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ABSTRACT OF THE DISSERTATION

Statistical Methods for Cohort Studies with Terminal Events

By

Yue Wang

Doctor of Philosophy in Statistics

University of California, Irvine, 2023

Professor Bin Nan, Chair

In a longitudinal cohort study, a group of subjects is chosen based on certain characteristics

and then followed at routine intervals over time. At each visit, some measurements are

recorded and the goal is oftentimes to model how they develop over time. During the follow-

up, the collection of the data can be stopped by a terminal event. In this dissertation,

we study several statistical methods for modeling longitudinal data while adjusting for the

terminal event.

In Chapter II, we propose a nonparametric bivariate time-varying coefficient model for lon-

gitudinal measurements with the occurrence of a terminal event that is subject to right

censoring. The time-varying coefficients capture the longitudinal trajectories of covariate ef-

fects along with both the followup time and the residual lifetime, in contrast to the existing

work that either models longitudinal measures as a function of only the forward time or the

backward time, or poses strong parametric assumptions. We consider a kernel smoothing

method for estimating regression coefficients in our model and use cross-validation for band-

width selection, applying undersmoothing in the final analysis to eliminate the asymptotic

bias of the kernel estimator. We show that the kernel estimates follow a finite-dimensional

normal distribution asymptotically under mild regularity conditions, and provide an easily

computed sandwich covariance matrix estimator.

x



In Chapter III, we study the lifetime Medicare spending patterns of patients with end-stage

renal disease (ESRD) stratified by waitlisting and kidney transplant. In addition to the ter-

minal event, a non-terminal event that happened in the follow-up could also have an impact

on the longitudinal measures. To study the heterogeneous Medicare cost trajectories across

groups stratified by waitlisting and transplant, we proposed two models: a semiparametric

regression model with both fixed and bivariate time-varying coefficients to compare unwait-

listed and waitlisted groups, and a bivariate time-varying coefficient model with different

starting times (time since the first ESRD service and time since the kidney transplant) to

compare untransplanted and transplanted groups. We use sandwich variance estimators to

construct confidence intervals and validate inference procedures through simulations. Our

analysis of the Medicare claims data reveals that waitlisting is associated with a lower daily

medical cost at the beginning of ESRD service among waitlisted patients which gradually

increases over time. Averaging over lifespan, however, there is no difference between wait-

listed and unwaitlisted groups. A kidney transplant, on the other hand, reduces the medical

cost significantly after an initial spike.

In Chapter IV, we study how the onset of a non-terminal events is associated with the termi-

nal event. Existing methods under the framework of multi-state model or the semi-competing

risks model rely on certain semiparametric assumptions for modeling the joint distribution of

these two events, thus may subject to model misspecification and lack clear interpretations

of their association. Moreover, they assume the independence between the censoring time C

and both event times (S, T ), which can be easily violated in realistic situations. We propose

to estimate the onset of non-terminal event conditional on the terminal event time using a

generalized Beran’s estimator. We consider a left truncation time L in addition to the right

censoring time C and only need a relaxed assumption of the independence between (L,C)

and the non-terminal event time S conditional on the terminal event time T . Such estimates

also enjoy more meaningful interpretations.
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Chapter 1

Introduction

This dissertation primarily develops methods for cohort studies that incorporate terminal

events. There are three different topics in this dissertation, and each focuses on a different

problem with its own features.

1.1 Bivariate Time-Varying Coefficient Model Condi-

tional on Death Time

There are two sets of widely used approaches for modelling longitudinal measures with a

terminal event: the joint modeling approach using latent frailty and the marginal estimat-

ing equation approach using inverse probability weighting (IPW). Under the joint modeling

framework, the survival time and the longitudinal process are assumed independent condi-

tional on some latent random effects. Thorough reviews of this type of approach can be

found in [45] and [41]. For the marginal estimating equation approach with IPW, readers

can refer to [42]. However, they do not explicitly model the association between the terminal

event time and the longitudinally measured response variable, and some approaches treat

1



the occurrence of death as “dropout”, which implicitly defines the underlying stochastic

processes of health status beyond death.

In this dissertation, we propose a nonparametric extension of [24]. In particular, regression

coefficients are bivariate functions of both the chronological followup time t and the residual

lifetime T − t with unknown form, where t denotes the followup time and T denotes the

terminal event time. Such a modelling strategy allows us to assess the varying effect of

certain covariate when patients approach death. We estimate the regression coefficients

using kernel smoothing and establish the asymptotic normality of kernel estimates together

with convergence rates that depend on the bandwidth size. We also provide a consistent

sandwich variance estimator that helps construct pointwise confidence bands.

1.2 Bivariate Functional Patterns of Lifetime Medicare

Costs among ESRD patients

End-stage renal disease (ESRD) has become increasingly prevalent in the United States. It

has long been observed that patients on the waiting list tend to have better health status

compared to unwaitlisted patients (e.g.,[53]). However, there is fewer literature that studies

medical spending aspects of waitlisting. We propose a semi-varying coefficient model to

compare overall lifetime medical costs between waitlisted and unwaitlisted dialysis patients.

The survival benefit and economic implications of transplant itself have been extensively

studied via a standard measure called incremental cost-effectiveness ratio (ICER) ([15]).

The determination of ICER involves calculating the cumulative medical cost during the

remaining lifetime, which is a single summary number to measure the costs of transplant

and dialysis. Using a new regression model, called the mixed-varying coefficient model, we

examine and compare the detailed medical cost trajectories of transplanted ESRD patients

2



during their lifespan to those on the waiting list.

1.3 Left Truncated Age of Disease Onset Data with

Terminal Event

In classical medical studies, a common situation features two types of events: a non-terminal

event at time S which can be a disease and a terminal event at time T which is usually death.

It is often desired to understand the extent to which the two events associate with each other.

Two widely used approaches in the existing literature are: (1) under the semicompeting risks

framework, the joint distribution of these events is formulated via a gamma frailty model in

the upper wedge where data are observable [6, 14]; and (2) an illness-death model is used with

a shared frailty to incorporate the dependence structure [36, 55]. In either case, assumptions

about certain semiparametric structure are made to model the joint distribution of the two

events, which may lead to model misspecification. Moreover, both approaches assume the

independence between the censoring time C and event times (S, T ).

For a better understanding of the association between S and T and ease of interpretation,

we propose to estimate the distribution of S conditional on T , i.e., we use T as a covariate.

The conditional distribution can be estimated by an product-limit estimator widely known

as “Beran’s estimator”, which can handle both right censoring and left truncation. This

type of analysis can be shown to only rely on the independence of (L,C) and S conditional

on T , where L is the left-truncation time, without posing any dependence structure, thus

relaxes the assumption made in the existing literature.

3



Chapter 2

Kernel Estimation of Bivariate

Time-varying Coefficient Model for

Longitudinal Data with Terminal

Event

2.1 Introduction

In longitudinal studies, it is often the case that the collection of repeated measurements is

stopped by the occurrence of some terminal event, for example, death. There are two sets of

widely used approaches for modelling longitudinal measures with a terminal event: the joint

modeling approach using latent frailty and the marginal estimating equation approach using

inverse probability weighting (IPW). Under the joint modeling framework, the survival time

and the longitudinal process are assumed independent conditional on some latent random

effects. Thorough reviews of this type of approach can be found in [45] and [41]. For
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the marginal estimating equation approach with IPW, readers can refer to [42]. These

ideas have also been applied to modeling recurrent events in the presence of a terminal

event, see e.g., [22] and [16]. They may fall short in certain situations, however. First,

as pointed out by [24], they do not explicitly model the association between the terminal

event time and the longitudinally measured response variable, which is of primary interest

in many applications. Second, in health studies where death is a terminal event, some

approaches treat the occurrence of death as “dropout”, either informative or non-informative,

which implicitly defines the underlying longitudinally measured stochastic processes of health

status beyond death. In other words, death causes “missing data” in such a view, which is

questionable since death itself is a fundamental characteristic of health.

For these reasons, several reverse-time models have been considered in the recent literature.

[4] considered a nonparametric approach for the mean of a reverse-time process. [27] consid-

ered a likelihood-based approach for the reverse-time model with applications to palliative

care, with extension to a semiparametric approach introduced in [26]. [7] considered reverse

alignment as a general technique for constructing models for survival processes and inves-

tigated several related statistical consequences. These methods model backward time with

event time as the time origin, but lose the interpretation of chronological time effects that are

of primary interest in conventional longitudinal studies. To keep the desired chronological

time interpretation of regression coefficients and meanwhile to describe the effect of terminal

event in longitudinal studies, [24] proposed a parametric nonlinear regression model condi-

tional on the terminal event time which builds the residual lifetime into covariate effects.

They showed that the complete case analysis that only uses data with uncensored event

times is a valid approach, and proposed a two-stage approach that improves the efficiency

of parameter estimates of the complete case analysis. But a parametric model can be easily

misspecified, as we observe in our data example, and their two-stage method cannot handle

time-varying covariates that occur overwhelmingly often in longitudinal studies.

5



In this article, we propose a nonparametric extension of [24]. In particular, regression coeffi-

cients are bivariate functions of both chronological followup time t and residual lifetime T −t

with unknown form, where t denotes the followup time and T denotes the terminal event

time. Moreover, time-varying covariates are incorporated in our model. Such a modelling

strategy allows us to assess the varying effect of certain covariate when patients approach

death, which is of particular interest for the analysis of end-stage renal disease (ESRD) med-

ical cost data. We estimate the regression coefficients using kernel smoothing and establish

the asymptotic normality of kernel estimates together with convergence rate that depends

on the bandwidth size. We also provide a consistent sandwich variance estimator that helps

construct pointwise confidence bands.

The rest of the article is organized as follows. In Section 2 we introduce the time-varying

coefficient model and the kernel estimating method with bandwidth determined via under-

smoothing after cross-validation. We outline the asymptotic properties in Section 3. We

provide simulations in Section 4 and the analysis of ESRD medical cost data in Section 5.

We give a few concluding remarks in Section 6, and provide detailed proofs and additional

numerical results in the online supplementary material.

2.2 Modeling Strategy and Estimating Method

2.2.1 Bivariate Time-Varying Coefficient Model

Let Y (t) be a stochastic process denoting the response variable measured over time in a

longitudinal study. Let X(t) = (X1(t), . . . , Xp(t)) be p covariate processes. Note that we use

bold letter to represent either a vector or a matrix in this article. Suppose the longitudinal

cohort data consists of n independent copies of (Y (t),X(t)), representing n individuals’

observations in the study cohort, where the ith individual’s data (Yi(t), Xi1(t), . . . , Xip(t))

6



are measured at random time points τij, j = 1, . . . ,mi. Baseline covariates take constant

values over time. We define Xi1(t) ≡ 1 for any i and t, which determines the intercept.

Suppose each individual has m visits, where m is a finite number, but not all of them are

observed because of early stopping due to terminal event or right censoring, which makes

the number of actual visits varying among individuals. Specifically for subject i, denote the

terminal event time as Ti and the right censoring time as Ci, then the number of visits of

subject i is mi = max{j : j ≤ m, τij ≤ Ti ∧ Ci}, where a ∧ b = min{a, b}. Denote the set of

subjects whose terminal events are observed by D = {i : Ti ≤ Ci}.

We consider the following model for the longitudinal response variable Yi observed at time

τij:

Yi(τij) =

p∑
k=1

Xik(τij)βk(τij, Ti − τij) + εi(τij), (2.1)

where each εi(t) is a zero-mean stochastic process with variance function σ2(t) and covariance

function ρ(t1, t2) for any t1 ̸= t2. Assume all the quantities involved in this model are

independent and identically distributed (i.i.d.) across individuals, which include {τij}mj=1,

Ti, Ci, {Xik(·)}pk=1 and εi(·). Here i.i.d. is defined for processes on any finite index set.

Suppressing the subscript i here without causing any confusion, we further assume that for

each individual we have: (1) given τj = t, ε(τj) has the same distribution as ε(t) and is

independent of T , C and {Xk(τj)}pk=1; (2) given (τj1 , τj2) = (t1, t2), (ε(τj1), ε(τj2)) has the

same distribution as (ε(t1), ε(t2)) and is independent of T , C, {Xk(τj1)}
p
k=1 and {Xk(τj2)}

p
k=1.

In other words, data observed on a set of random times behave like observed on a set of

constant times, which is commonly assumed in longitudinal data analysis. Because we do

not estimate the survival function for the complete case analysis considered in this article,

we do not need to assume T and C are independent or conditionally independent given

covariates, which is a crucial assumption in traditional survival analysis.

7



Unlike the usual time-varying coefficient model for longitudinal data, a particularly impor-

tant feature of model (2.1) is that the unknown coefficient βk(t, T − t) is allowed to be a

bivariate function not only varying with time since entry, t (the usual setup, see e.g. [19]),

but also varying with time from t to the terminal event, T − t (also referred to as residual

lifetime if T is death time). Unlike any conventional modeling strategy for longitudinal data

with terminal event, allowing βk to depend on T − t directly captures the way in which

impending failure modifies the effect of Xik(t). If none of the βk, k = 1, . . . , p, varies with

T − t, then the above model (2.1) reduces to a standard time-varying coefficient model.

