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Abstract

The population-level evolutionary rate of HIV contains vital information about the rate of the epidemic
spread due to the fact that the time between transmissions affects the population level divergence. A
sequence of rapid transmissions between hosts correlates with a slow evolutionary rate, while a sequence
of less frequent transmissions between hosts correlates with a fast evolutionary rate. In real epidemics
these two modes of rapid and slow spread will be mixed across lineages in a corresponding phylogenetic
tree as well as over time. In this paper we develop the ‘dual-rate model’ that allows us to identify regions
in a phylogenetic tree that correspond to periods of fast and slow epidemic spread. We investigated two
separate HIV-1 epidemics with very different spread patterns, the Latvian HIV-1 subtype A1 IDU and
heterosexual epidemic and part of the Swedish HIV-1 subtype B IDU epidemic. First, using a Bayesian
data augmentation model we show that even on level of whole lineages (root to tip) more than one
evolutionary rate was present in the Latvian data, but not in the Swedish data. Next, we developed a
two-state Markov chain model that assigns evolutionary rates along branches of a phylogeny by switching
between Slow and Fast epidemiological states. We show that this dual-rate model accurately recovered the
heterogeneity of spread rates across lineages and time in the Latvian A1 epidemic as well as recovering
the more homogeneous and stable spread of HIV-1 amongst Swedish IDUs. Our method is able to reveal
sub-branch Fast and Slow spread, related to individual chains of similar host-host spread rates. Thus, in
this paper we show how the evolutionary rate – epidemic spread connection can be used to infer detailed
and localized epidemic spread patterns that otherwise might have been missed in a phylogeny.

Author Summary

Because pathogen phylogenies are objective records of the pathogen epidemiology they have become a
popular tool in reconstructing the spread of many measurably evolving pathogens, in particular many
RNA viruses. We have previously shown that HIV-1 epidemics that have spread at different speeds display
an inverse relationship with the population-level evolutionary rate of HIV-1, i.e., fast spread is associated
with a slow evolutionary rate. Here we show that it is possible to infer dynamic switching from fast to
slow and slow to fast spread throughout a phylogeny at the sub-branch level. The sub-branch level is
important because we seldom have a complete sample from an epidemic, i.e., many phylogenetic branches
contain several transmissions. Our the dual-rate model was able to accurately reconstruct dynamic and
heterogeneous spread patterns in the Latvian HIV-1 epidemic as well as the much more homogeneous
spread pattern of HIV-1 in Sweden. This type of inference expands the ability to infer how HIV, and
other pathogens with similar evolutionary systems, spread in host populations.
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Introduction

The relationship between genetic distance and calendar time is not straightforward. Nevertheless, methods
have been developed to incorporate a range of assumptions about both the evolutionary and demogrpahic
processes that determine the complex mapping of genetic distance to calendar time [1]. These methods
have been sucessfully used to address important questions in the epidemiology of HIV including estimating
the time of the origin of pandemic HIV [2–4], estimating the distribution of serial intervals [5, 6], and
parameter estimation [7,8]. Most relaxed-clock phylogenetic methods treat the distribution of evolutionary
rates over a pylogenetic tree as phenomenological property determined by the data. This assumption
allows those methods to incorporate a very wide range of potential evolutionary rates on a tree with a small
number of parameters, which is a decided benefit when the typical goal of such analyses is to estimate the
time at which internal nodes are likely to have occurred. However, the variation in evolutionary rates is
caused, in part, by properties of the underlying infectious dynamics of HIV in the sampled population
that are fundamentally interesting to an epidemiologist. Treating the evolutionary rates as a nuisance to
estimate divergence times occludes any attempt to make inference to the dynamics that generated the
variance in evolutionary rates themselves. In this paper we propose a method to ‘decompose’ estimates of
evolutionary rates in a phylogenetic tree into distinct, epidemiologically meaningful states and use this
method to study the epidemiological properties of the underlaying transmission dynamics.

