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ABSTRACT OF THE DISSERTATION

Estimation of Sparse State Transition Parameters in State Space Models

By

Misagh Khayambashi

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2018

Professor A. Lee Swindlehurst, Chair

Motivated by the many applications associated with sparse multivariate models, the esti-

mation of the directional interactions between imperfectly measured nodes of a network is

studied.

First, the node dynamics and interactions are assumed to follow a linear multivariate au-

toregressive (MVAR) model. The observations consist of noisy linear combinations of the

underlying node activities. Maximum a posteriori (MAP) criterion is adopted for parameter

estimation. Due to the intractability of the MAP problem, the Expectation Maximization

(EM) algorithm is used to iteratively solve the MAP problem. To impose sparsity on state

transition parameters, the EM algorithm is augmented with an `1 regularization of the con-

nectivity matrix. Multiple techniques have been used to lower the computational complexity.

Importantly, an efficient coordinate descent algorithm utilizing a closed-form solution is de-

signed to solve the `1-regularized EM. For noise covariance estimation, the Cholesky factors

of the unknown covariance matrices are used directly in the optimization process in order to

impose positive definiteness and guarantee the functionality of the `1 optimization.

The algorithm is first applied to synthetic data to evaluate the estimation accuracy. Com-

parison with previous work over an extensive set of configurations shows that our method is

superior under moderate to high sparsity.

xi



The algorithm is then evaluated on real data for two different applications: temperature

prediction and estimation of effective brain connectivity. Applied to real temperature data

obtained from 98 stations across the U.S. mainland, the algorithm is able to identify the

predictive interactions between the time series that not only are consistent with previous

work, but also reveal predictive power for coastal stations.

The algorithm, however, does not perform well in the estimation of effective brain connec-

tivity from real electroencephalography (EEG) data. We show that this shortcoming is due

to the inflexibility of the linear model to capture EEG dynamics. The Neural Mass Model

(NMM) is then adopted to realistically model the underlying mechanisms of EEG signals.

The estimation algorithm is tailored to the nonlinearity of the NMM model. The modified

algorithm is then applied to a simple synthetic system, and it is observed that the results are

insensitive to the source of the connection. The root cause of the problem is then analyzed

and the challenges facing the future work are discussed.

xii



Chapter 1

Introduction

1.1 Applications of Sparse Multivariate Autoregres-

sive Models

A very large number of applications are associated with multivariate autoregressive (MVAR)

or equivalent models. Example applications include, but are not limited to, identifying the

effective connectivity in the brain [63], multipath wireless communication channels in sensor

networks [14], echo cancellation [31], determining dominant predictors of atrial fibrillation

[125], gene and protein interaction analysis [11][47], and determining the main risk factors

for certain pathologies [72][114]. Many of these applications lead to models with extremely

large dimensions, with a huge number of possible parameters, and often there is not enough

observed data to reliably estimate such a huge set of parameters. Fortunately, there are

many situations in which the MVAR parameters can be assumed to be sparse.

Analysis of molecular mechanisms underlying important biological processes is yet another

application of sparse MVAR models [83]. In [43], the sparse MVAR model is applied to

1



estimate gene regulatory networks based on gene expression profiles obtained from time

series microarray experiments. Both simulated data and real HeLa cell cycle gene expression

data are used to validate the results of the sparse MVAR inference even when the number

of samples is smaller than the number of genes. A similar approach applied to a first-order

Markovian time series model of gene interactions is presented in [1].

Sparse MVAR models have also been applied to wind power prediction [30], solar power

forcasting [19], and causal modeling of unstructured temperature data [81]. In [30], a two

stage method similar to [26] was used. First, the partial spectral coherence matrix of the

time series is used to trim away the autoregressive elements that are suspected to be negli-

gible. Then, the values of the predetermined set of elements are determined by maximum

likelihood estimation. A graph-based sparse model more parsimonious than the traditional

MVAR model is adopted in [81] to discover the predictive relations between the temperature

recordings over 365 days at 150 cities around the continental United States.

Sparse high dimensional MVAR models are widely used in econometrics [34] to analyze the

joint evolution of macroeconomic time series, and to provide structural information about the

model [105]. Example applications include optimal sparse portfolio selection [35], housing

market prediction [96], identifying demand effects in a large network of product categories

and modeling the market response [116], and analysis of causality in stock market data [60].

1.2 Sparse Brain Connectivity

A major aspect of the complexity of nervous systems relates to their intricate morphology,

especially the inter-connectivity of their neuronal processing elements. Neural connectivity

patterns have long attracted the attention of neuro-anatomists [120, 107] and play crucial

roles in determining the functional properties of neurons and neuronal systems.

2



Neural activity, and by extension neural codes, are constrained by connectivity. Understand-

ing brain connectivity is thus crucial to elucidating how neurons and neural networks process

information. In addition to revealing the underlying mechanisms of information processing

in the brain, connectivity analyses have found clinical applications [9, 99, 106] since certain

cognitive disorders such as autism, schizophrenia, and attention-deficit/hyperactivity are

hypothesized to be at least partially attributed to abnormal connectivity patterns in brain.

In more highly evolved nervous systems, brain connectivity can be described at several lev-

els of scale [102]. These levels include individual synaptic connections that link individual

neurons at the microscale, networks connecting neuronal populations at the mesoscale, as

well as brain regions linked by fiber pathways at the macroscale. At the microscale, detailed

anatomical and physiological studies have revealed many of the basic components and in-

terconnections of microcircuits in the mammalian cerebral cortex. At the mesoscale, they

are arranged into networks of columns and minicolumns. At the macroscale, which is the

focus of this thesis, very large numbers of neurons and neuronal populations forming distinct

brain regions are interconnected by inter-regional pathways, forming large-scale patterns of

anatomical connectivity.

Broadly speaking, the concept of connectivity is defined in three different ways: Anatomical,

Functional, and Effective [102, 63] (see Fig. 1.1). In this thesis, we focus on effective con-

nectivity. Anatomical (structural) connectivity refers to the anatomical connections between

regions [95]. An anatomical connection is necessary for communication between regions.

However, not all anatomical connections are used to perform certain tasks. In addition to

invasive methods, Diffusion Tensor Imaging (DTI) and Magnetic Resonance Imaging (MRI)

are among the non-invasive methods used to estimate anatomical pathways in different scales.

Functional connectivity is a statistical measure of connectivity between regions of brain [69].

Regardless of the presence of a direct anatomical or causal connection between two regions,

two regions are said to be functionally connected if their joint activity shows significant levels

3



Figure 1.1: Modes of brain connectivity; Sketches at the top illustrate structural connectivity
(fiber pathways), functional connectivity (correlations), and effective connectivity (informa-
tion flow) among four brain regions in macaque cortex. Matrices at the bottom show binary
structural connections (left), symmetric mutual information (middle) and non-symmetric
transfer entropy (right). Data was obtained from a large-scale simulation of cortical dynam-
ics [62]
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of correlation. By definition, functional connectivity has no sense of direction. The concept

is applicable to any imaging modality that records the brain activity, including functional

MRI (fMRI) and Electroencephalography (EEG).

In this thesis, we focus on the effective or directional connectivity, which refers to any direc-

tional and causal connectivity measure between two regions. An accurate characterization of

effective connectivity in the human brain requires a comprehensive mapping of the connec-

tome as well as an electrophysiological specification of how neurons or populations of neurons

interact to process information. Despite recent advances in mapping the human connectome

and in measuring activity of neural populations [93, 101], our knowledge is still far from

being comprehensive because of the extraordinary complexity of the human brain. Most of

brain research is still dedicated to brain-behaviour interactions, and to measuring changes

in functional and effective connectivity in a response to behavioural stimulation. Developing

new methods for inferring effective connectivity within the brain is still an underdeveloped

topic. Furthermore, the interpretation and the value of the inferred measures of effective

connectivity directly depend on the underlying model assumed to govern the dynamics of

human brain, as well as the capability of the measurement modality in accurately exposing

the underlying system.

The estimation of connectivity in the human brain is only one instance of the more general

problem of identifying the interaction among multiple nodes of a network given some time

series observation. Consequently, the same methodology may be used in other applications

requiring the estimation of intra-network interactions.

In the area of brain connectivity analysis, the necessity of incorporating sparsity into the

estimation has been studied and various methods have been suggested to estimate the pa-

rameters of the sparse underlying system [56, 112, 17, 58, 38, 104, 16, 39]. In [104], the high

degree of clustering and the short characteristic length of the small-world topology of the

macaque and cat (visual) cortex are reproduced by considering less than 1% of the possible
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connections and properly distributing them. Moreover, it has been shown in [103] that dy-

namics with high complexity are supported by graphs whose units are organized into densely

intra-linked groups that are sparsely and reciprocally inter-linked. A sparse MVAR model is

used in [10] for electrocorticography (ECoG) modeling and the group Lasso method [123] is

used to estimate the sparse directional network connectivity. A realistic anatomical network

topology obtained from tract-tracing studies of a macaque brain [121] with 71 nodes and

746 connections (15% sparsity) is used. Sparsity levels higher than the anatomical sparsity

are considered, as not all physically connected brain regions are actively communicating. In

[18], the functional connectivity of the human brain is estimated by exploiting the underlying

sparsity to set most MVAR parameters to zero.

1.3 Outline of the Thesis

This thesis focuses on the parameter estimation for MVAR models postulated to govern the

dynamics of a network of interacting nodes. We consider both linear systems and a special

case of nonlinear systems appropriate for modeling neural dynamics.

The proposed estimation procedure is evaluated on synthetic data as well as two different

applications (temperature prediction and brain effective connectivity estimation) using real

data. The strengths and the shortcomings of the proposed method are discussed and ana-

lyzed. For the special application of brain connectivity, the estimation procedure is tailored

to a more realistic nonlinear model, namely the Neural Mass Model (NMM), and evaluated

on real and synthetic EEG data.

In the linear model, the directional interaction of the nodes is encoded in the elements

of a connectivity matrix. Furthermore, unlike much of the previous work, the underlying

network is assumed to be only imperfectly measured through a noisy linear combination
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of the node activities. We utilize a maximum a posteriori (MAP) framework to infer the

strength and delay of the connectivities embedded in the model. A critical aspect of our

approach is that the sparseness of the connectivity pattern is incorporated into the estimation

procedure. Furthermore, we develop an efficient algorithm to solve the estimation problem.

We show that our algorithm performs better than previously proposed approaches, and the

performance gap widens as the sparseness of the underlying system increases.

While previous work has separately examined some of the individual contributions that

follow, our work combines them together to make the solution applicable to more general

problems in a computationally tractable way. A summary of the contributions of this work

is provided below:

1. With the exception of [57, 58, 22], the previous work assumes that the time series

whose directional interactions are to be estimated are observed directly. We generalize

this to cases where the observed time series are linearly superimposed, and thus only

observed as a mixture. An example of this type of scenario is when electrodes on the

scalp take EEG measurements of the electrical activity of the brain under the skull. In

this case, each electrode simultaneously measures the electrical contribution of multiple

brain regions.

2. Even in cases where previous work has considered linear mixtures of the target time

series, the estimation of directional interactions follows a two-stage approach [57, 58].

In the first stage, the target time series are estimated from the observed time series

without considering the structure of the underlying signal dynamics (i.e., the sparsely

connected MVAR model). In the second stage, the interactions are determined from the

estimated time series. As discussed in later chapters and illustrated in the simulations,

the two-stage approaches yield suboptimal performance. A joint optimization that

estimates both the state vector and the structure of the interactions (connectivity)

simultaneously will be closer to optimal. Cheung et al. [22] utilize such an EM-based
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joint optimization, but without considering sparsity.

3. `1-regularization of the EM algorithm has been applied in prior work [10, 123, 83, 43,

116, 60]. However, the numerical methods used to solve the problem are computa-

tionally complex for the problem dimensions that we consider. We have proposed to

use coordinate descent for this problem and derived the analytical solution to each

step of the algorithm to reduce the computational complexity. A number of additional

algorithm modifications have been adopted in our approach to further lower the com-

plexity; these modifications are unique to our approach and have not been considered

elsewhere.

4. Although it is not the main focus of the thesis, accurate estimation of the positive defi-

nite innovation and noise covariance matrices is critical for the connectivity estimation

algorithm to work. Previous work on this problem has not considered estimating the

Cholesky factors of these matrices to address this issue. Rather, they limit the space

of possible covariance matrices by adding an additional regularization or by constrain-

ing the covariance matrices to have a specific structure (e.g., diagonal). The Cholesky

factors, on the other hand, can describe and parameterize all positive definite matrices.

The thesis is outlined as follows. Chapter 2 reviews the previous work on sparse parameter

estimation in linear MVAR models and provides the problem statement. The proposed

estimation method is then discussed. The chapter concludes with remarks on hyperparameter

selection and computational complexity of the proposed algorithm.

In Chapter 3, the algorithm is first evaluated on a comprehensive set of synthetic system

configurations and is shown to outperform the previous work under moderate to high ground

truth sparsity. The algorithm is also applied on real temperature data to find the predictive

powers of different weather stations. Finally, the applicability of the algorithm to real EEG

data for brain effective connectivity estimation is examined. The shortcomings of the model
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motivate the following chapters.

Chapter 4 serves as an introduction to the Neural Mass Model (NMM). The NMM was

adopted to overcome the shortcomings of the linear MVAR model of the earlier chapters. In

Chapter 5, the estimation algorithm is derived from scratch for a network of neural masses.

Finally, Chapter 6 explores the intrinsic limitations of a MAP-based estimation approach

toward connectivity estimation for a network of neural masses. The future work section in

the final chapter presents some candidate solutions.
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Chapter 2

Parameter Estimation for Linear

State Space Models

2.1 Associating Causal Influence with Model Parame-

ters

Defining a true measure of causality requires an accurate, physically meaningful, and in-

terpretable model of the underlying mechanisms of a given system. When such a model

is unavailable, computationally prohibitive, or uninterpretable, mathematical measures of

causality exist to capture the interactions. These measures may or may not coincide with

the true causality depending on the presumed model and the application.

Granger and Geweke [50, 48] were among the first to formulate the concept of ‘Granger

causality’. In his seminal work, Granger defined the causal effect of phenomenon A on

phenomenon B as equivalent to an improvement in accuracy of prediction of B, given A

and all other relevant parameters, compared to the accuracy of prediction without A. Other
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measures of connectivity have been proposed, including those based on the Directed Transfer

Function (DTF) [64], Partial Directed Coherence (PDC) [6], Directed DTF [66], and Phase

Slope Index [87]. The performance of these methods in estimating effective connectivity

using EEG data is compared in [57].

Model-free information-theoretic measures of causality have also gained popularity. Schreiber

et al. [98] introduced Transfer Entropy (TE), in which the time series are approximated by

Markov processes and the Kullback-Leibler divergence is used to verify the assumption of

independence between two time series. Later, Branett et al. [7] proved the equivalence

of Granger causality and TE for Gaussian variables. Chavez et al. [20] and Liu et al.

[73] compared different information theoretic causality measures including TE [98], Mutual

Information and its delayed variants [65], Directed Information (DI) [79], Conditional and

time-lagged DI [73], and Directed Trans-Information [78].

Linear multivariate autoregressive (MVAR) models and variants have also been utilized to

describe the dynamics of network interaction and connectivity. Non-linear and modulational

effects in effective connectivity have also been examined in the neuroscience and engineer-

ing literature. Buchel et al. [15] focused on the time variance and non-linear attentional-

modulation effects in connectivity. Freiwald et al. [41] proposed Local Linear Non-linear AR

models that could describe both linear and non-linear interactions. The methodology was

compared with other non-linear interaction models including generic non-linear MVAR, lin-

ear MVAR with past-dependent coefficients, and locally weighted polynomial non-parametric

regression [70]. Marinazzo et al. [77] proposed a non-linear extension of Granger causality,

called kernel Granger causality, by taking a geometric approach to the regression problem.

Most of the methods mentioned thus far require stationarity. A range of methods have been

proposed to overcome this issue for applications where stationarity does not hold. Ding

et al. [29] examined the non-stationarity of brain activity and applied an adaptive MVAR

framework to stationary overlapping epochs. Moller et al. [84] approached non-stationarity
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by applying Recursive Least Squares with a forgetting factor. Sato et al. [97] expanded the

time varying coefficients of an AR process in a wavelet basis and iteratively estimated the

wavelet coefficients. Gao et al. introduced the concept of the “evolutionary state space” by

allowing the parameters to evolve across epochs in order to model the non-stationarity of

the data [46].

2.2 Previous Work on MVAR Parameter Estimation

Statistical frameworks have been successfully applied to estimation of effective connectivity

in MVAR models as well as others. Harrison et al. [54] proposed an iterative Bayesian

estimation of MVAR parameters by assuming certain priors on the MVAR coefficients and

hyper-parameters. Ho et al. [61] used Kalman filtering and the EM algorithm to find the

ML estimate of the state space parameters. A more flexible extension of [61] was proposed

by Gao et. al [46]. Lenz et al. [67] have studied the problem of recovering connectivity from

joint EEG-fMRI data with Kalman filtering and EM. Smith et al. [100] and Rajapakse et

al. [92] were among the first to employ Dynamic Bayesian Networks (DBN) to recover con-

nectivity, implicitly handling non-linearities and direct causality. More recently, Mutlu [86]

used discrete DBN with multinomial distributions to capture non-linearities, and proposed

learning the DBN structure by a combination of Markov chain Monte Carlo (MCMC) meth-

ods and a greedy graph search. Zheng et al. [126] used Bayesian networks to model brain

activity in one snapshot by assuming Gaussian interaction between the nodes. A maximum

a posteriori (MAP) estimate of the structure of the graph was obtained through a greedy

search algorithm. In [88], the sparsity-promoting priors are replaced by super-Gaussian lower

bounds, and the coefficients of interaction are estimated as the mean of the resulting Gaus-

sian posterior. With an emphasis on high-dimensional scenarios, the authors of [89] propose

solving the optimization problem using the alternating direction method of multipliers.
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The majority of available methods assume that the available time series directly represent

the activity of the interacting entities. However, this information is often available only

imperfectly through some mapping from the node activity space to the measurement space.

In the context of source reconstruction, Haufe has proposed two-stage strategies in [55] and

[58]; first, node activities are directly estimated from the observations, independently at each

time instant, by solving an inverse problem. A sub-optimum result is expected because the

inverse problem neglects the connectivity structure of the underlying system. Second, the

estimated time series are analyzed to estimate the connectivity patterns. A recent work by

Cheung et al. [22] reveals some disadvantages of using two-stage methods such as bias in

activity and connectivity estimates. Single-stage methods based on EM to find ML estimates

of MVAR coefficients directly from the observations are proposed in [71, 22].

Recently, profound physiological evidence has been found to support sparse connectivity

models in describing the brain’s effective connectivity [59, 3]. Nevertheless, estimation of

sparse connections between interacting nodes of a network is a generic problem with poten-

tial applications outside neuroscience. Chen et al. [21] imposes this sparsity on fMRI data

by assuming sparsity promoting priors on the AR coefficients and updates the posterior dis-

tribution of the coefficients. Estimates of the AR coefficients are found from the expectation

of the resulting posterior, which is calculated by a Reversible-Jump Markov Chain Monte

Carlo (RJMCMC) approach [51].

Motivated by previous work in [21, 22, 61], we propose a MAP-based approach that jointly

estimates the activities and the connectivity pattern and incorporates the prior information

on the sparsity of the underlying system. The details are provided in the next sections.
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2.3 Related Work on `1-Regularized Optimization

A common approach to imposing sparsity in estimation problems is to use `1-regularization.

The application of `1-regularization has a relatively long history [113]. Tibshirani et al.

[108] proposed one approach, referred to as the Least Absolute Shrinkage and Selection

Operator (or LASSO) technique. The emergence of the Least-Angle Regression (LARS)

algorithm provided an efficient solution to the optimization problem underlying LASSO

for linear regression [33]. More recently, path-wise coordinate descent methods have been

proposed for solving LASSO problems [42, 118, 110, 111]. While LARS exploits the linearity

of the regularization path to calculate the exact path of solutions against the regularization

parameter, the coordinate descent method focuses on the efficiency of finding the solution

for high-dimensional problems on a (usually) equi-spaced grid of the parameters.

2.4 Model and Problem Statement

The system under study is assumed to have interacting nodes whose activities can only be

measured indirectly and imperfectly. Section 2.4.1 explains the model postulated to describe

the node interactions. The measurements are assumed to be a stochastic mapping from

the node activity space to the measurement space. Section 2.4.2 describes the postulated

measurement model.

2.4.1 Node activity model

Consider a network of M interacting nodes. Denote the instantaneous activity of node

m ∈ {1, · · · ,M} at discrete time index k by vm[k]. Similar to the previous work [29, 97, 54,

61, 22, 71], individual node activities are postulated to be a linear combination of a local
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innovation wm[k] and the past activity of other regions as well as the target region:

vm[k] = wm[k] +
D∑
τ=1

M∑
i=1

ai,m[τ ]vi[k − τ ] , (2.1)

where D is the maximum anticipated delay, and ai,m[τ ] models the influence of node i on

node m at delay τ , or equivalently the strength of the connection from node i to node m with

delay τ . A proper value for D may be found through standard model selection techniques,

as discussed in Section 2.9, or from domain-specific knowledge. The innovation wm serves

as the driving force of the network: assuming a stable system, the system converges to zero

activity in the absence of the driving force.

The model in (2.1) can be written in vector form as

vk = wk +
∑D

τ=1
Aτvk−τ (2.2)

by defining vk , [v1[k], v2[k], · · · , vM [k]]T and wk , [w1[k], w2[k], · · · , wM [k]]T . The ma-

trix Aτ , representing the connectivity between nodes at delay τ , is defined per element by

(Aτ )i,j = aj,i[τ ]. The innovation wm is assumed to be a temporally white zero-mean multi-

variate normal random vector with unknown covariance. As shown in Section 2.5, temporally

colored noise may be easily included by augmenting the state vector with the parameters

representing the dynamics of wm.

A fundamental prior incorporated in our work is that the collection of connectivity matrices

has relatively few non-zero entries. In other words, the vector [vecT (A1) vecT (A2) · · · vecT (AD)]T

is sparse. This definition does not distinguish between the sparsity of the spatial and tem-

poral connections. The spatial sparsity refers to the sparsity of connections between nodes,

while the temporal sparsity refers to the existence of a few dominant delays between two

regions if a connection between them exists.
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2.4.2 Measurement model

At each discrete time index k, N scalars y1[k], · · · , yN [k] are recorded as measurements.

Each yi[k] is assumed to be a linear combination of the underlying node activities plus some

uncertainty or interference originating from unmodeled effects and/or measurement noise.

Define the vector of measurements as yk , [y1[k], y2[k], · · · , yN [k]]T . We assume that

yk = Cvk + uk (2.3)

where C is an N ×M gain matrix, and uk is the vector of measurement noise/interference

at time k. Similar to the process noise term wk, we assume that uk is a temporally white

zero-mean Gaussian with unknown covariance.

