximum fold increase in accessibility and generated 35 bins of 

approximately 2,900 peaks / bin. We then used these bins to scan for an over representation of 

TF motifs and to understand how these motifs are distributed across peaks demonstrating 

different levels of fold accessibility. Two-hundred motifs showed an enrichment above 5 (-log(p-

value)), with multiple motifs within the same TF family demonstrating similar trends of 

enrichment (Figure 2A). Of interest, while a broad range of ETS family members (Spi1, ETV6, 

ELF5, and others) were enriched across many bins consistent with their role in macrophage 

development, we observed enrichments for lipid A-inducible TF in bins corresponding to 

inducible peaks. AP1 family member motifs began showing enrichments in the weakly induced 

bins and continued to have enrichment in the stronger induced bins, although the strongest 

enrichments were found in bins corresponding to 2.5 - 3.5 fold induction. NF-κB family members 

only demonstrated enrichments in the most strongly induced ATAC sites, with the last bin 

showing the highest enrichment. This finding is unexpected, as many of the strong RelA:p50 

binding to promoters of induced genes occurs in regions of open chromatin (Tong et al., 2016). 

CTCF motifs displayed a preference for peaks that remain stable during lipid A stimulation, and 
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IRF1 and STAT1 motifs were found to be enriched in peaks that are remain unchanged or are 

slightly repressed (Figure 2C).  

 When we analyze the genomic distribution of peaks binned according to fold induction 

we again observe a bias for promoter-associated peaks to be found in bins demonstrating low 

response to stimulation and intergenic/intronic sites preferentially associated with sites that are 

either induced or repressed (Figure 2C). Bin 35 has the lowest percentage of peaks that overlap 

promoters (1.6%), which prompted us to investigate in detail which promoters exhibit this unique 

characteristic of inducible accessibility. 

 

Inducible Promoter Accessibility  

We have previously shown that strong promoter changes in chromatin accessibility rarely occur 

during the induction of the most potently induced primary response genes in BMDM. In the 

broader analysis shown here, we found that only 52 of 21,168 annotated promoters within the 

mouse genome exhibit an ATAC-seq peak that is induced more than 5-fold during the lipid A 

time-course (i.e. an inducible peak that overlaps the region from -500 to +150 relative to the 

TSS). Upon visual inspection of the 52 peaks, we observed that some genes had a mis-

annotated TSS, were due to transcriptional effects, or were not called statistically induced. 

Removing these sites left 36 candidate promoters that have a large fold increase in 

accessibility. 

  Eleven of these promoters were previously implicated in demonstrating nucleosome 

remodeling during the lipid A response (Figure 3A), while the remaining promoters served as an 

opportunity to learn about the regulation and implications of strong increases in promoter 

accessibility on target gene expression. To compare ATAC changes with transcriptional 

changes we utilized previously published chromatin-associated RNA-Seq data. 16 of the 

remaining ATAC peaks were found to be associated with genes that were potently induced 

above 10 fold, but overall were weakly expressed (13/16 with RPKM<3) and the remaining 12 

peaks were associated with genes that were weakly induced.  
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  The heatmap analysis suggested that inducible promoters correlate with inducible 

transcription, but to evaluate the magnitude of induction among the two datasets we compared 

the promoter ATAC fold accessibility to caRNA-Seq fold induction for all PRG and SRG (Figure 

3B). Both PRG and SRGs with strong promoter ATAC fold induction exhibited high levels of 

transcriptional induction. When comparing ATAC induction to promoter CpG content, we 

observe a similar trend with low CpG density correlating with strong ATAC induction. Ccl5, as 

an example, demonstrates the highest transcriptional induction, largest ATAC fold change, and 

low CpG content. This trend can be readily seen among SRGs as well, but with a less strict 

association with RNA-Seq fold induction.  

  To investigate the regulation of these promoter changes, we performed ATAC-Seq in 

cells that were pretreated with cyclohexamide (CHX) prior to stimulation. None of the primary 

response promoters were inhibited during CHX treatment, while 2 of the secondary response 

gene promoters had diminished accessibility (Il12b and Ifi47, <30%). The other 4 SRGs 

maintained induction of accessibility in the presence of CHX suggesting that the secondary 

response component required for activation of these 4 SRGs might proceed after promoter 

accessibility has been established. There was no trend in CHX-sensitivity or resistance between 

SRG that were previously characterized as interferon signaling dependent (IFNAR-D) or those 

that are interferon independent SRGs (IFNAR-I, Figure 3C).  

  IRF3 was previously shown to be required for the nucleosome remodeling and 

subsequent RelA association at the promoter of Ccl5 (Tong et al., 2016). This strict requirement 

was unique to only Ccl5, as no other PRG with strongly inducible promoter accessibility 

demonstrated reduced association of RelA in the absence of IRF3. To expand upon this finding 

and to address whether we can detect IRF3 dependent promoter induction across the additional 

35 promoters we performed ATAC-Seq in Irf3-/- BMDM stimulated for 0 and 120m with lipid A in 

the presence or absence of CHX. The CHX pretreatment limits the ability for other IRF family 

members to partially compensate for the loss of IRF3 in this system. When a direct comparison 

between WT and Irf3-/- BMDM stimulated under the presence of CHX were compared, Ccl5 
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stands out as the only strongly induced promoter with IRF3-dependence. Consistent with this, it 

is one of the few promoters with detectable association of IRF3 in ChIP-Seq (Figure 3D). Visual 

inspection of the region surrounding Ccl5 demonstrates that other peaks in the region upstream 

of the TSS demonstrate induction in response to stimulation, with some peaks showing 

diminished accessibility in the Irf3-/- cells (Figure 3E). 

 

Inducible Chromatin Changes Upstream of Inducible Transcription   

The majority of inducible changes during an acute stimulation occur at intronic and intergenic 

regions, but because we have observed transcriptional effects that can lead to mis-interpretation 

of DNA accessibility using ATAC-Seq, we focused our attention to understanding the 

contribution of intergenic induced ATAC sites to inducible transcription. Prior binning of all peaks 

revealed TF motifs that preferentially associate with stable peaks (CTCF, PU.1) as well as 

motifs that are found at induced (AP1, NFκB), and repressed (IRF1, STAT1) sites. A potentially 

confounding variable is that promoters associate most frequently with stable peaks, therefore 

motif enrichments could be due to either genomic location or ATAC fold induction. When all 

intergenic peaks were grouped into 20 equivalently sized bins a similar motif enrichment pattern 

emerged. Overall CpG content at intergenic sites were lower than those reported for promoter 

regions, but the trend for stable ATAC sites associating with higher CpG density remained, and 

inducible peaks showed a similar preference for occurring over low CpG density regions (Figure 

4A, 4D).  

 We next sought to address how frequently inducible intergenic sites are found in close 

proximity to an induced gene. To perform this analysis, all expressed genes (RPKM>1) were 

separated into a gene expression category of either demonstrating <2 fold, 2-10 fold, or >10 fold 

induction. Using the TSS as reference, we counted the number of genes having at least one >5 

fold induced ATAC peak at different distance bins located upstream up to 200kb (Figure 4B). 

The counts were normalized for the different numbers of genes within each category and 

represented as the percent of genes with an induced ATAC signal within the distance groups. 
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Strongly induced genes exhibit a much greater likelihood of containing chromatin upstream of 

their TSS that is strongly induced in response to stimulation. This is made clearer by plotting the 

fold enrichment of genes in close proximity to an inducible ATAC peak as compared to genes 

within the <2 fold induced category. Both 2-10 fold and >10 fold induced gene groups 

demonstrate an enrichment for induced ATAC sties, with the greatest differences observed 

within the first 10Kb of a gene’s TSS. The above-mentioned analysis did not consider the 

presence of multiple induced ATAC sites within each distance bin. To account for these 

differences, genes were counted if they contained at least 2 inducible sites within each bin and 

a percentage was calculated relative to the original number of genes identified to have an 

induced peak in the above table (Figure 5B, left).  The enrichment of genes that have multiple 

induced ATAC sites within 10Kb of a TSS was even more pronounced for the >10 fold genes 

(15.7%) compared to 2-10 fold (3.6%). 

  While we could observe an enrichment of >10 fold genes containing inducible ATAC 

sites at distances of 100Kb upstream of a TSS, we chose to study the association of peaks 

within 50Kb of a TSS because this distance represents a >3 fold enrichment over <2 fold 

induced genes. When scanning the entirety of a 50kb window across the TSSs of genes within 

each expression category we observe that all classes of genes associate with ATAC sites that 

remain unchanged during stimulation at a frequency of 25-30% without strong differences 

among the gene classes (Figure 4E).  Differences between the gene classes begin to emerge 

when comparing the frequency of ATAC sites that are induced between 2-3 fold, and these 

differences get pronounced when focusing on those peaks that are induced >5 fold. A possible 

explanation for these findings is that >10 fold induced genes are more frequently found 

clustered together in the genome, and therefore have the potential to utilize shared regulatory 

regions upstream of their TSS. To address this possibility, we counted the number of TSS 

occurrences 50Kb upstream of each gene and separated them according to their expression 

category. Indeed, 12% of >10 fold induced genes contain an additional TSS of another >10 fold 

induced gene, as compared to 4% containing a TSS of a 2-10 fold induced gene and 1% 
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containing a TSS from a <2 fold induced gene. Similarly, a higher proportion of <2 fold induced 

genes are within 50kb of additional <2 fold gene TSSs (40%), as opposed to a >10 fold induced 

gene’s TSS (19%). 

 To explore the relationship between numerous inducible ATAC peaks and transcription, 

we counted the number of ATAC peaks that are within 50Kb upstream of 10 fold induced genes, 

separating peaks that fall into categories of either 0.9-1.1 fold, 2-3 fold, or >5 fold.  While there 

are far fewer >5 fold induced peaks compared to peaks in the lower fold induction categorized, 

35 genes are found to have at least 2 peaks with >5 fold induction, compared to 38 genes with 

2-3 fold induced peaks and 12 genes with 0.9-1.1 fold peaks. This correlation becomes more 

evident as we begin to look at those genes with at least 3 similarly induced peaks upstream of 

their TSS. Only the >5 fold induced peaks are found in multiples of 5 or more within this 

distance window, and many of these induced genes show stronger induction magnitudes 

compared to the genes with multiple peaks belonging to different induction classes (Figure 4F, 

4G). 

 

Analysis of NF-κB’s Contribution to Inducible Chromatin 

One surprising finding from the motif analysis in Figure 4A was that NF-κB motif enrichment was 

only observed at sites that demonstrated the strong induction following stimulation, while 

previous analysis of NF-κB to promoters occurred most frequently at sites exhibiting open 

chromatin properties before stimulation which increased in accessibility by only a few fold. 

When we looked for evidence of RelA binding to all intergenic ATAC peaks, we observed small 

enrichment of RelA ChIP-Seq signal across many weakly induced sites, with approximately 2-3 

fold enrichment for sites induced >5 fold (data not shown). To investigate the relationship of NF-

κB binding and motif strength across peaks demonstrating varying degrees of fold induction, we 

compared RelA:p50 protein binding microarray motif scores to RelA ChIP-Seq peak scores for 

ATAC sites that were non-induced (0.9-1.1 fold), weakly induced (2-3 fold) or strongly induced 

(>5 fold). A motif threshold of >6.4 (strong motif) and peak score of >19 (strong peak) were 
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used to classify ATAC peaks based on previous analysis (Tong et al., 2016). The PBM 

threshold demonstrated unique enrichment in the ATAC peaks exhibiting >5 fold induction as 

compared to RelA binding that occurred in non-induced ATAC sites (Figure 5C). When motif 

strength and peak strength were directly compared, an enrichment of strong motifs could be 

clearly seen in the ATAC sites with strong induction (Figure 5A). This enrichment could also be 

seen to a lesser extent in ATAC sites with weaker induction (Figure 5B).  

 Interestingly, a strong enrichment was also observed for sites containing strong motifs, 

but weak or absence of reproducible RelA ChiP-Seq peaks. This enrichment was partially 

reduced when a lower stringency was used to characterize RelA peaks and only a single 

replicate had a called RelA peak (Figure 5B, right panel), which could reflect partial detection of 

RelA interactions due to only a fraction of cells within the population exposing accessible DNA, 

and/or a fraction of the cells that have strong RelA associations after the DNA is made available 

for binding. 

 

Kinetic Analysis of NF-κB Binding at Induced Sites 

One hypothesis that emerges from these analyses is to question the role of RelA binding to 

inducible chromatin. Others have proposed a role for NF-κB in binding to nucleosomal DNA 

(Angelov et al., 2004), but structural studies and other in-vitro experiments have demonstrated a 

low affinity of NF-κB to nucleosomal DNA (Chen et al., 1998; Saccani et al., 2001). When we 

compared the kinetics of ATAC induction and RelA association in the 189 ATAC sites with 

strong motif and strong peak, we observe that the majority of them share strong induction and 

binding at the 30 minutes time point, with sustained accessibility and increased RelA binding 

over the 2-hour stimulation (Figure 5D). Consistent with the notion that DNA must first be made 

accessible for subsequent RelA binding, there were four induced greater than 5 fold by 30m in 

the ATAC data but had an average peak score of less than 5 at the 30m timepoint. All 4 of these 

peaks however, had detectable, yet weak, peaks at the 30m timepoint. An additional 5 peaks 
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were < 2.5 fold induced by 30m and instead exhibited the strongest induction between the 

60/30m or the 120/60m time points yet showed average RelA peaks scores >10 at 30m.   

