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EPIGRAPH

Do not be tricked by human-centered views.

Gary Synder quoting Dogen, Pearly Everlasting

I had two dreams about him after he died. I don’t remember the first one all
that well but it was about meetin’ him in town somewheres and he give me some
money and I think I lost it. But the second one it was like we was both back in older
times and I was on horseback goin’ through the mountains of a night. Goin’ through
this pass in the mountains. It was cold and there was snow on the ground and he
rode past me and kept on goin’. Never said nothin’. He just rode on past and he had
this blanket wrapped around him and he had his head down and and when he rode
past I seen he was carryin’ fire in a horn the way people used to do and I could see
the horn from the light inside of it. About the color of the moon. And in the dream
I knew that he was goin’ on ahead and that he was fixin’ to make a fire somewhere
out there in all that dark and all that cold and I knew that whenever I got there he
would be there. And then I woke up.

Cormac McCarthy, No Country for Old Men
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ABSTRACT OF THE DISSERTATION

On the coupled evolution of oceanic internal waves
and quasi-geostrophic flow

by

Gregory LeClaire Wagner

Doctor of Philosophy

University of California, San Diego, 2016

Professor William R. Young, Chair

Oceanic motion outside thin boundary layers is primarily a mixture of quasi-

geostrophic flow and internal waves with either near-inertial frequencies or the fre-

quency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding

of waves and flow through reduced models that isolate their nonlinear and coupled

evolution from the Boussinesq equations. Three physical-space models are devel-

oped: an equation that describes quasi-geostrophic evolution in an arbitrary and

prescribed field of hydrostatic internal waves; a three-component model that cou-

ples quasi-geostrophic flow to both near-inertial waves and the near-inertial second

harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-

xvi



geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the

path to a coupled model for the energetic interaction of quasi-geostrophic flow and

oceanic internal tides.

Four results emerge. First, the wave-averaged quasi-geostrophic equation

reveals that finite-amplitude waves give rise to a mean flow that advects quasi-

geostrophic potential vorticity. Second is the definition of a new material invariant:

Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vor-

ticity available for balanced-flow evolution in Eulerian frames and proves necessary

in the separating waves and quasi-geostrophic flow. The third result, hashed out for

near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to

energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic

near-inertial waves the interaction often energizes waves at the expense of flow. We

call this extraction of balanced quasi-geostrophic energy ‘stimulated generation’ since

it requires externally-forced rather than spontaneously-generated waves. The fourth

result is that quasi-geostrophic flow can encourage or ‘catalyze’ a nonlinear interac-

tion between a near-inertial wave field and its second harmonic that transfers energy

to the small near-inertial vertical scales of wave breaking and mixing.
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Chapter 1

Introduction

How inappropriate to call this planet Earth when it is quite clearly Ocean.

—Arthur C. Clarke

From a certain perspective in space, the Earth seems ocean entire.1 Ocean cov-

ers 70.9% of the Earth’s surface despite billions of years of continental accumulation.

In epochs past, there was only ocean (Ward & Brownlee, 2000).

The ocean’s part in climate and life on Earth surpasses its size. More than 90%

of the heat energy added to the Earth system between 1955 and 2010 is stored in the

ocean. This massive amount of energy corresponds to 36◦C of atmospheric warming

(Levitus et al., 2012). Whatever the concerns of mankind, the increase in land surface

temperature known as ‘global warming’ is a minor correction to the changes recorded

in our warming ocean.

The many oceanic roles in climate emerge from its kaleidoscopic patchwork

of motion: the froth of white-capping sea and swell, storm-like eddies spinning off

the Gulf Stream, and lumbering internal waves tens to hundreds of meters tall. The

ocean’s rotating and density-stratified dynamics entangle each piece spanning from

1http://eoimages.gsfc.nasa.gov/images/imagerecords/46000/46209/earth pacific lrg.jpg

1

http://eoimages.gsfc.nasa.gov/images/imagerecords/46000/46209/earth_pacific_lrg.jpg
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the planetary to the planktonic, placing detailed predictions of ocean dynamics far

beyond reach of current technology. A necessary step toward forecasting climate

change is thus the development of new models for ocean physics that are efficient and

approximate yet still physically-based and reliable.

This dissertation contributes to that effort by seeking a deeper understanding

of part of the patchwork: the interweaving of two oceanic motions called ‘internal

waves’ and ‘quasi-geostrophic flow’ with spatial scales of tens to hundreds of kilo-

meters. The methods of this dissertation are theoretical, consisting mainly of the

development of models that isolate the physics of waves and flow and augmented

by a small number of analytical and numerical examples. It is hoped that further

analysis of the models developed in this dissertation will prove useful in interpreting

both observations and numerical simulations and in developing ever-better models for

oceanic circulation and the evolution of Earth’s climate.

1.1 Waves and flow

Outside surface and bottom boundary layers, oceanic motion is mostly a mix-

ture of internal waves and quasi-geostrophic flow. Waves and flow have similar hori-

zontal space-scales of tens to hundreds of kilometers, but widely disparate time-scales

ranging from a few minutes for the fastest waves to months or years for the most

slowly-evolving flows. These pithy oceanic facts are evidenced by six estimates of

kinetic energy frequency spectra shown in figure 1.1. The estimates are made from

hourly, year-long observations of horizontal velocity in the western Pacific made dur-

ing the WESTPAC experiment between the summers of 1980 and 19812.

2http://www.cmrecords.net/quick/pacific/wp/wp.htm

http://www.cmrecords.net/quick/pacific/wp/wp.htm
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Figure 1.1: Estimates of kinetic energy frequency spectra in three one-year mooring records from
the western Pacific locations shown on the map at left. At right are kinetic energy spectra from
upper-ocean and abyssal instruments on each mooring. Spectral estimates are the ensemble average
of spectra from 35 overlapping and Hamming-windowed 20-day segments extracted from each year-
long record. The arrow and label ‘M2’ marks the 12.421-hour period of the diurnal tide and a grey
line indicates the 2π/f0 = (2 sinφ)

−1
-day inertial period at latitude φ. Small peaks are discernible

at the mixed-harmonic period 2π/(f0+M2) = 0.31 and 0.34 days in data from 40.98◦N and 27.99◦N,
respectively. WESTPAC data from OSU’s Deep Water Archive2 was provided in convenient form
by Harper Simmons.

Notice first the two conspicuous peaks that appear in every record: one broad

and shifting with periods close to one day, and another narrow and fixed at a period

of 12.421 hours. The first peak is the fingerprint of ‘near-inertial waves’ close to the

local inertial frequency f0 = 4π sinφ/day at latitude φ forced by diverse mechanisms

like winds and flow-bathymetry interaction. The second peak corresponds to a mix of

surface tides and internal waves or ‘internal tides’ forced with astronomical precision

by the 12.421-hour lunar semidiurnal tide. A third peak manifests at the solar and

lunar diurnal periods close to one day in the record from 40.98◦N which may corre-

spond to the depth-indepedent surface tide or to the tidally-forced evanescent internal

waves explored by Musgrave et al. (2016). Observe the logarithmic scale: the energy

density at inertial and tidal peaks is 100× greater than at surrounding frequencies.
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Their inclination to break and churn the ocean with small-scale turbulence suggests

that internal waves make an important contribution to the vertical, diapycnal mixing

that sets the ocean’s density stratification and draws heat and carbon into the abyss.

The inertial and tidal peaks both correspond to relatively high-frequency in-

ternal waves. Moving left from the inertial peak toward lower frequencies and longer

periods, kinetic energy density first decreases to a minimum and thereafter increases

to what is typically a maximum for each spectrum at the longest observed period.

The sluggish, energy-containing motions associated with this leftward maximum are

quasi-geostrophic flows: planetary Rossby waves, meandering currents, and slowly-

spinning eddies. These flows are ‘quasi-geostrophic’ because their leisurely evolution

over many inertial periods implies they adhere to a linear geostrophic balance between

the inertial Coriolis force and pressure gradient force. Quasi-geostrophic eddies and

currents contain most of the ocean’s kinetic energy away from storm-whipped surface

layers, and rapidly stir oceanic heat and carbon over decadal time-scales on surfaces

of constant density connected to the atmosphere.

In consequence, predicting the Earth system’s short-term response to rapid

changes in CO2 concentration, for example, requires an approximate description of the

quasi-geostrophic stirring not explicitly resolved in coarse resolution models (Danaba-

soglu et al., 2012; Danabasoglu & Marshall, 2007). And efforts for predicting climate

evolution over long, hundred-year time-scales requires knowledge of the changing mag-

nitude and spatial distribution of wave-driven diapycnal mixing to accurately describe

abyssal absorption of carbon and slow changes in the ocean’s density stratification

so critical to ocean dynamics. Approximations of diapycnal mixing may require dis-

tinct components to account separately for the mixing driven by internal tides (Melet

et al., 2013; Green & Nycander, 2013; Olbers & Eden, 2013) and near-inertial waves

(Melet et al., 2014; Jochum et al., 2013). A strong physical basis is necessary for such
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approximate descriptions of waves and flow to withstand changing atmospheric and

oceanic conditions over the course of decades and centuries.

Spurred by the need to better understand internal waves and quasi-geostrophic

flow and sustained by a conviction that new mathematical models can yield substan-

tial physical intuition, this dissertation develops models that isolate the nonlinear

interaction of oceanic internal waves and quasi-geostrophic flow. We focus first on

evolution of wave-averaged quasi-geostrophic flow in arbitrary and prescribed field

of hydrostatic internal waves chapter 2. Next, we develop two models that couple

quasi-geostrophic flow to near-inertial waves and their second harmonic in chapter 3

and isolate the slow evolution of internal tides in quasi-geostrophic flow in chapter 4.

1.2 Mathematical overtures

The shape of typical frequency spectra speaks to a dichotomy among energy-

containing oceanic motions. The energy-density minimum or ‘spectral gap’ between

the conspicuous high-frequency internal wave peaks and leftward-increasing ramp of

low-frequency quasi-geostrophic flow is intrinsic to the ocean’s density-stratified and

rotating physics: both waves and flow are fundamentally small-amplitude motions,

or slight perturbations to the ocean’s basic state of rapid rotation and strong density

stratification.

The root of this oceanic dichotomy is exposed by a review of the small-

amplitude, linear solutions to this dissertation’s standard model for oceanic motion,

the inviscid, rotating Boussinesq equations on the β-plane. The linear solutions to the

rotating Boussinesq equations form the basis for the reduced models developed in 2,

3, and 4. The trek through linear landscapes ends with a glimpse into nonlinear wilds

that primes needed mathematical machinery and evokes essential physical ideas.
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1.2.1 Dynamics of rotating Boussinesq fluids

The rotating Boussinseq equations are posed in a reference frame that rotates

with the Earth at frequency Ω = 2π/day and expanded around a static, background

density stratification. Fluid density is decomposed into

ρ(x, t) = ρ0 + ρ∗(z) + ρ′(x, t) , (1.1)

where t is time and x = (x, y, z) are Cartesian east, north, and vertical coordinates.

In (1.1), ρ0 is an average or reference density, ρ∗(z) is the background density strati-

fication, and ρ′ is the dynamic perturbation associated with fluid motion. We define

the background buoyancy profile B∗ and ‘buoyancy’ b associated with the dynamic

density perturbation ρ′,

B∗(z)
def
= −gρ∗(z)

ρ0

and b
def
= −gρ

′

ρ0

. (1.2)

The buoyancy b is an acceleration imposed on the fluid by deviations in density from

the background profile. We also decompose pressure into hydrostatic and dynamic

components. The fluid’s total pressure field is decomposed into

− ρ0gz + ρ0P∗(z) + ρ0p(x, t) , (1.3)

where P∗z = −gρ∗/ρ0 so that −ρ0gz + ρ0P∗ is the hydrostatic part of pressure and

ρ0p is the dynamic part of pressure associated with fluid motion.

Two important frequencies intrinsic to density stratification and rotation are

the buoyancy frequency, N , and inertial or Coriolis frequency, f . The buoyancy

frequency is

N2 def
=

dB∗
dz

= − g

ρ0

dρ∗
dz

. (1.4)
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N is the frequency of gravity- or buoyancy-driven oscillations induced by small vertical

displacements of fluid. The inertial frequency is

f
def
= 2Ω sinφ , (1.5)

≈ f0 + βy , (1.6)

where φ is latitude. In (1.6) we move into a Cartesian reference frame which is

tangent to the Earth’s surface at the reference latitude φ0 and make the ‘β-plane

approximation’. On the β-plane, f is expanded around φ0 so that the local inertial

frequency is f0 = 2Ω sinφ0 and the latitudinal variation of f is modeled by βy =

(2Ω cosφ0/R) y, where R is the radius of the Earth. The local inertial frequency f0 is

the frequency of oscillations induced by small horizontal displacements of fluid and

restored by the displacement’s inertial advection of the background rotating velocity

field.

The equations used in this dissertation follow from four crucial assumptions:

(i) the dynamics are inviscid with negligible molecular diffusion and dissipation; (ii)

density depends linearly on the concentration of one or more scalar quantities; (iii) the

Boussinesq approximation is valid because density fluctuations are relatively small so

that ρ∗+ ρ′ � ρ0; and (iv) we can neglect the inertial term 2Ω cosφ (w x̂− u ŷ) from

the momentum balance because the aspect ratio H/L of considered motions is small

so that w � (u, v), where u = (u, v, w) is the fluid velocity. Note that we hold off on

assuming hydrostatic balance p = bz in the vertical momentum equation until chapter

1.2.3, despite that disregarding (2Ω cosφ)u while assuming H/L � 1 and u � w

requires it. This minor slight-of-hand permits a fuller discussion of linear physics

than would be possible under the hydrostatic approximation. With this caveat, the

preceding definitions and assumptions lead to the rotating Boussinesq equations on
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the β-plane,

Dtu− fv + px = 0 , (1.7)

Dtv + fu+ py = 0 , (1.8)

Dtw + pz = b , (1.9)

Dtb+ wN2 = 0 , (1.10)

ux + vy + wz = 0 . (1.11)

where subscripts with respect to (x, y, z) or t denote partial derivatives, and Dt is the

material derivative following the fluid,

Dt
def
= ∂t + u · ∇ . (1.12)

In appendix A we show how (1.7) through (1.11) can be written in the different and

useful ‘wave operator form’. The Ertel potential vorticity is

Π
def
= ωa · ∇B , (1.13)

def
= (f ẑ + ω) ·

(
N2 ẑ +∇b

)
, (1.14)

= fN2 +N2ω + fbz + ω · ∇b , (1.15)

where ωa is absolute vorticity, B = B∗+b is the total buoyancy field, and ω
def
= ∇×u

is relative vorticity with vertical component ω = ẑ · ω = vx − uy. A remarkable

property of equations (1.7) through (1.11) is the material conservation of Π, so that

DtΠ = 0 . (1.16)

The conservation of Π expressed by (1.16) is a statement of angular momentum con-
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servation for an effectively constant-density fluid that rotates locally with an effective

angular velocity of ωa/2 and whose extension along the axes of rotation is tracked by

∇B. In other words, pulling fluid surfaces apart decreases ∇B and spins up the fluid

by increasing ωa. For the small-amplitude motion of waves and flow, fN2 in (1.15)

is by far the largest component of Π.

1.2.2 Lessons of linear dynamics

The formulation of (1.7) through (1.11) means the velocity u and buoyancy

b are departures from a stable basic state in solid body rotation around the z-axis

with angular velocity f/2 and density profile ρ0 + ρ∗. Waves and flow are both small

perturbations to this basic state with small u and b, which means they are well

described by the linear terms in equations (1.7) through (1.11) obtained by assuming

Dt ≈ ∂t,

ut − f0v + px = 0 , (1.17)

vt + f0u+ py = 0 , (1.18)

wt − b+ pz = 0 , (1.19)

bt + wN2 = 0 , (1.20)

ux + vy + wz = 0 . (1.21)

Equations (1.17) through (1.21) are the linearized Boussinesq equations. Their un-

steady solutions are internal waves and their steady solutions are geostrophic flows.

A conservation law follows by forming ∂x(1.18)−∂y(1.17) and using (1.21) and

(1.20),

∂t

[
vx − uy + ∂z

(
f0b

N2

)]
def
= N2Qt = 0 , (1.22)

where we recall that ω = ẑ · ω = vx − uy is the vertical component of vorticity.
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In equation (1.22) we have defined Q, the linear ‘Available Potential Vorticity’, or

APV. Linear APV is synonymous with the standard expression for quasi-geostrophic

potential vorticity. The linearized APV does not evolve in (1.17) through (1.21): for

internal waves Q = 0 and for geostrophic flow Q = Q(x) is constant in time. The

general definition of nonlinear APV in chapter 2.2 is one of the main accomplishments

of this dissertation. Notice that (1.22) is not equal to the linear parts of Ertel PV in

(1.14). Thus internal waves generate non-trivial signatures in Π even while Q = 0.

This point is central to the utility of APV.

Waves

When f = f0 is constant, a short series of manipulations on (1.17) through

(1.21) discussed in detail in appendix A leads to a single equation for w,

[
∂2
t

(
4+ ∂2

z

)
+ f 2

0∂
2
z +N24

]
w = 0 , (1.23)

where we define the horizontal Laplacian 4 def
= ∂2

x + ∂2
y . Equation (1.23) is the

internal wave equation. When f and N are constant and the considered domain

is either infinite or a periodic box, we can decompose w into the sinuosoids w =

exp (ik·x− iσt) ŵ(k, σ), where σ is frequency and k = (k, `,m) is wavenumber. Then

(1.23) implies that k and σ satisfy the dispersion relation,

σ2 =
f 2

0m
2 +N2 (k2 + `2)

k2 + `2 +m2
. (1.24)

Equation (1.24) shows that the frequency of linear, freely-propagating internal waves

always lies between f0 and N , whether f0 < N or N < f0. When N is not constant

but varies slowly compared to 1/m, equation (1.24) becomes a local approximation.

A stationary phase analysis developed by Lighthill (2001) in chapters 3.7 and 3.8 of
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his book shows that energy in the linear, Fourier-decomposed wave field travels at

the ‘group velocity’ U = ∇kσ corresponding to the vector x/t at which the phase

function θ = k ·x/t−σ is stationary. This indicates the group velocity of waves near

frequency f0 or N is small where σ changes slowly with k.

The dispersion relation in (1.24) implies that waves with frequency close to

f0 have (Nk/f0m)2 � 1 and thus large horizontal scales and small vertical scales

under typical oceanic conditions where f0 � N . These nearly-horizontally-uniform

‘near-inertial’ motions have small horizontal pressure gradients, so that (1.17) and

(1.18) combine into

Ut + if0U ≈ 0 , where U def
= u+ iv . (1.25)

The solution to (1.25) is U ≈ e−if0tA(x, t), where A is a near-arbitrary function of

space that evolves slowly in the linear equations to reflect slight departures of U from

the inertial frequency. When A = A(x) is stationary this type of motion is often

called an ‘inertial oscillation’, though a better name is ‘pure inertial wave’. At the

other end of the spectrum are motions with small horizontal scales and large vertical

scales. These near-buoyancy waves have small vertical pressure gradients so that

(1.19) and (1.20) merge into

Wt + iNW ≈ 0 , where W def
= w + ib/N . (1.26)

The solution to (1.26) is W ≈ e−iNtA(x, t), where again A is an near-arbitrary func-

tion of space and slowly evolves in time. In the real and heterogeneous ocean, pure

inertial or buoyancy waves cannot exist. Motions are always near -inertial or near -

buoyancy.

The fact that U and W have arbitrary spatial structure in (1.25) and (1.26)
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reflects the important fact that dispersion only weakly constrains the spatial struc-

ture of malleable near-inertial and near-buoyancy waves. The weak dispersion and

correspondingly slow propagation of near-inertial and near-buoyancy waves means

that oceanic heterogeneities not accounted for in the linear equations, like quasi-

geostrophic flow, small-scale turbulence, or surface waves, are important in determin-

ing their spatial structure and ultimate evolution.

Flow

The preceding discussion ignores a special and important non-trivial solution

to (1.23): w = 0. This solution corresponds to steady solutions to the linear Boussi-

nesq equations, in which case (1.17) through (1.19) reduce to

f0v = px , (1.27)

−f0u = py , (1.28)

b = pz . (1.29)

Equations (1.27) and (1.28) are the conditions of geostrophic balance and (1.29) is

the condition of hydrostatic balance. Geostrophic flow obeys ux + vy = 0 and can be

described by the geostrophic streamfunction

ψ
def
= p/f0 , so that (u, v, b) = (−ψy, ψx, f0ψz) . (1.30)

Unlike internal waves, geostrophic flow does not evolve in the linear Boussinesq equa-

tions with f = f0. Its evolution must appeal either to nonlinearity or effects of the

Earth’s curvature through β.

Limits of linearity. In the nonlinear equations in (1.7) through (1.11), both waves
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and flow acquire slow but non-infinite time-scales associated with slight departures

from the linear balances in (1.17) through (1.21). If we denote the fast wave time-

scale t̃ and the flow time-scale t̄, the nearly-linear solutions to (1.7) through (1.11)

become

Q = Q(x, t̄) , and w(x, t̃, t̄) =
∑

n

e−iσn t̃An(x, t̄) . (1.31)

The methods of this dissertation are, crudely put, to (i) derive an equation for the

slow evolution of Q which isolates the ‘average’ effects of waves over the long time-

scales of t̄, and (ii) restrict attention to one or two frequencies σn and derive slow

evolution equations for An that couple to the slow evolution of Q. We next discuss

how to isolate the slow evolution of Q from (1.7) through (1.11) in the classic case of

quasi-geostrophic flow.

1.2.3 Interaction and non-interaction of waves and flow

One of the main accomplishments of this dissertation is the definition of a new

material invariant named ‘Available Potential Vorticity’, or APV. A comprehensive

introduction to APV is given in chapter 2.2. One definition of APV is

Q(x, t)
def
= Π(x, t)− Π∗(x−Ξ) , (1.32)

where Π is Ertel PV defined in (1.15), Π∗
def
= fN2 is its static ‘background’ part, and

Ξ(x, t) is exact nonlinear particle displacement defined through DtΞ = u. Because

DtΠ = 0 and Dt (x−Ξ) = 0, APV is materially conserved, so that

DtQ = 0 . (1.33)
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APV isolates the part of potential vorticity with a meaningful, intrinsic evolution.

When f = f0 is constant, Q expands for ω/f0 ∼ bz/N
2 � 1 into

Q = N2

[
ω + ∂z

(
f0b

N2

)]
+ ω · ∇b− f0Λzz

N2
1
2
b2 + · · · , (1.34)

where Λ
def
= lnN2.

The APV equation opens a relatively straightforward path to the result that

the evolution of quasi-geostrophic flow is independent from waves of equal ‘magnitude’

to leading-order in Rossby number. This result was shown by Bartello (1995) and

Majda & Embid (1998) for the rotating Boussinesq equations and by Warn (1986)

and Dewar & Killworth (1995) for the shallow water equations. We define two non-

dimensional parameters,

ε
def
=

U

f0L
, and Bu

def
=

(
N0H

f0L

)2

, (1.35)

where N0, U , H, and L are characteristic scales for N , velocity, height, and horizontal

extent of the motion. The parameter ε, which is both the Rossby number as well as

a measure of wave amplitude, is assumed small. Note that this definition of ε differs

from that in section 2.3.1, where ε is a measure of wave amplitude only and the Rossby

number is ε2. The parameter Bu is the Burger number, which measures the magnitude

of the horizontal pressure gradient relative to inertia. The ratio f0/N0 is almost

always small in the Earth’s ocean except for isolated, abyssal places. The standard

quasi-geostrophic assumption is that H/L ∼ f0/N0 � 1 such that Bu = O(1).

This assumption reduces the vertical momentum equation (1.9) to the statement of

hydrostatic balance, pz = b.

The bread-and-butter asymptotic method of this dissertation is the multiple-

scale ‘two-time’ expansion, which assumes the existence of two time-scales: a fast wave
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time-scale t̃ ∼ f−1
0 , and a slow flow-evolution time-scale t̄ ∼ (εf0)−1. Time-derivatives

are accordingly split into

∂t 7→ ∂t̃ + ε ∂t̄ , (1.36)

The non-dimensional APV equation becomes

Qt̃ + ε (u · ∇Q+Qt̄) = 0 . (1.37)

All quantities are expanded in ε, so that APV has the expansion

Q = N2
[
ω0 + ∂z

(
b0
N2

)]

︸ ︷︷ ︸
def
=Q0

+ ε
(
ω0 · ∇b0 +N2

[
ω1 + ∂z

(
b1
N2

)]

︸ ︷︷ ︸
def
=Q1

)
+ · · · (1.38)

Notice that Q0 is just the linear APV from (1.22).

The leading-order velocity u0 obeys the linear equations (1.17) through (1.21)

with hydrostatic balance p0z = b0 replacing (1.19). By averaging over the fast time-

scale, u0 can be decomposed into waves, ũ0, and flow ū0,

u0 = ū0 + ũ0 . (1.39)

The average is defined so that ¯̃a = 0 and (at̃) = 0, when a(x, t̃, t̄) is any variable

decomposed into fast and flow components. ũ0 is a rapidly oscillating wave field

governed approximately by (1.23) and ū0 is slowly-evolving quasi-geostrophic flow. ū0

obeys geostrophic and hydrostatic balance and can thus be expressed by a geostrophic

streamfunction,

ψ
def
= p̄0 , so that

(
ū0, v̄0, b̄0

)
= (−ψy, ψx, ψz) . (1.40)

The non-interaction result follows in two-steps. At leading-order, the APV equation
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amounts to a restatement of (1.22),

N−2Q0t̃ = ∂t̃

[
ω0 + ∂z

(
b0

N2

)]
= 0 . (1.41)

The integral of (1.41) implies that Q0 = Q̄0(x, τ) does not depend on the fast time.

The O(ε) terms in the APV equation (1.37) are

Q0t̄ +Q1t̃ + u0 · ∇Q0 = 0 . (1.42)

Because Q0 does not depend on the fast time t̃, the time-average of (1.42) is

Q0t̄ + ū0 · ∇Q0 = 0 . (1.43)

Equation (1.43) is the ordinary quasi-geostrophic equation. If we restore dimen-

sionality, and define the ‘quasi-geostrophic potential vorticity’ as q = Q0/N
2, (1.43)

rearranges into the ‘standard’ quasi-geostrophic equation with β = 0,

qt̄ + J (ψ, q) = 0 , with q
def
=

(
∂2
x + ∂2

y + ∂z
f 2

0

N2
∂z

)
ψ . (1.44)

The operator J(a, b) = axby − aybx is the Jacobian so that ∂t + J(ψ, ·) = ∂t + ū0 · ∇

is the wave-averaged and leading-order material derivative. To time-scales at least as

long as (εf0)−1, the evolution of q is independent from ũ0 and thus internal waves.

On longer time-scales, however, the independence of q and ũ0 is not secure.

1.3 The shape of things to come

This dissertation develops models in which waves and flow coevolve and in-

teract with two-way coupling. For this purpose we revise the assumption in chapter
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1.2.3 that both waves and flow are leading-order solutions to (1.7) through (1.11).

Instead, we assume that waves are ‘strong’, and flow is ‘weak’, so that u0 = ũ0 and

the leading-order solution of (1.7) through (1.11) is a rapidly oscillating wave field. In

this case, the quasi-geostrophic flow is part of the first-order velocity u1, the leading

contribution to APV is Q1, the small parameter ε measures wave steepness, and the

Rossby number is Ro = ε2.

The work of chapter 2 is then to find a slow evolution equation for q = Q1/N
2.

This equation resembles the classical quasi-geostrophic equation in (1.44) but for

two crucial differences: first, geostrophic balance is modified and obeyed only by

the Lagrangian-mean flow, rather than the Eulerian-mean. The modified balance

conditions are given in (2.50) and differ from the traditional balance conditions in

(1.28) and (1.27). Second, waves contribute to the APV balance that defines q in

(1.44). In consequence the APV equation in (2.1) and (2.2) becomes, with β = 0,

qt̄ + J (ψ, q) = 0 , with q
def
=

(
∂2
x + ∂2

y + ∂z
f 2

0

N2
∂z

)
ψ + qw . (1.45)

Compare (1.45) to (1.44). The new ‘wave contribution to APV’, qw in (1.45), is

defined in (2.3) and modifies the evolution of quasi-geostrophic flow. The surprisingly

mundane and kinematic origins of qw are discussed in chapter 2.4.

The contribution of qw to q in (1.45) does not imply that ‘waves have APV’.

The APV in q is still a material invariant advected on the time-averaged particle

trajectories described by ψ and decidedly a quantity wholly separate from waves.

Instead, the inclusion of qw in the APV balance implies that waves are associated with

their own, wave-induced balanced flow that partakes in flow evolution by advecting

q. We make this explicit by exploiting the fact that q is linear in ψ, which permits

the decomposition

ψ = ψq + ψw , (1.46)
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where ψq and ψw are defined through

q =

(
∂2
x + ∂2

y + ∂z
f 2

0

N2
∂z

)
ψq , and − qw =

(
∂2
x + ∂2

y + ∂z
f 2

0

N2
∂z

)
ψw . (1.47)

The balanced flow thus has two parts: an ordinary, APV-associated part in ψq, and a

wave-induced part in ψw. The effect of waves on flow evolution is expressed entirely

in the advection of q by ψw.

The wave-induced balanced flow ψw is a nonlinear correction that refines linear

hydrostatic wave solutions to better satisfy the nonlinear equations in (1.7) through

(1.11). Because infinite plane progressive waves are exact solutions to the nonlinear

equations (1.7) through (1.11) when N and f are constant, such waves have qw = 0

and no wave-induced balanced flow. Even vertically-standing but horizontally infinite

waves have no wave-induced flow because qw and ψw are horizontally uniform. In that

case ψw corresponds to steady z-dependent corrections to the pressure and buoyancy

fields. Deeper intuitions on wave-induced balanced flows are developed in chapter

2.5.

Infinite plane waves are mathematical figments that do not exist in the Earth’s

ocean where wave forcing is time-varying and spatially-modulated, f and N are not

constant, and heterogeneities like quasi-geostrophic flow advect, refract, and other-

wise distort wave fields aspiring to linearity. Such distortion enhances wave field

nonlinearity, leading to stronger ψw and wave ‘feedback’ on flow evolution and ex-

posing the incompleteness of equation (1.45): the wave property qw is not known

in general and worse, depends on ψq and q. To close the APV equation in (1.45)

we need an equation that describes the slow evolution of the wave field and ψw in

quasi-geostrophic flow describe by the distribution of q. This is the goal of chapters 3

and 4, which separately focus on coupling (1.45) to one of the two conspicuous peaks

in figure 1.1: the near-inertial peak in chapter 3, and the tidal peak in chapter 4.
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The derivation of the near-inertial equation in chapter 3.3 is particularly

tractable due to the weak dispersion of near-inertial waves. Motivated by observations

and simulations of the Boussinesq equations that persistently observe near-inertial

second harmonic waves with frequency 2f0 when near-inertial waves interact with

quasi-geostrophic flow (D’Asaro et al., 1995; Niwa & Hibiya, 1999; Danioux et al.,

2008), the model is extended to include the nonlinear production and slow evolution

of waves frequency 2f0. The result is a closed three-component model that describes

the simultaneous evolution of APV, the amplitude of the near-inertial waves, and the

amplitude of the near-inertial second harmonic. Peculiarly, the two distinct adiabatic

invariants of the model identified in chapter 3.6 imply that near-inertial waves can ex-

tract energy from quasi-geostrophic flows under ordinary oceanic conditions. Chapter

3.7 compares numerical solutions to the three-component model with the Boussinesq

equations and chapter 3.8 discusses the physics these solutions imply.

The interaction between internal tides and quasi-geostrophic flow is tackled in

chapter 4. Distilling the slow evolution of internal tides is more difficult than the near-

inertial case and equivalent to finding a slow evolution equation for general-frequency

hydrostatic internal waves in quasi-geostrophic flow. Key to deriving the internal tide

model is the method of reconstitution (Roberts, 1985), which in a sense generalizes

the derivation of the 2f0 equation in chapter 3. Two solutions to the hydrostatic

wave model for barotropic flow are discussed in chapter 4.5. Further work remains to

couple the slow hydrostatic wave evolution to the modified quasi-geostrophic system

in (2.1) through (2.3).



Chapter 2

Available potential vorticity and

wave-averaged quasi-geostrophic

flow

2.1 Introduction

The quasi-geostrophic (QG) approximation is a reduced description of the

slow dynamics of planetary flows which, being perturbations on a state of rapid

rotation and strong stratification, are nearly in geostrophic and hydrostatic balance.

QG is simple and elegant and describes many characteristics of observed flows in

the atmosphere and ocean. A main motivation for the QG approximation is the

exclusion of inertia-gravity internal waves, which oscillate on super-inertial frequencies

much faster than the sub-inertial time scales of QG flow evolution. This time-scale

separation motivates a central assumption in QG: internal waves have negligible effect

on slow, nearly-balanced flow.

The assumption of weak interaction between internal waves and QG flow was

20



21

assessed by Bühler & McIntyre (1998, BM hereafter), who used the Generalized La-

grangian Mean (GLM) to demonstrate that average wave terms contribute to the

balance of the materially conserved, wave-averaged quasi-geostrophic potential vor-

ticity (QGPV). This ‘wave-QG’ theory is a significant extension to the QG framework

and demands detailed understanding. With this motivation, we provide an alterna-

tive Eulerian derivation of wave-QG which avoids the GLM transformation of the

Boussinesq equations. Our derivation, which relies instead on a multiple time-scale

expansion, confirms the main results of BM while extending the validity of wave-QG

to non-uniform buoyancy frequency N(z), and thus non-uniform background poten-

tial vorticity f0N
2(z). We make no assumption about spatial scale separation between

waves and balanced flow, so that our theory is relevant to mesoscale atmospheric flows

and oceanic meso- and submeso-scale flows where motion is mixed between large-scale

waves and balanced geostrophic turbulence (Callies, Bühler & Ferrari, 2014).

The challenge of non-uniform background stratification motivates the defini-

tion of a new material invariant: available potential vorticity (APV). APV exactly

eliminates the part of Ertel PV that plays only a passive, background role, thereby

isolating the part of PV available for flow evolution. APV proves crucial for the

derivation of wave-QG, where strong internal waves generate large but unimportant

Eulerian fluctuations in Ertel PV. The physical significance of APV is suggested by

the emergence of QGPV at leading-order in a low-Rossby-number expansion of the

exactly conserved APV.

Like the standard QG case (Pedlosky, 1982; Salmon, 1998; Vallis, 2006), the

evolution of balanced flow in an internal wave field is described in terms of the quasi-

horizontal advection of QGPV, q, by a geostrophic streamfunction ψ,

qt + J(ψ, q) = 0 , (2.1)
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where J(ψ, q) = ψxqy − ψyqx is the Jacobian in (x, y). ψ is the streamfunction of

the Lagrangian-mean velocity field, defined as the sum of Eulerian-mean and wave-

induced ‘Stokes’ velocity correction fields. The Lagrangian-mean velocity field de-

termines particle trajectories that remain after rapid wave-induced oscillations are

filtered; in this sense, (2.1) is consistent with our usual understanding of potential

vorticity as a material invariant.