2.4.3 Problem Statement

Given a set of T measurements Y = {y1, · · · ,yT}, the system model, and priors on the

unknown parameters, we wish to estimate the connectivity matrices A = [A1, · · · ,AD] as

well as the second order statistics of uk and wk. We should emphasize that estimation of the

connectivity matrix is the main goal of this work and hence that the interference statistics are

of secondary importance. Henceforth, θ will denote the collection of all unknowns. Certain

priors should be added to avoid unrealistic outcomes. For instance, the connectivity matrix

A is sparse and should be chosen such that the system is stationary and stable.
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2.5 Likelihood-Based Parameter Estimation

As mentioned in Section 2.4, the noise terms wk and uk are assumed to be temporally-white

zero-mean normally distributed multivariates with unknown covariances. Consequently, (in-

finitely) many choices of the unknown parameters can explain the observations if the proper

value of wk and uk is assumed. Nevertheless, different values of uk and wk are not equally

likely, a fact that can help define the merit of a given choice of parameters.

In MAP estimation, the optimum parameter is the one that maximizes the parameter pos-

terior for a given set of observations [85]. Mathematically, denoting the set of possible

parameters by Θ, the MAP estimate is given by:

θ̂ = arg max
θ∈Θ

p(θ|Y) = arg max
θ∈Θ

p(Y|θ)p(θ) . (2.4)

The term p(Y|θ) is the data likelihood, and the parameter prior p(θ) encodes the prior

probability of θ (e.g. the sparsity of the connectivity matrix). Note that the optimization

result is the same if any monotonically increasing function, such as logarithm, is applied to

the posterior p(θ|Y).

2.5.1 Derivation of Data Likelihood

The data likelihood is calculated by marginalizing over the hidden states:

p(Y|θ) =

∫
dVp(V|θ)p(Y|V , θ) (2.5)

where V = {v1, · · · ,vT}. The integral arguments are calculated, multiplied, and then inte-

grated in V plane to obtain the data likelihood.
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Calculating p(V |θ)

Given the dynamic model of Equation 2.2, it is helpful to think of past activity as system

state. Specifically, with Vt2:t1 = [vTt2 · · · vTt1 ]
T (t2 > t1), and A = [A1 · · ·AD]:

vk = wk + AV(k−1):(k−D) (2.6)

To calculate p(V|θ), we utilize the system dynamic given in Equation 2.2 to factor the

distribution into smaller components. Dropping the θ dependence for notational convenience:

p(V) = p(VD:1)
T∏

k=D+1

p(vk|V(k−1):1) (2.7)

Using Equation 2.6, each p(vk|V(k−1):1) term can be rewritten as p(vk|V(k−1):(k−D)), or equiv-

alently p(wk = vk − AV(k−1):(k−D)|V(k−1):1) (with some abuse of notation). To make this

product tractable, we impose a Gaussian distribution on the initial state and the nuisance wk.

Furthermore, we assume that wk is independent of V(k−1):1, or equivalently wk is temporally

white.

Using Gaussian statistics, the product is calculated recursively as follows. Let’s start by

assuming that the first t ≥ D hidden activities are jointly Gaussian Vt:1 ∼ N (0,ΣVt:1), and

that wt+1 is zero-mean Gaussian with covariance Σw and independent of Vt:1. Using the

dynamic Equation 2.6, and defining A|t = [A 0m×m(t−D)], we conclude that Vt+1:1 is also
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zero mean Gaussian with the following covariance function:

ΣVt+1:1 =

E[vt+1v
T
t+1] E[vt+1V

T
t:1]

E[Vt:1v
T
t+1] E[Vt:1V

T
t:1]

 (2.8)

E[vt+1v
T
t+1] =Σvt+1 = A|tΣVt:1A

T
|t + Σw (2.9)

E[vt+1V
T
t:1] =A|tΣVt:1 (2.10)

E[Vt:1V
T
t:1] =ΣVt:1 (2.11)

which results in the following recursive equation:

ΣVt+1:1 =

A|tΣVt:1A
T
|t + Σw A|tΣVt:1

(A|tΣVt:1)
T ΣVt:1

 (2.12)

Given that p(V|θ) ∼ N (0,ΣV−(D−1):N
), this recursive equation can be used to calculate the

hidden variable posterior given parameters. However, the resulting covariance matrix is very

large, highly nonlinear in connectivity parameters, and worst of all, needs to be inverted.

Alternatively, it is possible to formulate a recursion on the inverse of covariance matrix

directly. To do this, note that p(Vt+1:1) = p(Vt:1)p(vt+1|Vt:1), where p(Vt:1) ∼ N (0,ΣVt:1)

and p(vt+1|Vt:1) ∼ N (A|tVt:1,Σw). Then, multiplying the two distributions:

p(Vt+1:1) =
1√

(2π)m(t+1)|Σw||ΣVt:1|
×

exp[−1

2
(vt+1 −A|tVt:1)TΣ−1

w (vt+1 −A|tVt:1)

− 1

2
VT
t:1Σ

−1
Vt:1

Vt:1] (2.13)

Now, if we can write the exponent in terms of Vt+1:1, we can find the expression for ΣVt+1:1 .
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The exponent is rewritten as:

[(vt+1 −A|tVt:1)T ,VT
t:1]

Σ−1
w

Σ−1
Vt:1


vt+1 −A|tVt:1

Vt:1

 (2.14)

Given that:vt+1 −A|tVt:1

Vt:1

 =

 Im×m −A|t

0mt×m Imt×mt

Vt+1:1

,FtVt+1:1 (2.15)

we can write:

p(Vt+1:1) =
1√

(2π)m(t+1)|Σw||ΣVt:1|
×

exp[−1

2
VT
t+1:1F

T
t

Σ−1
w

Σ−1
Vt:1

FtVt+1:1] (2.16)

Since the determinant of the upper triangular matrix F is 1, we arrive at the following

recursive equation in terms of the inverse of covariance matrix:

Σ−1
Vt+1:1

= FT
t

Σ−1
w

Σ−1
Vt:1

Ft (2.17)

After partitioning F and A|t and some algebraic manipulation, we find it convenient to
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define:

D ,

 I

−AT

Σ−1
w [I,−A]

,



D1,1 D1,2 · · · D1,D+1

D2,1 D2,2 · · · D2,D+1

...
...

DD+1,1 DD+1,2 · · · DD+1,D+1


Di,j =AT

i−1Σ
−1
w Aj−1

,A0 , −Im

,A−k = Ak (2.18)

Then it follows that Σ−1
Vt+1:1

is simply formed by creating two all-zero square m(t+1)×m(t+1)

matrices, filling the top left corner of the first with D, filling the bottom right corner of the

second with Σ−1
Vt:1

, and finally adding the two matrices. As t gets larger and larger, an

implication is that the covariance of initial state will only manifest itself at the bottom

right MD ×MD corner of Σ−1
Vt:1

, and the rest of Σ−1
Vt:1

will be independent of initial state

covariance. In what follows, we will ignore the small portion of Σ−1
Vt:1

occupied by initial

state covariance.

Starting with t = D+1, and through induction, it is easy to show that Σ−1
VK:1

for any K ≥ D

is a banded Km×Km matrix consisting of m×m blocks Si,j (i, j ∈ {1 · · ·K}):

Σ−1
VK:1

=


S1,1 · · · S1,K

...
...

SK,1 · · · SK,K

 (2.19)

Ignoring the effect of initial state covariance, for any row index r ∈ {1 · · ·K}, and any
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∆ ∈ {0 · · ·K − r}:

Sr,r+∆ =

 min(r,D+1−∆)∑
`=min(0,r−(K−D))+1

D`,`+∆

+

[1(r ≥ K −D + 1)] sr−(K−D),r−(K−D)+∆

Sr+∆,r =STr,r+∆ (2.20)

Overall, it is observed that the hidden state V is a zero mean Gaussian whose precision

matrix consists of m×m blocks, and each block is a sum of A-quadratic terms of the form

AT
i Σ−1

w Aj.

Calculating p(Y|V, θ)p(V |θ)

Assuming a temporally white measurement noise u, the observation posterior given hidden

states and system parameters is given by:

p(Y|V , θ) =
T∏
t=1

1

(2π)N/2
√
|Σu|
×

exp[−1

2
(yt −Cvt)

TΣ−1
u (yt −Cvt)]

=
1

(2π)NT/2|Σu|T/2
×

exp[−1

2

T∑
t=1

yTt Σ−1
u yt − yTt Σ−1

u Cvt−

vTt CTΣ−1
u yt + vTt CTΣ−1

u Cvt]

=c1 exp[−1

2
(ααα− Y TJV − V TJTY + V TLV )] (2.21)
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with:

c1 =
1

(2π)NT/2|Σu|T/2
(2.22)

ααα =
T∑
t=1

yTt Σ−1
u yt (2.23)

Y =[yTT · · ·yT1 ]T (2.24)

J =IT ⊗ (Σ−1
u C) (2.25)

L =IT ⊗ (CTΣ−1
u C) (2.26)

Now, because:

p(V|θ) ∼ N (0,ΣVT :1
) = c2 exp[−.5V TΣ−1

VT :1
V ] (2.27)

and using the fact that any Gaussian PDF on Rd with mean µµµ and covariance Σ can be

written as:

p(x) = exp[ξ + ηηηTx− 1

2
xTΛΛΛx]

ΛΛΛ =Σ−1, ηηη = Σ−1µµµ

ξ =− 1

2
(d log 2π − log |ΛΛΛ|+ ηηηTΛΛΛ−1ηηη) (2.28)

we rewrite p(V|θ)p(Y|V , θ) in this standard form. The result is a non-normalized PDF

in V plane. Since the integral of a normalized PDF is equal to 1, the integral p(Y|θ) =∫
dVp(Y|V , θ)p(V|θ) is equal to the normalization constant. The natural logarithm of the

integral is then proportional to:

log p(Y|θ) ∝−NT log 2π − T log |Σu| −ααα + log |Σ−1
VT :1
|

− log |L + Σ−1
VT :1
|+ Y TJ(L + Σ−1

VT :1
)−1JTY (2.29)
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Intractability of the Data Likelihood

For temporally white uk and wk with covariance matrices Σu and Σw, it was shown that

the log-likelihood can be represented as:

log p(Y|θ) ∝− T log |Σu| −α + log |Σ−1
VT :1
| (2.30)

− log |L + Σ−1
VT :1
|+ Y TJ(L + Σ−1

VT :1
)−1JTY

with:

ααα =
T∑
t=1

yTt Σ−1
u yt (2.31)

Y = [yTT · · ·yT1 ]T (2.32)

J = IT ⊗ (Σ−1
u C) (2.33)

L = IT ⊗ (CTΣ−1
u C) (2.34)

Vt2:t1 = [vTt2 · · · vTt1 ]
T (2.35)

where the symbol ⊗ denotes the Kronecker product and ΣVT :1
represents the covariance

matrix of VT :1. The precision matrix Σ−1
VT :1

is made up of blocks, where each block is

quadratic in the connectivity coefficients. The intractability of the log likelihood criterion

originates from the terms log |Σ−1
VT :1
|, log |L+Σ−1

VT :1
|, and (L+Σ−1

VT :1
)−1. Rather than directly

optimizing this function, we will use the expectation maximization (EM) algorithm.

2.6 The Expectation Maximization Algorithm

The EM algorithm relies on Jensen’s inequality, which states that for a concave function φ,

φ(E[X]) ≥ E[φ(X)]. EM also exploits the fact that the joint observation-state likelihood
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is typically more tractable than the marginals and conditionals. The EM starts with an

assumed value of the parameters at iteration t, namely θ(t). With L(.) , log p(.), the

following function of θ is calculated in the expectation step:

Q(θ|θ(t)) = Ep(V|Y,θ(t))[L(V ,Y ;θ)] (2.36)

The maximization step exploits the tractability ofQ by choosing θ(t+1) such thatQ(θ(t+1)|θ(t)) >

Q(θ(t)|θ(t)). It can be shown that increasing Q at each iteration also increases the likelihood

function log p(Y |θ). Furthermore, if the parameter θ is split into k subsets θ1, · · · ,θk, the

same strategy can be applied to the subsets. First, all subsets other than θi are fixed and Q

is optimized over θi. Then, the process is repeated for other subsets.

In EM-MAP [68], the Q function is augmented with the log-prior of the parameter p(θ) (or

some generic penalty function) and the maximization step is carried out over the sum of Q

and the log-prior.

2.6.1 Expectation Step

The first step is to calculate the joint state-observation log-likelihood function L. Assuming

a temporally white Gaussian uk and wk, and ignoring the initial state distribution, the

parameter dependent portion of L in Eq. (2.36) is proportional to

L(V ,Y ; θ) ∝ −T ln |Σu| − T ln |Σw| (2.37)

−
∑T

t=1
(yt −Cvt)

TΣ−1
u (yt −Cvt)

−
∑T

t=1
(vt −AVt−1)TΣ−1

w (vt −AVt−1)
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with Vt = [vTt ,v
T
t−1, · · · ,vTt−(D−1)]

T . The assumption of temporally white noise is common

(e.g. see [29, 97, 54, 61, 22, 71]), but the extension to temporally colored noise is possible

by augmenting the state vector to include the noise dynamics. For simplicity, we consider

the case of temporally white noise.

Next, L(V ,Y ;θ) is expanded to carry out the expectation step in iteration j. Using the

identity aTMb = trace[MbaT ] for column vectors a and b, and replacing Ep(V|Y,θ(j)) with

Ej for notational convenience, we have:

Ej{L(V ,Y ; θ)} ∝ − T ln |Σu| − T ln |Σw| −
T∑
t=1

(
yTt Σ−1

u yt

− 2yTt Σ−1
u CEj{vt}+ tr

[
CTΣ−1

u CEj{vtvTt }
]

+ tr
[
Σ−1

w Ej{vtvTt }
]
− 2tr

[
ATΣ−1

w Ej{vtVT
t−1}

]
+ tr

[
ATΣ−1

w AEj{Vt−1V
T
t−1}

])
(2.38)

Therefore, it suffices to calculate the following expectations:

Mj,t , Ej{Vt} (2.39)

Fj,t , Ej{VtV
T
t } (2.40)

Gj,t , Ej{VtV
T
t−1} (2.41)

To do this, the model is rewritten in state space form:

Vt =AeVt−1 + Wt (2.42)

yt =CeVt + ut (2.43)

with e representing extension, and:
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Ae =

 A

IM(D−1) 0M(D−1)×M

 (2.44)

A = [A1, · · · ,AD] (2.45)

Wt = [wT 01×M(D−1)]
T (2.46)

Ce = [C 0N×M(D−1)]. (2.47)

While only temporally white noises are used for the derivations here, the state space model

may be modified to take colored noise into account as well. A colored noise wk may be in

general realized by the state space form:

wk = Szk, zk = Tzk−1 + xk (2.48)

where xk is a temporally white noise and zk is the hidden state vector whose state equation

determines the dynamics of wk. After some algebraic manipulation, the state equation in

Eq. (2.43) may be modified as:

Vk =


A ST

IM(D−1) 0M(D−1)×M

0M×M(D−1) T

Vk−1 +

0MD×1

xk−1

 (2.49)

with Vk = [vk,vk−1, · · · ,vk−D+1, zk]
T .

Assuming temporally white Gaussian processes uk and wk, and a Gaussian initial distri-

bution, all states are normally distributed, and the expectations can be calculated using a

Kalman smoother (KS) [94]. The Kalman smoother is an offline procedure that requires a

forward pass (the Kalman filter) through the data, storing the results, and then a backward

27



pass. If complexity or real-time operation is an issue, the Kalman filter (KF) may replace the

smoother at the cost of suboptimality in the mean and covariance estimates. The KF does

not require storing the outputs and the estimates are calculated online. The sub-optimality

of the KF compared to the KS is due to the fact that the KS uses all observations while the

KF only uses the past observations. However, the suboptimality has negligible influence on

our estimation results because, as will be shown shortly, the parameter estimates depend on

the temporal averages of the expectations, and this averaging absorbs the difference between

the KF and KS state estimates. Therefore, we use the KF instead of the KS in the remainder

of the paper to calculate the expectations.

The KF calculates the mean Ej{Vt} = Mj,t and the following covariances directly:

Pj,t = Ej{(Vt −Mj,t)(Vt −Mj,t)
T} (2.50)

Rj,t = Ej{(Vt −Mj,t)(Vt−1 −Mj,t−1)T} . (2.51)

The variables Pj,t and Rj,t are then used to calculate the expectations in Eq. (2.38). Using

MATLAB™ matrix indexing notation:

mj,t = Ej{vt} = Mj,t(1 : m)

Fj,t = Ej{VtV
T
t } = Pj,t + Mj,tM

T
j,t

Gj,t = Ej{VtV
T
t−1} = Rj,t + Mj,tM

T
j,t−1

fj,t = Ej{vtvTt } = Fj,t(1 : m, 1 : m)

gj,t = Ej{vtVT
t−1} = Gj,t(1 : m, :) (2.52)
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2.6.2 Maximization step

Suppose that parameters A(j), Σ
(j)
u , and Σ

(j)
w at step j are given. The maximization step at

iteration j + 1 is given by the following sequence of maximizations:

A(j+1) = arg max
A∈S

Q(A|A(j),Σ(j)
u ,Σ(j)

w )− CA(A)

Σ(j+1)
u = arg max

Σu∈PN
Q(Σu|A(j+1),Σ(j)

u ,Σ(j)
w )

Σ(j+1)
w = arg max

Σw∈PM
Q(Σw|A(j+1),Σ(j+1)

u ,Σ(j)
w ) , (2.53)

where S is the set of all A’s that lead to a stable and stationary system, and PM (PN)

is the set of symmetric positive definite (covariance) matrices in RM (RN). The term CA

is a penalty function that encourages sparse connectivity matrices. An example of such a

penalty function is CA(A) = λ||A||1 which results from applying a Laplacian prior on A [5].

The hyper-parameter λ should be selected properly by cross-validation, as discussed later.

2.7 Exploiting Sparsity in Estimation of the Connec-

tivity Matrix

The non-differentiability of CA makes the maximization step for A the most complicated

among all parameters. The log-likelihood function consists of the Q function, which is

quadratic in A, and the `1 penalty function.

While many packages are available to solve the LASSO problem [122], all of them are for-

mulated in terms of the vectorized version of the regression weights (A in our problem) to

solve
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min
vec(A)

||b−Bvec(A)||22 + λ||vec(A)||1 . (2.54)

The vector b ∈ RM2D×1 and matrix B ∈ RM2D×M2D are inputs to the algorithm. To discuss

the dimensionality of this problem, consider the application of our method to the brain

connectivity estimation problem. We usually consider at least M = 20 regions of interest

(ROI) and an upper bound for D can be calculated by estimating the maximum distance

between the ROI and typical neural transmission speeds. With an action conduction speed

of 1-10 m/sec and an ROI separation of 5-10 cm, a reasonable upper-bound for the delay is

about 20 msec. For an EEG system sampled at 1kHz, this translates to D = 20. Although

b and B can be calculated in terms of the parameters of our problem, the dimensionality

(M2D ≈ 80, 000) makes it impossible to use available solvers. Consequently, a more efficient

alternative should be designed.

To mitigate this issue, we propose to use coordinate descent to solve the optimization prob-

lem. Coordinate descent optimization updates one coordinate (or block of dependent coordi-

nates) at a time in an iterative fashion, leaving the others fixed, until convergence is reached.

In some cases, this update can be carried out analytically, yielding a fast and simple algo-

rithm. Typically, the problem is solved for a large value of the regularization parameter and

the solution is used as a warm start for solving the problem with a smaller regularization

parameter. The coordinate descent optimization is computationally efficient to the extent

that the coordinate updates are efficient.

The optimization problem in Eq. (2.53) can be rewritten as

A(j+1)=argmax
A

[
−λ′|A|1−Ej

{
T∑
t=1

wT
t ΓΓΓ(j)

w wt

}]
(2.55)

with wt = vt−AVt−1, ΓΓΓw = Σ−1
w , and λ′ , Tλ to factor out the scaling of the regularization
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parameters with the data size T . After expansion:

A(j+1) = arg max
A

[
− λ|A|1 +

〈
E
{
vTt ΓΓΓ(j)

w AVt−1

}〉
+
〈
E
{
VT
t−1A

TΓΓΓ(j)
w vt

}〉
−
〈
E
{
VT
t−1A

TΓΓΓ(j)
w AVt−1

}〉 ]

, arg max
A
{−λ|A|1 +K(A)} (2.56)

with 〈xt〉 , (
∑T

t=1 xt)/T . Due to the non-differentiability of the `1 norm, the first order

optimality condition is given in terms of the matrix gradient of K and matrix sub-differential

of the `1 norm [12]:

0 ∈ ∇∇∇AK(A)− λ∂∂∂A|A|1 . (2.57)

Since coordinate descent operates component-wise, we can rewrite the optimality condition

for a single element of A, namely apq, while fixing all other elements:

0 ∈ ∇apqK(A)− λ∂apq |A|1 . (2.58)

The optimum apq is then found through conditional analysis:

apq 6= 0: Assume that the optimum apq is not zero. Then, ∂apq |A|1 = sign(apq). Also, using

the following identities (small and capital letters represent vectors and matrices respectively):

∂ aTMb

∂ M
= baT (2.59)

∂ aTMTb

∂ M
= abT (2.60)

∂ bTXTDXc

∂ X
= cbTXTD + bcTXTDT (2.61)
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and assuming that ΓΓΓ
(j)
w is symmetric, we get

∇∇∇AK(A) =
〈
E[Vt−1v

T
t ]
〉

2ΓΓΓ(j)
w −

〈
E[Vt−1V

T
t−1]
〉

AT2ΓΓΓ(j)
w

=
〈
gTj,t
〉

2ΓΓΓ(j)
w − 〈Fj,t−1〉AT2ΓΓΓ(j)

w , (2.62)

which is linear in the elements of A. If ΓΓΓ
(j)
w is not symmetric, all the terms 2ΓΓΓ

(j)
w should

be replaced with ΓΓΓ
(j)
w + (ΓΓΓ

(j)
w )T . Now, by definition, ∇apqK(A) = [∇∇∇AK(A)]qp. Using the

definition of matrix multiplication and fixing all elements of A except for apq, the negated

sub-differential for apq can be written as:

−∇apqK(A) + λ∂apq |A|1 =rpqapq + s̃pq + λsign(apq) (2.63)

with

rpq = 2ΓΓΓ(j)
w pp 〈Fj,t−1〉qq

s̃pq =
[
2ΓΓΓ(j)

w Ã\pq 〈Fj,t−1〉
]
pq
−
[
2ΓΓΓ(j)

w 〈gj,t〉
]
pq
, (2.64)

where Ã\pq is the current estimate of A with element (p, q) set to zero.

For the first-order optimality (applied to the negated differential) to truly represent a min-

imum, the second derivative should be positive; this means that rpq should be positive. In

other words, the diagonal elements of the precision matrix should be positive. A sufficient

condition for this is to guarantee the positive definiteness of the covariance estimates as dis-

cussed in Section 2.8. If a diagonal element is negative, the first order optimality condition

can lead to a maximum of the negated score function rather than a minimum, and thus

decreases the score function rather than increasing it. As a workaround, it is possible to
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limit the covariance matrix to the space of diagonal matrices with positive elements, or to

incorporate the positive definiteness of the covariance matrix into the estimation (as will be

done by using the Cholesky factor in Section 2.8).