 

Rapid Activation of ATAC Sites and Classification of Primary Response Induction 

Of the 498 induced sites that contain a strong RelA motif, 90% show the strongest inducible 

ATAC changes by 30m of stimulation. This is similar to what is observed across all inducible 

ATAC sites where 80.8% of peaks demonstrate the largest change after 30 minutes of 

stimulation (Figure 5E). Accessibility continues to rise for the majority of these, but rapid 

changes are evident across most of the inducible peaks. To further characterize the regulation 

of these peaks, we calculated the % of maximum accessibility with a pretreatment of CHX. 

37.9% of the inducible peaks were reduced to less than 30% of their maximum induction in WT 

cells, indicating a role for new protein synthesis in regulating the activation of these sites. 

Interestingly, 106 of these sites contain strong RelA motifs, while the majority of all other strong 

motif sites remained CHX resistant (Figure 5F). This finding is consistent with most RelA biding 

contributing to the primary response, although our data does not rule out the possibility of 

additional waves of RelA activation leading to binding at CHX sensitive sites after two hours of 

stimulation.  

 Inducible peaks were separated based on their requirements for new protein synthesis, 

strong motifs for RelA, as well as their requirement for IRF3 either under normal conditions and 

with pretreatment of CHX. Peaks were further separated based on the time point at which they 

exhibited the most potent induction of accessibility. This classification resulted in the grouping of 

9 clusters of peaks and allowed for a qualitative assessment of overall chromatin dynamics. 

Putative IRF3 dependent peak clusters reached max accessibility later than those with strong 

RelA motifs (Figure 5G), consistent with what is known about delayed IRF3 activation through 

the TRIF pathway. The IRF3 dependent activation may be more complex, however, as Ifnb1 is 

an IRF3 dependent gene and thus Irf3-/- BMDM may phenocopy interferon deficient cells. This 

would similarly result in the late kinetics of activation we observed in the Irf3-/- affected sites.   



	 120	

 A motif analysis performed on the 9 clusters of ATAC sites reveal strong enrichment of 

NF-κB in clusters 1, 3, 4, 5, and 7, while we observed strong κB PBM scores only in clusters 4 

and 5. We additionally found AP1 enrichment in clusters 1, 2, and 7. When comparing the CHX-

R and CHX-S sites, we observed ETS family member motifs in cluster 1 (CHX-R), and POU 

family motifs in cluster 7 (CHX-S) (Figure 5H). 

 

Interleukin-10 Inhibits Formation of Accessible DNA Upstream of Il12b 

The entirety of the previous analysis has been based on trying to understand the global 

properties, regulation, and function of inducible chromatin changes in BMDM during an acute 

stimulation. Our results have highlighted the extend to which RelA binding to strong motifs can 

contribute to inducible chromatin, as well as separate those sites which require additional 

protein synthesis for their activation. While important to document and understand the general 

principles governing inducible chromatin changes during the lipid A response through the use of 

chemical inhibitors and genetic deletions, we wanted to supplement this approach with the use 

of a biologically active cytokine with inhibitory properties. We chose to focus on Interleukin-10 

as it has been shown to provide potent inhibition of target gene transcription, but little is known 

about precisely how specific genes are targeted for inhibition.  

  To perform this analysis we performed caRNA-Seq in Il10-/- BMDM treated with lipid A 

or lipid A & exogenous Il-10 for 0, 15, 30, 60, and 120 minutes. This method allows for 

evaluation of nascent transcription and prevents substantial bias in any effects of IL10 treatment 

on mRNA stability. After identifying significantly induced genes demonstrating over 10 fold 

induction (RPKM>1), we determined the effect of simultaneous addition of IL-10. The majority of 

genes were largely unaffected by IL-10 treatment (Figure 6A), but both Il10 super-induced and 

inhibited genes could be seen. When separating genes based on the time point of RNA-Seq 

collection, we could identify immediate IL-10 effects on the super-induction of lipid A induced 

genes, such as Socs3 and Niacr1.  As time of stimulation went on, however, an increasing 

number of genes displayed inhibition to IL10- treatment (p<0.01, Figure 6B). In order to gain 
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insights into the properties of genes that demonstrate sensitivity to IL10 treatment, we utilized a 

previous classification of potently induced genes in macrophages, where specific TFs and 

signaling pathways have been implicated in regulating target gene expression. We plotted 

maximum effect of IL10 treatment on genes within 95% of their maximum expression during any 

time point and could observe weak inhibition across many clusters of genes consistent with IL-

10 not having a role in selectively suppressing a single TF family or signaling cascade. We did 

observe potent inhibition that was reserved for select genes previously known to be sensitive to 

IL-10 signaling. Importantly, Il12b stood out as demonstrating the strongest inhibition by IL-10, 

showing the max inhibition at the 120m time point. 

 While strict mechanisms of IL-10 mediated gene repression have remained elusive, the 

best evidence supports a model by which IL-10 utilizes STAT3 to either directly or indirectly 

repress transcriptional responses (Murray, 2005; Takeda et al., 1999). Il12b was previously 

identified to undergo nucleosome remodeling of the promoter and upstream 9Kb enhancer, and 

prior experiments were directed at determining whether IL-10 inhibited the remodeling step that 

precedes transcription. Restriction enzyme accessibility assays were unable to detect significant 

reduction in chromatin accessibility at the Il12b promoter or 9Kb enhancer with IL-10 treatment, 

although a severe reduction in RNA pol II was observed at the promoter (Zhou et al., 2004). Our 

ATAC analysis identified strong chromatin changes at the Il12b promoter as well as the 9Kb 

hypersensitive site (HSS) and an additional 17Kb, 27Kb, and 30Kb HSS that were previously 

uncharacterized. We therefore re-assessed IL-10’s potential role in limiting DNA accessibility at 

putative enhancer sites upstream of inhibited genes, with an immediate interest in assaying 

regions upstream of Il12b. 

 To perform this analysis we performed ATAC-Seq in Il10-/- BMDM treated for 0m, or 

120m with IL10, lipid A, or lipid A & IL-10 co-treatment. Because prior studies have 

demonstrated IL-10’s ability to inhibit transcription of the Il12b gene with modest effects on 

promoter remodeling, we chose to initially investigate whether upstream-induced ATAC sites 

are sensitive to IL10 treatment. Visual inspection of the Il12b locus revealed slight repression of 
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accessible DNA formation at the Il12b promoter and 9Kb enhancer consistence with previous 

reports, as well as more pronounced inhibition of the 17kb, 27Kb, and 30Kb HSS indicating a 

potential role for these sites acting as enhancer elements in coordinating inducible transcription. 

Consistent with this, we observe inducible association of H3K27Ac across most sites, with the 

highest enrichment observed at the 27Kb enhancer (Figure 6F). Considering one aspect of 

active enhancers is their ability to recruit active polymerase, we asked whether IL10 treatment 

had an effect on the production of enhancer-associated RNA (eRNA). BMDM were stimulated 

for 0, 30, 60, 120, and 360m with or without IL-10 and eRNA production was analyzed by qPCR 

using primers flanking ATAC sites. We chose to focus on the 9Kb and 27Kb enhancer, as these 

peaks were among the strongest signals in the ATAC data and dmeosntrated K27Ac 

association. We could detect low levels of eRNA production using conventional qRT-PCR, with 

maximal eRNA production occurring at 60m, consistent with the time point we observe maximal 

Il12b transcription in the caRNA-Seq. IL-10 co-treatment resulted in reduced production of 

eRNA (Figure 6G), indicating the repressed ATAC sites correspond to decreased enhancer 

activity. Notably, these HSSs had diminished eRNA production in cells freshly isolated from in-

vivo compartments following lipid A +/- IL10 pretreatment intraperitoneal injections, indicating 

they reflect regulatory sites utilized in cells differentiated in an endogenous environment and in 

response to acute stimulation (Figure 7D). 

 

Selectivity of IL10’s Effects on Chromatin and Analysis of ATAC Regions Upstream of 

Inducible Genes 

The analysis above indicate that IL10 repressed ATAC sites may represent a mechanism by 

which IL10 represses gene transcription. To address how frequently we can observe IL10 

repressing ATAC changes, we focused again on intergenic peaks induced >5-fold. To enrich for 

sites likely correlated with gene transcription we further focused on the peaks within 50Kb 

upstream of an induced gene. This resulted in 149 induced ATAC sites, which were further 

separated, based on their sensitivity to CHX, IRF3, and RelA motif score. Only 5 of the 149 
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peaks were sensitive (<30%) to IL10 treatment, and three of these sites were contained within 

the Il12b locus (Figure 7A). One site demonstrating IL10 mediated repression was found 

upstream of Il27 and the other repressed peak was located between two inducible genes, 

Rsad2 and Cmpk2. These 3 genes near an inhibited peak demonstrate modest and more 

variable effects by IL10 treatment during the first 2 hours, but our results leave open the 

possibility that repressed ATAC sites could further influence the sustained expression of these 

genes after the initial two hours of stimulation. In addition to sites that were repressed, we could 

identify ATAC sites that increased >3-fold with the addition of IL10. These sites were frequently 

found upstream of IL10 super-induced genes, including Rnd1 and Il1rn (Figure 7B, 7C), which 

demonstrated strong transcriptional induction.  

 

Discussion 

Accessible chromatin is a requisite for many inducible TF binding events during the macrophage 

response, although many strong consensus sites have the potential to be embedded within 

closed regions unavailable for TF binding. Dynamic chromatin changes during stimulation likely 

reflect an additional mechanism of controlling inducible gene expression, and have the potential 

to provide lasting immunologic memory of previous environmental signals. Here, we observe 

rapid induction of accessible regions upstream of many inducible genes. While the majority of 

sites exhibit strong changes occurring within 30m of stimulation, most sites continue to increase 

in accessibility throughout the two-hour stimulation. The sites that demonstrate dynamic 

properties coincide with low CpG content at both promoters as has been previously reported, as 

well as at distal intergenic sites. This preference for induced sites containing low CpG content 

likely reflects the ability for stable nucleosome formation at low CpG content that can be 

subsequently modified by stimulus induced TFs and chromatin remodelers. Intergenic sites 

demonstrate a similar profile albeit at overall much lower CpG content. 

  The number of artifacts we could detect with visualization of the data that went unnoticed 

with bioinformatics analysis initially surprised us. A number of ATAC regions classified as 
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induced appear to have resulted from overall effects of nearby transcription, either throughout 

the gene body, or extending far past the end of annotated genes and into intergenic peaks. We 

were able to manually inspect all induced ATAC peaks overlapping promoters, but additional 

methods of ATAC analysis or incorporation of additional datasets will likely be needed to 

address some of these deficiencies genome-wide in the future. By focusing on the small 

numbers of promoter peaks with strong ATAC induction, we were able to determine that a 

majority of them correlate with strong inducible transcription for genes previously implicated in 

demonstrating nucleosome remodeling. Furthermore, when we directly assayed for the 

contribution of IRF3 to all promoters with strong ATAC induction, we observed only a single 

gene, Ccl5, that demonstrates strict dependence consistent with previous work which focused 

on potently induced genes (Tong et al., 2016). These results indicate that through the careful 

examination of potently induced genes using stringent criteria we were able to gain insights 

without missing additional information from genes with lower magnitudes of expression or 

induction. 

We have previously shown that NF-κB binds most frequently to promoters with open 

chromatin, but our motif analysis of inducible sites revealed that only the strongest induced sites 

were enriched for strong consensus sites. This finding was in conflict with the observation from 

ChIP-Seq data where we observed a modest enrichment of RelA binding to strongly induced 

ATAC sites (data not shown). However, once we considered the strength of consensus sites we 

were able to observe an enrichment of strong motifs under peaks with strong induction. It is 

interesting to consider the possibility that the strong motifs occurring in strongly induced ATAC 

sites are functional targets of NF-κB in instances when stimuli provide the additional signal 

needed to remodel a positioned nucleosome, but stable nucleosome prevent NF-κB binding to 

these sites without the additional stimulus needed for nucleosome remodeling. A potential 

limitation of this work is that we are unable to determine the proportion of cells under study in 

which the inducible chromatin changes occur, and with what frequency TF binding occurs in the 

cells that exhibit induction.  This knowledge would have allowed for a deeper understanding of 
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why we observe an enrichment of strong RelA:p50 consensus sites at peaks with strong 

induction, but cannot reliably detect strong RelA ChIP-Seq peaks. Should large chromatin 

changes only occur in a small fraction of the cells, overall readout of TF binding would be 

reduced compared to sites at which near 100% of the cells are available for binding. When we 

relaxed our criteria for calling RelA binding, we did indeed observe a greater enrichment of 

strong peaks occurring at strong motifs, indicating fractional occupancy may explain some of the 

enrichment at strong motifs with weak peaks, but some sites remained which had no detectable 

binding. 

  An unexpected finding of our studies conducted in the presence of CHX revealed that 

while both Il12b and Il27 were dependent upon new protein synthesis for their expression, CHX 

only prevents induction of open chromatin at the Il12b promoter; the events leading to induction 

of the promoter at Il27 appear to be in direct response to cell stimulation, yet productive 

transcription does not occur with CHX treatment. This indicates the mechanisms responsible for 

remodeling can be distinct from mechanisms of transcription, which has been previously shown 

for individual model genes (Weinmann et al., 2001).  

