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Paired Condi+onal Genera+ve Adversarial Network for Highly 
Accelerated Liver 4D MRI 

 
Abstract 
Purpose: 4D MRI with high spa0otemporal resolu0on is desired for image-guided liver 
radiotherapy. Acquiring densely sampling k-space data is 0me-consuming. Accelerated 
acquisi0on with sparse samples is desirable but oCen causes degraded image quality or long 
reconstruc0on 0me. We propose the Reconstruct Paired Condi0onal Genera0ve Adversarial 
Network (Re-Con-GAN) to shorten the 4D MRI reconstruc0on 0me while maintaining the 
reconstruc0on quality.  
 
Methods: Pa0ents who underwent free-breathing liver 4D MRI were included in the study. Fully- 
and retrospec0vely under-sampled data at 3, 6 and 10 0mes (3x, 6x and 10x) were first 
reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. 
Three types of networks, ResNet9, UNet and reconstruc0on swin transformer, were explored as 
generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D+t) 
as temporal slices (2D+t). A total of 48 pa0ents with 12332 temporal slices were split into training 
(37 pa0ents with 10721 slices) and test (11 pa0ents with 1611 slices). Compressed sensing (CS) 
reconstruc0on with spa0otemporal sparsity constraint was used as a benchmark. Reconstructed 
image quality was further evaluated with a liver gross tumor volume (GTV) localiza0on task using 
Mask-RCNN trained from a separate 3D sta0c liver MRI dataset (70 pa0ents; 103 GTV contours). 
 
Results: Re-Con-GAN consistently achieved comparable/be_er PSNR, SSIM, and RMSE scores 
compared to CS/UNet models. The inference 0me of Re-Con-GAN, UNet and CS are 0.15s, 0.16s, 
and 120s. The GTV detec0on task showed that Re-Con-GAN and CS, compared to UNet, be_er 
improved the dice score (3x Re-Con-GAN 80.98%; 3x CS 80.74%; 3x UNet 79.88%) of unprocessed 
under-sampled images (3x 69.61%).  
 
Conclusion: A genera0ve network with adversarial training is proposed with promising and 
efficient reconstruc0on results demonstrated on an in-house dataset. The rapid and qualita0ve 
reconstruc0on of 4D liver MR has the poten0al to facilitate online adap0ve MR-guided 
radiotherapy for liver cancer. 
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1. Introduc4on 
 
MRI has been increasingly adopted for image-guided liver radia0on therapy (RT) owing to its 
superior soC 0ssue contrast compared to CT1–3. 4D MRI, which is a respiratory-resolved 
volumetric imaging technique, is especially powerful in quan0fying tumor mo0on4–6. In a clinical 
planning workflow for free-breathing liver RT treatments, the liver tumor delineated in individual 
4D MR images forms an internal target volume (ITV). Under or over-es0ma0ng ITV can cause 
tumor underdose or normal 0ssue injury during radia0on. 
 
4D MRI data is usually acquired in a con0nuous free-breathing scan followed by data sor0ng 
based on respiratory mo0on surrogates. One common op0on is a 3D golden angle stack-of-stars 
sequence with self-naviga0on to acquire 4D MRI datasets5. In stack-of-stars acquisi0on, radial 
sampling is employed in the 𝑘𝑥 − 𝑘𝑦  plane, which enables reduced mo0on sensi0vity7 and 
incoherent k-space under-sampling if accelera0on is desired8. Cartesian sampling is used in the 
kz dimension, which allows for a flexible selec0on of volumetric coverage/slice resolu0on9. 
However, this technique has a few limita0ons. Scan 0me is usually long (8-10 min5), and slice 
resolu0on is oCen sacrificed to maintain sufficient volumetric coverage and in-plane resolu0on, 
increasing the inaccuracy of small malignancy contouring9. Streak ar0facts caused by under-
sampling, sampling trajectory devia0on, or nonuniform k space coverage can be challenging to 
mi0gate with conven0onal constrained reconstruc0on. Parallel imaging10,11 and compressed 
sensing12–14 have been employed to accelerate both sta0c and dynamic MRI. 
 
Recent deep learning (DL) advances have offered a data-driven approach for 4D MRI 
reconstruc0on. In contrast to the model-based CS reconstruc0on, DL learns reconstruc0on 
mapping from the rich informa0on in the training data representa0on, matching or exceeding the 
CS quality and is significantly faster15–17. Previous works have explored 4D MRI reconstruc0on 
using customized convolu0onal neural networks (CNNs), recurrent neural networks (RNNs), and 
Transformers. For instance, Schlemper et al. proposed integra0ng K nearest neighbor (KNN) 
enabled temporal data-sharing mechanism into a cascade 3D CNN architecture for 4D MRI 
reconstruc0on trained with L2 loss objec0ve16. Their network demonstrates the capability of 2D 
frame recovery but is subop0mal in capturing complex dynamic rela0onships. Adap0ng from the 
UNet architecture, Dracula18 and Moivenet19 proposed methods to accelerate 4D MR 
reconstruc0on. However, there is s0ll room for improvement in the reduc0on of reconstruc0on 
0me (Dracula at 28 s and Moivenet at 0.69 s).  Moreover, Huang et al. introduced a mo0on-guided 
framework using RNN-inspired Conv-GRU for ini0al 2D frame reconstruc0on and U-FlowNet for 
mo0on es0ma0on in the op0cal flow field. The overall architecture is trained with regularized L1 
loss20. Their pipeline reconstructed a cardiac dataset 5 and 8 0mes accelerated (5x and 8x), but 
detail loss was evident at a high accelera0on ra0o. Addi0onally, their RNN-based architecture 
confines its tensor processing to be sequen0ally frame-by-frame and takes ~5 s for inference of a 
volume, which limits its applica0on for MRI-guided real-0me interven0ons21. Lately, Xu et al. 
designed a 2D CNN-assisted Reconstruc0on Swin Transformers (RST), a variant of Video Swin 
Transformers22, supervised with a combina0on cost func0on of L1, peak signal-to-noise ra0o 
(PSNR), and mul0-scale structure similarity index measurement (MS-SSIM)23 for 4D MRI 
reconstruc0on and validates the algorithm on a 9x accelerated cardiac dataset21. The RST 



architecture showed promising results in dynamic rela0onship learning and faster inference (<1s), 
but struggled to retain finer spa0al anatomies24–26. 
 