For now, assume that rpq is positive. Fig. 2.1 shows how to solve the equation ra + s +

λsign(a) = 0 for positive r. The non-zero solution exists only when λ < |s̃pq|. With this

condition, the first order optimality condition is met at:

apq ← sign(s̃pq)
λ− |s̃pq|
rpq

(2.65)

apq = 0: Suppose that the optimum apq is actually zero. The first order optimality condition

is now

0 ∈ ∇apqK(A)− λ[−1, 1] (2.66)

or

0 ∈ rpqapa + s̃pq + λ[−1, 1] = s̃pq + λ[−1, 1] , (2.67)

which is equivalent to λ ≥ |s̃pq|. Combining the two conditions, the optimum apq can be

written compactly as a soft thresholding operator:

apq ← sign(s̃pq) min

(
0,
λ− |s̃pq|
rpq

)
. (2.68)

The process is repeated element-by-element (or block-by-block of elements) until convergence

is reached. Unlike the original formulation of Eq. (2.54) in terms of vec(A), this approach

only requires knowledge of 〈Fj,t−1〉, ΓΓΓ
(j)
w , 〈gj,t〉. This makes the problem tractable, and

reduces the number of required parameters from (M2D)2 to M2(D2+D+1), an improvement
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Figure 2.1: Finding the first-order optimal point in an `1 regularization problem.
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of order M2.

In order to further speed up the process, it is possible to update multiple elements simul-

taneously. However, a new update equation should be designed such that the simultaneous

update of multiple elements is efficient. This is not possible with the structure of Ã\pq, since

the matrix should be constructed for every element separately. The trick is to replace Ã\pq

with Ã and cancel out the extra contribution of ãpq by subtracting an auxiliary term:

s̃pq =
[
2ΓΓΓ(j)

w Ã 〈Fj,t−1〉
]
pq
− 2

[
ΓΓΓ(j)

w

]
pp
ãpq 〈Fj,t−1〉qq −

[
2ΓΓΓ(j)

w 〈gj,t〉
]
pq

(2.69)

To simultaneously update the elements of A with row indices in φ ⊂ {1 · · ·M} and column

indices in ψ ⊂ {1 · · ·MD}, the scalar equation ra+ s+ λsign(a) = 0 is rewritten in matrix

form as:

Rφψ �Aφ,ψ + S̃φ,ψ + λsign(Aφ,ψ) = 0|φ|×|ψ|

Rφψ = diagφ
(
2ΓΓΓ(j)

w

)
diagTψ (〈Fj,t−1〉) (2.70)

S̃φψ =
[
2ΓΓΓ(j)

w Ã 〈Fj,t−1〉 − 2 ΓΓΓ(j)
w 〈gj,t〉

]
φψ
−Rφψ � Ãφψ

with (Xφ,ψ)i,j = X{φ}i,{ψ}j , � representing the Hadamard product, and diagφ(X) a column

vector whose ith element is the {φ}ith diagonal element of X. Then, the update equation

will be:

Aφψ ← sign(S̃φψ)�min

(
0,
λ− |S̃φψ|
Rφψ

)
(2.71)

with all operations performed element-wise.

Finally, to enforce the stability of the system, the elements of A at each iteration are shrunk

by a factor proportional to the largest eigenvalue of the current estimate of A. The two-step

procedure of updating A and enforcing stability is repeated until convergence is reached.
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2.8 Estimating Positive Definite Noise Covariances

Rather than calculating the derivative w.r.t. Σw, we take the derivative of the joint likelihood

function w.r.t. ΓΓΓw. To do this, we exploit the following identities:

∂ ln |X|
∂ X

= X−1, ln |X−1| = − ln |X|, ∂ zTMz

∂ M
= zzT . (2.72)

Then, with w
(j)
t = vt −A(j)Vt−1:

∂ EjL
∂ ΓΓΓw

=Ej
∂ L
∂ ΓΓΓw

=Ej
∂

∂ ΓΓΓw

[
− T ln |Σw| −

T∑
t=1

w
(j)
t

T
ΓΓΓww

(j)
t

]

=TΣw −
T∑
t=1

Ej{w(j)
t w

(j)
t

T
} = 0M×M . (2.73)

After replacing the expression for w
(j)
t and calculating the expectations, we get the following

update equation for Σw:

Σ(j+1)
w = 〈fj,t〉 − 〈gj,t〉A(j)T −A(j) 〈gj,t〉T + A(j) 〈Fj,t−1〉A(j)T (2.74)

with 〈xt〉 , (
∑T

t=1 xt)/T representing the temporal average of the argument. Note that

this update equation does not guarantee the positive definiteness of the covariance matrix,

which can cause problems in estimation of the connectivity matrix, as explained in Sec.

2.7. Apart from the more general Cholesky factorization discussed below, this problem

can be addressed by restricting the covariance matrix to be diagonal. In this case, Σw =

diag(σ2
w,1, · · · , σ2

w,M). Choosing σ−2
w,n as the parameters of interest and setting the derivative
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to 0, it is straightforward to show that the update equation is:

(σ2
w,n)(j+1) =

〈
Ej
∣∣ (wt)n

∣∣ 2
〉

= (
〈
Ej{wtw

T
t }
〉
)n,n = (Σ(j+1)

w )n,n (2.75)

In the simple case of Σw = σ2
wIM , the update equation reduces to:

(σ2
w)(j+1) = tr(Σ(j+1)

w )/M . (2.76)

Similar equations can be derived for the Σu update. With u
(j)
t = yt −Cvt:

∂ EL
∂ ΓΓΓu

= E
∂ L
∂ ΓΓΓu

= E
∂

∂ ΓΓΓu

[
− T ln |Σu| −

T∑
t=1

u
(j)
t

T
ΓΓΓuu

(j)
t

]

= TΣu −
T∑
t=1

E[u
(j)
t u

(j)
t

T
] = 0N×N (2.77)

which results in:

Σ(j+1)
u =

〈
yty

T
t

〉
−
〈
ytm

T
j,t

〉
CT −C

〈
ytm

T
j,t

〉T
+ C 〈fj,t〉CT . (2.78)

For the case of a diagonal Σu, update equations similar to those for a diagonal Σw are used.

Unfortunately, the covariance update Eqs. 2.74 and 2.78 do not guarantee the positive

definiteness of the result. Estimation of positive definite covariance matrices has been exten-

sively studied in the literature [90, 119, 53]. In what follows below, we exploit the uniqueness

of the Cholesky decomposition of symmetric positive definite matrices.

Any positive definite matrix is readily parameterized in the space of its Cholesky factor.

Furthermore, the Cholesky factors have real and positive diagonal elements. The uniqueness

facilitates casting an unconstrained optimization problem in the space of Cholesky factor in

order to keep the estimate of covariance positive definite at all iterations.
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Given the log likelihood function, it is more convenient to formulate the problem in terms

of the Cholesky factor of precision matrix rather than covariance matrix. To exploit the

Cholesky factorization in our optimization, note that the ΓΓΓ-dependent terms in the log-

likelihood are of the following form:

aTΓΓΓb (2.79)

ln |ΓΓΓ| . (2.80)

Define the Cholesky decomposition of ΓΓΓ ∈ Rk×k as ΓΓΓ = LLT , where L is a lower triangular

real matrix with positive diagonal elements.

Derivative of ln |ΓΓΓ|

The derivative of ln |ΓΓΓ| w.r.t L is calculated as follows. First, |ΓΓΓ| = |L||LT | = |L|2. Conse-

quently, ln |ΓΓΓ| = 2 ln |L|. Also, since L is triangular, its determinant is equal to the product

of its diagonal elements. Then:

∂ ln |L|
∂ vech (L)

=
∂
∑k

i=1 lnLii
∂ vech (L)

=
∂
∑k

i=1 lnLii
∂ vec(L)

∂ vec(L)

∂ vech (L)

= [L−1
11 ,01×k, L

−1
22 ,01×k, · · · , L−1

kk ]STk

= [L−1
11 ,01×k−1, L

−1
22 ,01×k−2, · · · ,01×1, L

−1
kk ] (2.81)

where Sk ∈ Rk(k+1)/2×k2 is the elimination matrix of order k [75], and vech (.) is the half-

vectorization operator [44].
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Derivative of aTΓΓΓb

Applying the chain rule [76] to the identity aTΓΓΓb = (aTL)(LTb):

∂ aTΓΓΓb

∂ vech (L)
= (bTL)(Ik ⊗ aT )STk + (aTL)(Ik ⊗ bT )STk (2.82)

which is linear in the elements of L. To emphasize this linearity, we can factor out STk and

use the following identities:

vec(AXB) = (BT ⊗A)vec(X) (2.83)

vec(L)T = vech (L)T Sk (2.84)

xT ⊗ y = yxT (2.85)

for generic matrices A, B, and X and column vectors x and y to write the derivative as:

∂ aTΓΓΓb

∂ vech (L)
= vech (L)T Sk[Ik ⊗ (abT + baT )]STk . (2.86)

Derivative of the log-likelihood

For the following prototypical expression:

f(L) = −T ln |Σ| −
T∑
t=1

E[aTt ΓΓΓat] , (2.87)
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setting the transpose of the derivative to 0 leads to the following nonlinear equation in

vech (L):

(
∂ f

∂ vech (L)

)T
∝ SkD(L)− Sk[Ik ⊗ΛΛΛ]STk vech (L) = 0 k(k+1)

2
×1

ΛΛΛ ,
〈
E[aaT ]

〉
D(L) , [L−1

11 ,01×k, L
−1
22 ,01×k, · · · ,01×k, L

−1
kk ]T . (2.88)

The special structure resulting from the combination of the Kronecker product and the

elimination matrix helps solve this equation efficiently without resorting to non-linear solvers.

To see this, define ei = [1/Lii,01×(k−i)]
T , Gi = ΛΛΛ(i:k),(i:k), and hi = [Li,i, Li+1,i, · · · , Lk,i]T , so

that the system of non-linear equations can be re-written as:



G1

G2

. . .

Gk





h1

h2

...

hk


=



e1

e2

...

ek


, (2.89)

which is a decomposition into k independent systems of equations. The structure of the

problem is also shown in Fig. 2.2. For the ith sub-system Gihi = ei:

ΛΛΛ(i:k),(i:k)L(i:k),i =

 1/Lii

0(k−i)×1

 . (2.90)

Denote the solution of this problem by Lnonlin
(i:k),i . Now, if 1/Lii on the right hand side is replaced

with 1, the result is a linear system in the elements of Li:k,i. Denote the solution of this linear

system by Llin
i:k,i. In a Gaussian elimination procedure, by eliminating the variables bottom-

up, the final equation is of the form cLlin
ii = 1 for some constant c which is independent of the
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Figure 2.2: structure of the nonlinear equation f(L) = 0

right hand side of the equation. Consequently, Llin
ii = 1/c. Repeating the same procedure for

the nonlinear system, the final equation is cLnonlin
ii = 1/Lnonlin

ii , which leads to Lnonlin
ii = 1/

√
c.

Therefore, the nonlinear solution is related to the linear solution by Lnonlin
ii =

√
Llin
ii . The

rest of the variables are scaled by the same factor Lnonlin
ii /Llin

ii = 1/
√
Llin
ii . Therefore:

Lnonlin
i:k,i = Llin

i:k,i ×
1√
Llin
ii

. (2.91)

Finally, this result can be applied to update Lu and Lw respectively by using:

ΛΛΛw = 〈fj,t〉 − 〈gj,t〉A(j)T −A(j) 〈gj,t〉T + A(j) 〈Fj,t−1〉A(j)T

ΛΛΛu =
〈
yty

T
t

〉
−
〈
ytm

T
j,t

〉
CT −C

〈
ytm

T
j,t

〉T
+ C 〈fj,t〉CT (2.92)

which is the same as Eqs. (2.74) and (2.78) for unconstrained covariance updates.
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2.9 Hyperparameter Selection

The proper value of the hyperparameters λ and D are selected by k-fold cross validation.

Specifically, k = 10 is used for the evaluations. The dataset is partitioned into k non-

overlapping subsets. For any given candidate value of D and λ, the estimation algorithm

is repeated k times, each time using k − 1 out of the k data subsets as the training set for

parameter estimation, and the remaining one data subset as the test set. The validation

cost is the mean one-step prediction error evaluated over the test set, averaged over all k

possible data partitions. The hyperparameters resulting in the smallest validation cost are

then selected. The candidate values for the hyperparameters may be obtained from a grid

over log λ and D. More efficient approaches such as Bayesian Hyperparameter Optimization

[37] may be used to obtain the candidate hyperparameters. An example of hyperparameter

selection is provided in Section 3.1.

2.10 Computational Complexity

The EM algorithm for the estimation of the system parameters is summarized in Algorithm 1.

The connectivity matrix is initialized with small values (� 1) drawn from a zero-mean normal

distributions with a variance of 10−4. Moreover, the covariance matrices are initialized as

identity matrices. Although not presented here, our simulations show that the initialization

does not affect the convergence of the algorithm.

If implemented näıvely, each step of the Kalman filter results in a complexity of order

O((MD)3 + (MD)N2 + (MD)2N + N3) which is equivalent to O((MD)3 + N3). However,

the special structure of Ae in Eq. (2.47) may be exploited to reduce the complexity to

O(M3D2 + N3). If the Kalman filter is implemented for all time samples, then the overall

complexity of the Kalman filter is given by O(T (M3D2 +N3)). As will be discussed shortly,
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Algorithm 1 EM algorithm for sparse connectivity estimation

1: Input: {y1 · · ·yT}, initial guess of parameters (A, Σu, Σw), hyper-parameter λ and D
2: Apply KF to find Mt,Pt,Rt (Eq. (2.51))
3: Calculate all 〈.〉 in Eq. (2.92)
4: repeat
5: update Σu using Eqs. (2.90,2.91,2.92), run KF, update all 〈.〉 in Eq. (2.92)
6: update Σw using Eqs. (2.90,2.91,2.92), run KF, update all 〈.〉 in Eq. (2.92)
7: repeat
8: select the set of rows φ and set of columns ψ of A to be updated
9: update A using Eq. (2.71), run KF, update all 〈.〉 in Eq. (2.64)
10: until convergence of A
11: until convergence of A, Σu, Σw

the algorithm does not need to apply the Kalman filter over the entire dataset, leading to

the elimination of factor T .

The time complexity of updating the noise covariance matrices is found by analyzing Eqs. (2.90),

(2.91), and (2.92). The calculation of ΛΛΛw and ΛΛΛu in Eq. (2.92) imposes a complexity of

O(M3D2) and O(NM2 + N2M) respectively. Furthermore, an extra O(M4) and O(N4) is

added for solving the set of equations in Eq. (2.89) for ΛΛΛw and ΛΛΛu respectively. Therefore,

the overall complexity of updating the estimate of ΛΛΛw and ΛΛΛu is given by O(M4 + M3D2)

and O(N4 + NM2 + N2M). The complexity of updating the connectivity matrix is sim-

ilarly calculated; an analysis of Eq. (2.71) reveals a complexity of O(M3D) for Line 9 of

Algorithm 1.

The Kalman filtering is performed after updating each of the parameters Σu,Σw,A to calcu-

late the temporal averages (〈.〉). Profiling Algorithm 1 reveals that the repetitive execution

of the Kalman filter and the iterative nature of coordinate descent for the update of A are

the main computational bottlenecks. The complexity, however, can be reduced consider-

ably under certain conditions and approximations described below. The results reported in

Section 3.3 use an efficient implementation of the algorithm that includes all the following

performance guidelines.
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Fewer KF runs

If we assume that the shape of the Q function in Eq. (2.36) (specifically, the position of the

optimum point in the parameter space) does not change significantly after a single parameter

update (Lines 5, 6, and 9 of Algorithm 1), it is possible to run the KF less frequently. For

example, all the KF steps in Algorithm 1 may be replaced by one KF step after Line 10, when

all parameters have been updated once. This assumption is realistic because the parameter

update equations use temporal averages of the KF outputs and the temporal averaging

smooths out the variations in the time-averaged KF outputs caused by small changes to the

parameters.

Generalized EM

Using Generalized EM [36, 80], the iteration-within-iteration bottleneck introduced by the

update of A can be avoided. A single (or a few) step(s) of the A update can replace the

coordinate descent loop (Lines 7 through 10 of Algorithm 1). This strategy works because

a single update of A increases the objective function Q even if it does not maximize it.

Asymptotic Approximations

The update equations use temporal averages rather than the direct KF outputs. Since the

temporal averages converge after a large enough number of time steps, the steady-state

behavior of the KF can simplify the update of the temporal averages and possibly eliminate

the need to run the KF. One approach is to find analytic expressions for the temporal

averages and thus avoid the KF altogether. Another approach is to monitor the change in

temporal averages and stop the KF as soon as convergence is reached. We use the latter

approach in the examples presented next.
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Stochastic Gradient Descent

The MAP algorithm builds on the joint likelihood function in Eq. (2.38) which takes all

the observations into account. This form of likelihood eventually leads to the repetitive

application of the Kalman filter on the same interval of the dataset. Alternatively, the cost

function may be approximated by the cost of a single example as is done in Stochastic

Gradient Descent (SGD) [13]. In particular, a single step of the Kalman filter is executed

upon the arrival of a new data point. The output of the Kalman filter then substitutes the

temporal averages in Algorithm 1 and the parameters are updated accordingly. In addition

to the significant reduction in complexity, the SGD scheme allows for on-line estimation of

time-varying parameters. Finally, momentum and averaging techniques may be applied to

improve the performance of SGD [91].

To provide realistic estimates of the run-time, the algorithm was implemented in MATLAB

and applied to a dataset with 10000 time samples for different problem dimensions on an Intel

Core i-5-7200U CPU (2.5 GHz × 4) with 8 gigabytes of RAM. The results are summarized

in Table 2.1.
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N = 10

D = 10 D = 30 D = 90

M = 10 .9 1.8 16.5

M = 30 2.2 17 152

M = 90 22.5 203.5

N = 30

D = 10 D = 30 D = 90

M = 10 1.3 2.5 16

M = 30 2.8 17 149.2

M = 90 22 188

N = 90

D = 10 D = 30 D = 90

M = 10 1.7 2.9 16.8

M = 30 3.2 18.1 154

M = 90 24.1 204.4

Table 2.1: Execution time per time sample of input dataset in miliseconds. The algorithm
is implemented in MATLAB and executed on an Intel Core i-5-7200U CPU (2.5 GHz × 4)
with 8 gigabytes of RAM. The M = D = 90 requires more system memory than is available
on the target hardware.
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Chapter 3

Evaluation of the Sparse Linear

MVAR Parameter Estimation

Algorithm

3.1 Demonstration

For the initial simulation study, a synthetic system consisting of 20 nodes (M = 20) and 20

dimensional observations (N = 20) with D = 20 is considered. The evaluation is extended to

other problem dimensions in Section 3.3. For the first set of results, the 20×400 connectivity

matrix is assumed to have 40 non-zero values selected randomly, and stability is imposed by

shrinking the connectivity coefficients until the conditions of the Gershgorin circle theorem

are met [8]. The covariance matrices Σu and Σw and the measurement matrix C are gener-

ated randomly. The actual values of Σu and Σw were observed to have negligible influence

on the estimation of the connectivity matrix; both the estimated covariance and the ground

truth covariance were used in the connectivity estimation and the results did not show any
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Figure 3.1: Colormap of the relative error (in percentage) between the estimated and the
ground-truth covariance matrices for different problem dimensions. For each problem dimen-
sions, the estimation is repeated for 100 different ground-truth covariances and the results
are averaged. The estimation performance slightly degrades with the problem dimension
and is more sensitive to M .

significant sensitivity. Nevertheless, a summary of the covariance estimate performance is

provided in Fig. 3.1 for different problem dimensions.

The proper value of the hyperparameters λ and D are calculated per the cross–validation

procedure discussed in Section 2.9. The search space is logarithmic in λ and linear in D.

In order to reduce the computational complexity of a brute-force grid search, a Bayesian

Hyperparameter Optimization approach [37] is used to choose candidate values. Fig. 3.2

shows the validation cost in the λ − D plane. It is observed that the true value of D is

almost at the center of the lowest cost contour; thus, the validation cost surface is capable
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of estimating D with a good accuracy.

Fig. 3.3 compares the estimated and true connectivity coefficients at different values of λ

for an instance of ground truth Σu, Σw, C, and A. As expected, by increasing the strength

of the regularization (larger λ), fewer non-zero connections emerge. The metrics used for

evaluating the algorithm performance are described below.

3.2 Evaluation Metrics

Intuitively, the quality of the estimate is high if a truly strong (weak) connection is estimated

as a strong (weak) connection. The simplest embodiment of this quality measure is to classify

the connections as either strong or weak. Defining the strength threshold T as a fraction of the

maximum estimated strength, all connection strengths larger (smaller) than the threshold

are said to be strong (weak) connections, which leads to a binary classification. Based on

this definition, classical measures such as true positive rate (TPR), positive prediction value

(PPV), true negative rate (TNR), negative prediction value (NPV), and the area under

the ROC curve can be used to quantitatively evaluate the performance of the algorithm.

In a general classification problem, let Npn denote the number of positive samples that

are classified as negative. If Npp, Nnp, and Nnn are defined similarly, the four detection

performance measures are given by:

TPR =
Npp

Npp +Npn

(3.1)

PPV =
Npp

Npp +Nnp

(3.2)

TNR =
Nnn

Nnn +Nnp

(3.3)

NPV =
Nnn

Nnn +Npn

. (3.4)
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Figure 3.2: Colormap of the validation cost for the example discussed in Section 3.1. Blue
represents low cost and red represents high cost. Although the D domain search is linear,
the results are shown in log domain for a better visual representation.
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Figure 3.3: Estimated connectivity coefficients and actual connectivity coefficients for differ-
ent regularization parameters (λ = 0, .6, 2.2 from top to bottom). The black circles show the
location of actual connections and their radius is proportional to the strength of the actual
connection at that location. The gray-map represents the strength of the estimated connec-
tivity, with white and black representing the minimum and maximum values, respectively.

As an example, consider measuring the accuracy of the algorithm in detecting all the con-

nections stronger than .9Amax, where Amax is the value of the strongest connection. To do

this, we set T = .9 and calculate TPR, PPV, TNR, and PPV from the estimation output.

Fig. 3.4a illustrates the PPV against the regularization parameter λ for different detection

thresholds and M = D = N = 20. The results are averaged over 1000 different system

realizations (connectivity patterns and interference statistics), but all with the same number

of non-zero connections. While similar curves may be obtained for TPR, TNR, and NPV,

some of these curves do not provide much insight. For instance, NPV and TNR are very close

to 1 and do not carry much information about the performance, a phenomenon primarily

due to the sparseness of the connectivity matrix. Because of the trade-off between TPR and

PPV, it is more meaningful to focus on the performance of the algorithm in terms of an

acceptable TPR-PPV pair or the area under the TPR-PPV curve. Fig. 3.4b shows a plot

of PPV vs. TPR. As expected intuitively, a high PPV is not achievable without sacrificing

TPR. However, if a smaller subset of the strongest connections is of interest (a threshold of

0.9 compared to 0.5), a higher TPR is achievable for any given PPV and vice versa. For
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Figure 3.4: a) (LHS) detection performance vs regularization parameter for different de-
tection thresholds. b) (RHS) Positive prediction value vs. true positive rate for different
detection thresholds.

instance, it is observed that for a detection threshold of 0.8, both a TPR and PPV larger

than 90% is achievable.