The wave-averaged QGPV in (2.1) includes the standard QGPV as well as an

average, quadratic wave contribution, qw,

q
def
=
(
∂2
x + ∂2

y

︸ ︷︷ ︸
def
=4

+ ∂z
f 2

0

N2
∂z

︸ ︷︷ ︸
def
= L

)
ψ + βy + qw . (2.2)

In (2.2), f0 is the Coriolis frequency at fixed latitude, N(z) is the buoyancy frequency,

and β models the latitudinal variation of Coriolis frequency. Two operators are de-

fined in (2.2): the horizontal Laplacian 4 and the vertical derivative operator L. We

provide several equivalent expressions for qw in appendix 2.B. One appealing form is

qw = J(u, ξ) + J(v, η) + f0J(ξ, η)
︸ ︷︷ ︸

− ẑ ·∇×p

+1
2
f0

(
ξiξj
)
,ij
, (2.3)

where the overbar is a time or phase average over the linear internal wave field: a

‘wave average’. The linearized wave particle displacement, ξ = ξ x̂ + η ŷ + ζ ẑ, is

defined through u = ξt and the rightmost term in (2.3) employs indicial notation

for which summation over repeated indices is implied. In (2.3) we indicate the BM

relation between qw and the curl of p, the pseudomomentum defined in (2.144) and

by Andrews & McIntyre (1978). The term ‘wave-averaged’ is used deliberately to

emphasize the particular consequences of averaging over wave fields as opposed to

averaging over turbulent fluctuations, for example.
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Equations (2.1) through (2.3) describe the interaction of balanced flow with

a non-transient internal wave field generated steadily at distant boundaries or main-

tained by external forcing. This differs from the geostrophic adjustment scenario con-

sidered by Zeitlin, Reznik & Ben Jelloul (2003) and from spontaneous loss of balance

discussed, for example, by Vanneste (2013). In the case of geostrophic adjustment,

wave-mean interaction is precluded by transient wave decay due to radiation from a

compact region of initial excitation (Reznik, Zeitlin & Ben Jelloul, 2001). Sponta-

neous loss of balance, on the other hand, is characterized by an exponentially small

dependence on Rossby number and is not accessible by the straightforward perturba-

tion expansion used to derive (2.1) through (2.3).

The appearance of qw in (2.2) implies dynamic and energetic interaction be-

tween externally-forced internal waves and mean, balanced flow. This point is dis-

cussed explicitly by Kataoka & Akylas (2015) for wave-beams in non-rotating flow

and Xie & Vanneste (2015) for near-inertial waves in rotating flow. In particular, Xie

& Vanneste (2015) couple the wave-QG system in (2.1) through (2.3) with an equa-

tion describing slow near-inertial wave evolution, and show that conservation laws of

their coupled system suggest near-inertial waves extract energy from balanced flow.

The Eulerian route to the wave-averaged QG equation in (2.1) through (2.3)

starts with ‘Available Potential Vorticity’ (APV), introduced in chapter 1.2.3 and

discussed in detail in chapter 2.2. APV provides invaluable simplifications in the

derivation of the wave-averaged potential vorticity conservation equation. We propose

an expansion in wave amplitude and method of multiple-time-scales in chapter 2.3.

This Eulerian path provides contrasting scenery from the GLM route; for example, the

wave-averaged geostrophic balance condition is that ψ, the balanced streamfunction in

(2.1), is equal to the Eulerian mean pressure plus half of the Stokes pressure correction

divided by the Coriolis frequency f0. In chapter 2.4 we discuss in detail the kinematic
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origins of qw. In chapter 2.5 we apply the theory by computing the balanced flow

induced by a vertically propagating wave packet and by a vertical mode-one internal

wave field, both in bounded domains.

The main algebraic difficulties of the wave-QG derivation lie in the many

equivalent forms for qw that follow from a slew of quadratic identities for the linearized

and hydrostatic Boussinesq system. We find that some simple forms for qw bear

little resemblance to the pseudomomentum-based expression in BM. These technical

details, including a demonstration of equivalence between GLM-derived and Eulerian-

derived expressions for qw, are in appendices 2.A and 2.B.

2.2 Available potential vorticity

The derivation of (2.1) through (2.3) is simplified by introduction of a new

material invariant: the available potential vorticity (APV), whose dynamics follow

from the exact PV equation.

We motivate the definition of APV with a thought experiment. Consider a

fluid at rest with β = 0. The potential vorticity is Π = f0N
2(z) = f0B

′
∗(z), where

B∗(z) is the resting buoyancy field introduced in (1.2). Since B∗(z) and B′∗(z) depend

only on z, we can write B′∗ in terms of B∗ with the functional relation

B′∗ = F(B∗) . (2.4)

When β = 0, PV and buoyancy are related in the rest state by Π = f0F(B∗), so that

PV is constant on surfaces of constant buoyancy.

Now suppose the fluid is brought into motion by a process that conserves both

Π and total buoyancy B∗ + b. An example is the excitation of internal waves by the

oscillation of flexible boundaries. Because both PV and total buoyancy are conserved
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on fluid elements, the resting functional relationship is preserved, implying that in

the moving state

Π = f0F(B∗ + b) . (2.5)

The functional relation (2.5) characterizes a special situation where the PV signature

in the fluid arises solely from internal wave advection of the resting, non-uniform

PV distribution, f0B
′
∗ = f0N

2(z). In this special case, the PV does not have a

separate evolution equation, and is entirely determined through (2.5) by the buoyancy

perturbation b of the wave field.

Our aim is a description of flows with PV which is free to evolve independently

from the rest-state relation (2.5), while avoiding the strenuous bookkeeping required

to track the Eulerian advection of the non-uniform background state. We thus define

the APV, Q(x, t), as the difference between the total PV and the PV arising by

advection of the background buoyancy field,

Q
def
= Π− f0F(B∗ + b) . (2.6)

The construction in (2.6) is analogous to Holliday & McIntyre’s (1981) definition

of available potential energy. By shedding the part of Π which is trivially related

to buoyancy through (2.4), APV isolates the part of Π available to balanced-flow

evolution.

An alternative definition of APV, which is equivalent to (2.6) in the small-

displacement scenarios considered in this dissertation, is

Q
def
= Π− Π∗ (x−Ξ) , (2.7)

where Π∗ = fN2 is the static, background part of potential vorticity and Ξ is the

exact particle displacement defined through DtΞ = u. The definition in (2.7) clearly
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shows how APV isolates the dynamic part of PV and includes the horizontal variations

in background PV on the β-plane, while (2.6) is easier to expand when Ξ and b are

small. We use the definition in (2.6) for the remainder of this dissertation.

Unfurling the components of Π in (1.14), the APV defined in (2.6) becomes

Q = N2 (ω + βy) + (f0 + βy) bz + ω · ∇b+ f0

[
F(B∗)−F(B∗ + b)

]
, (2.8)

where ω
def
= vx − uy is the vertical component of the vorticity ω. Because Π, B∗ + b,

and therefore f0F(B∗ + b) in (2.6) are material invariants, APV is also a material

invariant and thus

DtQ = 0 . (2.9)

Unlike Ertel PV, APV is zero for a fluid at rest with u = Ξ = b = 0 and β = 0. And

APV is zero in the thought experiment surrounding (2.5). In general, however, APV

is non-zero.

The QG approximation is based on a scaling that assumes relatively small

vertical displacements, which implies b� B and that (2.8) can be expanded to yield

Q = N2 (ω + βy) + (f0 + βy) bz + ω · ∇b− f0bF ′(B∗)− 1
2
f0b

2F ′′(B∗) +O
(
b3
)
,

(2.10)

= N2

[
ω +

(
f0b

N2

)

z

+ βy

]
+ ω · ∇b− f0Λzz

N2
1
2
b2 +O

(
b3, βybz

)
, (2.11)

where in (2.11) we have defined

Λ
def
= lnN2 . (2.12)

In passing from (2.10) to (2.11) the derivatives F ′(B∗) and F ′′(B∗) are expressed in

terms of N2 by taking implicit z-derivatives of the functional relation (2.4). The

expansion in (2.11) is a generalization of the quantity appearing in equation (3.13) of
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Zeitlin et al. (2003) in their theory of nonlinear geostrophic adjustment.

The term in square brackets in (2.11) is the familiar quasi-geostrophic potential

vorticity (QGPV). Note that QGPV cannot be obtained from Π by merely assum-

ing geostrophic and hydrostatic balance, so that (u, v, b) = (−ψy, ψx, f0ψz). This

assumption produces the incorrect expression (f 2
0 /N

2)ψzz for the vortex stretching

term rather than the correct ∂z
[
(f 2

0 /N
2)ψz

]
. This error reflects that, in the stan-

dard derivation, the correct form of QGPV is completed by advection of the large

z-dependent background PV by ageostrophic vertical velocity. On the other hand,

the derivation of QGPV using the expansion of APV in (2.11) is immediate: QGPV is

the leading-order term in a low-Rossby-number expansion of APV. APV also provides

a quick and intuitive route to the ‘non-interaction’ theorem, as discussed in chapter

1.2.3.

APV thus has both conceptual and computational utility. Conceptually, the

exact, unaveraged APV can be viewed as a generalization of QGPV, which implies

that Eulerian Ertel PV may not be the most relevant physical quantity for describing

flow evolution on a non-uniform background state. Computationally, APV provides

essential simplifications in the derivation of wave-QG by removing distractingly large

fluctuations in PV from our Eulerian reference frame.

2.3 An expansion in wave amplitude

To derive wave-QG, we adopt a scaling which assumes small-amplitude flow

and develop parallel expansions of the Boussinesq system (1.7) through (1.11) and

the APV equation (2.9). We assume the balanced flow is weak, in that internal waves

comprise the leading-order solution, while balanced flow is described only at next

order alongside quadratic wave quantities.
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2.3.1 Linearity of the leading-order solution

We denote the characteristic horizontal velocity of the waves by Ũ , the char-

acteristic length scale of the flow by L, and assume the characteristic time scale is

given by the Coriolis frequency f0. The linearity of the wave field then requires that

ε
def
=

Ũ

f0L
(2.13)

is much less than unity. We use the small parameter ε, which is a measure of wave

amplitude analogous to steepness for surface waves, to distinguish each level of ap-

proximation in the development of the Boussinesq and APV equations.

2.3.2 The Rossby number and ‘two-timing’

We use a common vertical scale H and common horizontal length scale L

for both the internal waves and the balanced flow. While this scaling ultimately

limits attention to hydrostatic internal waves, it otherwise retains generality in the

derivation, allowing both for consideration of comparable wave-mean spatial scales as

well as further approximation based on spatial-scale separation.

If we denote the characteristic velocity of the balanced flow by Ū , the assump-

tion of weak balanced flow is expressed by the scaling Ū = εŨ . The Rossby number

of the balanced flow is then

Ro
def
=

Ū

f0L
= ε2 . (2.14)

The Rossby number is a measure of time-scale separation between fast wavy

motions oscillating on f−1
0 and the slower balanced flow evolution over L/Ū . To

construct a single system of equations that captures the fast wave oscillations as well

as the slow evolution of balanced flow, we use a multiple time scale expansion with
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“fast” time t̃ = f0t and slow time t̄ = tŪ/L, so that

∂t 7→ f0

(
∂t̃ + ε2∂t̄

)
. (2.15)

This ‘two-timing’ also necessitates the introduction of an average over the fast time,

which we denote with an overbar. If φ(x, t) is any field, then

φ̄(x, t)
def
=

1

T

∫ t+T/2

t−T/2
φ(x, t) dt , where

1

f0

� T � L

Ū
. (2.16)

The wavy part of φ, denoted φ̃, is defined via

φ = φ̄+ φ̃ . (2.17)

The averaging or filtering operation in equation (3.19) is not unique. Alternatively

we can view the overbar as a filtering operation which, in principle, removes wave

time-scales from φ exactly.

We assume that φ̄ has no dependence on the fast time t̃ and that the average of

the wavy fields is zero, or equivalently, that ¯̄φ = φ̄. In the context of the perturbation

expansion, this amounts to an assumption that average quadratic properties of the

wavy fields — for example the Stokes velocity or average wave energy — evolve on the

slow time scale L/Ū . Our focus on mean flow evolution means that the multiple-scale

expansion in (2.15) neglects the nonlinear wave evolution time-scale L/Ũ = (εf0)−1,

which is intermediate between f−1
0 and L/Ū = ε2f−1

0 .
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2.3.3 The non-dimensional Boussinesq and APV equations

We non-dimensionalize the Boussinesq equations with the two time scales in

(2.15), the horizontal scale L, and vertical scale H such that

(x, y) = L(x̌, y̌) , and z = Hž , (2.18)

where the “hat” decoration denotes a non-dimensional quantity. We assume that the

vertical and horizontal scales are related by

Bu
def
=

(
N0H

f0L

)2

= 1 , where N(z) = N0Ň(z) , (2.19)

and Bu is the Burger number. In (2.19), N0 is the characteristic magnitude of the

buoyancy frequency N(z). Bu = 1 is standard scaling in the quasi-geostrophic ap-

proximation. The flow variables are scaled with

(u, v) = Ũ (ǔ, v̌) , w = H
L
Ũ w̌ , b = N0Ũ b̂ , p = f0LŨ p̌ . (2.20)

β in the Coriolis frequency f = f0 + βy is scaled with

β =
Ū

L2
β̂ , such that f = f0

(
1 + ε2β̌ŷ

)
. (2.21)

The scaling in (2.21) ensures the effect of β arises first in the QGPV equation. The

scaling in (2.19) restricts attention to hydrostatic internal waves, but otherwise does

not restrict wave field spatial scales.

We use these definitions to non-dimensionalize the Boussinesq equations and

lighten the notation by dropping all decorations except for those on the fast time scale
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t̃ and slow time scale t̄. The non-dimensionalized Boussinesq equations then become

ut̃ − v + px = −εu · ∇u− ε2 (ut̄ + βyv) , (2.22)

vt̃ + u+ py = −εu · ∇v − ε2 (vt̄ − βyu) , (2.23)

pz − b = − (αε)2 [wt̃ + εu · ∇w + ε2wt̄
]
, (2.24)

bt̃ + wN2 = −εu · ∇b− ε2bt̄ , (2.25)

∇ · u = 0 , (2.26)

where in the vertical momentum equation we have introduced α
def
= H/(εL). To justify

the hydrostatic approximation, α is fixed at order unity as ε→ 0.

APV is scaled with N2
0 Ũ/L, so that from (2.11) the non-dimensional APV

becomes

Q = N2

[
vx − uy +

(
b

N2

)

z

]
+ ε

[
N2βy + ω · ∇b− Λzz

N2
1
2
b2

]
+O

(
ε2
)
, (2.27)

where Λ = lnN2 and

ω = −vz x̂+ uz ŷ + (vx − uy) ẑ +O
(
ε2
)
, (2.28)

is the vorticity. The scaled APV evolution equation from (2.9) is

Qt̃ + εu · ∇Q+ ε2Qt̄ = 0 . (2.29)

Each field is expanded in powers of ε so that, for example, u = u0 + ε u1 + · · · . We

proceed order by order, using dimensional variables for clarity but employing the

non-dimensional equations (2.22) through (2.29) to guide the development.
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2.3.4 Leading order: internal waves

The leading-order system is linear and describes hydrostatic internal waves,

u0t̃ − f0v0 + p0x = 0 , (2.30)

v0t̃ + f0u0 + p0y = 0 , (2.31)

p0z = b0 , (2.32)

b0t̃ + w0N
2 = 0 , (2.33)

∇ · u0 = 0 . (2.34)

We eliminate quasi-steady solutions — the balanced vortical mode — by insisting

that the average of all leading-order fields is zero:

ū0 = v̄0 = w̄0 = b̄0 = p̄0 = 0 . (2.35)

The leading-order wave particle displacement, ξ0 = ξ0 x̂+ η0 ŷ + ζ0 ẑ, is defined by

ξ0t̃ = u0 , and ξ̄0 = 0 . (2.36)

Some important identities involving the wave particle displacement follow from the

leading-order system (2.30) through (2.34): the vertical vorticity equation, which

is formed by subtracting ∂y of (2.30) from ∂x of (2.31), can be manipulated using

∇ · ξ0 = 0 and integrating in t̃ to find

v0x − u0y = f0ζ0z . (2.37)
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Integration of the buoyancy equation (2.33) yields

b0 +N2ζ0 = 0 . (2.38)

And then, eliminating the vertical displacement ζ0 between (2.37) and (2.38), we find

the leading-order APV is zero:

N−2Q0 = v0x − u0y +

(
f0b0

N2

)

z

, (2.39)

= 0 . (2.40)

The conclusion thatQ0 = 0 follows alternatively by integrating the leading-order APV

equation, Q0t̃ = 0, and applying (2.35) to determine that the constant of integration

is zero. The leading-order fields thus constitute internal waves oscillating on the fast

time scale t̃ and with no signature in the APV field.

We emphasize the importance of the fact that Q0 = 0. Note that the first-

order Ertel PV, Π1 = N2(v0x−u0y)+f0b0z, is not zero for internal waves described by

(2.30) through (2.34) — unless Nz = 0 and the background PV is therefore uniform.

That the leading-order wave field has PV, but no APV, is the first indication of APV’s

utility in this problem. Increasingly important but less obvious simplifications follow

at subsequent orders in the APV equation expansion.
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2.3.5 First order: balanced flow and quadratic wave terms

The first-order fields are governed by

u1t̃ − f0v1 + p1x = −u0 · ∇u0 , (2.41)

v1t̃ + f0u1 + p1y = −u0 · ∇v0 , (2.42)

p1z − b1 = 0 , (2.43)

b1t̃ + w1N
2 = −u0 · ∇b0 , (2.44)

∇ · u1 = 0 . (2.45)

Because the first-order fields are permitted to have non-zero time-averages, (2.41)

through (2.45) provide the definition of wave-averaged quasi-geostrophic balance.

Before proceeding in the derivation of (2.1) through (2.3), we observe that

(2.41) through (2.45) also describe slow, nonlinear wave evolution due to wave self-

interaction. Such slow wave evolution occurs when the right-side forcing resonates

with the left-side linear internal wave operator (Müller et al., 1986). As we do not

describe wave evolution in this paper, we ignore this possibility, but note that a con-

sistent description of wave and balanced flow coupled evolution requires treatment

of nonlinear wave field self-interaction and careful accounting of time-scales involved.

In particular, wave self-interaction produces a time-scale (εf0)−1, intermediate be-

tween the linear wave and balanced flow evolution scales f−1
0 and ε2f−1

0 accounted for

here. Including the time-scale (εf0)−1 does not significantly change the basic result

of this paper, but would require filtering (εf0)−1 from (2.1) through (2.3) to produce

a consistent description of balanced flow evolution.

Averaging equations (2.41) through (2.45) over the fast time and rearranging

terms, we can suggestively write the first-order mean velocities and averaged quadratic
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wave quantities as

f0 (ū1 + uw) = −∇× p̄1 ẑ = −p̄1y x̂+ p̄1x ŷ , (2.46)

where the wave velocity uw is defined by

uw def
= f−1

0 u0 · ∇v0 x̂− f−1
0 u0 · ∇u0 ŷ +N−2u0 · ∇b0 ẑ . (2.47)

In appendix 2.A we show that uw can be written in terms of more familiar wave-

averaged properties as

uw = uS + f−1
0 ∇× 1

2
pS ẑ , (2.48)

where

uS def
= (ξ0 · ∇)u0 and pS def

= ξ0 · ∇p0 (2.49)

are the Stokes corrections to mean velocity and pressure fields (Bühler, 2009; Craik,

1988). Using (2.48) to eliminate uw from (2.46), we obtain the wave-averaged geostrophic

balance condition,

ū1 + uS

︸ ︷︷ ︸
def
= uL

= −∇× f−1
0

(
p̄1 + 1

2
pS
)

︸ ︷︷ ︸
def
= ψ

ẑ . (2.50)

Notice that w̄ = −wS, so that wL = 0. As in standard QG, the vertical component

of the balanced velocity is zero.

The wave-averaged hydrostatic relation follows from (2.129) and (2.50):

f0ψz = b̄1 + ξ0 · ∇b0︸ ︷︷ ︸
def
= bL

+ (N2)z
1
2
ζ2

0 . (2.51)

The final term in (2.51) is a Stokes correction associated with the resting buoy-

ancy distribution B(z) in (1.2); note that (N2)z = B′′. Equation (2.51) relates the
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Lagrangian-mean streamfunction to the wave-averaged buoyancy field through wave-

averaged hydrostatic balance.

Compare the wave-averaged balance conditions in (2.50) and (2.51) with the

standard quasi-geostrophic balance conditions u0 = −∇× f−1
0 p0 ẑ and p0z = b0. Our

derivation of wave-averaged balance shows that the ordinary sense of geostrophic

balance from wave-ignoring QG theory is retained after wave-averaging only for the

Lagrangian-mean flow, uL. The Eulerian-mean flow is not balanced.

The appearance of half the Stokes pressure correction in the balance condition

(2.50) is a distinctive feature of the wave-averaged balance equations. The factor 1
2

enters these basic relations via the quadratic wave identities (2.127) through (2.129).

As in the standard QG approximation, the balance condition in (2.50) is redundant

with the continuity equation, and we must seek an equation for mean-flow evolution

at higher orders of approximation.

We turn to the APV equation (2.29), which at first order is

Q1t̃ = 0 . (2.52)

Integrating in t̃, we are compelled to conclude that the first-order APV, Q1, does not

depend on the fast time t̃. In other words, Q̃1 = 0 and

Q1 = Q̄1 = N2

[
v̄1x − ū1y +

(
f0b̄1

N2

)

z

+ βy

]
+ ω0 · ∇b0 −

f0Λzz

N2
1
2
b2

0 . (2.53)

This result — which follows directly from expansion of the APV conservation equation

— produces major simplifications at next order and is not readily apparent from the

first-order Boussinesq equations (2.41) through (2.45).
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2.3.6 Second and third order: an evolution equation for Q1

We proceed to higher orders only in the APV equation (2.29). At second-order,

the APV equation is

Q2t̃ + u0 · ∇Q1 = 0 . (2.54)

Because Q1 is independent of the fast time t̃, we can integrate (2.54) to yield

Q2 = −ξ0 · ∇Q1 + Q̄2 , (2.55)

where ξ0 is the wave particle displacement defined in (2.36) and Q̄2(x, t̄) is an un-

known and inconsequential function of integration.

At third-order the APV equation (2.29) is

Q1t̄ +Q3t̃ + u0 · ∇Q2 + u1 · ∇Q1 = 0 , (2.56)

while its wave-average is

Q1t̄ + ū1 · ∇Q1 + u0 · ∇Q2 = 0 . (2.57)

Notice that Q1 is independent of the fast time and therefore stays outside of the

averaging operation in (2.57). To manipulate the third term in (2.57) we use inte-

gration by parts and indicial notation, where φ,i denotes the ith derivative of φ and

summation over repeated indices is implied. Using the expression for Q2 in (2.55)
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and ū0 = 0, we find

u0 · ∇Q2 = u0iQ2,i = −u0i

(
ξ0jQ1,j

)
,i
, (2.58)

= −u0iξ0j,iQ1,j , (2.59)

= uS · ∇Q1 . (2.60)

In passing from (2.58) to (2.59) we have used the fact that

u0iξ0j Q1,ij = 0 , (2.61)

which follows from the antisymmetry of u0iξ0j and the symmetry of Q1,ij. Thus there

is no “diffusive” term in (2.60) and the wave-averaged third-order APV equation

(2.57) is

Q1t̄ + uL · ∇Q1 = 0 , (2.62)

where uL is the Lagrangian-mean velocity in (2.50). In analogy with the standard and

unaveraged QG theory in which potential vorticity is attached to particle trajectories,

here the mean APV, Q1, is attached to mean particle trajectories determined by the

balanced Lagrangian-mean velocity uL.

2.3.7 Quasi-geostrophic potential vorticity

To make the connection between (2.62) and conservation of the familiar QGPV

we introduce

q
def
=

Q1

N2
, (2.63)

and rewrite (2.62) as

qt̄ + J
(
ψ, q
)

= 0 . (2.64)
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Recalling the expression for Q1 in (2.53), and using the balance conditions in (2.50)

and (2.51) to replace ū1 by ψ and pS, the wave-averaged QGPV is

q = (4+ L)ψ + βy + qw , (2.65)

where operators 4 and L are defined in (2.2). The wave contribution to q in (2.65) is

qw =
ω0 · ∇b0

N2
− vS

x + uS
y −

(
f0

1
2
pS
z

N2

)

z

− f0Λzz
1
2
ζ2

0 . (2.66)

A slew of quadratic wave identities implied by (2.30) through (2.34) allow qw to be

written in many equivalent forms. Some are more compact than (2.66), and to make

contact with BM we show in appendix 2.B that

qw = J(u0, ξ0) + J(v0, η0) + f0J(ξ0, η0)
︸ ︷︷ ︸

− ẑ ·∇×p

+ 1
2
f0

(
ξ0iξ0j

)
,ij
, (2.67)

where p, defined in (2.144), is the leading-order internal wave pseudomomentum

introduced by Andrews & McIntyre (1978).

The result in (2.67) indicates agreement between our Eulerian derivation and

the BM GLM derivation. The main difference is that BM assumes a slowly varying

wave field; in that case the ‘wave-averaged vortex stretching’ 1
2
f0(ξ0iξ0j),ij , on the

right of (2.67) with two external derivatives, is smaller than ẑ · ∇×p appearing

in (2.67) as well as equations (1.4) and (9.29) in BM. If spatial-scale separation

assumption is not assumed, the GLM-derived formulation also contains 1
2
f0(ξ0iξ0j),ij

(Holmes-Cerfon et al., 2011).

We identify two distinct parts of qw: the ‘pseudovorticity’, ẑ · ∇×p, and

wave-averaged vortex stretching 1
2
f0(ξ0iξ0j),ij . The appearance of pseudovorticity,

a relative vorticity term which appears in wave-averaged circulation integrals, is a
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subtle and purely kinematic consequence of wave-averaging: total wave-averaged fluid

vorticity is ẑ ·∇×(uL− p), rather than ẑ ·∇×uL or ẑ ·∇×ū. A demonstration of

this kinematic fact is given in section 10.2.7 of Bühler (2009) for non-rotating fluids

and finite particle displacements and below in chapter 2.4 for the rotating case with

infinitesimal particle displacements.

The wave-averaged vortex stretching 1
2
f0(ξ0iξ0j),ij , on the other hand, is a

vortex stretching term which depends on spatial gradients in the mean-square wave

displacement tensor ξ0iξ0j. Wave-averaged vortex stretching reflects the expansion

and contraction of ‘wave-averaged fluid elements’ due to non-zero divergence of uL

and thus of wave-averaged particle trajectories in non-uniform wave fields as dis-

cussed in McIntyre (1988) and below in chapter 2.4. Such expansion and contraction

contributes to the PV balance in rotating flow. Wave-averaged vortex stretching is

the only wave contribution to q in two-dimensional flow, and in section 2.5 we show

that wave-averaged vortex stretching is the leading-order wave contribution to the

PV balance for a mode-one, horizontally-modulated internal wave.

2.3.8 Boundary conditions

Boundary conditions for the wave-averaged QG equation (2.64) follow from

evaluation of the buoyancy equation (2.25) on the boundaries. We assume flat bound-

ing surfaces in z so that w = 0 in (2.25). We then expand (2.25) in powers of ε and

recapitulate the expansion of the APV equation (2.29). The leading-order buoyancy

equation, b0t̃ = 0, implies that b0 = 0 and ζ0 = 0 at the boundaries. At ε1 we find

that b1 does not depend on the fast time t̃ so that b1 = b̄1. At order ε2 we integrate

over the fast-time variable to obtain b2 = −ξ0 · ∇b̄1. At order ε3 we find in analogy

with the calculation surrounding (2.57) that b̄1 is advected by the Lagrangian-mean

velocity uL. Finally, because b0 = ζ0 = 0, the Stokes corrections in the wave-averaged
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hydrostatic relation (2.51) vanish on the boundaries, so that f0ψz = b̄1. Thus the

wave-averaged QG boundary condition is

ψzt̄ + J
(
ψ, ψz

)
= 0 . (2.68)

This is the standard QG boundary condition: there is no explicit wave-averaged

contribution.

2.4 The kinematic and rather mundane origins of

qw

The two terms in qw are pseudovorticity, −∇ × p, and the vortex stretching

term 1
2
f0

(
ξ0iξ0j

)
,ij

. Each represents a contribution to the deformation of a ‘wave-

averaged fluid element’ by an arbitrary incompressible oscillatory flow. These wave-

induced contributions are properties of the oscillatory, zero-average flow field. In

this sense the contributions are hidden from an observer with knowledge only of the

wave-averaged flow.

2.4.1 The wave-averaged fluid element

The concept of a wave-averaged fluid element is central to understanding the

kinematic origins of qw. We loosely define the wave-averaged fluid element as a col-

lection of average particle positions which, taken together, bound an instantaneously

irregular volume of fluid denoted by F. Then, the time-average of the oscillating par-

ticle positions defines the smoother boundary of the ‘wave-averaged fluid element’,

which we denote with ©. This definition implies that, at any particular moment in
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time, the position of particles whose averages are contained in © have position

F
def
= ©+ ε ξ(x, t) . (2.69)

This notation is complemented by x̃ = x + ε ξ, where the points x̃ lie in F and

the points x in ©. We retain dimensionality and use the parameter ε only as a

bookkeeping device.

2.4.2 Rotation of mean fluid elements

An intuitive quantification of fluid element rotation due to Batchelor (2000)

can be obtained by computing the angular velocity over the circumference of a small

circular fluid element. If the tangent to the circle is ds and the circle has radius α, then

the point-wise angular velocity of a fluid with background rotation rate 1
2
f0 ẑ × x̂ is

(
u+ 1

2
f0 ẑ × x̂

)
·ds/α. And the average of this angular velocity over the circumfrence

of a cirlce is

circumfrence-averaged effective angular velocity =
1

2πα2

∮ (
u+ 1

2
f0 ẑ × x

)
· ds ,

(2.70)

def
=

Γ

2πα2
, (2.71)

where in (2.71) we have defined the circulation, Γ. The angular velocity calculated

in this way is only ‘effective’ rather than exact because Γ includes contributions from

strain as well as rotation. Still, the interpretation is clear.

The rotation rate of a wave-averaged fluid element is thus found by computing

the wave-averaged circulation. Recall that the wave-averaged fluid element is outlined

by© corresponding to the average position of particles whose exact position is on an
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oscillating contour around F. Thus to evaluate the circulation along©, the argument

of the circulation integral defined on F must be expressed in terms of points on ©

and subsequently averaged:

Γ̄ =

∮

F

(
u+ 1

2
f0 ẑ × x

)
· ds , (2.72)

=

∮

©

[ (
u+ 1

2
f0 ẑ × x

)
· ds

]
F
. (2.73)

Our task is to evaluate the argument of the integral in (2.73) in terms of coordinates

following the contour ©. The position vector x on F, for example, becomes x+ ε ξ

along ©. An ordinary Taylor expansion of the velocity field yields

u
∣∣
F
≈
[
u+ ε (ξ · ∇)u

]
© . (2.74)

Transforming the line element along F into a line element along © is more difficult.

In one-dimension, for example, we have ds ≈ ds+ ds · ∇ξ. In three-dimensions,

ds
∣∣
F
≈ ds+ ε (ds · ∇) ξ . (2.75)

The mean circulation around a mean fluid element is therefore

Γ̄ ≈
∮

©

[
u+ ε (ξ · ∇)u+ 1

2
f0 ẑ × (x+ ε ξ)

]
·
[
ds+ ε (ds · ∇) ξ

]
, (2.76)

≈
∮

©

1
2
f0(ẑ × x)i dsi + ε

∮

©

[
ū1i + ξju0i,j︸ ︷︷ ︸

def
= uL

+ ξj,iu0j + 1
2
f0 ξj,i(ẑ × ξ)j︸ ︷︷ ︸
def
=−p

]
dsi . (2.77)

In (2.77) we define the pseudomomentum. Note that we have not assumed anything

about ξ except that it has zero time-average. The appearence of pseudomomen-

tum in (2.77) is a purely kinematic consequence of averaging over oscillatory particle
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displacements.

The effective wave-averaged angular velocity of the mean fluid element © is

thus

Γ̄

2πα2
= 1

2
f0 +

ε

2πα2

∮

©

[
uL − p

]
· dx , (2.78)

where f0/2 is the background rotation rate of the fluid. The mean angular velocity

of the mean fluid element cannot be diagnosed by observing the motion of the mean

element, or equivalently by diagnosing its circulation with uL. Notice that if α and

therefore © are small, we have

Γ̄ = πα2f0 +

∫

©
∇×

(
uL − p

)
· n̂ dA ≈ πα2

[
f0 + n̂ · ∇×

(
uL − p

)]
, (2.79)

and therefore the rotation rate of elements in a frame that rotates with angular

frequency f0/2 is

average rotation rate of wave-averaged elements ≈ 1
2
n̂ · ∇×

(
uL − p

)
. (2.80)

Compare this to

rotation rate of exact fluid elements ≈ 1
2
n̂ · ∇× u . (2.81)

The pseudovorticity is a contribution to the rotation rate of a wave-averaged fluid ele-

ment that is ‘hidden’ by the averaging procedure. It’s origin is surprisingly mundane,

being purely kinematic and geometric and independent from the particular physics

of the oscillatory field. The appearance of pseudomomentum in (2.80) means that

observations of average particle trajectories, which correspond to knowledge of uL,

are insufficient to calculate the rotation rate of wave-averaged fluid elements. It is

in this sense that −∇ × p is a hidden contribution to the wave-averaged element
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≈ 1
2

∇ × (uL − p) ⋅

≈ 1
2

∇ ×u ⋅= V += V + ∇ ×u ⋅

∇ × (uL − = [ + ( ) ]
V̄ [1 + 1

2
ϵ2 (ξiξj),ij

]V̄ [

Figure 2.1: Kinematics of exact and wave-averaged fluid elements. The time-averaged rotation rate
and volume of wave-average fluid elements contain contributions that depends solely on the spatial
structure of the zero-average oscillatory field and thus cannot be calculated solely from knowledge
of the average particle trajectories represented by uL. The contributions are purely kinematic in
that they do not depend on the particular physics of the oscillatory field. If the oscillatory field is
divergent, its contribution to wave-averaged volume is given by the three Jacobians in (2.85) rather
than 1

2 (ξiξj),ij .

rotation rate.