Model (2.1) extends [24] from a parametric model to a nonparametric model, from an in-

tercept varying with T − t only to all regression coefficients varying with both t and T − t,

and from fixed baseline covariates only to time-varying covariates. The model also extends

[30], who only considered a nonparametric intercept varying with T − t without pursuing the

asymptotic properties of their spline based estimating method. [25] considered a bivariate

mean model, included no covariates and did not provide asymptotic results for their spline

estimating method.

It becomes clear that model (2.1) is well-defined when Ti is observed, so all the observations

collected from time at entry to Ti are complete data, whereas observations collected from

time at entry to Ci before Ti are incomplete. This is another major distinction between a

model that is conditional on Ti and conventional regression models for longitudinal data with

terminal events. Since Ti is subject to right censoring, the problem determined by model

(2.1) becomes a regression problem with censored covariate, for which the complete case

analysis is a valid approach. This is the method we consider in this article for estimating

unknown bivariate coefficient functions βk, k = 1, . . . , p. Including observations for censored

individuals faces multifaceted difficulties, which will be discussed in the future work.

8



2.2.2 Bivariate Kernel Estimation

For any fixed point (t0, s0), we apply bivariate kernel smoothing to estimate β(t0, s0) by

minimizing the following loss function with respect to bk, k = 1, . . . , p:

Ln(t0, s0) =
∑
i∈D

mi∑
j=1

(
Yij −

p∑
k=1

Xik(τij)bk

)2

K

(
τij − t0

h
,
Ti − τij − s0

h

)
, (2.2)

where K : R2 → R is the kernel function, h > 0 is the bandwidth. There are two major

distinctions between the resulting estimator from (2.2) and the estimator in [19]: First, the

estimator in (2.2) involves terminal event time Ti and is based on complete data. Second,

since βk’s are bivariate functions, a bivariate kernel function is used. Note that we use

the same bandwidth for both time axes and ignore the off-diagonal element of the 2 ×

2 bandwidth matrix in order to simplify the numerical implementation. Using multiple

bandwidths requires multiple bandwidth selection procedures thus is more computationally

cumbersome especially for large data sets. Later we show both theoretically and numerically

that the kernel estimation using a common bandwidth performs satisfactorily.

Rewrite (2.2) into the following matrix form:

Ln(t0, s0) =
∑
i∈D

(Yi −Xib)
T Ki(t0, s0;h) (Yi −Xib) ,

where

Xi =


Xi1(τi1) . . . Xip(τi1)

...
. . .

...

Xi1(τimi
) . . . Xip(τimi

)

 ,

Ki(t0, s0;h) is a diagonal matrix with jth element given byK((τij−t0)/h, (Ti−τij−s0)/h)/h
2,

and Yi = (Yi1, ..., Yimi
)T . We estimate the time-varying coefficients βk(t, s) by minimizing
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Ln(t0, s0) with respect to bk, k = 1, . . . , p, i.e.,

β̂(t0, s0;h) = argmin
b

Ln(t0, s0),

which has a closed form solution given by

β̂(t0, s0;h) =

(∑
i∈D

XT
i Ki(t0, s0;h)Xi

)−1(∑
i∈D

XT
i Ki(t0, s0;h)Yi

)
. (2.3)

The estimator (2.3) ignores the within-subject correlation following the working indepen-

dence assumption, which was shown by [28] to be most efficient when a standard kernel is

applied and the cluster size is finite. This counter-intuitive result was explained by [49] who

also showed that higher efficiency could be achieved by using an alternative kernel method,

which we do not pursue here because of both the numerical advantages of the working inde-

pendence assumption and the efficiency result of [28] for using a standard kernel in (2.3).

2.2.3 Automatic Bandwidth Selection and Undersmoothing

A typical approach for automatic bandwidth selection is through K-fold cross-validation

(CV). To keep the independence between training set and validation set, we partition the

longitudinal data at the subject level such that all repeatedly measured observations of each

subject belong to only one fold. The criterion for selecting bandwidth is to minimize the

average predictive squared errors across all validation sets. In particular, let Sk, k = 1, . . . , K,

be the index set of subjects in the k-th fold, where ∪kSk = D and Sk ∩ Sl = ∅ for any k ̸= l,

then the average predictive squared error criterion is given by

CV(h) =
1∑

i∈D mi

K∑
k=1

∑
i∈Sk

mi∑
j=1

[
Yij −Xiβ̂

(−k)
(τij, Ti − τij;h)

]2
, (2.4)
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where β̂
(−k)

represents the kernel estimator calculated by leaving out all observations in the

k-th fold. Note that only the complete cases D are partitioned into folds. In practice, the

criterion is minimized on a preselected grid of h.

Standard approaches to constructing nonparametric confidence bands for functions are com-

plicated by the impact of bias. According to [17], bias decreases as the amount of statistical

smoothing is reduced, which can be clearly seen from the asymptotic distributional results

of kernel estimates. Therefore, one way of alleviating bias is to smooth the curve estimator

less than would be optimal for point estimation. We choose to undersmooth by multiply-

ing n−γ to the selected bandwidth using cross-validation for some γ > 0. We will see in

Section 2.3 that undersmoothing still leads to the desirable asymptotic result as long as the

undersmoothed bandwidth falls into the range specified by Condition 2 in Appendix 2.6.1.

2.2.4 A Special Case with Potentially Improved Efficiency

Under a special circumstance where only baseline covariates (or the so-called defined time-

dependent covariates that are completely determined by baseline covariates and the time t)

are of concern as in [24], or in an even less likely situation where time-varying covariates

are of interest but the terminal event time only depends on baseline covariates, one might

assume Gaussian error in model (2.1) and consider the following locally weighted pseudo

likelihood function under working independence which includes both complete and censored

data:

n∏
i=1


mi∏
j=1

[
1√
2πσij

e
− 1

2σ2
ij

(Yij−XT
ijb)

2
]K(

τij−t

h
,
Ti−τij−s

h
)

f1(Ti|Zi)


∆i

×


∫ ∞

Ci

mi∏
j=1

[
1√
2πσij

e
− 1

2σ2
ij

(Yij−XT
ijb)

2
]K(

τij−t

h
,
u−τij−s

h
)

dP (Ti ≤ u|Zi)


1−∆i

f2(Xi, τ i, Zi).
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Note that, similar to [24], the assumption of conditional independent censoring is also needed

to obtain the above locally weighted pseudo likelihood. In contrast, no assumption on the

censoring mechanism is needed for the complete case analysis. In the above, Zi is a vector

of baseline covariates of subject i, f1(·|Zi) is the survival density given Zi and f2 is the joint

density of Xi, τ i and Zi. The nuisance parameter σij denotes σ(τij) and can be estimated

by the kernel estimator σ̂2
ij = (nh)−1

∑
i′j′ ε̂

2
i′j′K

′((τi′j′ − τij)/h), where K
′ is some univariate

kernel function, and another nuisance parameter P (Ti ≤ u|Zi) can be estimated using a

proper survival model. The estimation of β(t, s) can be obtained by maximizing the above

locally weighted pseudo likelihood with respect to b. A simulation study, summarized in

the online supplementary material, shows that this method seems to yield valid results with

improved efficiency over the complete cases analysis. Its theoretical justification, however, is

beyond the scope of this work thus not pursued here, and as discussed in Section 6, several

additional difficulties preclude the application of this approach to the case with time-varying

covariates that are commonly observed in longitudinal studies.

2.3 Asymptotic Properties

2.3.1 Asymptotic Normality of β̂

We consider the asymptotic joint normality of β̂ at a finite number of pairs of distinct

time points {(t1, s1), . . . , (td, sd)}. Under several mild regularity conditions given in the

Appendix, we can show that the estimator (2.3) follows a multivariate normal distribution
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as n approaches infinity. First we introduce some notation:

µ0 =

∫
K2(x, y)dxdy,

µ2 =

∫ x2K(x, y)dxdy
∫
xyK(x, y)dxdy∫

yxK(x, y)dxdy
∫
y2K(x, y)dxdy

 ,

ηj(t, s) = E
[
1(T ≤ C)X(τj)X(τj)

T |τj = t, T − τj = s
]
,

gj,rk(t, s) = ∇ηj,rk(t, s)fj(t, s)∇βk(t, s)
T + ηj,rk(t, s)∇fj(t, s)∇βk(t, s)

T

+
1

2
ηj,rk(t, s)fj(t, s)∇2βk(t, s),

Γ(t, s) =


∑m

j=1

∑p
k=1⟨µ2, gj,1k(t, s)⟩

...∑m
j=1

∑p
k=1⟨µ2, gj,pk(t, s)⟩


p×1

,

Ω(t, s) =
m∑
j=1

ηj(t, s)fj(t, s).

In the above, ηj,rk(t, s) is the (r, k)-element of p×pmatrix ηj(t, s); fj denotes the joint density

of τj and T−τj; ∇βk(t, s) is the 2×1 gradient of βk at (t, s) and ∇2βk(t, s) is the 2×2 hessian

matrix; ⟨A,B⟩ is the Frobenius inner product of matrices A and B, i.e., ⟨A,B⟩ = tr(ATB).

Note that the subscript i is suppressed for random variables in above ηj(t, s) to simplify the

notation since these are all defined for a generic subject and observations are assumed i.i.d.

Furthermore, the following quantities are defined at a set of finite number of pairs of distinct
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time points {(t1, s1), . . . , (td, sd)}. Let t = (t1, . . . , td)
T and s = (s1, . . . , sd)

T . Define

β̂(t, s;h) =


β̂(t1, s1;h)

...

β̂(td, sd;h)


dp×1

,

β(t, s) =


β(t1, s1)

...

β(td, sd)


dp×1

,

B(t, s) =


Ω−1(t1, s1)Γ(t1, s1)

...

Ω−1(td, sd)Γ(td, sd)


dp×1

, (2.5)

V(t, s) = µ0


σ2(t1)Ω

−1(t1, s1)

. . .

σ2(td)Ω
−1(td, sd)


dp×dp

. (2.6)

Theorem 2.1. For a finite integer d and fixed vectors t and s satisfying tl, sl > 0 for

l = 1, ..., d and tl1 ̸= tl2, sl1 ̸= sl2 when l1 ̸= l2, under regularity conditions 1, 2a, 2b, and

3-7 given in Appendix 2.6.1, we have

n1/2h
(
β̂(t, s;h)− β(t, s)

)
→d N

(
h3
0B(t, s),V(t, s)

)
(2.7)

as n → ∞, where h0 is defined as the limit of n1/6h in condition 2a.

The above theorem shows that n1/2h
(
β̂− β

)
at different pairs of time points are asymptot-

ically independent.

Directly using formulae (2.5) and (2.6) to estimate the asymptotic bias and variance is

difficult due to their complicated forms. We will consider a simpler and numerically imple-
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mentable consistent sandwich estimator for the asymptotic variance in the next subsection.

We avoid estimating the bias via undersmoothing. Specifically, we eliminate the asymptotic

bias by shrinking the selected bandwidth under cross-validation by a factor of n−1/20, which

shows satisfactory performance in simulations.

2.3.2 Sandwich Estimator and Pointwise Confidence Interval

With undersmoothing, the asymptotic bias in Theorem 2.1 disappears when n goes to infinity.

Hence for any pair of time points in Theorem 2.1, denoted by (t0, s0), we only need to estimate

the variance V(t0, s0) in order to construct the pointwise confidence interval. It turns out

that the following sandwich estimator is a valid variance estimator:

V̂(t0, s0) = nh2

(∑
i∈D

XT
i Ki0Xi

)−1(∑
i∈D

XT
i Ki0ε̂iε̂

T
i Ki0Xi

)(∑
i∈D

XT
i Ki0Xi

)−1

,

(2.8)

where ε̂i is the residual vector for the i-th subject and Ki0 is short for Ki(t0, s0;h). The

elements of ε̂i are calculated by

ε̂ij = ε̂i(τij) = Yi(τij)−
p∑

k=1

Xik(τij)β̂k(τij, Ti − τij), 1 ≤ j ≤ mi.

The following theorem demonstrates the consistency of (2.8).

Theorem 2.2. For the covariance matrix in Theorem 2.1, under regularity conditions 1, 2a,

2c, and 3-7 given in Appendix 2.6.1, we have

V̂(t0, s0) →p V(t0, s0)

as n → ∞, where V(t0, s0) is the corresponding diagonal block matrix in V(t, s) at (t0, s0).
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With this theorem, an approximate 1− α pointwise confidence interval of βk(t0, s0) without

bias correction can be constructed as

β̂k(t0, s0)± zα/2

(
1

nh2
V̂(t0, s0)kk

)1/2

.

2.4 A Simulation Study

This section reports the numerical performance of the kernel estimator (2.3). For the sim-

ulation study, consider model (2.1) with p = 3 and m = 20, where the coefficients are the

following functions:

β1(x, y) =
x

4
exp

(
−x2 + y2

100

)
,

β2(x, y) =
1

2

[
sin

(
2x

5

)
− sin

(y
2

)]
,

β3(x, y) = cos

(
x2 + y2

100

)
.

These functions are similar to those used in [54]. We generate visiting times in the following

way: for subject i, the first visit time τi1 is generated uniformly on [0, 1], then τij, j > 1, is

generated independently from τij − (j − 1) ∼ Beta(τi1/4ν
2, (1− τi1)/4ν

2), where ν serves as

an upper bound of standard deviation of the Beta distribution and is set to be 0.01. The

generated interarrival time τij − τi,j−1 falls into [0, 2] with mean 1 and a very small variance.