It is well known that the success of neural network (NN) training, apart from exploring various 
architectures, hinges on the loss func0on design27,28. However, designing an effec0ve loss 
func0on that encourages NNs to precisely converge towards the target oCen requires balancing 
conflic0ng constraints such as sharpness vs. streak ar0facts reduc0on. Genera0ve Adversarial 
Networks (GANs)29 took an alterna0ve approach – rather than explicitly specifying all components 
of the loss func0on, the discriminator network implicitly guides the generator loss reduc0on by 
dis0nguishing real from synthesized images. This adversarial dynamic can lead to outputs that are 
closer to the ground truth target. Inconsistent and blurry predic0ons are discriminated against in 
GANs. Addi0onally, since GANs only require the generator model at inference 0me, the 
adversarial training process does not add computa0onal burden during reconstruc0on. This 
makes real-0me 4D MRI reconstruc0on more tractable29.  
 
Several previous studies have demonstrated superior MRI reconstruc0on using GANs. For 
Cartesian sampling, Yang et al.30 demonstrated that their UNet-based condi0onal GAN could 
provide be_er reconstruc0on with preserved perceptual imaging details than non-adversarial 
CNN methods on 3D T1-weighted brain and cardiac MRI dataset. Mardani et al.31 built a least 
squares condi0onal GAN, demonstra0ng compe00ve performance in pediatric contrast-
enhanced 3D MRI reconstruc0on. For non-Cartesian sampling, Liu et al.32 presented a robust 
performance by cycle-GAN trained with varying under-sampling pa_erns on 3D golden-angle 
radial sampled liver imaging. Gao et al.33 also demonstrated the feasibility of using a condi0onal 
GAN framework for 3D stack-of-radial Liver MRI reconstruc0on. However, the previous work has 
not explored the capability of GANs in 4D MRI temporal profiling and reconstruc0on.  
 
The current work explores the feasibility of using GANs for 4D MRI reconstruc0on. We have 
developed a novel architecture termed Reconstruct paired Condi0onal GAN (Re-Con-GAN), 
specifically for 4D MRI reconstruc0on. The proposed framework is designed to learn 2D+0me 
image series from under-sampled data. Experiments on an in-house 4D liver MRI dataset 
demonstrate the superior performance of Re-Con-GAN compared to conven0onal compressed 
sensing and supervised deep learning reconstruc0on models. To further validate the robustness 
of Re-Con-GAN's reconstructed images, we evaluate the impact on downstream tasks of liver 
tumor detec0on and segmenta0on using a Mask R-CNN34 pipeline. The rest of the manuscript is 
organized as follows: Sec0on 2 elaborates on data cohort, Re-Con-GAN framework, baseline 
algorithms, and model evalua0on; Sec0on 3 summarizes the experimental results; and Sec0on 4, 
along with Sec0on 5, discusses and concludes the current work. 
 

2. Materials and Methods 
2.1 4D MR Data Cohort 

The study was approved by the local Ins0tu0onal Review Board at UCSF (#14-15452). 48 pa0ents 
were scanned on a 3T MRI scanner (MAGNETOM Vida, Siemens Healthcare, Erlangen, Germany) 
aCer injec0on of hepatobiliary contrast (gadoxe0c acid; Eovist, Bayer) for each pa0ent. A 



prototype free-breathing T1-weighted volumetric golden angle stack-of-stars sequence was used 
for 4D MRI acquisi0on. The scanning parameters were - TE=1.5 ms, TR=3 ms, matrix size = 
288x288, FOV = 374 mm x 374 mm, in-plane resolu0on=1.3 mm × 1.3 mm, slice thickness=3 mm, 
radial views (RV) per par00on=3000, number of slices or par00ons = 64-75, acquisi0on 0me = 8-
10 min. The pulse sequence ran con0nuously over mul0ple respiratory cycles. Images 
reconstructed from the en0re space data of 3000 radial spokes (RV-3000) were treated as the 
fully sampled ground truth reference (Based on Nyquist sampling theorem, fully sampled radial 
images require sampling points × !

"
 spokes, resul0ng in 452 spokes for a matrix size of 288 × 288. 

ACer mo0on binning, each of the 8 bins has, on average, 375 spokes with RV3000, which is close 
to 452 spokes and could well preserve imaging quality). Retrospec0ve under-sampling was 
performed by keeping the first 1000, 500, and 300 spokes from the 3000 spokes, respec0vely, 
corresponding to accelera0on rates of 3x, 6x, and 10x. For ini0al image reconstruc0on, data 
sor0ng based on a self-ga0ng signal was performed to divide the con0nuously acquired k-space 
data into 8 respiratory phases. nonuniform fast Fourier transform (nuFFT) algorithm was applied 
to reconstruct each phase individually.  
 
Only regular breathers (48 pa0ents) were included in the current project. Breathing regularity 
was quan0fied using the self-ga0ng signal waveform32,35,36. The peak-to-trough range and mid-
level amplitude (A), i.e., (peak-A + trough-A)/2, were calculated for each respiratory cycle. The 
average mid-level amplitude across all respiratory cycles normalized with the average peak-to-
trough range was used as the regularity measurement. Pa0ents with a score greater than 20% 
were classified as irregular breathers and excluded.   
 
To augment the sample size, we organized the 48 3D+t data as 12332 2D+t images with images 
from an individual pa0ent sorted in one subset. The data was split into training (37 pa0ents with 
10721 2D+t images) and tes0ng (11 pa0ents with 1611 2D+t images), where pa0ents with various 
profiles (body mass index and breathing regularity score) are balanced in each split. The images 
were resized to 256 × 256	and normalized using Z-score normaliza0on. Data augmenta0on was 
employed, including random rota0on, flipping, and cropping.  
 

2.2 Dynamic MR Paired Condi7onal GANs 
2.2.1 Network Architecture  

The architecture of GANs can be designed in uncondi0onal or condi0onal sevngs. Uncondi0onal 
GANs learn a mapping from a random noise vector 𝑧  to output image 𝑦 , 𝐺: 𝑧 → 𝑦 , whereas 
condi0onal GANs (cGANs) learn a mapping from an observed image 𝑥 as well as a random noise 
vector 𝑧  to output image 𝑦 , 𝐺: {𝑥, 𝑧} → 𝑦 . cGANs can be further classified into paired and 
unpaired architectures. Paired cGANs learn a one-to-one mapping of input to output, while 
unpaired cGANs only conduct domain-level supervision with input and output randomly selected 
from its domain data corpus. The current work employed a cGAN structure to perform the image-
domain 4D MRI reconstruc0on as a paired image-to-image transla0on task.  
 