2.4.3 Dilation of wave-averaged fluid elements

The average volume of a wave-averaged fluid element is

V =

∫

F
dṼ , (2.82)

where dṼ is an infinitesimal volume in the unaveraged and exact fluid element. To

evaluate this integral in terms of coordinates in the wave-averaged fluid element we

use the coordinate transformation

dṼ =
∂ (x+ ε ξ)

∂ (x)
dV̄ , (2.83)
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where dV̄ is an infinitesimal volume in the wave-averaged fluid element. With this

transformation, V becomes

V =

∫

©

∂(x+ ε ξ, y + ε η, z + ε ζ)

∂(x, y, z)
dV̄ , (2.84)

=

∫

©

[
1 + ε∇ · ξ + ε2

(
∂(ξ, η)

∂(x, y)
+
∂(ξ, ζ)

∂(x, z)
+
∂(η, ζ)

∂(y, z)

)
+ · · ·

]
dV̄ , (2.85)

=

∫

©
1− ε2 1

2

(
ξiξj
)
,ij

dV̄ . (2.86)

The last step converting the three Jacobians into the compact form 1
2

(
ξiξj
)
,ij

uses

(∇ · ξ)2 = 0.

This calculation implies the volume of the mean fluid element is given by

V ≈ V̄
(

1− ε2 1
2

(
ξiξj
)
,ij

)
, (2.87)

where V̄ is the volume calculated naively by direct inspection of the wave-averaged

particle trajectories. As in the case of wave-averaged fluid element rotation, obser-

vations of the wave-averaged position of fluid particles expressed by knowledge of

uL are insufficient to determine the volume of the wave-averaged fluid element. The

volumetric fraction 1
2

(
ξiξj
)
,ij

is ‘hidden’ by time-averaging.

2.5 Wave-induced mean motion

The wave-averaged PV in (2.65) implies that internal waves induce balanced

mean flows. We illustrate this by considering a scenario in which a wave packet

propagates into previously quiescent fluid with β = 0 and zero APV, or q = 0. With
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q = 0 in the undisturbed state, the PV equation (2.64) reduces to

(4+ L)ψ = −qw . (2.88)

Equation (2.88) is an elliptic equation which determines the mean streamfunction, ψ,

induced by an arbitrary hydrostatic internal wave field associated with the vorticity

source qw defined in (2.67). The wave-induced mean motion satisfies wave-averaged

geostrophic balance, has no APV, and is slaved to the wave field. An expanded form

of qw is

qw = J(u, ξ) + J(v, η) + f0J(ξ, η)

+
f0

2

[(
ξ2
)
xx

+
(
η2
)
yy

+
(
ζ2
)
zz

+ 2
(
ξη
)
xy

+ 2
(
ξζ
)
xz

+ 2
(
ηζ
)
yz

]
.

(2.89)

The subscript ‘0’ on wave fields will be omitted for the remainder of this paper.

We investigate the consequences of (2.88) by contrasting ψ and uL induced in

a vertically-bounded domain by a vertically-propagating plane wave packet (‘plane’)

with ψ and uL induced by a horizontally-propagating wave packet with mode-one

vertical structure (‘mode’). The planar and modal wave packets we consider are

visualized in figure 2.2.

2.5.1 The Bretherton flow: mean motion induced by a vertically-

propagating plane wave

Bretherton (1969) considered the mean motion induced by a vertically-propagating

plane internal wave packet in a non-rotating fluid. Here, we consider the rotating case

by solving (2.88). The pressure field associated with the plane wave packet is

p
∣∣
plane

= a(x, y, z, t) cos(kx+mz − σt) , (2.90)
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fig 2

fig 3

fig 2

fig 3

plane mode

Figure 2.2: Visualization of the vertically-propagating plane wave (left) and horizontally propagating
mode-one wave (right) with isosurfaces of pressure, p, at 0.325 and -0.325 of its maximum value.
Wave fields are listed in table 2.1. A surface in the yz-plane show the magnitude of wave-induced uL

plotted in figure 2.3. A surface in the xy-plane shows streamlines of uL plotted in figure 2.4. Gray
arrows indicate the direction of wave group propagation. Physical parameters are f0 = 10−4 s−1,
N = 2× 10−3 s−1, σ = 2f0, H = 4× 103 m. The plane wave vertical wavenumber is m = (16πH)−1,
the horizontal wavenumbers are k = mf0

√
3/N for the plane wave and k = κ1

√
3 = π

√
3f0/NH for

the mode, and the scale-separation parameter is µ = (`k)−1 = (hm)−1 = 1/4.

where k and m are horizontal and vertical wavenumbers, σ is frequency, and a is a

three-dimensional envelope function with horizontal scale ` and vertical scale h. The

scale-separation parameter is

µ
def
=

1

k`
. (2.91)

We assume a is slowly varying so that µ� 1 and (hm)−1 ∼ µ� 1.

Because µ � 1, we drop y-derivative terms from (2.30) through (2.34) to

compute u, ξ, and b associated with p in (2.90). These expressions are accurate to

O(µ) and listed in table 2.1. A particularly useful result is the reduction of (2.31) to

v + f0ξ = O(µv) . (2.92)

With u and ξ, we compute qw to leading-order in µ. Assuming σ/f0 = O(1), the
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slow variation of a in x, y and z implies that

f0

(
ξiξj
)
,ij

J(u, ξ)
∼ µ . (2.93)

Using (2.92), the three Jacobian terms in (2.89) scale with

J(v + f0ξ, η)

J(u, ξ)
∼ µ . (2.94)

Thus, neglecting the eight O(µ) terms in (2.89), the wave-averaged PV contribution

qw associated with (2.90) reduces to

qw
∣∣
plane
≈ J(u, ξ) , (2.95)

≈ a ay
m4σ

kN4
. (2.96)

This is the conclusion reached by BM in their equation (9.22).

We make the implications of (2.96) concrete by picking the envelope

a
∣∣
plane

= A exp
[
− (x/2`)2 − (y/`)2 −

(
[z +H/2]/h

)2
]
. (2.97)

We solve (2.88) for ψ given (2.97) and (2.96) in a horizontally-periodic and vertically-

bounded domain with a spectral method, using Fourier collocation in (x, y) and modal

collocation in z with constant-N vertical modes hn = cos (nπz/H). The left panel of

figure 2.2 visualizes the wave field associated with (2.97) and the caption of figure 2.2

lists the physical parameters used to make figures 2.2 through 2.4.

The mean motion implied by (2.97) and (2.96) is depicted in figures 2.3 and

2.4. The left panel in figure 2.3 plots uL on a vertical plane in (y, z) which divides the

plane wave packet, revealing the dipolar horizontal structure of uL and its vertical
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Table 2.1: Pressure, buoyancy, velocity, particle displacements, and qw for mode-one and vertically-
propagating plane wave fields. The symbol ≈ is used for relationships that hold to leading-order in
µ.

vertically-propagating plane wave field mode-one wave field

θ
def
= kx+mz − σt φ

def
= kx− σt

a = A e−(x/2`)2−(y/`)2−([z+H/2]/h)2 a = A e−(x/2`)2−(y/`)2

p = a cos θ p = a h1 cosφ

u ≈ a m2σ
kN2 cos θ u ≈ a

σκ21
kf20

h1 cosφ

−f0ξ = v ≈ a m2f0
kN2 sin θ −f0ξ = v ≈ a

κ21
kf0

h1 sinφ

w ≈ −a mσ
N2 cos θ w ≈ −a σ

N2h
′
1 sinφ

−ζN2 = b ≈ −am sin θ −ζN2 = b = a h′1 cosφ

η ≈ a m2f0
kN2σ

cos θ η ≈ a
κ21
kf0σ

h1 cosφ

qw ≈
(

1
2
a2
)
y
m4σ
kN4 qw ≈ a2 κ21

2f30
L
[

1
2
h2

1

]

coincidence with the wave envelope. The top left panel of figure 2.4 plots streamlines

of uL in an xy-plane at z = −H/2, showing that the plane-wave uL resembles a

vortex dipole in the horizontal. Color-filled contours indicate the magnitude of uL

and a dotted line outlines the plane wave envelope.

The top right panel of figure 2.4 compares the x-components of the Lagrangian-

mean uL and Stokes velocity uS on a line in y through (x, z) = (0,−H/2). The

x-component of uS defined in (2.49) is

uS def
= ξ · ∇u = ξux + ηuy + ζuz . (2.98)

Integration by parts and use of ux ≈ −wz implies that ξux + ζuz ≈
(
uζ
)
z
, and
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(
uζ
)
z
≈ O(µζuz) follows from the quadrature of u and ζ for the packet. Thus

uS
∣∣
plane
≈ ηuy , (2.99)

≈ a ay
m4f0

2k2N4
. (2.100)

The top right panel of figure 2.4 indicates that uL � uS at (x, z) = (0,−H/2).

This result can be anticipated with a scaling argument. The scaling of uS is relatively

simple: because η ∼ f0u/σ
2 and uy ∼ u/`,

uS
∣∣
plane
∼ u2f0

σ2`
. (2.101)

The scaling for uL requires (2.88). Scaling terms on the left of (2.88) gives

4ψ ∼ ψ

`2
, and Lψ ∼ f 2

0ψ

(Nh)2
=

(
f0m

Nk

)2
ψ

`2
, (2.102)

where we have used both ` = (µk)−1 and h = (µm)−1 to obtain the rightmost

term. For moderately super-inertial waves with (f0m/Nk)2 ≈ O(1), 4ψ and Lψ

scale similarly, and from (2.88) we obtain ψ ∼ `2qw and ψ/` ∼ uL ∼ `qw. The scaling

for qw follows more simply: with ux ∼ ku and ξy ∼ u/σ` we deduce that

qw
∣∣
plane

∼ u2 k

σ`
, and uL

∣∣
plane
∼ u2 k

σ
. (2.103)

Putting the pieces together and remembering that k` = µ−1 yields

uL

uS

∣∣
plane
∼ σ

µf0

. (2.104)

The plane-wave Lagrangian-mean flow is O(µ−1) larger than the Stokes velocity and

the Eulerian mean flow is ū ≈ uL to leading-order in µ.
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2.5.2 Mean motion induced by a vertical mode-one internal

wave

We contrast the plane-wave-induced mean motion with the flow induced by a

domain-filling, vertical mode-one internal wave. In an ocean of depth H, the vertical

modes are the eigenfunctions hn(z) that satisfy

Lhn + κ2
nhn = 0 with h′n = 0 at z = 0 and z = −H , (2.105)

where κ−1
n is the Rossby deformation length for mode-n and L is the second-order

linear operator defined in (2.1). When N is constant, the vertical modes are hn =

cos(nπz/H) with deformation length κ−1
n = NH/nπf0. We consider a mode-one wave

pressure field of the form

p
∣∣
mode

= a(x, y, t) h1(z) cos(kx− σt) , (2.106)

where k is horizontal wavenumber, σ is frequency, and a is a slowly-varying envelope

function with horizontal scale `. We assume 1/k` = µ � 1 as in (2.91), which

permits easy computation of u, ξ, and b given in table 2.1 from equations (2.30)

through (2.34).

With u and ξ we compute the mode-one qw to leading-order in µ. The mode-

one vertical structure implies the terms in (2.89) scale differently than for the plane

wave. In particular,

J(u, ξ)

f0

(
ζ2
)
zz

∼ µ . (2.107)

Moreover, because (2.92) and (2.94) apply also for the mode, none of the Jacobian,

pseudomomentum-associated terms contribute to qw at leading-order. Among the

remaining terms on the second line of (2.89), the assumptions µ� 1 and σ/f0 = O(1)
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imply (
ηζ
)
yz(

ζ2
)
zz

∼ µ and

(
ξ2
)
xx

+
(
η2
)
yy(

ζ2
)
zz

∼ µ2 . (2.108)

Finally, the quadrature of (ξ, ζ) and (η, ξ) and the fact that µ� 1 imply

(
ξζ
)
xz

+
(
ηξ
)
xy(

ζ2
)
zz

∼ µ2 . (2.109)

The only survivor at leading-order from qw in (2.89) is therefore 1
2
f0(ζ2)zz, and the

mode-one qw is

qw
∣∣
mode
≈ 1

2
f0

(
ζ2
)
zz
, (2.110)

≈ −a2 κ2
1

2f 3
0

L
[

1
2
h2

1

]
. (2.111)

The final expression in (2.111) is found using ζ from table 2.1 along with Lh1 = −κ2
1h1.

For a slowly-varying mode-n wave, qw follows by replacing ‘1’ with ‘n’ in (2.111).

We investigate the consequences of (2.111) by choosing the envelope

a
∣∣
mode

= A exp
[
− (x/2`)2 − (y/`)2] . (2.112)

As for the vertically-propagating plane wave, we solve (2.88) for ψ with qw determined

by (2.112) and (2.111) using a spectral method. For the mode-one wave with constant

N , ψ is mode-two and thus proportional to cos(2πz/H). The wave field associated

with (2.112) is visualized in the right panel of figure 2.2 and the mean motion it

induces is illustrated in figures 2.3 and 2.4.

The right panel of figure 2.3 shows the mode-two vertical structure of uL, and

the bottom left panel of figure 2.4 reveals the horizontally compact and monopolar

form of uL. The bottom right panel of figure 2.4 compares uL with the Stokes velocity
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Figure 2.3: Vertical structure of wave-induced mean flows at x = 0 for vertically-propagating plane
wave (left) and vertical mode-one wave (right). Color-filled contours show uL = −ψy normalized
by its extreme value, isopycnals are in light gray, and dark gray dashed lines show wave envelopes
with contours of 1

2a. The plane wave packet induces a dipolar uL while the mode-one wave induces
a monopolar, mode-two eddy-like uL. Parameters are listed in the caption of figure 2.2.

correction uS for the mode-one wave, where uS is defined in (2.49) and (2.98). Unlike

the plane-wave uS in (2.100), in the mode-one wave field (uζ)z is larger than ηuy by

O(µ), and thus

uS
∣∣
mode
≈
(
uζ
)
z
, (2.113)

≈ −a2 σκ2
1

2kf 4
0

L
[

1
2
h2

1

]
. (2.114)

The Stokes velocity correction does not involve spatial derivatives of the envelope

a(x, y, t).
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Figure 2.4: Horizontal structure of wave-induced mean flows in a top-down xy-view at z = −H/2
associated with the vertically-propagating plane wave (top) and vertical mode-one wave (bottom).
At left, solid gray lines are streamlines of uL, color-filled contours show normalized flow magnitude
|uL|, and dark gray dashed lines show wave envelopes with contours of 1

2a. At right uL and uS are
plotted versus y on a line at (x, z) = (0,−H/2), both normalized by the maximum magnitude of uL.
The x-axes of the right panels are different for mode and plane wave: uL dominates for the plane
wave, while uS dominates for the mode-one wave. Parameters are listed in the caption of figure 2.2.

The bottom right panel of figure 2.3 indicates that uS � uL at (x, z) =

(0,−H/2) for the mode-one wave: the reverse relationship found for the plane-wave

case. This fact can be deduced with a scaling argument. First, ξ ∼ u/σ and ζz ≈ −ξx
implies ζ ∼ Hkξ, such that

uS
∣∣
mode
∼ ku2

σ
. (2.115)

That the mode uS scales with k rather than 1/` contrasts with the plane-wave case.

Next, from (2.88),

4ψ ∼ ψ

`2
, but Lψ ∼ κ2

1ψ =
1

(µ`)2

(κ1

k

)2

ψ . (2.116)
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Assuming moderately super-inertial waves for which (κ1/k)2 ≈ O(1), we conclude

that Lψ is O (µ−2) larger than 4ψ. Therefore, ψ ∼ (µ`)2qw and ψ/` ∼ uL ∼ µ2`qw.

Again using the fact that ζ ∼ Hkξ, we then find

qw
∣∣
mode
∼ f0

(
ku

σ

)2

, and uL
∣∣

mode
∼ µu2 kf0

σ2
. (2.117)

Dropping the parts into place yields

uL

uS

∣∣∣
mode
∼ µ f0

σ
, (2.118)

which means the Lagrangian-mean flow is O(µ) smaller than the Stokes velocity field.

This implies further that, to leading-order in µ, the Eulerian-mean flow is

ū ≈ −uS . (2.119)

This Eulerian-mean ū is an “anti-Stokes flow”. The Lagrangian-mean flow, which is

relevant for potential vorticity advection, is a small residual remaining after the large

cancellation in (2.119) and is O(µ) smaller for the mode-one wave than for the plane

wave.

The fact that Lψ is much larger than 4ψ for the mode-one wave is striking

and means the primary averaged effect of slowly varying, vertical-mode waves is

a slight displacement of isopycnals. The isopycnal displacement is associated with

a balanced flow when the wave field is spatially non-uniform. Equivalent to this

physical explanation is the statement that the APV equation (2.88) can be solved

by neglecting 4ψ and “cancelling the L” between Lψ and qw in (2.111). We must

subtract the barotropic part of h2
1, since the vertical average of (2.88) implies ψ has
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no barotropic component. This yields

ψ ≈ a2κ2
1

4f 3
0

[
1

H

∫ 0

−H
h2

1 dz − h2
1

]
. (2.120)

Equation (2.120) is valid for general stratification profiles N(z) and vertical modes

hn when the 1’s are replaced by n’s. For slowly-varying vertical mode waves, the

streamlines of the wave-induced mean motion follow the contours of a2, which explains

the monopolar mode-induced motion evident in figure 3.

2.6 Discussion

The wave-QG theory in (2.1) through (2.3), first derived for constant stratifi-

cation and small-scale waves by Bühler & McIntyre (1998), is a correction to standard

quasi-geostrophy which accounts for the averaged effects of strong internal waves on

balanced planetary flows. The extension of wave-QG to non-constant stratification

is non-trivial and motivates the introduction of a new material invariant: the avail-

able potential vorticity, or APV. APV is on one hand a useful computational tool in

that it separates waves and balanced flow in Eulerian reference frames. On the other

hand, the conceptual significance of APV is suggested by the immediate emergence

of QGPV from APV as the leading-order term in a low-Rossby-number expansion.

The effect of internal waves on balanced flow is expressed concisely in qw, the

wave contribution to potential vorticity in (2.3). We identify two distinct parts of

qw: the vertical component of ‘pseudovorticity,’ ẑ · ∇×p, and wave-averaged vortex

stretching 1
2
f0(ξiξj),ij. Both terms have essentially kinematic origins. As shown in

section 10.2.7 of Bühler (2009), pseudovorticity is a relative vorticity term which

appears in wave-averaged circulation integrals over a material contours in arbitrary

oscillatory flow. Equivalently, it arises in the wave-averaged integral of vorticity over
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a material surface. Pseudovorticity, therefore can be interpreted fundamentally as the

part of vorticity which is ‘hidden’ by wave averaging: the total vorticity is the sum

of the vorticity of wave-averaged velocity, 4ψ, minus the pseudovorticity ẑ · ∇×p.

Wave-averaged vortex stretching, 1
2
f0(ξiξj),ij , on the other hand, is a vortex

stretching term that appears in wave-averaged integrals over material volumes in

oscillatory and incompressible flow. Thus the non-divergence of exact and unaver-

aged particle trajectories does not ensure non-divergence for wave-averaged particle

trajectories, a point which is developed clearly by McIntyre (1988). While small com-

pared to pseudovorticity for nearly-plane waves, wave-averaged vortex stretching is

leading-order for a vertical mode-one wave, and is the only part of qw that remains

in two-dimensional flow in (x, z).

The form of (2.1) through (2.3) suggests that energy transfer occurs gener-

ally between preexisting waves and preexisting mean flow, as demonstrated for near-

inertial waves by Xie & Vanneste (2015). Wave-QG also implies that wave-induced

balanced flows exist even in the absence of potential vorticity, or if q = 0 everywhere

and ψz = 0 at boundaries. However, this balanced flow is determined instantaneously

and completely by the wave field, is not associated with energy transfer from waves

to balanced flow, and has no independent evolution.

A major missing piece from wave-QG is a description of slow wave evolution

which couples to (2.1) through (2.3). A potential complication is wave-wave nonlinear

interaction, which can lead to wave evolution on the time-scale (εf0)−1: slower than

the wave frequency time-scale, but faster than the mean flow evolution time scale.

In this case, careful averaging is required to separate time-scales and ensure that

neither f−1
0 nor (εf0)−1 appear in (2.1) through (2.3). The complications incurred

by nonlinear wave evolution reinforce the assertion that wave evolution equations are

an important component of any consistent, reduced description of flows comprised
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of both strong waves and APV. Strong internal waves and balanced flow cannot be

considered independent superposed components of fluid motion: instead, waves and

balanced flow coevolve in an interwoven system with its own unique dynamics.

2.A Quadratic wave properties

In this appendix we obtain some quadratic properties of solutions to the lin-

earized Boussinesq equations in (2.30) through (2.34). To lighten the notation we

suppress the subscript 0 on all fields throughout this appendix. This means that,

within this appendix, u, ξ, p and b refer to the zero-order wavy fields u0, ξ0, p0 and

b0 in (2.30) through (2.34). We frequently use the averaging identity

θφt̃ = −θt̃φ , (2.121)

where φ and θ are any of the leading-order wave fields. The derivation of these

quadratic properties requires constant use of the definitions ξt̃ = u and b = −ζN2.

2.A.1 The virial equation and the Stokes correction to pres-

sure

The virial equation is obtained by taking the dot product of the wave mo-

mentum equations (2.30) through (2.32) with the particle displacement ξ. The time-

average of the result is

pS = u2 + v2 + f0(ξv − ηu)−N2ζ2 , (2.122)
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where the leading-order ‘Stokes correction’ (Bühler, 2009; Craik, 1988) to the pressure

is

pS def
= ξ · ∇p . (2.123)

2.A.2 The ‘gradient virial equation’

Useful identities for ∇pS are obtained from the spatial gradient of the time-

averaged virial equation (2.122). To maximally simplify this gradient, we need further

linear-wave identities. Consider, for example, the x-derivative of pS,

pS
x = ξx · ∇p+ ξ · ∇px . (2.124)

It turns out that both terms on the right are equal to one another, and thus in-

dividually equal to 1
2
pS
x. We show this by dotting wave momentum equations (2.30)

through (2.32) with ξx and averaging over the fast time. A crucial intermediate result

involving the Coriolis terms is

vξx − uηx = ∂x
(
vξ
)

= −∂x (uη) , (2.125)

= 1
2
∂x
(
vξ − uη

)
. (2.126)

Applying averaging identities and forming exact x-derivatives yields the desired result

that ξx · ∇p = 1
2
pS
x, and therefore

1
2
pS
x = ξx · ∇p = ξ · ∇px . (2.127)
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In similar fashion, dotting the momentum equations (2.30) through (2.32) with ξy

and ξz produces

1
2
pS
y = ξy · ∇p = ξ · ∇py , (2.128)

and

1
2
pS
z = ξ · ∇pz + (N2)z

1
2
ζ2 = ξz · ∇p− (N2)z

1
2
ζ2 . (2.129)

As before, the second right-side identities in (2.128) and (2.129) follow from taking

derivatives of pS defined in (2.123). Replacing pz by −N2ζ in (2.129) produces

1
2
pS
z = −N2

(
ξ · ∇ζ + Λz

1
2
ζ2
)
. (2.130)

The identities in (2.127) through (2.130) are handy expressions for ∇pS.

2.A.3 The Stokes velocity correction and wave-averaged ve-

locity

Recall that the Stokes velocity correction is

uS def
= (ξ · ∇)u . (2.131)

We turn now to the wave velocity uw defined in (2.47) as

uw def
= f−1

0 u · ∇v
︸ ︷︷ ︸

uw

x̂ −f−1
0 u · ∇u

︸ ︷︷ ︸
vw

ŷ + N−2u · ∇b
︸ ︷︷ ︸

ww

ẑ . (2.132)
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Using (2.121) and the leading-order buoyancy equation (2.33), we have

ww = −N−2ξ · ∇bt , (2.133)

= wS . (2.134)

In contrast to ww, the horizontal components of uw are not equal to those of uS. Using

the leading order y-momentum (2.31), the x-component of uw can be expressed as

uw = −f−1
0 ξ · ∇vt , (2.135)

= uS + f−1
0 ξ · ∇py ; (2.136)

the y-component is vw = vS − f−1
0 (ξ · ∇) px. Thus, using (2.127) and (2.128), we

have:
(
uw , vw , ww

)
=
(
uS , vS , wS

)
+ f−1

0

(
1
2
pS
y ,

1
2
pS
x , 0

)
. (2.137)

The relationship between the three-dimensional solenoidal vectors uS and uw is ex-

pressed concisely as uw = uS + f−1
0 ∇×

(
1
2
pS ẑ

)
.

2.B The wave contribution to APV, qw

In this appendix we summarize various expressions for the wave contribution

to PV,

qw def
=
ω · ∇b
N2

− vS
x + uS

y −
(
f0

1
2
pS
z

N2

)

z

− f0Λzz
1
2
ζ2 , (2.138)

introduced in (2.66). The subscript 0 on leading-order wave fields is suppressed

throughout this appendix. We use various wave identities from appendix 2.A.
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Using the expression for pS in (2.130), we have

(
f0

1
2
pS
z

N2

)

z

= −ωS − f0ξz · ∇ζ − f0

(
Λz

1
2
ζ2
)
z
, (2.139)

where ωS def
= ξ · ∇ω is the Stokes correction to the vertical vorticity. Note that the

Stokes correction vertical vorticity, ωS, is not equal to the vertical vorticity of the

Stokes correction velocity field, vS
x − uS

y . Next, using b = −N2ζ and ẑ ·ω = f0ζz, we

find that

− ω · ∇b
N2

= ω · ∇ζ + f0Λz

(
1
2
ζ2
)
z
. (2.140)

With the results in (2.139) and (2.140), and using ω = −vz x̂ + uz ŷ + f0ζz ẑ, we

manipulate qw in (2.138):

qw = ωS − vS
x + uS

y + f0ξz · ∇ζ − ω · ∇ζ , (2.141)

= ξy · ∇u− ξx · ∇v + f0ξz · ∇ζ − ω ·∇ζ , (2.142)

= J(u, ξ) + J(v, η) + f0ξz · ∇ζ . (2.143)

With the expression for qw in (2.143), we are prepared to show the connection

between qw and pseudomomentum. The pseudomomentum defined in Andrews &

McIntyre (1978) is given to leading-order in our case by

pi = −ξj,i
(
uj + 1

2
f0 ( ẑ × ξ)j

)
, (2.144)

where the subscript ‘, i’ denotes differentiation with respect to the ith coordinate.

The wavy particle displacement defined here via ξt̃ = u is equivalent at leading-order

to the wavy displacement defined generally in Andrews & McIntyre (1978). The
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horizontal components of p are

p1 = −ξxu− ηxv − 1
2
f0

(
ξηx − ηξx

)
, (2.145)

p2 = −ξyu− ηyv − 1
2
f0

(
ξηy − ηξy

)
. (2.146)

In passing from the definition of the pseudomomentum in (2.144) to (2.145) and

(2.146) we have neglected terms ζxw and ζyw which are smaller by (H/L)2 than the

other terms in p1 and p2. This neglect is consistent with the hydrostatic approxima-

tion.

The z-component of the curl of the leading-order pseudomomentum, or ‘pseu-

dovorticity’, is

ẑ · ∇×p = ∂x p2 − ∂yp1 , (2.147)

= J(ξ, u) + J(η, v) + f0J(η, ξ) . (2.148)

Substituting (2.148) into (2.143) we have

qw = − ẑ · ∇×p− f0

[
J(ξ, η)− ξz · ∇ζ

]
. (2.149)

Using ∇ · ξ = ξx + ηy + ζz = 0, the term in the square brackets in (2.149) can be

written as

J(ξ, η)− ξz · ∇ζ =
∂(ξ, η)

∂(x, y)
− ξz · ∇ζ , (2.150)

=
∂(ξ, ζ)

∂(x, z)
− ξy · ∇η , (2.151)

=
∂(η, ζ)

∂(y, z)
− ξx · ∇ξ . (2.152)
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The average of the three expressions above is

J(ξ, η)− ξz · ∇ζ =
1

3

[
∂(ξ, η)

∂(x, y)
+
∂(ξ, ζ)

∂(x, z)
+
∂(η, ζ)

∂(y, z)

]
− 1

3
ξi,jξj,i . (2.153)

Further, using (∇ · ξ)2 = 0, we find

ξi,jξj,i = (ξiξj),ij , (2.154)

= −2

[
∂(ξ, η)

∂(x, y)
+
∂(ξ, ζ)

∂(x, z)
+
∂(η, ζ)

∂(y, z)

]
, (2.155)

which implies

J(ξ, η)− ξz · ∇ζ = −1
2
(ξiξj),ij . (2.156)

We can therefore write qw as

qw = 1
2
f0(ξiξj),ij − ẑ · ∇×p . (2.157)

This expression for qw agrees with the GLM-derived results in BM and Holmes-Cerfon

et al. (2011), except that the first term in (2.157) is missing from BM due to their

assumption of slow spatial variation in the wave field. Note that the derivation in BM

and Holmes-Cerfon et al. (2011) assumes constant buoyancy frequency N ; evidently,

allowing for general N(z) does not change the result for qw.
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Chapter 3

A three-component model for the

coupled evolution of near-inertial

waves, quasi-geostrophic flow, and

the near-inertial second harmonic

3.1 Introduction

Near-inertial waves (NIWs) are inertia-gravity waves in rotating, stratified

fluids with frequencies near the local inertial frequency, f0. In the oceans of Earth,

an almost-universal strong density stratification means NIWs have small aspect ratios,

large vertical shears, and the lowest of internal wave frequencies. These characteristics

partly explain why oceanic NIWs are generated by diverse processes like fluctuating

winds and flow over topography, contain roughly half of the total internal wave kinetic

energy, and are a main contributor to diapycnal mixing (Ferrari & Wunsch, 2009).

Slow propagation and weak dispersion expose NIWs to strong interaction with

66
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balanced quasi-geostrophic flows. A basic introduction to NIW propagation through

non-uniform balanced flows is given by the WKB-based ray theories of Mooers (1975)

and Kunze (1985), who showed that near-inertial energy is attracted to regions of

negative balanced vorticity and expelled from regions of positive vorticity. A more

general theory valid both for ray-like NIW propagation as well as NIW scattering

by small-scale balanced flow was developed by Young & Ben Jelloul (1997, YBJ

hereafter). YBJ linearized the Boussinesq equations around a prescribed background

flow and developed a two-time asymptotic expansion to reveal the slow evolution of

near-inertial fields. The resulting YBJ NIW equation, which is a linearized version of

equation (3.8) below, describes the weakly dispersive propagation of β-plane NIWs

though advecting and refracting balanced flows of arbitrary structure.

The YBJ NIW equation successfully describes many aspects of near-inertial

propagation through realistic balanced flows (Klein & Llewellyn Smith 2001; Klein,

Llewellyn Smith & Lapeyre 2004; Danioux, Klein & Rivière 2008), but ignores non-

linear, finite-amplitude NIW dynamics and their corresponding feedback onto the

balanced flow. In pursuit of a richer theory describing the coupled NIW-flow evolu-

tion, Xie & Vanneste (2015, XV hereafter) derived a Generalized Lagrangian Mean

model which joins the YBJ NIW equation to the quasi-geostrophic equations. Like

Bühler & McIntyre (1998), Wagner & Young (2015) and chapter 2, and as in equation

(3.7) below, in the XV model an NIW-induced balanced flow takes part in advecting

quasi-geostrophic potential vorticity (QGPV) and thus in QGPV evolution. The XV

model indicates that the near-inertial limit is a peculiarly tractable example of Bühler

& McIntyre’s non-dissipative wave-mean interaction.
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3.1.1 The 2f0 harmonic and motivation for a three-component

model

Both YBJ and XV lack a conspicuous aspect of NIW evolution observed in

the kinetic energy frequency spectra of the Ocean Storms Experiment (D’Asaro et al.,

1995), the observations of Niwa & Hibiya (1999), and in the simulations of NIW-

flow interaction by Danioux et al. (2008): the generation of internal waves with 2f0

frequency. While the 2f0 waves have little horizontal kinetic energy relative to the

NIWs, they can dominate the pressure field and contribute appreciably to vertical

velocity and isopycnal displacement. Remarkably, 2f0 generation and subsequent

horizontal radiation can remove energy from spatially compact regions of NIW-flow

interaction, as discussed below and illustrated in figure 3.1. A primary motivation

for this paper is the derivation of a more complete set of equations that contains

the essential elements of YBJ and XV while including 2f0 waves. This derivation

yields a model with three components: NIW velocity, QG potential vorticity, and the

amplitude of 2f0 pressure.

To motivate the three-component model, we consider an initial value prob-

lem in the Boussinesq equations in which a surface-concentrated NIW interacts with

a balanced barotropic jet in two-dimensions (x, z). We use a constant inertial fre-

quency f0 = 10−4 s−1 and buoyancy frequency N = 2 × 10−3 s−1 associated with a

stable background buoyancy profile. The velocity field is u = ux̂ + v ŷ + w ẑ and

the dynamic buoyancy perturbation from background is b, so that available potential

energy density is b2/2N2. The initial v is a barotropic jet in geostrophic and hydro-

static balance flowing along the axis of y, while the initial u is a surface-concentrated,

horizontally-uniform, and unbalanced flow which develops into a NIW. The balanced
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jet has a Gaussian profile,

v(x, z, 0) = V0 + V1 exp
(
−x2/2L2

)
, (3.1)

where V0 is defined so that v(x, z, 0) has zero horizontal average and thus no unbal-

anced component. The initial u is horizontally uniform and concentrated in a layer

of depth h:

u(x, z, 0) = U0 exp
(
−z2/2h2

)
. (3.2)

The initial buoyancy b and vertical velocity w are zero. We solve this initial value

problem in the Boussinesq equations using the spectral model of Winters, MacKinnon

& Mills (2004) with 1536 Fourier modes in x and 768 sine/cosine modes in z.

If the jet in (3.1) were not present, the initial condition in u would develop

into a perpetual, spatially uniform, non-propagating purely inertial wave. Instead,

refraction by the imposed jet injects small horizontal scales of size ∼L into the NIW

field, induces near-inertial vertical propagation, and catalyzes radiation of low-mode

2f0 internal waves. The development of this process is illustrated in figure 3.1, which

shows snapshots of potential energy density at t = 5, 10, 20, 40, and 80 inertial

periods. The kinetic energy density is indicated by 10 overlain contours between

0.01 and 0.1 m2/s2. Throughout the simulation, kinetic energy remains localized in

the surface layer and in the near-field of the barotropic jet; bulges in kinetic energy

appearing at t = 20 through 80 inertial periods reveal the progress of vertical NIW

propagation and the modification of the balanced flow by the NIWs. The kinetic-

energy bulges are on the anti-cyclonic flank of the jet and show that NIW energy is

refractively focused into the region of negative vorticity (Balmforth & Young, 1999;

Lee & Niiler, 1998).