Thus the generated visiting schedule is approximately evenly spaced, mimicking a designed

longitudinal study with annual visits. For covariates, X1 is always 1, X2 is generated from

a standard normal distribution, and X3(t) is a mean-zero Gaussian process with covariance

function Cov (X3(t), X3(s)) = exp(−(t − s)2). Moreover, X2 and X3(t) are correlated with

covariance Cov (X2, X3(t)) = 0.8 exp(−t2). Terminal event time T is generated from an
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exponential distribution with rate exp(3Xi2 +Xi3(0) − 5), then truncated at 15 and added

5. Thus T ≥ 5 with probability 1. Censoring time follows a uniform distribution between

5 and 2T − 5. This leads to dependent censoring and yields 50% censoring rate. The

error term εi(τij) is generated by a nonhomogeneous Ornstein-Uhlenbeck (NOU) process

Ui(t) plus a random error. The NOU process satisfies V ar(Ui(t)) = exp(1 − 0.1t) and

Corr(Ui(t1), Ui(t2)) = 0.5|t1−t2|, and the random error follows a standard normal distribution.

With this design, we simulate 1000 independent replications, each with a sample size n =

4000 that is about 10% of the sample size of the ESRD data analyzed in the next section. The

kernel function is the density of a standard bivariate normal distribution truncated by a circle

around (0, 0) which contains probability 0.95. To save the computing cost, we first run 5-fold

cross-validation on 10 independent datasets with a grid search on {1.2i : i = −10, ..., 10},

which yield an average bandwidth of 1. We then undersmooth it to obtain a bandwidth of

1×n−1/20 ≈ 0.66 and fix it for all the 1000 simulation replications. To achieve a better visual

effect of bivariate functions, we plot a few slices of estimated coefficients. Specifically, we plot

β̂k(t, T −t) varying with t at T = 8, 12, and 16, separately, which are the estimated covariate

effects from the time of entry to the terminal event for individuals who died at time 8, 12

and 16. Among the 3× 3 panels in Figure 2.1, each row represents a time-varying coefficient

and each column represents one chosen value of T . There are 6 curves in each panel: the true

function βk (solid), the sample mean of estimators β̂k (long dashed), upper and lower 95%

confidence bands calculated by the sample mean ±1.96 times the sample standard deviation

of the estimates (dashed), and the sample averages of upper and lower 95% confidence bands

calculated using the sandwich variance estimates (dot-dashed). We can see that across all

panels, the undersmoothing yields negligible biases, and the two types of confidence bands

are nearly identical, indicating the validity of the proposed variance estimator.

To have a clear view of the performance of the 95% pointwise confidence intervals, in Figure

2.2 we further provide their coverage probabilities to the same coefficient curves depicted in
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Figure 2.1: Mean of estimates and two types of 95% pointwise confidence bands at T = 8,
12, and 16.

Figure 2.1. From Figure 2.2 we see that the coverage probability is mostly around 95%, but

can drop to near 85% on the boundaries or regions with large curvature of the coefficient

due to relatively large biases of kernel smoothing in such regions.

At the request of an anonymous reviewer, we have implemented simulations with a much

smaller sample size of n = 400, and provided results in Section D, Figure S2, of the online

supplementary material. The overall performance is very similar, with a slightly larger bias

for β2 at T = 8 and, unsurprisingly, wider pointwise confidence bands.

We further verify the performance of hypothesis testing based on the asymptotic multivariate

normal distribution given in Theorem 2.1. Such a test allows for comparing coefficient values
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Figure 2.2: Coverage probabilities of 95% pointwise confidence intervals for β1, β2 and β3.
The dotted line shows the nominal level of 0.95.

at any two different pairs of time points. In order to also systematically evaluate the size

of the test, we modify the simulation setup slightly by setting β3 = 0.5 while keeping other

simulation parameters unchanged, which creates a true null hypothesis of ∆β3 = 0. In

Tables 1 and 2 we summarize the empirical power, or size when the null hypothesis is true,

of a two-sided z-test. The empirical power is the rejection frequency of the test among 1000

simulation replications. In Table 1 we consider cases with the same failure time T but two

different visit times t1 and t2; In Table 2 we consider the same visit time t but two different
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failure times T1 and T2. We see from simulation results presented in both Tables 1 and 2

that empirical sizes of the tests are close to 0.05, showing the validity of the test. We also

observe larger empirical powers for larger magnitudes of the coefficient differences.

t1, t2, T ∆β1 (EP1) ∆β2 (EP2) ∆β3 (EP3)
2, 4, 8 0.391 (0.980) -0.146 (0.197) 0 (0.056)
2, 6, 8 0.670 (1.000) -0.786 (1.000) 0 (0.054)
4, 6, 8 0.279 (0.905) -0.640 (1.000) 0 (0.053)
2, 4, 12 0.273 (0.654) 0.610 (0.995) 0 (0.054)
2, 6, 12 0.553 (0.998) 0.616 (0.993) 0 (0.055)
4, 6, 12 0.281 (0.737) 0.006 (0.026) 0 (0.053)
2, 4, 16 0.134 (0.141) 0.038 (0.032) 0 (0.051)
2, 6, 16 0.317 (0.706) 0.214 (0.298) 0 (0.066)
4, 6, 16 0.183 (0.295) 0.176 (0.201) 0 (0.057)

Table 2.1: True difference ∆βk = βk(t2, T − t2)− βk(t1, T − t1); empirical power EPk for the
hypothesis test H0 : ∆βk = 0 vs Ha : ∆βk ̸= 0, k = 1, 2, 3.

T1, T2, t ∆β1 (EP1) ∆β2 (EP2) ∆β3 (EP3)
8, 12, 2 -0.158 (0.272) -0.637 (0.990) 0 (0.060)
8, 16, 2 -0.267 (0.564) -0.872 (1.000) 0 (0.058)
12, 16, 2 -0.109 (0.139) -0.235 (0.322) 0 (0.063)
8, 12, 4 -0.277 (0.685) 0.119 (0.218) 0 (0.058)
8, 16, 4 -0.524 (0.990) -0.668 (1.000) 0 (0.055)
12, 16, 4 -0.247 (0.524) -0.807 (1.000) 0 (0.048)
8, 12, 6 -0.275 (0.749) 0.765 (1.000) 0 (0.039)
8, 16, 6 -0.620 (1.000) 0.128 (0.210) 0 (0.064)
12, 16, 6 -0.345 (0.849) -0.637 (0.995) 0 (0.059)

Table 2.2: True difference ∆βk = βk(t, T2 − t) − βk(t, T1 − t); empirical power EPk for the
hypothesis test H0 : ∆βk = 0 vs Ha : ∆βk ̸= 0, k = 1, 2, 3.

2.5 The ESRD Medicare Data Analysis

We consider inpatient medical cost data of patients with end-stage renal disease (ESRD)

from year 2007 to 2018 collected by the United States Renal Data System (USRDS). The

longitudinal response is the daily inpatient cost paid by Medicare and the terminal event is

death. The pattern of end-of-life Medicare cost has been identified in previous work. For
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example, [4] showed an increasing and then decreasing pattern in Medicare costs before death

among ovarian cancer patients. [29] found an increasing pattern in monthly outpatient EPO

costs starting from 6 months prior to death and an initial jump since entry time, followed

by a linear drop. When it comes to inpatient cost among ESRD patients, [24] established

similar initial pattern as in [29] and an increasing then decreasing terminal pattern using a

parametric model. Here we aim to investigate the patterns with a much larger sample size

using our nonparametric modeling approach.

Following [24], we only include black and white patients who started their ESRD services in

2007 and were at least 65 years old when they started. We exclude patients who received

kidney transplant because they could potentially have very different trajectories of inpatient

costs. We also exclude patients who never had any hospitalization nor filled out the CMS

Medical Evidence Report during the follow up. Instead of selecting a simple random sample

of available ESRD patients for the analysis as in [24], all eligible patients are included in

our analysis. Additionally, we are able to take advantage of the most updated data from

USRDS, for which the follow-up ended on June 30th, 2018. We end up with a much larger

sample size of 42,253 patients who died before the end of follow-up, much longer follow-up

with an average of 34.6 months, and a very low censoring rate of only 3.74%. In the original

data, a total cost is given for each hospitalization period. To convert the total cost into

daily cost, we assume the cost rate is constant during each hospitalization. For example, if

$10,000 is claimed for a patient during one hospitalization from May 1st to 20th, then the

daily cost on May 10th is calculated to be $500. If the subject is not in hospital on a certain

date, the cost is zero. We choose to select a 5% random sample of all days from entry to

end of observation for each subject and calculate daily costs for these days. This greatly

shortens the computation time for cross-validation and is valid because we do not require

independence between observation time τj and time to death T .

We have considered the same set of covariates as in [24], which includes race, heart disease and
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diabetes. Additionally, we include a binary covariate that indicates if Medicare is a secondary

payer. Although most ESRD patients are eligible to apply for Medicare as their primary

insurance payer, some are not immediately eligible for Medicare primary payer coverage at

retirement because of their employment status and pre-existing primary insurance payers

(e.g., group health plans). For this reason, this indicator is time-varying in the follow-up

period. The estimated bivariate time-varying coefficients of the aforementioned covariates

in the full model are displayed in Figure S1 of the online supplementary material, where

the Bonferroni confidence band for each curve is constructed following [54] from the joint

asymptotic distribution at 100 evenly spaced time points. These confidence bands serve as

approximations of 95% global confidence bands, but can still be anti-conservative. From

Figure S1 of the online supplementary material we see that the effect sizes of race, heart

disease and diabetes variables are close to zero and their confidence bands contain zero over

the entire support of (τij, Ti− τij). To capture the main pattern of Medicare payments, here

we present the result of a reduced model that only includes the payer category:

log(Yij/1000 + 1) = β1(τij, Ti − τij) + β2(τij, Ti − τij)Payerij + εi(τij),

where log transformation log(Y/1000+1) corrects the highly skewed distribution of the daily

Medicare payment Y .

In Figure 2.3, we plot the estimated curves and their confidence bands for β1 and β1 + β2,

respectively, obtained using a selected bandwidth of 12 days, where β1 represents the log-

transformed daily Medicare payment trajectory among ESRD patients when Medicare is the

primary payer, and β1 + β2 corresponds to Medicare the secondary payer. The coefficient β2

represents the Medicare payment difference between payer types, but plotting β1+β2 provides

a direct illustration of the medical cost pattern of Medicare payment as the secondary payer.

Similar to how we display simulation results, we choose to only visualize βk(t, T − t) under

several fixed values of T . Here we choose T = 360, 900, and 1440, corresponding to patients
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who died roughly 1 year, 2.5 years and 4 years after entry, respectively.

Figure 2.3: Estimated curves and their confidence bands for β1 (Medicare as primary payer)
and β1 + β2 (Medicare as secondary payer) under T = 360, 900, 1440.

From Figure 2.3 we see that the Medicare cost as primary payer starts to escalate from

roughly 150 days prior to death, similar to the pattern observed in [24]. The peak value,

however, is at the time of death, which is different to [24] where the peak was around

three weeks before death. The initial pattern is different too: in our analysis, we find that

the Medicare cost decreases drastically in the first two months after entry, then becomes

stabilized overtime until close to death, whereas in [24], and in [29] as well, it increases first

then decreases. Such differences are likely due to the restrictive parametric assumptions

imposed in [24] and [29]. We also find that, when Medicare is secondary payer, the pattern

of inpatient costs is similar but the magnitude is much smaller and at most times very close

to zero. This is anticipated because a large portion of medical costs was paid first by some

other insurance.

We further conduct formal statistical tests of Medicare payment patterns towards the end

of life to confirm a key difference between our findings and [24]. These tests are based on
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the finite-dimensional asymptotic independence and joint normality established in Theorem

2.1 for the intercept parameter β1. We have showed in Section 2.4 that such a test has the

correct power to detect the coefficient difference. In particular, for a given T , we consider

three different residual lifetimes: 90 days, 30 days and 15 days prior to death. The tests

compare β1 at 90 versus 30 days and at 30 versus 15 days, respectively. Table 2.3 summarizes

each estimated difference β1(t2, T − t2)− β1(t1, T − t1), its 95% confidence interval, and the

p-value of a one-sided test, showing significant evidence of a continuously increasing pattern

of the intercept parameter β1 towards the end of life for each of three different values of

T = 360, 900, 1440 days. In other words, these tests reject the pattern obtained in [24]

where the medical cost peaks and then declines during the last month before death.

It is well-known that kernel methods may yield larger biases at the boundaries. The boundary

biases, however, diminish as the sample size increases (see 11) and can be further reduced

by undersmoothing that is the approach we take in the ESRD data analysis. Although the

choice of the undersmoothing factor n1/20 seems working well in our simulations, in practice it

is hard to determine what choice of bandwidth would result in a reasonable undersmoothing.

However, given the fact that the estimated values of β1 are very large with confidence intervals

far from zero at the boundaries, it is reasonable to believe that the medical spending is much

higher at the time when an ESRD patient becomes Medicare eligible and at the end of a

patient’s life.