3.3 Comparison with Previous Work

The following methods have been selected from the literature for comparison with the algo-

rithm proposed in this article. In most cases, the algorithms have been modified/augmented

to be as consistent as possible with our system model:

Granger causality for multiple time series

In [74], node activities (as well as measurement noise statistics) are first estimated from the

observations by solving the inverse problem. A similar multivariate autoregressive model is

assumed to govern the interaction of node activities. The weights of the linear combination,

{A1, · · · ,AD} (together with the process noise statistics) are estimated from the known

activity estimates by minimizing the resulting one-step prediction error. Since the weights

denote the causal connections, all weights stronger than the threshold T are chosen as strong
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Figure 3.5: Comparison of our work (Sparse EM) with previous work (RJMCMC [21], Single
Stage [22], PDC [6], Granger [74]) at two different levels of sparsity. The curves demonstrate
achievable PPV-TPR pairs as T varies. Problem dimensions are M = D = N = 20.

connections. Since there exists no regularization parameter here, the TPR and PPV depend

only on T . The TPR-PPV curve is then calculated by eliminating T between TPR(T ) and

PPV(T ).

Partial Directed Coherence

Baccala et al. [6] introduced the concept of PDC as a frequency domain implementation of

Granger causality. Once the AR coefficients A1, · · · ,AD have been estimated by minimizing

the one step prediction error, a frequency transform A(ω) =
∑D

d=1 Ade
−jωd is calculated.

The PDC measure between any pair of nodes is then calculated from A(ω), followed by an

averaging over ω. If the PDC measure κi,j between nodes i and j is greater than T (i.e.

the connection is strong enough), the corresponding delay is estimated as the location of the

peak of [(A1)ij, · · · , (AD)ij].
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Conditional Granger and Single-Stage Non-Sparse Connectivity Estimation

Cheung et al. [22] avoid a two-stage method by jointly estimating the activity and state

transition matrix using EM. However, the objective function does not incorporate connection

sparsity. The conditional Granger causality metric [48] is applied to the estimation result to

determine the connectivity. Connections stronger than T are considered for calculating the

TPR-PPV performance metric.

RJMCMC-aided Minimum-Variance Estimate From Parameter Posterior

The authors of [21] assume that the node activities are available. Therefore, their algorithm

should be preceded by estimating the node activities by solving the corresponding inverse

problem. With the node activities available, the (scaled) parameter posterior p(A|Y ) is

calculated using a Laplacian prior on the connectivity elements to impose sparsity. Then,

the connectivity is estimated using Ep(A){p(A|Y )}. Since the integrand of the expectation

is highly complex in the parameters, RJ-MCMC is used to perform numerical integration

and calculate the estimate. Note that unlike [21], the simulation is repeated for different

regularization parameters rather than considering a non-informative prior on λ and averaging

using RJMCMC.

Even after the modifications, the residual inconsistencies preclude a direct algorithm com-

parison using curves similar to Fig. 3.4. First, it is not possible to add the regularization

parameter to the framework of the first three methods [74, 6, 22]. Second, the algorithms in

[74, 6, 22] are not designed to take sparsity into account. Thus, comparison with a method

tailored to sparsity is not fair. We suggest the following remedies to resolve these issues;

First, for our algorithm and for [21], the free variable λ is replaced with an optimum value

found by 10-fold cross validation. Second, different ground truth sparsity is assumed, rang-

ing from very sparse systems to non-sparse. For each given level of sparsity, 1000 different
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Sparse EM RJMCMC [21] Single Stage [22] PDC [6] Granger [74]

s̄ = 0.99 0.7960 0.6495 0.3150 0.2060 0.1465

s̄ = 0.90 0.6820 0.6365 0.3530 0.2400 0.1775

s̄ = 0.80 0.6275 0.6105 0.5510 0.2980 0.2530

Table 3.1: Comparison of our work (Sparse EM) with previous work (RJMCMC [21], Single
Stage [22], PDC [6], Granger [74]). The ground truth sparsity level s̄ is varied as .99, .9, and
.8. The table data represent the area under ROCs in Fig. 3.5 .

ground truth connectivity patterns are considered. The performance of the algorithm is then

averaged over these 1000 systems. As a result, TPR and PPV will be functions of T and the

sparsity level s̄, where s̄ = 1− s and s is the fraction of non-zero ground truth connections.

To plot TPR vs. PPV, an independent variable should be selected and then eliminated.

Given the dependence of both PPV and TPR on a) sparsity level s̄, b) strength threshold

T , and c) algorithm choice, it is possible to compare the performance of different algorithms

at a fixed s̄ by varying T as the independent variable. Fig. 3.5 uses this strategy to

summarize the relative performance of the algorithms at different levels of sparsity. Note

that different algorithms are not guaranteed to attain the same bounds on TPR and PPV

as T varies. To facilitate the comparison of the algorithms under different levels of sparsity,

Table 3.1 summarizes the TPR-PPV curves of Fig. 3.5 by calculating the area under the

curves. Similar to the area under a receiver operating curve (ROC), a higher value generally

indicates a superior overall performance.

The results in Fig. 3.5 and Table 3.1 reveal that the proposed algorithm achieves better

TPR-PPV pairs compared to the previous work especially for high sparsity levels. The

method of [21] performs better than the others as it takes the sparsity directly into account.

The relatively superior performance of our algorithm compared to [21] can be attributed to

the single-stage joint estimation utilized in our work compared with the two-stage method

approach of [21]. It is also observed that the single-stage method of [22] performs better than

other non-sparse methods that resort to two-stage estimation. Overall, at medium to high
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levels of sparsity, the superior performance of our algorithm is consistent with expectation

since the other methods (except for [21]) are designed for connectivity patterns without any

sparsity prior.

With a decreasing level of sparsity, it is observed that our algorithm and [21] slightly degrade.

This is a consequence of the inconsistency between the assumption of a sparse system and

the reality of a non-sparse system. Nevertheless, the performance degradation of the sparse

methods with decreasing ground truth sparsity is still much less than that of the non-sparse

methods with increasing sparsity since the sparse methods can partially adapt themselves

to the ground truth level of sparsity. In other words, the cross-validation can automatically

choose the correct value of λ that best fits the ground truth sparsity level. For a less sparse

system, the cross validation chooses a smaller value of λ. Although this hyper-parameter

selection slows down the performance degradation with decreasing sparsity, it cannot mitigate

the degradation altogether.

The results presented thus far indicate superior performance of the proposed algorithm,

henceforth referred to as Sparse EM, with a problem dimension of M = N = D = 20

under different levels of sparsity. However, more extensive simulations are required for other

problem dimensions. To this end, we consider parameters pairs (M,D) in {20, 40, 60, 80} ×

{10, 20, 30, 40}. For each (M,D), the value of N is set equal to M , since the value of N was

observed to have negligible effect on the estimation performance as long as N ≥M .

Three different levels of sparsity (s̄ ∈ {.9, .8, .5}) were considered for the simulations. For

each parameter tuple (M,D, s̄) and for each algorithm, 100 different test systems were gen-

erated and the parameters were estimated. The ROC curves were calculated from the esti-

mation results and averaged over the 100 test systems. Finally, the area under the averaged

ROC curves was used as the performance metric.

Fig. 3.7 illustrates the simulation results. The colormaps represent the averaged area under
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the ROC curves. The sparsity level is fixed for each column and the two axes of each col-

ormap represent the values of M and D. The vertical layers represent the proposed method,

RJMCMC [21], Single Stage [22], PDC [6], and Granger [74] from top to bottom respectively.

In order to improve the visual interpretability of the results, the original colormaps have been

processed by histogram equalization [4] and the colorbars have been modified accordingly.

Regardless of the sparsity level and the algorithm choice, the estimation performance decays

with increasing M and D. It is also observed that the performance gap between the Sparse

EM and the other methods is more significant at higher levels of sparsity.

At a sparsity level of s̄ = .9, the Sparse EM and the RJMCMC methods perform noticeably

better than the other three methods. Furthermore, the Sparse EM method outperforms

the RJMCMC method by an approximate margin of .2. The results also reveal that the

performance of Sparse EM is more robust to an increasing problem dimension. Notice that

a sparsity of s̄ = .9 on the entire connectivity matrix (of dimension M ×MD) is equivalent

to a lower level of sparsity in terms of the node-to-node spatial connectivity, which defines

two nodes to be spatially connected if at least one of the delay lines between the nodes is

active. Assuming that the locations of the non-zero elements of A are selected randomly and

independently, the probability that two nodes are not connected may be approximated by

Pdisconnect = s̄D which is always smaller than s̄. As shown in Fig. 3.6, even at an apparently

high sparsity level of s̄ = .9, the probability that two nodes are spatially disconnected is

low. Therefore, the proposed Sparse EM algorithm can outperform the other methods not

only under highly sparse systems, but also under relatively spatially dense systems. The

performance gap, however, decreases as the system becomes more dense.

At lower sparsity levels of s̄ = .8 and .5, the performance of Single Stage [22], PDC [6], and

Granger [74] improve, but still underperform the Sparse EM and the RJMCMC method. At

s̄ = .5, RJMCMC performs on par with Sparse EM and can even outperform our method at

low values of M . Still, the proposed method is more robust to increasing D and M compared
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Figure 3.6: The relationship between Pdisconnect (y axis) and s̄ (x axis).

to RJMCMC.

3.4 Application to Temperature Prediction

To evaluate the performance of the algorithm on real data, we consider the problem of

identifying the predictive directional interactions between the daily averaged temperatures

recorded at weather stations across the mainland U.S.1. This problem is one example where

ground-truth is not available: without accurate knowledge of the complex climactic mech-

anisms that underlie the evolution of global temperatures, it is not possible to determine

how the temperature at one location at one point in time influences the temperature value

measured at another location and time sample. Therefore, no physical meaning should be

associated with the inferred interactions. Rather, the interactions only provide a measure of

1The dataset is available at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/.
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Figure 3.7: The area under the ROC curve for different algorithms, sparsity levels, and
problem dimensions. Layer from top to bottom: The proposed method, RJMCMC [21],
Single Stage [22], PDC [6], and Granger [74]
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Figure 3.8: Locations of the weather stations included in the temperature causality analysis.

predictive power between the temperatures. Despite the absence of ground-truth, the esti-

mation should be consistent with expected observations such as strong interactions between

nearby points.

The data from 2016 and 2017 are preprocessed to include stations that are at least 150 miles

apart and whose data covers the entire year. The stations included in the analysis are shown

in Fig. 3.8. The time series are detrended at each station using polynomials of order 6 and

then normalized to have zero mean and unit variance.

The time series of interest are recorded directly at each station. Therefore, the measurement

matrix C is set to identity. As the temperature measurements are presumed to be accurate,

the measurement noise uk is assumed to have i.i.d components with a power equal to one

tenth of the signal power. The cross-validation approach discussed previously is used to
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Figure 3.9: The predictive interaction among temperature data. The strength of interaction
is encoded by color and transparency.

determine the optimal choice of D and λ based on the available data.

Figure 3.9 depicts the results of the connectivity estimation. According to Eq. (2.2), the

influence of node i on node j may be expressed by the equation vj[k] =
∑D

τ=1 ai,j[τ ]vi[k− τ ].

The strength values used to produce Fig. 3.9 are calculated as
∑D

k=1 |ai,j[k]| to summarize

the interaction over multiple time delays.

To gain insight beyond that provided by Fig. 3.9, we investigate the correlation between the

predictive strength and the distance between the stations. Fig. 3.10 shows the correlation

between the strengths of interactions and the distance between the stations. To bring out

the pattern, the sparse reverse Cuthill-McKee ordering algorithm [23] is used to reorder the

original distance matrix such that nearby stations are grouped closely together. The causal

strength matrix is reordered similarly. As expected, all significant interactions only exist

between nearby stations and no interaction is observed between distant stations.

Another approach to verify the results is to examine the predictive power of different stations

and match it with expected climactic phenomena. Fig. 3.11 plots the predictive power of
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Figure 3.10: The correlation between the strength of interaction and station distance after
applying sparse reverse Cuthill-McKee reordering [23] of the matrices to group together
nearby stations.

the stations in the U.S., where the predictive power of a station i is defined as
∑

τ,j |ai,j[τ ]|.

The results are consistent with those reported in [82], which showed that the locations along

longitudes of 110 degrees west and 90 degrees west have the highest predictive power. More-

over, our method also detects relatively high predictive power for coastal stations located on

the east and west cost as well as near the Gulf of Mexico. Although a physically meaningful

association is not possible due to the use of a “physics–ignorant” model, the predictive power

of the coastal stations coincides with the expected influence of the ocean on the mainland

temperatures, which is consistent with the known influence of major ocean currents such as

the California, Caribbean, Gulf stream, and north Atlantic currents on the mainland tem-

perature. The ocean–land interaction mechanisms include, but are not limited to the ocean

serving as a heat-retaining panel, distributing the temperature, generating surface winds,

and producing rain.

62



 130 °
 W

 120 °
 W

 110 °
 W  100 °

 W   90
° W   80

° W
  70

° W
  6

0
°  W

 30 °
 N  

 40 °
 N  

 50 °
 N  

Figure 3.11: The predictive power of the stations. Larger circles encode higher predictive
power.

3.5 Application to EEG Data

In this section, we investigate the challenges in applying the proposed estimation framework

for identifiying the effective macroscale brain connectivities from EEG recordings.

3.5.1 Dataset Description

The Recordings and the Geometry

The EEG dataset consists of the electrode recordings and the geometry of the cortex, scalp,

and electrodes. The EEG signals are recorded over 128 electrodes for 50 seconds with a

sample rate of 1024 Hz. The recording are corrected for eye movement. The subject are in

resting state, with eyes open for one dataset and eye closed for the other dataset.

The electrode locations are given as polar coordinates on a unit sphere. To map these to
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Figure 3.12: Processed EEG recordings for closed eye resting state

locations on the scalp, the original locations are extended radially until they coincide with

the surface of the scalp. 18 of the electrodes are excluded from the analysis due to either

lack of interpretation or low SNR. Fig. 3.12 shows the corrected EEG recordings.

The geometry of the brain and the scalp is encoded as a set of vertex coordinates and faces,

where each face connects 3 vertices. Fig. 3.13 illustrates the geometry of the scalp and the

cortex. The electrode locations are shown in Fig. 3.14.

Lead Field Matrix

For EEG analysis (e.g., localization of neuronal activity on the cortex), the problem of

determining the measurement matrix, alse referred to as the gain matrix and the lead field

matrix (LFM), is a well-studied problem, and numerous methods have been developed to

address it. For example, MRI images can be used to reconstruct the geometry of the cortex

and the scalp, and then finite boundary element modeling can be used to reconstruct the
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Figure 3.13: The geometry of the scalp and the cortex. The dimensions are in milimeters.
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Figure 3.14: The location of electrodes w.r.t the scalp. The green electrodes are used in
the analysis. Red and blue electrodes are excluded due to either low SNR or lack of inter-
pretability.

electromagnetic propagation from the brain, through the skull, and to the electrodes on the

scalp (see [2] for an example of this kind of approach).

3.5.2 Dataset Characteristics

Ill-Conditioned LFM

The gain matrix resulting from the three layer head model is fat due to the high number

of patches required to capture the geometry of the cortex. Figs. 3.15 through 3.18 show

samples of the strongest 20 modes of the LFM obtained by Singular Value Decompositon

(SVD). These modes capture more than 99% of the variability in the LFM. Even after

performing a cortex segmentation [28], the resulting region-to-electrode gain matrix is low

rank.

The high condition number of the resulting LFM may be attributed to the geometrically

wide impulse responses of individual cortex patches over the scalp, which is a result of the

current-spreading caused by the three layer head model. In this case, it is true that the
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Figure 3.15: The strongest mode of the LFM

Figure 3.16: The 6th strongest mode of the LFM

Figure 3.17: The 11th strongest mode of the LFM
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Figure 3.18: The 16th strongest mode of the LFM

connections ending in or originating from regions with similar steering-vectors (columns of

the lead-field matrix) are fundamentally unidentifiable.

A standard solution to this problem is to interpolate the EEG recordings over the entire

scalp surface and then apply a spatial filter [117] over the scalp and at the sensor locations

to minimize the contributions of the regions which are not located directly under the target

sensor. A similar spatial filter is also applied to the columns of the ill-conditioned LFM

in order to create a well-conditioned linear model. Nevertheless, this approach is not im-

plemented here; The linear state space model suffers from other shortcomings that will be

discussed shortly.

For the macro-scale inter-region connectivity analysis, two brain segmentations are consid-

ered. The Desikan-Killiany Atlas [27] is a 34 area cortical atlas that is based on gyral

morphology. The Destrieux Atlas [28] provides a finer granulated parcellation as it par-

cellates each hemisphere into 74 regions of interest. Figs. 3.19(a) and 3.19(b) show these

brain atlases. To account for the spatially nonuniform activity of the relatively large regions,

SVD is applied to the subset of the LFM that belongs to a given region of interest, and the

strongest mode is selected as a representative of the region activity. The final gain matrix

consists of columns that show the electrode responses to individual region activities.
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(a) The Desikan brain atlas. (b) The Destrieux brain atlas.

Figure 3.19: The two brain atlases used for constructing the region-to-electrode gain matrix.

Spatial Characteristics of the Recordings

A corollary of the ill-conditioned LFM is that the electrode recordings are highly correlated.

Fig. 3.20 shows the correlation between the recordings. As a result, the information provided

by the 128 electrodes is highly redundant and indeed far less informative than expected.

The informative part of the recordings may be extracted by applying principal component

analysis (PCA) to the data by considering the recording at each instant as a point in a

128-dimensional space. Fig. 3.21 shows that more than 99% of the variability is explained

by considering only the first 10 principal components. Similarly, the LFM should be reduced

by multiplying the LFM on the left by the whitening matrix resulting from the PCA.
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Figure 3.20: The correlation between electrode recordings. Electrode indices are shown on
the scalp. A very high correlation exists between nearby electrodes.

Figure 3.21: PCA analysis of electrode recordings. Top left: More than 99% of the vari-
ability is explained by the first 10 principal components. Top right: The first 10 principal
components. Bottom: The recordings are projected into the subspace spanned by the first
10 principal components.
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Figure 3.22: The autocorrelation of each electrode recording. Each subplot is associated
with one electrode. The maximum autocorrelation lag is 25000 samples, or approximately
25 seconds.

Spectrotemporal Characteristics of the Recordings

Even after applying PCA in the spatial domain, the transformed recordings still show sig-

nificant redundancy in time domain. This is evident from the temporal auto-correlations

depicted in Fig. 3.22. From an equivalent perspective, one may investigate the spectrum of

the recordings as shown in Fig. 3.23. Most of the signal energy is concentrated at frequencies

below 4 Hz and around 10 Hz.

As will be discussed shortly, the colored spectrum of EEG may not be well captured by the

linear model even after modifying the model to incorporate colored noise.
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Figure 3.23: The spectrum of each electrode recording. Each subplot is associated with one
electrode. The horizontal axis spans 0 Hz to 30 Hz.

3.5.3 Evaluation

Inflexibility of the White-Noise Driven Linear Model

The parameter estimation algorithm is applied to the described dataset. For the Desikan

atlas, only 25 regions of interest with significant contributions are considered. A maximum

delay of D = 10 and a regularization of λ = .18 was selected by the hyperparameter selection

approach discussed in Section 2.9.

Our simulations show that the convergence point is slightly different between the runs and

depends on both the starting point of the EM and the order in which the connections are

estimate. Fig. 3.24 shows an example of the estimated connectivity matrix. To bring out

the pattern, the estimated connectivity matrix may be represented as a 25×25 grid of plots,

where the subplot (i, j) summarizes the connections into region i originating from region j

at different delays. Fig. 3.25 shows two examples of this representation.
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Figure 3.24: The connectivity matrix estimated from EEG signals. 25 regions of interest
with a maximum delay of D = 10 is considered.

The results consistently show the following two characteristics:

• The algorithm is biased toward contributing the dynamics of a region into the history

of the same region. Furthermore, the dependence on the self past activity manifests

as a simple low pass filtering. The same feature is observed even after increasing D to

large values such as D = 100. Both the bias of the algorithm in favor of self-connections

and the oversimplified form of this dependence signal the inconsistency of the white-

noise-driven linear model with the true system underlying the brain dynamics. In

particular, the model should be capable of attributing ‘high enough’ importance to

the region-to-region interactions. Furthermore, the estimated dynamics should be rich

enough to capture the spectral and temporal features of EEG signals. In fact, if the

model is used to generate synthetic EEG signals, the resulting recordings appear to be

temporally white and posses none of the features of real EEG signals.

• The algorithm’s behaviour in estimating the temporally-smeared connections is rela-

tively consistent and independent of the inherent randomness. However, the estimated

single-delay spiky connections between different regions vary significantly from simula-

tion to simulation. Therefore, assuming that spiky connections do exist between brain

regions, the algorithm is not capable of estimating them correctly. We may conclude

that the model cannot resolve fine temporal connection information from EEG signals.

The inflexibility of the model may be viewed from other perspectives as well. First, if the

model is truly valid, the measurement prediction error obtained from the Kalman filter should
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Figure 3.25: Two examples of the estimated connectivity. Subplot (i, j) summarizes the
connections into region i originating from region j at different delays.
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be temporally white. Although not presented here, the autocorrelation of the residue time

series was calculated and was observed to have a very long oscillating tail. Formal statistical

tests such as the Ljung-Box test were also applied to the residues and it was observed that

the residues are not white.

Second, the system should be stable so the Kalman filter works correctly. Therefore, the

elements of the A matrix should be small (� 1). As shown below, this condition implies

that the model cannot reproduce the spectrum of EEG.

Starting from Eqs. 2.2 and 2.3, the Fourier transforms may be combined to obtain the

spectrum of the measurement in terms of the process and measurement noise spectrum:

y(ejω) = C[I−A(ejω)]−1w(ejω) + u(ejω) (3.5)

with:

A(ejω) =
D∑
d=1

Ade
−jωd (3.6)

Given |A(ejω)| � 1 due to stability, we can use the approximation [I−A(ejω)]−1 ≈ I+A(ejω).

Then:

y(ejω) = Cw(ejω) + CA(ejω)w(ejω) + u(ejω) (3.7)

Therefore, if |A(ejω)| � 1 and if the spectrum of process and measurement noise are flat,

the spectrum of y will be hardly affected by the small connectivity coefficients and will

not reproduce the well defined spectrum of EEG demonstrated in Section 3.5.2. In fact,

the synthetic EEG signals generated by the white-noise driven linear model produce an

effectively white spectrum and waveforms that do not match the EEG waveforms. However,

a colored process noise w might be able to mitigate this issue.
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The Challenges of Incorporating Real EEG Dynamics

To take the dynamics of EEG into account, one possibility is to consider a colored noise

as the driving force of the process. The colored noise should be written in the state space

form to enable Kalman filtering. A second approach is to attribute the dynamics to the

dependence of a node activity upon its own past. The connections may affect the dynamics

as well. In general, a combination of these two approaches may be used.