 While our main goal was to provide a comprehensive analysis of chromatin changes in 

context with inducible transcription, we wanted to provide insights into a biologically important 

inhibitor to complement our studies using chemical inhibitors and genetic deletions. The 

cytokine IL-10 was an obvious choice for both its important clinical potential as well as its poorly 

understood mechanism of repression. Our analysis of IL-10’s ability to potently inhibit a limited 

number of genes provides a model from which we are now able to focus our attention towards 

individual genes in order to inform potential mechanisms. While we are unable to provide a 

mechanistic link between IL-10 signaling and the repression of induced ATAC sites upstream of 

inhibited genes, a potential explanation for our results is that IL-10 may either be inhibiting a 

process distal to the promoter which limits transcriptional activation, or could be directly 

targeting a form of regulation at the promoter and the ATAC changes upstream are merely 

consequence of less activity at the promoter.  



	 126	

EXPERIMENTAL PROCEDURES 

 

Animal Studies 

C57BL/6 and IL10-/-mice (#002251) were purchased from Jackson Laboratories (Bar Harbor, 

ME) and Irf3-/- mice were a gift from Genhong Cheng. Experiments were performed under the 

written approval of the UCLA Animal Research Committee (ARC) in accordance to all federal, 

state, and local guidelines. In-vivo isolation of Peritoneal Exudate Cells (PEC) and Spleen was 

performed following 60m intraperitoneal injection of 25ug IL10 (or isovolemic PBS), followed by 

1ug lipid A for 90m. PECs were harvested with PBS lavage of peritoneal cavity following 

euthanasia.  

 

Cell Culture  

BMDMs for ATAC-Seq were prepared from 6-10 week-old C57BL/6, IL10-/-, or Irf3-/- male mice. 

Macrophages were scraped and re-seeded on day 4 of differentiation using 20ng/mL MCSF 

(Peprotech) and activated on day 6 with 100 ng/ml lipid A (Sigma). When indicated, cells were 

preincubated for 15 min with 10 mg/ml CHX (Sigma) or treated simultaneously with 10ng/mL IL-

10 (eBioscience). BMDM for caRNA-Seq were prepared as above and differentiated with CMG 

conditioned media containing MCSF (Takeshita et al., 2000). 

 

RNA-seq  

Chromatin-associated RNA were prepared as described (Bhatt et al., 2012). Strand-specific 

libraries were generated from 60 ng chromatin RNA using the TruSeq RNA Sample Preparation 

Kit v2 (Illumina), with modifications using the dUTP second strand cDNA method (Levin et al., 

2010). cDNA libraries were single-end sequenced (50bp) on an Illumina HiSeq 2000.  

 Reads were aligned to the mouse genome (NCBI37/mm9) with TopHat v1.3.3 and 

allowed one alignment with up to two mismatches per read. Chromatin RNA RPKM values were 

calculated by dividing all mapped reads within the transcription unit by the length of the entire 
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locus. All RPKMs represent an average from two biological replicates. A gene was included in 

the analysis if it met all of the following criteria: The maximum RPKM reached 1 at any time 

point, the gene was induced at least 10-fold, and the induced expression was significantly 

different from the basal (P<0.01) as determined by the DESeq2 package in R Bioconductor 

(Robinson et al., 2010). P-values were adjusted using the Benjamini-Hochberg procedure of 

multiple hypothesis testing (Benjamini and Hochberg, 1995). 

To determine the impact of IL10 on expression, the basal RPKM in lipid A treated 

samples was set at 0% and the maximum RPKM at 100%. The maximum RPKMs in the IL10 

treated samples were converted to percent expression using this scale. Under circumstances 

were the gene reaches >95% of its max at multiple time points, the greatest effect of IL10 is 

shown. 

 

ATAC-seq 

ATAC-seq libraries were prepared using the Nextera Tn5 Transposase kit (Illumina) as 

described (Buenrostro et al., 2015) with slight modifications. Libraries were single-end 

sequenced (50bp) on an Illumina HiSeq 2000. Reads were mapped to the mouse genome 

(NCBI37/mm9) using Bowtie2. Reads were removed from the subsequent analysis if they were 

duplicated, mapped to mitochondrial genome, or aligned to unmapped contiguous sequences. 

All samples include at least 2 biological replicates, and replicates were merged prior to peak 

calling with MACS2. Overlapping peaks were merged together and used as probes for 

quantifying reads. The reads were converted to reads per million (RPKM) by dividing by the total 

number of reads within a peak divided by the peak length per million mapped reads.  

 

Motif Analysis 

The promoters of genes (-500 to +150 bp) were used for promoter analysis. The strongest 

p50:RelA binding site within each called peak was identified using a PBM dataset (Siggers et 

al., 2012). JASPAR2016 PWMs were used to identify the best matching motifs using 
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PscanChIP (Zambelli et al., 2013). If multiple reference motifs were found for a given TF the 

average score was used for analysis and duplicates were removed. 

 

qRT-PCR 
RNA was extracted using TRI-reagent (Molecular Research Center), and treated with DNaseI 

(Qiagen), and purified using an RNeasy kit (Qiagen). 2ug of RNA was reverse-transcribed using 

random hexamers and primers flanking the left and right of ATAC peaks were used to amplify 

products using SYBR-green detection. The following primers were used: Il12b 27Kb eRNA-R: F- 

GGAAGATCATTGCCCAGCTA, R- TTCTTGTCTCCCACCTTGCT, Il12b 9Kb eRNA-R: F- 

CTGTCTTCCCATGCTGTGTG, R- GCCAGTGTGTGTGAGCAGAT, Il12b 9Kb eRNA-L: F- 

CATTGCTCCAGACACTGAGG, R- TTTCTGTTCGCCAGAATGAA, Il12b 27Kb eRNA-L 

TGCAACAGCTCTACCAAACG, R- CCATTTGAGACATGCATTGG, Il12b mRNA: F- 

TGACATGTGGAATGGCGTCTCT, R- GGCGGGTCTGGTTTGATGAT, Actb mRNA: F- 

AGAGGGAAATCGTGCGTGAC, R-CAATAGTGATGACCTGGCCGT. 

 

 

 

 

 

 

 

 

 

 

 
 



	 129	

Figure Legends 

Figure 4-1: Accessible DNA Dynamics During the Lipid A Response  

 (A) BMDMs were stimulated with Lipid A over a time course and ATAC-Seq was performed to 

analyze the properties of accessible regions. Left: The distribution of maximum fold accessibility 

values over the two hour stimulation period is shown for the 101,448 called peaks in WT BMDM. 

Middle: The distribution of maximum fold accessibility for all 11,456 significantly induced peaks 

(p<0.05 with multiple hypothesis testing, RPKM >1). Dashed gray lines indicate 2.5- and 5-fold 

cutoffs. Right: The distribution of minimum fold accessibility for the 4,292 significantly repressed 

peaks (p<0.05 with multiple hypothesis testing, Basal RPKM>4). 

(B) All peaks (left), significantly induced (middle), and significantly repressed peaks (right) were 

annotated according to genomic location using HOMER (Heinz et al., 2010). 

(C) Bedgraph visualization of select promoter peaks from repressed, constitutive, induced, and 

transcription-associated ATAC-peak categories. Time of stimulation is indicated at left of each 

panel. 

(D) Peaks falling within each genomic location are separated based on their responsiveness to 

lipid A treatment: constitutive (blue), induced (red), and repressed (green). Y-axis scale set to 

75% to allow comparisons within ATAC peak classes.  

(E) CpG Obs/Exp ratios were calculated for peaks and plotted with respect to peak classification 

in shades of blue. The violin plots feature small diamonds indicating average CpG Obs/Exp 

ratios for each peak category. X-axis scale is a semi-log plot, with no CpG detection shown to 

the left of the dashed gray line. 

 

Figure 4-2: Transcription Factor Motif Analysis of Repressed, Constitutive, and Inducible 

ATAC Peaks 

 (A) All ATAC peaks were grouped into 35 equivalently sized bins based on maximum fold 

induction and subsequent motif enrichments were identified using JASPAR2016 motif matrices 

in Pscan-ChIP (http://159.149.160.88/pscan_chip_dev). TF family annotations are indicated 
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above select TF motif groups and were obtained from AnimalTFDB (http:// 

www.bioguo.org/AnimalTFDB).  Each color indicates a scale of TF enrichment based on the –

log(p-value).  

(B) Genomic distributions of ATAC peaks are shown as a function of ATAC bins. 

(C) Individual TF motif enrichments are plotted as a function of ATAC bins. 

  

Figure 4-3: Properties of Inducible Promoter Sites 

(A) Heatmap representation of the 39 induced peaks overlapping promoters. The CpG 

Observed/Expected ratio is shown with shades of orange indicting increasing levels of CpG 

density. Log2-Normalized RPKM values are presented in both the ATAC-Seq data as well as 

the corresponding chromatin-associated RNA-Seq data (GSE67357). The last three columns 

indicate the percent accessibility under conditions of CHX pretreatment, Irf3-/- BMDM (IRF3) 

and Irf3-/- BMDM pretreated with CHX (IRF3-CHX) compared to the 120m WT stimulation. 

(B) Previously characterized primary response (PRG) and secondary response genes (SRG) 

were used for promoter ATAC analysis. The max ATAC fold (x-axis) is shown as a function of 

Max RNA-Seq fold (y-axis, left) or CpG Observed/Expected values of the ATAC peak 

overlapping the promoter (y-axis, right). Individual genes demonstrating large ATAC fold 

changes are indicated with text. 

(C) Bedgraph visualization of SRGs previously characterized as dependent (-D) or Independent 

(-I) on interferon receptor signaling (IFNAR) for their activation. Within each classification, a 

selected gene is shown as either CHX resistant (CHX-R) or sensitive (CHX-S). The time course 

of sample collection is indicated at left, with +CHX indicating time points with CHX pretreatment. 

(D) The 39 inducible promoters from the heatmap in (A) are shown in the scatter plot with the 

RPKM from WT (x-axis) or Irf3-/-  (y-axis) under CHX & lipid A treatment for 120m. The color of 

each circle indicates the presence of an IRF3 ChIP-Seq peak (peak score<19 in light blue, peak 

>19 in dark blue). The absence of color indicates no called peak in the promoter. 

(E) Bedgraph visualization of peaks centered on the Ccl5 promoter. 
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Figure 4-4:  Relationship of Inducible Intergenic ATAC Sites to Inducible Gene 

Expression 

(A) Average properties and motif enrichments for all intergenic ATAC peaks grouped into 20 

equivalently sized bins (2078 peaks/bin) according to their fold induction values.  

(B) Tables (left) are shown for counting the occurrence of >5 fold induced ATAC sites at regions 

upstream of expressed genes (>1 RPKM) that display <2 fold induction, 2-10 induction, or >10 

fold induction. Percentages based on the size of each gene group are presented in the table 

below the raw counts. Enrichment values of ATAC peak occurrences for weakly induced and 

strongly educed genes are shown relative to the occurrence in <2 fold induced genes as 

separate by distance bins on the x-axis.  

(C) Tables (left) are shown for the number of genes with multiple induced ATAC peaks at 

distances upstream of the TSS. Percentages are calculated by counting the number of genes 

with multiple peaks in the distance bin divided by the total number of genes with at least one 

induced peak in the same distance group. Enrichment values of multiple ATAC peak 

occurrences for weakly induced and strongly educed genes are shown relative to the 

occurrence in <2 fold induced genes as separate by distance bins on the x-axis.  

(D) Scatter plot showing the relationship between CpG content (x-axis) and ATAC max fold 

induction (y-axis) of the 2404 >5 fold induced ATAC peaks. 

(E) (Left) The percent of genes with an ATAC peak belonging to either 0.9-1.1 fold, 2-3 fold, or 

>5 fold induction within 50Kb of the TSS is shown. Genes are separated based on fold induction 

with <2 fold, 2-10 fold, and >10 fold genes shown with increasing intensities of blue. (Right) The 

percent of genes with an additional gene TSS located within 50kb upstream.  

(F) Scatter plot display of RNA-Seq fold induction (y-axis) compared to the numbers of ATAC 

peaks located within 50kb upstream (x-axis) of all >10 fold induced genes. The scatter plots are 

separated based on the type of peak detected, >5 fold induced sites are colored in red and 
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placed in the top panel. 2-3 fold induced ATAC peaks are colored orange and located in the 

middle panel. 0.9-1.1 fold ATAC peaks are colored black and located at bottom. 

(G) Bedgraph visualization of genes with multiple induced ATAC peaks upstream of their TSS. 

 

Figure 4-5: Analysis of NF-κB Binding to Induced Intergenic Peaks 

(A) PBM Z scores of p50:RelA (y-axis) and RelA ChIP-seq peak scores (x-axis) in the 0.9-1.1 

fold induced (left) and >5 fold induced (right) ATAC peaks were plotted. The horizontal dashed 

line indicates the PBM Z score threshold (6.4), and the vertical dashed line indicates the ChIP-

seq peak score threshold (19).  

(B) Tables are shown for counting the occurrence of RelA binding to intergenic sites upstream 

of genes from different classes of expression. RelA ChiP-Seq signal is separated into three 

groups, no binding, peak score <19, and peak score >19. PBM motif scores of the best motif 

match under the RelA peak is shown as >6.4 and <6.4. The frequency of RelA binding to 

regions upstream of the gene TSS is indicated in distance bins. Percentages based on the size 

of each gene group are presented in the table below the raw counts. 