Paired cGANs consist of two major components – generator 𝐺 and discriminator 𝐷. On the one 
hand, 𝐺 is trained to generate a “fake” reconstructed image series that cannot be differen0ated 



from their corresponding “real” fully sampled ground truth (GT) image series by 𝐷. On the other 
hand, 𝐷 is trained to classify between “fake”, 𝐺 synthesized image series 𝐺3(𝑥) and 𝑥, and “real”, 
fully sampled image series 𝑦 and 𝑥, tuples. In cGANs, both 𝐺  and 𝐷 can observe input under-
sampled image series. Details of the discriminator training workflow is diagrammed in Figure 1. 

 
Figure 1: Training cGANs Discriminator 𝐷  to map input images 𝑥  to target domain 𝑦 . 𝐷  is 
designed to learn to dis0nguish between fake (𝐺3(𝑥); synthesized by Generator 𝐺) and real (𝑦; 
GT). 
 
Our design of the generator and discriminator is improved from Isola et al.29. Re-Con-GAN is a 
versa0le architecture with plug-and-playable generator, discriminator, and loss objec0ve. A 
couple of examples for each sub-component are experimented with and demonstrated in this 
paper. Details of the model architectures can be visualized in Figure 2 and are elaborated as 
follows. 
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Figure 2: The design of our proposed Re-Con-GAN. The input to Re-Con-GAN is a random noise 
vector 𝑧 and under-sampled image series 𝑥. The supervision is a fully sampled image series 𝑦. 
The network is trained by combining generator 𝐺 and discriminator 𝐷. 
 

2.2.1.1 Generator 
The defined task for the generator of 4D MRI reconstruc0on is to map a low-resolu0on input grid 
with noise and ar0facts to a high-resolu0on noise- and ar0fact-reduced output grid. The input 
and output image series differ in morphological details and a few surface structures. But they 
intrinsically both render the same underlying general structures. Several previous DL approaches 
solve the 4D MRI reconstruc0on problem with encoder-to-decoder NNs16,21. Such architectures 
conduct a series of down-sampling opera0ons un0l they reach the bo_leneck layer, and then 
reverse the opera0ons to up-sampling to gradually recover the dimension of the feature map 
from that of input. The edge of the encoder-to-decoder architecture is that numerous low-level 
informa0on shared between input and output is revealed per progressively down-sampling while 
the difference between output and input is parameterized with the up-sampling layers.  
 
Figure 3 shows three encoder-to-decoder network designs, including ResNet937, UNet38 and RST21.  
Considering that the data is organized as 2D+t image series, the three NNs were all convolved in 
the 3D domain with the t dimension of the data propaga0ng through channel dimension in 
networks (3D ResNet9, 3D UNet, and 3D RST).  
 
3D ResNet9: The 3D ResNet9 is adopted from Johnson et al.37. Let 𝑐7𝑠1 − 𝑘	denote a residual 
block consis0ng of a 7 × 7 convolu0onal layer with 𝑘 number of filters and stride of 1, Instance 
normaliza0on and ReLU opera0ons. 𝑑𝑘  denotes a residual block consis0ng of a 3 × 3 
convolu0onal layer with 𝑘 number of filters and stride of 2, instance normaliza0on and ReLU 
opera0ons. 𝑅𝑘 denotes a residual block consis0ng of two of 3 × 3 convolu0onal layers with the 



same 𝑘  number of filters and stride of 2, instance normaliza0on, and ReLU opera0ons. 𝑢𝑘 
denotes a frac0onal-stride residual block consis0ng of two of 3 × 3 convolu0onal layers with the 
same 𝑘 number of filters and stride of #

"
, instance normaliza0on, and ReLU opera0ons. Reflec0on 

padding is used per convolu0on to reduce ar0facts. The 3D ResNet9 is structured as Equa0on (1).  
 
𝑐7𝑠1 −
64, 𝑑128, 𝑑256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑅256, 𝑢64, 𝑐7𝑠1 −
8                     (1) 
 
Where 𝑐7𝑠1 − 8 is used to map the predic0on to the expected number of output channels (8 in 
the current paper).  
 
3D UNet: The 3D UNet structure follows the design of Isola et al.29. Let 𝒞𝑘 denote a UNet block 
consis0ng sequen0ally of a 4 × 4 convolu0onal layer with 𝑘 number of filters and stride of 2, 
batch normaliza0on and ReLU opera0ons. Let 𝒞𝒟𝑘 denote a UNet block consis0ng sequen0ally 
of a 4 × 4  convolu0onal layer with 𝑘  number of filter and stride of 2, batch normaliza0on, 
dropout at 50%, and ReLU opera0ons. Convolu0ons in the encoder stage down-sample by a factor 
of 2 at each block, whereas those in the decoder stage up-sample by a factor of 2. The 3D UNet 
is structured as Equa0on (2). 
 

𝑒𝑛𝑐𝑜𝑑𝑒𝑟: 𝒞64, 𝒞128, 𝒞256, 𝒞512, 𝒞512, 𝒞512, 𝒞512, 𝒞512	
𝑑𝑒𝑐𝑜𝑑𝑒𝑟:	𝒞𝒟512, 𝒞𝒟1024, 𝒞𝒟1024, 𝒞𝒟1024, 𝒞𝒟1024, 𝒞𝒟512, 𝒞𝒟256, 𝒞𝒟64, 𝒞𝒟8          (2) 
 
Where 𝒞𝒟8 is used to map the predic0on to the expected number of output channels (8 in the 
current paper). 
 
3D RST: The 3D RST structure follows the design of Xu et al.21. RST-Tiny (RST-T) is employed in the 
current work. Let ℛ𝑘 denote an RST block with k number of filters consis0ng of a window mul0-
head self-a_en0on layer (W-MSA) followed by a shiCed window MSA (SW-MSA). A W-MSA unit 
consists sequen0ally of layer normaliza0on, window self-a_en0on, layer normaliza0on, and 
mul0-layer percep0on opera0ons. The SW-MSA unit duplicates W-MSA, except that window self-
a_en0on is subs0tuted with shiCed window self-a_en0on. 𝑋 × ℛ𝑘  represents X number of 
iden0cal ℛ𝑘  blocks. The Encoder down-samples the feature by a factor of 2 at each block, 
whereas the decoder up-samples by a factor of 2. Skip connec0ons between the encoder and 
decoder are not included to avoid GPU memory overflow at the decoding stage. The RST-T is 
structured as Equa0on (3). 
 