Within-host genetic diversification of the the V3 region of the HIV envelope occurs in distinct
phases [9,10]. Initially mutations accumulate slowly limited by neutral evolution and possible reversions of
mutations such as CTL escape mutations [11]; however, after the infected person mounts a robust response
to the infection, the immune system drives evolution of the population of HIV-1 through a process of
immunological escapes leading to an elevated evolutionary rate [10, 12]. We refer to these two within-host
periods as stage one and two respectively. Sequential transmissions where the time between transmissions
is less than the length of stage one will show up as distended periods of particularly slow evolution as
transmission occurs before the immune system has a chance to drive evolution of the viral population.
Conversely, a sequence of transmissions where the time between transmissions is longer than stage one
will show up as a period of faster evolution as the viral population in each infected host has been driven
by diversifying selection. Similarly, for transmissions occurring later in the course of infection, the infected
person will have passed into stage 2 and transmit a virus that has accumulated mutations at a faster rate.

Thus, the phylogenetic signal of evolutionary rates is correlated to the underlying rate of epidemic
spread. This theoretical phenomenon has been directly observed in studies of epidemics believed to be
dominated by either fast or slow epidemic spread [10] as well as in epidemics with overall changing spread
rates [13]. If periods of slow and fast evolution can be identified on a phylogenetic tree, then we may be
able to identify times and places where HIV-1 outbreaks happened or are presently occurring.

Materials and Methods

Sequence data

We used two sets of sequence data, one representing a mixed IDU/heterosexual and rapidly expanding
outbreak in Latvia, and the other representing an ongoing IDU transmission chain in Sweden during a long
period of stable incidence. For the Latvian data, HIV-1 DNA sequence data were collected and sampled
as previously described [14–16]. We analyzed 271 HIV-1 subtype A1 sequences from the env V3 region
with known sampling dates. The aligned and trimmed sequences had length 362 nt. The HIV-1 phylogeny
was inferred using PhyML 3.0 [17] with the GTR + Γ + I evolutionary model and the subtree pruning
and re-grafting search method. The tree was rooted at the MRCA of the set of samples from 1996-1998
(n=8) (figure 2). The coalescent times of the internal nodes were inferred using BEAST 1.7.5 [18] with the
GTR + Γ + I evolutionary model assuming a fixed ML tree topology (from the PhyML reconstruction),
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stepwise skyline population size model with 20 groups, and log-normal uncorrelated relaxed clock model.
The Markov chain was run for 5× 107 steps with samples taken every 2000 steps. A uniform prior was
placed on the root height with bounds at 1982 and 1990 based on the first observation of an A1 infected
person in Latvia in 1990. Branch lengths were estimated by taking the mean of each branch length from
the posterior sample of trees with 20% of samples ignored as burn-in.

To isolate a Swedish transmission cluster that represents recent and historical transmission in Sweden
we identified the largest clade of known Swedish HIV-1 subtype B IDU sequences: First, we found all the
known HIV-1 subtype B envelope sequences with a known IDU risk factor that were isolated from a Swedish
patient (http://www.hiv.lanl.gov/). Second, we used HIV BLAST (http://www.hiv.lanl.gov/) to find
the 5 closet sequences, regardless of their geographic origin, to each index sequence. Third, to determine
rough genetic relationships we made a neighbor joining tree of the set of unique sequences including all
of the index patients and their closest BLAST results. We defined as the Swedish transmission cluster
the largest subtree that contained only tips isolated from Sweden. Finally, we obtained the maximum
likelihood topology and the genetic distances using PhyML 3.0 [17] under the GTR + Γ + I model (figure
3). The ML tree was rooted with the oldest sample from 1995, which was taken 5 years before the next
oldest sample, as an outgroup. The times of the internal nodes was determined using the same method
and assumptions as the Latvian data.