To test the applicability of either of the mentioned approaches, a reasonable first step is to

simplify the problem by assuming that there is no measurement layer on top of the process:

If the time series of interest are directly measured, can we detect the connectivities reliably?

If so, the next step would be to add the measurement layer. To answer this question, we take

an incremental approach by starting from simplified systems and examine the challenges.

Modeling the Dynamics of a Single Electrode EEG Recording: Assume that the

connections do not exist and there is no measurement layer. What kind of dynamical model

can reproduce time series similar to a single electrode recordings and simultaneously fit into

the problem formulation?

How could such a simplification be useful? Assuming that the LFM model is correct, the

observation dynamics is a linear combination of the process dynamics. Therefore, a good

dynamical model for each electrode activity might be a good candidate for the underlying

process as well.

One possible candidate is the auto-regressive moving-average (ARMA) model as it may be

written in state space form. The AR model is in particular promising, as the required states,

the past history of a node activity, are already included in the problem formulation.

The first challenge is the required ARMA complexity. The examination of the 1024 Hz
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Figure 3.26: The AIC and BIC scores for ARMA model selection. Cool colors represent
higher model quality. The ‘dents’ are caused by MATLAB not finding a stable fit.

data reveals that both short-range and long-range temporal features exist in the time series.

Therefore, a large number of AR or MA terms should be expected to take both the short-

range and long-range dependencies into account.

Both the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)

are used for selecting the order. The results are shown in Fig. 3.26. Jusding from both the

AIC and BIC scores, it seems that AR leads to a more parsimonious model and MA terms

are redundant.

It is noteworthy that MATLAB’s ARMA fitting algorithms focus on minimizing the one-step

ahead prediction error, without considering other metric such as spectral fit and whiteness of

the residues. In other words, it is possible to find estimated models with a very low residue

power that do not mimic the real system.

A second challenge caused by the combination of the high sampling rate of 1024 Hz and

the dominant low frequency EEG components is that the AR fitting algorithm regresses the

response against a set of highly correlated samples. Therefore, the predictive power may be
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relatively insensitive to the choice of regressors. In other words, different combinations of

the regressors may lead to the same predictive power.

Fig. 3.27 shows the spectral fitness of the AR models estimated with orders ranging from

1 to 64. The smallest order that leads to a reasonable spectral fit is 21. Importantly, the

dynamic range of the estimated AR coefficients are reported on each subplot. As expected,

the dynamic range explodes with an increasing AR order. Therefore, if the AR coefficients

are to be estimated together with other model parameters such as connections and noise

covariances, it is very unlikely to achieve a stable system that mimics the spectrum of the

EEG recordings and returns temporally white resides.

In fact, while the normality of the residues holds for all case, we found through an exhaustive

search that no AR model leads to a temporally white residue as tested by the Ljung-Box test

and other similar tests. As shown in Fig. 3.28, the residue autocorrelations are much larger

that the whiteness confidence interval. Therefore, the AR model fails to correctly model the

EEG signal at a sample rate of 1024 Hz.

A potential reason for the failure of the AR in modeling EEG is the high sampling rate. In

other words, not all the past points are informative. The underlying signal is continuous time,

and the dynamics are governed by the interaction of individual systems that follow simple

differential equations. Also, by Shannon’s sampling theorem, many of the intermediate

samples do not help in the prediction and may be considered redundant data. It is true that

the ARMA class may not be a good model for EEG. However, if we persist on using ARAM

because it fits readily into the linear MVAR model, downsampling the data could open up

new possibilites.

Fig. 3.29 compares the whiteness fitness and prediction fitness of different AR orders for

various levels of temporal downsampling. A trade-off between the two fitness criteria is

observed; while downsampling can whiten the residues, the one-step predictive power of the

78



Figure 3.27: The spectral fit of the fitted AR models. The gray spectrum is extracted from
real EEG. The red spectrum is obtained from the estimated AR model. The annotations on
each subplot show the AR order and the dynamic range of the estimated AR coefficients.
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Figure 3.28: The stem plots represent the residue autocorrelation for different AR order (top
left: 15, bottom right: 30. Orders increasing horizontally). The red lines that almost overlap
with the x axis show the confidence region for the whiteness test.

model deteroriates with lower sampling rate.

A good compromise is achievable with a downsampling factor of 4 (sampling frequency

of 256 Hz) and an AR order of 30. Fig. 3.30 illustrates different fitness criteria for this

configuration (prediction accuracy, residue whiteness, spectral fitness, similarity of temporal

waveform features).

Despite the reasonable fit of the AR model, the fitness is still highly sensitive to the accuracy

of the AR coefficients. In fact, for the AR model presented in Fig. 3.30, a dynamic range

as low as 104 results in a highly distorted spectrum and highly correlated residues. This

sensitivity is especially problematic when the AR coefficients should be estimated together

with other system parameters. The slightest deviation from the ‘ideal’ coefficients results in

an unstable or low quality model.

The sensitivity of the model to AR coefficients is best justified by examining the pole-zero

diagram of the resulting filter [52]. Fig. 3.31 shows the location of the poles and zeros of
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Figure 3.29: Left: colormap of relative prediction error. Right: colormap of residue whiteness
deviance, defined as the ratio of the maximum value of the autocorrelation sequence to the
whiteness confidence value.

the AR model presented in Fig. 3.30. The two pairs of conjugate poles on the far right are

very close to the unit circle. Therefore, these poles account for both the dominant oscillatory

modes of EEG. Due to the high model order, very small errors in the AR coefficients translate

to large deviations in the locations of the dominant poles, resulting in either instability or

lack of model fitness in terms of the similarity of the spatiotemporal features and whiteness

of the residue.

As an alternative to the prediction-based AR parameter estimation, spectral-based filter

design methods may be used to model the EEG recording as the output of a filter with a

white noise input. Although fundamentally equivalent to the prediction-based AR parameter

estimation methods, the spectral based methods provide the possibility of using the second-

order-section (SOS) realization of the filter. The SOS realization has the advantage of

robustness to the accuracy of the coefficients. However, the SOS formulation does not fit

well into the linear MVAR model and is not pursued here. Specifically, the log likelihood

function will include nonlinear polynomial terms in the coefficients of each section.

In summary, the primary challenges of modeling a single EEG recording are the numerical

sensitivity and the complexity of the cost function if AR parameter estimation and SOS

filter design are used respectively. Even if a high quality and tractable method exists for
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Figure 3.30: AR of order 30 fitted to 256 Hz real EEG signal. a) and b): the synthesized
and real EEG share the same temppral features. c) the AR spectrum matches the EEG
spectrum. d) The prediction error is much smaller than the reference EEG signal (34 dB).
e) and f) both the autocorrelation function (ACF) and partial ACF (PACF) fall within the
whiteness confidence interval. The zero-lag is excluded as it bears no information about the
whiteness.
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Figure 3.31: Pole and zero locations of the AR model of order 30 fitted to 256 Hz EEG.

modeling a single EEG recording, other issues remain to be addressed:

• The paramters of the model are not physiologically interpretable. In other words, the

ARMA modeling is a black-box exploratory approach toward EEG modeling.

• Examination of EEG signals reveal that a combination of multiple slow and fast features

constitutes the waveform. It is possible that the mechanisms generating the slow waves

is different from the one generating the faster faster. Therefore, trying to find a single

ARMA model that explains the combination might not be a reasonable approach.

For instance, the low frequency content might be explained well by a small sample

density corresponding to its bandwidth, and all the information in between maybe

interpolated following Shannon’s sampling theorem. The faster waves, on the other

hand, will require a different sample rate.

Physiologically models, such as the neural mass model (NMM) discussed in the following
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chapters, may be able to provide a parsimonious, interpretable, and numerically stable al-

ternative to the MVAR model . Models such as NMM suggest an interaction of second order

dynamic with different time constants. Therefore, explaining dynamics of multiple time

constants with a single ARMA model is probably not the best solution. The wide dynamic

range of the AR coefficients is related to the wide dynamic range of the time constants that

appear in the NMM model.

Modeling the Dynamics of Multi-Electrode EEG Recording: In the following

paragraphs, we attempt to find a black-box linear MVAR model that explains the dynamics

of multi-electrode recordings. Each electrode recording is regressed against the past activity

of that electrode and other electrodes as well. To identify the challenges, the underlying

regions-of-interest are ignored for simplicity: if the challenges facing the simplified model

cannot be addressed, it is unlikely that the more complex model including the regions-of-

interest can be addressed effectively.

To examine the influence of adding cross-electrode connections on the dynamics, we fix the

dependence of a single EEG recording on its own past according to the AR model discussed

above. The simple pathological example of Fig. 3.32 involving only two electrode recordings

are considered. To examine the influence of the connections on system dynamics, the transfer

function of the system is derived below.

In the frequency domain, we have:

y1 = H1(w1 + c2,1D2,1)y2 (3.8)

y2 = H2(w2 + c1,2D1,2)y1 (3.9)

Define C1 = c1,2D1,2 and C2 = c2,1D2,1. By eliminating y2, the transfer function of y1 is given
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Figure 3.32: The MVAR model with connections between the two time series. w1 and w2 are
the white noises driving the system. H1 and H2 are the single electrode transfer functions
discussed previously (found by AR estimation or SOS realization). D blocks represent delay.
c1,2 and c2,1 represent the strength of connections. y1 and y2 are the electrode recordings.

by:

y1 =
H1

1−H1C1H2C2

w1 +
H1C2H2

1−H1C1H2C2

w2 (3.10)

For simplicity, assume that H1 = H2. Then, defining Q = 1/H, it is easy to show that the

poles of the transfer function are the roots of the polynomial Q2−C1C2. Therefore, compare

to a system without any connections, the C1C2 terms modifies the root locations. The larger

the magnitude of C1C2, the higher will be the influence of the connections on the dynamics of

the system. Assuming zero-delay connections for simplicity, the root locus parameterized by

C1C2 is illustrated in Fig. 3.33. It is observed that an increasing connection strength leads

to lower frequency dominant modes of oscillation. Higher connection strengths push one of

the dominant weakly damped poles across the unit circle boundary (at C1C2 = 25 × 10−6)

and cause instability. Importantly, the numerical value of the connection strength that leads

to significant changes in the dynamics, namely c < 5 × 10−3, is much smaller than the
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Figure 3.33: Left: the root locus of the transfer function of Eq. 3.10 parameterized by C1C2

ranging from 0 to 10−4. The unit circle is included for reference. Right: Same as left, zoomed
in on the rightmost dominant poles.

numerical values of the AR coefficients discussed in the previous sections. Therefore, the

connections have a numerically much stronger influence on the dynamics of the system. As

a result, and as will be discussed shortly, any estimation algorithm that jointly estimates the

connectivities and the AR coefficients without balancing the influence of AR coefficients and

the connectivities fails to return reasonable estimates. In summary, the connections should

be numerically much smaller than AR coefficients. Furthermore, even small feedback values

between the nodes can lead to instability.

To illustrate the ineffictiveness of standard vector autoregressive parameter estimation meth-

ods in estimating the connection values, consider an MVAR system with 4 time series where

the AR coefficients are selected according to the parameters generating Fig. 3.30 . The

connection strengths and delays are shown in Fig. 3.34.

Fig. 3.35 shows the EM-based maximum likelihood estimate of the connectivity matrix A
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Figure 3.34: An MVAR system where the dependence of a node activity on its past is encoded
by the AR coefficients discussed in Fig. 3.30. The connection delay and strengths are shown
on the figure. The connection strengths of .003 place the system on the verge of instability.

partitioned into the self-connections, i.e. the AR coefficients relating the node activity to

its own past, and the cross-node connections. It is observed that while the ML estimate of

the self-connections are accurate, the cross-connections are dense rather than sparse, several

orders of magnitude overestimated, and far from the ground truth. This behavior is persistent

even if the self-connections are assumed to be known and only the cross-connections are

estimated.

To impose the sparsity of the connections, assuming that the self-connections are known, the

cross connections may be estimated using Lasso regression. Fig. 3.36 shows the estimated

cross-connectivity vs. the ground truth. It is observed that the estimation accuracy improves

significantly compared to Fig. 3.35 by applying the `1 regularization.

Unfortunately, assuming known values for the self-connections and then estimating the cross

connections is suboptimal; The self-connection AR model is fitted to the data that already

include the effect of possible cross-connections. If the AR estimation method overexploits the

information in the waveform of interest, the cross-connectivity will have negligible descriptive

power. In other words, the two stage method of first estimating the individual self-dynamics
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Figure 3.35: ML estimate of the connectivity matrix. Left: self-connections. Right: cross-
connections. Row i of each colormap shows the dependency of time series i on its own past
(left) and the history of other nodes (right).

Figure 3.36: Lasso estimation of the cross-connections. The self-connections are assumed to
be known and equal to the true values.
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Figure 3.37: Lasso regression applied to the entire connectivity matrix.

(from the data that already includes the effects of connections) and then estimating the

cross-connectivities is suboptimal to jointly estimating both the self- and cross-connections.

Finally, Fig. 3.37 shows the estimated self-connections and the cross-connections if Lasso re-

gression is applied on the entire connectivity matrix rather than only on the cross-connections.

While the cross-connections are estimated rather accurately, the estimates of the self-connections

are not as rich as the ground truth. As a result, the dynamics of the waveforms generated

based on the estimated connectivities do not mimic EEG dynamics. Furthermore, the esti-

mated parameters lead to an unstable system.

A candidate solution is to use the generalized lasso [45, 109] to relax or weaken the `1 penalty

on the self-connections. However, the generalized Lasso also fails to guarantee the stability

of the resulting system. Without stability, the Kalman filter estimates used in the parameter

estimation diverge.
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Chapter 4

Realistic Neural Dynamics: Neural

Mass Model

4.1 Introduction

Neural tissue generate oscillatory activity in many ways, driven either by mechanisms within

individual neurons or by interactions between neurons. At the level of neural ensembles,

synchronized activity of large numbers of neurons can give rise to macroscopic oscillations.

Oscillatory activity in groups of neurons generally arises from feedback connections between

the neurons. The interaction between neurons can give rise to oscillations at a different

frequency than the firing frequency of individual neurons.

Neural oscillations are studied mathematically in the field of neurodynamics. To describe

how neural activity evolves over time, the brain is modeled as a dynamical system governed

by differential equations.

The mean field models on neural activity are based on the mean field theory, which studies
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the behavior of large and complex stochastic models by studying a simpler model. Such

models consider a large number of small individual components that interact with each

other. The effect of all the other individuals on any given individual is approximated by a

single averaged effect.

The mean field models of neural activity can be divided into two classes: neural mass models

(NMM) and neural field models (NFM). The main difference between these classes is that

field models describe how a quantity characterizing neural activity (such as average depolar-

ization of a neural population) evolves over both space and time as opposed to mass models,

which characterize activity over time only, by assuming that all neurons in a population are

located at (approximately) the same point. In this thesis, we focus on the neural mass model

because the spatial granularity inherent in NMM matches the description of brain activity

as the interaction of multiple regions-of-interest.

4.2 The Model

The neural mass model was first proposed by Freeman et. al. [40] based on the fact that

neurons form populations and that the EEG is a reflection of ensemble dynamics arising

from interconnected populations of pyramidal cells and interneurons. Their studies are

based on experimental data and on computational models in which the dynamics of each

neural ensemble are represented by a second order ordinary differential equation having a

static nonlinearity identified as a sigmoid curve [32]. Similar ideas developed at the same

time led to the development of a lumpedparameter population model able to explain the

alpha rhythm of the EEG [24].

In its original form, the model represented a cluster of neurons containing three interacting

subsets. The first subset was composed of the main cells (i.e. pyramidal cells in the hip-
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Excitatory Pyramidal Fast Inhibitory Slow Inhibitory
Synaptic Gain 5.17 mV 5.17 mV -57.1 mV -4.45 mV
Synaptic Time Constant 1/75 sec 1/75 sec 1/60 sec 1/30 sec

Table 4.1: NMM parameters taken from [115]

pocampus or neocortex). It received a feedback from two other subsets composed of local

interneurons, either excitatory or inhibitory. In order to explain the fast EEG rhythms that

were not explained by the model, the model was later redesigned by Wendling et. al. [115]

by adding a fourth subset to represent a second class of inhibitory interneurons with faster

kinetics than those already included. The fast inhibitory interneurons terimnate near the

soma and the slow ones in the dendrites.

From the a neuerodynamical perspective, each type of population (or subset) is characterized

by the type of neurotrasmitters its neurons inject into the synapse. The neurotransmitter

determines the temoral evolution of the contributed post synaptic potential.

Each neural population receives an average firing rate from other populations as well as from

itself, which is converted to an average post-synaptic potential (PSP) (depending on type of

neurotransmitter used by presynaptic population) by convolving the input firing rate with

an impulse response. The convolution may also be represented by a second order differential

equation. For each population type i (e for excitatory, p for pyramidal, f for fast inhibitory,

and s for slow inhibitory), the impulse response mapping the firing rate to the PSP is given

by:

hi(t) =
Ai
τi
te−t/τi (4.1)

where A is the synaptic gain measured in milivolts, τ is the synaptic time constant typically

measured in miliseconds. Typical numbers for these parameters are reported in Table. 4.1.

The average PSPs then propagate to soma, are added together, and converted to an output
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average firing rate through a sigmoid function:

S(v) =
2e0

1 + er(v0−v)
(4.2)

where v is the PSP, e0 is the maximum firing rate, v0 is the voltage at which half max firing

rate is obtained, and r is the slope of the sigmoid functions. Typical numbers for these

parameters are v0 = 6 mV, e0 = 2.5 sec−1, and r = .56 mV−1.

The connections between two populations are modeled by synaptic connectivity C which is

equal to the average number of synaptic connections that terminate on a neuron of the des-

tination population and originate from the source population. To summarize, the dynamics

of a single population is illustrated in Fig. 4.1. Importantly, similar to the previous work, it

is assumed that the filtering operation performed at the synapse only depends on the type

of the presynaptic population.

The independence of the filtering operation from the type of post-synaptic population can

be used to lower the complexity of the model as follows. Since each population may ter-

minate in multiple other populations, a näıve formulation requires adding a filtering block

at every destination population for the connections originating from one source population.

However, since the convolution operation (the filter h(t)) and multiplication (Cij block) are

interchangeable, all the filtering operations related to the connections originating from a

single population may be combined as a single filter at the output of the population.

Fig. 4.2 illustrates the the model of a cortical column proposed by Wendling et. al. [115].

The connectivity parameters are given in Table . The external input driving a cortical

column is assumed to excite the pyramidal population [124].

A well-studied appealing feature of the NMM is its capability to reproduce real-world brain

waves. For instance, the authors of [115] show that the different types of activity produced by
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Figure 4.1: The dynamics and the interaction of populations in NMM. For population j, the
inputs arrive as firing rates from other populations (only population i is indexed here). The
firing rates are scaled according to the synaptic connectivity between the two populations
(Cij). The red rectangle highlights the processing done by the synapse connecting population
i and j. The PSPs then propagate through the dendrites and add up at the soma of the
destination population. The superposition of the PSPs is then converted to the output firing
rate through the sigmoid compression. The blue region show the processing performed at
the soma of the destination population.

Value Description

C1 C = 135
Average number of synaptic contacts terminating at an
excitatory neuron and originating from pyramidal population

C2 .8C
Average number of synaptic contacts terminating at a
pyramidal neuron and originating from excitatory population

C3 .25C
Average number of synaptic contacts terminating at a
slow inhibitory neuron and originating from pyramidal population

C4 .25C
Average number of synaptic contacts terminating at a
pyramidal neuron and originating from slow inhibitory population

C5 .3C
Average number of synaptic contacts terminating at a
fast inhibitory neuron and originating from pyramidal population

C6 .1C
Average number of synaptic contacts terminating at a
pyramidal neuron and originating from fast inhibitory population

C7 .8C
Average number of synaptic contacts terminating at a
fast inhibitory neuron and originating from slow inhibitory population

Table 4.2: The connectivity parameters of a cortical column [115]
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Figure 4.2: The NMM-based model of a cortical column as proposed in [115].
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the model and match the types of real depthEEG signals recorded in human hippocampus.

Specifically, the effect of synaotic responses Aexc, Aslow, and Afast on the produces dynamics

is studies. A reproduction of the results is shown in Fig. where Aexc = 4 mV and Aslow as

well as Afast are varied to produce different waveforms.

The model has been modified in later works by changing the connectivity structure, the

involved populations, and the parameter values. For instance, Zavaglia et. al. [124] use

slightly different values for the synaptic connectivites and add a self feedback loop on the

fast inhibitory population to explain the gamma waves in EEG. Similar model may be found

in [25], [124], and the references therein.

Finally, the delayed communication between two columns may be modeled using two ap-

proaches. In the first approach, the delay between source s and destination d is modeled by

assuming that the firing rate arriving at d is Csdzs(t− τsd), where zs(t) is the output firing

rate of the source. In reality, however, the connection between the regions is realized by

neurons, the operation of which may not be modeled by a simple delay. Therefore, in the

second approach, these connecting neurons are modeled as populations following the NMM

with time constants proportional to the delay of the connection.

4.3 Mathematical Description

The model described in this section is not the most general possibility. Specifically, it is

assumed that the columns communicate through their pyramidal populations without any

delays. The model may be readily generalized to more complicated structures.

The symbols used in the following discussion are summarized in Table 4.3. To model inde-

pendent driving sources, we use the external populations which are only characterized by

their output firing rate and do not receive any input. The regular dependent populations
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Figure 4.3: The NMM is capable of reproducing many EEG waveform types. Aexc is fixed
at 4 mV. Afast and Aslow increase from bottom to top and from left to right respectively.
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Symbol Definition

NI number of internal populations

NE number of external populations

NP total number of populations, NI +NE

zn→(t) average firing rate out of population n

vn→(t) the PSP contribution of zn→(t) (vn→(t) = h(t) ~ zn→(t))

wn(t) additive noise on the PSP of internal population n

Wn→m average synaptic connections from population n to internal population m

W→n [W1→n,W2→n, · · · ,WN→n]T

v(t) [v1→(t), v2→(t), · · · , vN→(t)]T

v→n(t) average PSP delivered to internal population n, equal to W T
→nv(t)

Table 4.3: The symbols used in the mathematical description of NMM.

are also called internal populations.

In order to write the NMM in a state space form, first the filtering process is realized by a

differential equation. Given that the Laplace transform of the filter h(t) = A
τ
te−t/τ is:

L{h(t)} =
Aω

s2 + 2sω + ω2
(4.3)

with ω = 1/τ , the corresponding differential equation is given by:

v̈n→ + 2ωv̇n→ + ω2vn→ = Aωzn→ (4.4)

Each population n is then fully specified by the following set of equations:
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zn→(t) =

 S(v→n(t) + wn(t)) if n internal

zext
n (t) if n external

(4.5)

φ̇n→
v̇n→

 =

−2ωn −ω2
n

1 0


φn→
vn→

+

Anωn
0

 zn→ (4.6)

where φ = v̇. Defining φ(t) and z(t) similar to v(t) in Table 4.3, and withA , diag[A1 · · ·ANP ]

and ω , diag[ω1 · · ·ωNP ], the dynamics of the entire system is described by the following

state space equation:


v̇(t)

φ̇(t)

 =


0NP INP

−ω2 −2ω




v(t)

φ(t)

+


0NP

Aωz(t)

 (4.7)

4.4 Simulating Normal EEG Activity

Each cortical column receives input from the external worlds. Therefore, with known internal

mechanisms for each column, the behaviour and activity of the column depends on the

external input. In order to simulate a network of cortical columns that generate EEG

waveforms similar to real resting-state EEG signals, the influence of the input on the column

activity should be studied.