𝑒𝑛𝑐𝑜𝑑𝑒𝑟: 2 × ℛ96, 2 × ℛ192, 6 × ℛ384, 2 × ℛ768	
																																									𝑑𝑒𝑐𝑜𝑑𝑒𝑟:	2 × ℛ768, 6 × ℛ384,2 × ℛ192,2 × ℛ96,ℛ8                       (3) 
 



 
Figure 3: Three choices for the generator architecture.  

 
2.2.1.2 Discriminator 

Following Isola et al.29, a 𝑁 × 𝑁 PatchGAN is used as the discriminator in Re-Con-GAN. PatchGAN 
penalizes image series structure at the scale of patches. Specifically, PatchGAN works on 
iden0fying if each 𝑁 × 𝑁 × 𝑡  image series patch is a “real” or “fake” image series. The 
discriminator is run temporal-patch-based across the en0re spa0al dimension, averaging all the 
corresponding patch predic0ons from an image series to generate the final discrimina0on output. 
Assuming independence among pixels divided by more than a patch coverage, the PatchGAN 
discriminator essen0ally models the input image series as a Markov random field to understand 
the style/texture difference between “real” and “fake” image series39,40. The patch size 𝑁 is a 
tunable hyperparameter. As Isola et al.37 discussed, smaller patch sizes have fewer parameters, 
thus running faster but poten0ally increasing 0ling ar0facts. Rela0vely larger patch sizes sacrifice 
the running speed but reduce the ar0facts. 𝑁 is set as 70 across the en0re current experiments. 
The 70 × 70 PatchGAN is structured as EquaAon (4) with 𝒞′𝑘  deno0ng a convolu0onal block 
consists sequen0ally of a 4 × 4 convolu0onal layer with 𝑘 number of filter and stride of 2, batch 
normaliza0on and leaky ReLU opera0ons. 
 
																																																															𝒞$64, 𝒞$128, 𝒞$256, 𝒞$512, 𝒞$1                        (4) 

 
ACer the last layer, a single-channeled smaller feature map is generated. An excep0on in Equa0on 
(4) is that Batch normaliza0on is skipped in 𝒞$64. 
 

2.2.2 Loss Objec6ve 
Earlier on, GANs formulated the discriminator as a classifier with a sigmoid cross entropy loss 
func0on, as shown in EquaAon (5)29.  
 
																	𝐿%&'((&,+) = 𝔼-,.[log𝐷(𝑥, 𝑦)] + 𝔼-,/[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))]           (5) 
 
However, later studies show that the sigmoid cross entropy loss func0on is suscep0ble to 
vanishing gradient and has poor training stability during the learning process41. Therefore, least 
square GANs (LSGANs)41 are proposed to remedy the issues. LSGANs modify the objec0ve 
func0on as EquaAon (6-7), penalizing sample feature maps based on their pixel distance to the 



corresponding decision boundary. In this way, more gradients are generated to update the 
generator.  
 
																	𝐿01%&'((+) =

#
"
∑𝔼-,.[(𝐷(𝑥, 𝑦) − 𝑏)"] +

#
"
∑𝔼-,/[(𝐷(𝐺(𝑥, 𝑧)) − 𝑎)"]                    (6) 

																	𝐿01%&'((&) =
#
"
∑𝔼-,/[(𝐷(𝐺(𝑥, 𝑧)) − 𝑐)"]                                (7) 

 
Where 𝑎 and 𝑏 are the labels for fake and real data, and 𝑐 is the value that 𝐺 wants 𝐷 to believe 
for fake data.  
 
Although LSGANs address the gradient vanishing as well as training instability issues, they only 
consider pixel-wise differences between feature map 𝐷(𝑥)/	𝐷(𝐺(𝑥, 𝑧)  and its corresponding 
label. On the contrary, SSIM considers the changes in overall structural informa0on between the 
feature map and its target, providing a more holis0c comparison and improved perceptual quality 
of reconstructed images. Taking another step forward, MS-SSIM generalizes single-scale SSIM to 
incorporate the varia0ons of image resolu0on and viewing condi0ons23. Therefore, we propose 
to extend the objec0ve of LSGANs with the addi0on of MS-SSIM for training of Re-Con-GAN. The 
loss func0on is designed as EquaAon (8-9).  
 
 
																	𝐿01%&'((+) =

#
"
X∑𝔼-,.[(𝐷(𝑥, 𝑦) − 𝑏)"] + Y1 −𝑀𝑆𝑆𝑆𝐼𝑀(𝐷(𝑥, 𝑦), 𝑏)]^ +

[#
"
∑𝔼-,/[(𝐷(𝐺(𝑥, 𝑧) − 𝑎)"] + Y1 −𝑀𝑆𝑆𝑆𝐼𝑀(𝐷(𝐺(𝑥, 𝑧), 𝑎)]]                               (8) 

																	𝐿01%&'((&) =
#
"
∑𝔼-,/[(𝐷(𝐺(𝑥, 𝑧) − 𝑐)"]Y1 − 𝑀𝑆𝑆𝑆𝐼𝑀(𝐷(𝐺(𝑥, 𝑧), 𝑐)]                    (9) 

 
Addi0onally, previous studies have demonstrated that mixing the GAN objec0ve with a more 
tradi0onal loss, such as 𝐿" or 𝐿# distances is more beneficial to the convergence of the generator. 
Both 𝐿" and 𝐿# distances have been explored by pioneers with 𝐿# distance proved to encourage 
less blurring over 𝐿"29. Thus, our final objec0ve for 𝐿01%&'((&) is designed as EquaAon (10-11). 
 
																	𝐿01%&'((&) =

#
"
∑𝔼-,/[(𝐷(𝐺(𝑥, 𝑧) − 𝑐)"]Y1 − 𝑀𝑆𝑆𝑆𝐼𝑀(𝐷(𝐺(𝑥, 𝑧), 𝑐)] + 𝜆𝐿0!(𝐺)	 (10) 

																	𝐿0!(𝐺) = 𝔼-,.,/[||𝐺(𝑥, 𝑧) − 𝑦||#]	                                        (11) 
 
Where 𝜆 is a hyperparameter and is set as 1 across all training.  
 

2.2.3 Model Training 
The pipeline was implemented with Pytorch, and the training was performed on a GPU 
worksta0on with 2 × 𝑅𝑇𝑋	4090.  All the models were trained for 200 epochs, with the gradient 
linearly decayed aCer epoch 100. Adam op0mizer with a learning rate of 0.0002 and batch size of 
2 × 4 was applied.  
 