Sampling from the posterior of the data augmentation analysis

We take a Bayesian approach to estimate the model parameters by producing draws from the conditional
distribution of the parameters and state variables given observed phylogenetic distance x∗i and times y∗i
assuming the following prior distributions on the parameters(

µFast

µSlow

)
∼ N (ν,Σ), κ =

1

τ
∼ Gamma(r, λ), and p ∼ Beta(a1, a2)

An advantage of having introduced the unobserved state variables, is that we can readily obtain these
draws using relatively simple Gibbs samplers. Specifically, we sequentially draw realizations from the
conditional distributions: The state variables given data and values of the other parameter

ξi|x∗i , y∗i , µFast, µSlow, κ, p ∼ Bernoulli(Qi),

with

Qi =
Ai

Ai +Bi

and

Ai = p× exp
(
−κ

2
(x∗i + µSlow · y∗i )2

)
Bi = (1− p)× exp

(
−κ

2
(x∗i − µFast · y∗i )2

)
,

the proportion p of lineages in the Slow state, given the augmented data and other parameters

p|A, µ, κ ∼ Beta

(
a1 +

∑
n

ξi, a2 +
∑
i

(1− ξi)

)
,

the conditional distribution of the precision κ = 1/τ , conditionally on the augmented data A and the
parameters µFast and µSlow is

κ|A, µ ∼ Γ

(
r +

n

2
, λ+

1

2

n∑
i=1

(x∗i − (µFast + (µSlow − µFast)ξi) · y∗i )2

y∗i

)
.
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To apply this model to the Latvian outbreak data, we set the hyper-parameters to the following values

ν =

(
2.02× 10−3

16.9× 10−3

)
, Λ =

(
10−1 0

0 10−1

)
, r = 1, λ = 10−1, a1 = a2 = 1.

Constraints on the distribution of the evolutionary rates in the Fast state

To constrain the model we fixed µFast and σFast. Our constraints are based on an analysis of the
evolutionary rates in the subtype A1 epidemic in IDUs in the former Soviet Republics (FSU), believed
to be dominated by very fast transmission. Although estimates from this study are population based
rather than on the within-host evolutionary rates, it stands to reason that in a very rapidly spreading
epidemic in a susceptible population the time between transmissions will be low and, therefore, the
population rate of evolution will be a reasonable prior on the evolutionary rate in the Fast state. The
evolutionary rate in FSU was measured to be 0.20% substitutions/site with normally distributed error
having standard deviation 0.02%. The point estimate was assumed to be a reasonable estimate of the
mean prior distribution of evolutionary rates in the Fast state (µFast = 0.2%. We selected 0.03% as
the cut off point between the Fast and Slow states (at this value ¿99% of the density is in the interval
(0, 0.3%]). To lessen the effect of the low prior we assumed σFast = 0.2% rather than 0.02%.

Iterated filtering

To determine reasonable values of θ we used the iterated filtering method mif in the R library pomp

0.43-8 [?] to find an estimate of the maximum likelihood parameter set, θMLE . We treated the tree as a
pseudo-timeseries where branches (organized in a depth-first fashion) constituted ‘times’ and the data
were the external estimates of the branch lengths in time. For each branch the likelihood was calculated
(algorithm 1) for a θ drawn from the filtering distribution. The method was run using 300 particles filtered
over 300 iterations with a cooling rate of 0.985. We assumed µFast and σFast were fixed at values 0.02%.
The method was run separately for the Latvian and Swedish data from several random starting points to
avoid local optimization.

Tree paining

We refer to the distribution of Fast (red) and Slow states (blue) and their corresponding evolutionary
rates over the tree to be the tree ‘paining’. To paint the trees, first θMLE was found using an iterating
filtering method. Then, for each branch in a depth-first order, the dual-rate model was realized 10,000
times with the parameters given by θMLE . The most likely realization of the model was assumed to be
the paining for that branch. The evolutionary rate and state at the end of the parent branch was assumed
to be the starting evolutionary rate and state at the beginning of the child branches. This process was
repeated 100 times to generate 100 independent tree paintings each for the Latvian and Swedish data.
The standard deviation of the likelihoods of the 100 paintings was 0.6 log units for the Latvian data and
¡0.1 log units for the Swedish data.