The vertical propagation of NIW kinetic energy is attended by an evolving
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Figure 3.1: The numerical solution to a two-dimensional Boussinesq initial value problem involving
the interaction of a barotropic jet with a surface-concentrated near-inertial wave (NIW). Shading
shows potential energy density b2/2N2 and contours show kinetic energy density at 10 levels between
0.01 and 0.1 m2 s−2 at t = 5 through t = 80 inertial periods. A horizontal line on the t = 5, 10, and
20 snapshots shows the wavelength of a vertical mode-one 2f0-frequency internal wave. The slanting
lines on the t = 40 and t = 80 snapshots indicate the characteristic propagation angles of NIWs with
the indicated frequencies. The initial v and u are given in (3.1) and (3.2), where V1 = 0.4 m s−1,
L = 40 km, U = 0.8 m s−1, and h = 100 m. Only the central 800km of a 1200 km computational
domain with 150 km thick sponge layers on either side is shown.
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potential energy field. Its most conspicuous aspect is a signal that extends the full

domain depth and radiates horizontally from the region of jet-NIW interaction. In

early stages, the potential energy signal has vertical mode-one structure. A horizontal

line on the panel at t = 20 inertial periods indicates the horizontal wavelength of a

mode-one, 2f0 frequency internal wave. Remarkably, while this 2f0 signal is generated

by nonlinear NIW self-interaction in a small region, it rapidly radiates to fill a much

larger volume without significant NIW activity (Danioux et al. 2008).

In addition to the low- and intermediate-mode 2f0 signal, narrow beams of

potential energy radiate downwards and outwards from the center of the domain.

These beams are NIWs, which propagate at the characteristic angles indicated by

slanting lines on the snapshots at t = 40 and t = 80 inertial periods. These beams

of near-inertial energy are produced by a scattering interaction between the surface-

concentrated NIW and the jet. The rightward radiating beams are NIWs escaping

the region of negative jet vorticity.

The two-dimensional NIW-jet interaction is thus characterized by at least

three distinct phenomena: trapping of near-inertial energy in regions of negative

balanced vorticity, beam-like radiation of near-inertial energy, and emission of 2f0

waves. We use a multiple space- and time-scale expansion of the Boussinesq equations

to construct a three-component model describing all of these processes.

3.1.2 Summary of the three-component model

In the three-component model, the horizontal velocity is

u+ iv
def
= e−if0t LA+ (−∂y + i∂x)ψ + · · · . (3.3)
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whereA(x, y, z, t) is the NIW envelope and ψ(x, y, z, t) is the quasi-geostrophic stream-

function. The differential operator L in (3.3) is defined below in (3.7) and the · · ·

on the right of (3.3) stand for additional contributions to horizontal velocity: NIW

harmonics, Stokes corrections, and ageostrophic flow. The pressure field is

p = f0ψ +
if0

2

[
e−if0t(∂x − i∂y)A+ e−2if0t2B

]
+ cc + · · · , (3.4)

where B(x, y, z, t) is the 2f0 wave envelope, ‘cc’ stands for ‘complex conjugate’, and

the · · · indicate unimportant high-order corrections. The vertical velocity w is

w = − f 2
0

2N2

[
e−if0t(∂x − i∂y)Az + e−2if0t4Bz

]
+ cc . (3.5)

The 2f0 contribution in B features prominently in the vertical velocity field, despite

its small contribution to horizontal velocity.

The system consists of three equations: a wave-averaged quasi-geostrophic

potential vorticity equation, the NIW equation, and a ‘2f0 equation’ governing the

evolution of 2f0 waves. The wave-averaged potential vorticity equation is

qt + J(ψ, q) = 0 , (3.6)

where the potential vorticity is

q =
(
∂2
x + ∂2

y

︸ ︷︷ ︸
def
=4

+ ∂z
f 2

0

N2
∂z

︸ ︷︷ ︸
def
= L

)
ψ + βy +

i

2f0

J (LA∗,LA) +
1

4f0

4
∣∣LA

∣∣2 . (3.7)

In (3.6) and (3.7) the operator J(a, b) = axby − aybx is the Jacobian, the inertial

frequency is f = f0 + βy, and N(z) is the depth-dependent buoyancy frequency

associated with strong background stratification. The two rightmost terms in (3.7)
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are quadratic NIW contributions to the wave-averaged potential vorticity. Note that

the 2f0 waves are assumed too weak to contribute appreciably to potential vorticity.

The evolution of the NIW field is described by a generalization of the YBJ equation,

LAt + i
2
f04A+ J(ψ,LA) + iLA

(
1
2
4ψ + βy

)
+ 1

2
LA∗

(
∂x + i∂y

)2
B = 0 . (3.8)

Equation (3.8) accounts for NIW dispersion and group propagation, horizontal ad-

vection by balanced flows, refraction by balanced flows and non-uniform planetary

vorticity, and nonlinear NIW-2f0 interaction. The NIW-2f0 interaction term on the

right end of (3.8) is identical to the term introduced by Young, Tsang, and Balmforth

(2008) into the YBJ equation to analyze near-inertial parametric subharmonic insta-

bility (PSI); in that work, the NIW-2f0 interaction was implicated in the production

of very small NIW vertical scales. The evolution of the 2f0 amplitude B is obtained

from

(4+ 13L)Bt + 4if0

(
4− 3L

)
B = −3

2

(
∂x − i∂y

)2(
LA
)2
. (3.9)

Equation (3.9) describes dispersion and group propagation of 2f0 waves, forced 2f0

oscillations, and energy transfer from NIWs into the 2f0 field.

The three-component model, comprised of equations (3.6) through (3.9), de-

scribes the coupled evolution of near-inertial waves, quasi-geostrophic flow, and near-

2f0 internal waves. Like the XV system, the three-component model conserves two

integral quantities: ‘wave action’, and ‘coupled energy’. Wave action is a sum of NIW

kinetic energy and the total energy of freely-propagating near-2f0 waves. Coupled

energy is the sum of total balanced energy, near-inertial potential energy, a NIW-β

interaction term, and terms associated with the NIW-2f0 interaction.

A striking implication of both the XV and three-component model is that

NIWs can extract energy from balanced flow. This follows from the separation of
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wave action and coupled energy conservation, which requires that an increase in NIW

potential energy during NIW-flow interaction comes at the expense of balanced en-

ergy. Balanced flow thus loses energy when interacting with NIWs that consist almost

entirely of kinetic energy, and NIW-QG interaction forms a link between large-scale

balanced energy, the energy contained in the internal wave field, and wave break-

ing and diapycnal mixing. XV refer to this wave-mean interaction as ‘stimulated

loss-of-balance’ to distinguish it from spontaneous loss-of-balance (Vanneste, 2013),

emphasizing that it requires externally-forced waves to ‘stimulate’ further produc-

tion of wave energy at the expense of balanced energy. Unlike spontaneous wave

generation, stimulated wave generation is a potentially significant energy sink for

nearly-balanced flows with small Rossby numbers.

The chapter is organized as follows: in chapter 3.2, we non-dimensionalize the

Boussinesq equations and define the multiple time and multiple vertical scales required

to meet solvability conditions in the asymptotic derivation. In chapter 3.3, we expand

the Boussinesq equations in wave amplitude, deriving the NIW equation as well as the

2f0 equation governing the evolution of the 2f0 harmonic. In chapter 3.4, we apply the

wave-averaged contribution to quasi-geostrophic potential vorticity found by Wagner

& Young (2015) to the near-inertial case. In chapter 3.5 we heuristically revise the

formal theory derived in sections 3.3 and 3.4 to arrive at the implementable model

of equations (3.6) through (3.9). In chapter 3.6, we derive two conserved integral

quantities from equations (3.6) through (3.9). In chapter 3.7, we compare numerical

solutions of a two-dimensional initial value problem in both Boussinesq and three-

component models, and in section 3.8 we assess the solutions’ physical implications.

We conclude with a discussion of the model’s significance and implications in chapter

3.9.
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3.2 Near-inertial non-dimensionalization

We set the asymptotic reduction in motion by non-dimensionalizing the Boussi-

nesq equations (1.7) through (1.11). We choose a spatial scaling that isolates NIWs

at leading-order and a velocity scaling that ensures the back-rotated velocity and

the QGPV share the same evolutionary time scale. Specifically, this requires that

NIW dispersion acts on the same time scale as advection and refraction by the bal-

anced flow. We use a single horizontal length scale, L, and denote the scale of the

near-inertial horizontal velocity with Ũ . The NIW ‘amplitude parameter’

ε
def
=

Ũ

f0L
, (3.10)

is crucial: ε� 1 ensures nonlinear terms are small and the NIW field is governed by

linear dynamics to leading-order.

The amplitude and importance of nonlinearity in the balanced flow is measured

by the Rossby number. We assume the balanced flow is weak relative to the near-

inertial waves, and that Ū = εŨ , where Ū is the characteristic velocity of the balanced

flow. Under this scaling assumption the Rossby number is

Ro
def
=

Ū

f0L
= ε2 . (3.11)

The NIW amplitude parameter and Rossby number have superficial similarity but

different physical interpretations. The NIW amplitude can be interpreted as the

ratio between the length scale L and the radius of particle orbits in an inertial circle,

Ũ/f0. The Rossby number, on the other hand, is the ratio of the rotation time scale

1/f0 and advective time scale L/Ū = (ε2f0)−1. The NIW envelope and the balanced

flow co-evolve on the slow time scale (ε2f0)−1.

We denote the vertical scale of the near-inertial waves by H̃ and we use Ũ , L,
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and H̃ to non-dimensionalize the horizontal and vertical velocities,

(u, v) = Ũ (ǔ, v̌) , w =
H̃Ũ

L
w̌ , (3.12)

where non-dimensional variables are distinguished by ˇ . Introducing f0, the local

Coriolis or inertial frequency, and N0, the characteristic magnitude of N(z), we non-

dimensionalize the buoyancy field with

b =
(
H̃N2

0 Ũ/f0L
)
b̌ . (3.13)

We adopt a geostrophic scaling for the pressure such that

p = f0LŪp̌ = εf0LŨp̌ . (3.14)

The inertial frequency is scaled so that

f̌ = 1 + ε2β̌y̌ , (3.15)

where (x, y) = L(x̌, y̌) and

β̌ =
βL2

Ū
. (3.16)

Finally, we define an aspect ratio

α
def
= ε

N0

f0

. (3.17)

By assuming α = O(1), we imply that f0/N0 = O(ε) and justify the hydrostatic

approximation in the vertical momentum equation at all relevant orders in the per-

turbation theory.
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3.2.1 Multiple scales: time and space

To describe both internal waves and slowly evolving balanced flow, we use

the two-time method with a ‘fast’ time t̃ = f0t, and a ‘slow’ time t̄ = ε2f0t. Thus

time-derivatives are mapped to

∂t 7→ f0

(
∂t̃ + ε2∂t̄

)
. (3.18)

We use an Eulerian time-average denoted with an overbar and defined as

φ̄(x, t̄)
def
=

1

T

∫ t+T/2

t−T/2
φ(x, t′) dt′ , where

1

f0

� T � L

Ū
, (3.19)

to separate fast and slow flow components. Any field φ can be decomposed into

φ = φ̄+ φ̃ , (3.20)

where φ̄ is the slowly evolving time-mean part and φ̃ is the wavy part with φ̃ = 0.

A multiple-vertical-scale expansion in the vertical is motivated by the disparity

in aspect ratio between NIWs, and both observed 2f0 scales as well as standard

quasi-geostrophic flow. Denoting the vertical scale of the NIWs by H̃, the internal-

wave dispersion relation implies that internal waves are near-inertial when the Burger

number of the wave is small, or when

(
N0H̃

f0L

)2

� 1 . (3.21)

On the other hand, the standard quasi-geostrophic equations assume that the Burger

number of the balanced flow is order unity. We use this requirement to define the
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vertical scale of the balanced flow, H̄, as

H̄
def
=
f0L

N0

. (3.22)

We make the scaling assumption that

H̃ = εH̄ . (3.23)

This prescription for H̃ unifies the slow NIW dispersion time scale with the balanced-

flow advection time scale. To capture both vertical scales in the expansion we split

the vertical coordinate into a fast component, z̃, and a slow component, z̄. Under

this two-scale splitting, vertical derivatives become

∂z 7→ H̃−1
(
∂z̃ + ε ∂z̄

)
. (3.24)

The vertical-scale splitting requires the introduction of a vertical average, which we

define

φ̂ =
1

H ′

∫ z̃+H′/2

z̃−H′/2
φ dz̃′ , where H̃ � H ′ � H̄ . (3.25)

The increase in complexity incurred by the multiple space-scale expansion is justified

by a systematic explanation of the prominence and impact of the 2f0 harmonic on

NIW evolution.

3.2.2 Complexifed non-dimensionalized equations

The derivation is greatly simplified by defining the complex horizontal coordi-

nate and velocity field,

s
def
= x+ iy , and U def

= u+ iv . (3.26)
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Spatial derivatives are expressed in terms of s and s∗ via

∂s = 1
2

(∂x − i∂y) , ∂s∗ = 1
2

(∂x + i∂y) . (3.27)

Notice that 4 = 4∂s∂s∗ , and that

ux + vy = Us + U∗s∗ and vx − uy = iU∗s∗ − iUs . (3.28)

Using the scaling assumptions outlined above, and dropping decorations on

non-dimensional variables, the complexified, non-dimensional Boussinesq equations

become

Ut̃ + iU = −ε
(
u · ∇U + 2 ps∗

)
− ε2

(
Ut̄ + w Uz̄ + iβy U

)
, (3.29)

pz̃ = ε
(
b− pz̄

)
− ε2α−2

[
wt̃ + ε (u · ∇w) + ε2(wwz̄ + wt̄)

]
, (3.30)

bt̃ + wN2 = −εu · ∇b− ε2
(
bt̄ + wbz̄

)
, (3.31)

Us + U∗s∗ + wz̃ = −ε wz̄ . (3.32)

The bracketed terms in (3.30) are included for completeness, but never appear in the

theory that follows. In terms of complex velocity the advection operators in (3.29)

and (3.31) are

u · ∇ = U∂s + U∗∂s∗ + w∂z̃ . (3.33)

The system in (3.29) through (3.32) is the basis for our asymptotic derivation.

3.3 The NIW equation

The NIW equation is derived by developing a perturbation expansion of (3.29)

through (3.32) for ε � 1. We begin by expanding u, b, and p each in a series in ε.
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For example, the complex velocity U is expanded into

U = U0 + ε U1 + ε2 U2 + · · · . (3.34)

We develop equations (3.29) through (3.32) order-by-order in ε. For clarity, we express

our results in dimensional variables, though the non-dimensional forms are indispens-

able for distinguishing each order in the development.

3.3.1 Leading order: near-inertial waves

The leading-order terms in (3.29) through (3.32) are

U0t̃ + if0 U0 = 0 , (3.35)

p0z̃ = 0 , (3.36)

b0t̃ + w0N
2 = 0 , (3.37)

U0s + U∗0s∗ + w0z̃ = 0 . (3.38)

We write the solution to the horizontal momentum equation (3.35) in terms of an

NIW envelope M or A,

U0 = e−if0 t̃Mz̃ = e−if0 t̃ L̃A , (3.39)

where L̃ is a second-order differential operator

L̃
def
= ∂z̃

(
f 2

0

N2
∂z̃

)
. (3.40)

Both A(x, y, z̃, z̄, t̄) and M = (f 2
0 /N

2)Az̃ prove useful for confronting the algebra that

ensues. The representation in (3.39) ensures the leading-order horizontal velocity is

inertial over short times; small deviations in wave field frequency from f0 are captured
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by the dependence of M or A on the slow time t̄. The construction in (3.39) also

implies that the vertical average of the NIW horizontal velocity is zero at this order.

With the representation in (3.39), we can integrate the continuity equation

(3.38) over the fast vertical coordinate z̃ to yield

w0 = −e−if0 t̃Ms − eif0 t̃M∗
s∗ + ŵ0 , (3.41)

where the z̃-independent function of integration ŵ0(x, y, z̄, t̃, t̄) is necessary to ensure

solvability of the perturbation expansion at next order. If ŵ0 is not included in (3.41)

then the O(ε) velocity field cannot satisfy continuity and the boundary conditions.

At O(ε) in equations (3.29) through (3.32), we find that ŵ0 oscillates on the fast time

with frequency 2f0 and is forced nonlinearly by NIW horizontal self-advection.

The leading-order buoyancy b0 follows from integration of the buoyancy equa-

tion (3.37) using w0 in (3.41),

b0 = if0

(
e−if0 t̃Az̃s − eif0 t̃A∗z̃s∗

)
+ b̂0 , (3.42)

where as in (3.41) we include the function of integration b̂0(x, y, z̄, t̃, t̄). The vertical

momentum equation (3.36) implies that the leading-order pressure p0 does not depend

on the fast vertical scale z̃, or that

p0 = p̂0 . (3.43)

The leading-order pressure p0 is eventually determined by (3.61) and (3.62) below and

oscillates on a fast time-scale with frequency 2f0. An important feature eventually

revealed by this expansion is that some 2f0-harmonic fields with slow vertical scale,

namely ŵ0, b̂0 and p̂0, appear at leading order. The 2f0 component of the horizontal
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velocity U , on the other hand, does not appear until O(ε) in the development. The

magnitude of these 2f0 fields is a consequence of voluntary scaling decisions and is

not obvious prior to the expansion.

3.3.2 First order: wave-averaged geostrophic balance and 2f0

harmonic

The O(ε) terms in equations (3.29) through (3.32) are

U1t̃ + if0 U1 = −2p0s∗ − u0 · ∇U0 , (3.44)

p1z̃ = b0 − p0z̄ , (3.45)

b1t̃ + w1N
2 = −u0 · ∇b0 , (3.46)

U1s + U∗1s∗ + w1z̃ = −w0z̄ . (3.47)

These equations describe wave-averaged geostrophic balance and the nonlinearly

forced 2f0 harmonic.

Wave-averaged geostrophic balance

The time-average of (3.44) through (3.47) yields the wave-averaged geostrophic

balance conditions. These balance conditions are similar to those in chapter 2 and

Wagner & Young (2015) except that the restriction to NIWs means there is no Stokes

pressure contribution. We show this explicitly by noting that on the right hand side

of (3.44),

u0 · ∇U0 = J0 + e−2if0 t̃J2 + e−if0 t̃ŵ0Mz̃z̃ , (3.48)
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where J0 and J2 are Jacobians defined by

J0
def
=
∂(M∗,Mz̃)

∂(z̃, s∗)
, and J2

def
=
∂(M,Mz̃)

∂(z̃, s)
. (3.49)

Next, we use the standard definitions of the horizontal and vertical Stokes drift, US

and wS,

US def
= ξ0 · ∇U0 , and wS def

= ξ0 · ∇w0 , (3.50)

where ξ0 = ξ0 x̂ + η0 ŷ + ζ0 ẑ is the wave particle displacement, defined via ξ0t̃ = u0

and ξ̄0 = 0. A direct calculation shows that

if0 US = u0 · ∇U0 = J0 . (3.51)

A similar calculation for the vertical Stokes drift wS shows that

if0w
S =

if0

N2
u0 · ∇b0 = K∗0 −K0 , (3.52)

where K0 is the Jacobian

K0
def
=
∂ (M∗,Ms)

∂ (z̃, s∗)
. (3.53)

The identity J0s + J ∗0s∗ + K∗0z − K0z = 0 implies that the three-dimensional Stokes

velocity in (3.51) and (3.52) is non-divergent.

Defining the quasi-geostrophic streamfunction as

ψ
def
=
p̄0

f0

, (3.54)

we use the expressions for the Stokes velocities in (3.51) and (3.52) to write the time
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average of (3.44) and (3.46) as

Ū1 + US = 2iψs∗ , (3.55)

w̄1 + wS = 0 . (3.56)

Equation (3.55) is the wave-averaged geostrophic balance condition for quasi-geostrophic

flow evolution in a field of strong NIWs. This balance condition lacks the Stokes pres-

sure correction term that appears in the more general balance condition expressed by

equation (4.38) in Wagner & Young (2015). From the leading-order vertical momen-

tum equations (3.36), the pressure p0, and therefore ψ, does not depend on the fast

vertical coordinate z̃.

The 2f0 harmonic

Using the two-time decomposition in (3.20), we write the wavy part of the

first-order equations (3.44), (3.45), and (3.47),

Ũ1t̃ + if0 Ũ1 + 2p̃0s∗ = −e−2if0 t̃J2 − e−if0 t̃ ŵ0Mz̃z̃ (3.57)

p̃1z̃ = b̃0 − p̃0z̄ , (3.58)

b̂0t̃ + ŵ0N
2 = 0 , (3.59)

Ũ1s + Ũ∗1s∗ + w̃1z̃ = −w̃0z̄ , (3.60)

where with (3.59) we include the vertically-averaged, leading-order buoyancy equa-

tion. It is (3.59), rather than the wavy part of (3.46), which describes the part of the

2f0 buoyancy field with large vertical scale. Note that the final term on the right of

equation (3.57) is not resonant because ŵ0 oscillates with 2f0 frequency.

The system (3.57) through (3.60), along with the time-fluctuating part of

(3.46), provides a complete description of the 2f0 harmonic of the NIW field. Im-
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portantly, part of this 2f0-harmonic response does not depend on the fast vertical

coordinate z̃. To isolate the slowly vertically-varying part of the 2f0 harmonic we

average (3.57) through (3.60) over z̃ and wrangle the resulting system into a single

equation. We leave the details to Appendix 3.A and note the final result. Using the

notation

p̃0 = if0

[
e−2if0 t̃B(x, y, z̄, t̄)− e2if0 t̃B∗(x, y, z̄, t̄)

]
, (3.61)

we find that B solves

if0

(
4− 3L̄

)
B = −3

2
∂2
s M̂

2
z . (3.62)

The operator L̄ is a second-order differential operator analogous to L̃, but defined in

terms of the slow vertical scale z̄,

L̄
def
= ∂z̄

f 2
0

N2
∂z̄ . (3.63)

The ‘2f0 equation’ in (3.62) describes forced 2f0 oscillations with a much larger ver-

tical scale than the near-inertial fields. Because of this vertical-scale discrepancy,

the vertical velocity of the 2f0-harmonic appears alongside the NIW vertical velocity

at leading-order in (3.41). As it stands, however, equation (3.62) cannot describe

freely-propagating 2f0 waves and thus cannot describe the waves which produced the

prominent potential energy signal in figure 3.1. These waves roughly satisfy the 2f0

dispersion relation and thus have the property 4B ≈ 3LB, in which case (3.62) can-

not be solved. To address this issue, we propose a heuristic modification to (3.62) in

section 3.5.

Continuing with the derivation of the NIW evolution equation, we use the
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expression for p̃0 in equation (3.61) to integrate (3.57) for Ũ1. The full U1 field is

U1 = 2iψs∗ + if−1
0 J0 + e−2if0 t̃

(
2Bs∗ − if−1

0 J2

)
+ 2

3
e2if0 t̃B∗s∗ + · · · (3.64)

where · · · indicates terms proportional to e−3if0 t̃ and eif0 t̃. Finally, we find p1− p̂1 by

subtracting the vertical average from (3.58), using (3.42), and integrating to find

p1 − p̂1 = if0

(
e−if0 t̃As − eif0 t̃A∗s∗

)
. (3.65)

We now have U1, ŵ0, and p1, and are ready to proceed to the second-order system.

3.3.3 Second order: an NIW amplitude evolution equation

The O(ε2) terms in the horizontal momentum equation (3.29) are

U2t̃ + if0 U2 = −u0 · ∇U1 − u1 · ∇U0 − U0t̄ − iβy U0 − 2p1s∗ − w0 U0z̄ , (3.66)

Here we finally apply the solvability condition arising from the introduction of multiple

time scales. The solvability condition prevents the disordering of terms that would

result from secular growth in U2: we isolate resonant forcing terms on the right of

(3.66) and set them collectively to zero. The amplitude equation yielded by this

procedure governs the dependence of the NIW envelope A on the slow time t̄. We

note that the vertical average of (3.66) has no resonant terms.

We construct the amplitude equation piece by piece, starting at the far-right

end of (3.66) and proceeding to the left. The final term w0 U0z̄ in (3.66) has no parts

proportional to e−if0 t̃ and so does not contribute to the amplitude equation. The next
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three terms from the left side of (3.66) are

U0t̄ + iβy U0 + 2∂s∗(p1 − p̂1) = e−if0 t̃
(

L̃At̄ + iβy L̃A+ 2if0Ass∗
)

+ NRT , (3.67)

where NRT stands for ‘non-resonant terms’. Next in line is

(u1 · ∇)U0 = e−if0 t̃

[
2i
∂(ψ,Mz̃)

∂(s∗, s)
− USMz̃s − US∗Mz̃s∗ − wSMz̃z̃

]
+ NRT . (3.68)

Note that to find (3.68) we need only consider the time-mean velocity ū1, since U0 is

proportional to e−if0 t̃. The first term on the right of (3.66), involving the zero-order

advection of the first-order velocity, is the most complicated. Carefully compiling the

terms, we find

(u0 · ∇)U1 = e−if0 t̃
(
Mz̃U1s −MsU1z̃

)
+ eif0 t̃

(
M∗

z̃U1s∗ −M∗
s∗U1z̃

)
+ ŵ0U1z̃ , (3.69)

= e−if0 t̃

[
∂(M, Ū1)

∂(z̃, s)
+

i

f0

∂(J2,M
∗)

∂(z̃, s∗)
+ 2M∗

z̃Bs∗s∗

]
+ NRT . (3.70)

Adding (3.68) to (3.70) yields

(u1 · ∇)U0+(u0 · ∇)U1 = e−if0 t̃

[
2i
∂(ψ,Mz̃)

∂(s∗, s)
+2iψss∗Mz̃+2M∗

z̃Bs∗s∗

]
+NRT . (3.71)

The absence of terms cubic in M is a remarkable aspect of (3.71): all sixteen cubic-M

terms in (3.68) and (3.70) conspire in collective cancellation. This simplification was

previously noted by Falkovich et al. (1994) and Zeitlin et al. (2003), and is the reason

why no cubic terms appear in XV.

It is thus notable that our expansion identifies a surviving ‘honorary’ cubic

term, proportional to M∗
z̃Bs∗s∗ , in (3.71). This new term results from the interaction

of NIWs with both forced and freely-propagating 2f0 waves. The requirement for 2f0
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fields arises when the first-order continuity equation (3.60) is averaged over the small

NIW vertical scale: if the vertical average of U1s +U∗1s∗ is non-zero, for example, then

continuity can only be satisfied if U1 is permitted its own independent evolution. This

solvability issue is addressed by introducing the 2f0 fields ŵ0, b̂0 and p̂0 at leading

order in (3.41) and (3.42). This is the non-obvious step that ultimately produces the

new term in (3.71).

The amplitude equation is then obtained from the sum of (3.67) and (3.71).

In Cartesian coordinates and in terms of A, the amplitude equation becomes

L̃At̄ +
if0

2
4A+ J

(
ψ, L̃A

)
+ i L̃A

(
1
2
4ψ + βy

)
+

1

2
L̃A∗

(
∂x + i∂y

)2
B = 0 . (3.72)

The amplitude equation (3.72) is the YBJ equation, except for the extra term on the

right associated with the 2f0 harmonic. This extra term is identical to that found by

Young et al. (2008) in their analysis of energy transfer from 2f0 motions to NIWs by

parametric subharmonic instability (PSI).

3.4 The NIW-averaged potential vorticity

Wave-averaged quasi-geostrophic flow is governed by a wave-averaged potential

vorticity equation (Bühler & McIntyre, 1998; Wagner & Young, 2015),

qt̄ + J (ψ, q) = 0 , (3.73)

where ψ is defined through the balance condition (3.55) and q is the wave-averaged

available potential vorticity. Wagner & Young (2015) give a number of expressions
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for q. Here, we use

q
def
= (4+ L)ψ + βy + J (u0, ξ0) + J (v0, η0) + f0J (ξ0, η0) + 1

2

(
ξ0iξ0j

)
,ij︸ ︷︷ ︸

def
= qw

. (3.74)

In (3.74) we define the wave contribution to available potential vorticity, qw, in terms

of the leading-order wave particle displacement ξ0 = ξ0 x̂+η0 ŷ+ζ0 ẑ defined through

ξ0t̃ = u0.

In the present multiple-scale theory, ψ and q are both time-averaged and

vertically-averaged quantities. Consistency then demands that qw in (3.74) be ver-

tically averaged as well. With the leading-order wave expressions (3.39) and (3.41)

and using M , a bit of algebra leads to

qw = − 1
f0

(M∗
ss∗Mz̃z̃ − 2Mz̃s∗M

∗
z̃s +Mss∗M

∗
z̃z̃) . (3.75)

This is the expression for qw found by XV.

We then take the vertical average of qw, which yields a number of representa-

tions via integration by parts in z̃, such as

q̂w = − 1
f0

(
M∗

ss∗Mz̃z̃

∧

− 2Mz̃s∗M
∗
z̃s

∧

+Mss∗M
∗
z̃z̃

∧)
, (3.76)

= i
2f0

J (M∗
z̃ ,Mz̃)
∧

+ 1
4f0
4 |̂Mz̃|2 . (3.77)

We take the second form, in (3.77), which is the form needed to furnish the three-

component model in (3.6) through (3.9) with a coupled wave-mean energy conserva-

tion law.
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3.5 Remodeling

We regard the formally-derived model comprised of (3.72), (3.74), (3.77) and

(3.62) as a first draft, which we heuristically revise to obtain the simpler and well-

posed system in (3.6) through (3.9). This remodeling addresses two concerns with the

multiple-scale formulation. First, the multiple vertical scales and vertical averages in

(3.77) and (3.62) burden interpretation and computations with the arbitrary definition

of a vertical average. Second, the 2f0 equation in (3.62) cannot be solved when the

NIW field and its 2f0 harmonic interact resonantly, which occurs when the nonlinear

forcing on the right side of (3.62) has spectral components in the null space of the

operator 4− 3L on the left.

To address the first concern, we reconsolidate vertical scales and eliminate

vertical averaging from equations (3.77) and (3.62). While averaging-removal admits

spurious small vertical scales into ψ and B, these parts of ψ and B contain little energy

due to the smoothing or ‘self-averaging’ properties of the Helmholtzian inversions that

determine ψ and B through (3.74) and (3.62). In particular, both intuition and the

results of figure 3.5 indicate that most of the energy transferred to B lies close to

the 2f0 dispersion relation, which by definition has large-vertical scale relative to the

NIW source on the right of (3.62) and (3.80).

After consolidation of scales and dismissal of vertical averages the potential

vorticity is given in terms of ψ and wave-averaged properties as

q =
(
4+ L

)
ψ +

i

2f0

J (LA∗,LA) +
1

4f0

4
∣∣LA

∣∣2 , (3.78)

and the NIW equation is

LAt + i
2
f04A+ J(ψ,LA) + iLA

(
1
2
4ψ + βy

)
+ 1

2
LA∗

(
∂x + i∂y

)2
B = 0 . (3.79)
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Above L = ∂z f
2
0 /N

2 ∂z is the operator originally defined in (3.7) in terms of the single

vertical scale z. The evolution of q in (3.78) is governed by the potential vorticity

equation in (3.6).

The second issue regarding the non-invertibility of 4−3L and the description

of freely-propagating 2f0 waves is addressed by applying ∂t 7→ −2if0 + ∂t̄ to (3.57)

through (3.60) prior to deriving (3.62). This procedure installs a time-derivative in

the 2f0 evolution equation (3.62) and fixes its resonance problem. We leave the details

for appendix 3.A and report the result, which is the modified 2f0 equation:

(4+ 13L)Bt + 4if0

(
4− 3L

)
B = −3

2

(
∂x − i∂y

)2(
LA
)2
. (3.80)

Non-dimensionalizing (3.80) in the manner of section 3.2 reveals that (4 +

13L)Bt is ε2 smaller than the rest of equation (3.80). The small term (4+13L)Bt be-

comes important under conditions of near-resonance when 4if0(4−3L)B is relatively

small. The fact that terms of different orders in ε appear in (3.80) reflects the fact that

its derivation implicitly relies on a variant on the ‘reconsititution’ methods discussed

by Roberts (1985). Reconstitution successfully improves many asymptotic expansions

including the Navier-Stokes equation as it describes the deviation of fluid molecules

from thermodynamic equilibrium. Here, reconstitution of 2f0 dynamics by addition

of the high-order term (4 + 13L)Bt empowers (3.80) to describe freely-propagating

2f0 waves, and crucially tempers the generation of 2f0 waves by the source term on

the right.

3.6 Conservation laws

Like XV, we find that the wave-averaged system (3.6) through (3.9) conserves

two integral quantities, which we call “wave action” and “coupled energy”.
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3.6.1 Wave action

The first conservation law follows from the wave equations (3.8) and (3.9). We

multiply (3.8) with 1
2
LA∗, add the complex conjugate, and integrate over the domain.

Using the 2f0 equation (3.80), and a liberal application of integration by parts, we

find

d

dt

∫
1
2

∣∣LA
∣∣2 + 1

6

∣∣∇B
∣∣2 +

13f20
6N2

∣∣Bz

∣∣2 dV = 0 . (3.81)

The appearance of the B-terms in this first conservation law is a consequence of the

time derivative in the 2f0 equation (3.80) and corresponds to the total energy in the

freely propagating part of the near-2f0 wave field. The first conservation law implies

that generation of freely-propagating 2f0 waves solely extracts near-inertial kinetic

energy.

3.6.2 Coupled energy

The second conserved quantity is a wave-mean coupled energy. We derive

the associated conservation law by multiplying the potential vorticity equation (3.73)

with ψ and integrating over the domain. The Jacobian term ψ J(ψ, q) can be written

as an exact derivative and integrates to zero. Applying integration by parts, we are

left with

dEψ
dt

=

∫
ψqw

t dV , (3.82)

where qw is the wave potential vorticity defined in (3.74) and

Eψ
def
=

∫
1
2
|∇ψ|2 + 1

2

f20
N2ψ

2
z dV (3.83)
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is the balanced quasi-geostrophic energy. Next we multiply (3.8) by iLA∗t/2f0, add

the complex conjugate, and integrate over the domain to obtain

dEf
dt

= −
∫
ψqw

t dV − i
2f0

∫
B∗∂t∂

2
s

(
LA
)2 −B∂t∂2

s∗

(
LA∗

)2
dV , (3.84)

where

Ef
def
=

∫
f20

4N2

∣∣∇Az
∣∣2 + βy

2f0

∣∣LA
∣∣2 dV (3.85)

is the sum of NIW potential energy and an action-like term associated with the β-

effect. The first term on the right of (3.84) corresponds to the term on the right

of (3.82) and will cancel when these equations are added. Substitution of the 2f0

equation (3.9) and its complex conjugate into the second integral on the right of

(3.84) followed by persistent integration by parts produces

dE2f

dt
= i

2f0

∫
B∗∂t∂

2
s

(
LA
)2 −B ∂t∂

2
s∗

(
LA∗

)2
dV , (3.86)

where

E2f
def
=

∫
i

12f0

[
B (4+ 13L)B∗t −B∗(4+ 13L)Bt

]
− 1

3
|∇B|2 +

f20
N2 |Bz|2 dV, (3.87)

=

∫
i

8f0

[
B∗ (∂x−i∂y)

2(LA)2 −B (∂x+i∂y)
2(LA∗)2

]
+ 1

3

∣∣∇B
∣∣2 − f20

N2

∣∣Bz

∣∣2 dV.