2.3 Baseline Algorithms 
Conven0onal CS and non-GAN DL approaches were included as benchmarks. DL baselines consist 
of 3D UNet (U256)38,  9 blocks ResNet (ResNet9) 37, and RST-T21. 
 
Abla0on studies that solely tune generators (ResNet9, U256 and RST-T) without genera0ve 
adversarial training are also conducted to underpin the improvement made by Re-Con-GAN.   
 

2.4 Evalua7on  
 
Image evalua0on consists of two parts. First, we performed quan0ta0ve quality assessment 
against fully sample nnFFT using the following metrics: root mean squared error (RMSE), PSNR, 
SSIM, and inference 0me, shown in EquaAon (12-14). 
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Where 𝑀𝐴𝑋<  is the max possible pixel value in a tensor, 𝜇&(-,/)  and 𝜇.  is the pixel mean of 
𝐺(𝑥, 𝑧)  and 𝑦  and 𝜎&(-,/).  is the covariance between 𝐺(𝑥, 𝑧)  and 𝑦 , 𝜎&(-,/)

"  and 𝜎."  is the 
variance of 𝐺(𝑥, 𝑧) and 𝑦.	Lastly,  𝑐# = (𝑘#𝐿)" and 𝑐" = (𝑘"𝐿)", where 𝑘# = 0.01 and 𝑘" = 0.03 
in the current work and 𝐿 is the dynamic range of the pixel values (2#	?@AB	CDE	C@-DF − 1). 
 
Second, a radiotherapy-specific task was performed to test the accuracy of liver tumor detec0on 
and segmenta0on using an automated liver tumor segmenta0on network trained on a separate 
sta0c 3D MR data cohort with a similar imaging protocol. Specifically, 70 pa0ents (excluding the 
48 4D MR data cohort) containing 103 manual GTV contours were scanned on the same 3T MRI 
scanner (MAGNETOM Vida, Siemens Healthcare, Erlangen, Germany) aCer injec0on of 
hepatobiliary contrast (gadoxe0c acid; Eovist, Bayer) for each pa0ent. A prototype free-breathing 
T1-weighted volumetric Cartesian sequence was used for 3D MRI acquisi0on. The scanning 
parameters were – TE=1.35 ms, TR=4.05 ms, matrix size = 260x320, in-plane resolu0on=1.09 mm 
× 1.09 mm and slice thickness=3 mm.  
 
Mask-RCNN34 has been used for various types of tumor detec0on and segmenta0on42–44. We 
employed this framework for the current task of liver GTV detec0on+segmenta0on with 
reconstructed accelerated images. ResNet5045 without weight-frozen per training stage was used 
as backbone. ImageNet46 pretrained weights followed by 3D sta0c MR dataset fine-tuning was 
implemented for yielding the model convergence. Both mask as well as detec0on heads were 
turned on during network training34. The pipeline was implemented with Pytorch, and the 
training was performed on a GPU worksta0on with 4 × 𝑅𝑇𝑋	𝐴6000.  All the models were trained 
for 80k itera0ons, with a learning rate 0.02 which is decreated by 10 at the 50k and 70k itera0ons. 
Stochas0c gradient descent op0mizer with a batch size of 32 (4 × 8), weight decay of 0.0001 and 



momentum of 0.9 was used. The final training loss decreased to ~0.03. The 70 3D MR pa0ents 
were used as the training set for tuning the detec0on+segmenta0on network. Images with 
posi0ve GTV annota0ons were 3 0mes augmented in the training set to balance the ra0o between 
posi0ve and nega0ve images. The training data is geometrically augmented using random resizing 
(image largest width to 640-800), horizontal flipping (p=0.5), and random rota0on (angle 0-180°) 
and morphologically augmented using random gaussian noise (p=0.5, kernel=5, sigma=1) and 
random brightness (p=0.5). 
 
The trained network segmented liver tumor in the 3x, 6x, and 10x images from the valida0on set 
of 4D MR (11 pa0ents; 14 GTVs) processed by Re-Con-GAN, U256, ResNet9, RST-T, CS along with 
FS nuFFT and 3x, 6x and 10x US nuFFT valida0on images. Since the detec0on+segmenta0on 
network was designed to detect region of interest in 2D, we ignored the inter-z-dimension and 
inter-temporal-dimension rela0onship and organized all the images from 3D training and 4D test 
sets as 2D frames. All the images were z-score normalized, black border cropped out, and resized 
to 512 × 512. Both images with and without posi0ve GTV annota0ons were included during the 
training and test stages.  
 
Image-wise object detec0on (intersec0on over union threshold=0.5) and segmenta0on precision, 
recall and Dice score as well as 2D segmenta0on 95% Hausdorff distance (	𝑑GHI) were used to 
evaluate the model performance as shown in EquaAon (15-18).  
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                                                           	𝑑GHI(𝑋, 𝑌) = 𝑀𝐴𝑋HI[𝑑6M , 𝑑M6] =
																																												𝑀𝐴𝑋HIX𝑀𝐴𝑋HI,-∈6𝑀𝐼𝑁HI,.∈M𝑑(𝑥, 𝑦),𝑀𝐴𝑋HI,.∈M𝑀𝐼𝑁HI,-∈6𝑑(𝑥, 𝑦)^		 (18)         
Where TP, FP and FN stand for true posi0ve, false posi0ve and false nega0ve, 𝑀𝐴𝑋HI and 𝑀𝐼𝑁HI 
represents the 95th percen0le of the distances between boundary points in 𝑋 and 𝑌. 
 
3 Experiments 
 
Reconstruc0on sta0s0cal results and visualiza0on of the valida0on set are reported in Table 1, 
Figure 4, and Figure 5.  
 
Visually, Figure 4 shows that as the accelera0on ra0o increases from 3x to 10x and the under-
sampled nuFFT input degraded, Re-Con-GAN architectures gradually lost predic0on sharpness 
while showing increasing streaking and 0ling ar0facts. Nonetheless, Re-Con-GAN with ResNet9 
and U256 generators recovered sharper and more detailed morphologies than RST-T. Regarding 
the quan0ta0ve metrics of Re-Con-GAN, the architecture with the ResNet9 generator performed 
slightly be_er than that with the U256 generator, while the predic0on of Re-Con-GAN with RST-T 
generator vastly degraded in comparison to the other two. Two different loss objec0ves (𝐿# + 𝐿" 
and 𝐿# + 𝐿" +MS-SSIM) were compared during Re-Con-GAN training, with the addi0on of MS-
SSIM encouraging slightly be_er model convergence. The per-pa0ent inference speed of Re-Con-



GAN with ResNet9 and U256 is 150 ms and 160 ms, respec0vely, mee0ng the requirements of 
real-0me 4D MR reconstruc0on (<500 ms)47.  
 