(C) A line graph is shown indicating the p50:RelA motif Z score enrichment in the >5 fold 

induced ATAC peaks relative to the called binding events in the 0.9-1.1 fold induced ATAC 

peaks.  

(D) Kinetics of ATAC and RelA Peak strength at sites with strong binding and strong motifs, 

separated based on peaks which show coincident kinetics (left), early RelA association (middle) 

or late RelA associating (right). 

(E) Heatmap representation of the 2404 >5 fold induced intergenic peaks. RPKMs from ATAC-

Seq are converted to percent of maximum accessibility and plotted with shades of purple in a 

lipid A treated time course adjacent to a time course with a CHX pretreatment. The fold change 

per time point is shown in shades of red and blue (Δ/ Time Point). The CHX sensitivity is shown 

as % of max accessibility with shades of orange, RelA PBM >6.4 motifs are shown in. The last 
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three columns indicate the percent accessibility compared to 120m WT under conditions of CHX 

pretreatment (CHX), Irf3-/- BMDM (IRF3), and in Irf3-/- BMDM pretreated with CHX (IRF3-CHX). 

(F) ATAC peaks were separated based on their RelA motif score (x-axis) and the percent of 

peaks are shown corresponding to their sensitivity to CHX (as indicated with black, yellow, 

orange).  

(G) Average ATAC RPKM are shown for clusters with strong RelA motifs (clusters 4 & 5) 

alongside clusters with evidence of IRF3 dependence (clusters 2 & 6). 

(H) Heatmap visualization of motif enrichments across clusters of induced intergenic ATAC sites 

with select TF families shown.  

 

Figure 4-6:  Investigation of IL-10 Mediated Gene Repression and Inhibition of ATAC 

Peaks 

(A) Fold induction values in IL-10-/- cells treated with lipid A (green) as compared to IL-10-/- 

cells treated with lipid A & IL10 (blue).  

(B) Gene expression plots separated by time point are shown, and RPKMs with or without IL-10 

are shown on the x- and y-axis respectively. Selected genes are highlighted in text, with red 

circles indicating IL-10 responsive genes with p<0.01.  

(C) Genes are separated based on previous classifications of PRG and SRG. The Il12b gene is 

highlighted with text. Red dashed lines indicate 30% and 300% expression with IL-10 co-

treatment compared to lipid A alone. The maximum IL10 inhibition is shown for genes that have 

reached >95% of their maximum expression. 

(D) Bedgraph visualization of ATAC sites in the Il12b locus in IL10-/- BMDM treated with IL10, 

Lipid A, or co-treatment of both Lipid A and IL-10 for 120m. Peaks with IL-10 inhibition are 

highlighted with red dashed rectangles. 

(E) Left: Fold Accessibility of ATAC peaks upstream of Il12b in WT or Il10-/- cells with lipid A or 

lipid A & IL10. Right: RPKM of H3K27AC ChIP-Seq at ATAC sites in either basal or 120m 

stimulated BMDM. 
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(F) Detection of enhancer-transcribed RNA using primers flanking ATAC peaks and measured 

with qRT-PCR. BMDM were stimulated for 0, 30, 60, 120, and 360 minutes with either lipid A 

(black) or lipid A & IL10 (red), error bars indicated standard error of the mean (S.E.M.). Two 

replicates of chromatin-associated RNA-Seq of nascent Il12b transcripts are shown at right.  

 

Figure 4-7: Selectivity in IL10-mediated ATAC changes at Sites Upstream of Inhibited 

Genes 

(A) Properties of the 149 peaks with >5 fold induction and are within 50kb upstream of a >10 

fold induced gene. IL-10 effect is shown at far right column in shades of green according to 

scale at bottom. 

(B) Bedgraph visualization of ATAC data in Il10-/- BMDM at 0m or 120m stimulation as shown 

at left of panels. Two genes are highlighted showing >300% accessibility with the addition of 

IL10 (Rnd1, Il1rn) and three genes with an ATAC peak <30% accessible with the addition of 

IL10 (Cmpk2, Rsad2, Il27). 

(C) Selected caRNA-Seq data with two replicates shown. 

(D) In-vivo stimulated expression data of Il12b inhibition by IL10 as well as reduction of 

enhancer transcribed RNA at the 9Kb and 27Kb enhancers upstream of Il12b in both peritoneal 

exudate cells (PEC) as well as whole splenic tissue (mouse n=3 PBS, 5 lipid A, 5 lipid A & 

IL10). Error bars indicate standard error of the mean, *P<0.05, **P<0.01 using unpaired two-

tailed Student’s t-test. 
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Figure 4-1: Accessible DNA Dynamics During the Lipid A Response  
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Figure 4-2: Transcription Factor Motif Analysis of Repressed, Constitutive, and Inducible 

ATAC Peaks 
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Figure 4-3: Properties of Inducible Promoter Sites 
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Figure 4-4:  Relationship of Inducible Intergenic ATAC Sites to Inducible Gene 

Expression 
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Figure 4-5: Analysis of NF-κB Binding to Induced Intergenic Peaks 
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Figure 4-6:  Investigation of IL-10 Mediated Gene Repression and Inhibition of ATAC 
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Figure 4-7: Selectivity in IL10-mediated ATAC changes at Sites Upstream of Inhibited 

Genes 
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SUMMARY

Much has been learned about transcriptional cas-
cades and networks from large-scale systems ana-
lyses of high-throughput datasets. However, anal-
ysis methods that optimize statistical power
through simultaneous evaluation of thousands of
ChIP-seq peaks or differentially expressed genes
possess substantial limitations in their ability to un-
cover mechanistic principles of transcriptional con-
trol. By examining nascent transcript RNA-seq,
ChIP-seq, and binding motif datasets from lipid
A-stimulated macrophages with increased attention
to the quantitative distribution of signals, we identi-
fied unexpected relationships between the in vivo
binding properties of inducible transcription factors,
motif strength, and transcription. Furthermore, rather
than emphasizing common features of large clusters
of co-regulated genes, our results highlight the
extent to which unique mechanisms regulate individ-
ual genes with key biological functions. Our findings
demonstrate the mechanistic value of stringent inter-
rogation of well-defined sets of genes as a comple-
ment to broader systems analyses of transcriptional
cascades and networks.

INTRODUCTION

The molecular biology revolution of the 1970s was followed by a
20-year period during which gene regulation was studied at the
level of individual model genes. Near the turn of the century,
the emergence of DNA microarrays and whole-genome se-
quences opened avenues toward the study of gene regulation
at a global scale, making it possible to identify genes and net-
works that characterize a cell type, environmental response, or
disease state. More recently, RNA sequencing (RNA-seq) has
emerged as a method that allows global transcript levels to be
evaluated with greater accuracy (Marioni et al., 2008). RNA-
seq also provides an opportunity to monitor nascent transcripts
in addition to mRNA (e.g., Bhatt et al., 2012; Core et al., 2008;

Rabani et al., 2011). For studies of stimulus-induced transcrip-
tion, nascent transcript levels provide more accurate information
about the kinetics with which gene transcription is activated, and
they allow transcription to be studied independently of mRNA
stability.
Transcriptional cascades induced by inflammatory stimuli in

cells of the mouse innate immune system have been especially
well studied at a global scale, with most studies focusing on cells
stimulated with lipopolysaccharide (LPS) or lipid A. LPS and lipid
A engage Toll-like receptor 4 (TLR4), which then activates com-
mon signaling pathways via the MyD88 and TRIF adaptors. The
TLR4-induced cascade has been monitored by DNAmicroarray,
RNA-seq, and nascent transcript RNA-seq (e.g., Amit et al.,
2009; Bhatt et al., 2012; Ramsey et al., 2008). Binding sites for
several transcription factors are enriched within the promoters
of defined clusters of co-regulated genes, and distinct subsets
of promoters contain features of either active or inactive chro-
matin prior to cell stimulation (Hargreaves et al., 2009; Ram-
irez-Carrozzi et al., 2009). Moreover, thousands of inducible
enhancers have been defined, with some enhancers poised for
activation and others lacking chromatin marks prior to stimula-
tion (Ghisletti et al., 2010; Heinz et al., 2010; Ostuni et al.,
2013). Gene expression profiles have been further integrated
with chromatin immunoprecipitation sequencing (ChIP-seq) da-
tasets and small interfering RNA (siRNA) knockdown experi-
ments for transcription factors and chromatin regulators (e.g.,
Amit et al., 2009; Garber et al., 2012).
Although conventional systems analyses have provided

considerable insight into the logic underlying the transcriptional
response to a stimulus, the results are often limited to statistical
trends and lack the precision needed to fully uncover molecular
mechanisms. Moreover, for most systems analyses, all genes
that are induced or differentially expressed by a magnitude
exceeding a low threshold—often 2-fold—are considered
equally. This approach enhances statistical power and provides
an opportunity to simultaneously examine an entire ‘‘system.’’
However, the results tend to be strongly biased toward genes
that are differentially expressed by small magnitudes; these
genes are far more prevalent—andmay be regulated by different
mechanisms—than genes differentially expressed by large
magnitudes.
Here, we describe an analysis of lipid A-induced transcription

using gene-centric approaches that place greater emphasis on
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quantitative aspects of nascent transcript RNA-seq, ChIP-seq,
and binding motif datasets. In addition to providing insight into
a number of unanswered mechanistic questions, these ap-
proaches allowed us to move beyond the identification of com-
mon features of large clusters of co-regulated genes and toward
an appreciation of the unique molecular mechanisms used to
regulate individual genes within the inflammatory cascade.

RESULTS

Basic Properties of the Transcriptional Cascade
We first performed RNA-seq with mouse bone-marrow-derived
macrophages (BMDMs) treated with lipid A for 0, 15, 30, 60,
and 120 min. To separate transcription from mRNA stability,
we analyzed nascent, chromatin-associated transcripts. 3,863
(14.1%) of the 27,384 annotated Refseq genes (prior to removal
of duplicate isoforms) reached an expression level of at least
three RPKM in at least one time point. We used a high expression
threshold because our subsequent analysis emphasized induc-
tion magnitudes, which can be quantified most accurately
when both basal and induced transcript levels can be measured
with confidence.

Of the 3,863 expressed genes, 1,340 (34.7%) were induced by
at least 2-fold (p < 0.01) (Figure 1A). Importantly, however, 79.5%
of these genes were induced less than 10-fold (Figure 1A). If all

genes induced by 2-fold or greater were evaluated together,
the analysis would be dominated by weakly induced genes.
Notably, most induced genes encoding key cytokines, chemo-
kines, and transcription factors were induced by >10-fold (data
not shown). We therefore focused on the potently induced
genes, with the resulting insights then examined in the context
of theweakly induced genes (see below). Notably, the basal tran-
script levels of the weakly induced genes were generally higher
than those of the strongly induced genes (Figure 1B).
With the above considerations in mind, we focused on 226

genes, 215 of which were induced (p < 0.01) >10-fold during
the 2-hr induction period. The remaining 11 genes were tran-
siently induced by 5- to 10-fold at the 15-min time point; these
genes were added to capture a larger number of genes that
are rapidly downregulated after their early induction. Although
the analysis focuses on only 226 genes, their basal and peak
transcript levels were distributed over more than two orders of
magnitude (Figure 1C).

Separation of Primary and Secondary Response Genes
We next separated primary response genes (PRGs) and second-
ary response genes (SRGs) by performing RNA-seqwith nascent
transcripts from BMDMs stimulated with lipid A in the presence
of cycloheximide (CHX). This analysis revealed 83 genes that
were expressed at a level in CHX-treated cells that was <33%

Figure 1. Properties of the Lipid A-Induced Transcriptional Cascade
Chromatin-associated transcripts from BMDMs stimulated with lipid A were analyzed by RNA-seq.

(A) The distribution of maximum fold induction values over the 2 hr stimulation period is shown for the 1,340 significantly induced (2-fold, p < 0.01) and expressed

(three RPKM) genes. With multiple hypothesis testing, two weakly induced genes exhibited q values >0.01. The dashed gray lines represent 5-, 10-, and 50-fold

induction thresholds.

(B) The 1,340 induced genes were grouped into bins, with basal RPKMs shown for each bin and red dashes indicating median RPKMs.

(C) The distributions of maximum fold inductions (left), peak RPKMs (top right), and basal RPKMs (bottom right) are shown for the 226 genes selected for analysis.

(D) The 226 geneswere separated into PRG andSRG groups on the basis of their expression in CHX-treated and Ifnar!/!BMDMs. Geneswere classified as SRGs

if they were expressed <33% in CHX or <30% in Ifnar!/! samples. The Venn diagram indicates the number of genes affected by CHX treatment, the absence of

IFNAR, or both.
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of the expression level in untreated cells (Figure 1D). These 83
genes were included in the SRG group (Figure 1D).
Interferon-b (IFN-b) expression is induced by lipid A and acti-

vates a type I IFN gene program. RNA-seq analysis of nascent
transcripts from type I IFN receptor (IFNAR)-deficient (Ifnar!/!)
BMDMs stimulated with lipid A revealed 62 genes that were ex-
pressed <30% of wild-type (WT) (Figure 1D). Interestingly, 11 of
these IFNAR-dependent genes were classified as PRGs in the
CHX analysis because they exhibited expression levels in the
presence of CHX that placed them just above the threshold
used for SRG classification. Nevertheless, an analysis of their in-
duction kinetics revealed greater similarity to the other IFNAR-
dependent SRGs than to the PRGs (data not shown; see Fig-
ure S1). Because of their strong IFNAR dependence and kinetic
profiles, these 11 genes were added to the SRG category (Fig-
ure 1D). Thus, 132 and 94 genes, respectively, were defined as
PRGs and SRGs for the current analysis. Because some genes
possess both primary and secondary response components
(data not shown), the classification assignments will need to be
re-evaluated as our knowledge increases.