(3.88)

An additional substitution of equation (3.9) and its complex conjugate transforms

equation (3.87) into (3.88). The conservation of coupled energy emerges from the

combination of (3.82), (3.84), and (3.86),

d

dt

(
Eψ + Ef + E2f

)
= 0 . (3.89)
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The conservation law in (3.89) is identical to XV’s except for addition of the E2f

term. Equation (3.89) is the analog of a conservation law found by Danioux et al.

(2015) that relates the evolution of NIW potential energy to advection and refraction

by steady geostrophic flows.

A thought experiment due to XV illuminates an important implication of

(3.89). Envision the rapid and stormy deposition of a horizontally-extensive, surface-

concentrated current in a region of geostrophic turbulence. When the storm passes,

the unbalanced current first develops into surface-concentrated NIW which is almost

horizontally-uniform, and therefore has little potential energy so that Ef ≈ 0. Next,

NIW refraction and advection by the geostrophic flow generates near-inertial hori-

zontal scales and potential energy, catalyzes the production of 2f0 internal waves,

and leads to vertical NIW propagation. Because wave action in (3.81) and coupled

energy in (3.89) are distinct and independent conservation laws, total NIW and 2f0

wave energy increases in this process at the sole expense of energy in the geostrophic

flow. The role of E2f in (3.89) is unfortunately obscure in this thought experiment,

though we note it is ε2 smaller than the other terms in (3.89) and that the diagnosis

of (3.89) presented in figure 3.7 below shows its effect is minor in some cases.

3.7 Comparison of three-component model and Boussi-

nesq equations

To build confidence in the heuristic and asymptotic approximations used to de-

velop the three-component model, we compare numerical solutions of a two-dimensional

initial value problem in the three-component model and the Boussinesq equations.

The initial problem is similar to that shown in figure 3.1, in which a surface-concentrated

NIW interacts with a barotropic balanced velocity field. In addition to solutions
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intended for direct comparison, we compute solutions to a two-component model

without 2f0 dynamics, and a three-component model with the PSI-like part of NIW-

2f0 interaction removed. The physical implications of the numerical solutions are

discussed in section 3.8.

3.7.1 The initial value problem

The initial value problem involves the interaction of a surface-concentrated

NIW with random, barotropic balanced flow. The two-dimensional physical domain

is bounded by rigid lids in z with height H = 4 km and is periodic in x with width

L = 800 km. The stratification is uniform with buoyancy frequency N = 2×10−3 s−1

and the inertial frequency is f0 = 10−4 s−1 = N/20 with β = 0. As for the problem

considered in section 3.1, the NIW initial condition is

LA(x, z, 0) = u(x, z, 0) = U0 exp
(
−z2/2h2

)
, (3.90)

with h = 100 meters. We consider initial NIW surface velocities of U0 = 0.4, 0.2 and

0.1 m/s.

The initial, balanced v-velocity is

ψx(x, z, 0) = v(x, z, 0) = V0

14∑

n=4

(
k4

kn

)2

cos (knx+ φn) , (3.91)

where kn
def
= 2πn/L and the φn are random phases between 0 and 2π for each com-

ponent of the geostrophic flow. We choose V0 = 0.1 m/s for all simulations. This

produces a maximum velocity of max(v) ≈ 0.2 m/s, a maximum Rossby number of

max(vx)/f0 ≈ 0.1 and root-mean-square Rossby number of rms(vx)/f0 ≈ 0.05. The

balanced flow and its associated vorticity field are plotted at the top of figures 3.2

through 3.4.
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The numerical solutions we report are listed in table 3.1. Note that we choose

simulation parameters both for ease of numerical integration and for consistency with

oceanic scenarios. In particular, the chosen balanced-flow magnitude in V0 leads to

‘reasonable’ and even somewhat slow NIW vertical propagation rates of tens of inertial

periods. However, these choices violate assumptions made in chapter 3.2 to justify

the asymptotic derivation of the three-component model. For example, the expansion

assumes that Ū/Ũ = H̃/H̄ = ε � 1, while in the simulations H̃/H̄ = h/(π−1H) =

0.08 is small and Ū/Ũ = U0/V0 = [0.25, 0.5, 1] is relatively large. A fair question is

whether the model is valid in the proposed regime, or whether the simulations provide

a good test of model validity.

We offer two points to settle this concern. First, the model must be approxi-

mately valid for a wide range of parameter choices to be useful for interpreting and

understanding real oceanic scenarios. With a weaker mean flow that better satisfies

the asymptotic assumptions, the results are qualitatively similar and the test of model

fidelity is milder. Our choices thus test the model’s usefulness in a relevant and more

interesting regime where failure is possible. Second and importantly, the relative mag-

nitude of waves and balanced flow is less important in our two-dimensional scenario

where, as we discuss, APV does not evolve. The simulations we present are thus in-

teresting primarily as a test of the nonlinear NIW-2f interaction, and cannot test the

validity of the dynamic NIW-QG interaction. That test requires three-dimensional

simulations.

3.7.2 Methods

In two dimensions, the APV equation (3.6) reduces to qt = 0 and implies that

q is constant. Because of this it is useful to decompose the balanced streamfunction
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Table 3.1: Parameters and models for numerical simulations reported in chapter 3.7 and 3.8. A
resolution of ‘1×’ is nx× nz = 1024× 2048 and ‘2×’ is twice that. In all runs ψq

x = v(t = 0) is given
by (3.91) with V0 = 0.1 m/s.

U0 (m/s) Resolution Model(s) Notes

0.4 1×, 2× Boussinesq and three-component model

0.4 1× Two-component model with B 7→ 0 ‘no 2f0’

0.2 1× Boussinesq and three-component model

0.2 1× Two-component model with B 7→ 0 ‘no 2f0’

0.2 1× Three-component model with BxxLA
∗ 7→ 0 ‘no PSI’

0.1 1× Boussinesq and three-component model

into ψ(x, z, t) = ψq(x, z) + ψw(x, z, t), where

(
∂2
x + L

)
ψq = q , and

(
∂2
x + L

)
ψw = − 1

4f0

∂2
x|LA|2 . (3.92)

Like q, ψq is constant in time and determined by the initial condition. Because LA

is initially uniform, we have ψq = ψ(t = 0) and thus ψqxx = vx(t = 0). With this

decomposition the two-dimensional three-component system becomes

LAt + i
2
f0Axx + i

2

(
ψqxx + ψw

xx

)
LA+ 1

2
BxxLA

∗ = −D(LA) , (3.93)

(
∂2
x + 13L

)
Bt + 4if0

(
∂2
x − 3L

)
B + 3

2
∂2
x (LA)2 = −D(LB) , (3.94)

where D,

D
def
= ν

[(
δx

δz

)2

∂2
x + ∂2

z

]8

, (3.95)

is a linear hyperdiffusion operator added for numerical stability with hyperviscosity ν

and ratio of x to z physical resolution δx/δz. We set ν = 106 m16/s for all simulations

reported here, and find the fractional energy lost to dissipation is negligible.

Equations (3.92) through (3.94) are solved with a pseudospectral method by
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decomposing A and B into the constant-N vertical modes cos(nπz/H) in z, and

Fourier modes in x. Fast Fourier transforms are used for vertical and horizontal modal

projections. Time integration is performed with the exponential time differencing

method described by Cox & Matthews (2002), Kassam & Trefethen (2005), and

Grooms & Julien (2011). Use of the exponential time differencing method is crucial

due to the stiffness of equation (3.94).

The nonhydrostatic Boussinesq equations are solved with the model of Winters

et al. (2004), which employs a pseudospectral method with Fourier horizontal modes,

sine vertical modes for (w, b), cosine vertical modes for (u, v), and an integrating

factor method with a 3rd-order Adams-Bashforth scheme for time-stepping.

We use the same order of hyperdiffusion for three-component and Boussinesq

models. Non-exhaustive trial and error indicates our three-component code is stable

with time-steps at least 10 times larger than those demanded by Winters’ Boussinesq

model. The simulations reported here use 1024 Fourier modes in x and 2048 vertical

cosine modes in z. To test dependency on resolution, we ran simulations with double

the resolution for U0 = 0.4 m/s in both Boussinesq and three-component models.

The results shown here are almost identical for the two resolutions.

3.7.3 Points of comparison

We use horizontal velocity, vertical velocity, and domain-integrated vertical

kinetic energy to compare Boussinesq and three-component models. Because v is

initially balanced, the unbalanced part of v is approximately isolated by

δv(x, z, t) = v(x, z, t)− v(x, z, 0) . (3.96)
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Figure 3.2: Comparison of wave speed in numerical solutions to the three-component and Boussinesq
models. The top two panels show the x-dependence of the initial balanced velocity v (left) and
balanced vorticity normalized by f0, vx/f0 (right). The lower three panels show wave speed defined
in (3.97) at t = 10, 40, and 80 inertial periods in the Boussinesq model (left panels) and the three-
component model (right panels). The initial NIW surface velocity is U0 = 0.4 m/s.

On the other hand, u is unbalanced because py = 0. We thus define the

unbalanced horizontal ‘wave speed’ as

wave speed
def
=
√
u2 + δv2 . (3.97)

When diagnosed from the Boussinesq simulations, the horizontal wave speed in (3.97)

includes NIW and 2f0 components as well as a much smaller wave-induced mean

component. In figure 3.2, we compare the wave speed from the Boussinesq solution

with |Ũ | ≈ | U0 + Ũ1| diagnosed from the three-component solution, where U0 =

e−if0tLA and Ũ1 is the wavy part of (3.64). The comparison is made at t = 10, 40,
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Figure 3.3: Comparison of vertical velocity in numerical solutions to the Boussinesq and three-
component models. The top two panels show the x-dependence of initial v (left) and vx/f0 (right).
The lower three panels show vertical velocity w at t = 10, 40, and 80 inertial periods for Boussinesq
(left panels) and three-component model (right panels). The initial NIW surface velocity is U0 = 0.4
m/s.

and 80 inertial periods. The initial NIW magnitude in figure 3.2 is U0 = 0.4 m/s

and the initial, balanced, barotropic v and local Rossby number vx/f0 are plotted in

upper left and right panels.

The wave speed shown in figure 3.2 indicates good agreement between the

three-component model and Boussinesq equations. A close inspection of the fields

is required to discern differences that arise between the two models at late times.

It is our consistent experience that the wave speed field is well-estimated by the

three-component model for the two-dimensional initial value problems examined here;

we therefore focus the following discussion on the more interesting and worst-case

comparison of vertical velocity.
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Figure 3.4: Like figure 3.3 but with initial NIW surface velocity U0 = 0.2 m/s. The agreement
between Boussinesq and three-component models is better than for U0 = 0.4 m/s.

The vertical velocities in Boussinesq and three-component solutions are com-

pared in figures 3.3 and 3.4 for initial NIW magnitudes U0 = 0.4 and 0.2 m/s. Vertical

velocity is plotted from top to bottom at t = 10, 40, and 80 inertial periods. For

both cases, agreement is good at t = 10 inertial periods but degrades progressively

thereafter. A conspicuous aspect of the Boussinesq solution absent from the three-

component solution are features with small horizontal scales and steep characteristic

angles. These features are especially prominent in figure 3.3 for the most nonlinear

case with U0 = 0.4 m/s at t = 40 and 80 inertial periods.

We dissect this failure of the three-component model in figure 3.5, which com-

pares vertical kinetic energy (VKE) spectra between three-component and Boussinesq

models for U0 = 0.4 m/s at t = 10 and 40 inertial periods. The five lines indicate
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Figure 3.5: Snapshots of VKE spectral components, |w̆|2, where w̆ denotes the Fourier and vertical
mode transform of w, for U0 = 0.4 m/s at t = 10 and 40 inertial periods. The spectral components
are normalized by total Boussinesq VKE and horizontal modes include energy from both positive
and negative horizontal wavenumbers. The five lines show the linear dispersion relation for five
internal wave frequencies; proceeding clockwise from the vertical axes these frequencies are 1.01f0,
1.08f0, 2f0, 3f0, and 4f0, with the dashed line corresponding to 2f0. By t = 40 inertial periods,
49% of the Boussinesq VKE is in frequencies higher than 2.8f0.

internal wave frequencies based on the linear dispersion relation; proceeding clockwise

from the vertical axes these frequencies are 1.01f0, 1.08f0, 2f0, 3f0, and 4f0, with the

dashed line corresponding to 2f0. The dynamics are clear: in the Boussinesq simula-

tions, substantial VKE leaks into higher harmonic frequencies 3f0 and 4f0. By t = 40

inertial periods, the fraction of VKE contained in frequencies greater than 2.8f0 is

49%. This transfer of VKE to higher harmonics decreases with U0: for U0 = 0.2 and

0.1 m/s, the fraction is 10% and just over 1%, respectively, at t = 40 inertial periods.

The effect of the energy transfer to NIW harmonics on total VKE is demon-

strated in figure 3.6, which shows the evolution of total VKE,
∫
w2/2 dx dz, for (a)

U0 = 0.4 m/s and (b) U0 = 0.2 m/s. Four models are considered: Boussinesq (solid

lines), three-component model (dashed lines), a two-component model which neglects



103

2f0 (dash-dotted lines), and a modification of the three-component model with PSI

suppressed by removing BxxLA
∗ from the NIW equation (3.93) (dotted line, figure

3.6(b) only). The three-component model underestimates the amplitude of VKE,

having 54% of the Boussinesq solution at t = 40 inertial periods and 43% of the total

at t = 80 inertial periods. The ‘extra’ Boussinesq VKE is thus uncannily similar to

that contained in frequencies greater than 2.8f0. In other words, the extra Boussinesq

VKE results from the transfer of horizontal NIW kinetic energy into high NIW har-

monics not accounted for in the three-component model. This transfer is strongest

in the most nonlinear case with U0 = 0.4 m/s.

For the case U0 = 0.2 m/s the three-component model correctly estimates the

amplitude, but not the phase of VKE. Unsurprisingly, given the impact of NIW-

harmonic interactions on VKE, the two-component solutions with B 7→ 0 and thus

no 2f0 cannot capture the evolution of VKE for either U0 = 0.4 or 0.2 m/s. In figure

3.6(b), the suppression of PSI leads to an unrealistic accumulation of VKE in 2f0

motions starting at around t = 20 inertial periods. This indicates that the transfer

of energy from 2f0 back to NIWs must be accounted for to accurately capture VKE

evolution.

3.7.4 Summary

The comparison presented in this section suggests that the three-component

model well-describes NIW evolution and nonlinear NIW-2f0 interaction. That the

three-component model describes NIW evolution in the cases shown here is not too

surprising, since it is likely driven by a linearized YBJ-type flow-induced refraction.

The success of the three-component in describing NIW-2f0 interaction is more surpris-

ing and vindicates the heuristic derivation of 2f0 dynamics. On the other hand, the

model grossly underestimates vertical velocity magnitude when the NIWs are strong,
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Figure 3.6: Evolution of total VKE
∫
w2/2 dx dz for (a) U0 = 0.4 m/s and (b) U0 = 0.2 m/s. Results

are diagnosed from the Boussinesq model (solid lines), three-component model (dashed lines), a ‘no
2f0’ two-component model with B 7→ 0 (dash-dotted lines), and a ‘no PSI’ three-component model
with the term BxxLA∗ removed from the NIW equation (3.93) (dotted line in panel (b) only). Black
colors are used for (a) U0 = 0.4 m/s and blue colors for (b) U0 = 0.2 m/s here and in figures 3.7 and
3.9.

which follows from the neglect of NIW harmonics higher than 2f0. We stress that

this two-dimensional comparison cannot test whether the three-component model

correctly captures the impact of NIWs on balanced flow evolution.

3.8 Energy transfer and production of small ver-

tical scales

In this section we continue to explore the initial value problem of section 3.7 by

looking at the energy transfer between the three flow components and the surprising

role played by 2f0 in the evolution of the smallest vertical scales.
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3.8.1 Energy transfer between flow components

The two conserved quantities in the three-component model are wave action

and coupled energy defined in (3.81) and (3.89) and plotted in figure 3.7(a) and (b).

Figure 3.7(a) illustrates the transfer between NIW kinetic energy and the total energy

of the 2f0 field, defined respectively as

Af =

∫
1
2
|LA|2 dV and A2f =

∫
1
6

∣∣Bx

∣∣2 +
13f20
6N2

∣∣Bz

∣∣2 dV . (3.98)

Figure 3.7(a) shows the components of wave action change δAf (t)
def
= Af (t) − A (0)

and A2f . Figure 3.7(a) also shows the very small change in total wave action δA =

δAf + A2f due to hyper-dissipation with dotted lines. All curves are normalized by

initial wave action A (0), which is equal to the kinetic energy in the near-inertial

initial condition. Three cases corresponding to different initial amplitude of the NIW

are shown: U0 = 0.1, 0.2, and 0.4 m/s in red, blue, and black. The action transferred

from Af to A2f increases initially to a maximum value and thereafter decays to a

constant asymptotic value as t → ∞. Although the short-term maximum transfer

increases with the initial NIW amplitude U0, the fraction as t→∞ is independent of

U0 and indicates that less than 1% of the near-inertial action is ultimately transferred

to the 2f0 field.

Figure 3.7(b) shows the evolution of δEψ(t)
def
= Eψ(t) − E (0), Ef , and E2f

following the definitions in (3.83), (3.85), and (3.87), respectively. All energies are

normalized by the initial near-inertial kinetic energy A (0), thus revealing an uncanny

correspondence between cases: the energy transferred from balanced flow to NIWs is

a constant fraction of the initial NIW kinetic energy, Af (0).
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Figure 3.7: The evolution of (a) wave action and (b) coupled energy in the three-component system
with initial NIW velocity in (3.90) and U0 = 0.4, 0.2 and 0.1 m/s, and initial balanced velocity in
(3.91) with V0 = 0.1 m/s, as shown in figures 3.2 through 3.4.

Figure 3.8: Comparison of velocity magnitude and shear magnitude between the Boussinesq equa-
tions, the three-component model, and a two-component model with B 7→ 0 and thus no 2f0 waves.
The snapshots are taken at t = 80 inertial periods and comprise a portion of the full domain shown
in figure 3.2.
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3.8.2 2f0 motions are a stepping stone to small vertical scales

The evolution of A2f in figure 3.7(a) is unspectacular and suggests NIW-2f0

interaction is not important because at most a mere 3% of the initial NIW kinetic

energy is transferred to 2f0 when U0 = 0.4 m/s. Yet the possibility for a PSI-type

energy transfer from 2f0 to NIW hints that the inclusion of 2f0 and nonlinear NIW-

2f0 interaction may be necessary to capture the production of small NIW vertical

scales.

We isolate the effect of this process by computing a ‘no 2f0’ solution of (3.92)

and (3.93). In this solution we set B 7→ 0, thus removing 2f0 waves and the 2f0-

mediated transfer of energy. Figure 3.8 gives a qualitative impression of the results,

where wave speed (top panels) and wave shear magnitude (bottom panels) are plotted

for three model solutions with U0 = 0.4 m/s: Boussinesq (left), three-component

model (middle), and the two-component ‘no 2f0’ solution of equations (3.92) and

(3.93) with B 7→ 0 (right). Both Boussinesq and three-component results have small

scales in the vertical velocity which are lacking when 2f0 is removed, and thus must

be created by nonlinear NIW-2f0 interaction. Without 2f0 the magnitude of vertical

shear is also underestimated near (x, z) = (−0.1, 40) km. At the same time, the

overall flow structure agrees between the three models.

A more quantitative estimate of small vertical scales is provided by the metric

Ri†(t), which measures the smallest Richardson numbers and thus the potential for

wave breaking and mixing were such processes resolved. Ri† is defined as the average

of the smallest 0.1% of Richardson numbers:

Ri†(t)
def
= mean

[
smallest 0.1% of Ri values

]
, where Ri

def
=
N2 + bz
u2
z + v2

z

. (3.99)

The evolution of Ri† normalized by its initial value is shown in figure 3.9 for
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the cases U0 = 0.4 and 0.2 m/s. Results are compared between Boussinesq, three-

component models, and two-component models. The comparison reveals that small

values of Ri† and thus small vertical scales are produced by at least two distinct

physical mechanisms. Ri† first decreases to a minimum value between t = 15 and 20

inertial periods and rises gradually thereafter. The agreement between all five cases

means that Ri† is controlled by refraction of the NIW field by balanced flow during

this stage.

At around t = 40 inertial periods the results diverge and Ri† is smaller for

U0 = 0.4 m/s in both Boussinesq and three-component models. It is conspicuous

that in the two-component model with U0 = 0.4 m/s, Ri† is overestimated and stays

close to the more linear U0 = 0.2 m/s results. At this stage, the smallness of Ri† and

thus small NIW vertical scales in Boussinesq and three-component models must be

controlled by nonlinear NIW-2f0 interaction.

Strikingly and despite that they contain little instantaneous energy, 2f0 mo-

tions provide a crucial stepping stone through which NIW energy is transferred to

small vertical scales. The surprisingly accurate description of this process by the

three-component model suggests it is controlled by the interaction of relatively large-

vertical-scale 2f0 motions with small-scale NIWs, which figures 3.2 and 3.3 show are

well-captured by the three-component model.

3.9 Discussion

We have developed a three-component model for the coupled evolution of

near-inertial waves (NIWs), quasi-geostrophic (QG) flow, and internal waves with

frequency near 2f0. The three-component model adds 2f0 dynamics to the two-

component, NIW-QG model derived by Xie & Vanneste (2015), and thereby describes

the prominent 2f0 vertical velocities and production of small NIW vertical scales that
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U0 = 0.4 m/s (black) and U0 = 0.2 m/s (blue or gray) and in three models: Boussinesq (solid lines),
three-component model (dashed lines), and the two-component model with B 7→ 0 and thus no 2f0
(dashed-dotted lines). The inset shows the numerical values of Ri† approaching the critical value
Ri = 1/4 for the case U0 = 0.4 m/s in Boussinesq and three-component models. Ri† is a measure
of the smallest vertical scales in the flow, whose evolution cannot be captured without 2f0.

numerical solutions of the Boussinesq equations show are important features of the

coupled evolution of NIWs and balanced flow.

A striking prediction of both the three-component model and XV’s two-component

model is that forced oceanic NIWs extract energy from large-scale balanced flows. Be-

cause it requires externally-forced internal waves, XV call this mechanism ‘stimulated

loss-of-balance’, distinguishing it from the spontaneous loss-of-balance that occurs

without external stimulus. Stimulated loss-of-balance acts even in small Rossby num-

ber flows, and our numerical solutions suggest that energy transfer to NIWs increases

with the strength of the externally-forced waves. The significance of this process in

real flows is uncertain.

The three-component model connects the 2f0 generation mechanism identi-

fied by Danioux & Klein (2008) with the YBJ-based near-inertial PSI mechanism of

Young et al. (2008). The form of the NIW-2f0 coupling implies a two-step cycle for

NIW energy: first, advection and refraction by balanced flow catalyzes transfer of

NIW energy to 2f0 waves. These newly-produced 2f0 waves have large, often depth-
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spanning vertical scales and propagate rapidly in the horizontal. Second, a PSI-like

interaction transfers energy from 2f0 waves back to the NIW field at very small ver-

tical scales. This two-step process provides a path from the large scales of NIW

forcing to the small scales of wave breaking and mixing. Advection and refraction of

NIWs by non-uniform QG flows leads to relatively small NIW horizontal scales and

thus plays a catalytic role in activating this path. Interestingly, the rapid horizontal

and vertical propagation of the nascent 2f0 waves can excite small-scale NIWs in

regions remote from the initial NIW forcing. Two-dimensional numerical solutions

of both three-component and Boussinesq models give tentative confirmation of this

mechanism.

The numerical comparison with the Boussinesq equations shows that strengths

of the three-component model include its description of NIW refraction by balanced

flow, and prediction of both the phase and amplitude of growing 2f0 waves at short

times. A weakness of the three-component model is the underestimation of vertical

velocity and vertical kinetic energy under increasingly nonlinear conditions due to

its neglect of 3f0- and 4f0-frequency NIW harmonics. Despite this shortcoming, the

three-component model captures with surprising accuracy the long-time evolution of

the very smallest NIW vertical scales that result from nonlinear NIW-2f0 interaction.

The numerical comparison primarily tests the accuracy of NIW-2f0 dynamics

in the three-component model in a regime where refraction by APV-induced balanced

flow controls the large-scale NIW evolution. The magnitude of APV and the APV-

induced flow means our comparison is not well-suited to isolate the existence and

impact of balanced flow induced by quadratic NIW terms in (3.7). In addition,

because APV cannot evolve in our two-dimensional scenario, the comparison cannot

explore dynamic NIW-QG interaction. A three-dimensional comparison of three-

component and Boussinesq dynamics is required to define the regimes of validity of
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the three-component model in more realistic scenarios and to unravel the effects of

NIWs and their wave-induced balanced flow on the evolution of oceanic QG motion.

The applicability of the three-component model to a particular part of the

ocean can be assessed using kinetic-energy frequency spectra derived from long-term

mooring observations of horizontal velocity. Where non-wave flows of NIW-scale have

small Rossby number, the three-component model well approximates the dynamics of

any motion with Eulerian frequencies near f0. In flows with relative vorticities near

or greater than f0, or under conditions of active wave breaking, the relevance of the

three-component model is uncertain. The ubiquitous appearance of a spectral peak

at f0 combined with the belief that large, NIW-scale vortical flows are predominantly

balanced (Ferrari & Wunsch, 2009) hints at, but does not confirm, the potentially

broad applicability of the three-component model. Such confirmation requires fur-

ther observations, like the difficult simultaneous observation of large-scale balanced

vorticity and storm-driven NIW evolution. The applicability of the three-component

model to real flows is of consequence, since predicting the climatic evolution of di-

apycnal mixing likely requires a firm understanding of near-inertial wave physics —

a link between large and small scales of oceanic motion.

3.A The 2f0 equation

In this appendix, we outline the asymptotic and heuristic steps that lead to

the 2f0 equation in (3.9) and (3.80).
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3.A.1 2f0-frequency forcing at first order

The vertically-averaged, time-fluctuating part of the first-order Boussinesq

system in (3.57) through (3.60) is

̂̃U1 t̃ + if0
̂̃U1 + 2p̃0s∗ = −e−2if0 t̃Ĵ2 , (3.100)

p̃0z̄t̃ + ̂̃w0N
2 = 0 , (3.101)

̂̃U1s + ̂̃U∗1 s∗ + ̂̃w0z̄ = 0 , (3.102)

where the wavy part of the leading-order pressure p̃0 does not depend on the fast

scale z̃. The system above describes hydrostatic internal waves of general aspect

ratio driven by the 2f0-forcing on the right of (3.100).

A bit of wrangling with equations (3.100) through (3.102) leads to a single

equation for the wavy part of the leading-order pressure field:

∂t̃

[
∂2
t̃ L̄ + f 2

0

(
4+ L̄

) ]
p̃0 = 3if 3

0

(
e−2if0 t̃Ĵ2s − e2if0 t̃Ĵ ∗2s∗

)
. (3.103)

Equation (3.103) is the hydrostatic internal wave equation forced at frequency 2f0.

Writing p̃0 as

p̃0 = if0

(
e−2if0 t̃B(x, y, z̄, t̄)− e2if0 t̃B∗(x, y, z̄, t̄)

)
, (3.104)

and noting that (3.49) implies

Ĵ2 = ∂s M̂2
z̃ , (3.105)

we find that B satisfies

if0

(
4− 3L̄

)
B = −3

2
∂2
s M̂

2
z̃ . (3.106)
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3.A.2 Resonant and near-resonant NIW-2f0 interaction

Equation (3.106) describes forced oscillations with frequency 2f0. It cannot

describe the resonant and near-resonant generation and free propagation of 2f0 inter-

nal waves. Near-resonant generation can be understood by projecting (3.106) onto

vertical modes hn(z) which satisfy

Lhn + κ2
nhn = 0 , and h′n = 0 at top and bottom, (3.107)

where the eigenvalue κn is the Rossby deformation wavenumber of mode n. If we look

for solutions of the form B ∼ eikx+i`y, we find that (3.106) cannot be solved when

k2 + `2 = 3κ2
n . (3.108)

These combinations, which are circular slices of (k, `)-space at each vertical mode, are

the wavenumber combinations that satisfy the linear internal wave dispersion relation

at frequency 2f0. Freely-propagating 2f0 internal waves are generated when the NIW

forcing ∂2
sM̂

2
z̃ has non-zero spectral content near these wavenumber combinations.

The generality of near-resonant 2f0 generation in NIW-balanced flow interaction is

evident from the results in figure 3.1 and the simulations in Danioux et al. (2008).

As resonant generation is generic, we seek to describe it by modifying equation

(3.106). In particular, we need a term proportional to Bt̄ in (3.106) in order to

describe time-dependent B-generation and free near-2f0 propagation. We achieve

this by applying the map

∂t 7→ −2if0 + ∂t̄ , (3.109)

to (3.103) and re-deriving the 2f0 equation.

The scaling in section 3.2 implies that ∂t̄ is ε2 smaller than 2f0; thus in appliy-
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ing (3.109) to (3.103) we ignore the even smaller O(ε4) terms. Introducing (3.104)

into the result then yields

−
(
4− 11L̄

)
Bt̄ + 2if0

(
4− 3L̄

)
B = −3∂2

sM̂
2
z . (3.110)

The leftmost term is ε2 smaller than (4− 3L̄)B and only becomes important when

(4 − 3L̄)B ≈ 0. Moreover, the addition of any multiple of (4 − 3L̄)Bt̄ does not

reduce the ‘accuracy’ of the approximation in (3.110).

We exploit this ambiguity to improve the already-approximate form of (3.110).

Consider the exact, vertical mode-n dispersion relation for linear hydrostatic internal

waves,

Σ = ±f0

√
1 +

k2

κ2
n

, (3.111)

where Σ(k, κn) is the hydrostatic internal wave frequency, k is the horizontal wavenum-

ber, and κn is the horizontal wavenumber of the nth vertical mode. The Taylor ex-

pansion of the positive root of Σ around k =
√

3κn with κn fixed is

Σ = 2f0 +

√
3f0

2κn

(
k −
√

3κn

)
+

f0

16κ2
n

(
k −
√

3κn

)2

+ · · · . (3.112)

On the other hand, the approximate dispersion relation implied by (3.110) is found by

linearizing (3.110), projecting it onto vertical modes, and proposing B ∼ eikx−iσt̄ so

that the frequency of B is 2f0 +σ. Algebra reveals that Σk = σk when k =
√

3κn and

Σ = 2f0. As a consequence, the 2f0 approximation in (3.110) produces the correct

group velocity.

This feature is preserved under the addition of any multiple of (4− 3L̄)Bt̄ to

(3.110). We use this freedom to increase the accuracy of 2f0 linear dispersion in the
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three-component model: subtracting 9
2
(4− 3L̄)Bt̄ from (3.110), we obtain

(
4+ 13L̄

)
Bt̄ + 4if0

(
4− 3L̄

)
B = −6∂2

sM̂
2
z̃ . (3.113)

The approximate dispersion relation implied by (3.113) is

σ = 4f0
k2 − 3κ2

n

k2 + 13κ2
n

, (3.114)

which yields σkk = Σkk and means that (3.113) produces the correct near-2f0 group

velocity over a range of wavenumbers. Figure 3.10 compares the exact dispersion

relation with the approximate dispersion relations for both the 2f0 harmonic com-

ponent as well as the NIW component, demonstrating the accuracy of our ‘Padé’

approximation to the 2f0 dispersion relation. We use equation (3.113) to model the

2f0 component of flow in the three-component system. Note too that such a ‘Padé’

approximation can be applied in the same manner to the NIW equation.

3.A.3 Expressions for U1 and ŵ0

With p̃0 defined through B, we can calculate Ũ1. The vertically-averaged

horizontal momentum equation is

̂̃U1t̃ + if0
̂̃U1 = −2p̃0s∗ − e−2if0 t̃Ĵ2 , (3.115)

= −2if0e−2if0 t̃Bs∗ + 2if0e2if0 t̃B∗s∗ − e−2if0 t̃∂sM̂
2
z . (3.116)

which means that

̂̃U1 = e−2if0 t̃
(

2Bs∗ − if−1
0 ∂sM̂

2
z

)
+ 2

3
e2if0 t̃B∗s∗ . (3.117)
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Figure 10. Comparison between the exact hydrostatic internal wave dispersion relation and
the approximate linear dispersion relations in NIW-QG. The thick black line traces the exact
dispersion relation for linear hydrostatic internal waves. The dash-dotted line is the approximate
dispersion relation for the NIW component, f0(1 + k2/22

n), which is obtained by linearizing
(1.8). The dashed line is the approximate dispersion relation for the 2f0 component, which is
implied by (1.9) and (A 14), and given by 2f0 + � in (A 15). disprel

is

⌃ = 2f0 +

p
3f0

2n

⇣
k �

p
3n

⌘
+

f0

162
n

⇣
k �

p
3n

⌘2
+ · · · . (A 13)

On the other hand, the approximate dispersion relation implied by (A 11) is found by
linearizing (A 11), projecting it onto vertical modes, and proposing B ⇠ eikx�i�t̄. In
this form, the total frequency of the B-associated flow is 2f0 + �. Algebra reveals that
⌃k = �k when k =

p
3n and ⌃ = 2f0. As a consequence, the 2f0 approximation in

(A 11) produces the correct group velocity.

This feature is preserved under addition of any multiple of (4 � 3L̄)Bt̄ to (A 11).
However, the additional freedom allotted by our approximation permits us to proceed
further and match ⌃kk = �kk. We achieve this by subtracting 9

2 (4� 3L̄)Bt̄ from (A11),
which yields

�
4 + 13L̄

�
Bt̄ + 4if0

�
4� 3L̄

�
B = �6@2

s
dM2

z̃ . (A 14) bandaid2

The approximate dispersion relation implied by (A 14) is

� = 4f0
k2 � 32

n

k2 + 132
n

, (A 15) 2fapproxdisprel

The form in (A 15) yields �kk = ⌃kk. Figure 10 compares the exact dispersion relation
with the approximate dispersion relations for both the 2f0 harmonic component as well
as the NIW component, demonstrating the accuracy of our “Padè” approximation to the
2f0 dispersion relation. We use equation (A 14) to model the 2f0 component of flow in
the NIW-QG-2f0 system.

Figure 3.10: Comparison between the exact hydrostatic internal wave dispersion relation and the
approximate linear dispersion relations in the three-component model. The thick black line traces the
exact hydrostatic internal wave dispersion relation. The green dash-dotted line is the approximate
dispersion relation for the NIW component, f0(1 + k2/2κ2n), obtained by linearizing (3.8). The blue
dashed line is the approximate dispersion relation for the 2f0 component implied by (3.9) and (3.113)
and given by 2f0 + σ in (3.114). Insets show the fractional error of the approximate NIW and 2f0
dispersion relations.