Results

Conceptual model and nomenclature

All of the analyses that we present in this paper are based on a simple conceptual 2-state model where
any point along each branch in a phylogeny is in either the Fast state corresponding to rapid transmission
between individuals and corresponding low rate of evolution or in the Slow state corresponding to slow
transmissions between individuals and a much higher rate of evolution. Past work [Reference] suggests
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we can constrain that evolutionary rates by λSlow ≤ c ≤ λFast, for some known cut-off value of c. Our
analysis will further assume the evolutionary rates on each branch to be random with with densities fSlow

and fFast, respectively. Specifically, we will assume that fSlow is a Gaussian density f(λ|µSlow, σSlow)
with mean µSlow and standard deviation σSlow restricted to the internal (0, c), and fFast is a Gaussian
density f(λ|µFast, σFast) restricted to the the half-line (c,∞). In practice, the values of µSlow, µFast, σSlow

and σFast are such that the probability of being outside the restricted sets is essentially zero.
The data are phylogenetic tress with branch lengths measured in either genetic or temporal distances.

Given a phylogenetic tree T , with tips {1 · · ·n} sampled at times {t1, . . . , tn} and internal nodes {n +
1, . . . , 2n− 1}, and rooted at node n+ 1, assume that the distance from tn+1 to ti is x∗i and y∗i measured
in genetic and temporal distance respectively. T has edges {1, . . . , 2n− 2} such that the length of the ith

edge has genetic length xi and temporal length yi.

Evidence for dual evolutionary rates in the Latvian and Swedish epidemics

Our first analysis looks for evidence of multiple evolutionary rates at the level of whole lineages (path
from the root to the tip of each taxa) in a phylogenetic tree of the Latvian sequence data. To do this,
we constructed a Bayesian data augmentation model that assumes the existence of an unobserved state
variable, ξi, which for each extant taxa that takes the value 0 if the lineage is in the Fast state or 1 if the
lineage is in the Slow state. In this framework, the (full) augmented data are

A = {(x∗i , ξi, y∗i ), i = 1, . . . , n},

corresponding to the length of the lineage measured from root to tip in both genetic distance, x∗i , and
time, y∗i , and the unobserved state variable ξi.

We assume that the conditional distribution of the phylogenetic distance x∗i given time y∗i and state
variable ξi is Gaussian with conditional expectation expectation

E[x∗i |y∗i , ξi] = (µFast + (µSlow − µFast)ξi) · y∗i

=

{
µFast · y∗i if ξi = 0
µSlow · y∗i if ξi = 1

and conditional variance variance
Var(x∗i |y∗i , ξi) = τy∗i .

Given the high evolutionary rate in the V3 region that we used to infer the tree and the relatively
long duration of the outbreak (¿10 years), the normal distribution is a reasonable approximation to the
underling discrete process of accumulating mutations over time. We model the marginal distribution of
the state by setting P[ξi = 1] = p, that is, we assume that a fraction p of the rates are in the Slow state.

The prior mean evolutionary rates, ν, was informed by previously described average evolutionary rates
in rapid spread among IDUs in former Soviet union, and slower spread among heterosexuals in Africa [10].
We used MCMC with Gibbs sampling to integrate over the posterior to get an estimate of µFast and µSlow

evolutionary rates and the probability that each lineage is in the Fast state. Figure 1 shows estimates of
the evolutionary rates and the probability of assignment of each lineage to the high evolutionary rate
group. In the Latvian epidemic both µFast = 0.68% and µSlow = 1.27% substitutions/site are closer
to one another than they are to the mean prior rates. This homogenizing of the evolutionary rates is
expected given the fact that the lineages are not independent (branches near the root are shared by
multiple lineages) and that a given lineage could represent a very large number of transmissions, possibly
spanning years, that could contain both periods of fast and slow spread (e.g. a transmission into a new
susceptible social network). However, even at this course-grained level of analysis there is evidence that
two rates distinct evolutionary rates in the Latvian epidemic.