Separation of IFNAR-Dependent and -Independent
SRGs
As described above, a central feature of the response to lipid A
is the activation of type I IFN. Therefore, we separated SRGs
into IFNAR-dependent and -independent groups. Forty-two of
the 94 SRGs were expressed <10% of WT in Ifnar!/! BMDMs,
with an additional 22 expressed between 10% and 33% (Figures
2A and 2B). Kinetic analyses revealed that 41 of the 42 genes
expressed <10% of WT failed to reach an expression level in
WT cells corresponding to 10% of the maximum level until
the 120-min time point (Figure 2C), indicating that a robust
transcriptional response to IFNAR signaling begins between 60
and 120 min post-stimulation. In contrast, 22 of the 23 SRGs
that were largely unaltered in the Ifnar!/! cells (expression level
>50% of WT) reached an expression level in WT cells corre-
sponding to 10% of their maximum within 60 min (Figure 2C).
Thus, the CHX-sensitive events needed for activation of IF-
NAR-independent SRGs generally occur more rapidly than
the autocrine/paracrine loop that activates IFNAR-dependent
genes.
To separate IFNAR-dependent and -independent genes more

carefully, we further examined the RNA-seq datasets from lipid
A-stimulated Ifnar!/! BMDMs, as well as RNA-seq datasets
from WT BMDMs stimulated with Pam3CSK4 (PAM), a TLR2
ligand that does not induce IFNAR signaling (Toshchakov
et al., 2002). Twenty-nine SRGs remained strongly induced in
these datasets (Figure 2D, top).
Interestingly, although these 29 SRGs were strongly induced

in the absence of IFNAR signaling, a subset, including the critical
T cell polarizing cytokines Il12b, Il6, Lif, and Il27 (Metcalfe, 2011;
Shih et al., 2014), were induced much less potently by PAM than
by lipid A (Figure 2D, bottom). In fact, Il12b, Il6, Lif, and Il27 ex-
hibited greater differential induction by TLR4 versus TLR2 li-
gands than any other PRG or SRG (Figure 2E). This finding sug-
gests that the TRIF pathway activated by lipid A but not by PAM
may be important for the activation of these genes, but not due to
its role in activating IFNAR signaling. Consistent with this possi-

bility, a direct comparison of WT to Trif!/! BMDMs revealed
strong TRIF dependence of these genes (Figure 2D, bottom).
Together, the data suggest that lipid A induces the expression
of key T cell polarizing cytokines (Il12b, Il6, Lif, and Il27) much
more potently than does PAM because the TRIF pathway
strongly promotes the expression of these genes in an IFNAR-in-
dependent manner.
To better understand the significance of the above regulatory

strategies, we performed gene ontology analysis with the 132
PRGs, 65 IFNAR-dependent SRGs, and 29 IFNAR-independent
SRGs (Figure 2F). The PRG analysis suggested broad roles in
regulating inflammation and the functions of blood cells. As ex-
pected, the IFNAR-dependent SRGswere implicated in anti-viral
responses. Most interestingly, the small group of IFNAR-inde-
pendent SRGs exhibited highly significant enrichment for genes
that regulate T cell proliferation, differentiation, and activation.
Specifically, 14 of the 29 IFNAR-independent SRGs are involved
in the regulation of T cell responses (Figure 2G). Eleven of these
14 genes are among the 13 IFNAR-independent SRGs that are
most potently induced by lipid A. Thus, these results reveal com-
mon regulatory features of a prominent group of genes that helps
bridge the innate and adaptive immune systems. Nevertheless, a
careful examination reveals that the induction kinetics for each of
these genes is unique (Figure S1), suggesting that gene-specific
regulatory events are superimposed on top of their common
characteristics of potent and rapid CHX-sensitive yet IFNAR-in-
dependent induction.

Initial Analysis of PRGs
Shifting our attention to the 132 PRGs, we first examined their
expression kinetics in greater detail by nascent transcript RNA-
seq from lipid A-stimulated BMDMs collected every 5 min during
the first hour of activation, with an additional 120-min time point.
We also performed nascent transcript RNA-seq with BMDMs
from Myd88!/!, Trif!/!, Myd88!/!Trif!/!, and Irf3!/! mice, and
with WT BMDMs stimulated with lipid A in the presence of ERK
and p38 MAPK inhibitors; the two inhibitors were analyzed
together because little effect was observed in pilot experiments
with each inhibitor alone (data not shown). The results consider
the maximum induced RPKM in WT cells for each gene to be
100% and the basal RPKM in unstimulated WT cells to be 0%;
the maximum induced RPKM observed in each mutant strain
for each gene is then displayed as a percentage of the maximum
WT RPKM.
Figure 3A (see also Figure S2) shows that each perturbation re-

sulted in a continuum of effects. For this study, genes expressed
<33% ofWT were considered to be dependent on the factor that
was absent. By combining these datasets with k-means cluster
analysis of expression kinetics, an initial classification of the 132
PRGs emerged (Figure 3D; see Figure S2 for gene names). Clus-
ter 1 includes nine genes that exhibited reduced expression
(<33% of WT) in both Trif!/! and Irf3!/! BMDMs. Clusters 2–5
include 28 genes that exhibited reduced expression in Trif!/!

but not in Irf3!/! BMDMs (Figures 3B and 3D); these genes
were then subdivided by k-means clustering on the basis of their
expression kinetics. Clusters 6–9 include 38 genes that exhibited
reduced expression inWTBMDMs treated withMAPK inhibitors,
but without strongly reduced expression in Trif!/! BMDMs; as
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Figure 2. Analysis of IFNAR-Independent and -Dependent SRGs
(A) Activation kinetics are shown for SRGs from BMDMs stimulated at 5-min intervals from 0–60 min, with an additional 120-min time point. Shades of blue

indicate percentile values. Genes were sorted on their maximum percent expression in Ifnar!/! BMDMs relative to WT BMDMs (purple column). The maximum

percent expressions in Myd88!/!, Trif!/!, and Irf3!/! BMDMs are shown to the right. See also Figure S1.

(B) The distribution of genes in IFNAR-dependence bins based on their expression in Ifnar!/! BMDMs is shown.

(C) The time point at which each SRG in the IFN-dependence bins reached 10% of its maximum expression is indicated.

(D) The maximum fold induction of the 29 IFNAR-independent genes in PAM-stimulated (black) and lipid A-stimulated Ifnar!/! (purple) BMDMs is shown (top),

along with the percent expression of these genes in PAM-stimulated (black), lipid A-stimulated Ifnar!/! (purple), and lipid A-stimulated Trif!/! (orange) BMDMs

relative to WT BMDMs stimulated with lipid A (bottom). IFNAR-independent genes were defined as those induced >10-fold and expressed >3 RPKM in the

absence of IFNAR signaling, or expressed at greater than 50% of WT in Ifnar!/! BMDMs stimulated with lipid A or WT BMDMs stimulated with PAM.

(E) A scatterplot comparing the maximum RPKMs in PAM-stimulated BMDMs (y axis) and lipid A-stimulated BMDMs (x axis) for PRGs (blue) and the IFNAR-

independent SRGs (red) is shown.

(F) Ingenuity Pathway Analysis was used to identify the top functional annotations for PRGs and the IFNAR-dependent and -independent SRGs.

(G) The IFNAR-independent genes involved in the proliferation, differentiation, and activation of T lymphocytes (Ingenuity Pathway Analysis) are colored based on

their fold induction in Ifnar!/! BMDMs.
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above, the genes were subdivided by k-means clustering (Fig-
ure 3D). Finally, clusters 10–16 include the remaining 57 genes
that did not exhibit reduced expression in the presence of
MAPK inhibitors or in Trif!/! or Irf3!/! cells; these genes were
divided into seven kinetic clusters. It is noteworthy that only
five of the 132 PRGs exhibited reduced expression in Myd88!/!

cells (Figures 3C and 3D). No genes were induced in Myd88!/

!Trif!/! mutant cells (data not shown).
In addition to the degree of dependence of each PRG on

MyD88, TRIF, IRF3, and MAPKs, Figure 3D indicates basal tran-
script and fold-induction values. Furthermore, Figure 3D indi-
cates which genes contain CpG-island or low CpG (LCG)
promoters. As shown previously (Bhatt et al., 2012), all early tran-
siently induced genes (e.g., clusters 6 and 10) contain CpG-is-
land promoters and a high percentage of the most potently
induced genes contain LCG promoters (e.g., clusters 1 and

14), whereas the two promoter types are distributed fairly
randomly among the other clusters.

Initial Transcription Factor Binding Motif and ChIP-Seq
Analyses
To extend the above foundation, we evaluated the over-repre-
sentation of transcription factor binding motifs within the pro-
moters of the PRGs within each of the 16 clusters in Figure 3D.
This analysis (Figure S3) provided insight into transcription fac-
tors that may regulate each cluster. However, toward the goal
of elucidating molecular mechanisms, these statistical enrich-
ments were unsatisfying. For example, although nuclear factor
kB (NF-kB) motifs are enriched in the promoters of genes in
several clusters, a closer analysis revealed considerable hetero-
geneity within each cluster, with only a subset of promoters in a
cluster generally containing a strong NF-kB motif (data not

Figure 3. Properties of PRGs
(A) The distribution of the maximum percent expressions inMyd88!/! (red), Trif!/! (orange), Irf3!/! (green), and MAP kinase inhibitor-treated (light blue) BMDMs

stimulated with lipid A are shown for the 132 PRGs. The horizontal dashed gray line indicates the 33% expression threshold.

(B and C) The percent expression of each PRG is shown in Trif!/! versus Irf3!/! cells (B) or in Trif!/! versusMyd88!/! cells (C). TRIF lo (<33% relative toWT) IRF3

hi (>33% relative to WT) genes are in orange, and TRIF lo (<33% relative to WT) IRF3 lo (<33% relative to WT) genes are in green.

(D) Activation kinetics are shown (log2-normalized andmean-centered RPKMs) for the PRGs in BMDMs stimulated for 5-min intervals between 0 and 60min, and

for 120min. The PRGswere broadly classified based on their expression inMyd88!/! (red), Trif!/! (orange), Irf3!/! (green), andMAP kinase inhibitor-treated (light

blue) BMDMs with the following order: IRF3-dependent (cluster 1; <33% in both Trif!/! and Irf3!/!), TRIF-dependent (clusters 2–5; <33% in Trif!/! only), and

MAPK-dependent (clusters 6–9; <33% inMAPK inhibitor-treated samples). The remaining PRGs were not dependent on any perturbation examined (clusters 10–

16; >33% in all perturbed datasets). The genes in each class were subclustered (k-means) on their expression kinetics. The properties of each gene are shown to

the right of the heatmap: basal expression value (gray), fold induction magnitude (blue), promoter CpG-island (beige), and the maximum percent expression in

Myd88!/! (red), Trif!/! (orange), Irf3!/! (green), and MAPK inhibitor-treated (light blue) BMDMs.

See also Figures S2 and S3.
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Figure 4. NF-kB Interactions at the Promoters of Defined Gene Classes
(A) PBM Z scores of p50:RelA (y axis) and RelA ChIP-seq peak scores (x axis) in the promoters of the PRGs (left) and all remaining genes in the genome (right) were

plotted. The remaining genes were assigned to 2- to 10-fold induced (blue), not induced (red), SRG (green), or low expression (gray) categories. The horizontal

dashed line indicates the PBM Z score threshold (6.4), and the vertical dashed line indicates the ChIP-seq peak score threshold (19).

(legend continued on next page)
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shown). Imprecise correlations were also apparent when exam-
ining ChIP-seq datasets for NF-kB and other transcription fac-
tors (data not shown). Therefore, additional strategies are
needed to move beyond statistical enrichments toward more
meaningful mechanistic insights.