The vertically-averaged vertical velocity ŵ0 is obtained from (3.101),

ŵ0 = −2f 2
0

N2

(
e−2if0 t̃Bz̄ + e2if0 t̃B∗z̄

)
. (3.118)

With ŵ0 we can obtain the full expression for Ũ1 by solving (3.57), which yields

Ũ1 = e−2if0 t̃
(
2Bs∗ − if−1

0 J2

)
+ 2

3
e2if0 t̃B∗s∗ +

f0

N2
Mz̃z̃

(
e−3if0 t̃Bz̄ − eif0 t̃B∗z̄

)
. (3.119)

3.B Improved dispersion for the near-inertial equa-

tion

In chapter 3.A.2, the linear part of the 2f0 equation in (3.9) is engineered

to better match the exact hydrostatic dispersion relation expanded around 2f0 and
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thus the wavenumber combinations k = κn
√

3. The same procedure can be used to

improve dispersion in near-inertial equation (3.8). In the near-inertial case, dispersion

is enforced near the horizontal wavenumber k = 0 by the operator4A, and the scaling

in chapter 3.2 implies that 4At � LAt. It is thus a minor matter to add a4At to

(3.8), where a is chosen to improve dispersion around f0 and horizontal wavenumber

k = 0. The linear terms in the combination a4At + (3.8) are then

(a4+ L)At + if0
2
4A = 0 . (3.120)

If A ∼ eikx−iσthn(z), where hn is the nth eigenfunction of the eigenproblem Lhn = −κ2
n

with hnz = 0 at top and bottom boundaries, (3.120) implies the linear dispersion

relation

f0 + σ = f0 +
f0k

2

2 (κ2
n + ak2)

≈ f0

(
1 + k2

2κ2n
− a k4

2κ4n
+ · · ·

)
, (3.121)

where in the second approximate equality we expand for small k. Comparing this to

the expansion of the exact dispersion relation in (3.111) around k = 0,

Σ ≈ f0

(
1 + k2

2κ2n
− k4

8κ4n
+ · · ·

)
, (3.122)

shows that the choice a = 1/4 and thus the addition of 4At/4 to (3.8) yields a near-

inertial equation that better approximates the exact dispersion relation around k = 0

and Σ = f0. The improved version of (3.8) is

(
1
4
4+ L

)
At+

if0

2
4A+J

(
ψ,LA

)
+i L̃A

(
1
2
4ψ+βy

)
+

1

2
LA∗

(
∂x+i∂y

)2
B = 0 . (3.123)

Equation (3.123) is associated with slightly different conservation laws than those

derived in (3.6).
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3.C A consistent two-dimensionalization of the three-

component model

The three-component system in (3.6) through (3.9) reduces from three to two-

dimensions when N is constant, ψ = ψ(x, y) is barotropic, and A and B are standing

waves in the vertical such that

A(x, y, z, t) = eimzφ(x, y, t) , and B(x, y, z, t) = e2imzθ(x, y, t) . (3.124)

With the horizontal wavenumber

κ
def
= mf0/N , (3.125)

we find that

LA = −eimzκ2φ , and LA∗ = −e−imzκ2φ∗ . (3.126)

Under the assumption that ψ is barotropic and that A and B have standing wave

structure with a single vertical wavelength, all z-dependent terms factor out of equa-

tions (3.6) through (3.9), yielding a two-dimensional system without further approx-

imation. The two-dimensionality of ψ and standing-wave structure of A implies that

q is two-dimensional and still governed by horizontal advection so that

qt + J (ψ, q) = 0 , with q = 4ψ + βy + iκ4

2f0
J (φ∗, φ) + κ4

4f0
4|φ|2 , (3.127)

The near-inertial equation (3.8) reduces to

φt − if0
2κ2
4φ+ J (ψ, φ) + iφ

(
1
2
4ψ + βy

)
+ 1

2
φ∗ (∂x + i∂y)

2 θ = 0 . (3.128)
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From (3.9) the two-dimensionalized 2f0 equation turns into

(
4− 52κ2

)
θt + 4if0

(
4+ 12κ2

)
θ = −3κ4

2
(∂x − i∂y)

2 φ2 . (3.129)

The two-dimensionalized three-component system is equations (3.127) through (3.129).

The model parameters are Coriolis frequency f0 and its variation β, buoyancy fre-

quency N , and near-inertial wavenumber κ.

The wave-wave interaction between near-inertial waves and the 2f0 harmonic

is unimportant in the solutions of (3.127) through (3.129) reported here. A possible

reason is the similarity in vertical structure between A and B, while the simulations

in chapter 3.1 and 3.7 indicate the significant interactions are between near-inertial

and 2f0 waves of widely differing vertical scale. Equivalently, with similar vertical

wavenumbers for A and B, resonant and near-resonant interactions are restricted to

triads with widely differing horizontal scale.

The standing-wave and barotropic three-component model conserves two quan-

tities analogous to wave action in (3.81) and coupled energy in (3.89). Wave action

becomes

A =

∫
1
2
κ4|φ|2 + 1

6
|∇θ|2 + 26κ2

3
|θ|2 dV , (3.130)

and coupled energy is now given by

E =

∫
1
2
|∇ψ|2 + κ2

4
|∇φ|2 + κ4βy

2f0
|φ|2 dV + E2f , (3.131)

with

E2f =

∫
iκ4

8f0

[
θ∗ (∂x − i∂y)

2 φ2 − θ (∂x + i∂y)
2 (φ∗)2

]
+ 1

3
|∇θ|2 − 4κ2|θ|2 dV . (3.132)

Both are conserved in the sense that At = 0 and Et = 0.
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The ‘improved’ φ-equation corresponding to the near-inertial equation with

enhanced dispersion in (3.123) is

(
1− 1

4κ2
4
)
φt − if0

2κ2
4φ+ J (ψ, φ) + iφ

(
1
2
4ψ + βy

)
+ 1

2
φ∗ (∂x + i∂y)

2 θ = 0 . (3.133)

We use (3.133) since it proves useful when ~ is large and dispersion is thus strong.

3.C.1 Scaling the strength of wave-induced mean flows

The essential physics of (3.127) and (3.133) are exposed by simple scaling

arguments. To fix ideas, consider the deposition of a uniform near-inertial velocity

−κ2φ = Ũ in a turbulent two-dimensional vorticity field q. For now, we ignore the

2f0 field θ. The ensuing evolution clearly depends on the the wave magnitude Ũ

and the spatial structure of q. More obscure is the critical role played by the wave

dispersivity,

~ def
=

f0

κ2
=

N2

m2f0

, (3.134)

which determines the strength of linear wave dispersion and controls the length-scales

that develop dynamically in the near-inertial field. This control over wave length-

scales means that ~ determines the relative importance of wave field nonlinearity and

magnitude of the wave-induced balanced flow.

The importance of dispersivity is revealed by examining the two dispersive

balances possible in (3.133),

~4φ ∼ J (ψ, φ) , or ~4φ ∼ φ4ψ . (3.135)

The two balances in (3.135) reflect a competition between the smoothing effects of

dispersion and either stirring by advection or wave refraction. If we neglect the wave-
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induced contribution to ψ due to the φ-dependent terms in (3.127), these balances

imply two distinct scalings for L̃, the characteristic horizontal scale of φ:

advective: L̃ ∼ ~
Ū

and refractive: L̃ ∼
√

~L̄
Ū
, (3.136)

where L̄ and Ū are characteristic length and velocity scales for q. Since only dis-

persion can limit the reduction of L̃, the smaller of the two scalings determines L̃

and the dominant balance in (3.133). Thus for fixed Ū and ignoring the effect of

wave nonlinearity, decreasing the scale of |∇ψ| ∼ Ū or increasing the dispsersivity

~ strengthens the refractive balance, while decreasing ~ leads to smaller scales in φ

and strengthens the advective balance. These scaling arguments, which ignore fi-

nite amplitude wave effects, were identified by Danioux et al. (2015) for a linearized

shallow water near-inertial equation identical to (3.133) with ψ prescribed. Danioux

et al. (2015) additionally identify the scaling L̃ ∼ L̄ when advection and refraction

are equally important.

The scalings in (3.136) make clear that the wave field nonlinearity measured by

ε = Ũ/f0L̃ depends not only on the strength of the leading-order wave field through

Ũ ∼ κ2φ, but also on dispersivity through its control of L̃. Dispersivity thus exerts

an important influence on the ultimate magnitude of the nonlinear wave-induced

mean flow and wave-turbulence coupled evolution. To see this explicitly we use the

decomposition ψ = ψq + ψw, where ψq is the streamfunction associated with APV

through 4ψq = q and ψw is the wave-induced streamfunction defined through

4ψw = − iκ4

2f0
J (φ∗, φ)− κ4

4f0
4|φ|2 . (3.137)
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From (3.137) we find the wave-induced flow magnitude |∇ψw| scales with

|∇ψw| ∼ Ũ2

f0L̃
= ε Ũ . (3.138)

The wave-induced mean flow increases in magnitude when L̃ decreases, corresponding

to the increasing distortion of the wave field and the increasing importance of wave

nonlinearity. When the advective balance from (3.135) holds, the scaling in (3.138)

implies that in the weak dispersion regime, the magnitude of the wave-induced mean

flow,

|∇ψw| ∼ Ũ2Ū

f0~
(3.139)

is inversely proportional to the dispersivity. The scaling analysis reveals how the ini-

tial magnitude of the near-inertial wave is not sufficient to predict ε: the magnitude of

the wave field nonlinearity measured by ε arises organically out of the wave-turbulence

interaction and has an important dependence on wave dispersivity.

One caveat with the preceding scaling argument is its ignorance of the wave

self-advection term J (ψw, φ) that contributes to the advective balance in (3.135).

This advection term is an important piece of finite-amplitude wave evolution, and

may act to arrest the decrease in L̃ with ~.

3.C.2 Near-inertial interruption of free turbulent decay

We explore the dynamics in equations (3.127) and (3.133) with a brief ex-

ploration of the role of dispersivity in a physical scenario in which the free decay of

two-dimensional turbulence from semi-random initial conditions is interrupted by the

sudden deposition of a horizontally-uniform near-inertial wave. We set both β = 0

and θ 7→ 0 to focus solely on the wave-turbulence interaction and use the φ-equation

with improved dispersion in (3.133).
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In the preliminary stage, q obeys the ordinary two-dimensional turbulence

dynamics described by equation (3.127) with φ = 0, and decays from the initial

condition

ψ(x, y, 0) = ψ0

(
5∑

n=2

(
kn
k2

)−1

cos (knx+Xn)

)(
5∑

n=2

(
kn
k2

)−1

cos (kny + Yn)

)
, (3.140)

where kn = 2πn/L and the Xn and Yn are random phases between 0 and 2π. The

magnitude ψ0 is set so that Ro = max (4ψ) /f0 = 0.1 initially. With the initial condi-

tion in (3.140), q is stretched and filamented rapidly at early times before eventually

coalescing into a small number of roaming eddies over several hundreds of inertial

periods. The duration of the preliminary turbulent decay, t0, thus determines the

initial spatial structure of q. In the results shown here the near-inertial wave is de-

posited after a relatively short preliminary integration of t0 = 200 inertial periods

corresponding roughly to 2πt0/Ro ≈ 120 eddy turnover times.

We solve equations (3.127) and (3.133) with pseudospectral method in a square

and periodic domain in x, y with −L/2 < x, y < L/2, L = 400 km and grid resolution

10242 unless stated otherwise. The buoyancy frequency is N = 2 × 10−3 s−1 and

the inertial frequency is 10−4 s−1. High order hyperdissipation is added for stability.

Some details of the pseudospectral method are described in chapter 3.C.3.

An initial feel for the dynamics in (3.127) and (3.133) is given by figure 3.11,

which compares vorticity evolution in ordinary decaying two-dimensional turbulence

with vorticity evolution within a strong near-inertial wave field. The vertical wave-

length of the near-inertial wave is 2π/m = 600 m and its initial magnitude is around

Ũ = 0.2 m/s so that ε/Ro ≈ Ũ/max (|∇ψ|) = 2. The advection associated with the

near-inertial field gradually distorts the vorticity field away from the non-wave case.

The distortion ranges from fairly close correlation t = 50 inertial periods the vorticity

fields to the dramatic filamenting and distortion apparent at t = 400 inertial periods.
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The gradualness of the vorticity distortion corresponds to the relative weakness of

the wave-induced balanced flow, which is roughly an order of magnitude weaker than

the leading-order oscillation of the waves.

A better understanding of the role of dispersivity is given by figure 3.12, which

compares snapshots of the vorticity field q/f0, the wave-induced mean flow magnitude

|∇ψw|, and the wave magnitude κ2|φ| after t = 400 inertial periods of wave-turbulence

coupled evolution for four values of m and thus ~. The initial state is the same used

for figure 3.11 and consists of a uniform near-inertial wave with Ũ ≈ 0.2 m/s and

vorticity field after t0 = 200 inertial periods of initial decay from (3.140).

The dependence on wave dispersivity is clear: decreasing dispersivity leads

to smaller and smaller scales in the wave velocity field κ2|φ|. The small-scales in φ

lead in turn to a wave-induced mean flow ∇ψw which is both stronger and of smaller

scale as dispersivity becomes weaker. The increased strength and smaller scale of

the vorticity-advecting flow ∇ψw means that wave fields with weaker dispersivity

interact more strongly with the mean flow. The effect of the waves becomes dramatic

for the very small vertical wavelength 2π/m = 200 m on the far right, in which the

smooth eddy structures of ordinary two-dimensional turbulence are replaced by a

highly corrugated and filamentary vorticity field.

The two-component, two-dimensional model in equations (3.127) through (3.133)

with θ 7→ 0 provides a convenient system to study the coupled evolution of mean vor-

ticity and near-inertial waves. The scaling argument in chapter 3.C.1 reveals the

crucial role of wave dispersivity or, alternatively, the vertical scale of the waves in

setting the strength of the wave-turbulence interaction. Waves with smaller vertical

scales and thus weaker dispersion are more strongly distorted by turbulence, develop

stronger wave-induced mean flows, exert more severe alterations on turbulent evo-

lution, and extract more energy from the mean vorticity. The qualitative nature
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Figure 3.12: Effect of vertical wavenumber and thus wave dispersivity on the coupled evolution
of NIWs and two-dimensional turbulence. The four columns compare results for the four vertical
wavelengths that label each column corresponding to the dispersivities ~ = 2594, 648.5, 162.1, and
40.53 m2/s. The top row plots the vorticity q/f0; the middle row plots the wave-induced mean flow
speed |∇ψw|, and the bottom row plots the wave speed κ2|φ| = |LA|. The initial vorticity and wave
fields are the same as in figure 3.11 and all snapshots are taken from t = 400 inertial periods.

of the scaling arguments is roughly confirmed by figure 3.12, but both quantitative

confirmation and analysis of energy transfer between waves and flow awaits future

work.

3.C.3 The pseudospectral numerical method

Equations (3.127) through (3.129) and (3.133) can be solved on a periodic

grid in x, y with a pseudospectral numerical method. For this we decompose q, φ,

and θ into Fourier modes, and denote their Fourier transforms with q̂, φ̂, and θ̂. x-

wavenumbers are denoted by k and y-wavenumbers by `, so that horizontal derivatives
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become

φx 7→ ikφ̂ and φy 7→ i`φ̂ . (3.141)

We write the Jacobian J(a, b) = axby − aybx and its transform as

J (a, b) = ∂x (aby)− ∂y (abx) , and Ĵ(a, b) = ik âby − i` âbx . (3.142)

Note that J(a, b) = ∂y (axb)− ∂x (ayb) and Ĵ(a, b) = i` âxb− ik âyb are also useful. We

also define

q′
def
= q − βy such that q′ = 4ψ + iκ4

2f0
J (φ∗, φ) + κ4

4f0
4|φ|2 (3.143)

obeys

q′t + J(ψ, q′) + βψx = 0 , (3.144)

The transform of (3.144) is

q̂t + Dq̂ = −Ĵ(ψ, q)− ikβ ψ̂ , (3.145)

where D is a hyperdiffusion operator included for stability. The transform of q′ yields

an inversion relation for ψ̂,

ψ̂ = − 1
K2 q̂ − κ4

2K2f0

[
k φ̂∗φy − ` φ̂∗φx

]
− κ4

4f0
|̂φ|2 . (3.146)

The transform of the two-dimensionalized near-inertial equation (3.128) is

φ̂t + if0K2

2κ2
φ̂+ Dφ̂ = −Ĵ(ψ, φ)− iφ

(
1
2
4ψ + βy

)∧
− 1

2
φ̂∗Sθ , (3.147)
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where K2 = k2 + `2 and the operator S is

S
def
= (∂x + i∂y)

2 = ∂2
x + 2i∂x∂y − ∂2

y . (3.148)

Alternatively, the transform of the improved φ-equation in (3.133) is

φ̂t +
2if0K2

4κ2+K2 φ̂+ Dφ̂ = − 4κ2

4κ2+K2 Ĵ(ψ, φ)− 4iκ2

4κ2+K2φ
(

1
2
4ψ + βy

)∧
− 2iκ2

4κ2+K2 φ̂∗Sθ , (3.149)

Finally, equation (3.129) transforms to

θ̂t +
4if0 (K2 − 12κ2)

K2 + 52κ2
θ̂ + Dθ̂ =

3 (`2 + 2ik`− k2)

2 (K2 + 52κ2)
φ̂2 . (3.150)

Notice that each of (3.145), (3.149), and (3.150) take the form

φ̂t + µφφ̂ = Nφ , (3.151)

where

µq = D , (3.152)

µφ =
2if0K

2

4κ2 +K2
+ D , (3.153)

µθ =
4if0 (K2 − 12κ2)

K2 + 52κ2
+ D . (3.154)

D must be positive for it to damp the solution. The N are

Nq = ik ψ̂yq − i` ψ̂xq − ikβ ψ̂ , (3.155)

Nφ = ik ψ̂yφ− i` ψ̂xφ− iφ
(

1
2
4ψ + βy

)∧
− 1

2
φ̂∗Sθ , (3.156)

Nθ =
3 (`2 + 2ik`− k2)

2 (K2 + 52κ2)
φ̂2 . (3.157)



129

Acknowledgements

Part of this chapter was submitted for publication in the Journal of Fluid

Mechanics by the author Gregory L. Wagner and William R. Young under the title

‘A three-component model for the coupled evolution of near-inertial waves, quasi-

geostrophic flow, and the near-inertial second harmonic’. The work was supported

by the National Science Foundation under OCE-1357047.



Chapter 4

Slow evolution of internal tides in

quasi-geostrophic flow

4.1 Introduction

Internal tides are freely-propagating inertia-gravity waves with diurnal or semid-

iurnal tidal frequencies that are generated when surface tides slosh rotating and strat-

ified water over rough bathymetry and underwater mountains. The surface tides fa-

miliar to coastal life are essentially meter-high, depth-independent rotating shallow

water waves forced by the gravitational pull of the sun and moon and predictable to

within a centimeter in the open ocean. Internal tides have dynamically-unimportant

surface displacements on the order of centimeters, depth-dependent interior density

and velocity structure, and are much more difficult to predict because of their freely-

propagating nature and modulation by quasi-geostrophic flows. The name ‘internal

tide’ is potentially confusing because they are not directly forced by a harmonic grav-

itational perturbation.

Internal tides are an energetic and prominent component of motion almost

everywhere in the Earth’s ocean. The ubiquity of their generation and basin-crossing
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propagation manifests in the striking global maps of their coherent mode-one sur-

face signature extracted from decades of space-borne altimetry data by Zhao et al.

(2016). And the role of internal tides in both ocean circulation and the astrodynami-

cal evolution of the Earth and moon was demonstrated by Egbert & Ray (2000), who

constrained a shallow water surface tide model with long-term altimetry observations

to show that roughly 25–30% of the 3.75 terawatts dissipated from surface tides is

converted to internal waves in the deep ocean. Thus internal tides extract energy

from the Earth-moon system, gradually slow the Earth’s rotation, and contribute to

the moon’s outward drift of 3.82 cm per year. At the same time, Egbert and Ray’s

result shows that internal tides are energetic enough to contribute to mixing processes

that lift dense abyssal waters and thereby set the ocean’s density stratification (Fer-

rari & Wunsch, 2009). The detailed mechanisms and actual magnitude of the tidal

contribution to abyssal mixing are yet unclear.

The ubiquity of internal tides also explains the irritation provoked by their con-

tamination temporally-sparse observations intended to observe more slowly-evolving

and persistent currents. This aliasing issue confounds both ship-based hydrographic

observations (Wunsch, 1975; Munk, 1981) and planned altimetric observations of

quasi-geostrophic flows with scales smaller than 50 km and faster than a month (Ponte

& Klein, 2015).

The scattering of oceanic internal tides by quasi-geostrophic flow is an impor-

tant part of their dynamics over the long time-scales of their basin-crossing propaga-

tion and stymies the systematic removal of their contaminating signal from altimetric

data. In addition, the thought experiment by Bühler & McIntyre (2005) and infer-

ences from 1978-1979 POLYMODE Local Dynamics experiment data by Polzin (2010)

suggest that an energy budget for the ocean’s quasi-geostrophic mesoscale should in-

clude a still-mysterious transfer of energy from quasi-geostrophic flows to the internal
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wave field. Conceivably, quasi-geostrophic turbulence might lose energy or evolve

with yet-undescribed dynamics when irradiated with a strong internal tide. Finally,

like the case of near-inertial waves described in chapter 3, the distortion of internal

tides by heterogeneous flows may precipitate nonlinear wave-wave interactions that

transfer energy directly to the small spatial scales of wave breaking and mixing.

We thus find two separate motivations to develop a slow evolution equation

for the internal tide in quasi-geostrophic flow: (i) to provide a potentially predictive

model for internal tide propagation through quasi-geostrophic flow that is simpler

than either the nonlinear or linearized Boussinesq equations; and (ii) as the first step

toward more sophisticated reduced models for the nonlinear coupled evolution and

energetic interaction between internal tides, quasi-geostrophic flow, and possibly also

near-inertial waves or tidal harmonics. To this end, we assume the internal tide is

a hydrostatic inertia-gravity wave, which limits our scope to mid-latitudes between

roughly 15◦ and 60◦ latitude. Poleward of 60◦, the tidal frequency becomes near-

inertial and slow internal tide dynamics are better described by Young & Ben Jelloul

(1997)’s near-inertial equation. Equatorward of 15◦, the vertical component of the

Earth’s rotation weakens to the point that both the horizontal component of Earth’s

rotation and non-hydrostatic dynamics are important for slow internal tide evolution.

4.1.1 Summary of the internal tide equation

The principal result of this chapter is an equation that describes the slow evo-

lution of internal tides in quasi-geostrophic flow. In this slow internal tide equation,

the pressure field is decomposed into a quasi-geostrophic and wave component,

p = f0

(
ψ + e−iσtA+ eiσtA∗

)
, (4.1)
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where ψ is the quasi-geostrophic streamfunction, A is the complex amplitude of the

wavy pressure field oscillating with frequency σ, and f0 = 4π sinφ/day is the con-

stant local inertial frequency at latitude φ. Both ψ and A evolve slowly over time-

scales much longer than 1/σ. The pressure in (4.1) is a special solution justified

only when initial conditions or oscillatory forcing projects onto a combination of

motions with frequency σ and nearly-balanced flow. For the semidiurnal lunar tide

σ ≈ 2π/12.421 hours−1 ≈ 1.4× 10−4 s−1.

The leading-order pressure in (4.1) is related to hydrostatic buoyancy b and

velocity field u = (u, v, w) through the linear hydrostatic Boussinesq equations,

b = f0

(
ψz + e−iσtAz + eiσtA∗z

)
, (4.2)

and

u =∇⊥ψ − 1
αf0

(iσ∇α + f0∇⊥) e−iσtA+ cc , (4.3)

where ‘cc’ denotes the complex conjugate. Equation (4.3) writes u in terms of the

two vector operators

∇⊥
def
= −∂y x̂+ ∂x ŷ and ∇α

def
= ∂x x̂+ ∂y ŷ −

αf 2
0

N2
∂z ẑ , (4.4)

which ultimately simplify the presentation.

The derivation of the slow hydrostatic wave equation assumes that the nonlin-

ear interaction of ψ and A induces small perturbations to a dominant linear balance

in the hydrostatic Boussinesq equations (A.18) through (A.22). In that case, the form

of p in (4.1) implies that A approximately satisfies the linear dispersion constraint,

0 ≈
(
∂2
x + ∂2

y

︸ ︷︷ ︸
def
=4

−α ∂z
f 2

0

N2
∂z

︸ ︷︷ ︸
def
= L

)
A = DαA , where α

def
=
σ2 − f 2

0

f 2
0

, (4.5)
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and N(z) is the buoyancy frequency reflecting a background density stratification

with arbitrary vertical structure. The operator

Dα
def
= 4− αL (4.6)

is the ‘dispersion operator’ and α is an O(1) frequency parameter. The linear hydro-

static dispersion relation for constant N implies α = (Nk/f0m)2 is the ‘wave Burger

number’ or squared aspect ratio for hydrostatic waves with horizontal wavenumber

k and vertical wavenumber m. When α is small the wave is near-inertial and better

described by the model in chapter 3; when α is large non-hydrostatic effects become

important.

The approximate equality ≈ in (4.5) would be exact if the wave field in p were

constrained to exactly satisfy the linear dispersion relation. The essence of our deriva-

tion is relax the dispersion constraint by ‘reconstituting’ the leading-order equation,

DαA = 0, with the first-order equation that describes the nonlinear interaction of ψ

and A. The result is a slow evolution equation for A,

0 =
[
4+ (4 + 3α) L

]
At + 2iσDαA+ 2(1+α)

α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]

− 2
α

J (Dαψ,A) + 2i(1+α)1/2

α

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (Dαψ∇hA)

]

− 2i (1 + α)1/2∇ · f
2
0

N2 (Az∇αψz + ψz∂z∇αA) .

(4.7)

where the Jacobian operator is J(a, b) = axby − aybx. Equation (4.7) is a counterpart

to the ‘YBJ’ equation describing the slow evolution of near-inertial waves in three-

dimensional quasi-geostrophic flow ψ and arbitrary background stratification reflected

in N(z). The greatly increased complexity of (4.7) over the YBJ equation is the cost

of considering more strongly dispersive hydrostatic waves with frequency σ > f0.
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The reconstitution of the leading-order equation, DαA = 0, with the first-

order equation that contributes all the nonlinear terms in (4.7) means that under

weakly nonlinear conditions DαA is by far the largest contributor to (4.7). Thus,

as intimated in (4.5), the pressure field p corresponding to solutions of (4.7) almost

satisfies the linear dispersion relation for hydrostatic internal waves with frequency σ.

Roberts (1985) explains how the method of reconstitution permits equations like (4.7)

or the Navier-Stokes equation to describe a broader range of dynamics than would be

permitted by more ceremonious asymptotic expansions. The benefit of reconstitution

to (4.7) is a description of the slow evolution of more spatial modes of A than would

be allowed if the solution were restricted to those that exactly satisfy DαA = 0 and

thus the exact hydrostatic dispersion relation.

We begin our derivation by non-dimensionalizing the hydrostatic Boussinesq

equations and their associated ‘wave operator form’ in chapter 4.2. In chapter 4.3

we derive and make finishing touches to the model. In chapter 4.4 we establish that

ψ obeys quasi-geostrophic dynamics and in chapter 4.5 we present some example

solutions for hydrostatic wave propagation in barotropic flows that illustrate the power

and limitations of equation (4.7). We wrap up and contemplate future hopes for the

slow wave equation and its relatives in chapter 4.6.

4.2 The hydrostatic Boussinesq equations and their

‘wave operator form’

The hydrostatic Boussinesq equations in equations (A.18) through (A.22)

emerge from the full Boussinesq equations in (1.7) through (1.11) when the vertical

acceleration Dtw is small compared to pz or b. In this case the vertical momentum
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equation in (1.9) becomes

pz ≈ b . (4.8)

The hydrostatic approximation in (4.8) is sensible for motions with large horizontal

scales and small vertical scales, which implies that vertical velocities and vertical

accelerations are relatively small. In the context of inertia-gravity internal waves

with frequency σ, the hydrostatic approximation is valid when (NH/σL)2 � 1.

As discussed in appendix A, the hydrostatic Boussinesq equations in (A.18)

through (A.22) with constant Coriolis frequency f = f0 are usefully articulated in

their ‘wave operator form’,

∂t

[
∂2
t L + f 2

0 (4+ L)
]
p = −f 2

0 S · (u · ∇)u− ∂z f
2
0

N2

(
∂2
t + f 2

0

)
(u · ∇pz) , (4.9)

which employs the three operators 4 and L defined in (4.5) and S defined by

S
def
= ∂t

(
∂x x̂+ ∂y ŷ︸ ︷︷ ︸

def
=∇h

)
+ f0∇⊥ , (4.10)

where ∇h contains the horizontal components of the three-dimensional gradient ∇.

The left side of (4.9) is the hydrostatic internal wave operator acting on p. The

right-side contains the nonlinear terms.

4.2.1 Tidally-appropriate non-dimensionalization

We non-dimensionalize the hydrostatic Boussinesq equations in (A.18) through

(A.22) using similar logic as in chapter 2.3.3 but with one crucial difference: both

waves and flow have the same magnitude and thus the same characteristic velocity

U . Thus after scaling x, y with L and u, v with U , the emergent non-dimensional
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parameter

ε
def
=

U

f0L
(4.11)

is both the Rossby number as well as a measure of wave amplitude. We assume ε� 1,

which means linear balances dominate the dynamics. As in chapter 2.3.3, we assume

the Burger number is

Bu
def
=

(
N0H

f0L

)2

= 1 , (4.12)

where N0 is the characteristic magnitude of N(z). This assumption on Bu is equiva-

lent to the assumption that α = σ2/f 2
0 − 1 = O(1). For waves with the 12.421-hour

lunar semidiurnal period and thus α ≈ 12.9 and 0.24 at 15◦ and 60◦ latitude respec-

tively, this assumption is appropriate. Poleward of 60◦, α is small and the internal

tide is better characterized as near-inertial, while equatorward of 15◦ α is large and

non-hydrostatic physics become important. The discussion surrounding equations

(2.22) through (2.26) explains that the scaling H/L � 1 justifies use of the hydro-

static equations in (A.18) through (A.22). More detail on this non-dimensionalization

and its consequences is given in chapter 2.3.3.

With these prescriptions the hydrostatic Boussinesq equations in (A.18) through

(A.22) are transformed into non-dimensional form,

ut − v + px = −εu · ∇u , (4.13)

vt + u+ py = −εu · ∇v , (4.14)

pz = b , (4.15)

bt + wN2 = −εu · ∇b , (4.16)

ux + vy + wz = 0 , (4.17)
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while the wave operator form in (4.9) becomes

∂t

[
∂2
t L +4+ L

]
p = −ε

[
S · (u · ∇)u+ ∂z

1
N2

(
∂2
t + 1

)
(u · ∇pz)

]
. (4.18)

The non-dimensionalized vector operator S from (4.10) is S = ∂t∇h −∇⊥.

4.2.2 The two-time expansion

Waves oscillate rapidly on their linear, dispersion time-scale and evolve slowly

over time-scales of nonlinear advection and refraction. We thus propose the two-time

expansion,

∂t 7→ ∂t̃ + ε ∂t̄ , (4.19)

where t̃ ∼ f−1
0 is the wave dispersion time-scale and t̄ ∼ L/U = (εf0)−1 is the time-

scale for slow nonlinear evolution. Subjecting the wave operator in (4.18) to the

two-time expansion yields

∂t

[
∂2
t̃ L + f 2

0 (4+ L)
]
7→ (∂t̃ + ε ∂t̄)

[ (
∂2
t̃ + 2ε∂t̃∂t̄ + ε2∂t̄

)
L + f 2

0 (4+ L)
]
. (4.20)

At O(1) the operator is the previously mentioned linear Boussinesq operator

∂t̃

[
∂2
t̃ L + f 2

0 (4+ L)
]
, (4.21)

but at O(ε), we find

ε ∂t̄

[
2∂2

t̃ L + ∂2
t̃ L + f 2

0 (4+ L)
︸ ︷︷ ︸

O(1) operator

]
(4.22)

The appearance of the O(1) operator in (4.22) simplifies the equation for slow wave

evolution that ultimately arises at O(ε). The two-timing also has consequences for

the system in (4.13) through (4.17), but these are not spelled out in detail because
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we only require this system’s leading-order solution in the development that follows.

4.3 The internal tide equation

To isolate the slow evolution of the internal tide over the long time-scales of t̄,

we expand all fields in ε, so that pressure becomes p = p0 +ε p1 + · · · , for example. We

perform the expansion in dimensional variables for clarity, using the non-dimensional

equations in (4.13) through (4.18) for guidance.

4.3.1 At leading-order

At leading-order, the hydrostatic Boussinesq equations in (4.13) through (4.17)

are

u0t − f0v0 + p0x = 0 , (4.23)

v0t + f0u0 + p0y = 0 , (4.24)

p0z = b0 , (4.25)

b0t + w0N
2 = 0 , (4.26)

u0x + v0y + w0z = 0 . (4.27)

while its leading-order wave operator form from (4.18) is

∂t̃

[
∂2
t̃ L + f 2

0 (4+ L)
]
p0 = 0 . (4.28)

We write the leading-order solution as

p0 = f0

(
ψ + e−iσt̃A+ eiσt̃A∗

)
, (4.29)
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where A and ψ depend on x and the slow time t̄. Both A and ψ have streamfunction

units, such that ∇⊥A and ∇⊥ψ have units of velocity. Equation (4.28) implies that

A obeys the linear σ-frequency dispersion relation:

− iσf 3
0

[
4 − σ2 − f 2

0

f 2
0︸ ︷︷ ︸

def
= α

L
]
A = 0 , (4.30)

Equations (4.23) and (4.24) imply that ψ obeys geostrophic balance. In (4.30) we

define the non-dimensional number α = (σ2 − f 2
0 ) /f 2

0 . Our scaling assumption Bu =

O(1) implies that α = O(1) also. For convenience we define the ‘dispersion operator’

Dα as

Dα
def
= 4− σ2 − f 2

0

f 2
0

L = 4− αL , (4.31)

so that the leading-order equation (4.30) becomes simply DαA = 0. When σ = 2f0

we find that Dα = 4− 3L is the operator so familiar from chapter 3.