It would be also of interest to test the medical spending pattern from a different angle,

in other words, to compare β1 with the same t but different T . Several such comparisons

are shown in Table 4, where we see higher daily medical cost among subjects with shorter

residual lifetime at the same time since enrollment. Such difference diminishes among longer

survivors, however.
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T − t1 = 90, T − t2 = 30 T − t1 = 30, T − t2 = 15
T = 360 0.067, (0.037, 0.098), 7.56× 10−6 0.080, (0.041, 0.118), 2.61× 10−5

T = 900 0.068, (0.035, 0.102), 3.78× 10−5 0.071, (0.028, 0.113), 5.31× 10−4

T = 1440 0.066, (0.024, 0.108), 1.11× 10−3 0.079, (0.026, 0.132), 1.79× 10−3

Table 2.3: Estimated difference β1(t2, T − t2) − β1(t1, T − t1), its 95% confidence interval,
and p-value for the monotonicity test: H0 : β1(t1, T − t1) = β1(t2, T − t2) versus Ha :
β1(t1, T − t1) < β1(t2, T − t2).

T1 = 900, T2 = 360 T1 = 1440, T2 = 900
t = 90 0.014, (−0.004, 0.033), 6.56× 10−2 0.006, (−0.018, 0.029), 3.15× 10−1

t = 180 0.030, (0.012, 0.047), 4.67× 10−4 0.008, (−0.007, 0.023), 1.42× 10−1

t = 270 0.087, (0.065, 0.110), 1.02× 10−14 −0.002, (−0.020, 0.015), 6.06× 10−1

Table 2.4: Estimated difference β1(t, T2 − t)− β1(t, T1 − t), its 95% confidence interval, and
p-value for the monotonicity test: H0 : β1(t, T1− t) = β1(t, T2− t) versus Ha : β1(t, T1− t) <
β1(t, T2 − t).

2.6 Appendix

2.6.1 Regularity Conditions

Denote by Cq the class of functions with q-th order continuous derivatives. For the points

(tl, sl), l = 0, 1, ..., d in Thm 2.1 and 2.2, we need the following regularity conditions.

1. K is a probability density of the form f(∥x∥2), where f(·) is of bounded variation on

bounded support.

2. (a) n1/6h → h0 < ∞, where h0 ≥ 0.

(b) nh2 → ∞.

(c) n3/4h2/ log n → ∞.

3. (a) For any j, k, l, ηj,kl(x, y) is of class C
1 in a neighborhood of (tl, sl).

(b) For any j, k, E [Xk(τj)
8|τj = x, T − τj = y] is bounded in a neighborhood of (tl, sl).
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(c) For any j1 ̸= j2 and k, E [Xk(τj1)
8|τj1 = x, τj2 = y, T − τj1 = z] is bounded in a

neighborhood of (tl, tl, sl).

4. (a) For any j, fj is of class C
1 in a neighborhood of (tl, sl).

(b) For j1 ̸= j2, fτj1 ,τj2 ,T−τj1
is bounded in a neighborhood of (tl, tl, sl).

5. For any k, βk is of class C2 in a neighborhood of (tl, sl).

6. (a) σ2 is continuous at tl.

(b) Eε(·)4 is bounded in a neighborhood of tl.

7. There exists j such that ηj(tl, sl) is positive definite and fj(tl, sl) is positive.

Remark: Most of the regularity conditions are direct extensions of those in [54] to the

bivariate case. Specifically, Condition 1 ensures that K has a compact support on R2 and is

symmetric, i.e.,

∫∫
xK(x, y)dxdy = 0,

∫∫
yK(x, y)dxdy = 0.

Conditions 2a and 2b, or 2a and 2c, together specify a range of feasible bandwidths, which

justifies the use of undersmoothed bandwidth. Note that, pointed out by an anonymous

reviewer, Condition 2c gives a more restrictive lower bound for bandwidth h and is only

required for Theorem 2.2. For Theorem 2.1, more relaxed Condition 2b is sufficient. The

exponent 3/4 in Condition 2c is a result of finite moments of X and ε in Conditions 3b and

6b. A similar condition is given in [10] for the Nadaraya-Watson estimator. In particular,

when Y is assumed to have a finite 8th order moment, which is a result of our conditions

3b, 3c and 6b, the bandwidth h in [10] needs to satisfy (n/ log n)3/4h → ∞ for a univariate

kernel estimator. We would also like to point out that the assumptions of finite higher order

moments for X and ε in Conditions 3b, 3c and 6b automatically hold for sub-Gaussian or
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sub-exponential processes. Lastly, Condition 7 ensures that
∑

i∈D XT
i KiXi/n is invertible

asymptotically. This is commonly assumed for regression models.

2.6.2 Technical Lemmas and Proofs

Lemma 2.1. For any fixed n, let Xn,i, i = 1, ..., n, be i.i.d random variables with mean µn

and variance σ2
n, where σ2

n = o(n). If µn = O(1), then
∑n

i=1Xn,i/n = Op(1); if µn → µ,

then
∑n

i=1 Xn,i/n →p µ.

Proof. For the first part, by µn = O(1) we know there exist M and N such that |µn| ≤ M

when n ≥ N . Thus for any ε > 0, when n ≥ N and n ≥ σ2
n/εM

2, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Xn,i

∣∣∣∣∣ > 2M

)
≤ P

(∣∣∣∣∣ 1n
n∑

i=1

Xn,i − µn

∣∣∣∣∣ > M

)
≤ σ2

n

nM2
≤ ε.

This concludes the proof for the first part. For the second part, by µn → µ we know that

for any ε > 0, there exists N ′ such that when n ≥ N ′, |µn − µ| ≤ ε/2. Thus when n ≥ N ′,

we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Xn,i − µ

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣ 1n
n∑

i=1

Xn,i − µn

∣∣∣∣∣ > ε/2

)
=

4σ2
n

nε2
→ 0.

Lemma 2.2. Let An(x) and A(x) be symmetric matrix-valued functions, and Bn(x) and

B(x) be matrix-valued functions of x ∈ X , where Bn(x) and B(x) may not be square ma-

trices and can potentially be vectors. Let ∥ · ∥2 denote the spectral norm, i.e., ∥A∥2 =

supx ̸=0 ∥Ax∥2/∥x∥2, and λ1

(
A(x)

)
be the smallest eigenvalue of A(x). Suppose the following

27



hold for a sequence C1, C2, ... of subsets of X :

sup
x∈Cn

∥An(x)− A(x)∥2 →p 0,

sup
x∈Cn

∥Bn(x)−B(x)∥2 →p 0,

lim inf
n

inf
x∈Cn

λ1

(
A(x)

)
= a > 0,

lim sup
n

sup
x∈Cn

∥B(x)∥2 = b < ∞.

Then we have

sup
x∈Cn

∥An(x)
−1Bn(x)− A(x)−1B(x)∥2 →p 0.

Proof. By definition, for any ε > 0 and 0 < δ < a/2, there exists N1 such that, when

n > N1,

P

(
sup
x∈Cn

∥An(x)− A(x)∥2 < δ

)
> 1− ε,

P

(
sup
x∈Cn

∥Bn(x)−B(x)∥2 < δ

)
> 1− ε.

Moreover, there exists N2 such that when n > N2,

inf
x∈Cn

λ1

(
A(x)

)
>

a

2
and sup

x∈Cn

∥B(x)∥2 < b+ 1.

When n > max(N1, N2), on the set where supx∈Cn
∥An(x) − A(x)∥2 < δ, we have for any

x ∈ Cn and non-zero vector y,

∥An(x)y − A(x)y∥2 < δ∥y∥2.
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This further implies

∥An(x)y∥2 > ∥A(x)y∥2 − δ∥y∥2 >
(a
2
− δ
)
∥y∥2,

which in turn gives

sup
x∈Cn

∥An(x)
−1∥2 ≤

2

a− 2δ
.

Thus we have

sup
x∈Cn

∥An(x)
−1Bn(x)− A(x)−1B(x)∥2

≤ sup
x∈Cn

∥An(x)
−1(Bn(x)−B(x))∥2 + sup

x∈Cn

∥An(x)
−1(An(x)− A(x))A(x)−1B(x)∥2

<
2δ

a− 2δ

(
1 +

2

a
(b+ 1)

)

with probability larger than 1− 2ε. The proof is complete.

Lemma 2.3. If the class of functions F is Euclidean [37] for a constant envelope function

F , 0 < F < ∞, and g is a fixed function, then the class

Fg = {fg : f ∈ F}

is Euclidean for the envelope function F |g|.

Proof. For any probability measure Q such that 0 < QF |g| < ∞, we can define R to be the

probability measure with density |g|/Q|g| with respect to Q, i.e., dR = |g|dQ/Q|g|. Clearly

R is a valid measure because 0 < Q|g| < ∞.

By the definition of Euclidean [37], we can find n ≤ Aε−V and f1, ..., fn ∈ F that makes the
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following holds for any f ∈ F :

min
i

R|f − fi| ≤ εRF.

Rewriting this with respect to measure Q,

min
i

Q|fg − fig|/Q|g| ≤ εQF |g|/Q|g|.

This completes the proof.

2.6.3 Proof of Theorem 2.1

Define

An(t, s;h) =
1

n

∑
i∈D

XT
i Ki(t, s;h)Xi,

Bn(t, s;h) =
1

n

∑
i∈D

XT
i Ki(t, s;h)Yi,

Rn(t, s;h) = Bn(t, s;h)−An(t, s;h)β(t, s),

then we have

β̂(t, s;h)− β(t, s) =


An(t1, s1;h)

. . .

An(td, sd;h)


−1

Rn(t1, s1;h)

...

Rn(td, sd;h)

 .

The proof proceeds by showing that An(tl, sl;h) converges to a fixed invertible matrix for

l = 1, ..., d and
√
nh2aT (Rn(t1, s1;h)

T , ...,Rn(td, sd;h)
T )T =

√
nh2

∑d
l=1 a

T
l Rn(tl, sl;h) con-

verges to a normal random variable for any non-zero vector a = (aT
1 , ...,a

T
d )

T .
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To show the consistency of An(tl, sl;h), we apply Lemma 2.1 by examining its expectation

and variance. With some simple algebra and applying the dominated convergence theorem

(DCT), we can show

EAn,k1k2(tl, sl;h) =
m∑
j=1

ηj,k1k2(tl, sl)fj(tl, sl) + o(1), (2.9)

V ar (An,k1k2(tl, sl;h)) = O

(
1

nh2

)
. (2.10)

The detailed calculations of (2.9) and (2.10) will be provided later in this proof. Then by

Lemma 2.1 and condition 2b, we have

An(tl, sl;h) →p Ω(tl, sl). (2.11)

To show
√
nh2aT (Rn(t1, s1;h)

T , ...,Rn(td, sd;h)
T )T converges to a normal random variable,

we define

Zn,i(a) =
d∑

l=1

1(i ∈ D)aT
l X

T
i Ki(tl, sl;h) [Yi −Xiβ(tl, sl)]

so that aT (Rn(t1, s1;h)
T , ...,Rn(td, sd;h)

T )T =
∑n

i=1 Zn,i(a)/n. We adopt Lyapunov’s cen-

tral limit theorem and verify the following Lyapunov’s condition

1

s2+δ
n

n∑
i=1

E |Zn,i(a)− EZn,i(a)|2+δ → 0

for some δ > 0 and s2n =
∑n

i=1Var(Zn,i(a)). To achieve this, we examine the expectation,
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variance, and the (2 + δ)-th central moment of Zn,i(a)

EZn,i(a) = h2

d∑
l=1

aT
l Γ(tl, sl) + o(h2), (2.12)

V ar(Zn,i(a)) =
µ0

h2

d∑
l=1

aT
l σ

2(tl)Ω(tl, sl)al + o

(
1

h2

)
, (2.13)

E|Zn,i(a)− EZn,i(α)|2+δ = O
(
h−2−2δ

)
. (2.14)

The detailed calculations of (2.12)-(2.14) will be provided later in this proof. Thus we have

s2n ≥ Cn/h2 for some constant C > 0, and with large enough n,

1

s2+δ
n

n∑
i=1

E |Zn,i(a)− EZn,i(a)|2+δ ≤ C ′ n/h2+2δ

n1+δ/2/h2+δ
= C ′n−δ/2h−δ → 0

by Condition 2b. Now we can claim

∑
i Zn,i(a)−

∑
iEZn,i(a)√∑n

i=1 V ar (Zn,i(a))
→d N(0, 1).

By Cramer-Wold device, we have

√
nh2Rn(t, s;h) →d N(h3

0B
∗(t, s),V∗(t, s)),

where

B∗(t, s) =


Γ(t1, s1)

...

Γ(td, sd)

 , V∗(t, s) = µ0


σ2(t1)Ω(t1, s1)

. . .

σ2(td)Ω(td, sd)

 .

Further by Slutsky’s theorem and (2.11), we have

√
nh2(β̂(t, s;h)− β(t, s)) →d N(h3

0B(t, s),V(t, s)).
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Now we show the detailed calculations of (2.9)-(2.10) and (2.12)-(2.14). We first introduce

the following notation

ϕi,l = 1(i ∈ D)XT
i Ki(tl, sl;h)εi

=
1

h2

m∑
j=1

1(τij ≤ Ti ≤ Ci)XijK

(
τij − tl

h
,
Ti − τij − sl

h

)
εij

d
=

m∑
j=1

ϕij,l,

ψi,l = 1(i ∈ D)XT
i Ki(tl, sl;h)


XT

i1β(τi1, Ti − τi1)−XT
i1β(tl, sl)

...