Quantitative Analysis of NF-kB’s Contribution to the
Transcriptional Cascade
We next focused on NF-kB. Prior studies showed that a large
percentage of ChIP-chip and ChIP-seq peaks for NF-kB family
members do not coincide with strong binding motifs (Lim et al.,
2007; Martone et al., 2003; Zhao et al., 2014), raising questions
about NF-kB’s DNA recruitment and transcriptional activation
mechanisms. However, when focusing attention on the pro-
moters of our well-defined set of strongly induced PRGs, a
different relationship between NF-kB binding and motifs
emerged.
Specifically, Figure 4A examines NF-kBChIP-seq peak scores

versus motif scores for the promoters (!500 to +150 relative to
the transcription start site [TSS]) of each of the 132 PRGs. The
NF-kB motif scores were derived from protein binding microar-
ray (PBM) results obtained with a recombinant RelA:p50
heterodimer, the most abundant NF-kB dimer involved in
TLR4-induced transcription (Siggers et al., 2012). RelA ChIP-
seq experiments were performed with BMDMs stimulated with
lipid A for 0, 15, 30, 60, and 120 min (followed by stringent
peak-calling and a focus on peaks observed in multiple biolog-
ical replicates). This analysis revealed 8,458 total peaks, with
942 promoter peaks.
When focusing on the promoters of the 132 strongly induced

PRGs, a motif Z score threshold readily emerged that resulted
in a high probability of a strong ChIP-seq peak; 37 of 44 pro-
moters (84%) containing an NF-kB motif exceeding a Z score
of 6.4 supported strong RelA binding (ChIP-seq peak >19),
whereas only 20 of 88 promoters (23%) whose strongest NF-
kB motif was below this motif threshold supported strong bind-
ing (Figures 4A, left, and 4B, left). These results suggest that,
although a high percentage of NF-kB genomic interactions do
not coincide with strong binding motifs (see Figure 4A, right),
most interactions observed at the promoters of a well-defined
set of PRGs are associated with strong motifs. Thus, NF-kB
function may often require binding to a near-consensus motif.
The results also suggest that, at the promoters of this well-
defined set of genes, a surprisingly strict motif strength threshold
exists, in which promoter motifs exceeding this threshold almost
always support strong in vivo binding (see below). This in vivo
threshold contrasts with the continuum of binding affinities
observed in vitro (Siggers et al., 2012).
To evaluate the significance of these findings, we examined

promoters for all other annotated genes separated into five

groups: the 132 strongly induced PRGs, the 94 strongly induced
SRGs, 732 genes induced between 2- and 10-fold, 1,732 genes
that were expressed at a nascent transcript level more than three
RPKMs but without induction, and the remaining 18,487 anno-
tated genes. Promoters within each group were separated into
six classes on the basis of their ChIP-seq peak scores and motif
scores, including three ChIP-seq categories (no binding, peak
strength <19, and peak strength >19) combined with two motif
categories (Z score <6.4 and >6.4) (Figure 4B).
An examination of the ChIP-seq/motif categories for the five

groups of annotated genes revealed extensive enrichment of
genes whose promoters combined strong ChIP-seq peaks and
NF-kB motifs among the strongly induced PRG class. Specif-
ically, whereas 28% (37/132) of the strongly induced PRGs com-
bined strong ChIP-seq peaks andmotifs, only 1.6% (27/1,723) of
expressed but uninduced genes combined strong peaks and
motifs. Importantly, little or no enrichment of strongly induced
PRGs was observed in four of the other ChIP-seq/motif cate-
gories (weak peak/strong motif, weak peak/weak motif, no
peak/strong motif, no peak/weak motif). Substantial but lesser
enrichment in the PRG class was observed for only one other
ChIP-seq/motif category: those that combined a strong ChIP-
seq peak with a weak motif (15.2% of strongly induced PRGs
versus 3.8% of expressed uninduced genes).
The strong enrichment of promoters that combine strong

ChIP-seq peaks and motifs in the group of 132 PRGs suggests
that most or all of the 37 PRGs possessing these properties
may be directly activated by RelA-containing dimers via direct
promoter binding. Furthermore, the ability to define a motif
Z-score threshold above which 84% of promoters supported
strong NF-kB binding suggests that a single strong NF-kB motif
is usually sufficient to support strong binding. Notably, although
several of the 37 promoters contain two or more near-consensus
NF-kB binding motifs, a strong correlation was not found be-
tween the number of NF-kB motifs and either the strength of
the RelA ChIP-seq peak or the magnitude of transcriptional in-
duction (data not shown). It is also noteworthy that ChIP-seq ex-
periments examining the NF-kB p50 subunit revealed strong
peaks at all 37 promoters that contain RelA peaks and motifs
(data not shown), suggesting that the promoters are typically
bound by RelA:p50 heterodimers.
The substantial but lesser enrichment of promoters with strong

NF-kB peaks (score >19) and weak binding motifs (Z score <6.4)
among the strongly induced PRGs is also of interest. In these
promoters, NF-kB may bind directly to weak motifs. Alterna-
tively, NF-kB may be recruited by other transcription factors,
or the NF-kB ChIP-seq signal could be due to looping of an
NF-kB-bound enhancer to the promoter. Although the signifi-
cance of these interactions remains unknown, our ability to clas-
sify these promoters and distinguish them from the more

(B) Tables are shown indicating the distribution of genes from (A) for both numbers (left) and percentages (right) of genes.

(C–F) Tables are shown indicating the best matching kBmotif in each promoter (column 1), the gene name (column 2), the PBM p50:RelA Z score (column 3), the

position of the motif relative to the TSS (column 4), the RelA ChIP-seq peak score (column 5), and either the function or fold induction (column 6). This information

is included for the PRGs with (C) strong kB motifs and strong RelA binding, (D) strong kB motifs that do not support RelA binding, (E) weak kB motifs and strong

RelA binding, and (F) other NF-kB and IkB family members.

(G) A line graph is shown indicating the p50:RelA motif Z score enrichment in the promoters of the PRGs relative to the promoters of uninduced genes.

See also Figure S5.
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prevalent promoters that combined strong ChIP-seq peaks and
motifs will facilitate future studies of their regulation.

An examination of the 732 genes induced by 2- to 10-fold pro-
vides additional insights. A higher percentage of genes in this
weakly induced class (5.9%) contain strong NF-kB peaks and
motifs than in the class of genes that is expressed but not
induced (1.6%). This enrichment suggests that a subset of
weakly induced genes is regulated by NF-kB binding to strong
motifs. However, a much smaller percentage of genes in this
2- to 10-fold induced class (5.9%) combine strong NF-kB peaks
and motifs than in the strongly induced PRG class (28%), sug-
gesting that amuch smaller fraction of the weakly induced genes
is regulated by NF-kB promoter binding.

Examination of NF-kB-Regulated Genes
A major goal of this study was to elucidate the logic through
which the lipid A-induced transcriptional cascade is regulated.
The identities of the 37 strongly induced PRGs that combine
strong ChIP-seq peaks and strongmotifs provide compelling ev-
idence of an underlying logic; specifically, more than a third (13 of
37; Figure 4C) encode NF-kB or IkB family members or key reg-
ulators of NF-kB activation, including three NF-kB family mem-
bers (Nfkb1, Nfkb2, and RelB), five IkB family members (Nfkbia,
Nfkbib, Nfkbid, Nfkbie, and Nfikbiz), two NF-kB-inducing recep-
tors (Tlr2 and Cd40), and three regulators of NF-kB signaling
(Tnfaip3, Tnip3, and Traf1). Strikingly, these 13 genes include
all of the NF-kB/IkB family members and direct regulators of
NF-kB signaling found among the 132 PRGs. Notably, the pro-
moters of genes encoding the two NF-kB family members and
one IkB family member missing from this list also combine a
strong RelAChIP-seq peakwith a strongNF-kBmotif (Figure 4F);
these genes were not among the 132 PRGs because they were
only weakly induced.

The 37 PRGs in Figure 4C contain only 21 distinct motifs,
which adhere to one of two motif definitions: (G/T)GG(G/
A)(N)(A/T)(T/G)(T/C)CC (17 motifs) or (G/A)GGGG(G/A)(T/A)
TT(T/C) (four motifs). The finding that a high level of similarity to
the optimal NF-kB consensus is usually associated with NF-kB
binding in the RelA ChIP-seq experiments was initially surprising.
However, support for the significance of this finding emerged
from an examination of binding motif enrichment at the 132
PRGs in comparison to the 1,723 expressed but uninduced
genes, without any consideration of ChIP-seq data. Specifically,
motifs with Z scores above 8.0 were strongly enriched among
the promoters of the 132 PRGs. Motifs with Z scores between
6.0 and 7.9 were weakly enriched, but no enrichment was
observed with motifs with Z scores below 6.0 (Figure 4G).

One remaining question is the reason seven promoters with
motifs exceeding the threshold of 6.4 did not support RelA bind-
ing (Figures 4A and 4B). The motifs in three of these promoters
possess very high Z scores (8.4–8.6, Figure 4D). However, two
of these motifs are at a distance upstream of their TSS (!310
and !395) that exceeds the distance observed in all but five of
the 37 promoters that support NF-kB binding (Figure 4D). We hy-
pothesize that these two motifs do not support binding in vivo
because they are occluded by nucleosomes. The third strong
motif is located farther downstream of the TSS (+137) than the
motifs found in any of the promoters that support strong

NF-kB binding, suggesting that this motif may also be masked
by a nucleosome.
The three remaining motifs possess Z scores between 6.7 and

7.4 (Figure 4D). We speculate that their Z scores may be defined
imperfectly due to limitations of the PBM method. One of these
motifs is found in two different promoters, neither of which sup-
ports binding, and the other two do not conform to the motif def-
initions derived from the 21 motifs that support binding (see
above). Detailed affinity measurements will be needed to better
understand why a few motifs fail to support NF-kB binding, but
this quantitative analysis reveals a remarkably strong ability to
predict NF-kB promoter binding in vivo on the basis of in vitro
motif strength, as well as a motif strength threshold below which
the probability of in vivo binding is greatly diminished.

Kinetic and Functional Analysis of Putative NF-kB
Targets
To test the prediction that the 37 PRGs described above are
regulated by NF-kB, we examined their activation kinetics and
RelA dependence. The initial upregulation of most of the genes
occurred 10–20 min post-stimulation, as is evident from the third
panel in Figure 5A, in which the fold increase in RPKM relative to
the preceding time point is highlighted. Although most of these
genes are initially upregulated at the same time, their overall
expression kinetics are diverse (Figure 5A, second panel; see
also Figure S4), implicating other factors in their regulation.
Consistent with this suggestion, the NF-kB target genes that
depend on MAPK signaling were, on average, induced slightly
earlier than the other putative target genes (Figure 5A, cluster
2; Figure 5C).
To examine RelA dependence, we compared WT and Rela!/!

fetal liver-derived macrophages by RNA-seq. Most of the puta-
tive NF-kB targets exhibited RelA dependence (Figure 5A,
RelA!/! column), although the degree of dependence varied
considerably, possibly due to redundancy between RelA and
other NF-kB family members.
We next asked whether the activation kinetics and RelA

dependence observed in Figure 5A are unique to genes whose
promoters contain strong ChIP-seq peaks and motifs. Interest-
ingly, several other PRGs exhibited similar activation kinetics
and/or degrees of RelA dependence (Figures 5B and 5D). A sub-
set of these genes contains RelA ChIP-seq peaks in their
promoters without strong motifs, but most lack RelA peaks (Fig-
ure 5B, right). We speculate that NF-kB directly regulates these
genes by binding to distant enhancers. Consistent with this pos-
sibility, strong RelA ChIP-seq non-promoter peaks (peak score
>19) were found in the vicinity of many of the PRGs (Figure S5).
Thus, NF-kBmay regulate strongly induced PRGs through either
promoter or enhancer binding, with an underlying logic sug-
gested by the fact that promoter binding characterizes genes en-
coding NF-kB/IkB family members and other NF-kB regulators.

Gene-Specific Regulation of IRF3-Dependent Genes
Although most studies emphasize large clusters of co-regulated
genes, the above data suggest that, when induction magnitudes
are considered, the unique features of individual genes and small
clusters of genes begin to emerge. This concept is further
exemplified by an examination of PRGs dependent on the
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transcription factor, IRF3. As shown in Figure 3, only nine
strongly induced PRGs exhibited expression levels in both
Irf3!/! and Trif!/! BMDMs that fail to reach 33% of the level
observed in WT. Five of these genes are within the group of 37
PRGs containing strong NF-kB ChIP-seq peaks and motifs in
their promoters (Figure 5A). One notable difference between
the five genes containing NF-kB motifs and the four lacking
NF-kBmotifs is that the induction magnitude of the former group
is much higher than that of the latter, with average induction
magnitudes of 643- and 40-fold, respectively (Figures 6A
and 6B).
An examination of the five genes exhibiting both NF-kB pro-

moter binding and IRF3 dependence reveals the extent to which
genes have evolved unique regulatory strategies. Within this
group, the expression kinetics ofCcl5 and Ifnb1 are each unique,
whereas Cxcl10, Gbp5, and Irg1 are similar (Figure 6A). These
latter three genes were initially induced 10–15 min post-stimula-
tion along with most NF-kB-dependent genes. Consistent with

the hypothesis that NF-kB contributes to this early induction,
RelA ChIP-seq peaks were observed at these genes by 15 min
post-stimulation (Figure 6A, right), and their induction at early
time points was unaltered in Irf3!/! macrophages (data not
shown). IRF3 dependence was observed only at later times,
consistent with prior knowledge that IRF3 activation is relatively
slow (Kagan et al., 2008).
Interestingly, Ccl5 is unique in that RelA binding was not

observed until the 30-min time point; at all other PRGs bound
by RelA, RelA binding was readily detected at the 15-min time
point (Figures 5A and 5B, right; Figure 6A, right). The delay in
RelA binding correlates with the delayed Ccl5 activation. Thus,
RelA binding to this promoter requires an additional event that
is unique among PRGs.
Ifnb1 regulation also appears unique. Ifnb1 induction was not

observed until the 35-min time point, but RelA binding was
observed by 15 min (Figure 6A, right). This early binding is
consistent with evidence that the promoter lacks a nucleosome

Figure 5. Kinetic and Functional Analysis of Putative NF-kB Target Genes
(A) The 37 PRGs containing strong NF-kB promoter motifs and RelA ChIP-seq promoter peaks were grouped into four categories: those that encode NF-kB/IkB

family members and regulators (group 1), those that exhibit either MAPK or IRF3 dependence (groups 2 and 4), and the remaining genes (group 3). Normalized

expression values from 0 to 25 min (left panel) and 0 to 120 min (second panel) and the fold change relative to the previous time point (third panel) are shown. To

the right of the heatmaps, the basal expression values, fold induction magnitudes, promoter CpG contents, and expression values in Rela!/!, Trif!/!, Irf3!/!, and

MAPK-inhibited BMDMs are shown. The presence of a p50:RelA motif based on PBM datasets and the RelA ChIP-seq binding peak scores are indicated in the

far-right panels. See also Figure S4.