Equation (4.25) implies that

b0 = f0

(
ψz + e−iσt̃Az + eiσt̃A∗z

)
, (4.32)

and (4.26) subsequently yields

w0 =
iσf0

N2

(
e−iσt̃Az − eiσt̃A∗z

)
. (4.33)

By merging ∂t̃(4.23) + f0(4.24) with ∂t̃(4.24) − f0(4.23) we obtain the single vector

equation for horizontal velocity u0h = (u0, v0, 0),

(
∂2
t̃ + f 2

0

)
u0h =

[
− ∂t̃ (∂x x̂+ ∂y ŷ) + f0∇⊥

]
p0 . (4.34)
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Thus given p0 in (4.29), the three components of velocity are




u0

v0

w0




=




−∂y

∂x

0




ψ − 1

αf0




iσ∂x − f0∂y

iσ∂y + f0∂x

− iσαf20
N2 ∂z




e−iσt̃A+
1

αf0




iσ∂x + f0∂y

iσ∂y − f0∂x

− iσαf20
N2 ∂z




eiσt̃A∗ ,

(4.35)

where we have used the fact that σ2 − f 2
0 = αf 2

0 . A more compact expression is

u0 =∇⊥ψ − 1
αf0

(
iσ∇α + f0∇⊥

)
e−iσt̃A+ 1

αf0

(
iσ∇α − f0∇⊥

)
eiσt̃A∗ , (4.36)

which uses the three-component vector operator

∇α
def
= ∂x x̂+ ∂y ŷ −

αf 2
0

N2
∂z ẑ . (4.37)

Notice that ∇α does not commute with ∂z and that ∇ · ∇α = 4 − αL = Dα. The

advective derivative is

u0 · ∇ = J (ψ, ·)− e−iσt̃

αf0

[
f0J (A, ·) + iσ∇αA · ∇

]
+ cc , (4.38)

where ‘cc’ denotes the complex conjugate. The horizontal divergence and vertical

vorticity ω
def
= ∇⊥ · u0 are

∇h · u0 =
i
√

1 + α

α

(
eiσt4A∗ − e−iσt4A

)
and ω = − 1

α

(
e−iσt4A+ eiσt4A∗

)
.

(4.39)
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The average total energy in the linear solution is

E = 1
2

(
u2

0 + v2
0 + w2

0 +N−2b2
0

)
, (4.40)

= 1
2
|∇hψ|2 +

f 2
0

2N2
ψ2
z +

1 + 2α

2α2
|∇hA|2 +

f 2
0

2N2

(
1 +

σ2

N2

)
|Az|2 . (4.41)

The horizontal kinetic energy in the wave field is (1 + 2α)|∇hA|2/2α2 and the poten-

tial energy is f 2
0 |Az|2/2N2. The vertical kinetic energy, (σf0)2|Az|2/2N4, is a small

correction to the potential energy in the regime we consider where both σ and f0 are

much less than N .

4.3.2 At first-order

The O(ε) terms in (4.18) reduce to

−2σ2f0

[
e−iσt̃LAt̄ + eiσt̃LA∗t̄

]
+ ∂t̃

[
∂2
t̃ L + f 2

0 (4+ L)
]
p1

= −f 2
0 S0 · (u0 · ∇)u0 − ∂z

f 2
0

N2

(
∂2
t̃ + f 2

0

)
(u0 · ∇b0) ,

(4.42)

= RHS(A,ψ) , (4.43)

where S0 in (4.42) is the leading-order part of (4.10) and equation (4.43) defines the

useful euphemism ‘RHS’ for the nonlinear right hand side of (4.42) that forces the

linear wave operator on the left. We have used (4.30) to simplify the leftmost term

in which the O(ε) wave operator in (4.22) acts on e−iσt̃A+ eiσt̃A∗.

The essence of our strategy for extracting the slow evolution of the wave am-

plitude A is to go some, but not all, of the distance toward applying the solvability

condition incurred on the wave amplitude A in (4.42). Note that this is not the

only solvability condition demanded by (4.42) or the O(ε) terms in (4.13) through
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(4.17): additional conditions on ψ describe quasi-geostrophic evolution, and a condi-

tion on motions with frequency 2σ describe the nonlinear interaction between σ- and

2σ-frequency waves. We ignore these other solvability conditions here.

We make a first step towards the slow evolution equation for A by isolating

− 2σ2f0LAt̄ = the part of RHS(A,ψ) proportional to e−iσt̃ (4.44)

from (4.42). The extraction of (4.44) from the O(ε) wave equation in (4.42) is a

partial step toward applying the solvability condition to (4.42). This step abuses the

logic of solvability conditions: a more systematic development would project (4.42)

onto spatial wave modes, which are three-dimensional σ-frequency eigenfunctions of

the O(1) wave equation (4.28). This projection would eliminate the wave operator

acting on p1 in (4.42) and yield a set of slow-evolution ODEs for spectral components

of A. An identical result is produced by projecting (4.44) onto the σ-frequency spatial

modes.

Here, we avoid the formal spatial projection of (4.42) and content ourselves

with simply extracting the necessary terms based on frequency content alone. This

crude manipulation of (4.42) means that the slow evolution equation in (4.7) contains

unphysical dynamics for spectral components of A are far from the σ-frequency linear

dispersion relation. However, due to (i) our focus on weakly nonlinearly evolution

expanded around σ-frequencies and (ii) the reconstitution described in chapter 4.3.3,

the spectrum of A remains close to the σ-frequency dispersion relation where DαA ≈

0, thus rendering the spatial projection of (4.44) an unnecessary complication.

The strenuous bookkeeping required to parse RHS for terms proportional to
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e−iσt̃ is detailed in chapter 4.A. After dividing by 2σ2f0, the result is

0 = LAt̄ + 1
2α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]
− f20

ασ2 J (Dαψ,A)

+ if0
ασ

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (Dαψ∇hA)

]

− if0
σ
∇ · f

2
0

N2 (Az∇αψz + ψz∂z∇αA) .

(4.45)

An advantage of this form is that the slow evolution terms associated with the vertical

structure of ψ are clustered in a compact expression.

4.3.3 Reconstitution

The slow evolution equation is completed by adding (4.30) to (4.45); or in

other words, by adding the leading-order equation −iσf 3
0 DαA = 0 to the O(ε) terms

proportional to e−iσt. As in (4.45) we divide by 2σ2f0 for presentability and eliminate

σ/f0 in favor of α. Rearranging, we finally arrive with

0 = LAt̄ + if0
2

√
1

1+α
DαA+ 1

2α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]

− 1
2α(1+α)

J (Dαψ,A) + i
2α

√
1

1+α

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (Dαψ∇hA)

]

− i
2

√
1

1+α
∇ · f

2
0

N2 (Az∇αψz + ψz∂z∇αA) .

(4.46)

Equation (4.46) describes the slow evolution of a hydrostatic internal wave field with

frequency σ in three-dimensional quasi-geostrophic flow with streamfunction ψ, arbi-

trary background stratification with buoyancy frequency N2(z), and with frequency

parameter α = (σ2 − f 2
0 ) /f 2

0 and inertial frequency f0.

A suspicious aspect of (4.46) is how DαA = 0 was used repeatedly in the

algebra of chapter 4.A before being abruptly abandoned in writing (4.46). Yet the

dispersion term iσDαA/2 is a large O(1) term among small O(ε) terms from (4.45),
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and thus the largest term by far in (4.46). This means solutions to (4.46) satisfy

DαA ≈ 0 so that A is tethered to the σ-frequency hydrostatic dispersion relation. The

errors made in assuming DαA = 0 in the derivation of (4.44) are therefore small and,

under the assumed weakly nonlinear conditions, of the same order as other neglected

terms from (4.9). Our reconstitution method permits the physical-space formulation

of (4.46) and the inclusion of wave modes that only approximately satisfy DαA ≈ 0.

Ultimately, it would be desirable to prove that (4.46) conserves some form of wave

energy.

4.3.4 Remodeling

We return to abusing the model with the approximation DαA ≈ 0 one final

time to improve the model’s linear dynamics. The linear part of (4.46) is

LAt̄ + if0
2

√
1

1+α
(4− αL)A = 0 . (4.47)

The vertical modes associated with the operator L are the eigenfunctions hn that

solve the eigenproblem

Lhn + κ2
nhn = 0 , with hnz = 0 at z = −H, 0 , (4.48)

where κn is the horizontal wavenumber of vertical mode n. Thus assuming the spectral

representation An ∼ eikx−iσ′thn(z) and noting that σ′ is the perturbation of the wave

field frequency from σ leads to the linear dispersion relation implied by (4.47),

σ + σ′ = σ +
f0 (k2 − ακ2

n)

2κ2
n

√
1 + α

. (4.49)
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The dispersion relation in (4.49) is an expansion of the exact mode-n hydrostatic

dispersion relation,

Σ = ±f0

√
1 +

k2

κ2
n

, (4.50)

around the wavenumber combinations corresponding to Σ = σ. When k = κn
√
α we

have

Σ = f0

√
1 + α = σ and Σk =

f0

κn

√
α

1 + α
= σ′k , (4.51)

where a subscript k denotes the partial derivative ∂k with respect to k. The fact that

Σk = σ′k at k = κn
√
α means that (4.47) correctly captures the group velocity of

waves at frequency σ. On the other hand, note that

Σkk =
f0

κ2
n

√
1 + α

(
1− α

1 + α

)
, (4.52)

and that Σkk 6= σ′kk at k = κn
√
α.

We correct this deficiency by adding the term aDαAt to (4.44) and its linear

counterpart (4.47), where a is a constant chosen to match the improved σ′kk to Σkk.

The remodeled form of (4.47) is

[
L + a (4− αL)

]
At̄ + if0

2

√
1

1+α
(4− αL)A = 0 , (4.53)

and dispersion relation corresponding to (4.53) is

σ + σ′ = σ +
f0

2
√

1 + α

(
k2 − ακ2

n

κ2
n + a (k2 − ακ2

n)

)
. (4.54)

Taking derivatives of (4.54) with respect to k reveals that σ′kk = Σkk in (4.52) for

k = κn
√
α when a is

a =
1

4 (1 + α)
. (4.55)
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We thus improve the dispersion relation and the range of validity of (4.46) by adding

DαAt/4(1 + α). After multiplying by 4(1 + α) and using f0

√
1 + α = σ, equation

(4.46) becomes

0 =
[
4+ (4 + 3α) L

]
At̄ + 2iσDαA+ 2(1+α)

α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]

− 2
α

J (Dαψ,A) + 2i(1+α)1/2

α

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (Dαψ∇hA)

]

− 2i (1 + α)1/2∇ · f
2
0

N2 (Az∇αψz + ψz∂z∇αA) .

(4.56)

This improvement to the linear dispersion reflected in (4.46) is analogous to the

modifications made to the 2f0 equation in chapter 3.A.2. Note that with σ = 2f0 and

α = 3, the linear operator acting on A in (4.56) is

(4+ 13L) ∂t̄ + 4if0 (4− 3L) ; (4.57)

identical to the linear operator in the 2f0 equation in (3.9). The discussion sur-

rounding 3.10 explains how this remodeling ‘improves the tangency’ of the dispersion

relation, since the approximate dispersion relation matches the exact dispersion rela-

tion Σ(k, κn) over a broader range of wavenumber combinations.

For the final remodeling step, we drop the bar over t̄ to write (4.56) in terms

of the single time-scale t. The result is equation (4.7).

4.4 The quasi-geostrophic evolution of ψ

A slow evolution equation for ψ is derived using available potential vorticity

which, because ψ ∼ A, follows identically the development in chapter 1.2.3. The
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result is that ψ evolves according to the ordinary quasi-geostrophic equation,

qt̄ + J (ψ, q) = 0 , with q
def
= (4+ L)ψ , (4.58)

independent of A.

Note that it may be possible to improve (4.58) by including the wave contribu-

tion qw to q. That calculation would require evaluating (2.3) given the leading-order

wave field defined through p̃0 = e−iσt̃f0A + eiσt̃f0A
∗. The main question, which has

yet to be proven, is whether including the wave-induced balanced flow through qw in

(4.58) leads to a closed and coupled energy-conserving system.

4.5 Hydrostatic internal waves in barotropic flow

When ψ = ψ(x, y, t) is barotropic the slow wave equation in (4.7) is sub-

stantially simplified. Projecting the result onto vertical modes then yields a two-

dimensional equation describing the evolution of each mode−n wave amplitude An.

We solve the resulting modal equation for the mode-one amplitude A1 for the scat-

tering of a compact wave packet by an isolated eddy and for the scattering of a plane

wave by two-dimensional turbulence.

4.5.1 Simplifications for barotropic flow

With ψ = ψ(x, y, t) barotropic, the quasi-geostrophic equation in (4.58) re-

duces to the two-dimensional turbulence equation,

4ψt + J (ψ,4ψ) = 0 , (4.59)

which describes the evolution of the streamfunction ψ.
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We also have ψz = 0 and Dαψ = 4ψ, so that the slow wave evolution equation

in (4.7) becomes

0 =
[
4+ (4 + 3α) L

]
At + 2iσDαA+ 2(1+α)

α

[
4J (ψ,A) + J (ψ,4A)

]

− 2(2+α)
α

J (4ψ,A) + 2i(1+α)1/2

α

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (4ψ∇hA)

]
.

(4.60)

To consider the evolution of a wave field with ‘standing’ vertical structure, we decom-

pose A into the vertical modes hn defined by the eigenproblem

Lhn + κ2
nhn = 0 , with hnz = 0 at z = −H and 0 , (4.61)

where κn is the horizontal wavenumber of vertical mode n, so that

A(x, y, z, t) =
∞∑

n=1

An(x, y, t)hn(z) , and LA = −
∞∑

n=1

κ2
nAnhn . (4.62)

Projecting (4.60) onto the vertical modes hn yields an equation for each An,

[
4− (4 + 3α)κ2

n

]
Ant + 2iσ

(
4+ ακ2

n

)
An

= 2(2+α)
α

J (4ψ,An)− 2(1+α)
α

[
4J (ψ,An) + J (ψ,4An)

]

− 2i(1+α)1/2

α

[
2J (ψx, Any)− 2J (ψy, Anx) +∇h · (4ψ∇hAn)

]
.

(4.63)

Equation (4.63) describes the horizontal propagation of the nth vertical mode of A.

The arbitrary stratification profile N(z) enters into (4.63) via the constant eigenvalue

κ2
n of (4.61).
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Figure 4.1: Scattering of a wave packet by an isolated eddy. Wave speed is shown at times t = 0, 5,
and 10 wave periods. The circular radius R = 125 km and location of the Gaussian eddy is shown
in the leftmost plot with a dashed line. The initial conditions and parameters are given in the text
surrounding equations (4.64) and (4.65).

4.5.2 Scattering by an isolated eddy

We catch a glimpse of dynamics in the slow wave equation by solving equation

(4.63) for an initial value problem that collides a freely propagating mode-one wave

packet with an isolated eddy. The model domain is periodic and square with dimen-

sion L = 2000 km and −L/2 < x, y < L/2. The initial balanced streamfunction ψ

is

ψ = Ψ e−(x2+y2)/2R2

, (4.64)

with R = L/16 = 125 km and amplitude Ψ = R2f0Ro ≈ 1.6 × 105 m2/s, where

Ro = 0.1 is the Rossby number and f0 = 10−4 s−1 is the inertial frequency.

We initialize the wave field with the mode-one amplitude

A1 = a eikxe−[(x+L/8)2+y2]/2r2 , (4.65)

where the radius of the wave packet envelope is r = R/2 = 62.5 km. This compact

envelope is chosen to emphasize the strong radial wave scattering induced by the

eddy. The amplitude of the wave field is a = U0α/k
√

1 + α = 3.14× 103 m2/s, where

U0 = εf0/k = 0.14 m/s is the maximum velocity in the wave packet with ε = 0.1 and
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wavenumber k = κn
√
α ≈ 6.9 × 10−5 m−1. The positive sign of k means the packet

propagates to the right and the wavelength of the wave is 2π/k = 90.9 km. The

frequency parameter is α = 3 corresponding to σ = 2f0 and κn = πf0/NH = 3.9×

10−5 m−1 chosen as the mode-one wavenumber associated with constant stratification

N = 0.002 s−1 in an ocean of depth H = 4000 m.

Equations (4.59) and (4.63) are solved for the initial conditions (4.64) and

(4.65) with a pseudospectral method using 512 Fourier modes in x and y and the

ETDRK4 exponential time integration scheme described by Cox & Matthews (2002),

Kassam & Trefethen (2005), and Grooms & Julien (2011). The ETDRK4 time-

integration scheme is necessary for accurate integration of the linearly stiff equa-

tion (4.63), though stable integration still seems to require a small time-step around

1/100th of the wave period 2π/σ. 16th-order hyperdissipation of the form in (3.93)

through (3.95) with ν = 1052 m32/s is added to the right side of both (4.59) and

(4.63). The need for high-order hyperdissipation appears to be a peculiar property of

the hydrostatic wave equation.

The encounter between packet and eddy is shown in figure 4.1, where the wave

speed
√
ũ2 + ṽ2 =

√
1 + 2α|∇hA1|/α is plotted at t = 0, 5, and 10 wave periods. The

slow wave equation describes the radial scattering of the packet with spiraling phase

lines emerging from the competition between dispersive propagation and radial eddy

advection. Wave energy is transiently focused near the eddy core at t = 5 wave

periods, and possibly spurious small scales appear wrapped around the eddy core at

t = 10 wave periods. The results in figure 4.1 resemble the scattering solutions found

by Dunphy & Lamb (2014) for a similar problem with a forced, laterally-uniform

wave and baroclinic eddy.
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Table 4.1: Properties of the initial two-dimensional turbulent fields used in the scattering problems of
chapter 4.5.3. L̄ defined in (4.68) estimates the flow’s energy-containing length-scale. All turbulent
fields were generated on a 2562 grid by integrating (4.67) for either 500 or 1000 wave periods
corresponding roughly to 150 or 300 eddy turnover times.

n0, n1 L̄ (km) max (|∇ψ|) max (q/f0) rms (q/f0) max(|∇ψ|)k/f0 Figure

3, 7 53.8 0.26 0.11 0.018 0.085 4.2

8, 12 24.2 0.15 0.10 0.017 0.052 4.5

8, 12 30.9 0.25 0.21 0.027 0.084 4.3

1, 3 156.5 0.26 0.057 0.011 0.088 4.4

1, 3 156.4 0.52 0.12 0.022 0.18 4.6

4.5.3 Scattering by two-dimensional turbulence

Next, we conduct a more thorough exploration of wave scattering by inserting

a plane wave into a two-dimensional turbulent vorticity field in a periodic square

domain. This scenario intentionally evokes the shallow-water simulations by Ward

& Dewar (2010) to enable comparison and demonstrate the ability of our slow wave

equation to qualitatively reproduce their results. The wave field is initialized as an

infinite right-going plane wave,

An = a eik̃x , (4.66)

with wavenumber k̃ = κn
√
α ≈ 6.8 × 10−5 m−1 of a wave with σ = 2f0 and thus

α = 3, wavelength 2π/k ≈ 92.4 km, and mode-one wavenumber κn = πf0/NH =

3.9× 10−5 m−1 corresponding to inertial frequency f0 = 10−4 s−1, constant buoyancy

frequency N = 0.002 s−1, and ocean depth H = 4000 m. The domain is square and

sized with side-length L = 32π/k to fit 16 wavelengths.

The initial vorticity field is generated by preliminary integration of a semi-
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random streamfunction similar to (3.140),

ψ(x, y, 0) = ψ0

(
n1∑

n=n0

(
kn
kn0

)−1

cos (knx+Xn)

)(
n1∑

n=n0

(
kn
kn0

)−1

cos (kny + Yn)

)
,

(4.67)

where ψ0 is the magnitude of the initial streamfunction, Xn and Yn are random

phases, kn = 2πn/L, and {n0, n1} determine the scales in the vorticity field after

the preliminary integration stage of around 150 eddy turnover times, or either 500 or

1000 wave periods depending on the initial Rossby number.

A useful measure of the characteristic scale of the turbulent field is the ‘energy-

containing length-scale’ L̄,

L̄
def
=

s
Ê dk d`

s √
k2 + `2Ê dk d`

, where Ê(k, `)
def
=
(
k2 + `2

)
ψ̂ , (4.68)

is the kinetic energy spectra of ψ and k and ` are the x and y Fourier wavenumbers.

We vary the length-scales present in the initial turbulent field by choosing {n0, n1} =

{1, 3}, {3, 7}, which generates turbulent fields with L̄ = 156.4, 53.8, and 30.9 km,

respectively. These length scales are all larger than the characteristic wave scale

1/k̃ ≈ 14 km, and so permit only an incomplete exploration of the role played by the

length-scale ratio 1/k̃L̄. This ratio determines the relative importance of advective

and refractive nonlinearities in scattering the waves, which we conservatively measure

with

εa
def
=

max(|∇ψ|)k
f0

and Ro
def
=

max (4ψ)

f0

, (4.69)

respectively. With small 1/kL̄, advection and εa dominates and the simpler WKB-

type ray tracing approach to wave scattering employed by Rainville & Pinkel (2006),

for example, is valid. Large 1/kL̄, which is not accessed by the simulations presented

here, implies the dominance of refraction. We save a more thorough exploration
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Figure 4.2: Scattering of a plane wave by turbulence with intermediate length-scale L̄ = 53.8 km.
The vorticity field q and its spectra |q̂| are shown at left top and bottom t = 5 wave periods after
deposition of the plane wave. The evolution of the plane wave horizontal speed |uh| and spectra
|Ân| are shown at t = 5, 25, and 125 wave periods. The spectral components of q outside the
circle

√
k2 + `2 = 2k̃ = 32 plotted at bottom left do not interact with An. Spectra on bottom are

normalized by the sum of all spectral components and multiplied by 10 for |q̂| and by 2 for |Â1| at
t = 125 wave periods for contrast. Some properties of the initial vorticity field are given in table 4.1.

of the refraction-dominated scattering regime for future work with higher-resolution

simulations able to resolve small-scale two-dimensional turbulence.

Because advection dominates the dynamics in our cases, we choose the magni-

tude of the initial streamfunction ψ0 to generate turbulent fields with roughly similar

εa of around 0.085. In consequence the fields have Ro = 0.056, 0.11, and 0.21 in the

small, intermediate, and large-scale cases. We also include two additional simulations

for the small and large-scale cases with Ro ≈ 0.1, similar to the intermediate-scale

case, but with εa = 0.052 and 0.18, respectively. More properties of the initial turbu-

lent vorticity fields are given in table 4.1.

The evolution of the wave field scattered by turbulence of intermediate length-

scale L̄ ≈ 53.8 km is shown in figure 4.2. The top right panel plots the vorticity field

at t = 5 wave periods and the three top snapshots to the left show the evolution of
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Figure 4.3: Scattering of a plane wave by 2D turbulence with small length scale L̄ = 30.9 km, similar
to figure 4.2. The turbulence is more vigorous than the intermediate-scale case in figure 4.2 but the
advective wave-scattering nonlinearity εa = 0.084 is roughly the same. Some properties of the initial
vorticity field are given in table 4.1.

Figure 4.4: Scattering of a plane wave by 2D turbulence with large length scale L̄ = 156.5 km,
similar to figure 4.2. The turbulence is less vigorous than the intermediate-scale case in figure 4.2
but the advective wave-scattering nonlinearity εa = 0.088 is roughly the same. Some properties of
the initial vorticity field are given in table 4.1.
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horizontal wave speed |ũh| =
√
ũ2 + ṽ2. The bottom right panel plots the spectra

of q versus the Fourier wavenumbers k and ` normalized by 2π/L and the left three

bottom snapshots show the evolution of the spectra of An. Because An is initially an

infinite plane wave in the horizontal given by (4.66), its initial spectra is concentrated

at (k, `) = (k̃, 0). Scattering by turbulence subsequently spreads energy angularly

around the annulus k̃ ≈
√
k2 + `2. The smearing of energy to wavevectors slightly

longer and shorter than k̃ reflects near-resonant evolution that cannot be described by

a strict resonance interaction theory limiting attention to modes that exactly satisfy

the σ-frequency dispersion relation.

Figures 4.3 and 4.4 show snapshots of the same wave field scattered by tur-

bulent fields with scales L̄ = 24.2 km and 156.4 meters, respectively and similar

advective nonlinearity measured by εa. A comparison of wave spectra in the first

snapshot after t = 5 wave periods is revealing: as the scale of the turbulence de-

creases, wave energy is scattered farther around the annulus. This phenomenon is

well-explained in resonant interaction theory: for example, scattering of energy from

the wavevector (k̃, 0) to the opposite side of the annulus at (−k̃, 0) requires signif-

icant turbulent energy at (−2k̃, 0). With little energy at large wavenumbers in the

case of large-scale turbulence, the scattering proceeds more incrementally around the

annulus. We also tentatively observe that near-resonance interactions appear to be

more important at short times and less important at long times as the scale of the

turbulence decreases.

Figures 4.5 and 4.6 show wave scattering by small- and large-scale turbulence

with Ro ≈ 0.1 and thus similar to the intermediate-scale case plotted in figure 4.2.

Because of the differing scales of turbulence, the advective nonlinearities for small

and large-scale cases is εa = 0.052 and 0.18, respectively. In the small-scale case the

smaller advective nonlinearity appears to scatter the wave field more weakly, though
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Figure 4.5: Scattering of a plane wave by weak 2D turbulence with small length scale L̄ = 24.2
km. Similar to figure 4.3 but with less vigorous turbulence and weaker advective wave-scattering
nonlinearity.

the actual difference between figure 4.5 and 4.3 is difficult to gauge without a more

quantitative estimate of the scattering rate. In the large-scale case, however, the

difference is dramatic, and may reflect a failure of the reduced model. In particu-

lar, energy is spread into small-scales relatively far from the σ-frequency dispersion

relation. The spreading could still be physical, however. Further insight awaits a

comparison with the fully nonlinear Boussinesq equations.

4.6 Discussion

The slow hydrostatic wave equation in (4.7) is a model for the slow evolution

of hydrostatic intertia-gravity waves in quasi-geostrophic flow that answers Ponte &

Klein (2015)’s call for a reduced-order description of low-mode internal tides. This

slow wave equation is the general-frequency counterpart to Young & Ben Jelloul

(1997)’s equation for the linearized and slow evolution of near-inertial waves. In the
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Figure 4.6: Scattering of a plane wave by strong 2D turbulence with large length scale L̄ = 156.4
km. Similar to figure 4.6 but with more vigorous turbulence and strong advective wave-scattering
nonlinearity. It is unclear whether the significant smearing of energy around k̃ =

√
k2 + `2 by t = 125

wave periods is physical or represents a failure of the reduced model.

language of triadic interaction theory, our slow wave equation permits wave evolu-

tion due both to exactly resonant and near-resonant interactions between waves and

flow. The allowance of near-resonance means our spatially-formulated equation is

more general than the slow evolution equation derived by Ward & Dewar (2010),

which relies on a spectral normal mode decomposition and the application of a strict

resonance condition to obtain the slow evolution of each spectral component.

Much work remains. The most pressing issue is confirmation that the model

possess an adiabatic invariant ensuring the conservation of wave energy or action.

Especially given the crude and approximate method of derivation, the validity of the

model should be checked against solutions to the fully nonlinear Boussinesq equations.

A natural question is whether equation (4.7) can be coupled to the wave-

averaged quasi-geostrophic equation in (2.1) through (2.3) to yield a closed model

for the coupled evolution of internal tides and quasi-geostrophic flow. It is possible

such a model follows merely by evaluating qw in (2.3) given a wave field of the form
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p̃ = e−iσtA + eiσtA∗, and ensuring the conservation of some form of wave action

and energy analogous to those in the three-component model of chapter 3. Such a

coupled model has the potential to yield valuable insights about whether the internal

tide alters the evolution or extracts energy from oceanic mesoscale flows.

Finally, the successful derivation of (4.7) suggests that models for the dynam-

ics wave-wave nonlinear interaction in heterogeneous quasi-geostrophic flow are also

within reach. One potentially fruitful three-component model would add the second

harmonic of the tide as the second harmonic of the near-inertial field was included in

the three-component model of chapter 3. It is likely that the interaction of the internal

tide with quasi-geostrophic flow enhances this nonlinear primary-harmonic interac-

tion. Another interesting possibility is to combine the results of chapter 3 and chapter

4 to produce a four-component model describing the interaction of quasi-geostrophic

flow with one near-inertial component with frequency near f0 and velocity amplitude

LA, and two general hydrostatic components with frequencies near σ and σ + f0

and pressure amplitudes f0B and f0C. This model would require a potentially ardu-

ous evaluation of the terms on the right of (4.9) that contribute to each amplitude

equation, but could provide insight into how quasi-geostrophic flow facilitates energy

transfer between near-inertial waves and internal tides, the two dominant modes of

oceanic internal wave motion.

4.A The part of RHS proportional to e−iσt̃

In this appendix we parse the right-hand side of (4.42), or ‘RHS’, for its part

proportional to e−iσt. The RHS is

RHS = −f 2
0 S · (u · ∇)u− ∂z

f 2
0

N2

(
∂2
t̃ + f 2

0

)
(u · ∇pz) , (4.70)
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where S = (∂x x̂+ ∂y ŷ) ∂t̃ + f0∇⊥ is the leading-order vector operator with a second-

order derivative. In (4.70) and hereafter we drop the subscripts ‘0’ denoting leading-

order fields for clarity. All fields are leading-order, so that (u0, p0) = (u, p).

4.A.1 Preliminaries

The leading-order pressure p is

p = f0

(
ψ + e−iσt̃A+ eiσt̃A∗

)
, (4.71)

and the velocity u is

u =∇⊥ψ −
e−iσt̃

αf0

(iσ∇α + f0∇⊥)A+
eiσt̃

αf0

(iσ∇α − f0∇⊥)A∗ , (4.72)

where ∇⊥ and ∇α are defined in (4.4). The first-order advective derivative is

u · ∇ = J (ψ, ·)− e−iσt̃

αf0

[
f0J (A, ·) + iσ∇αA · ∇

]
+ cc . (4.73)

Lastly, the fact that ∇⊥ · ∇α = 0 eases the evaluation of S · u, which gives

S · u = f04ψ + eiσtf04A∗ − 1
αf0

(
σ2 + f 2

0

)
e−iσt4A . (4.74)



161

4.A.2 Some strenuous bookkeeping

We tackle the first term of (4.70) first, which expands into

f 2
0 S · (u · ∇)u = f 2

0 (u · ∇) (S · u) + f 2
0 (uxt − f0uy) · ∇u+ f 2

0 (uyt + f0ux) · ∇v

+ f 2
0ux · ∇ut + f 2

0uy · ∇vt + f 2
0ut · ∇ (ux + vy)

(4.75)

Using (4.73) and (4.74) and multiplying by eiαtα/f0 yields

eiσtαf0 (u · ∇) (S · u) = −
(
σ2 + f 2

0

)
J (ψ,4A)− f 2

0 J (A,4ψ)

− iσf0∇αA · ∇4ψ + · · · ,
(4.76)

where throughout this subappendix the · · · stand for terms that do not contribute

to the part of RHS proportional to e−iσt. The next two terms are somewhat more

involved,

eiσtαf0 (uxt − f0uy) · ∇u = 2iσf0J (ψy, Ax)

+ σ2∇αAx · ∇ψy − iσf0∇αAy · ∇ψy + · · · ,
(4.77)

and

eiσtαf0 (uyt + f0ux) · ∇v = −2iσf0J (ψx, Ay)

− σ2∇αAy · ∇ψx − iσf0∇αAx · ∇ψx + · · · .
(4.78)

The fourth and fifth terms in (4.75) are

eiσtαf0

(
ux · ∇ut + uy · ∇vt

)
= −σ2J (ψx, Ax)− σ2J (ψy, Ay)

+ iσf0J (ψy, Ax)− iσf0J (ψx, Ay) .

(4.79)
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The sixth term in (4.75) has no part proportional to e−iσt because both ut and

ux + vy = −wz oscillate with frequency σ. At last, the second term in (4.70) is

eiσt∂z
αf0

N2

(
∂2
t + f 2

0

)
(u · ∇pz)

= −∂z
α2f 2

0

N2

[
f 2

0 J (ψ,Az)− α−1f 2
0 J (A,ψz)− iα−1σf0∇αA · ∇ψz

]
+ · · · ,

(4.80)

= −σ2αf
2
0

N2
J (ψz, Az)− α2f 2

0 J (ψ,LA)− αf 2
0 J (Lψ,A)

+ iσf0∂z

(
∇αA · αf

2
0

N2 ∂z∇ψ
)

+ · · · .
(4.81)

The extra factor of −αf 2
0 comes from the relation −αf 2

0 = −σ2 + f 2
0 . In passing from

(4.80) to (4.81) we employ the Jacobian identity J (A,ψz) = −J (ψz, A), distribute

the z-derivative, and use α + 1 = σ2/f 2
0 .

We next collect the contributions to αRHS/f0 in (4.76)+(4.77)+(4.78)+(4.81)

and organize them according to whether they are multiplied by σ2, f 2
0 , or iσf0. We

observe a fortuitous cancellation within the collection

∇αAx · ∇ψy −∇αAy · ∇ψx −
αf 2

0

N2
J (ψz, Az) = −J (ψx, Ax)− J (ψy, Ay) , (4.82)

which, along with the identity

4J (ψ,A) = J (4ψ,A) + J (ψ,4A) + 2J (ψx, Ax) + 2J (ψy, Ay) , (4.83)

permits the simplification of terms proportional to σ2,

1

σ2
Tσ2 = −J (ψ,4A)− J (ψx, Ax)− J (ψy, Ay)

+∇αAx · ∇ψy −∇αAy · ∇ψx −
αf 2

0

N2
J (ψz, Az) ,

(4.84)

= −4J (ψ,A) + J (4ψ,A) . (4.85)
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Next, we use the leading-order relation 4A = αLA and the notation Dα = 4− αL

to simplify terms proportional to f 2
0 :

1

f 2
0

Tf20 = −J (ψ,4A) + J (4ψ,A)− α2J (ψ,LA)− αJ (Lψ,A) , (4.86)

= − (1 + α) J (ψ,4A) + J (Dαψ,A) , (4.87)

Because 1+α = σ2/f 2
0 , the first term on the right of (4.87) is ultimately proportional

to σ2. Finally, the terms proportional to iσf0 are

1

iσf0

Tσf0 = 3J (ψy, Ax)− 3J (ψx, Ay)

−∇αA · ∇4ψ −∇αAx · ∇ψx −∇αAy · ∇ψy

+ ∂z

(
∇αA · f20

αN2∂z∇ψ
)
,

(4.88)

Some strenuous rearrangement and combination of terms leads eventually to the

identity

∇αA · ∇4ψ +∇αAx · ∇ψx +∇αAy · ∇ψy − ∂z
(
∇αA · αf

2
0

N2 ∂z∇ψ
)

= J (ψy, Ax)− J (ψx, Ay) + ∂x (AxDαψ) + ∂y (AyDαψ)

−∇ · αf20
N2 (Az∇αψz + ψz∂z∇αA) .

(4.89)

Using (4.89) to simplify (4.88) yields

1

iσf0

Tσf0 = 2J (ψy, Ax)− 2J (ψx, Ay)

−∇h · (Dαψ∇h) +∇ · αf
2
0

N2 (Az∇αψz + ψz∂z∇αA) ,

(4.90)

where ∇h
def
= ∂x x̂+ ∂y ŷ.
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4.A.3 The final tally

With (4.85), (4.87), and (4.90), we have all the pieces needed to construct

RHS, and find

eiσtRHS = −f0
α

(
Tσ2 + Tf20 + Tσf0

)
+ · · · , (4.91)

= σ2f0
α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]
− f30

α
J (Dαψ,A)

+
iσf20
α

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇h · (Dαψ∇hA)

]

− iσf 2
0∇ ·

f20
N2 (Az∇αψz + ψz∂z∇αA) + · · · .