To do this, let’s consider a cortical column with parameters taken from Table 4.2. The

pyramidal population of the column is driven by an external white noise source with a mean

firing rate of 1 and a variance of 0.2. The connection strength is varied from 0 to 200 during

the 5 second simulation.
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Figure 4.4: The relation between the input and the output of a cortical column.

Fig. 4.4 shows the output voltage of the pyraimdal population vs. its input (the voltage

contribution of the external source) in milivolts. It is observed that once the input exceeds

a threshold of 4 milivolts, the balancing feedback mechanism between the individual popu-

lations of the column breaks and the populations enter an unstable oscillating mode that is

typical of abnormal (seizure) brain activity. Consequently, any synthetic network of cortical

column used as the ground truth for the evaluation of the connectivity estimation algorithm

should be constrained to generate cortical column inputs below 4 milivolts. This condi-

tion directly translates to a set of constraints over the strength of the connections between

network elements.

In order to quantify this constraint, and without loss of generality, let’s assume that each

cortical column i has a base operating input of qi milivolts provided by some internal or

external independent source. Let q denote the vector [q1, · · · , qNc ]T , where NC is the number

of cortical columns. In order to perform a stationary point analysis and find a constraint on

the connectivity such that the inputs remain under some Vmax milivolts, the curve of Fig. 4.4

is approximated by a line vout ≈ b+mvin, where a and m may be found by linear regression.

Let W temporarily encode the connectivity matrix between the cortical columns (pyramidal-

to-pyramidal inter-column connections), and let Wi denote the vector of connections termi-
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nating in column i. Since the total input voltage on column i is given by vini = W T
i vout + qi

(where vout is the vector of output potentials), the stationary point of the system is given by

the solution of:

vout = m(W Tvout + q) + b (4.8)

or

(I −mW T )vout = mq + b (4.9)

To write an explicit condition on vout = (I −mW T )−1(mq + b), assume that mW T is small

enough such that the first order Taylor approximation (I−mW T )−1 ≈ I+mW T is relatively

accurate. This condition may be satisfied by shrinking the W matrix until the largest

eigenvalue of mW T , denoted by λ(mW T ), is sufficiently smaller than 1.

Finally, the condition on the stationary point is written as:

vout ≈ (I +mW T )(mq + b) ≤ Vmax (4.10)

or:

mW T (m+ b) ≤ Vmax − (mq + b) (4.11)

which may be used to further shrink the connectivity matrix to ensure that the inputs into

the columns remain in the stable region.

Our experiments show that ensuring λ(mW T ) < .3 is often sufficient for guaranteeing the

stability of the system for denser connectivity matrices while not unnecessarily subduing

the connection strengths. On the other hand, a sparse connection pattern typically requires
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further shrinking of the connectivity matrix by Eq. 4.11 as a highly sparse matrix with

strong connections can have a zero λ but still lead to very high input potentials and thus an

unstable system.
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Chapter 5

Connectivity Estimation in Neural

Mass Model

Similar to Chapter 3, the EM algorithm is used to estimate the connectivity parameters of

the NMM. In the following sections, the E-step and the M-step of the EM algorithm are

derived.

5.1 The E step

5.1.1 Inapplicability of the Standard Kalman Filter

As discussed in Section 4.4, the normal EEG activity requires that the total PSP on a

population remains in a relatively linear operating area of the sigmoid function. Therefore,

the standard Kalman filter is first applied to calculate the state expectations and state

covariances that appear in the Q function of the EM algorithm.

For simplicity of the derivation, assume that the vector v(t) in Eq. 4.7 is formed by first
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filling in the potential of the internal populations and then the potential of the external

populations. Then, the system is described by:



v̇(t)

φ̇(t)


=



0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+



0N×1

Aω

S(w(t) +W Tv(t))

zext(t)




(5.1)

y(t) = GRW Tv(t) + ε(t) (5.2)

where y is M × 1 the electrode measurements, G is the LFM, R is a row-selection matrix,

W is the connectivity matrix, and ε is the measuremnt noise. The row selection matrix R

encodes the fact that EEG recordings are primarily the result of the coherent activity of

pyramidal populations. In the following derivations, the term GR is replaced by G̃ where

necessary.

To apply the Kalman filter, this continuous-time model has to be rewritten in the following

standard discrete-time state space form:

x[n+ 1] = Ax[n] +Bu[n] +Gw[n] (5.3)

y[n] = Cx[n] +Du[n] +Hw[n] + v[n] (5.4)

Denote the covariance matrix of w and v in Eq. 5.4 by Q and R, and let E(w[n]vT [n]) = N .

The noise terms in Eq. 5.4 are temporally white.

To do this, first the derivative is approximated by the finite difference. More accurate meth-

ods exist to convert a continuous-time state space system to the discrete time counterpart.

However, these methods complicate the following derivation and provide little advantage
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over finite difference if the sampling rate is high enough. The finite-difference approximation

results in:



v(t+ 1)

φ(t+ 1)


=



v(t)

φ(t)


+dt





0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+



0N×1

Aω

S(w(t) +W Tv(t))

zext(t)






(5.5)

Using the linear approximation S(x) ≈ a+mx:



v(t+ 1)

φ(t+ 1)


=



v(t)

φ(t)


+dt





0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+



0N×1

Aω

a+mw(t) +mW Tv(t)

zext(t)






(5.6)

where a is now a column vector with identical values.

If we break A and ω into internal and external parts as (each with dimensions NI and NE):

A =

AI 0

0 AE

 , ω =

ωI 0

0 ωE

 (5.7)
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then:



v(t+ 1)

φ(t+ 1)


=



v(t)

φ(t)


+dt





0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+



0N×1

AIωI(a+mw(t) +mW Tv(t))

AEωEz
ext(t)






(5.8)

or more explicitly in the state space form:



v(t+ 1)

φ(t+ 1)


=



v(t)

φ(t)


+ dt

(


0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+


0N×2N

AIωImW
T 0NI×N

0NE×2N





v(t)

φ(t)


+


0N×N

AIωIm 0NI×NE

0NE×NI AEωE


 w(t)

zext(t)

+


0N×1

AIωIa

0NE×1


)

(5.9)
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or: 

v(t+ 1)

φ(t+ 1)


=


I + dt





0N×N IN×N

−ω2 −2ω


+


0N×2N

AIωImW
T 0NI×N

0NE×2N









v(t)

φ(t)



+ dt


0N×1

AIωIa

0NE×1

+ dt


0N×N

AIωIm 0NI×NE

0NE×NI AEωE


 w(t)

zext(t)

 (5.10)

In case the external excitation is composed of a deterministic part (e.g. mean value) and a

random part as zext(t) = Zext(t) + δzext(t), we can rewrite the last equation as:



v(t+ 1)

φ(t+ 1)


=


I + dt





0N×N IN×N

−ω2 −2ω


+


0N×2N

AIωImW
T 0NI×N

0NE×2N









v(t)

φ(t)



+ dt


0N×1

AIωIa

AEωEZ
ext

+ dt


0N×N

AIωIm 0NI×NE

0NE×NI AEωE


 w(t)

δzext(t)

 (5.11)

which is in the same format as Eq. 5.4. The mapping of NMM parameters to the standard

KF models is summarized in Table 5.1.

Fig. 5.1 illustrates the result of applying the standard Kalman filter to a synthetic system

with 4 populations with each population driven by a white noise source. Clearly, the KF

fails to provide good estimate of the hidden states. Although not presented here, a more

granular Extended Kalman filter (EKF) was applied but did not exhibit any improvement.

A common reason behind the failure of Kalman filter is the unobservability of the system
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Standard KF parameter NMM counterpart

x[n]



v(t)

φ(t)



A


I + dt





0N×N IN×N

−ω2 −2ω


+


0N×2N

AIωImW
T 0NI×N

0NE×2N







B dt


0N×1

AIωIa

AEωEZ
ext


u[n] 1

G dt


0N×N

AIωIm 0NI×NE

0NE×NI AEωE


w[n]

 w(t)

zext(t)


C [GRW T , 0M×N ]

D, H 0M×1, 0M×N

v[n] ε(t)

E{wvT} 0N×M

Table 5.1: The relation between NMM parameters and the parameters of Eq. 5.4
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Figure 5.1: Left: the state vector v(t) of a sample system with 4 populations. Right: the
mean state estimated by the Kalman filter. Same colors encode the same time-series.

[49]. To check the observability of the linear state space system resulting from the NMM,

an extensive set of synthetic systems were generated and it was observed that the number

of non-observable states, as given by the difference between the rand of the state matrix (A

in Eq. 5.4) and the rank of the observability matrix of the system, is always greater that

zero. The unobservability implies that it is fundamentally impossible to draw meaningful

conclusions about the unobservable states: while certain linear combinations of the states

are observable, others are not.

To address this issue, Kalman decomposition is applied to the system to find the observable

and unobservable subspaces. The state space is then written in terms of the observables

only. Specifically, let U be the unitary decomposing matrix that partitions the generic state

vector x into observable and unobservable parts:

z = Ux =

Uo
Uu

x =

zo
zu

 (5.12)

where subscripts o and u denote observable and unobservable, and z is the transformed state

vector.
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The standard state space representation is now tranformed as:

Ux[n+ 1] =UAUTUx[n] + UBu[n] + UGw[n] (5.13)

y[n] =CUTUx[n] +Du[n] +Hw[n] + v[n] (5.14)

or equivalently:

z[n+ 1] =(UAUT )z[n] + (UB)u[n] + (UG)w[n] (5.15)

y[n] =(CUT )z[n] +Du[n] +Hw[n] + v[n] (5.16)

Denoting the number of observable and unobservable states by no and nu, and noting that

UAUT and CUT will be of the form [ao, 0no×nu ; auo, au] and [co, 0M×nu ] respectively, we can

exclude the unobservables from the tranformed state space model:

zo[n+ 1] =aozo[n] + (UB)ou[n] + (UG)ow[n] (5.17)

y[n] =cozo[n] +Du[n] +Hw[n] + v[n] (5.18)

Even after reducing the model, the output of the KF does not estimate the true states

accurately as shown in the top row of Fig. 5.2. The root cause of the issue may be explained

by comparing the operating point of the actual states and the estimated states. Ignoring the

small variations around the operating points, the estimated states constantly overestimate or

underestimate the true states. The operating points are found by solving for the stationary

point of dynamical system in Eq. 5.1:

ω2v = Aω

S(w +W Tv)

Zext

 (5.19)

where v denotes the operating point, and w and Zext denote the noise and external drive
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operating points respectively. Although not discussed here, the solution of this system of

nonlinear equations is highly sensitive to any linearization of the sigmoid function. Therefore,

the inaccuracy of the estimate states may be attributed to the use of a linear state estimator.

As a sanity check, a linear NMM model is used to generate the bottom row of Fig. 5.2. It

is observed that unlike the top row, the state estimate are accurate and close to the actual

states. This suggests that a nonlinear state estimator must be used.

5.1.2 Unscented Kalman Filter

In order to use the unscented Kalman filter (UKF) for parameter estimation, the dynamical

system of Eq. 5.1 should be rewritten in the following form:

x[k] =f(x[k − 1], w[k − 1], us[k − 1]) (5.20)

y[k] =h(x[k], v[k], um[k]) (5.21)

where x is the state vector, w and v are the process and measurement noise, and us and um

are exogeneous input the the state and measurement equation may depend on. Given the

finite-difference approximation of Eq. 5.1:



v(t+ 1)

φ(t+ 1)


=



v(t)

φ(t)


+ dt





0N×N IN×N

−ω2 −2ω





v(t)

φ(t)


+



0N×1

Aω

S(w(t) +W Tv(t))

zext(t)






(5.22)
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Figure 5.2: Top row: ground truth system is nonlinear. Top left: a subset of the true states.
Top middle: the observable states. Top right: The observable states estimated by (E)KF.
Bottom row: ground truth system is linear. Bottom left: a subset of the true states. Bottom
middle: the observable states. Bottom right: The observable states estimated by KF.
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the two functions f and h in Eq. 5.21 are given by:

f(x,w) =x+ dt





0N×N IN×N

−ω2 −2ω


x+



0N×1

Aω

S(w1:NI +W Tx1:NI )

Zext + w(NI+1):N






(5.23)

h(x, v) =GRW Tx1:N + v (5.24)

Fig. 5.3 shows the states estimated by UKF (red) vs. the actual states (blue) for a synthetic

system with 10 columns each consisting of 4 different population types. Compared the

the results of (E)KF, it is observed that the estimated states are accurate and follow the

variations in the unknown state closely.

5.2 The M step

To formualate the M-step, the following steps should be completed:

1. Derivation of the joint Log-likelihood function for the NMM.

2. Calculating the derivative of the Q function.

3. Solving the optimization problem of the M-step (using coordinate descent)

5.2.1 Derivation of the Joint Log-Likelihood Function for the NMM

Let’s denote the state vector [vTφT ]T by x. The MAP parameter estimate requires maxi-

mizing the log-likelihood function L(Y |W ) + L(W ) w.r.t the connectivity matrix W . Since
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Figure 5.3: The states estimated by UKF (red) vs. the actual states. Each subplot belongs
to one population. Each row belongs to one cortical column. Each column corresponds
to one of the population types comprising the cortical column (pyramidal, excitatory, slow
inhibitory, fast inhibitory).
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L(Y |W ) is complicated in W , we resort to expectation maximization which requires calcu-

lating the joint log likelihood function L(X, Y |W ). We have:

L(Y,X|W ) =L(x(1)) + L(y(1)|x(1)) + L(x(2)|x(1)) + L(y(2)|x(2)) + · · ·+

L(x(T )|x(T − 1)) + L(y(T )|x(T )) (5.25)

To simplify the derivation, we may modify (augment) the beginning of the chain as L(x(1))→

L(x(1)|x(0)) +L(x(0)), and then drop the  L(x(0)) as its contribution to the cost function is

insignificant for large T :

L(Y,X|W ) ≈L(x(1)|x(0)) + L(y(1)|x(1)) + L(x(2)|x(1)) + L(y(2)|x(2)) + · · ·+

L(x(T )|x(T − 1)) + L(y(T )|x(T )) (5.26)

The L(y(t)|x(t)) are readily calculated given the distribution of the measurement noise.

Without loss of geenrality, assume that the measurement noise is temporally white and the

covariance matrix is σ2
ε I. Therefore:

L(y(k)|x(k)) =
−1

2σ2
ε

(y(k)−GRW Tv(k))T (y(k)−GRW Tv(k)) =
−1

2σ2
ε

ζT (k)ζ(k) (5.27)

The L(x(k)|x(k − 1)) terms, however, are more complicated to calculate. This is because

even if x starts as a Gaussian random vector, it passes through the nonlinear state equation

and its distribution will not be Gaussian anymore. Therefore, writing a tractable analytical

form for L(x(k)|x(k − 1)) is not possible. Unfortunately, this contradicts the tractability

of the Q function which lies at the heart of EM utility. In other words, the EM is only

useful if the Q function is tractable enough so the optimization problem can be solved with

reasonable accuracy and complexity.
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As shown in Section 4.4, the normal EEG activity requires the PSPs to fall within a linear

domain of the sigmoid function. Therefore, it may be possible to linearize the sigmoid as

S(x) = a+mx. The continuous time NMM is then discretized by finite-difference. Applying

this approximation to L(x(t+ 1)|x(t)) results in:

φ(t+ 1)− φ(t)

dt
+ ω2v(t) + 2ωφ(t)−

AIωI(a+mW Tv(t))

AEωEZ
ext

 =

AIωImw(t))

AEωEδzext(t)


(5.28)

Both sides of which are vectors. However, only the top NI elements include the connectivity

matrix and enter the optimization problem. Therefore, the target equation is:

φI(t+ 1)− φI(t)
dt

+ ω2
IvI(t) + 2ωIφI(t)− AIωI(a+mW Tv(t)) = AIωImw(t) (5.29)

The right hand side is multivariate noise with covariance Σ = AIωImPwmω
T
I A

T
I , where Pw

is the covariance of w. Therefore, denoting the left hand side by ξ(t+ 1), we have:

L(x(t+ 1)|x(t)) = −1

2
ξT (t+ 1)Σ−1ξ(t+ 1) (5.30)

Therefore, the W -dependent portion of the joint likelihood function is:

T∑
t=1

−1

2σ2
ε

ζT (t)ζ(t)− 1

2
ξT (t)Σ−1ξ(t) (5.31)

We may normalize by the sample count and include the sparsity penalty to obtain:

1

T

(
T∑
t=1

−1

2σ2
ε

ζT (t)ζ(t)− 1

2
ξT (t)Σ−1ξ(t)

)
− λ|W |1 (5.32)
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5.2.2 Calculating the Derivative of the Q Function

The Q function is found by taking the derivative of the joint log-likelihood function. The

derivative of the Q function is then used to solve the optimization problem. Since the order

of expectation and derivative operations does not matter, the derivative may be calculated

first and the expectation is then applied to the resulting expression. The latter approach is

preferred here as it simplifies the derivation.

In general, some elements of the connectivity matrix may be know while other should be

estimated from the data. For instance, the connections inside a cortical column may be

fixed according to physiological studies, but the connection between cortical columns may

be estimated from data. If gradient-based optimization methods such as gradient-descent

are used, the full gradient vector w.r.t the unknown elements of W should be calculated. On

the other hand, if element-wise optimization methods such as coordinate descent are used,

the derivation does not have to distinguish between the known and unknown elements. In

other words, a unified analytical solution is derived and is then only applied to the unknown

elements. Although we use coordinate descent in this thesis, the full gradient vector is also

derived as a groundwork for future work.

Partitioning the Connectivity Matrix into Known and Unknown Parts

In order to seperate the known and unknown parts of the connectivity matrix, the W Tv

terms is rewritten in terms of the vectorized version of W . For a generic matrix A and

vector x, the product A
M×NxN×1

may be written as (xT ⊗ IM)vec(A). Then, if the index set

of the unknown elements of vec(A) is I, and with Ī = {1 · · ·MN} − I, we can write:
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(xT ⊗ IM)vec(A) = (xT ⊗ IM):,Ivec(A)I + (xT ⊗ IM):,Īvec(A)Ī (5.33)

Applying this to W Tv we may write W Tv = (vT ⊗ INI )vec(W T ). We may also separate the

known and unknown parts of vec(W T ) and write:

W Tv = VuWu + VkWk (5.34)

Using the chain rule and matrix calculus, the derivative w.r.t the unknown part is:

∂ζ(t)

∂Wu

=
∂

∂Wu

(y(t)−GRW Tv(t)) =
∂

∂Wu

(−GR[Vu(t)Wu + Vk(t)Wk])

=−GRVu(t) (5.35)

∂ξ(t+ 1)

∂Wu

=
∂

∂Wu

(−AIωI(a+mW Tv(t))) =
∂

∂Wu

(−AIωIm[Vu(t)Wu + Vk(t)Wk])

=− AIωImVu(t) (5.36)

Now, we can write the derivative of the normalized joint log likelihood function as:

1

T

T∑
t=1

(
−ζT (t)

[
1

σ2
ε

]
[−GRVu(t)]− ξT (t)

[
Σ−1

]
[−AIωImVu(t− 1)]

)
− λ∂|Wu|1

∂Wu

(5.37)

or:
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1

T

T∑
t=1

(
− (y(t)−GRVu(t)Wu −GRVk(t)Wk)

T

[
1

σ2
ε

]
[−GRVu(t)] (5.38)

−

{
φI(t)− φI(t− 1)

dt
+ ω2

Iv(t− 1) + 2ωIφ(t− 1)

− AIωI(a+mW Tv(t− 1))

}T [
Σ−1

]
[−AIωImVu(t− 1)]

)
(5.39)

−λ∂|Wu|1
∂Wu

(5.40)

Using the following definition:

θ(t) ,
φI(t)− φI(t− 1)

dt
+ ω2

IvI(t− 1) + 2ωIφI(t− 1)− AIωIa (5.41)

, the derivative is rewritten as:

1

T

T∑
t=1

(
− {y(t)−GRVu(t)Wu −GRVk(t)Wk}T

[
1

σ2
ε

]
[−GRVu(t)] (5.42)

− {θ(t)− AIωImVu(t− 1)Wu − AIωImVk(t− 1)Wk}T
[
Σ−1

]
[−AIωImVu(t− 1)]

)
(5.43)

−λ∂|Wu|1
∂Wu

(5.44)

This expression may then be expanded and the expectation is calculated on the expansion.

The resulting derivative, however, cannot be directly used for maximization. It may be

used in a gradient descent approach. However, as mentiond before, the separation of W

into known and unknown parts is not necessary if coordinate descent is used to solve the

optimization problem.
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Element-Wise Derivative: Groundwork for Coordinate Descent

Let W denote the vectorized version of W T . Also, let s(k) and d(k) denote two functions of

a linear index of W that map the linear index into the corresponding row and column index

of W such that:

Wk = Ws(k),d(k) (5.45)

Note that s(k) is indeed the index of the source population and d(k) is the destination

population.

The derivative of the cost function, denoted by ∂W is now written as:

∂W ,
1

T

T−1∑
t=1

(
− {y(t)−GRV (t)W}T

[
1

σ2
ε

]
[−GRV (t)] (5.46)

− {θ(t)− AIωImV (t− 1)W}T
[
Σ−1

]
[−AIωImV (t− 1)]

)
(5.47)

− λ∂|W|1
∂W

(5.48)

where V (t) , vT (t))⊗ INI , and the identity W Tv(t) = VW has been used. Note that ∂W is

a row vector.

The expansion of this equation generates four components, the expectation of which should

be calculated.

yT (t)GRV (t): Starting from the definition of V , we have:

yT (t)G̃V (t) = yT (t)G̃(vT (t)⊗ INI ) = yT (t)(vT (t)⊗ G̃) (5.49)
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Moving the expectation around v, we get:

yT (t)[v(t)
T
⊗ G̃] (5.50)

which expands as:

[v̄0(t)yT (t)G̃|v̄1(t)yT (t)G̃| · · · |v̄N−1(t)yT (t)G̃] (5.51)

Thus, the kth element will be (k = 0 · · ·N ×NI − 1):

v̄b k
NI
c(t)y

T (t)G̃:,k%NI (5.52)

The term b k
NI
c is the source index of the connection, and the modulus k%NI is the destination

index of the connection. Thus, if the derivative is reordered as a matrix to match the

dimensions of W , the derivative of yT (t)GRV (t) w.r.t. the connection from source s =

0 · · ·N − 1 to destination d = 0 · · ·NI − 1 is:

v̄s(t)y
T (t)G̃:,d (5.53)

To interpret this in matrix form, the expression should be the element (s, d) of some matrix.