(B) Examples of PRGs that exhibited similar activation kinetics and/or RelA dependence to the 37 genes with strong NF-kBmotifs and ChIP-seq peaks are shown.

See also Figure S4.

(C) The average activation kinetics of the NF-kB subgroups is shown as log2 fold inductions relative to basal during the 120 min lipid A treatment period.

(D) The average activation kinetics of the two additional clusters from Figure 5B (clusters 5 and 6) are shown.
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Figure 6. Analysis of IRF3 Target Genes
(A) PRGs exhibiting IRF3 dependence (<33% expression in both Irf3!/! and Trif!/! macrophages) were separated based on the presence or absence of strong

NF-kB promoter motifs and RelA ChIP-seq peaks. Colors indicate the percentile of the relative expression. Also shown are the basal RPKM, fold induction

magnitude, and promoter CpG content. The rightmost heatmap indicates the RelA ChIP-seq binding peak scores.

(B) The fold induction for each IRF3-dependent gene is shown over the 2-hr time period, grouped based on their additional requirement for NF-kB.

(legend continued on next page)
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in unstimulated cells (Agalioti et al., 2000). Nevertheless, the de-
layed induction is consistent with evidence that activation is
strongly dependent on IRF3 (Panne et al., 2007).
Figure 6C shows the distribution of promoter IRF motif scores

relative to functional dependence on IRF3. IRFmotifs with Trans-
fac PositionWeightMatrix (PWM) scores of 90 or greater accom-
pany the strong NF-kB motifs in all five promoters (Figures 6C
and 6D). The distances between the IRF3 and NF-kB motifs
range from 2 to 55 bp (Figure 6D). Notably, of the four IRF3-
dependent genes that do not contain NF-kB promoter motifs,
only one (Isg15) contains an IRF3 motif of similar strength to
those found in the genes with strong NF-kB motifs (Figures 6C
and 6D).
The above results support a hypothesis in which multiple

distinct mechanisms regulate the nine IRF3-dependent genes.
To examine this hypothesis further, three additional experi-
ments were performed. First, IRF3 ChIP-seq experiments re-
vealed that strong IRF3 peaks (>19) coincide with strong IRF
motifs (>90) at the promoters of only six of the 132 primary
response genes, including the five NF-kB/IRF3 genes
described above and the IRF3-dependent Isg15 gene that
lacks NF-kB binding (see peak scores in Figure 6D; a detailed
analysis of the IRF3 ChIP-seq data will be presented else-
where). An IRF3 ChIP-seq peak was also observed in the pro-
moter of one of the IRF3-dependent genes that lacks a strong
IRF motif (Ifih1; Figure 6D).
Second, ATAC-seq experiments revealed weak increases in

chromatin accessibility upon lipid A stimulation at PRGs in
many different classes (Figure 6E). However, the largest increase
was observed at the Ccl5 promoter, with large increases also
observed at the Irg1 and Gbp5 promoters (Figure 6E). The large
increase at the Ccl5 promoter is consistent with the hypothesis
that a nucleosome remodeling requirement is responsible for
the delayed binding of RelA. Furthermore, the absence of an
inducible ATAC-seq signal at the Ifnb1 promoter is consistent
with prior evidence that the promoter is nucleosome-free prior
to stimulation. However, the strong increases in ATAC-seq signal
at the Irg1 and Gbp5 promoters were surprising, given the rapid
RelA binding and induction of these genes.
The third experiment performed was ChIP-qPCR examining

RelA binding in Irf3!/! macrophages. This experiment revealed
strong IRF3 dependence of RelA binding to the Ccl5 promoter
(Figure 6F), consistent with our evidence from nuclease accessi-
bility experiments that IRF3 is important for nucleosome remod-

eling at this promoter (Ramirez-Carrozzi et al., 2009). At the Ifnb1
promoter, the initial binding of RelA was not dependent on IRF3
(Figure 6F); however, the increase in RelA binding at later time
points exhibited IRF3 dependence, consistent with the notion
that IRF3 stabilizes RelA binding while promoting synergistic
transcriptional activation (Agalioti et al., 2000; Panne et al.,
2007). Finally, although potently induced ATAC-seq signals
were observed at the Irg1 and Gbp5 promoters, RelA binding
to these promoters was not IRF3 dependent (Figure 6F). Thus,
the nucleosome remodeling observed at these promoters by
ATAC-seq is likely to be dictated by NF-kB itself or by other
rapidly induced factors.
Together, these results support a model in which the mech-

anisms by which NF-kB and IRF3 regulate the Ccl5 and Ifnb1
genes are unique, with these two transcription factors contrib-
uting to Irg1 and Gbp5 activation (and possibly Cxcl10 activa-
tion) by a third distinct mechanism. To determine whether
these mechanisms appear to be unique only because we
focused on a stringently defined group of PRGs, we asked
whether any additional annotated promoters throughout the
genome could be identified that possess the basic DNA prop-
erties of the five NF-kB/IRF3 genes (i.e., a strong RelA ChIP-
seq peak [>19], a strong NF-kB motif [Z score >6.4], a strong
IRF3 motif [Transfac score R 90], and a distance between the
NF-kB and IRF3 motifs of less than 100 bp [see Figure 6D]).
Strikingly, only six additional promoters from among the
21,168 annotated promoters share these properties (data not
shown).
Together, these results reveal the extent to which a quantita-

tive, gene-centric analysis can begin to move toward an under-
standing of the unique molecular mechanisms used to regulate
key genes in the transcriptional cascade. Although previous
ChIP-seq studies led to the hypothesis that IRF3 and NF-kB
cooperatively activate hundreds of genes (Freaney et al.,
2013), the results presented here demonstrate that only five
PRGs induced greater than 10-fold by lipid A combine strong
NF-kB promoter binding, strong IRF3 dependence, a strong
IRF3 promoter motif, and strong IRF3 binding, yet with at least
three distinct modes of collaboration between NF-kB and IRF3
among these five genes. Although IRF3 can also bind many en-
hancers (Freaney et al., 2013), these interactions may have more
subtle modulatory functions in lipid A-stimulated macrophages
or may represent opportunistic binding events that lack func-
tional consequences.

(C) For each PRG, the higher maximum percent expression from either Trif!/! or Irf3!/! BMDMs (y axis) was assessed against the best scoring IRF3 motif (x axis)

within the promoter based on the IRF Transfac PWM. The five IRF3/NF-kB genes are shown in blue, and the four IRF3 genes are shown in green. The PRGs

containing strong NF-kB promoter motifs and RelA ChIP-seq peaks are shown in red. The horizontal dashed line indicates the expression threshold (33%), and

the vertical dashed line indicates the Transfac threshold (90).

(D) For each IRF3-dependent gene, the IRF3 and RelA:p50 binding sites (for the IRF3/NF-kB groups of genes) were identified. The spacing between the NF-kB

and IRF3 motifs is indicated at the right. The strengths of the kBmotifs are represented by PBM Z scores, and the strengths of the IRF motifs are represented by

PWM Transfac scores. For the four genes lacking NF-kB motifs, the best IRF promoter motif is shown.

(E) Left: the fold increase in ATAC-seq RPM at gene promoters (x axis) is shown according to the PRG clusters 1–10 (y axis) where the cluster designations denote

1, SRF; 2, MAPK; 3, MAPK/NF-kB; 4, NF-kB/IkB regulator; 5, NF-kB/other; 6, NF-kB/IRF3; 7, NF-kB/enhancer; 8, TRIF; 9, IRF3; 10, unknown (see also Figure S6).

The vertical dashed lines indicate the 2.5- and 5-fold cutoffs. Right: UCSC Genome Browser tracks of chromatin accessibility in resting and 120 min stimulated

BMDMs at the promoters of two genes from different gene clusters are shown.

(F) RelA ChIP-qPCR was performed using WT and Irf3!/! BMDMs stimulated with lipid A. The relative enrichment of RelA binding was normalized to a negative

control region. The RelA binding kinetics at the promoters of the five NF-kB/IRF3 genes were compared to the Tnfaip3 promoter as a control (far right). The data

shown represent an average of three biological replicates. Error bars indicate the SE. **p < 0.01; *p < 0.05.
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Regulation of Transiently Transcribed Genes by Serum
Response Factor
The most distinctive cluster of genes in Figure 3 is arguably the
MAPK-dependent cluster 6, which contains genes that exhibit
rapid yet transient upregulation within 5min of lipid A stimulation.
This cluster contains only three genes, Egr1, Fos, and Nr4a1, yet
the initial motif analysis (Figure S3) suggests enrichment of pro-
moter binding sites for serum response factor (SRF). We there-
fore examined SRF binding by ChIP-seq in BMDMs stimulated
with lipid A for 0, 15, 30, 60, and 120 min. SRF peaks remained
unchanged through the time course, consistent with knowledge
that SRF binds its targets constitutively, with inducible activity
due to the induction of co-regulatory ternary complex factors
(TCFs, Treisman, 1994).

The SRF ChIP-seq datasets yielded the strongest peaks we
have detected and the greatest specificity of binding, with only
a small number of strong peaks and very little background. A
simultaneous examination of ChIP-seq peaks and Transfac
PWM-defined motifs revealed that only seven of the 132 PRGs
contain promoters with strong ChIP-seq peaks (peak score
>10); all seven promoters contain strong motifs (Transfac score
>90) (Figure 7A). No strong ChIP-seq peaks were observed at
these promoters in the absence of a strong motif, and only two
promoters contained a strong motif without a strong ChIP-seq
peak; both of these motifs are far from their TSS (!306 and
!331), suggesting that they may be occluded by nucleosomes.
Thus, to even a greater extent than observed with NF-kB, strong
binding of SRF correlated closely withmotif strength, leading to a
motif threshold that may be both necessary and sufficient for
SRF binding in the context of a well-defined set of promoters.

Surprisingly, only 39 additional promoters within the remaining
21,036 annotated genes reached the same peak and motif
thresholds achieved by the seven binding events at the primary
response genes (Figures 7A and 7B). Instead, the vast majority of
binding events at other gene classes coincided with weak motifs
(Figures 7A and 7B).

A closer examination of the seven genes that combine strong
SRF ChIP-seq peaks and motifs supports the hypothesis that at
least six are functional targets of SRF. This group of seven genes
includes the three found in cluster 6 of Figure 3A (Egr1, Fos, and
Nr4a1) and four additional genes (Egr2, Dusp5, Zfp36, and
Rnd3). All but Rnd3 were initially upregulated during the first
5 min of lipid A stimulation (Figure 7C, third panel), and all but
Rnd3 exhibited MAPK dependence. MAPKs are responsible
for activation of the TCFs (Treisman, 1994). The fact that Rnd3
exhibited different properties suggests that this gene may
instead require a second class of SRF co-activator proteins
that are not activated by MAPKs (Posern and Treisman, 2006).

An examination of the expression kinetics of the seven genes
explains why only three were placed in the same kinetic cluster in
Figure 3A: these three genes exhibited relatively uniform induc-
tion and repression kinetics, whereas Egr2, Dusp5, and Zfp36,
although initially induced by 5 min, were either further upregu-
lated at later time points or were upregulated less potently and
downregulated more slowly, presumably due to the contribu-
tions of other factors.

Last, an analysis of the 132 PRGs led to the identification of
only two additional genes that exhibit similarly rapid induction ki-

netics as the six genes discussed above: Btg2 and Ier2 (Fig-
ure 7D). These two genes lack SRF ChIP-seq peaks and motifs
in their promoters but instead contained strong promoter NF-
kBChIP-seq peaks. This finding raises the question of how these
two genes achieve induction kinetics similar to those of the
geneswhose promoters are directly bound by SRF. Interestingly,
both of these genes contain strong SRF ChIP-seq peaks at up-
stream regions (Figure 7E); in both instances, the SRF peaks
coincide with CpG islands and are conserved through evolution
(data not shown). The SRF peaks at the Btg2 and Ier2 loci are 10
and 1 kb upstream of their TSSs, respectively. Remarkably, only
three other PRGs contained SRF ChIP-seq peaks within the re-
gion 10 kb upstream of their TSS, indicating that this property
is rare. These results suggest that SRF contributes to the early
transient induction of these genes by cooperating with NF-kB
bound to the promoters.