XT
imi
β(τimi

, Ti − τimi
)−XT

imi
β(tl, sl)


=

1

h2

m∑
j=1

{
1(τij ≤ Ti ≤ Ci)XijK

(
τij − tl

h
,
Ti − τij − sl

h

)

×
p∑

k=1

Xijk[βk(τij, Ti − τij)− βk(tl, sl)]

}
d
=

m∑
j=1

ψij,l,

then we have Zn,i(a) =
∑d

l=1 a
T
l (ϕi,l + ψi,l). Xij is short for Xi(τij) and Xijk is short for

Xik(τij), which will be used for the rest of the proof.

Proof of (2.9):

EAn,k1k2(tl, sl;h)

=
1

h2

m∑
j=1

E

[
1(τij ≤ Ti ≤ Ci)Xijk1Xijk2K

(
τij − tl

h
,
Ti − τij − sl

h

)]

=
m∑
j=1

∫∫
ηj,k1k2(hx+ tl, hy + sl)K(x, y)1(hy + sl ≥ 0)fj(hx+ tl, hy + sl)dxdy

=
m∑
j=1

ηj,k1k2(tl, sl)fj(tl, sl) + o(1).
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The last equality comes from DCT because ηj,k1k2 and fj are continuous by Condition 3a

and 4a and K is bounded on bounded support by Condition 1.

Proof of (2.10):

V ar (An,k1k2(tl, sl;h))

=
1

nh4
V ar

(
m∑
j=1

1(τij ≤ Ti ≤ Ci)Xijk1Xijk2K

(
τij − tl

h
,
Ti − τij − sl

h

))

≤ m

nh4

m∑
j=1

E

[
1(τij ≤ Ti ≤ Ci)Xijk1Xijk2K

(
τij − tl

h
,
Ti − τij − sl

h

)]2
=

m

nh2

m∑
j=1

∫∫
1(hy + sl ≥ 0)ζj,k1k1k2k2(hx+ tl, hy + sl)K

2(x, y)fj(hx+ tl, hy + sl)dxdy

= O

(
1

nh2

)
,

where ζj,k1k2k3k4(x, y) = E[1(Ti ≤ Ci)Xijk1Xijk2Xijk3Xijk4|τij = x, Ti − τij = y]. The inequal-

ity above is obtained following (a1 + · · · + ak)
2 ≤ n(a21 + · · · + a2k), which is from Jensen’s

Inequality. The last equality again comes from DCT because ζj,k1k2k3k4 is locally bounded

by Condition 3b.

Proof of (2.12):

EZn,i(a) =
d∑

l=1

aT
l (Eϕi,l + Eψi,l) =

d∑
l=1

aT
l Eψi,l,
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and we have

(Eψi,l)k1

=
1

h2

m∑
j=1

E

{
1(τij ≤ Ti ≤ Ci)Xijk1K

(
τij − tl

h
,
Ti − τij − sl

h

)

×
p∑

k=1

Xijk[βk(τij, Ti − τij)− βk(tl, sl)]

}

=
1

h2

m∑
j=1

p∑
k=1

E

{
1(τij ≤ Ti ≤ Ci)Xijk1XijkK

(
τij − tl

h
,
Ti − τij − sl

h

)
× [βk(τij, Ti − τij)− βk(tl, sl)]

}
=

m∑
j=1

p∑
k=1

∫∫
K(x, y)1(hy + sl ≥ 0)ηj,k1k(hx+ tl, hy + sl)

× [βk(hx+ tl, hy + sl)− βk(tl, sl)]fj(hx+ tl, hy + sl)dxdy

=
m∑
j=1

p∑
k=1

∫∫
K(x, y)1(hy + sl ≥ 0)

×
[
ηj,k1k(tl, sl) + hxη

(1,0)
j,k1k

(θ1hx+ tl, θ1hy + sl) + hyη
(0,1)
j,k1k

(θ1hx+ tl, θ1hy + sl)

]
×
[
hxβ

(1,0)
k (tl, sl) + hyβ

(0,1)
k (tl, sl) + h2xyβ

(1,1)
k (θ2hx+ tl, θ2hy + sl)

+
h2x2

2
β
(2,0)
k (θ2hx+ tl, θ2hy + sl) +

h2y2

2
β
(0,2)
k (θ2hx+ tl, θ2hy + sl)

]
×
[
fj(tl, sl) + hxf

(1,0)
j (θ3hx+ tl, θ3hy + sl) + hyf

(0,1)
j (θ3hx+ tl, θ3hy + sl)

]
dxdy

= h2

m∑
j=1

p∑
k=1

⟨µ2, gj,k1k(tl, sl)⟩+ o(h2)

= h2Γ(tl, sl)k1 + o(h2),

where β
(p,q)
k = ∂p+qβk/(∂x

p∂yq) and θ1, θ2, θ3 ∈ (0, 1). The Taylor expansion is valid due to

condition 3a, 4a and 5.
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Proof of (2.13):

V ar(Zn,i(a)) =
d∑

l1=1

d∑
l2=1

aT
l1
[Cov(ϕi,l1 ,ϕi,l2) + Cov(ψi,l1 ,ψi,l2)]al2

=
d∑

l1=1

d∑
l2=1

m∑
j1=1

m∑
j2=1

aT
l1
[Cov(ϕij1,l1 ,ϕij2,l2) + Cov(ψij1,l1 ,ψij2,l2)]al2 .

For terms with ϕ, when j1 = j2 = j and l1 = l2 = l,

[Cov(ϕij1,l1 ,ϕij2,l2)]k1,k2

=
1

h4
E

(
1(τij ≤ Ti ≤ Ci)Xijk1Xijk2K

2

(
τij − tl

h
,
Ti − τij − sl

h

)
ε2ij

)
=

1

h2

∫∫
1(sl + hy ≥ 0)ηj,k1k2(tl + hx, sl + hy)K2(x, y)σ2(tl + hx)fj(tl + hx, sl + hy)dxdy

= µ0ηj,k1k2(tl, sl)σ
2(tl)fj(tl, sl)/h

2 + o(1/h2).

Here we additionally need Condition 6a to apply DCT. When j1 = j2 = j and l1 ̸= l2,

[Cov(ϕij1,l1 ,ϕij2,l2)]k1,k2

=
1

h4
E

(
1(τij ≤ Ti ≤ Ci)Xijk1Xijk2

×K

(
τij − tl1

h
,
Ti − τij − sl1

h

)
K

(
τij − tl2

h
,
Ti − τij − sl2

h

)
ε2ij

)
=

1

h2

∫∫
1(sl + hy ≥ 0)ηj,k1k2(tl + hx, sl + hy)

×K(x, y)K(x+ (tl1 − tl2)/h, y + (sl1 − sl2)/h)

× σ2(tl + hx)fj(tl + hx, sl + hy)dxdy

= o(1/h2).
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When j1 ̸= j2 and l1 = l2 = l,

[Cov(ϕij1,l1 ,ϕij2,l2)]k1,k2

=
1

h4
E

(
1(τij1 , τij2 ≤ Ti ≤ Ci)Xij1k1Xij2k2

×K

(
τij1 − tl

h
,
Ti − τij1 − sl

h

)
K

(
τij2 − tl

h
,
Ti − τij2 − sl

h

)
εij1εij2

)
=

1

h

∫∫∫
1(sl + hz ≥ 0)1(sl + hx+ hz − hy ≥ 0)ξj1j2,k1k2(tl + hx, tl + hy, sl + hz)

×K(x, z)K(y, x+ z − y)ρ(tl + hx, tl + hy)fj1,j2(tl + hx, tl + hy, sl + hz)dxdydz

= O(1/h),

where ξj1j2,k1k2(x, y, z) = E[1(Ti ≤ Ci)Xij1k1Xij2k2|τij1 = x, τij2 = y, Ti − τij1 = z] and fj1,j2

is the joint density of τij1 , τij2 and Ti − τij1 . Note ξ, fj1,j2 and ρ are locally bounded by

Condition 3c, 4b and 6a, respectively. When j1 ̸= j2 and l1 ̸= l2,

[Cov(ϕij1,l1 ,ϕij2,l2)]k1,k2

=
1

h4
E

(
1(τij1 , τij2 ≤ Ti ≤ Ci)Xij1k1Xij2k2

×K

(
τij1 − tl1

h
,
Ti − τij1 − sl1

h

)
K

(
τij2 − tl2

h
,
Ti − τij2 − sl2

h

)
εij1εij2

)
=

1

h

∫∫∫
1(sl1 + hz ≥ 0)1(tl1 + sl1 − tl2 + hx+ hz − hy ≥ 0)

× ξj1j2,k1k2(tl1 + hx, tl2 + hy, sl1 + hz)K(x, z)K(y, x+ z − y + (tl1 + sl1 − tl2 − sl2)/h)

× ρ(tl1 + hx, tl2 + hy)fj1,j2(tl1 + hx, tl2 + hy, sl1 + hz)dxdydz

= O(1/h).

For terms with ψ,

[Cov(ψij1,l1 ,ψij2,l2)]
2
k1,k2

≤ [V ar(ψij1,l1)]k1,k1 [V ar(ψij2,l2)]k2,k2 ,
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and we have,

[V ar(ψij,l)]k,k

≤ 1

h4

p∑
k1=1

p∑
k2=1

E

(
1(τij ≤ Ti ≤ Ci)X

2
ijkK

2

(
τij − tl

h
,
Ti − τij − sl

h

)
×Xijk1Xijk2 [βk1(τij, Ti − τij)− βk1(tl, sl)][βk2(τij, Ti − τij)− βk2(tl, sl)]

)
=

1

h2

p∑
k1=1

p∑
k2=1

∫∫
1(sl + hy ≥ 0)ζj,kkk1k2(tl + hx, sl + hy)K2(x, y)

×
[
hxβ

(1,0)
k1

(tl + θ′1hx, sl + θ′1hy) + hyβ
(0,1)
k1

(tl + θ′1hx, sl + θ′1hy)
]

×
[
hxβ

(1,0)
k2

(tl + θ′2hx, sl + θ′2hy) + hyβ
(0,1)
k2

(tl + θ′2hx, sl + θ′2hy)
]
dxdy

= O(1).

Here Condition 3b, 4a and 5 are needed for DCT. In summary, we have

V ar(Zn,i(a)) =
µ0

h2

d∑
l=1

m∑
j=1

aT
l ηj(tl, sl)σ

2(tl)fj(tl, sl)al + o

(
1

h2

)
.

Proof of (2.14):

E|Zn,i(a)− EZn,i(α)|2+δ

≤ E (|Zn,1(a)|+ |EZn,1(a)|)2+δ

≲ (E|Zn,i(a)|2+δ + |EZn,i(a)|2+δ).

The notation ≲ stands for less than up to a constant factor. The last inequality is from

Jensen’s Inequality. We already know EZn,i(a) = O(h2) from the proof of (2.12). Further
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we have

E|Zn,i(a)|2+δ = E

∣∣∣∣∣
d∑

l=1

m∑
j=1

aT
l (ϕij,l +ψij,l)

∣∣∣∣∣
2+δ

≲
d∑

l=1

m∑
j=1

(
E
∣∣aT

l ϕij,l

∣∣2+δ
+ E

∣∣aT
l ψij,l

∣∣2+δ
)
.

By similar calculations as before we can show

E
∣∣aT

l ϕij,l

∣∣2+δ
= h−4−2δE

∣∣∣∣1(τij ≤ Ti ≤ Ci)a
T
l XijK

(
τij − tl

h
,
Ti − τij − sl

h

)
εij

∣∣∣∣2+δ

= O(h−2−2δ),

E
∣∣aT

l ψij,l

∣∣2+δ
= h−4−2δE

∣∣∣∣1(τij ≤ Ti ≤ Ci)a
T
l XijK

(
τij − tl

h
,
Ti − τij − sl

h

)
×

p∑
k=1

Xijk[βk(τij, Ti − τij)− βk(tl, sl)]

∣∣∣∣2+δ

≲ h−4−2δ

p∑
k=1

E

∣∣∣∣1(τij ≤ Ti ≤ Ci)a
T
l XijK

(
τij − tl

h
,
Ti − τij − sl

h

)
Xijkβk(τij, Ti − τij)

∣∣∣∣2+δ

+ h−4−2δ

p∑
k=1

E

∣∣∣∣1(τij ≤ Ti ≤ Ci)a
T
l XijK

(
τij − tl

h
,
Ti − τij − sl

h

)
Xijkβk(tl, sl)

∣∣∣∣2+δ

= O(h−2−2δ),

for any δ ≤ 2. Condition 3b and 6b are needed to ensure the convergence under DCT. Now

the proof of Theorem 3.1 in complete.