Re-Con-GAN with the ResNet9 generator slightly outperformed CS, which is comparable to Re-
Con-GAN with the U256 generator and substan0ally be_er than Re-Con-GAN with RST-T generator. 
As shown in Figure 4 and Figure 5, CS reconstruc0on results for 3x and 6x accelera0on show 
minimal ar0facts and good detail reten0on. CS shows more obvious streaking ar0facts than Re-
Con-Gan when increasing the accelera0on to 10x. CS reconstruc0on 0me of 120 s is ~700X longer 
than Re-Con-Gan.  
 
GTV detec0on and segmenta0on sta0s0cal results and visualiza0on of an example from the 
valida0on set are reported in Table 2 and Figure 6. Generally speaking, the liver tumor can be 
reliably segmented using images acquired with up to 5x accelera0on, but the performance 
dropped sharply with 10x. All the images reconstructed from different models (proposed and 
benchmarks) can, to varying degrees, improve the detec0on and segmenta0on results than US 
nuFFT images. From Table 2, we can observe that Re-Con-GAN ResNet9 achieved slightly inferior 
outcomes than FS nuFFT but was consistently superior to other benchmarks, including CS, Re-
Con-GAN with U256 and RST-T generators and 3D non-adversarial trained networks.  All models 
achieved be_er precision than recall, indica0ng a systema0c under-segmenta0on/detec0on using 
the network.  
 
From Figure 6, we can see that the GTV was s0ll detectable at a 100% confidence score on a 3x 
US nuFFT image frame, where the confidence score dropped to 79% on the 6x frame, and the 
model completely missed its target on the 10x frame. Mask-RCNN can accurately detect and 
segment GTV across all accelera0on levels on Re-Con-GAN and CS reconstructed images, while 
Re-Con-GAN achieved a moderately higher confidence score (98%) than that of CS (90%) at 10x 
accelera0on.  
 
 
  



Model Generator Accelera;on Loss PSNR↑ 1-SSIM↓ RMSE↓ Time (s)	↓ 

Re-Con-GAN 

ResNet9 

3x 𝐿! + 𝐿" 25.65 ± 2.89 0.06 ± 0.02 0.09 ± 0.03 

0.15 

𝐿! + 𝐿" +MS-SSIM 𝟐𝟔. 𝟏𝟑 ± 𝟑. 𝟎𝟐 𝟎. 𝟎𝟓 ± 𝟎. 𝟎𝟐 𝟎. 𝟎𝟖 ± 𝟎. 𝟎𝟑 

6x 
𝐿! + 𝐿" 21.68 ± 2.88 0.10 ± 0.03 0.13 ± 0.03 

𝐿! + 𝐿" +MS-SSIM 𝟐𝟑. 𝟗𝟕 ± 𝟑. 𝟖𝟒 𝟎. 𝟎𝟕 ± 𝟎. 𝟎𝟑 𝟎. 𝟏𝟏 ± 𝟎. 𝟎𝟒 

10x 
𝐿! + 𝐿" 20.01 ± 2.81 0.11 ± 0.03 0.15 ± 0.05 

𝐿! + 𝐿" +MS-SSIM 𝟐𝟏. 𝟔𝟏 ± 𝟐. 𝟗𝟑 𝟎. 𝟎𝟗 ± 𝟎. 𝟎𝟑 𝟎. 𝟏𝟑 ± 𝟎. 𝟎𝟒 

U256 

3x 
𝐿! + 𝐿" 25.09 ± 2.74 0.10 ± 0.03 0.10 ± 0.03 

0.16 

𝐿! + 𝐿" +MS-SSIM 25.41 ± 2.70 0.08 ± 0.03 0.09 ± 0.02 

6x 
𝐿! + 𝐿" 21.82 ± 3.12 0.10 ± 0.04 0.13 ± 0.04 

𝐿! + 𝐿" +MS-SSIM 22.01 ± 3.13 0.08 ± 0.03 0.12 ± 0.04 

10x 𝐿! + 𝐿" 19.95 ± 3.01 0.12 ± 0.03 0.14 ± 0.05 
𝐿! + 𝐿" +MS-SSIM 20.08 ± 2.99 0.11 ± 0.03 0.12 ± 0.05 

SWT-T 

3x 
𝐿! + 𝐿" 19.22 ± 2.64 0.18 ± 0.07 0.18 ± 0.11 

0.73 

𝐿! + 𝐿" +MS-SSIM 20.21 ± 2.76 0.16 ± 0.07 0.15 ± 0.09 

6x 
𝐿! + 𝐿" 18.05 ± 3.11 0.21 ± 0.11 0.20 ± 0.13 

𝐿! + 𝐿" +MS-SSIM 18.85 ± 3.14 0.21 ± 0.11 0.19 ± 0.12 

10x 
𝐿! + 𝐿" 15.78 ± 3.09 0.28 ± 0.10 0.24 ± 0.14 

𝐿! + 𝐿" +MS-SSIM 15.97 ± 3.01 0.27 ± 0.09 0.23 ± 0.13 

U256 

- 

3x 

𝐿! + 𝐿" +MS-SSIM 

22.23 ± 2.95 0.12 ± 0.04 0.13 ± 0.05 

0.16 6x 19.02 ± 3.12 0.13 ± 0.05 0.16 ± 0.06 

10x 17.34 ± 2.95 0.15 ± 0.05 0.19 ± 0.06 

SWT-T 

3x 18.91 ± 2.81 0.21 ± 0.09 0.20 ± 0.09 

0.73 6x 18.08 ± 2.95 0.24 ± 0.08 0.22 ± 0.12 

10x 14.52 ± 3.11 0.29 ± 0.12 0.27 ± 0.17 

ResNet9 

3x 22.45 ± 3.01 0.11 ± 0.03 0.12 ± 0.04 

0.15 6x 20.08 ± 3.12 0.12 ± 0.04 0.14 ± 0.05 

10x 18.25 ± 3.10 0.14 ± 0.06 0.17 ± 0.06 

CS 

3x 

- 

25.31 ± 2.56 0.08 ± 0.02 0.19 ± 0.05 

120 6x 20.73 ± 2.95 0.12 ± 0.03 0.16 ± 0.05 

10x 19.29 ± 2.99 0.13 ± 0.05 0.21 ± 0.08 

Table 1: Sta0s0cal results from our proposed Re-Con-GAN under 3x, 6x and 10x accelera0on rate 
and their corresponding baselines are presented. The best score and the worst score under each 
accelera0on is bolded and wavy underlined, respec0vely. The up arrows next the evalua0on 
metrics means that a higher value is superior and vice-versa for the down arrow. All the sta0s0cs 
are calculated with images normalized to [0,1] scale. 
  