DISCUSSION

Broad systems analyses of gene expression cascades and net-
works continue to provide important biological and mechanistic
insights. However, the focus of most conventional studies on
large numbers of genes or ChIP-seq peaks meeting low-strin-
gency criteria, for the purpose of optimizing statistical power,
possesses significant limitations. The results described here
demonstrate that, toward the goal of a mechanistic understand-
ing of transcriptional control at a genome-wide level, it is not only
possible, but often preferable, to use more stringent and quanti-
tative approaches to examine RNA-seq, ChIP-seq, and binding
motif datasets.
This approach allowed us to obtain evidence that a single NF-

kB or SRF motif that reaches a defined threshold consistently
supports factor binding and function in vivo. Moreover, we ob-
tained evidence of an underlying logic through which NF-kB
may regulate distinct sets of genes by binding to promoters
versus enhancers. We speculate that promoter binding may be
compatible with transcriptional induction in response to any
stimulus that induces NF-kB activity, whereas enhancer binding
may often be preferred at genes that require cell-type-specific
induction. Of greatest interest, our results reveal that, even
when two inducible factors (e.g., NF-kB and IRF3) act in concert
to regulate a small cluster of only five genes, individual genes
within the cluster are regulated by unique mechanisms. Overall,
the results of this analysis provide a wealth of mechanistic in-
sights that are accessible to future exploration.
Figures S6 and S7 display summaries of the results obtained in

this study. Notably, although the study derived great benefit from
detailed kinetic analyses of chromatin-associated transcripts,
diverse overall expression kinetics are observed within each
cluster. This observation supports the long-standing view that
multiple transcription factors act in concert to shape the expres-
sion pattern of each gene.
The findings described here contrast with ChIP-seq studies

that implicate key transcription factors in the regulation of hun-
dreds or thousands of genes. It is important to emphasize that
our study focused on the properties of the limited number of
potently induced genes for which NF-kB, IRF3, and SRF appear
to bemajor regulators, but they do not rule out the possibility that
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these same factors play more subtle roles in the regulation of
hundreds of additional genes. For example, although only a small
fraction of genes induced by 2- to 10-fold contain promoter bind-
ing sites for NF-kB, this factor may contribute to the induction of
a large fraction of weakly induced genes by binding to distant en-
hancers. Nevertheless, the current results document a clear
distinction between strongly induced and weakly induced genes

with respect to the prevalence of NF-kB promoter binding and
promoter motifs, providing a framework for studies to elucidate
the diverse mechanisms by which NF-kB contributes to the lipid
A response. Similarly, the ability to identify consistent properties
of genes that appear to be regulated by SRF, IRF3, and IRF3/NF-
kB provides a step toward a precise understanding of the broad
mechanisms regulating the transcriptional cascade. In addition

Figure 7. Analysis of SRF Target Genes
(A) Scatterplots comparing the Transfac PWM scores of SRF binding motifs (y axis) versus the SRF ChIP-seq peak scores (x axis) in the promoters (!500 to +150)

of the PRGs (left) and all remaining genes in the genome (right) are shown. The genes in the latter graph were divided into categories as in Figure 4A. The horizontal

and vertical dashed lines indicate the SRF motif (90) and ChIP-seq peak (10) thresholds.

(B) Tables are shown indicating the distribution of genes from (A), for both numbers (left) and percentages (right) of genes.

(C) Log2 normalized expression values from 0 to 25 min (first panel), 0 to 120 min (second panel), and the fold induction relative to the expression level at the

previous time point (third panel) are shown for the seven putative SRF target genes. To the right are columns indicating the basal expression level, fold induction

magnitude, promoter CpG content, and MAPK dependence for each gene.

(D) Two genes that exhibited similar activation kinetics as the putative SRF target genes are shown, with the same layout as in Figure 7C.

(E) The two genes from (D) were examined on UCSC Genome Browser to identify distal SRF binding peaks. RelA binding peaks were also examined for these

genes. The TSSs of the genes are indicated as red arrows, and the green rectangles indicate CpG islands.

See also Figures S6 and S7.
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to exploring the insights obtained in greater depth, an important
goal for the future will be to continue building on this framework
by using stringent approaches to examine additional signaling
pathways, transcription factors, and chromatin regulators, while
extending the analysis to enhancers, weakly induced genes, and
gene expression cascades induced by diverse stimuli in diverse
cell types and physiological settings.

EXPERIMENTAL PROCEDURES

Cell Culture
BMDMs were prepared from 6-week-old C57BL/6, Myd88!/!, Trif!/!, Irf3!/!,

or Ifnar!/! male mice. Fetal liver macrophages were from D14.5 C57BL/6 or

RelA!/! embryos. Macrophages were activated on day 6 with 100 ng/ml lipid

A (Sigma) or Pam3CSK4 (InvivoGen). When indicated, cells were preincubated

for 15 min with 10mg/ml CHX or 1 hr with 10 mMPD0325901 (Sigma) and 1 mM

BIRB0796 (AXON Medchem). The use of mice for this study was specifically

approved by the UCLA Chancellor’s Animal Research Committee.

RNA-Seq
Total RNA and chromatin-associated RNA were prepared as described (Bhatt

et al., 2012). Strand-specific libraries were generated from 60 ng chromatin

RNA or 400 ng total RNA using the TruSeq RNA Sample Preparation Kit v2

(Illumina) and the dUTP second strand cDNA method (Levin et al., 2010).

cDNA libraries were single-end sequenced (50bp) on an Illumina HiSeq 2000.

Reads were aligned to the mouse genome (NCBI37/mm9) with TopHat

v1.3.3 and allowed one alignment with up to two mismatches per read. Chro-

matin RNA RPKM values were calculated by dividing all mapped reads within

the transcription unit by the length of the entire locus. mRNA RPKM values

were calculated by dividing mapped exonic reads by the length of the spliced

product.

All RPKMs represent an average from two or three biological replicates. A

gene was included in the analysis if it met all of the following criteria: the

maximum RPKM reached 3 at any time point, the gene was induced at least

10-fold, and the induced expression was significantly different from the basal

(p < 0.01) as determined by the edgeR package in R Bioconductor (Robinson

et al., 2010). Additionally, a gene was included if its induction reached 5-fold at

the 15-min time point. p values were adjusted using the Benjamini-Hochberg

procedure of multiple hypothesis testing (Benjamini and Hochberg, 1995).

To determine the impact of a perturbation, the basal RPKM in WT samples

was set at 0% and themaximumRPKM at 100% for each gene. Themaximum

RPKMs in themutant sampleswere converted to percent expression using this

scale. For the Rela!/! analysis, the RelA dependence of a gene was deter-

mined by the percent expression in Rela!/! samples at the earliest time point

in which the WT samples were induced by at least 3-fold.

ChIP-Seq
ChIP-seq libraries were prepared using the Kapa LTP Library Preparation Kit

(Kapa Biosystems). ChIP-seq was performed as described (Barish et al.,

2010; Lee et al., 2006) with minor modifications, using anti-RelA (Santa Cruz

Biotechnology, sc-372), anti-IRF3 (Santa Cruz, sc-9082), or anti-SRF (Santa

Cruz, sc-335) antibodies.

Reads were aligned to the mouse genome (NCBI37/mm9) with Bowtie2.

Uniquely mapped reads were used for peak calling and annotation using

HOMER (Heinz et al., 2010). Peaks were called if they passed a false discovery

rate of 0.01 and were enriched over input. Called peaks were considered for

downstream analysis if peaks from at least 4 of 7 replicates were overlapping

within 200 bp for RelA and five of five replicates were overlapping within 300 bp

for SRF. Peaks were annotated to the nearest TSS.

ATAC-Seq
ATAC-seq libraries were prepared using the Nextera Tn5 Transposase kit

(Illumina) as described (Buenrostro et al., 2015) with slight modifications. Li-

braries were single-end sequenced (50 bp) on an Illumina HiSeq 2000. Reads

were mapped to the mouse genome (NCBI37/mm9) using Bowtie2. Reads

were removed from the subsequent analysis if they were duplicated, mapped

to mitochondrial genome, or aligned to unmapped contiguous sequences.

Promoter accessibility was calculated by totaling all reads within !500

to +150 bp relative to the TSS. The reads were converted to reads per million

(RPM) by dividing by the total number of reads per sample. The average RPM

from four replicates was used to quantify the fold increase in promoter

accessibility.

Motif Analysis
The promoters of genes (!500 to +150 bp) were used for motif analysis unless

otherwise indicated. The strongest p50:RelA binding site within each promoter

was identified using a PBMdataset (Siggers et al., 2012). Transfac PWMswere

used to identify the best matching SRF and IRF3 binding sites in promoters us-

ing Pscan (Zambelli et al., 2009).
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Supplemental Figures

Figure S1. IFNAR-Independent and IFNAR-Dependent Secondary Response Genes, Related to Figure 2
An expanded version of Figure 2A is shown to include gene names for each 10-fold significantly induced secondary response gene. This expanded version also

includes a column indicating the percent expression in cycloheximide-treated BMDMs.
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Figure S2. Highly Induced Primary Response Genes Ordered by Their Dependence on Various Signaling Pathways, Related to Figure 3
An expanded version of Figure 3D is shown to include gene names for each 10-fold significantly induced primary response gene.
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Figure S3. Promoter Motif Analysis of Primary Response Gene Clusters, Related to Figure 3
Overrepresented transcription factor bindingmotifs are shown for each cluster, 1-16. The geneswere clustered as described in Figure 3D. The transcription factor

families are shown on the left, in alphabetical order. The color intensity is proportional to the negative log of the p value.
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Figure S4. Putative NF-kB Target Genes and the Genes that Exhibit Similar Kinetics and/or RelA Dependence, Related to Figure 5
An expanded version of Figures 5A and 5B is shown to include gene names for each putative NF-kB target and other genes that may be enhancer regulated

NF!kB target genes.
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Figure S5. The Position of RelA Peaks Relative to the Transcription Start Sites of All Genes, Related to Figure 4
(A) For each annotated gene in each gene category (primary, secondary, 2-10 fold induced, not induced but expressed, and unexpressed), RelA binding peaks

were identified at the following distance ranges relative to the transcription start site (TSS): promoter, 10 kb, 20 kb, 100 kb, and >100 kb. The promoter was

designated as the region spanning!500 to +150 relative to the TSS. Peaks included those identified either upstream or downstream from the TSS. The annotated

RelA peakswere then grouped based on their ChIP-seq peak score (>19 or <19). If a gene did not have a peak in the indicated region, a score of 0 was given to that

gene. The top table represents the number of genes in each group, and the bottom table indicates the percent of genes in each group relative to the gene class.

(B) The distribution of RelA peaks as shown in the bottom table of (A) is shown as a bar graph. Strong binding indicates a RelA peak score >19, and weak binding

indicates a RelA peak score <19.
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Figure S6. Final Classification of the Primary Response Genes, Related to Figure 7
The 132 primary response genes were grouped based on their regulation by SRF or RelA, dependence onMAPK, TRIF, or IRF3. The left heatmap represents log2

normalized expression values, and the right heatmap represents the log2 fold change relative to the previous time point. To the right of the heatmaps are columns

indicating the following, from left to right: the presence of a strong SRF motif, a strong SRF binding peak, expression in MAPK-inhibited BMDMs, a strong RelA

motif, a strong RelA binding peak, expression in Rela!/! FLMs and in Trif!/! and Irf3!/! BMDMs. See also Figure S7.
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Figure S7. Final Classification of the Secondary Response Genes, Related to Figure 7
The 94 secondary response genes were grouped based on their dependence on IFNAR. To the right of the heatmaps are columns indicating the following, from

left to right: expression in Ifnar!/! BMDMs, and expression in Pam-stimulated WT BMDMs. See also Figure S6.
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The preceding chapters have attempted to investigate mechanisms responsible for coordinating 

innate immune cell function as well as better understand the role of IL10 in whole body 

metabolism and in shaping the transcriptional response to lipid A. A number of findings have 

been highlighted in the discussions at the end of each chapter, and future work and open 

questions have been previously presented on the individual topics. This concluding chapter 

serves as a placeholder for a brief discussion on the future prospects of studies focused on 

understanding immune regulation and how new technologies will continue to play a role in 

shaping research questions as well as in the training of future researchers. 

   Even with the vast amount of sequencing data that has been generated during the LPS 

response in mouse immune cells, it can be argued that we have not fully appreciated the 

complexity of an artificial in-vitro defined system, let alone begin to understand how immune 

cells interact in-vivo during a live infection. This acknowledgment of our limitations in 

understanding should not be confused with any indication that we should not be excited by the 

situation we find ourselves in. The genomics revolution continues to hold promise for 

researchers interested in understanding basic principles of gene regulation, and will continue to 

propel us forward as we advance towards applying this knowledge to more complex questions 

related to systems biology and ultimately, to human development, pathology, and therapeutic 

interventions. If the prior 30 years are any indication of the types of advances we may see 

throughout the next 30 years, the future is likely one of tremendous discovery.  

  Sequencing methods continue to improve in sensitivity, cost, read length, and accuracy. 

Furthermore, additional sequencing platforms have emerged which rely upon the detection of 

electrical currents based on nucleobases traversing artificial membranes rather than fluorescent 

imaging based on chemical synthesis (Branton et al., 2008). If the newer sequencing platforms 

are able to achieve comparable levels of accuracy per price point, these current-based 

sequencers could dramatically change the way data is collected and analyzed, as the new 

method has the potential to monitor base pair modification directly on endogenous DNA and 
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RNA, a feat not possible with conventional commercial sequencers (Simpson et al., 2017). The 

newer sequencing devices continue to shrink in size; it is now possible to purchase USB-

powered, portable sequencers, thus increasing the availability of new sequencing techniques to 

researchers around the world. Indeed, there is a growing number of non-traditional “citizen 

scientists” who analyze and generate sequencing data for personal interests. It is possible that if 

this trend continues there may be either crowd sourcing of research projects collectively funded 

and targeted towards specific interests of people, or a greater emphasis on bringing these new 

methods into K-12 education to continue preparing new students for careers in science through 

interactive discovery (Bonney et al., 2009). 
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