The estimated distribution of states in the Swedish epidemic is nearly all Fast with rates µFast = 0.51%
and µSlow = 1.70% substitutions/site. The high value µFast in the Swedish data is effecting some degree
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of overdispersion in the otherwise Poisson fit to the data (Figure 1). Thus, in this case there is little
evidence for two highly distinct evolutionary rates.

The number of diagnoses in Swedish IDU epidemic is stable over the time that is covered by the
Swedish tree while the infection rates in the Latvian are rapidly changing over the course of the time
covered by the Latvian tree (Fig 4). This analysis shows that the distribution of evolutionary rates,
even at the level of whole lineages, is influenced by the underlying epidemiology. To relax the strongest
assumptions (independently evolving lineages and lineages as the basic analytical unit) we developed a
dynamic and sub-branch dual-rate model.

The dual-rate model of HIV evolutionary rates

The data augmentation analysis in the previous section gives some evidence for more than one evolutionary
rate in some contexts; however, transitions between fast and slow rates of epidemic spread can occur at
the sub-branch level. For example, an infected person entering a highly connected IDU or sexual network
could spark a small outbreak leading to a sequence of rapid transmissions that would show up as a period
of fast spread at the sub-branch or branch level. Therefore, each branch in a tree should be able to
have a unique pattern of transitions between Fast and Slow states. Further, because the evolutionary
rates in periods of Fast and Slow states are determined by the virus-host interaction over one or more
transmissions, the variance of evolutionary rates in each state should have a non-zero value to account for
unobserved virus and host heterogeneity. To implement this model we used a simple two-state Markov
chain that assigns evolutionary rates along branches of a phylogeny by switching between the Slow and
Fast states at given rates (Fig 9). The vector θ = {µSlow, σSlow, µFast, σFast, δS→F , δF→S} specifies the
model where δS→F is the rate of switching from the Slow to Fast state, and δF→S is the rate of switching
from the Fast to Slow state. The model assumes that each edge ‘inherits’ both the initial state at the
end of its parent edge and the evolutionary rate, λi, such that the initial condition of the model is only
the state at the root of the phylogenetic tree. To constrain the model to a more reasonable number of
parameters, we fix µFast and σFast to a universal within-patient level (detailed in Methods section).

The data for the dual-rate model is a set of branch lengths of a phylogenetic tree with a fixed topology
measured in both units of calendar time and genetic distance. In general, genetic branch lengths are
inferred using a standard evolutionary model and temporal branch lengths are either directly observed,
such as through a known introduction event or transmission, or inferred through relaxed-clock phylogenetic
methods [1,19] The dual-rate model translates the genetic distance of each branch into a temporal distance
conditional on θ by first selecting a value of θ and then simulating the dual-rate model over the length of
the branch. The simulation produces a step function over the branch alternating between evolutionary
rates drawn from f(λ|µSlow, σSlow) and f(λ|µFast, σFast). The reciprocal of λ is the rate at which time
accumulates as a function of genetic distance, therefore integrating over the reciprocal of the simulated step
function gives the length of the branch in calendar time. The observed branch length in calendar time is yi
and the simulated branch length is ŷi, therefore the likelihood of branch i is L(yi|θ) ∼ N (yi|µ = ŷi, σ = 1).
The simulation algorithm is shown in figure 1.

Dual rate tree patterns reveal different spread dynamics in Latvian and Swedish
IDU networks

The maximum likelihood ‘paintings’ (i.e. the distribution of Fast and Slow states over a time-scaled
phylogeny depicted as colors) of the Latvian and Swedish data are shown in figures 5 and 7. In the single
best painting of the Latvian phylogenetic tree we found the average evolutionary rate to be 0.09% in
the Fast and 2.07% substitutions/site in the Slow state. Likewise, in the Swedish epidemic we found the
average evolutionary rate to be 0.1% in the Fast and 1.75% substitutions/site in the Slow state.