2.6.4 Proof of Theorem 2.2

By (2.11), we just need to show

h2

n

∑
i∈D

XT
i Kiε̂iε̂

T
i KiXi →p

m∑
j=1

ηj(t0, s0)fj(t0, s0)σ
2(t0)µ0.
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Notice that

[
h2

n

∑
i∈D

XT
i Kiε̂iε̂

T
i KiXi

]
kl

=
h2

n

n∑
i=1

m∑
j1=1

m∑
j2=1

1(τij1 ∨ τij2 ≤ Ti ≤ Ci)Xik(τij1)Xil(τij2)Kij1Kij2 ,

×
{
Xi(τij1)

T
[
β(τij1 , Ti − τij1)− β̂(τij1 , Ti − τij1)

]
+ εi(τij1)

}
×
{
Xi(τij2)

T
[
β(τij2 , Ti − τij2)− β̂(τij2 , Ti − τij2)

]
+ εi(τij2)

}
,

where Kij = h−2K((τij − t0)/h, (Ti − τij − s0)/h). By the similar mean and variance calcu-

lations as in the proof of Theorem 2.1 following Lemma 2.1, under Conditions 3b, 3c and 6b

we have

h2

n

n∑
i=1

m∑
j1=1

m∑
j2=1

|Xik(τij1)Xil(τij2)|∥Xi(τij1)Xi(τij2)
T∥FKij1Kij2 = Op(1),

h2

n

n∑
i=1

m∑
j1=1

m∑
j2=1

|Xik(τij1)Xil(τij2)εi(τij2)|∥Xi(τij1)∥2Kij1Kij2 = Op(1), and

h2

n

n∑
i=1

m∑
j1=1

m∑
j2=1

1(τij1 ∨ τij2 ≤ Ti ≤ Ci)Xik(τij1)Xil(τij2)εi(τij1)εi(τij2)Kij1Kij2

→p

m∑
j=1

ηj,kl(t0, s0)fj(t0, s0)σ
2(t0)µ0,

where ∥ · ∥F denotes Frobenious norm. Thus it suffices to show

sup
(t,s)∈S0(h)

∥∥∥β(t, s;h)− β̂(t, s;h)∥∥∥
2
→p 0, (2.15)

where

S0(h) =

{
(t, s) :

(
t− t0
h

,
s− s0
h

)
∈ suppK

}
,

and we divide the proof of (2.15) into four parts following Lemma 2.2.
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(1) First we show

sup
(t,s)∈S0(h)

|An(t, s;h)kl − A(t, s)kl| →p 0 (2.16)

for some deterministic matrix A(t, s). Consider the following class of functions

Fkl =

{ m∑
j=1

1(τj ≤ T ≤ C)Xk(τj)Xl(τj)K

(
τj − t

h∗ ,
T − τj − s

h∗

)
:

h∗ ∈ (0, ε∗), (t, s) ∈ S0(h
∗)

}
,

where ε∗ is defined below. This is equivalent to the following class of functions based on the

fact that K is defined on a bounded support:

Fkl =

{ m∑
j=1

1(τj ≤ T ≤ C)Xk(τj)Xl(τj)K

(
τj − t

h∗ ,
T − τj − s

h∗

)
· 1[(τj, T − τj) ∈ B0(2ε

∗R(K))] : h∗ ∈ (0, ε∗), (t, s) ∈ S0(h
∗)

}
,

with envelope function

Fkl =
m∑
j=1

|Xk(τj)Xl(τj)| · ∥K∥∞ · 1[(τj, T − τj) ∈ B0(2ε
∗R(K))],

where R(K) = supsuppK ∥x∥2, B0(ε) = {(t, s) : (t − t0)
2 + (s − s0)

2 ≤ ε2}, and ε∗ is chosen

such that EF r
kl < ∞ for some r > 1. By Condition 3b, this can be done for any r ∈ (1, 4].

Next we take two steps to show that Fkl is Euclidean. First, notice that the class of kernel

functions

{
K

(
τj − t

h∗ ,
T − τj − s

h∗

)
: h∗ ∈ (0, ε∗), (t, s) ∈ S0(h

∗)

}
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is Euclidean under our Condition 1 by Lemma 22(i) in [37]. Second, by Lemma 17 in [37]

and our Lemma 2.3, we know Fkl is Euclidean for Fkl. Define G+ as {g+ : g ∈ G}, where

g+ = max(g, 0). Then it is easy to show that F+
kl is also Euclidean for Fkl.

Now we apply equation (2) in [40] for the class F+
kl with γ = h2ε and κ(x) = xr following

his notation, which gives

sup
F+

kl

|Pnf − Pf |
ε(Pnf + Pf) + εh2(PnFkl + PFkl + 1)

≤ 26 (2.17)

with probability at least

1− 32A(h2ε)−V exp(−ε2h2n1−1/r)− 4PF r
kl1(F

r
kl > nε), (2.18)

where Pn is the empirical measure of a random sample generated from the fixed probability

measure P , and A and V are the Euclidean constants for Fkl. By some algebra, we can show

32A(h2ε)−V exp(−ε2h2n1−1/r) converges to 0 when h2n1−1/r/ log n → ∞, which is guaranteed

by Condition 2c. Further we know PF r
kl1(F

r
kl > nε) → 0 by DCT. These allow us to have

(2.17) with arbitrarily large probability when n is large enough. Next we replace PnFkl in

the denominator of (2.17) by its upper bound. Since PnFkl →p PFkl by weak law of large

numbers, we have |PnFkl − PFkl| < PFkl with arbitrarily large probability when n is large

enough. Thus (2.17) implies

sup
F+

kl

|Pnf − Pf |
ε(Pnf + Pf) + εh2(3PFkl + 1)

≤ 26 (2.19)

with arbitrarily large probability when n is large enough.

Consider another class of functions:

Fkl,n =

{
m∑
j=1

1(τj ≤ T ≤ C)Xk(τj)Xl(τj)K

(
τj − t

h
,
T − τj − s

h

)
: (t, s) ∈ S0(h)

}
,
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which is a subset of Fkl when n is large enough. By (2.19) we have with arbitrarily large

probability,

sup
F+

kl,n

|h−2Pnf − h−2Pf | ≤ 26ε

1− 26ε
(sup
F+

kl,n

h−2Pf + 3PFkl + 1).

We just further need to show supF+
kl,n

h−2Pf = O(1) to conclude supF+
kl,n

|h−2Pnf−h−2Pf | →p

0. When n is large enough, we have

sup
F+

kl,n

h−2Pf

≤ sup
Fkl,n

h−2P |f |

= sup
(t,s)∈S0(h)

h−2E

∣∣∣∣∣
m∑
j=1

1(τj ≤ T ≤ C)Xk(τj)Xl(τj)K

(
τj − t

h
,
T − τj − s

h

)∣∣∣∣∣
≤

m∑
j=1

sup
(t,s)∈S0(h)

h−2E

[
|Xk(τj)Xl(τj)|K

(
τj − t

h
,
T − τj − s

h

)]

≤
m∑
j=1

∫
sup

(t,s)∈S0(h)

ϕ(hx+ t, hy + s; j, k, l)K(x, y)fj(hx+ t, hy + s)dxdy

= O(1)

by Condition 3b, here ϕ(x, y; j, k, l) = E
[
|Xk(τj)Xl(τj)|

∣∣τj = x, T = x+ y
]
.

Similarly we can show supF−
kl,n

|h−2Pnf − h−2Pf | →p 0. Combining the two gives us

sup
(t,s)∈S0(h)

|An(t, s;h)kl − EAn(t, s;h)kl|

= sup
Fkl,n

∣∣h−2Pnf
+ − h−2Pnf

− − h−2Pf+ + h−2Pf−∣∣
≤ sup

Fkl,n

∣∣h−2Pnf
+ − h−2Pf+

∣∣+ sup
Fkl,n

∣∣h−2Pnf
− − h−2Pf−∣∣→p 0.
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What remains is to show

sup
(t,s)∈S0(h)

|EAn(t, s;h)kl − A(t, s)kl| → 0.

With A(t, s) =
∑m

j=1 ηj(t, s)fj(t, s), when h is small enough, we have

sup
(t,s)∈S0(h)

|EAn(t, s;h)kl − A(t, s)kl|

= sup
(t,s)∈S0(h)

∣∣∣∣ m∑
j=1

∫∫
ηj,kl(hx+ t, hy + s)K(x, y)fj(hx+ t, hy + s)dxdy

−
m∑
j=1

∫∫
ηj,kl(t, s)K(x, y)fj(t, s)dxdy

∣∣∣∣
≤

m∑
j=1

∫∫
K(x, y) sup

(t,s)∈S0(h)

∣∣ηj,kl(hx+ t, hy + s)fj(hx+ t, hy + s)

− ηj,kl(t, s)fj(t, s)
∣∣dxdy

→ 0,

where the convergence holds because when n is large enough and K(x, y) > 0, both (t, s) and

(hx+ t, hy+ s) are within a neighborhood of (t0, s0) where η and fj are continuous, then by

the Heine–Cantor theorem we can bound ηj,kl(hx+t, hy+s)fj(hx+t, hy+s)−ηj,kl(t, s)fj(t, s)

by any arbitrary number.

(2) In this part we want to show

sup
(t,s)∈S0(h)

∥Bn(t, s;h)−B(t, s)∥2 →p 0,

where

B(t, s) =

[
m∑
j=1

ηj(t, s)fj(t, s)

]
β(t, s).
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Similarly as in part (1), we can show

sup
(t,s)∈S0(h)

∥Bn(t, s;h)− EBn(t, s;h)∥2 →p 0.

We omit the details to avoid duplications. Further by noticing that

EBn(t, s;h)−B(t, s) = EAn(t, s;h)β(t, s) + ERn(t, s;h)− A(t, s)β(t, s),

we only need to show

sup
(t,s)∈S0(h)

∥ERn(t, s;h)∥2 → 0,

which holds because for any k,

sup
(t,s)∈S0(h)

|ERn(t, s;h)k|

= sup
(t,s)∈S0(h)

∣∣∣∣ m∑
j=1

p∑
l=1

∫∫
1(hy + s ≥ 0)ηj,kl(hx+ t, hy + s)K(x, y)

× [βl(hx+ t, hy + s)− βl(t, s)] fj(hx+ t, hy + s)dxdy

∣∣∣∣
≤

m∑
j=1

p∑
l=1

∫∫
K(x, y) sup

(t,s)∈S0(h)

[
|βl(hx+ t, hy + s)− βl(t, s)|

|ηj,kl(hx+ t, hy + s)|fj(hx+ t, hy + s)
]
dxdy

→ 0,

where the convergence holds under Conditions 3a, 4a and 5.

(3) Under Condition 7, we know λ1(A(t0, s0)) is strictly positive. Furthermore, under Con-

dition 3a and 4a, λ1(A(·, ·)) > 0 is bounded away from 0 in a neighborhood of (t0, s0). Thus
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we have

lim inf
n

inf
(t,s)∈S0(h)

λ1(A(t, s)) > 0.

(4) Whenever ∥B(t0, s0)∥2 < ∞, we have

lim sup
n

sup
(t,s)∈S0(h)

∥B(t, s)∥2 < ∞,

by Condition 3a, 4a and 5. Now the proof is complete.

2.6.5 Covariate Effects in the Full Model for ESRD Medicare Data

Analysis

Figure 2.4 depicts the coefficient estimates in the the full model for the ESRD Medicare data

analysis using a bandwidth of 10 days (cross-validated and undersmoothed):

log(Yij/1000 + 1)

= β1(τij, Ti − τij) + β2(τij, Ti − τij)Payerij + β3(τij, Ti − τij)Racei

+ β4(τij, Ti − τij)Diabetesi + β5(τij, Ti − τij)Hearti + εi(τij).

Confidence Bands in Figure 2.4 are constructed following [54] via family-wise error control

based on the asymptotic multivariate normal distribution given in Theorem 3.1 at 100 evenly

spaced grid points for each curve, with a simplification where the gaps between grid points

are bridged via linear interpolation. Such a modification yields wider than pointwise but

still anti-conservative confidence bands comparing to global confidence bands. From Figure

2.4 we see that the estimated coefficients for the three baseline covariates (race, diabetes,

and heart disease) are close to zero in magnitude and their simplified family-wise error
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controlled confidence bands cover 0 everywhere. In other words, these coefficients are neither

scientifically nor statistically significant. Thus we focus on the first two coefficients in our

final analysis that is given in the main text.

2.6.6 Simulation for the Locally Weighted Pseudo Likelihood Ap-

proach under Working Independence

In this section, we adopt a simulation design similar to that in Section 2.4 with a smaller

sample size of n = 400 to compare the pseudo likelihood approach described in Section

2.2.4 and the complete case estimator (2.3). In order to implement the pseudo likelihood

approach, we generate conditionally independent terminal event time T and censoring time

C from exponential distributions with rates exp(3Xi2+Xi3(0)−5) and exp(Xi2+3Xi3(0)−5),

respectively, which are then truncated at 15 and added 5. Dropping unrelated factors, we

have the following pseudo likelihood:

n∏
i=1


mi∏
j=1

[
1√
2πσij

e
− 1

2σ2
ij

(Yij−XT
ijb)

2
]K(

τij−t

h
,
Ti−τij−s

h
)


∆i

×


∫ ∞

Ci

mi∏
j=1

[
1√
2πσij

e
− 1

2σ2
ij

(Yij−XT
ijb)

2
]K(

τij−t

h
,
u−τij−s

h
)

dP (Ti ≤ u|Zi)


1−∆i

.

