UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Algebra decoded: individual differences in strategy selection when solving for 'x'

Permalink

https://escholarship.org/uc/item/1g46k4p9

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Bye, Jeffrey Harsch, Rina Varma, Sashank

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Algebra decoded: individual differences in strategy selection when solving for 'x'

Jeffrey Bye

University of Minnesota, Minneapolis, Minnesota, United States

Rina Harsch

University of Minnesota, Minneapolis, Minnesota, United States

Sashank Varma

University of Minnesota, Minneapolis, Minnesota, United States

Abstract

Understanding variables and solving algebraic equations are essential to advanced mathematical thinking. Missing-operand problems (e.g., x + 3 = 5) are solvable via two strategies: 1) pattern-matching, or direct arithmetic fact retrieval (e.g., 2 + 3 = 5), and 2) algebraic symbol-manipulation, or performing the inverse operation (e.g., 5 = 2). U.S. undergraduates made speeded verifications of arithmetic sentences like 2 + 3 = 5 and 5 = 2. They then solved missing-operand problems like x + 3 = 5. We decoded individual differences in strategy choice by whether speed on missing-operand problems was better predicted by speed on verifying direct- or inverse-matched arithmetic facts. We found individual differences in strategy choice, although these were not significantly associated with mathematical achievement.