The Latvian tree shows clearly clustered regions of mostly Fast or Slow spread suggesting that the
epidemic is quite heterogeneous with respect to the rate of spread and that lineages of fast spread can exist
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for several years. The heterogeneity of the Latvian tree painting is consistent with the epidemiology of
HIV in Latvia [14–16]. Figure 4 shows the number of HIV diagnoses stratified by risk factor (heterosexual,
IDU). The very rapid increase in IDU cases must have been driven by rapid sequential, and parallel,
transmissions, as indicated by the high predominance of blue (Fast) near the root of the tree. Heterosexual
transmission in Latvia also appears to be approximately exponentially increasing although at a much
slower rate, which is represented by long red branches of het-het transmissions. This tree painting is
consistent with the theory that the HIV-1 subtype A1 epidemic in Latvia rapidly spread through the
IDU population and spilled over into the heterosexual population where it sustained by slower, but with
sufficient force of infection to be above the epidemic threshold, het-het chains of transmission [16]. If this
theory is correct, then focusing on prevention efforts on the higher-risk IDU population will not necessarily
translate to prevented infections in the at-risk heterosexual population [20].

The Swedish tree painting gives a very different picture, however, also consistent with the dynamics
among Swedish subtype B IDU infected [21]. The inferred evolutionary rates in the Swedish tree are
much closer to one another than in the Latvian tree, which suggests a more homogeneous process of
spread (i.e. on average, transmissions occurring in the Slow state are not that much slower than in the
Fast state). Thus, this result is consistent with both the data augmentation analysis and the known
epidemiology. The diagnosis rate of new IDU cases in Sweden over the time spanned by the tree is nearly
constant excluding an slight increase in new diagnoses in 2006-2007 (figure 4. The low number of total
cases and the constant diagnoses rate implies a mostly homogeneous epidemic without significant fast and
slow spreading substructure like that observed in the Latvian A1 tree. However, the slight increase in
diagnosed cases in 2006-2007 aligns with a cluster of rapid spread beginning in early 2003.

This method cannot directly estimate the proportion of transmissions that are caused by recently
infected persons, but the average proportion of time spent in the Fast state on extant lineages can be
thought of as a lower bound on this key epidemiologic parameter. Figures 6 and 8 show the the average
proportion of time spent in the Fast state on extant lineages over time in the Latvian and Swedish trees
respectively. The Latvian tree shows a very high proportion of Fast very early on in the epidemic dropping
down to about 50-60% around 2005. The first cases of HIV were diagnosed in Latvia in the mid 1990s
and rapidly spread through the IDU population reaching a zenith in 2001 only about 4 years after the
the first known IDU case. The extremely rapid early spread among IDUs must correspond to a very
high proportion of transmissions from recently infected people, which the results from the dual-rate
model clearly shows. Likewise, as the force of infection rapidly drops off and the epidemic stabilizes our
dual-rate inference indicates a corresponding stabilization in the proportion of lineages in the Fast state,
suggesting that the tree painting is consistent with theoretical expectations given the epidemiology of
HIV in Latvia [16]. The Swedish epidemic is stable over the course of time covered by the tree, and the
dual-rate inference reports a corresponding flat proportion of of time spent in the Fast state.

Discussion

We have previously shown that the HIV molecular clock rate in a phylogeny is inversely correlated to
the HIV spread rate among its hosts [10, 13]. The overall evolutionary rate at any time across the entire
tree may, however, mask individual deviations from the general trend, such as relatively small outbreaks
or heterogeneous spread patterns in parallel transmission chains associated with different risk groups.
From a public health and prevention perspective, such mixed patterns may in fact be the most important
epidemiological information one wants to extract. In this paper we have shown that the pattern of how
the molecular clock rates are distributed across a phylogeny is indeed revealing how HIV spreads in a host
population. In the Latvian population we accurately reconstructed the early fast spread among IDU of
HIV-1 subtype A1, and the later, and generally slower, spillover and spread among heterosexual contacts.
Our dual-rate inference method also accurately reconstructed the quite different spread pattern among
Swedish HIV-1 subtype B infected IDUs.
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The difference between Fast and Slow spread is not fixed or absolute, as seen in the inference of the
Swedish IDU data. Ideally, Fast spread is only involving transmissions during the early phase of infection,
when the immune pressure has not yet strongly affected the within-host evolutionary rate, and Slow spread
only involves spread during the later infection phase. In real epidemics we will likely see mixtures of these
two idealized rates. Thus, Slow spread in one case may in addition to transmissions during later stage
infections also involve a few transmissions shortly after infection, while in another case there may be more
fast transmissions affecting the Slow rate. Similarly, Fast spread may involve different ratios of fast and
slow spread. Thus, Slow and Fast in two different situations may mean different things. In fact, comparing
the posterior rates to the priors (which were estimated from fairly homogeneous populations [10]) and to
each other gives additional information about the heterogeneity of spread rates in the population studied.