 Detec&on Segmenta&on 
Image 

Modality Generator Accelera&on Precision↑ Recall↑ 𝐷𝑖𝑐𝑒 ↑ Precision↑ Recall↑ 𝐷𝑖𝑐𝑒
↑ 

HD 95↓ 
(mm) 

FS nuFFT - - 94.40 72.91 82.27 92.52 72.55 81.33 8.87 

US nuFFT - 
3x 80.27 61.45 69.61 76.35 57.23 65.42 13.29 
6x 55.34 45.27 49.80 49.37 40.56 44.53 18.79 

10x 25.34 17.21 20.50 21.56 13.75 16.79 19.31 

Re-Con-GAN 

ResNet9 
3x 93.57 71.38 80.98 91.26 70.07 79.27 8.95 
6x 91.05 70.32 79.35 89.77 68.38 77.63 9.13 

10x 85.45 67.46 75.40 82.06 62.57 71.00 9.27 

U256 
3x 92.47 70.35 79.91 89.46 68.32 77.47 9.07 
6x 87.78 68.25 76.79 86.87 65.34 74.58 9.18 

10x 81.46 64.57 72.04 79.34 60.54 68.68 9.47 

SWT-T 
3x 82.74 61.36 70.46 78.35 59.37 67.55 12.89 
6x 78.35 57.23 66.15 75.47 53.27 62.46 14.73 

10x 60.45 49.46 54.41 59.48 48.57 53.47 16.81 

U256 - 
3x 92.35 70.37 79.88 89.02 67.99 77.10 9.10 
6x 86.89 68.12 76.37 86.08 65.24 74.22 9.25 

10x 81.01 63.75 71.35 78.99 60.12 68.28 9.90 

SWT-T - 
3x 81.35 60.12 69.14 77.24 59.01 66.91 13.52 
6x 77.45 56.34 65.23 75.06 53.17 62.25 15.04 

10x 68.72 54.36 60.70 58.77 47.62 52.61 17.08 

ResNet9 - 
3x 93.06 71.12 80.62 91.05 69.57 78.87 9.02 
6x 90.05 69.23 78.28 88.01 67.03 76.10 9.12 

10x 83.53 66.89 74.29 80.27 61.05 69.35 9.37 

CS - 
3x 93.46 71.06 80.74 91.11 70.02 79.18 8.99 
6x 90.89 70.01 79.10 88.72 67.33 76.56 9.12 

10x 84.56 67.02 74.78 81.99 62.04 70.63 9.35 

Table 2: Sta0s0cal results from Mask-RCNN detec0on and segmenta0on from our proposed Re-
Con-GAN under 3x, 6x and 10x accelera0on rate and their corresponding baselines are presented. 
The best score and the worst score under each accelera0on are bolded and wavy underlined, 
respec0vely. The up arrows next to the evalua0on metrics mean that a higher value is superior 
and vice-versa for the down arrow.  
 
 
 



 
Figure 4: Visualiza0on of 3x, 6x and 10x reconstruc0on results of an axial view slice from a pa0ent 
in valida0on set. Reconstruc0on visualiza0on, zoomed-in region of interest as well as residual 
between predic0on and the fully sampled nuFFT reconstructed image are visualized. The regions 
in the red boxes are magnified for visualiza0on.  Residual maps are black-border-cropped for 
visualiza0on clarity. US nuFFT refers to the under-sampled nuFFT reconstructed image series 
(input), Re-Con-GAN ResNet9 refers to the Re-Con-GAN with ResNet9 generator reconstruc0on 
result, U256 refers to the 3D UNet reconstruc0on result, RST-T refers to the 3D RST-T 
reconstruc0on result, CS refers to the compressed sensing reconstruc0on result, and FS nuFFT 
refers to the fully sampled nuFFT reconstructed images (GT). All the images are visualized aCer 
normalizing to [0,1] scale. 



 
Figure 5: Visualiza0on of a selected temporal profile (mo0on binning = 1, 3, 5, 7) from a pa0ent 
in the valida0on set. 3x, 6x, and 10x reconstruc0on results from input, GT and our proposed 
method are visualized. Red arrows denote the pa0ent’s GTV.   All the images are visualized aCer 
normalizing to [0,1] scale. 
 
 
  



 
Figure 6: Visualiza0on of Mask-RCNN detec0on and segmenta0on results on a valida0on set 
pa0ent from selected Re-Con-GAN and baseline models. The detec0on bounding box and 
segmenta0on mask made by Mask-RCNN are visualized on top of its corresponding input image 
modality with confidence scores. All the images are visualized aCer normalizing to [0,1] scale. 
  



4 Discussion 
 
The paper focuses on liver 4D MRI, which is par0cularly relevant to image-guided liver cancer 
radiotherapy. Hepatocellular carcinoma (HCC) is the fiCh most common cancer worldwide in men 
and the seventh in women. HCC represents the third most frequent and fast-rising cause of cancer 
deaths48,49. The past few decades have witnessed a con0nuous decrease in the average age at 
HCC diagnosis, with most HCC pa0ents now diagnosed between 45 and 6050. Addi0onally, the 
liver is one of the most common metasta0c sites of several cancer types, including colorectal, 
pancrea0c, melanoma, lung, and breast cancer51.  
 
Surgical resec0on remains the standard of care for hepa0c primary and metasta0c tumors and 
con0nues to demonstrate persistent posi0ve prognosis outcomes in surgical-qualified 
candidates52. For non-surgical pa0ents, orthotopic liver transplants, abla0ve procedures, 
chemotherapy, and radia0on therapy (RT) are considered effec0ve alterna0ves53. Stereotac0c 
body radia0on therapy (SBRT), delivering intense and highly conformal radia0on doses, has 
shown promising results in hepa0c malignancy and metastasis management53–56. The success of 
liver SBRT, however, depends on the ability to focus the high radia0on dose on the tumor while 
minimizing the dose to the normal liver 0ssue, which is sensi0ve to radia0on57. A prerequisite for 
successful liver SBRT is accurate liver tumor imaging and mo0on management of the highly 
mobile organ. 
 