The pseudo likelihood estimating procedure involves two steps: (1) Estimating nuisance

parameters P (Ti ≤ u|Zi) and σij. In this simulation study, we estimate P (Ti ≤ u|Zi) by

using stratified Kaplan-Meier estimates. Specifically, we first group subjects with similar

baseline covariates Z = (X2, X3(0)) into 10 clusters using a k-means clustering, and then

estimate the conditional survival distribution within each cluster. We estimate σij by the

kernel estimator σ̂2
ij = (nh)−1

∑
i′j′ ε̂

2
i′j′K((τi′j′ − τij)/h), where h is the same bandwidth

used for estimating β, and K is the standard Gaussian kernel truncated at ±2. Then put
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the estimates back into above pseudo likelihood to replace their corresponding unknown

parameters. (2) Maximizing the log pseudo likelihood. We first find the complete case

estimator, then use it as the initial point to run the Robbins-Monro algorithm for 1000

iterations with initial stepsize 0.01 to maximize the logarithm of the above pseudo likelihood

functions with respect to b.

Figure 2.5 shows the comparison between the complete case estimator and the estimator

obtained from maximizing the pseudo likelihood. The solid curve represents the true coef-

ficient values. The red middle, upper and lower curves are the mean and variability bands

of the complete case estimator; The blue middle, upper and lower curves are the mean and

95% empirical confidence bands of the pseudo likelihood estimator. Notice the complete case

estimator still works reasonably well at most time points for a much smaller sample size. In

all plots, the confidence bands of the pseudo likelihood estimators are narrower, indicating

improved efficiency by including censored subjects.
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Figure 2.4: Coefficient estimates and their family-wise error controlled confidence bands for
T = 360, 900, 1440 days.
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Figure 2.5: Mean estimates and empirical confidence bands at T = 8, 12, 16. Black: true
coefficient. Red: complete case estimator; Blue: pseudo likelihood estimator.
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Chapter 3

Bivariate Functional Patterns of

Lifetime Medicare Costs among

ESRD Patients

3.1 Introduction

End-stage renal disease (ESRD), also called end-stage kidney disease, is an advanced state

of chronic kidney disease in which a patient’s kidneys permanently stop functioning and

the patient requires long-term dialysis or a kidney transplant to maintain life. ESRD has

become increasingly prevalent in the United States. Over the last two decades in particular,

the number of individuals with prevalent ESRD reached 808,330 in 2019, an increase of 107%

from 2000 [47]. Compared to long-term dialysis, the survival benefit of kidney transplant

has long been established [52, 33, 44]. The annual count of kidney transplants performed

in patients undergoing dialysis has reached 24,511 in 2019, a 36.9% increase since 2010, and

the number of newly waitlisted ESRD patients for kidney transplantation reached 28,553
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in 2019. Despite an increase of transplantation, the percentage of prevalent ESRD patients

with a kidney transplant remained unchanged at approximately 30%. Among the prevalent

dialysis patients, 13.1% are still on the transplant waiting list by the end of 2019. With the

high prevalence of ESRD patients, it is of tremendous interest to understand the medical

spending patterns of patients who are on the waiting list and who have received transplants

compared to unwaitlisted long-term dialysis patients.

It has long been observed that patients on the waiting list tend to have better health sta-

tus compared to unwaitlisted patients. For example, [53] observed that the standardized

mortality ratios for subgroups of the waitlisted patients are 38-58 percent lower than un-

waitlisted patients. To be on the waitlist, an ESRD patient needs to obtain a referral to

a local transplant center, where the patient will be evaluated by the transplant team for

candidacy. Once becoming a candidate, the patient will be added to the waiting list. As of

end of year 2022, there are 235 transplant centers in the United States. Although substantial

variations in the practices of transplant evaluation have been reported [51], some common

factors are considered across different transplant centers. For example, [32] found that 22%

of the 59 transplant programs they surveyed have an absolute age cutoff in the range of 70 to

79. According to [34], 38% of the 202 programs they surveyed performed frailty assessments

for candidacy. The evaluation practices based on these factors create disparities between

patients on the waiting list and those who are not. While the existing literature on the wait-

ing list focuses on the survival disparity, there is few literature that studies the economic

implication of waitlisting. One of the goals of this paper is to study potential medical cost

differences between unwaitlisted and waitlisted patients who have the same lifespan.

The survival and economic benefit of transplant itself has been extensively studied. A stan-

dard measure used in economic evaluation to compare healthcare interventions is the incre-

mental cost-effectiveness ratio (ICER) [8]. Numerous articles have proposed ICER-based

methods to study the cost-effectiveness of kidney transplantation compared to dialysis. See
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[15] for a systematic review. The ICER is then compared to a willingness-to-pay thresh-

old, for example, $100K [35, 31, 3]. The determination of ICER involves calculating the

cumulative medical cost during the remaining lifetime, which is a single summary number to

measure the cost of transplant and dialysis. Using a new proposed method, we examine and

compare the detailed medical cost trajectories of transplanted ESRD patients during their

lifespan, and a new analysis approach is proposed for that matter.

Two analyses are considered. The first analysis is to compare overall medical costs between

dialysis patients on the waiting list and those unwaitlisted, and the second analysis is between

patients on the waiting list and those who later received kidney transplantation. The cost

differences between the comparison groups are estimated using extensions of the bivariate

time-varying coefficient model [50], with adjustment for demographics and comorbidities of

ESRD patients.

3.2 ESRD Medicare Claims Data

In this paper we use the institutional Medicare claims data prepared by the United States

Renal Data System (USRDS). The claims data covers 5 types of medical services: inpatient

care, outpatient care, skilled nursing facility care, home health care and hospice care. We

consider ESRD patients who started their first ESRD service in a 5-year window from the

beginning of 2007 to the end of 2011 and were at least 65 years old at the first service.

The follow-up ends at the end of 2017 and any patients still alive by then are excluded as

death information is needed for the analysis. This type of analysis is commonly referred

to as the complete case analysis and its validity under a longitudinal model conditional on

survival time has been established by [24] and [50]. We only retain patients that had at most

one kidney transplant during follow-up. As we will see later, restricting to patients with at

most one transplant helps simplify the model interpretation and the estimation procedure.
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According to [46], the claims database contains data for both Medicare as Primary Payer

(MPP) and Medicare as Secondary Payer (MSP) patients, but it is impossible to determine

the complete cost of care for ESRD patients with MSP coverage. For this reason, we only

retain the days when patients were on MPP coverage. According to [47], Medicare ESRD

expenditures for specific events or services (e.g., hospitalizations, medications) include only

beneficiaries covered by traditional fee-for-service Medicare but not Medicare Advantage

(MA) plans. For that reason, we cannot obtain the accurate individual spending amount for

ESRD patients on MA plans and they are thus excluded. Patients with no BMI records and

patients with missing gender information were also excluded for data completeness.

By applying all the aforementioned criteria to the USRDS dataset, we obtain 183157 patients.

Among them, 175482 were never on the waiting list and never received transplant, 4933

were on the waiting list but never received transplant, and 2557 were placed on the waiting

list and later received a transplant. The remaining 185 patients who were never on the

waiting list but received a transplant may have different characteristics, thus are excluded

from further analysis. For brevity, these three patient groups of interest are referred to

respectively as unwaitlisted group, waitlisted (but not transplanted) group and transplanted

group. In order to reduce the computing cost, we randomly sample 5000 patients from the

unwaitlisted group, which also creates a balanced sample size comparing to the waitlisted

group for the final analysis. Furthermore, for each patient we randomly select 10% of the

days without replacement during the follow-up period and calculate the daily cost on the

selected days. Patients with less than 10 selected days are excluded from the analysis, which

leads to the final respective sample sizes of n1 = 4962, n2 = 4918 and n3 = 2548 patients in

the unwaitlisted, waitlisted and transplanted groups.

The daily cost of a specific day is calculated by summing up the average daily cost of each

claim period that includes that day. For example, if one claim is from May 1st to 20th with

a total of $1000 and another claim from May 11th to 30th with a total of $500, then the

54



daily cost of May 15th is $75 (average daily cost of $50 from the first claim and $25 from the

second). Daily cost variables include the total medical cost, which is the primary variable

of interest, and five major medical cost components (inpatient, outpatient, skilled nursing

care, home health care, and hospice care).

In addition to daily medical costs and death time, we also extract the following variables:

demographic variables including age at the first ESRD service, sex and race; dialysis type for

dialysis patients; health-related variables including an indicator variable for hypertension,

an indicator variable for any of other comorbidities (congestive heart failure, atherosclerotic

heart disease, other cardiac disease, cerebrovascular disease, peripheral vascular disease,

diabetes, chronic obstructive pulmonary disease, cancer and toxic nephropathy) and BMI.

The USRDS created a treatment history for all ESRD patients in the database. This history

can be used to identify the treatment modality for any patient on a single day. The detailed

and general treatment modality categories used by the USRDS are listed in Table 3.1. For

our analysis, we use the general categories and create a binary variable that equals 1 if a

patient is on peritoneal dialysis (PD) and 0 if on hemodialysis (HD). The observations on

other treatment modalities other than transplant are excluded in the analysis. Dialysis type

is the only time-varying covariate in our models.

We separate hypertension from the comorbidities because hypertension is very common

among ESRD patients (87.3% among selected patients) and combining hypertension with

other comorbidities will make the event almost always positive (96.7% among selected pa-

tients). Becasue 96.3% of the patients in the analysis dataset only have one BMI measure

available and most of them (95.6%) are recorded at the baseline (the first time of receiving

the ESRD service), we use the baseline BMI as a time-invariant covariate. For patients who

do not have a baseline BMI measure, this variable is created by averaging all BMI values

recorded in the follow-up period. We believe this causes minimal impact to the analysis

because only a very small percent of patients do not have baseline measures and the BMI is
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Type Detail General
1 Center hemodialysis (HD) HD
2 Center Self HD HD
3 Home HD HD
4 HD training HD
5 Continuous Ambulatory Peritoneal Dialysis (CAPD) PD
6 CAPD training PD
7 Continuous Cycling Peritoneal Dialysis (CCPD) PD
8 CCPD training PD
9 Other PD PD
A Uncertain dialysis Unknown Dialysis
B Discontinued dialysis Discontinued Dialysis
T Functioning transplant Transplant
X Lost-to-follow-up Lost-to-follow-up
Z Recovered function Recovered Function

Table 3.1: Treatment modality categories created by the USRDS.

sparsely recorded with stable values over time for those with multiple measures.

For all three groups of patients, summary statistics of all the considered covariates and daily

costs by types are provided in Table 3.4 in the Appendix.

3.3 Methods

We propose two models for the aforementioned two comparisons in Section 1, respectively.

Let G1, G2 and G3 denote index sets of individuals in the corresponding unwaitlisted, wait-

listed and transplanted groups.

3.3.1 Model for Waitlisting

The first model is for the comparison of the unwaitlisted group and the waitlisted group,

so the transplanted patients are exluded from this analysis. Let Y w
i (τij) represent the log

transformed total daily claim amount in $100 unit, plus constant 1 to avoid log(0), on day
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τij since the first ESRD service and let Ti denote the day of death for the i-th patient,

i ∈ G1 ∪ G2, j = 1, . . . ,mi. Hence Ti − τij is the residual lifetime of the i-th patient at time

τij. We have

Y w
i (τij) = β1(τij, Ti − τij) + β2(τij, Ti − τij)PDij + α1Waitlistedi + α2τij ×Waitlistedi

+α3African Americani + α4Other Racei + α5Femalei + α6Agei (3.1)

+α7Hypertensioni + α8Other Comorbiditiesi + α9I(25 ≤ BMIi < 30)

+α10I(BMIi ≥ 30) + εwi (τij, Ti − τij).

The reference group for race is white and the reference group for sex is male. Waitlisted

is a binary time-invariant variable, which equals 1 if the patient was ever placed on the

waiting list. The superscript w on Y and ε is used to differentiate with the other model we

will introduce later, indicating that this model is for evaluating the cost difference between

waitlisted and unwaitlisted groups. Note that we allow the independent and identically

distributed error terms εwi to be stochastic processes of both the time since the first service

and the residual lifetime, which is based on our observation in the exploratory data analysis.

The variance function of εwi is denoted as σ2(t, s) = E[εwi (τij, Ti − τij)
2|τij = t, Ti − τij = s].

Observations are independent between patients but can be correlated within a patient which

is captured by the auto-correlation of εwi .

We did an exploratory data analysis using a model similar to (3.2) but with all coefficients

to be bivariate functions of (τij, Ti − τij) (thus no separate interaction between Waitlisted

and τij), which has the same mean structure as the model proposed by [50] for analyzing

longitudinal medical cost data with a terminal event. The variance structure extends from

[50] by allowing σ2 to depend on both times. Following the same proofs with slight modifica-

tions on conditions about εwi , one can show that the asymptotic results about the estimation
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and statistical inference in [50] still hold. We found that the coefficient of waitlisted variable

slightly increases with τij. Furthermore, except the intercept, the coefficient of PD variable

and the coefficient of waitlisted variable, all other coefficients are very stable over time with

minimal fluctuations. Such an observation leads to model (3.2) where β1 and β2 are bivariate

time-varying and all αk, k = 1, . . . , 10, are constant coefficients. A model like this is referred

to as the semi-varying coefficient model [56]. Here we extend the original semi-varying coeffi-

cient model by allowing the time-varying coefficients to be bivariate functions. Conditioning

on both times as well as the baseline age enables us to compare unwaitlisted and waitlisted

patients with the same lifespan and model how impending death influences medical costs.

It was discovered in several previous work [29, 24, 50] that medical cost in dialysis patients

tend to increase when patients approach death. By allowing β1 and β2 to also vary with

residual lifetime T − τj, we anticipate that model (1) captures the medical spending pattern

better than its counterpart with univariate time-varying coefficients.