Our method operates on the sub-branch level, which to some extent takes into account that we have a
sparse sample from the epidemic. This means that many individual hosts may be represented by a single
phylogenetic branch [22]. While it must be true that any transition from red (Slow) to blue (Fast) in the
’painted’ trees involve one host-host transmission, the reverse (blue to red) does not neccessarily mean
one transmission, as a host itself transitions from early to late phase infection. Furthermore, sustained
Fast transmissions (as in the early Lativan A1 epidemic, Fig 5) will cause relatively long blue branches or
branch segments – such streaks obviously involve many hosts. Similarly, red branch segments may involve
several later phase (chronic) transmissions. Thus, blue and red segments generally are likely to contain ¿1
host of similar stage transmissions. It is also important to point out that while a slow evolutionary rate
implies spread during the initial infection phase, it does not necessarily imply that massive numbers of
hosts got infected. The Swedish IDU epidemic we examine here shows that the HIV-1 population-level
evolutionary rate is slow, indicating that most new IDU infections came from recently infected donors,
while the incidence is still quite low. This can be explained by a small number of active transmission
chains (e.g. non-terminating chains). Thus, a slow evolutionary rate indicates that transmissions occur in
the acute disease stage, and if not many people become infected then there is potential for it. In the case
of IDU mediated spread, this pattern means that treatment as prevention and sero-sorting will not be
effective to stop new infections, but needle exchange programs potentially would.

Because the spread rate directly influences the population level evolutionary rate [10], one must be
careful not to make assumptions about the evolutionary process that would affect the epidemiological
interpretation of the phylogenetic results from an epidemic. Temporal data could come from independent
information such as recorded outbreak starts or when someone infected another, or data about when
patients were infected based on independent biomarker data [23]. When such data is unavailable, or
only partially available, one can infer transmission times using molecular clock approaches. When doing
that it is crucial to avoid biasing the molecular clock in such a way that it reduces local deviations or
homogenizes rates across branches. Relaxed or local clocks would be proper for this purpose.

As the marriage of phylogenetics and dynamic epidemiological modeling matures, phylodynamic studies
will become more powerful and able to extract epidemiological information that traditional epidemiological
methods have difficulties with. Because HIV phylogenies are affected by host-host transmissions, there
has been quite a lot of interest to use HIV genetic information. However, the connection between the
evolutionary rate of the ethiological agent and the spread rate among hosts is one source of information
that as of yet has not been extensively used [10, 13, 24]. In this paper we explored further how this
connection can be used to infer heterogeneous epidemic patterns that otherwise might have been missed if
one would have averaged across the phylogeny. Future developments may include within-host dynamics
and between host transmissions to accurately model effective clock rates and also include the effects of
the pre- transmission interval [12,22].
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Figure Legends

Figure 1. Bayesian data augmentation classification of lineages into Fast and Slow
spreading states. This figure shows the average posterior assignment of each lineage to the Fast (blue)
and Slow (red) states in the Latvian data (top) and Swedish data (bottom). In both cases the priors on
the evolutionary rates in the Fast and Slow states were Normal with means 2.02% and 16.9% per site per
year respectively.