(4.92)



Appendix A

The Boussinesq equations and

‘wave operator form’

Writing the Boussinesq equations in different ways illuminates important as-

pects of Boussinesq physics. Particularly useful in this dissertation is the ‘wave op-

erator form’, in which terms are rearranged until a linear wave operator is obtained

acting on either w in the non-hydrostatic equations, or p in the hydrostatic equa-

tions. In this view the nonlinear parts of the resulting equation can be viewed either

as a source of waves in the case of spontaneous generation, or as the agent of weakly

nonlinear evolution for the leading-order linear solution. We begin the appendix by

writing down the Boussinesq equations in an Earth-relevant rotating frame.

In a frame that rotates with angular velocity Ω with the components

2Ω = 2Ω sinφ
︸ ︷︷ ︸

def
= fv

ẑ + 2Ω cosφ
︸ ︷︷ ︸

def
= fh

ŷ , (A.1)
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the Boussinesq equations become

Dtu− fvv + fhw + px = 0 , (A.2)

Dtv + fvu+ py = 0 , (A.3)

Dtw − b+ fhu+ pz = 0 , (A.4)

Dtb+ wN2 = 0 , (A.5)

ux + vy + wz = 0 . (A.6)

At midlatitudes fv ∼ fh. For motions with horizontal scale L and vertical scale

H, the vertical velocity is small and scales with w ∼ H
L
u. For motions with time-

scales fv ∼ fh, this means that wt/fhu ∼ H/L is small, and that wt and fhu can

only be consistently neglected at the same time when the hydrostatic balance pz ∼ b

dominates the vertical momentum equation.

A.1 In the non-hydrostatic Boussinesq equations

With fh = 0, fv = f0 constant and expanding Dt = ∂t +u ·∇, the Boussinesq

equations in (1.7) through (1.11) become

ut − f0v + px = −u · ∇u , (A.7)

vt + f0u+ py = −u · ∇v , (A.8)

wt − b+ pz = −u · ∇w , (A.9)

bt + wN2 = −u · ∇b , (A.10)

ux + vy + wz = 0 . (A.11)
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We note that the assumption fh = 0 while retaining Dtw in the vertical momentum

equation (A.9) is not really consistent for the long-time evolution of waves except

perhaps at polar latitudes.

To arrive at the wave operator form we first form three intermediate equa-

tions: the ‘oscillation equation’, the ‘divergence equation’, and the ‘vertical vorticity’

equation. The oscillation equations follows by adding ∂t(A.9) to (A.10),

wtt + wN2 + pzt = −
[
∂t (u · ∇w) + u · ∇b

]
. (A.12)

The divergence equation follows from adding ∂x(A.7) to ∂y(A.8) and using ux + vy =

−wz,

wzt + f0ω −4p = ∂x (u · ∇u) + ∂y (u · ∇v) , (A.13)

where ω
def
= vx−uy is the vertical component of vorticity, ω =∇×u, and4 def

= ∂2
x+∂2

y

is the horizontal Laplacian. The vertical vorticity equation is formed by subtracting

∂y(A.7) from ∂x(A.8),

ωt − f0wz = −∂x (u · ∇v) + ∂y (u · ∇u) . (A.14)

Two more steps yield the wave operator form. First, f0∂z(A.14) subtracted from

∂z∂t(A.13) yields

(
∂2
t + f 2

0

)
wzz−4pzt = ∂z (∂x∂t + f0∂y) (u · ∇u)+∂z (∂y∂t − f0∂x) (u · ∇v) . (A.15)

Adding this to 4(A.12) then gives

[
∂2
t

(
4+ ∂2

z

)
+ f 2

0∂
2
z +N24

]
w = ∂z (∂t∇+ f0∇⊥) · (u · ∇)u−4 (u · ∇b) , (A.16)
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where ∇⊥
def
= −∂y x̂ + ∂x ŷ. Equation (A.16) is the Boussinesq formulation that we

call ‘wave operator form’.

A.2 In the hydrostatic Boussinesq equations

The hydrostatic Boussinesq equations are a simplification of equations (A.7)

through (A.11) justified when vertical accelerations are small compared to buoyancy

forces. The smallness of Dtw permits the reduction of (A.9) to

pz = b , (A.17)

or hydrostatic balance. Equations (A.7) through (A.11) then become

ut − f0v + px = −u · ∇u , (A.18)

vt + f0u+ py = −u · ∇v , (A.19)

pz = b , (A.20)

bt + wN2 = −u · ∇b , (A.21)

ux + vy + wz = 0 . (A.22)

The hydrostatic version of (A.16) is obtained by repeating the derivation in chapter

A.1 with wt and u · ∇w set to zero,

[ (
∂2
t + f 2

0

)
∂2
z +N24

]
w = ∂z (∂t∇h + f0∇⊥) · (u · ∇)u−4 (u · ∇b) , (A.23)

where

∇h
def
= ∂x x̂+ ∂y ŷ (A.24)

has the horizontal components of ∇.
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A.2.1 An alternative hydrostatic wave operator form

Equations (A.18) through (A.22) have an alternative wave operator formula-

tion which is expressed in terms of pressure p rather than vertical velocity w. To

obtain this we first add ∂t(A.20) to ∂zN
−2(A.21) and use (A.22) to find

ux + vy = −wz , (A.25)

= f−2
0 Lpt + ∂z

1

N2
(u · ∇pz) . (A.26)

Subtracting ∂y(A.18) from ∂x(A.19) and using (A.26) and multiplying the result by

f 3
0 yields the vertical vorticity equation,

f 3
0ωt + f 2

0 Lpt = −f 3
0∂x (u · ∇v) + f 3

0∂y (u · ∇u)− f 2
0∂z

f 2
0

N2
(u · ∇pz) . (A.27)

Next, adding ∂x(A.18) to ∂y(A.19) using (A.26) and operating on the result with f 2
0∂t

leads to

∂t
(
∂2
t L + f 2

04
)
p+ ∂z∂

2
t

f 2
0

N2
(u · ∇pz)− f 3

0ωt = −f 2
0∂t∂x (u · ∇u)− f 2

0∂t∂y (u · ∇v) .

(A.28)

Adding (A.28) to (A.27) eliminates f 3
0ωt and thus produces the wave operator form

of (A.18) through (A.22),

∂t

[
∂2
t L+f 2

0 (4+ L)
]
p = −f 2

0 (∂t∇h + f0∇⊥) · (u · ∇)u−∂z
f 2

0

N2

(
∂2
t + f 2

0

)
(u · ∇pz) ,

(A.29)

where ∇h is the horizontal gradient defined in (A.24). The definition of the vector

operator

S
def
= ∂t∇h + f0∇⊥ (A.30)



170

offers slight convenience for expressing (A.29).



Appendix B

Shallow water analogs

The rotating shallow water equations describe the depth-averaged dynamics of

a rotating fluid with a free surface and small aspect ratios. Shallow water dynamics

are a useful two-dimensional proxy model for rotating and stratified fluid flow and

include both wave and quasi-geostrophic motions analogous to those encountered in

three-dimensions. In particular, the linear hydrostatic Boussinesq equations can be

reduced to a set of coupled shallow water equations in the small-amplitude limit. The

principle attraction of the shallow water model is its two-dimensionality, which facil-

itates numerical computation and algebraic manipulations over its three-dimensional

Boussinesq counterpart. In this appendix we report results for derivations and models

analogous to those developed in this dissertation.
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B.1 The shallow water equations

With velocity u = (u, v), layer height H(x, t) = H (1 + h), gravitational ac-

celeration g and inertial frequency f , the shallow water equations are

Dtu− fv + c2hx = 0 , (B.1)

Dtv + fu+ c2hy = 0 , (B.2)

ht +∇ · (hu) = −∇ · u , (B.3)

where Dt
def
= ∂t + u · ∇ is the material derivative and c =

√
gH is the phase speed

of a high-frequency, small-amplitude shallow water gravity wave. When the inertial

frequency f = f0 is constant, a modicum of algebra puts equations (B.1) through

(B.3) in their wave-operator form,

∂t

[
∂2
t + f 2

0 − c24
]
h = S · (u · ∇)u−

(
∂2
t + f 2

0

)
∇ · (hu) , (B.4)

where the two operators 4 and S are

4 def
= ∂2

x + ∂2
y , and S

def
=
[
∂t∇+ f0

(
−∂y x̂+ ∂x ŷ︸ ︷︷ ︸

def
=∇⊥

)]
. (B.5)

The shallow water Ertel potential vorticity is

Π
def
=
ωa
H =

f + ω

H(1 + h)
. (B.6)

Equations (B.1) through (B.3) imply that Π is materially conserved, so that

DtΠ = 0 . (B.7)
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B.1.1 Small-amplitude shallow water waves

Linear shallow water waves are described by the left side of (B.4),

∂t
[
∂2
t + f 2

0 − c24
]
h = 0 . (B.8)

Assuming that h ∼ eikx+i`y−iσt yields the shallow water dispersion relation between

frequency σ and wavenumbers k and `,

σ2 = f 2
0 + c2

(
k2 + `2

)
. (B.9)

Thus as wavenumbers decrease and wavelengths increase rotating shallow water waves

become increasingly inertial, while high frequency waves are mostly gravitational.

B.1.2 Shallow water quasi-geostrophic flow

Small-amplitude shallow water quasi-geostrophic flow is described by

qt + J (ψ, q) = 0 , with q
def
=
(
4− f20

c2

)
ψ . (B.10)

The ratio f 2
0 /c

2 = f 2
0 /gH has units of 1/length2 and is analogous to the mode-wise

Rossby ‘wavenumber’ encountered in three-dimensional Boussinesq quasi-geostrophy.

B.2 A slow evolution equation for rotating shallow

water waves

Here we develop a shallow water analog to the tide-QG model developed in

chapter 4 which is substantially simpler and also two-dimensional. We use constant

inertial frequency f = f0 throughout.



174

B.2.1 Non-dimensionalization and two-timing

We use f0, U , and L to non-dimensionalize t, u, and x respectively. The

height h is already non-dimensional by definition. Two key parameters are

ε
def
=

U

f0L
and Bu

def
=

(
c

f0L

)2

. (B.11)

The parameter ε is both a Rossby number and wave amplitude parameter and Bu is

the Burger number. We assume Bu ≈ 1 and ε� 1.

Under these scalings and assumptions the shallow water equations in (B.1)

through (B.3) become

ut − v + hx = −εu · ∇u , (B.12)

vt + u+ hy = −εu · ∇v , (B.13)

ht +∇ · u = −ε∇ · (hu) , (B.14)

while (B.4) takes the form

∂t
[
∂2
t + 1−4

]
h = ε

[
S · (u · ∇)u−

(
∂2
t + 1

)
∇ · (hu)

]
. (B.15)

Subjecting (B.15) to the two-time expansion

∂t 7→ ∂t̃ + ε∂t̄ (B.16)

produces

(∂t̃ + ε∂t̄)
[
∂2
t̃ + 2ε∂t̄∂t̃ + ε2∂2

t̄ + 1−4
]
h = ε

[
S·(u · ∇)u−

[
(∂t̃ + ε∂τ )

2 + 1
]
∇·(hu)

]
.

(B.17)
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B.2.2 The asymptotic expansion

We expand all variables in powers of ε, so that

h = h0 + εh1 + · · · , and u = u0 + εu1 + · · · , (B.18)

and solve both (B.1) through (B.3) and (B.15) order-by-order. We restore dimension-

ality for clarity.

The leading-order shallow water system is

u0t − f0v0 + c2h0x = 0 , (B.19)

v0t + f0u0 + c2h0y = 0 , (B.20)

h0t +∇ · u0 = 0 , (B.21)

and the leading-order terms in (B.15) are

∂t
[
∂2
t + f 2

0 − c24
]
h0 = 0 . (B.22)

This equation has both quasi-geostrophic and wave solutions. We assume that due to

the nature of initial conditions or hypothetical forcing the solution can be expressed

as

h0 =
f0

c2

(
ψ + e−iσtA+ eiσtA∗

)
. (B.23)

(B.23) is the superposition of a slowly-evolving streamfunction ψ with a rapidly oscil-

lating, σ-frequency wave field modulated by the slowly-evolving amplitude A. (B.22)

implies that A satisfies

iσf0

(
4+

σ2 − f 2
0

c2

)
A = 0 , (B.24)
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We simplify the presentation by defining the frequency parameter

α
def
=
σ2 − f 2

0

f 2
0

. (B.25)

and the ‘dispersion operator’

Dα
def
= 4+

αf 2
0

c2
, (B.26)

so that (B.24) becomes just iσf0DαA = 0. Notice that the linear dispersion relation

in (B.9) implies that the assumption Bu = (c/f0L)2 = O(1) requires α = O(1).

The leading-order fields u0 and v0 are found from h0 by merging the combina-

tions ∂t(B.19) + f0(B.20) and ∂t(B.20)− f0(B.19),

(
∂2
t + f 2

0

)
u0 = −c2 (∂t∇− f0∇⊥)h0 , (B.27)

where ∇⊥ = (−∂y, ∂x) as defined in (B.5). We solve (B.27) for u0 using h0 in (B.23).

In component form u0 is




u0

v0




=




−ψy

ψx



− 1

αf0




iσ∂x − f0∂y

iσ∂y + f0∂x




e−iσtA+
1

αf0




iσ∂x + f0∂y

iσ∂y − f0∂x




eiσtA∗ , (B.28)

which is equivalent to the more compact expression

u =∇⊥ψ − (αf0)−1 e−iσt (iσ∇+∇⊥)A + cc . (B.29)
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Using the leading-order equation DαA = 0, the O(ε) terms in (B.15) reduce to

−2σ2f0

c2

[
e−iσtA+ eiσtA∗

]
+ ∂t

[
∂2
t + f 2

0 − c24
]
h1

= S · (u0 · ∇)u0 −
(
∂2
t + f 2

0

)
∇ · (h0u0) ,

(B.30)

def
= RHS(A,ψ) , (B.31)

where we introduce the euphemism ‘RHS’. As detailed in chapter 4, our strategy is

to isolate the terms

− 2σ2f0
c2

Aτ = the part of RHS(A,ψ) proportional to e−iσt (B.32)

from (B.30). We then complete the derivation by adding the leading-order equation,

iσf0DαA = 0, to the result. Though this procedure is not rigorously justified, it

works because the very large term iσf0DαA ensures the spectra of A remain close to

the σ-frequency wave modes of (B.22), thus rendering the projection of (B.32) onto

σ-frequency wave modes unnecessary.

B.2.3 Parsing RHS

The crux of the derivation is to parse RHS in (B.31) for the part proportional

to e−iσt. RHS is given by

RHS = S · (u · ∇)u−
(
∂2
t + f 2

0

)
∇ · (hu) . (B.33)

In (B.33) we have dropped the unnecessary subscripts ‘0’ from u and h, which here-

after are always leading-order.

We first note a few useful properties of the leading-order fields. The advective
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derivative is

u · ∇ = J (ψ, ·)− 1
αf0

[
f0J (A, ·) + iσ∇A · ∇

]
e−iσt + · · · , (B.34)

and the action of two favored vector operators produces

∇ · u =
iσ

αf0

(
eiσt4A∗ − e−iσt4A

)
. (B.35)

and

S · u = f0∇⊥ψ − e−iσt
(
1 + 2α−1

)
f04A+ eiσtf04A∗ , (B.36)

the last of which uses σ2/f 2
0 + 1 = α + 2.

Next, we tackle the various parts of RHS one term at a time. Notice that

S · (u · ∇)u = (u · ∇) (S · u) + (uxt − f0uy) · ∇u+ (uyt + f0ux) · ∇v ,

+ ux · ∇ut + uy · ∇vt + ut · ∇ (ux + vy)

(B.37)

After multiplication by eiσtαf 2
0 /c

2, the first term in (B.37) is

eiσtαf0 (u · ∇) (S · u) = −
(
σ2 + f 2

0

)
J (ψ,4A)− iσf0∇A ·∇4ψ−f 2

0 J (A,4ψ)+ · · · ,

(B.38)

where the · · · indicate unsteady terms which are thus not proportional to e−iσt in

(B.33). Next we have

eiσtαf0 (uxt − f0uy) · ∇u = 2iσf0J (ψy, Ax) + σ2∇Ax · ∇ψy − iσf0∇Ay · ∇ψy + · · · ,

(B.39)



179

and

eiσtαf0 (uyt + f0ux) ·∇v = −2iσf0J (ψx, Ay)− σ2∇Ay ·∇ψx− iσf0∇Ax ·∇ψx + · · · .

(B.40)

The third and fourth term in (B.37) are

eiσtαf0

(
ux · ∇ut + uy · ∇vt

)
= −σ2J (ψx, Ax)− σ2J (ψy, Ay)

+ iσf0J (ψy, Ax)− iσf0J (ψx, Ay) .

(B.41)

The final term does not contribute any terms proportional to e−iσt due to the t-

derivatives on both ut and ux + vy = −ht. The final h-dependent term is

−eiσtαf0

(
∂2
t + f 2

0

)
∇ · (hu) = −eiσtαf0

(
∂2
t + f 2

0

)
(u · ∇h+ h∇ · u) , (B.42)

= σ2J
(
f20
αc2
ψ,A

)
− iσf0

f20
αc2

(∇A · ∇ψ + ψ4A) . (B.43)

We now collect terms and simplify. Notice that

4J (ψ,A) = J (4ψ,A) + J (ψ,4A) + 2J (ψx, Ax) + 2J (ψy, Ay) , (B.44)

and

∇Ay · ∇ψx −∇Ax · ∇ψy = J (ψx, Ax) + J (ψy, Ay) . (B.45)

Using these two identities along with the leading-order equation 4A = − (f 2
0 /αc

2)A,

we simplify the terms proportional to σ2 into

1

σ2
Tσ2 = −J (ψ,4A) +∇Ax · ∇ψy −∇Ay · ∇ψx +

f20
αc2

J (ψ,A)

− J (ψx, Ax)− J (ψy, Ay) ,

(B.46)

= −4J (ψ,A) + J (4ψ,A)− J (ψ,4A) . (B.47)
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Note that the final two terms can in principle be combined into J (Dαψ,A). Yet

comparing this result with the Boussinesq wave equation in (4.7) suggests this is

incorrect: the factor f 2
0 /αc

2 ‘belongs’ to A, rather than ψ. This intuited fact is likely

confirmed by energy conservation laws for the system, though the conservation laws

are not derived in this dissertation. Somewhat similarly, the terms proportional to

f 2
0 are

1

f 2
0

Tf20 = −J (ψ,4A)− J (A,4ψ) , (B.48)

= J (Dαψ,A) . (B.49)

Finally, the terms proportional to iσf0 are

1

iσf0

Tσf0 = 3J (ψy, Ax)− 3J (ψx, Ay)−∇A · ∇Dαψ ,

−∇Ax · ∇ψx −∇Ay · ∇ψy − f20
αc2
ψ4A .

(B.50)

We use the identity

J (ψx, Ay)− J (ψy, Ax) +∇Ax · ∇ψx +∇Ay · ∇ψy = 4ψ4A , (B.51)

to manipulate Tσf0 into

iσf0Tσf0 = 2J (ψy, Ax)− 2J (ψx, Ay)−∇ ·
[
Dαψ∇A

]
. (B.52)
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Adding these together yields the part of RHS proportional to e−iσt,

αf0RHS = Tσ2 + Tf20 + Tσf0 + · · · , (B.53)

= σ2
[
J (4ψ,A)− J (ψ,4A)−4J (ψ,A)

]
+ f 2

0 J (Dαψ,A)

+ iσf0

[
2J (ψy, Ax)− 2J (ψx, Ay)−∇ · (Dαψ∇A)

]
+ · · ·

(B.54)

The hard part is behind us and we are ready to reconstitute. Notice that

σ2 + f 2
0

f 2
0

= α + 2 , and
f0

σ
=
√

1
α+1

(B.55)

B.2.4 Reconstitution

Our vision is to form a reduced slow evolution equation by adding the leading-

order equation, iσf0DαA = 0 in (B.24), to the first-order equation (B.32). Using the

part of RHS proportional to e−iσt identified in (B.54) and multiplying by f0/2σ
2 we

find

f20
c2
At − if0

2

√
1

α+1
DαA− 1

2α

[
4J (ψ,A) + J (ψ,4A)− J (4ψ,A)

]

+ 1
2α(α+1)

J (Dαψ,A)− i
2α

√
1

α+1

[
2J (ψx, Ay)− 2J (ψy, Ax) +∇ · (Dαψ∇A)

]
= 0 .

(B.56)

In simplifying equation (B.56) we eliminate σ in favor of f0 and α in the four O(1)

coefficients multiplying the dispersive and nonlinear terms. Equation (B.56) involves

only slow-time derivatives and is thus written in terms of the single reconstituted

time-derivative ∂t.

Equation (B.56) is a slow evolution equation analogous to (4.7) for a shallow

water wave of frequency σ in a quasi-geostrophic flow with streamfunction ψ. The

parameters are f0, σ, and the shallow water phase speed c2, which give α and Dα
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through

α =
σ2 − f 2

0

f 2
0

and Dα = 4+
αf 2

0

c2
. (B.57)

The correspondence of (B.56) to the slow evolution equation for vertical mode n of

a hydrostatic wave field in barotropic quasi-geostrophic flow is exact with κn = f0/c.

However, the shallow water quasi-geostrophic streamfunction has a slightly richer dy-

namics than the two-dimensional turbulent dynamics of barotropic Boussinesq quasi-

geostrophic flow.

B.3 Wave-averaged shallow water quasi-geostrophic

flow

In this section we introduce the shallow water Available Potential Vorticity

and derive an analog to the wave-averaged quasi-geostrophic equation in (2.1) through

(2.3) for rotating, shallow water flow. The result reached at the end of chapter B.3.2

is

qt + J (ψ, q) = 0 , with q =
(
4− f20

c2

)
ψ + qw , (B.58)

with

qw = J (u, ξ) + J (v, η) + f0h2 − 1
2
f0ξ · ∇h , (B.59)

where ξ, defined through ξt = u, is the leading-order linear particle displacement.

B.3.1 Available Potential Vorticity in shallow water

Available Potential Vorticity is the dynamic part of PV which remains after

the background PV carried around by fluid particles is subtracted. In the shallow

water equations on the f -plane, the background PV is uniform and just f0/H; thus,
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the APV is

Q
def
=

f0 + ω

H(1 + h)
− f

H
. (B.60)

Because exact PV is materially conserved, we also have

DtQ = 0 . (B.61)

Expanding Q for ω/f0 ∼ h� 1 yields

HQ = (ω − f0h)
(

1− h+ h2
)

+O
(
ω4
)
. (B.62)

B.3.2 The small-amplitude expansion

The wave amplitude parameter and Rossby numbers are

ε
def
=

Ũ

fL
, and Ro

def
=

Ū

f0L
= ε2 , (B.63)

where L is a characteristic length scale and Ũ and Ū = εŨ are the characteristic

velocity scales for the wave and flow respecitvely. We introduce the multiple-time

expansion

∂t 7→ ∂t̃ + ε2 ∂t̄ . (B.64)

Non-dimensionalizing and two-timing equations (1.7)–(1.11) yields

ut̃ − v +Buhx = −εu · ∇u+ ε2ut̄ , (B.65)

vt̃ + u+Buhy = −εu · ∇v + ε2vt̄ , (B.66)

ht̃ +∇ · u = −ε∇ · (hu) . (B.67)
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where we have defined Bu = (c/f0L)2. In the following we use the ‘standard’ quasi-

geostrophic assumption that Bu = 1. The APV equation becomes

Qt̃ + εu · ∇Q+ ε2Qt̄ = 0 , (B.68)

where APV is

Q = ω − h− ε h (ω − h) +O(ε3) , (B.69)

We expand each variable in ε, so that, for example

u = u0 + εu1 + ε2u2 + · · · . (B.70)

We perform the expansion in dimensional variables for clarity, using the non-dimensionalization

as a guide.

Leading order. At leading-order, the equations describe shallow water inertia-

gravity waves and balanced shallow water geostrophic flow:

u0t̃ − f0v0 + c2h0x = 0 , (B.71)

v0t̃ + f0u0 + c2h0y = 0 , (B.72)

h0t̃ +∇ · u0 = 0 . (B.73)

Taking ∂x(B.72)−∂y(B.71) gives

∂t̃ (ω0 − f0h0) = Q0t = 0 , (B.74)

where we indicate that this equation is identical to the leading-order APV equation,

Q0t = 0. Integrating this equation implies that Q0 = Q0(x, t̄) is a function of slow
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time only. Here, we assume that Q0 = ω0 − f0h0 = 0, which implies the balanced

flow is weak and that the solution to (B.71)–(B.73) consists solely of inertia-gravity

waves with no APV signature.

First order. At first-order, we obtain

u1t̃ − f0v1 + c2h1x = − (u0 · ∇)u0 , (B.75)

v1t̃ + f0u1 + c2h1y = − (u0 · ∇) v0 , (B.76)

h1t̃ +∇ · u1 = −∇ · (h0u0) . (B.77)

An average over the fast time yields

−fv̄1 + c2h̄1x = −(u0 · ∇)u0 , (B.78)

fū1 + c2h̄1y = −(u0 · ∇) v0 , (B.79)

∇ · ū1 = −∇ ·
(
h0u0

)
. (B.80)

In chapter B.3.3, we show that identities of the O(1) equations allow (B.78) and

(B.79) to be written

v̄1 + vS = c2

f0
∂x
(
h̄1 + 1

2
hS
)
, (B.81)

ū1 + uS = − c2

f0
∂y
(
h̄1 + 1

2
hS
)
, (B.82)

where the superscript ‘S’ denotes the Stokes corrections, defined as

uS def
= (ξ0 · ∇)u0 , and hS def

= ξ0 · ∇h0 , (B.83)

where ξ0, defined through ξ0t̃
def
= u0, is the leading-order and linearized wave-induced
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particle displacement. We thus define the Lagrangian-mean streamfunction,

ψ
def
= c2

f0

(
h̄1 + 1

2
hS
)
, (B.84)

such that uL =∇⊥ψ, with∇⊥
def
= (−∂y, ∂x). We also find through the linear identities

in chapter B.3.3 that

∇ ·
(
h0u0

)
= 0 , (B.85)

which together with the fact that ∇ · uL = 0, implies that ∇ · ū1 =∇ · uS = 0.

The first-order APV equation is

Q1t̃ = 0 , (B.86)

where

Q1 = 1
H

[
ω1 − f0h1 − h0 (ω0 − f0h0)

]
, (B.87)

= 1
H

[
ω1 − f0h1

]
, (B.88)

where we have used the fact that ω0 − f0h0 = 0. Integrating (B.86) implies that

Q1 = Q̄1(x, t̄). We thus find that, somehow,

Q1 = Q̄1 = 1
H

[
ω̄1 − f0h̄1

]
. (B.89)

Defining q
def
= HQ1 and writing in terms of ψ gives

q =
(
4− f20

c2

)
ψ + 1

2
f0h

S − vS
x + uS

y
︸ ︷︷ ︸

def
= qw

, (B.90)

In (B.90), we have defined the ‘wave contribution to APV’, qw.



187

Second order. At second order the APV equation is

Q2t̃ + u0 · ∇Q1 = 0 . (B.91)

Because Q1 does not depend on the fast time t, this equation can be integrated to

yield

Q2 = −ξ0 · ∇Q1 + Q̄2 . (B.92)

where Q̄2 is an irrelevant and slowly-evolving function of integration.

Third order. The third-order APV equation is

Q3t̃ +Q1t̄ + u0 · ∇Q2 + u1 · ∇Q1 = 0 . (B.93)

The t̃-average of this equation is

Q1t̄ + u0 · ∇Q2 + ū1 · ∇Q1 = 0 , (B.94)

where we recall that Q1 does not depend on t, so that Q̄1 = Q1. Now note that

Q2 = −ξ · ∇Q1, so that

u0 · ∇Q2 = −u0 · ∇ (ξ · ∇Q1) , (B.95)

= −u0i∂i (ξ0jQ1,j) , (B.96)

= −u0iξ0j,iQ1,j − u0iξ0jQ1,ij , (B.97)

= uS · ∇Q1 , (B.98)
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where we have observed that

− u0iξ0jQ1,ij = u0jξ0iQ1,ij = 0 , (B.99)

and used the fact that −u0iξ0j,i = −(u0 · ∇) ξ0 = (ξ0 · ∇)u0 = uS. Thus since

q = HQ1 and
(
ū1 + uS

)
· ∇q = uL · ∇q = J (ψ, q), the O(ε3) APV equation is

qt̄ + J (ψ, q) = 0 , with q =
(
4− f20

c2

)
ψ + qw , (B.100)

with

qw = J (u0, ξ0) + J (v0, η0) + f0h2
0 − 1

2
f0ξ0 · ∇h0 . (B.101)

In reporting this result we use the single time-scale t and drop subscripts on leading-

order terms.

B.3.3 Identities of the linear shallow water system

For the remainder of chapter B.3 we eschew the subscript ‘0’, assuming that

(u, v, h) are unsteady, wavy solutions to the linear shallow water system,

ut − f0v + c2hx = 0 , (B.102)

vt + f0u+ c2hy = 0 , (B.103)

ht + (ux + vy) = 0 . (B.104)

Our assumption that the solution to (A.7)–(A.11) are purely waves implies that ω =

f0h. We make extensive use of the averaging identity

θtφ = −θφt . (B.105)
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We also use the linearized particle displacement ξ = (ξ, η), defined by ξt = u. Inte-

grating the continuity equation yields

h = −ξx − ηy . (B.106)

The energy equation

Using the fact that ∇ · (hu) = u · ∇h+ h∇ · u and ∇ · u = −ht/H, we find

u · ∇h =∇ · (hu) + ∂t
(

1
2H
h2
)
. (B.107)

Dotting the momentum equations with u and using (B.107) yields

∂t

(
1
2
u2 + 1

2
v2 + c2

2
h2
)

+ c2∇ · (hu) = 0 . (B.108)

Equation (B.108) is the linear wave energy equation, and its average implies that

∇ ·
(
hu
)

= 0.

Two virial equations

The virial equation is obtained by dotting the momentum equation with ξ.

Averaging the result yields

c2hS = u2 + v2 + f0(ξv − ηu) , (B.109)

where hS = ξ · ∇h is the Stokes correction to the height field. Next, we dot the

momentum equation with ξx and average the result. After some short manipulations,



190

we find that

c2ξx · ∇h = 1
2
∂x

[
u2 + v2 + f0(ξv − ηu)

]
, (B.110)

= c2 1
2
hS . (B.111)

Since

hS
x = ξx · ∇h+ ξ · ∇hx , (B.112)

we find that

ξx · ∇h = ξ · ∇hx = 1
2
hS
x . (B.113)

A similar result with y-derivatives implies that

ξ · ∇hy = 1
2
hS
y . (B.114)

The nonlinear momentum terms

Using (A.7), we can rewrite u · ∇u as

u · ∇u = −ξ · ∇ut , (B.115)

= −f0ξ · ∇v + c2ξ · ∇hx . (B.116)

We can show that ξ · ∇hx = 1
2
∂x
(
ξ · ∇h

)
, such that

u · ∇u = −f0v
S + 1

2
c2hS

x , (B.117)
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where vS and hS are the Stokes corrections to velocity and height defined in (B.83).

A similar calculation shows that

u · ∇v = f0u
S + 1

2
c2hS

y , (B.118)

B.3.4 The wave contribution to APV

The wave contribution to APV is

qw = 1
2
f0h

S − vS
x + uS

y (B.119)

Notice that the linear equations imply that h = ω/f0, h = −ξx − ηy, and ω =

−f0 (ξx + ηy). Because h = ω/f0, we find

f0h
S = f0ξ · ∇h , (B.120)

= ξ · ∇ω , (B.121)

= ωS , (B.122)

so that qw can thus be written

qw = 1
2
ωS − vS

x + uS
y . (B.123)

Because h = −∇ · ξ = −ξj,j, we find

hS = ξih,i , (B.124)

= −ξiξj,ij . (B.125)
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Then, using

ωS − vS
x + uS

y = ξy · ∇u− ξx · ∇v , (B.126)

= J (u, ξ) + J (v, η) + f0h2 , (B.127)

we find qw takes many forms

qw = ωS − vS
x + uS

y − 1
2
ωS , (B.128)

= J (u, ξ) + J (v, η) + f0h2 − 1
2
f0ξ · ∇h , (B.129)

= J (u, ξ) + J (v, η) + f0J (ξ, η)
︸ ︷︷ ︸

pseudovorticity

+ f0

[
h2 − ξ · ∇h− J (ξ, η)

]

︸ ︷︷ ︸
vortex stretching

+1
2
f0ξ · ∇h .

(B.130)

The second line in (B.129) is perhaps the simplest expression. On the third line

in (B.130) we identify two parts of qw with kinematic origins: the pseudovorticity,

which is a component of vorticity hidden by the wave average, and a vortex stretching

term associated with the expansion and contraction of wave-averaged fluid elements.

These terms have direct Boussinesq counterparts, as discussed in chapter 2.4, except

the extra orphaned term on the far right. Note that the shallow water pseudovorticity

is identical to Boussinesq pseudovorticity so that its vertical component is given by

(2.148) and

ẑ · ∇× p = −J (u, ξ)− J (v, η)− f0J (ξ, η) . (B.131)

On the other hand, the shallow water vortex stretching term associated with the

expansion and contraction of mean fluid elements differs from its Boussinesq coun-

terpart. Following the discussion in chapter 2.4.3, the wave-averaged volume of a
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shallow water mean fluid elements is

V =

∫

F
H(x, y) dÃ(x, y) , (B.132)

where H(x̃) = H (1 + h) is the height of the shallow fluid layer and dA is the (x, y)

area of an infinitesimal fluid element. Evaluating this integral over the area of the

mean fluid element requires the transformation x̃ 7→ x+ ε ξ, which implies

H (x+ ε ξ) = H (1 + h+ ξ · ∇h+ ξiξjh,ij + · · · ) , (B.133)

and

dÃ =

∣∣∣∣∣
∂(x+ εξ, y + εη)

∂(x, y)

∣∣∣∣∣ dĀ = [1 +∇ · ξ + J (ξ, η)] dĀ . (B.134)

The wave-averaged volume of the mean fluid element is therefore

V = H

∫

©
[1 + h+ ξ · ∇h+ ξiξjh,ij + · · · ] [1 +∇ · ξ + J (ξ, η)] dĀ , (B.135)

= H

∫

©
1− h2 + ξ · ∇h+ J (ξ, η) dĀ+ · · · , (B.136)

≈ V̄
[
1− h2 + ξ · ∇h+ J (ξ, η)

]
. (B.137)

In passing from (B.135) to (B.136) we use the linear continuity equation ∇· ξ = −h.

The quadratic terms in (B.137) are a contribution to the wave-averaged mean fluid

element volume that is ‘hidden’ by wave-averaging.
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