Using the definition of matrix multiplication:

v̄s(t)y
T (t)G̃:,d = [v̄(t)[yT (t)G̃]]s,d (5.54)

Therefore, the matrix representation of the derivative of yT (t)GRV (t) is given by v̄(t)yT (t)G̃.
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WTV T (t)RTGTGRV (t): Using some Kronecker product identities, the definition of matrix

multiplication, the definition of G̃, and the matrix reshaping explained above:

WTV T (t)G̃T G̃V (t) =WT
(
vT (t)⊗ G̃

)T (
vT (t)⊗ G̃

)
(5.55)

=WT
(
v(t)⊗ G̃T

)(
vT (t)⊗ G̃

)
(5.56)

=WT
([
v(t)vT (t)

]
⊗
[
G̃T G̃

])
(5.57)

The kth element of this row vector is now given by:

[
WTV T (t)G̃T G̃V (t)

]
k

=
∑
`

W`

[[
v(t)vT (t)

]
⊗
[
G̃T G̃

]]
`,k

(5.58)

=
∑
`

W`

[
vb `

NI
c(t)vb k

NI
c(t)[G̃

T G̃]`%NI ,k%NI

]
(5.59)

=
∑
`

Ws(`),d(`)

[
vs(`)(t)vs(k)(t)

[
G̃T G̃

]
d(`),d(k)

]
(5.60)

=
∑
s′,d′

Ws′,d′

[
vs′(t)vs(t)

[
G̃T G̃

]
d′,d

]
(5.61)

=
∑
s′

(∑
d′

Ws′,d′

[
G̃T G̃

]
d′,d

)
vs(t)vs′(t) (5.62)

=
∑
s′

(
W [G̃T G̃]

)
s′,d

vs(t)vs′(t) (5.63)

=
∑
s′

[vs(t)vs′(t)]
[
W [G̃T G̃]

]
s′,d

(5.64)

=
[
(v(t)⊗ vT (t))

[
W [G̃T G̃]

]]
s,d

(5.65)

which is the complete reshapred matrix form of the derivative of WTV T (t)RTGTGRV (t).

θT (t)Σ−1AIωImV (t − 1): Using the definition Σ−1 = A−TI ω−TI m−1P−1
w m−1ω−1

I A−1
I , the

expression is equal to θT (t)ΘV (t− 1) with Θ , A−TI ω−TI m−1P−1
w . Therefore, the derivative
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is calculated as:

[
θT (t)ΘV (t− 1)

]
k

=
[
θT (t)

[
vT (t− 1)⊗Θ

]]
k

=
∑
`

θ`(t)
[
vT (t− 1)⊗Θ

]
`,k

=
∑
`

θ`(t)vb k
NI
c(t− 1)Θ`,k%NI =

∑
`

θ`(t)vs(k)(t− 1)Θl,d(k)

=
∑
`

[
θ`(t)vs(k)(t− 1)

]
Θ`,d(k) =

∑
`

[
v(t− 1)θT (t)

]
s,`

Θ`,d(k)

=
[
v(t− 1)θT (t)Θ

]
s,d

(5.66)

Then, we can plug in the definition of θ to get:

E
{
v(t− 1)θT (t)Θ

}
= E

{
v(t− 1)θT (t)

}
Θ

= E

{
v(t− 1)

[
φTI (t)

dt
− φTI (t− 1)

dt
+ vTI (t− 1)ω2T

I + 2φTI (t− 1)ωTI − aTωTI ATI
]}

Θ

=
E
{
v(t− 1)φTI (t)

}
dt

Θ−
E
{
v(t− 1)φTI (t− 1)

}
dt

Θ + E
{
v(t− 1)vTI (t− 1)

}
ω2T
I Θ

+ 2E
{
v(t− 1)φTI (t− 1)

}
ωTI Θ− E {v(t− 1)} aTωTI ATI Θ

=
E
{
v(t− 1)φTI (t)

}
dt

Θ−
E
{
v(t− 1)φTI (t− 1)

}
dt

Θ

+ E
{
v(t− 1)vTI (t− 1)

}
A−1
I ωIm

−1P−1
w

+ 2E
{
v(t− 1)φTI (t− 1)

}
A−1
I m−1P−1

w − E {v(t− 1)} aTm−1P−1
w

,
γ1(t)

dt
− γ2(t− 1)

dt
+ γ3(t− 1) + 2γ4(t− 1)− γ5(t− 1) (5.67)
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WTV T (t− 1)mTωTI A
T
I Σ−1AIωImV (t− 1): Using the definition of V and some Kronecker

product identities:

WTV T (t− 1)P−1
w V (t− 1) =WT

(
vT (t− 1)⊗ INI

)T
P−1
w

(
vT (t− 1)⊗ INI

)T
=WT (v(t− 1)⊗ INI )

T P−1
w

(
vT (t− 1)⊗ INI

)T
=WT

(
v(t− 1)⊗ P−1

w

) (
vT (t− 1)⊗ INI

)
=WT

([
v(t− 1)vT (t− 1)

]
⊗
[
P−1
w INI

])
=WT

([
v(t− 1)vT (t− 1)

]
⊗ P−1

w

)
(5.68)

The kth element of this row vector and the corresponding element in the reshaped matrix

is:

[
WT

([
v(t− 1)vT (t− 1)

]
⊗ P−1

w

)]
k

=
∑
`

W`

(
v(t− 1)vT (t− 1)⊗ P−1

w

)
`,k

=
∑
`

W`

[
v(t− 1)vT (t− 1)

]
b `
N
c,b k

N
c [P−1

w ]`%NI ,k%NI

=
∑
`

Ws(`),d(`)

[
v(t− 1)vT (t− 1)

]
s(`),s(k)

[P−1
w ]d(`),d(k)

=
∑
s′,d′

Ws′,d′
[
v(t− 1)vT (t− 1)

]
s′,s

[P−1
w ]d′,d

=
∑
s′

[
v(t− 1)vT (t− 1)

]
s′,s

∑
d′

Ws′,d′ [P
−1
w ]d′,d

=
∑
s′

[
v(t− 1)vT (t− 1)

]
s′,s

(
WP−1

w

)
s′,d

=
∑
s′

[
v(t− 1)vT (t− 1)

]
s,s′

(
WP−1

w

)
s′,d
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=
([
v(t− 1)vT (t− 1)

]
WP−1

w

)
s,d

(5.69)

Therefore, the matrix form of the derivative of WTV T (t− 1)mTωTI A
T
I Σ−1AIωImV (t− 1) is

given by:

v(t− 1)vT (t− 1)WP−1
w (5.70)

Summary: Putting the componets together, the derivative of the cost function ∂W is

given by:

∂W = −1
T

∑T
t=1

(
E{−1

σ2
ε
yT (t)GRV (t)}+ E{ 1

σ2
ε
WTV T (t)RTGTGRV (t)}

+E{−θT (t)Σ−1AIωImV (t− 1)}

+E{WTV T (t− 1)mTωTI A
T
I Σ−1AIωImV (t− 1)}

)
− λ∂|W|1

∂W

Note that this quantity is an 1 × NNI row vector. For a more intuitive interpretation in

terms of the source and the destination of a connection, let R denote the reshaping operator

that convert the input 1 × NNI row vector into an N × NI matrix by filling out the rows

first. With the following definitions:

∂W ,R(∂W) (5.71)

〈x(t)〉 , 1

T

T∑
t=1

x(t) (5.72)
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Term Definition Element (s, d) = · · ·

α(t) v̄(t)yT (t)G̃ yT (t)v̄s(t)G̃:,d

β(t) v(t)vT (t)WG̃T G̃
∑N−1

s′=0 Ws′→[G̃T G̃]:,dvs′(t)vs(t)

χ(t) v(t− 1)vT (t− 1)WP−1
w

∑N−1
s′=0 Ws′→ [P−1

w ]:,d vs′(t− 1)vs(t− 1)

γ1(t) v(t− 1)φTI (t)Θ [v(t− 1)φTI (t)]s,:Θ:,d

γ2(t− 1) v(t− 1)φTI (t− 1)Θ [v(t− 1)φTI (t− 1)]s,:Θ:,d

γ3(t− 1) v(t− 1)vTI (t− 1)A−1
I ωIm

−1P−1
w [v(t− 1)vTI (t− 1)]s,:[A

−1
I ωIm

−1P−1
w ]:,d

γ4(t− 1) v(t− 1)φTI (t− 1)A−1
I m−1P−1

w [v(t− 1)φTI (t− 1)]s,:[A
−1
I m−1P−1

w ]:,d

γ5(t− 1) v(t− 1)aTm−1P−1
w [v(t− 1)]s,:[a

Tm−1P−1
w ]:,d

Table 5.2: The definition of variables in Eq. 5.73. The overlines represent the expectation
(calculated by UKF).

, the matrix-shaped derivative is given by:

∂W =
1

σ2
ε

〈α(t)〉 − 1

σ2
ε

〈β(t)〉

+
1

dt
〈γ1(t)〉 − 1

dt
〈γ2(t− 1)〉+ 〈γ3(t− 1)〉+ 2 〈γ4(t− 1)〉 − 〈γ5(t− 1)〉

− 〈χ(t− 1)〉 − λ∂|W |1
∂W

(5.73)

with the definition of α, β, γi, and χ summarized in Table ??.

Unfortunately, a standard UKF implementation does not return lagged expectations such as

v(t− 1)φTI (t) which appear in γ1. To address this, we propose to augment the state vector
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of the UKF as:

x[k] =



v[k]

φ[k]

v[k − 1]

φ[k − 1]


(5.74)
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, for which the state transition equation is modified as in Eq. 5.75:

x
4
N
×

1
[k

]
=

                          v
[k
−

1]

φ
[k
−

1]

        +
d
t

                 0 N
I N

−
ω

2
−

2ω

                v
[k
−

1]

φ
[k
−

1]

        +

         

0 N

A
ω

  S
(w

[k
−

1]
+
W

T
v
[k
−

1]
)

ze
x
t [
k
−

1]

                    

x
1
:2
N

[k
−

1]

                  

=

                  x
1
:2
N

[k
−

1]
+
d
t

                 0 N
I N

−
ω

2
−

2ω

        x
1
:2
N

[k
−

1]
+

         

0 N
×

1

A
ω

  S
(w

[k
−

1]
+
W

T
x

1
:N

[k
−

1]
)

ze
x
t [
k
−

1]

                    

x
1
:2
N

[k
−

1]

                  

(5.75)
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5.2.3 Solving the Optimization Problem of the M-step Using Co-

ordinate Descent

Given the derivative of the cost function w.r.t individual connectivity elements, we can now

use coordinate descent to maximize the Q function iteratively. For Ws,d, the negated sub-

differential will be linear in Ws,d with an extra sign function (see Section 2.7):

−∂Ws,d
= Rs,dWs,d + Ss,d + λsign(Ws,d) (5.76)

The solution of zero-derivative is given by:

sign(Ss,d) min

(
0,
λ− |Ss,d|
Rs,d

)
(5.77)

The only terms in the derivative that depend on Ws,d are β and χ. Therefore:

−∂Ws,d
=− 1

σ2
ε

〈αs,d(t)〉+
1

σ2
ε

〈βs,d(t)〉 −
1

dt
〈[γ1(t)]s,d〉+

1

dt
〈[γ2(t− 1)]s,d〉

− 〈[γ3(t− 1)]s,d〉 − 2 〈[γ4(t− 1)]s,d〉+ 〈[γ5(t− 1)]s,d〉

+ 〈χs,d(t− 1)〉+ λsign(Ws,d) (5.78)

If we denote the independence from and dependence on Ws,d by superscript −sd and +sd
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respectively, then:

−∂Ws,d
=− 1

σ2
ε

〈αs,d(t)〉+
1

σ2
ε

〈βs,d(t)〉+sd +
1

σ2
ε

〈βs,d(t)〉−sd −
1

dt
〈[γ1(t)]s,d〉

+
1

dt
〈[γ2(t− 1)]s,d〉 − 〈[γ3(t− 1)]s,d〉 − 2 〈[γ4(t− 1)]s,d〉+ 〈[γ5(t− 1)]s,d〉

+ 〈χs,d(t− 1)〉+sd + 〈χs,d(t− 1)〉−sd + λsign(Ws,d)

=

(
− 1

σ2
ε

〈αs,d(t)〉+
1

σ2
ε

〈βs,d(t)〉−sd −
1

dt
〈[γ1(t)]s,d〉+

1

dt
〈[γ2(t− 1)]s,d〉

− 〈[γ3(t− 1)]s,d〉 − 2 〈[γ4(t− 1)]s,d〉+ 〈[γ5(t− 1)]s,d〉+ 〈χs,d(t− 1)〉−sd
)

+(
1

σ2
ε

〈βs,d(t)〉+sd + 〈χs,d(t− 1)〉+sd
)

+ λsign(Ws,d)

=Ss,d +Rs,dWs,d + λsign(Ws,d) (5.79)

Starting from the definition of β and χ, and using the definition of matrix multiplication,

we can decompose as:

〈χs,d(t− 1)〉−sd =
∑

(s′,d′)6=(s,d)

〈
vs(t− 1)vs′(t− 1)

〉
Ws′,d′ [P

−1
w ]d′,d (5.80)

〈χs,d(t− 1)〉+sd =
〈
vs(t− 1)vs(t− 1)

〉
Ws,d[P

−1
w ]d,d (5.81)

〈βs,d(t)〉−sd =
∑

(s′,d′)6=(s,d)

〈
vs(t)vs′(t)

〉
Ws′,d′ [G̃

T G̃]d′,d (5.82)

〈βs,d(t)〉+sd =
〈
vs(t)vs(t)

〉
Ws,d[G̃

T G̃]d,d (5.83)

The current values of the elements of the connectivity matrix other than Ws,d are used to

update the estimate of Ws,d. We may add and subtract the current value of the target

element Ws,d to enable a more efficient batch update of the elements by getting rid of the 6=

in the summations above. Note that we should distinguish between Ws,d being a variable to
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optimize over, and W
(j)
s,d being the current guess for Ws,d:

〈χs,d(t− 1)〉−sd = [
〈
v(t− 1)vT (t− 1)

〉(j)

W (j)P−1
w ]s,d

−
〈
vs(t− 1)vs(t− 1)

〉(j)

W
(j)
s,d [P−1

w ]d,d

= [
〈
v(t− 1)vT (t− 1)

〉(j)

W (j)P−1
w ]s,d

−
[
Diag(

〈
v(t− 1)vT (t− 1)

〉(j)

)W (j)Diag(P−1
w )

]
s,d

(5.84)

〈βs,d(t)〉−sd =

[〈
v(t)vT (t)

〉(j)

W (j)G̃T G̃

]
s,d

−
〈
vs(t)vs(t)

〉(j)

W
(j)
s,d [G̃T G̃]d,d

=

[〈
v(t)vT (t)

〉(j)

W (j)G̃T G̃

]
s,d

−
[
Diag(

〈
v(t)vT (t)

〉(j)

)W (j)Diag(G̃T G̃)

]
s,d

(5.85)

where Diag returns a diagonal matrix consisting of the diagonal elements of the input.

In summary, the following steps are taken at iteration j + 1 of the EM algorithm:

1) At iteration j + 1, choose an (s, d) to update.

2) For the selected (s, d), and using the current value of parameters (from step j), calculate

the following:

< α
(j)
s,d >,< β

(j)
s,d >

−sd, < χ
(j)
s,d >

−sd, < γ
(j)
1···5 > (5.86)
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3) Calculate S
(j)
s,d :

S
(j)
s,d =

(
− 1

σ2
ε

〈
α

(j)
s,d(t)

〉
+

1

σ2
ε

〈
β

(j)
s,d(t)

〉−sd
− 1

dt

〈
[γ

(j)
1 (t)]s,d

〉
+

1

dt

〈
[γ

(j)
2 (t− 1)]s,d

〉
−
〈

[γ
(j)
3 (t− 1)]s,d

〉
− 2

〈
[γ

(j)
4 (t− 1)]s,d

〉
+
〈

[γ
(j)
5 (t− 1)]s,d

〉
+
〈
χ

(j)
s,d(t− 1)

〉−sd)

=− 1

σ2
ε

[〈
v̄(t)yT (t)

〉(j)
G̃
]
s,d

+
1

σ2
ε

[〈
v(t)vT (t)

〉(j)

W (j)G̃T G̃−Diag(
〈
v(t)vT (t)

〉(j)

)W (j)Diag(G̃T G̃)

]
s,d

− 1

dt

[〈
v(t− 1)φTI (t)

〉(j)

A−1
I ω−1

I m−1P−1
w

]
s,d

+
1

dt

[〈
v(t− 1)φTI (t− 1)

〉(j)

A−1
I ω−1

I m−1P−1
w

]
s,d

−
[〈
v(t− 1)vTI (t− 1)

〉(j)

A−1
I ωIm

−1P−1
w

]
s,d

− 2

[〈
v(t− 1)φTI (t− 1)

〉(j)

A−1
I m−1P−1

w

]
s,d

+
[
〈v̄(t− 1)〉(j) aTm−1P−1

w

]
s,d

+

[〈
v(t− 1)vT (t− 1)

〉(j)

W (j)P−1
w

−Diag(
〈
v(t− 1)vT (t− 1)

〉(j)

)W (j)Diag(P−1
w )

]
s,d
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4) Calculate R
(j)
s,d (derived from β+sd and χ+sd):

R
(j)
s,d =

1

σ2
ε

< vs(t)vs(t) >
(j) [G̃T G̃]d,d+ < vs(t− 1)vs(t− 1) >(j) [P−1

w ]d,d (5.87)

=
1

σ2
ε

[
diag(< v(t)vT (t) >(j))diagT (G̃T G̃)

]
s,d

+
[
diag(< v(t− 1)vT (t− 1) >(j))diagT (P−1

w )
]
s,d

(5.88)

where diag return a column vector consisting of the diagonal elements of the input matrix.

5) Update Ws,d (other elements remain unchanged, but will change in the following itera-

tions):

Ws,d ← sign(S
(j)
s,d) min

(
0,
λ− |S(j)

s,d |
R

(j)
s,d

)
(5.89)

Complexity Reduction

In order to update multiple parameters in a single iteration (i.e. batch update), a subset of

the matrices representing α, β, χ, and γi are selected using the matrix definitions in Table

5.2. Furthermore, since many multiplication operations overlap across the iterations due to

the presence of matrix multiplications in S(j) and R(j), the complexity may be reduced by

(partially or fully) storing the individual elements of the summations as well as the sum

itself, and then update the sums incrementally.

The concept of stochastic EM may be applied as well to reduce the computational complexity

and enable an online version of the algorithm. With the current formulation, the parameters

are fixed and the UKF is executed over the entire dataset to calculate the 〈.〉s. Then, the 〈.〉s

are used to update a single element. Since the number of time samples may be very high,

and since the EM is inherently iterative, the current updated value of a parameter might be
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overwritten in a later iteration, effectively wasting the significant resources used for the last

update using the entire dataset.

To resolve this, one possibility is to start from the beginning of the dataset and stop as soon

as the temporal averages converge. However, we will end up using a portion of the data over

and over, and the algorithm is yet offline. In stochastic EM, the idea is to use a fraction of

the data to update a fraction of the coefficients.

The two extremes are a) using all the data to update just one parameter, which is a waste of

data and computation resource, and b) using a single data point to update all the parameters,

which overemphasizes the voting power of the individual data sample and leads to inaccurate

parameter values and EM divergence. Intermediate approaches are also possible as shown in

Fig. 5.4. Rather than using har boundaries between the time samples used in each iteration,

another method to update the 〈.〉s is to incorporate the most recent sample into the current

〈.〉 using a forgetting factor 0 ≤ κ ≤ 1:

〈〉t = κdt + (1− κ) 〈〉t−1 (5.90)

The choice of the batch size (i.e. the degree of parallelism), and the number of data points

consumed in one iteration, also referred to as consensus, affects the both the speed and quality

of convergence. Specifically, a higher consensus means a higher complexity per iteration,

but lower convergence jitter across iterations. Also, while a higher batch size can increase

convergence speed, batch sizes larger than a threshold lead to the divergence of the EM. The

trade-off is shown in Fig. 5.5.
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(a) Using all data points to update one parameter

(b) Using one data point to update one parameter

(c) Using multiple data points to update one parameter

(d) Using one data point to update multiple parameters

(e) Using multiple data points to update multiple parameters

(f) Using one data point to update all parameters

Figure 5.4: Different combinations of batch processing and stochastic EM
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Figure 5.5: Choosing the right batch-size and consensus.
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Chapter 6

Evaluation of NMM Sparse

Connectivity Estimation

In this chapter, the NMM connectivity estimation algorithm proposed in Chapter 5 is eval-

uated on a small-dimensional problem with only one connection. The algorithm is found to

be insensitive to the connection source. The cost function is further examined to find the

root cause of the issue. We propose an approach based on the decomposition of the original

cost function to address the source-insensitivity issue. The performance of the proposed

algorithm and the possible shortcomings are to be investigated in future work.

6.1 The Source-Insensitivity Problem

In order to evaluate the method, the algorithm was tested on a simple configuration. Specifi-

cally, only one connections was included in the ground truth network of NC cortical columns.

Each column was internally driven by a white noise source that biases the input of the pyra-

midal population at 1 milivolts. The LFM was set equal to identity matrix to simplify
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debugging the results. The algorithm was tested on different problem dimensions (NC) and

with different ground-truth connection configuration.

Regardless of the problem dimension and connectivity configuration, the algorithm was ob-

served to be accurate in determining the destination of the connection, but it was insensitive

to the source of the connection. In other words, while different runs of the algorithm for the

same system led to the same inferred connection destination, the inferred connection source

varied with each simulation.

To find the root cause of this problem, consider a network of cortical columns with a connec-

tion of strength 300 from column 1 to column 2. The UKF is constructed based on an initial

guess of very small connections. Fig.6.1 compares the true state (v) and the estimated state

for a simulation of 660 miliseconds. A vertical magnification of the second row is provided

in Fig. 6.2 .

First, it is observed that the state estimate for the cortical column 2 with underestimated

incoming connectivity catches up with the true state after a transient time dictated by the

time constants. Second, it is observed that while the existence of an incoming connection

significantly affects the operating point of the destination column, it has little influence on

the strength of the variations around the operating point.

6.2 Qualitative Justification of the Results

The source-insensitive behvaiour of the parameter estimation algorithm is qualitatively jus-

tified as follows. The Q function in Eq. 5.32, excluding the `1 penalty, is essentially a

W -parameterized weighted combination of expected process and measurement innovations
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The network is initially postulated to have weak connections.
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under current parameter values W (j):

Qj(W ) =
−1

2σ2
ε

〈
ζT (t;W )ζ(t;W )

(j)
〉
t
− 1

2

〈
ξT (t)Σ−1ξ(t)

(j)
〉
t
− λ|W |1 (6.1)

which is merely a tractable lower bound on the actual complicated cost function (i.e. the

parameter posterior). Based on Eq. 6.1 and the observations above, multiple scenarios may

lead to incorrect parameter estimates.

First, similar to any other EM-based parameter estimation, the EM may be trapped in a

local minimum which is far from the actual parameter. The more complex the actual cost

function, the higher the probability of getting stuck in an undesired local extermum.