Unlike lung tumors, which are oCen clearly visualized in Computed Tomography (CT) and 4D CT, 
liver tumors have low soC 0ssue X-ray contrast but high MR contrast, making MRI and 4D MRI an 
ideal pre and during-treatment liver imaging. 4D MRI requires densely sampled k-space data for 
spa0otemporal reconstruc0on. Fully sampling the required k-space data results in lengthy MR 
sequences that are challenging for MR simula0on due to limited pa0ent tolerance and available 
scanner 0me and imprac0cal for online MR-guided RT58. Accelera0on of MR acquisi0on via down-
sampling the k-space and rapid image reconstruc0on without compromising the usability of the 
image quality is thus highly desired. Non-cartesian k-space sampling and compressed sensing 
have achieved remarkable success in the former goal but struggled with the la_er due to the slow 
itera0ve algorithms. Though some previous works a_empted to u0lize DL methods, such as 3D 
UNet, RNN, and Transformers variants16,20,21, to tackle the problem, these methods are 
heterogeneous in reconstruc0ng dynamic liver images, as shown in the non-adversarial trained 
DL benchmarking results in Figure 4 and Table 1.   We postulate that the difficulty of defining a 
loss func0on suitable for simultaneous detail reten0on and ar0facts suppression is a contribu0ng 
factor. 
 
Therefore, we developed Re-Con-GAN in this work. Re-Con-GAN is structured with pair-trained 
condi0onal GAN architecture constraint with loss objec0ve fused from 𝐿", 𝐿# and MS-SSIM. Three 
types of generators, including 3D ResNet9, 3D UNet and 3D RST-T, are demonstrated. 70 × 70 
PatchGAN is u0lized as the discriminator. Re-Con-GAN is validated on an in-house dynamic liver 
MRI dataset with 48 pa0ents having a total of 12332 2D+t image series. Further downstream 
valida0on tasks of GTV detec0on and segmenta0on were also conducted on Re-Con-GAN 
reconstructed images.  Re-Con-GAN showed compe00ve performance to CS in image quality and 



is significantly faster.  The real-0me inference speed and sharp liver GTV morphology visualiza0on 
of Re-Con-GAN are conducive to image-guided liver radiotherapy. Our proposed methods achieve 
1-SSIM of 0.05 ± 0.02 at 3x accelera0on, which outperforms previous GAN-based 3D stack-of-
radial liver MRI reconstruc0on studies conducted by Gao et al. repor0ng 1-SSIM of 0.16 ± 0.01 
at 3x accelera0on33. The study based on raw k-space data and undersampling radial spokes of the 
stack of stars can be readily deployed. 
 
There are several theore0cal and prac0cal advantages to using GAN for 4D MRI. Standard NNs, 
such as U256, ResNet9, and RST-T, fully parameterize their loss func0on and use the fixed loss 
func0on to conduct representa0on learning from training informa0on.  In GANs, the penalty 
imposed by the discriminator is a nonparametric loss func0on, mi0ga0ng the inflexibility of an 
explicitly defined loss func0on and tradeoffs in noise, uniformity, detail reten0on, and 
computa0onal tractability. As shown here, Re-Con-GAN reconstructs sharper and more consistent 
images than the compared DL benchmarks (U256, ResNet9, and RST-T). The improvement is more 
evident in quan0ta0ve image quality assessment using SSIM, PSNR, and RMSE than in the 
automated liver segmenta0on task.  Liver segmenta0on using deep learning is less sensi0ve to 
image quality but more dependent on the training data size, which is the common bo_leneck of 
the current study. This is evidenced by a larger improvement in the segmenta0on accuracy with 
a higher accelera0on ra0o, where the image quality degrada0on is evident.  We also note that 
the All generators significantly outperformed Transformers (RST-T). Among all the compared 
generators (U256, ResNet9, and RST-T), CNN architectures achieve similar performance, with 
U256 slightly inferior to ResNet9. We a_ribute the result to the current limited size of training 
samples. Evidence has shown that Vision Transformers architecture performance declines when 
trained on small datasets due to the lack of locality, induc0ve biases, and hierarchical structure 
of the representa0on commonly observed in CNNs. Therefore, Vision Transformers architectures, 
including RST-T, require large-scale training data or domain-relevant pre-training + fine-tuning to 
learn such proper0es from the data distribu0on59.  
 
The current work can be improved or extended in several areas. First, our implementa0on is 
restricted to learning 2D+t image series. 3D+t training would allow more effec0ve learning of the 
inter-slice anatomy but requires an exceedingly large GPU memory footprint. Second, the current 
valida0on is conducted on a dataset collected from a single ins0tute. Although our pipeline is 
shown robust to the single ins0tu0onal held-out test, its performance in the external data needs 
further tes0ng. Despite the recent rapid increase of medical images in the public domain, raw k-
space data of 4D MRI essen0al for realis0c undersampling are rarely stored and shared.  Third, as 
more aggressive accelera0on ra0os (6x and 10x) are pursued, 0ling ar0facts was suppressed but 
s0ll no0ceable. Model structures more robust to 0ling ar0facts, such as diffusion-based 
frameworks60 or post-processing techniques, are worth exploring to combat such ar0facts. Fourth, 
despite the real-0me image reconstruc0on speed, acquiring the highly under-sampled stack of 
star k-space data is not real-0me. As a result, 4D MRI using Re-Con-GAN does not reflect real-0me 
anatomy. Sparser sampling in combina0on with prior retrospec0ve 4D MRI may be necessary for 
real-0me 3D MR reconstruc0on. Lastly, the current method requires transforma0on from k-space 
to images as input. The addi0onal step leads to informa0on loss and added latency. Future work 
will explore networks using k-space or coil data as the input.  



 
5 Conclusion 
 
An efficient yet robust liver 4D MRI reconstruc0on framework, Re-Con-GAN, is proposed. Re-Con-
GAN uses a flexible framework with 3D ResNet9, 3D UNet and 3D RST demonstrated as generator, 
PatchGAN as discriminator, and 𝐿# , 𝐿"  and MS-SSIM fused measurements as loss objec0ves. 
Valida0on from the in-house liver 4D MRI dataset substan0ates the superior inference speed of 
Re-Con-GAN to its CS benchmark as well as higher predicted image quality to the compared 3D 
UNet, 3D ResNet and 3D RST-T DL Benchmarks. 
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