Figure 2. Phylogeny of 271 V3 sequences from the mixed IDU-heterosexual Latvian
epidemic. This is the maximum likelihood phylogeny of 271 V3 HIV-1 sequences sampled from 1998
through 2007 infered under the GTR + Γ + I model. The sample year of each tip is indicated by its color.
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1: α← 0
2: ŷ ← 0
3: while α < x do
4: if S is Fast then
5: draw χ from Exponential(δF→S)
6: if α+ χ < x then
7: ŷ ← α+ χµ−1Fast

8: α← α+ χ
9: else

10: ŷ ← (x− α)µ−1Fast

11: α← x
12: end if
13: S ← Slow
14: end if
15: if S is Slow then
16: draw χ from Exponential(δS→F )
17: if α+ χ < x then
18: ŷ ← α+ χµ−1Slow

19: α← α+ χ
20: else
21: ŷ ← (x− α)µ−1Slow

22: α← x
23: end if
24: S ← Fast
25: end if
26: end while
27: L(e|θ)← N (yi|µ = ŷi, σ = 1)

Algorithm 1. Method for calculating the likelihood of a given edge, e, in a phylogenetic tree with
lengths y in calendar time and x in genetic units given the dual-rate model, θ, and the starting condition,
S.
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Figure 3. Phylogeny of 39 V3 sequences from a Swedish IDU cluster. This is the maximum
likelihood phylogeny of 39 V3 HIV-1 sequences sampled from 1998 through 2007 infered under the GTR +
Γ + I model. The sample year of each tip is indicated by its color.

Figure 4. Number of diagnoses of HIV in Latvia and Sweden. The yearly number of diagnosed
cases among Latvian IDUs (blue dashed), Latvian heterosexuals (red dot-dashed), and Swedish IDUs.
The Latvian IDU and heterosexual diagnosed cases are almost exclusively subtype A1 while the Swedish
IDUs are mostly subtype B.

Figure 5. A time-scaled phylogenetic tree of the Latvian epidemic ‘painted’ with periods
of fast and slow epidemic spread. Blue represents time spent in the Fast state (fast epidemic spread
and slow evolutionary rate) where transmissions are occurring within 6 months of infection, while red
represents time spent in the Slow state (slow epidemic spread and fast evolutionary rate). Branch lengths
are measured in calendar time and span the period 1997-2007.

Figure 6. Average proportion of extant lineages in the Fast state in the Latvian epidemic.
This figure shows the average of all the proportions of extant lineages currently in the Fast state (fast
epidemic spread, slow evolutionary rate). Grey lines show the average proportion from each of 50
optimizations, the red line shows the average proportion averaged over each of the 50 optimizations.

Figure 7. A time-scaled phylogenetic tree of the Swedish IDU cluster ‘painted’ with
periods of fast and slow epidemic spread. Blue represents time spent in the Fast state (fast
epidemic spread and slow evolutionary rate) where transmissions are occurring within 6 months of
infection, while red represents time spent in the Slow state (slow epidemic spread and fast evolutionary
rate). Branch lengths are measured in calendar time and span the period 1997-2007.

Figure 8. Average proportion of extant lineages in the Fast state in the Swedish cluster.
This figure shows the average of all the proportions of extant lineages currently in the Fast state (fast
epidemic spread, slow evolutionary rate). Grey lines show the average proportion from each of 50
optimizations, the red line shows the average proportion averaged over each of the 50 optimizations.

Tables

Supporting Information Legends



13

Figure 9. Illustration of the dual-rate HIV clock model. A) An illustration of the Markov chain
used to represent the dual-rate HIV clock model. At any point in time a lineage is in either in the Fast
state (short times between transmissions, slow evolution) or in the Slow state (longer times between
transmission, fast evolution). The evolutionary rates in the Fast and Slow are drawn from
f(µFast, σFast) and f(µSlow, σSlow) respectively and are restricted to not overlap, that is, the highest
evolutionary rate in the Slow state cannot be higher than the lowest evolutionary rate in the Fast state.
B) Illustrates an example of the dual-rate model over a possible transmission genealogy. C) Represents
the implied genetic distances given the particular realization in (B).