Second, the numerical range of 1/2σ2
ε and Σ−1 may be very different, leading to an unbalanced

importance weighting of the process and measurement innovations.

Finally, and most importantly, the mapping from the space of operating points to the space

of connectivity matrices is not unique. Roughly speaking, an optimal W is one that leads

to small innovation powers ||ζ|| and ||ξ||. As shown in Fig. 6.1, the large deviation be-

tween expected measurement and the actual measurement results in a 〈Ej||ζ(t;W j)||〉 that

is significantly larger than 〈Ej||ξ(t;W j)||〉. In this case, choosing a W that corrects the

operating point of the state will significantly reduce 〈Ej||ζ(t;W j)||〉 and thus the cost func-

tion. Unfortunately, adding a connection from any of the other columns will satisfy this

requirement with negligible difference in terms of cost function improvement. As discussed

previously, the source of the connection may only distinctively affect the variations of the

destination activity around the operating point but not the operating point itself. Since the

variations are numerically much smaller than the operating point, the improvement in the

overall cost function will be insensitive to the selected source. Furthermore, once a strong

connection is established by coordinate descent, the subsequent updates will only introduce

minor changes to other connections as the errors 〈Ej||ξ(t;W j)||〉 and 〈Ej||ζ(t;W j)||〉 have
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already been diminished by the first established connection.

6.3 Quantitative Analysis and Potential Solutions

To quantify the root cause of the problem, note that with a diagonal Pw, both ||ζ(t)||2 and

ξT (t)Σ−1ξ(t) are essentially weighted summations over the individual elements of the square

of the elements of the vectors ξ and ζ:

ζT ζ =
M∑
m=1

ζ2
m (6.2)

ξTΣ−1ξ =

NI∑
nI=1

[Σ−1]nI ,nIξ
2
nI

(6.3)

where M is the measurement dimension, NI is the number of internal populations (that

may receive connections). Each individual scalar term ξn and ζm is itself a function of the

connectivity parameters, where the function is a quadratic in elements of W augmented with

an `1 penalty. Let’s ignore the weights and focus on one of these individual terms.

Using the values at iteration j, and dropping the time dependence momentarily, we can

emphasize the quadratic dependence on the connectivity paremters as follows:

ζ2(j)

m =(ym − [G̃W Tv]m)2
(j)

=y2
m + [G̃W Tv]2m

(j)

− 2ym[G̃W Tv]m
(j)

=y2
m + (G̃m,:[W Tv])2

(j)

− 2ym[G̃W Tv(j)]m

=y2
m + (

NI∑
ni=1

G̃m,ni

N∑
n=1

[W T ]ni,nvn)2

(j)

− 2ym(

NI∑
ni=1

G̃m,ni

N∑
n=1

[W T ]ni,nvn
(j))

=y2
m + (

NI∑
ni=1

G̃m,ni

N∑
n=1

Wn,nivn)2

(j)

− 2ym(

NI∑
ni=1

G̃m,ni

N∑
n=1

Wn,nivn
(j))
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=y2
m +

∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

vnvn′
(j)
]
Wn,niWn′,n′i

− 2ym
∑
n,ni

[
G̃m,niG̃m,n′i

vn
(j)
]
Wn,ni (6.4)

A similar equation may be derived for ξ2
nI

. With the addition of temporal averaging, the

last equation changes to:

〈
ζ2(j)

m (t)
〉

= 〈y2
m(t)〉 +

∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈
vn(t)vn′(t)

(j)
〉]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

〈
ym(t)vn(t)

(j)
〉]
Wn,ni

(6.5)

Several important conclusions are drawn from the last equation:

6.3.1 Imbalanced Curvatures

Each m leads to a quadratic function in W with different curvatures. The curvature of a

quadratic is defined as the trace of the eignevalue matrix of the Jacobian associated with the

quadratic. If two qudratics with curvatures c1 and c2 are added together, and if c1 � c2, a

gradient descent or coordinate descent on the resulting quadratic is far more in favor of the

quadratic with larger curvature. In other words, any stepping approach will essentially ignore

the small curvature quadratic as it seems flat compared to the large-curvature quadratic.

Consequently, if a sum (over m) of quadratics is to be used as the final cost function,

and if all individual cost functions carry information to improve the parameter estimate,

the individual quadratics should be properly scaled so that gradient or coordinate descent

converge to better parameter estimates. Alternatively, a single m (or ni in case of process

innovation) may be picked to form the cost function; the descent algorithm then taken a

small step to ensure that the subsequent parameter updates can counteract any possible

erroneous corrections.

142



6.3.2 Ill-conditioned Jacobian

The rank and the condition number of the Jacobian determine if the quadratic function has a

well defined minimum, or if different linear combinations of the weights can yield similar cost

function improvements. This is especially problematic for the example scenario discussed

at the beginning of this section and directly result in the unidentifiability of the connection

source. To see why, note that the Jacobian matrix is an NNI ×NNI matrix as a vectorized

version of W should be used. Let s(.) and d(.) denote the functions that map the linear

index of vec(W ) to the 2D indices of W . The element (k, k′) of the Jacobian is then given

by:

Jk,k′(

〈
ζ2(j)
m (t)

(j)
〉

) =
∂2

∂Ws(k),d(k)∂Ws(k′),d(k′)

〈
ζ2(j)
m (t)

(j)
〉

=G̃m,d(k)G̃m,d(k′)

〈
vs(k)(t)vs(k′)(t)

(j)
〉

(6.6)

Consider the element m of the measurement vector that measures the PSP of population n

(as determined by the identity LFM). Based on Eq. 6.6, all elements (k, k′) of the Jacobian

matrix that satisfy d(k) = n and d(k′) = n will be nonzero because of the termGm,d(k)G̃m,d(k′).

Since the function d(k) does not provide a one-to-one mapping from the input to the output,

the resulting Jacobian matrix will consist of a grid of nonzero elements interspersed by

zero elements. Therefore, the Jacobian will be rank deficient and infinitely many different

combinations can lead to the same minimal cost. Although the `1 norm can help find a unique

solution out of this infinite pool of solutions, there is no guarantee that the unique solution

is associated with the ground truth because `1 by itself cannot incorporate the information

available in the other individual cost functions (e.g. a cost function associated with a ζm′ 6=m,

or even the cost function associate with an element of process innovation ξ.) In conclusion,

while ill-conditioned individual cost functions can contribute to solving the optimization

problem, they should not be the only source consulted by the descent algorithm. Other
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more informative cost functions, such as those sensitive to the activity waveform, should

definitely be used by the descent algorithm.

6.3.3 Low Dispersion

The dispersion of a distribution is defined as the ratio of the variance to the mean. The

low statistical dispersion of the estimated time series imposes another challenge on the op-

timization problem. As an example, consider the second order moment Ej{vn(t)vn′(t)} that

appears in the cost function associated with an element of ζ. In terms of the output of the

UKF:

Ej{vn(t)vn′(t)} = Covj(vn(t), vn′(t)) + Ej{vn(t)}Ej{vn′(t)} (6.7)

where Cov(., .) is the covariance of the two scalar inputs. As discussed before and shown

with an Example in Fig. 6.1, the estimated covariances are numerically much smaller than

the mean values (low dispersion). To see how it affects the optimization output, let’s expand

the individual cost function in Eq. 6.5 using Eq. 6.7:

〈
ζ2(j)

m (t)
〉

= 〈y2
m(t)〉 +

∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈Covj(vn(t), vn′(t))〉
]
Wn,niWn′,n′i

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈Ej{vn(t)}Ej{vn′(t)}〉
]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

〈ym(t)Ej{vn(t)}〉
]
Wn,ni

(6.8)

As was shown in Fig. 6.1, the covariance term Covj(vn(t), vn′(t)) is much smaller than the

square mean term Ej{vn(t)}Ej{vn′(t)}. Each individual cost function such as
〈
ζ2(j)

m (t)
〉

that involves second moments can be interpreted as the sum of two distinct quadratics; The

quadratic hypersurface whose Jacobian depends on the larger elements Ej{vn(t)}Ej{vn′(t)}
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will then have a higher curvature and will effectively mask the other smaller curvature

quadratic. This is problematic as the Jacobian obtained from Ej{vn(t)}Ej{vn′(t)} is ill-

conditioned and the corresponding quadratic has no well-defined minimum. On ther other

hand, the Jacobian obtain from Covj(vn(t), vn′(t)) is not ill-conditioned, and the correspond-

ing quadratic carries variation-based information that may lead to higher quality parameter

estimates.

To address this issue, the cost function should be properly split into a ‘mean’ and a ‘variation’

component. Let vop(t) and ȳop(t) denote the operating points of the true voltages and the

measurements. Also, let δv(t) and δy(t) denote the variations such that:

v(t) = vop(t) + δv(t) (6.9)

y(t) = yop(t) + δy(t) (6.10)
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Then, for element m, the power of the measurement innovation is given by:

(ym(t)− G̃m,:W
Tv(t))2 = y2

m(t)

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

vn(t)vn′(t)
]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

ym(t)vn(t)
]
Wn,ni

= y2
opm(t)

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

vopn(t)vopn′ (t)
]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

yopm(t)vopn(t)
]
Wn,ni

+δy2
m(t)

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

δvn(t)δvn′(t)
]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

δym(t)δvn(t)
]
Wn,ni

+2yopmδym

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

δvn(t)vopn′ (t)
]
Wn,niWn′,n′i

+
∑

n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

vopn(t)δvn′(t)
]
Wn,niWn′,n′i

−2
∑

n,ni

[
G̃m,niG̃m,n′i

δym(t)vopn(t)
]
Wn,ni

−2
∑

n,ni

[
G̃m,niG̃m,n′i

yopm(t)δvn(t)
]
Wn,ni

(6.11)

Unfortunately, the states are not observed directly and both the operating points and the

variations should be replaced by their expected values under current parameter estimates.

With the following approximations and substitutions:

〈
y2
opm

〉
≈
〈
y2
m(t)

〉
(6.12)〈

Ej{vopn(t)vopn′ (t)}
〉
→〈Ej{vn(t)}Ej{vn′(t)}〉 (6.13)

〈Ej{yopm(t)vopn(t)}〉 →〈ym(t)〉 〈Ej{vn(t)}〉 (6.14)〈
δy2

m(t)
〉

=
〈
(y(t)− 〈ym(t)〉)2

〉
(6.15)

〈Ej{δvn(t)δvn′(t)}〉 →〈Covj(vn(t), vn′(t))〉 (6.16)

〈Ej{δym(t)δvn(t)}〉 →〈(ym(t)− 〈ym(t)〉)(Ej{vn(t)} − 〈Ej{vn(t)}〉)〉 (6.17)
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and noting that the expectation eliminates the last 5 lines of Eq. 6.11, the individual cost

function
〈
ζ2(j)

m (t)
〉

can now be decomposed as:

〈
ζ2(j)

m (t)
〉

=
〈
ζ2(j)

opm(t)
〉

+
〈
δ2ζ2(j)

m (t)
〉

(6.18)

with:

〈
ζ2(j)

opm(t)
〉

=
〈
y2
m(t)

〉
+
∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈Ej{vn(t)}Ej{vn′(t)}〉
]
Wn,niWn′,n′i

− 2
∑
n,ni

[
G̃m,niG̃m,n′i

〈ym(t)〉 〈Ej{vn(t)}〉
]
Wn,ni (6.19)

and:

〈
δ2ζ2(j)

m (t)
〉

=
〈
(ym(t)− 〈ym(t)〉)2

〉
+
∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈Covj(vn(t), vn′(t))〉
]
Wn,niWn′,n′i

− 2
∑
n,ni

[
G̃m,niG̃m,n′i

〈(ym(t)− 〈ym(t)〉)(Ej{vn(t)} − 〈Ej{vn(t)}〉)〉
]
Wn,ni

(6.20)

Let 〈〈a(t), b(t)〉〉 denote the temporal cross-correlation operator defined by

〈〈a(t), b(t)〉〉 , 〈(a(t)− 〈a(t)〉)(b(t)− 〈b(t)〉)〉 (6.21)

Then:

〈
δ2ζ2(j)

m (t)
〉

= 〈〈ym(t), ym(t)〉〉
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+
∑
n,ni

∑
n′,n′i

[
G̃m,niG̃m,n′i

〈Covj(vn(t), vn′(t))〉
]
Wn,niWn′,n′i

− 2
∑
n,ni

[
G̃m,niG̃m,n′i

〈〈ym(t), Ej{vn(t)}〉〉
]
Wn,ni (6.22)

The cost function
〈
δ2ζ2(j)

m (t)
〉

factors out the operating points and thus prevents the large

operating points from masking the information embedded in waveform correlations. Impor-

tantly, the Jacobian corresponding to
〈
δ2ζ2(j)

m (t)
〉

is not ill-conditioned any may lead to a

unique solution of the optimization problem.

Similar equations can be derived for the process innovation. Starting from the definition of

ξ:

ξnI (t) =
φnI (t)− φnI (t− 1)

dt
+ ω2

nI
vnI (t− 1) + 2ωnIφnI (t− 1)

− AnIωnI (a+ [mW Tv(t− 1)]nI ) (6.23)

where nI ∈ {1 · · ·NI} denoted the index of an internal population. To reduce the clutter in

the expansion of ξ2
nI

, define vector cnI such that:

φnI (t)− φnI (t− 1)

dt
+ ω2

nI
vnI (t− 1) + 2ωnIφnI (t− 1)− AnIωnIa

= AnIωnImc
T
nI

 1

x(t)


= AnIωnImc

T
nI
x̃(t) (6.24)

where x̃(t) is the augmented state vector x(t) = [1, vT (t), φT (t), vT (t− 1), φT (t− 1)]T . Then:

1

(AnIωnIm)2
ξ2
nI

(t) =(cTnI x̃(t)− [W Tv(t− 1)]nI )
2

=(cTnI x̃(t)−
N∑
n=1

Wn,nIvn(t− 1))2
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=cTnI x̃(t)x̃T (t)cnI

+
∑
n,n′

Wn,nIWn′,nIvn(t− 1)vn′(t− 1)

− 2cTnI x̃(t)
N∑
n=1

Wn,nIvn(t− 1) (6.25)

Similar to Eq. 6.10, x̃ is decomposed into x̃op and δx̃. For notational simplicity, let’s denote

the statistcal expectation can covariance Ej{x} and Covj(a, b) by x(j) and a, b
(j)

respectively.

Then, the same methods used for decomposing
〈
ζ2(j)

m (t)
〉

as
〈
ζ2(j)

opm(t)
〉

+
〈
δ2ζ2(j)

m (t)
〉

are

applied to obtain the following decomposition for
〈
ξ2
nI

(t)
(j)
〉

:

1

(AnIωnIm)2

〈
ξ2
opnI

(t)
(j)
〉

=cTnI

〈
x̃(t)

(j)
〉〈

x̃(t)
(j)
〉T

cnI

+
∑
n,n′

Wn,nIWn′,nI

〈
vn(t− 1)

(j)
〉〈

vn′(t− 1)
(j)
〉

− 2
∑
n

Wn,nI

(
4N+1∑
k=1

[cnI ]k

〈
x̃k(t)

(j)
〉〈

vn(t− 1)
(j)
〉)

(6.26)

1

(AnIωnIm)2

〈
δξ2
nI

(t)
(j)
〉

=cTnI

〈
x̃(t), x̃(t)

(j)
〉
cnI

+
∑
n,n′

Wn,nIWn′,nI

〈
vn(t− 1), vn′(t− 1)

(j)
〉

− 2
∑
n

Wn,nI

(
4N+1∑
k=1

[cnI ]k

〈
x̃k(t), vn(t− 1)

(j)
〉)

(6.27)

6.4 The Open Challenges

As was discussed in the previous section, the individual cost functions that contribute to

the overall cost function are characterized by a) belonging to the process innovation or

measurement innovation (ξ or ζ), b) the corresponding element of the innovation vector

(m in ζm or nI in ξnI ), and c) whether the cost is related to the operating point or the
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variations (e.g. δ2ξ vs. ξop). Two of the problems, namely the low dispersion and imbalanced

curvatures, originate from the improper linear combination of the individual cost functions.

The remaining problem of ill-conditioned Jacobian is inherent to some of the individual cost

functions and may only be mitigated using corrections from other well-conditioned individual

cost functions.

The individual cost functions should be aggregated properly so the estimation algorithm

functions properly and yields high quality estimates. In the following paragraphs, we discuss

the details and the challenges of the two extremes of the spectrum of methods that may

be used for the aggregation of the individual cost functions. It is assumed that stepping

methods such as gradient descent or coordinate descent are used for solving the underlying

optimization problem. The space of design choices should be systematically explored to find

the methods that results in the most consistent and accurate parameter estimates.

Individual-Vote, Weak-Action

On one end of the spectrum, the estimation algorithm consults only one of the cost functions

to determine the next step to take. The algorithm then takes a small step from the current

parameter value toward the direction deemed optimal by the individual cost function. While

the individual cost function might suggest a big jump to achieve a significant improvement for

itself, it is important for the algorithm to only partially respect the individual votes so that

all of the cost functions can fairly contribute. This procedure is similar to a democratic one-

vote incremental-action improvement mechanism where the arbitrator repeatedly consults

the individuals and takes a partial action towards the opinion of that single individual.

While this method can mitigate the low dispersion and the imbalanced curvature issue by

circumventing the linear combination of the individual cost functions, two main challenges

remain to be addressed. First, how does the algorithm respond to the opinion of individual
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cost functions? For instance, does the algorithm take equally-long steps toward the individual

solutions, or does it assign different strides to different individuals? If different strides are

used, how should the strides be assigned to get as close as possible to the true parameters?

Second, how should the algorithm incorporate sparsity? Does the algorithm fully delegates

this responsibility to individual cost functions, or does it ‘smartly’ combine individual votes

to find a sparse solution? If `1 regularization is used on individual cost functions, what

regularization parameters (λ) should be used for different cost functions? The algorithm

should probably avoid using the same λ value for all cost functions as different cost functions

have different curvatures and using the same λ will have more significant effect on the more

flat cost functions. Furthermore, even if the individual cost functions attempt to pull the

estimated into a locally sparse solution, the iteration between different cost functions can act

as a competition between the individuals and lead to a globally non-sparse solution, which

is a direct result of the individuals not consulting each other before reporting an opinion.

All-Vote, Strong-Action

On the other end of the spectrum, the algorithm may combine all of the individual cost func-

tions into a new cost function before making a decision that reflects all individual opinions.

While this method simplifies the incorporation of sparsity by adding a single `1 regulariza-

tion, it is not clear how the individual costs should be combined and how this decision affects

the accuracy of the estimation result.

151



6.5 Future Work

6.5.1 Algorithm Modification

The challenges discussed in Section 6.4 should be addressed before the EM-based algorithm

is applied to connectivity estimation from EEG signals. In particular, the number of cost

functions that contribute to a single parameter update, the method of aggregation, and the

incorporation of sparsity should be determined based on the resulting estimation accuracy

on a comprehensive set of synthetic system configurations.

6.5.2 Non-Identity LFM

It is expected that realistic and ill-conditioned LFMs deteriorate the estimation performance

compared to the identitiy LFM. A low-rank LFM may impose fundamental limits on the

estimaiton accuracy caused by unidentifiability. The performance of the algorithm should

be tested under such realistic LFMs.

6.5.3 Delayed Connections

The mathematical model of the network of neural masses was derived without including

delays in the connections. Two methods exists for adding the connections to the model. First,

similar to the augmented state space vector of Chapter 2, the state vector of NMM may be

augmented with the state history, resulting in an expanded connectivity matrix that encodes

discrete connections delays in addition to connection strengths. Another physiologically-

based method also exists to model the connections. In this method, two populations are

connected by a connecting population, where the connecting population follows the same

differential equation with different parameters such as the time constant and the synaptic
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gain. The time constant of such a population may be used as a measure of connection delay

between two populations. Although physiologically more meaningful, the latter approach

requires re-designing the estimation algorithm in order to estimate synaptic gains and time

constants from data.

6.5.4 Application to real EEG data

The NMM was adopted in this thesis to resolve the mismatch between the dynamics of real

EEG data and the dynamics of synthetic data generated by linear MVAR models.

The capability of NMM in reproducing real EEG waveforms has been extensively studied

in the literature. However, we observed that the parameter values listed by [115] cannot

reproduce the spectrum of the available resting state EEG signals at frequencies below 4Hz.

Based on the available literature on the very low frequency brain waves, the addition of a

thalamo-cortical delayed connection between a cortical column ad a thalamical population

might be a good candidate for reproducing the very low frequency features.

Finally, and most importantly, the estimation algorithm should be applied on real EEG data

and the results should be validated against previous work. While the absence of ground

truth information makes a true validation impossible, the (lack of) conformity of the results

to certain physiologically verified facts may still be used to (in)validate the results.
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Conclusion

In this work, the estimation of connectivity parameters in indirectly observed MVAR mod-

els was studied. The estimation algorithm used a maximum a posteriori criterion. The

cost function was augmented by the `1 norm to promote sparse solutions. The resulting

optimization problem was iteratively solved by coordinate descent. The closed-form solution

to the single-coordinate problem rendered the algorithm lightweight and applicable to high

dimensional data.

The estimation algorithm was evaluated on a comprehensive set of synthetic ground-truth

configurations. The algorithm was numerically shown to outperform the previous work under

moderate to high ground-truth sparsity. A complexity analysis of the algorithm, as well as

complexity enhancements were provided.

The algorithm was then successfully applied to real temperature data to explore the pre-

dictive power of temperature time series in about 100 weather stations around the U.S.

mainland. Not only the results were consistent with previous findings, but also did they

suggest predictive powers for coastal stations; an observation that might account for the

influence of the ocean on land temperature variations.

Applied to real EEG data, the algorithm failed to estimate meaningful connections. Several

remedies based on the enrichment of the noise dynamics were tested, but failed to address the

issue. The intrinsic limitations of the linear MVAR model in capturing EEG features were
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discussed. The Neural Mass Model was then adopted because of its flexibility in modeling

EEG waveforms and because of its computational tractability compared to other realistic

neurodynamic models. The estimation algorithm was re-derived to accommodate the nonlin-

earity of the model. The modified NMM connectivity estimation algorithm was then applied

to synthetic data, and it was shown analytically that the MAP-based parameter estimate

has fundamental limitations in identifying NMM connectivities.
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[15] C. Büchel and K. Friston. Dynamic changes in effective connectivity characterized
by variable parameter regression and Kalman filtering. Human Brain Mapping, 6(5-
6):403–408, 1998.

[16] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience, 10(3):186, 2009.

[17] M. K. Carroll, G. A. Cecchi, I. Rish, R. Garg, and A. R. Rao. Prediction and interpre-
tation of distributed neural activity with sparse models. NeuroImage, 44(1):112–122,
2009.

[18] B. Cassidy, C. Rae, and V. Solo. Brain activity: Connectivity, sparsity, and mutual
information. IEEE transactions on medical imaging, 34(4):846–860, 2015.

[19] L. Cavalcante and R. J. Bessa. Solar power forecasting with sparse vector autoregres-
sion structures. In 2017 IEEE Manchester PowerTech, pages 1–6, June 2017.
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