For estimating the time-invariant coefficients αk, we adopt the profile weighted least squares

(PWLS) method [12, 43]. To illustrate the estimating procedure, we use generic notation in

the following:

Y w
i (τij) = Xw

i (τij)
Tβ(τij, Ti − τij) + Zw

i (τij)
Tα+ εwi (τij, Ti − τij), (3.2)

where Xw
i (τij) and Zw

i (τij) are the covariate vectors for subject i at time τij. The PWLS

estimator of α in the above model is given by

α̂ =
[
ZwT (I− S)TW(I− S)Zw

]−1
ZwT (I− S)TW(I− S)Yw, (3.3)

where Zw = (ZwT
1 , ...,ZwT

n1+n2
)T with Zw

i = (Zw
i (τi1)

T , ...,Zw
i (τimi

)T )T , Yw and Xw are defined

similarly to Zw, I is the identity matrix, S is the kernel smoother matrix and W is a weight
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matrix. Specifically, S can be expressed as:

S =



Xw
1 (τ11)

T
[
XwTKw(τ11, T1 − τ11)X

w
]−1

XwTKw(τ11, T1 − τ11)

...

Xw
2 (τ21)

T
[
XwTKw(τ21, T2 − τ21)X

w
]−1

XwTKw(τ21, T2 − τ21)

...


(N1+N2)×(N1+N2)

,

where Nj =
∑

i∈Gj
mi, j = 1, 2, Kw(t, s) is a diagonal matrix with elements K((τij −

t)/hw, (Ti − τij − s)/hw), K(·, ·) is a bivariate kernel function and hw is the bandwidth.

We use a truncated Gaussian kernel function K(x, y) = exp(−(x2 + y2)/2) · I(x2 + y2 < 6)

throughout this article. The most efficient estimator among the PWLS estimators is the

one using the inverse of the true covariance matrix of εw as the weight matrix W. Once

residuals ε̂wij are obtained, the diagonal elements of the covariance matrix can be estimated

by the Nadaraya-Watson estimator:

σ̂2(t, s) =

∑n1+n2

i=1

∑mi

j=1 ε̂
w2
ij K(

τij−t

hw ,
Ti−τij−s

hw )∑n1+n2

i=1

∑mi

j=1K(
τij−t

hw ,
Ti−τij−s

hw )
. (3.4)

Note that this is a direct bivariate extension of the kernel estimator of the univariate variance

function in [12]. A nonparametric estimation of the correlation of εw requires a trivariate

kernel estimator which may suffer from curse of dimensionality. For this reason we use a

working independence correlation by simply letting W be a diagonal matrix with elements

1/σ̂2(τij, Ti − τij).

The entire estimation procedure can be described in four steps. Firstly, estimate α following

(3.3) with W = I, denote the estimator as α̂I; Secondly, estimate β from the following
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varying-coefficient model

Y w∗
ij ≡ Y w

i (τij)− Zw
i (τij)

T α̂I (3.5)

= Xw
i (τij)

Tβ(τij, Ti − τij) + εwi (τij, Ti − τij)

using the bivariate kernel approach of [50]:

β̂(t, s;hw) =
[
XwTKw(t, s)Xw

]−1
XwTKw(t, s)Yw∗; (3.6)

Thirdly, calculate the residuals

ε̂wij = Y w
ij −Xw

i (τij)
T β̂(τij, Ti − τij;h

w)− Zw
i (τij)

T α̂I

and obtain the diagonal weight matrix W by inverting (3.4); Lastly, estimate α again using

the diagonal weight matrix, denote the estimator as α̂D. As pointed out by [12], both α̂I

and α̂D converge to α with root-n rates that are faster than the nonparametric convergence

rate of β̂. As a result, the asymptotic bias and variance of β̂ have the same form as those

of a varying-coefficient model with true α and are not affected by the weight matrix W. So

there is no advantage to update the estimator of β with α̂D, and we can adopt the inference

procedure in [50] which eliminates the asymptotic bias via undersmoothing and estimates

the variance by a sandwich estimator

V̂ar
(
β̂(t, s;hw)

)
(3.7)

=
[
XwTKw(t, s)Xw

]−1 [
XwTKw(t, s)RKw(t, s)Xw

] [
XwTKw(t, s)Xw

]−1
,
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where R = diag(ε̂w1 ε̂
wT
1 , ..., ε̂wn ε̂

wT
n ) with ε̂wi = (ε̂wi1, ..., ε̂

w
imi

)T . A sandwich variance estimator

is also derived for α by [12]:

V̂ar(α̂) = D−1VD−1, (3.8)

where D = ZwT (I−S)TW(I−S)Zw and V = ZwT (I−S)TWRW(I−S)Zw. The asymptotic

normality of α̂ and β̂ can be obtained following [12], which enables the construction of

confidence intervals.

In the above estimating procedure, we follow [50] to use the same bandwidth hw for both

the forward follow-up time and the residual lifetime in the bivariate kernel function, and use

the K-fold cross-validation (CV) for the bandwidth selection. Specifically, we randomly split

the patients into K equal-sized sets and evaluate the following CV loss for each candidate

of hw:

CV (hw) =
K∑
k=1

∑
i∈Ck

mi∑
j=1

[
Y w
i (τij)− Zw

i (τij)
T α̂

(−k)
I −Xw

i (τij)
T β̂

(−k)
(τij, Ti − τij;h

w)
]2

,

where Ck represents the indices of patients in the k-th set and ∪kCk = G1 ∪ G2. Here α̂
(−k)
I

and β̂
(−k)

represent the estimates obtained from the dataset excluding patients in the k-th

set. Once we have the optimal hw that minimizes the CV loss, we follow the practice in [50]

to reduce the bias via undersmoothing by a factor nθw with a small θw > 0. For simplicity,

the same bandwidth is used for the estimation of σ2 in (3.4).
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3.3.2 Model for Transplantation

To evaluate the medical cost associated with transplantation among waitlisted patients, we

propose the following model:

Y t
i (τij) = ξ1(τij, Ti − τij) + ξ2(τij, Ti − τij)African Americani

+ξ3(τij, Ti − τij)Other Racei + ξ4(τij, Ti − τij)Femalei + ξ5(τij, Ti − τij)Agei

+ξ6(τij, Ti − τij)Hypertensioni + ξ7(τij, Ti − τij)Other Comorbiditiesi (3.9)

+ξ8(τij, Ti − τij)I(25 ≤ BMIi < 30) + ξ9(τij, Ti − τij)I(BMIi ≥ 30)

+γ(τij − Si, Ti − τij)I(τij ≥ Si) + εti(τij, Ti − τij), i ∈ G2 ∪ G3,

where Si represents the day of receiving a kidney transplant and Y t
i (τij) represents the daily

claim amount on day τij after the same transformation that yields Y w
i (τij). The superscript

t on Y and ε indicates that this model focuses on the comparison between transplanted and

waitlisted patient groups. The set of coefficients ξk, k = 1, ..., 9, vary with both the time

since the first ESRD service and the residual lifetime, whereas the coefficient γ varies with

the time since kidney transplant and the residual lifetime. The coefficient γ is the difference

of the medical cost of a transplanted patient since the day of receiving a kidney transplant to

the medical cost that the patient would have had spent if the patient were still on the waitlist,

which is the parameter of interest in this analysis. Unlike the other bivariate time-varying

coefficients, γ kicks in at time Si. For this reason, we refer to this model as the mixed-

time varying-coefficient model. Notice that the binary variable indicating dialysis type is no

longer included in model (3.10) because transplanted patients no longer need dialysis after

transplant. The model is again conditional on the death time Ti, which allows us to examine

the difference in the longitudinal cost trajectories of waitlisted and transplanted patients

from the time of transplantation to the end of life.
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An implicit assumption in model (3.10) is, conditional on the lifetime and all other covariates,

the mean medical cost for transplanted patients prior to receiving transplantation is the

same as that for patients who never received transplants. We conducted an exploratory data

analysis to verify this assumption. Specifically, we fitted a bivariate time-varying coefficient

model conditional on the death time and all other covariates to compare the medical costs

of transplanted patients during their pre-transplant time and untransplanted patients. The

results indicate similar medical costs for the two groups, implying that the diversion does

not happen until the time of transplant.

For notational simplicity, consider a mixed-time varying-coefficient model in the following

form:

Y t
i (τij) = Xt

i(τij)
Tξ(τij, Ti − τij) + I(τij ≥ Si)γ(τij − Si, Ti − τij) + εti(τij, Ti − τij). (3.10)

For the waitlisted group, the model reduces to the following bivariate varying coefficient

model

Y t
i (τij) = Xt

i(τij)
Tξ(τij, Ti − τij) + εti(τij, Ti − τij), i ∈ G2. (3.11)

Thus the regression coefficients ξ can be estimated by applying the method of [50] using

the waitlisted group data only. Although the estimation of ξ may be improved by also

including the pre-transplant measurements in G3, using only measurements in G2 keeps the

independence between ξ̂ and data in G3, thus helps develop the asymptotic results of γ̂ that

is given below. This suggests a two-stage estimation procedure. Firstly, choose a bandwidth

ht
1 and estimate ξ in model (3.11) for the waitlisted group:

ξ̂(t, s) =
[
(Xt

G2
)TKt

G2
(t, s)Xt

G2

]−1
XtT

G2
Kt

G2
(t, s)Yt

G2
,
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where Xt
G2

and Yt
G2

represents design matrix and response vector of the waitlisted group only

and Kt
G2
(t, s) is a diagonal matrix with elements K((τij − t)/ht

1, (Ti − τij − s)/ht
1). Secondly,

for the transplanted group, (i) evaluate the predicted cost of each patient using the estimates

obtained in the first stage Xt
i(τij)

T ξ̂(τij, Ti − τij;h
t
1); (ii) subtract the predicted cost from

the observed cost; and (iii) choose a bandwidth ht
2 and estimate γ from the following model

Y t∗
ij ≡ Y t

i (τij)−Xt
i(τij)

T ξ̂(τij, Ti − τij;h
t
1) (3.12)

= γ(τij − Si, Ti − τij) + εti(τij, Ti − τij)

using post-transplant observations (hence τij ≥ Si). The estimator is given by

γ̂(t, s) =

∑
i∈G3

∑
τij≥Si

Y t∗
ij K(

τij−Si−t

ht
2

, Ti−s
ht
2
)∑

i∈G3

∑
τij≥Si

K(
τij−Si−t

ht
2

, Ti−s
ht
2
)

. (3.13)

If ξ̂(τij, Ti − τij;h
t
1) is replaced by true ξ(τij, Ti − τij), then the coefficient γ in (3.13) is

the same coefficient γ in (3.10). Using a similar feature of the estimation for model (3.2),

we can eliminate the impact of the estimation error of ξ̂ in (3.13) to the estimation of γ

asymptotically by choosing a bandwidth that yields faster convergence rate in the above

first-step estimator. When this is done properly with details given below, the asymptotic

bias of γ̂ disappears and the asymptotic normality of γ̂ can be obtained following [50] with

an asymptotic variance unaffected by the first step estimation of ξ.

For bandwidth selection, we choose the first step bandwidth ht
1 using the following CV

criterion:

CV (ht
1) =

K∑
k=1

∑
i∈Ck

mi∑
j=1

[
Y t
i (τij)−Xt

i(τij)
T ξ̂

(−k)
(τij, Ti − τij;h

t
1)
]2

, (3.14)

where ∪kCk = G2. To ensure a faster convergence rate, we do not undersmooth the first
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step estimates. Let ht
10 be the optimal bandwidth that minimizes the CV criterion (3.14).

It should achieve a balance between the bias and variance of ξ̂ at a rate of O(n
−1/6
2 ) based

on Theorem 3.1 of [50]. As a result, ξ̂ converges at a rate of O(n
−1/3
2 ).

For the second step estimation, we use the following CV criterion:

CV (ht
2) =

K∑
k=1

∑
i∈Ck

∑
τij≥Si

[
Y t∗
ij − γ̂(−k)(τij − Si, Ti − τij;h

t
2)
]2
, (3.15)

where ∪kCk = G3 and Y t∗
ij are calculated using ht

10. Let h
t
20 be the optimal bandwidth that

minimizes criterion (3.15). We then undersmooth the second step estimator by choosing a

smaller bandwidth ht∗
2 = ht

20/n
θt

3 , where θt > 0. We undersmooth more aggressively here

by letting θt > θw because of the slower than root-n convergence rate of ξ̂. Given that

the sample sizes n2 and n3 are with the same order, the rate of convergence of ξ̂ is faster

than that of γ̂, which eliminates the impact of the first step estimation on the second step

estimation asymptotically. Then we can estimate the variance of γ̂ by

V̂ar
(
γ̂(t, s;ht∗

2 )
)
=

∑
i∈G3

[∑
τij≥Si

ε̂tijK(
τij−Si−t

ht∗
2

, Ti−s
ht∗
2
)
]2

[∑
i∈G3

∑
τij≥Si

K(
τij−Si−t

ht∗
2

, Ti−s
ht∗
2
)
]2 , (3.16)

where the residuals are computed by

ε̂tij = Y t
i (τij)−Xt

i(τij)
T ξ̂(τij, Ti − τij;h

t
10)− I(τij ≥ Si)γ̂(τij − Si, Ti − τij;h

t∗
2 ).

It is fairly straightforward to extend model (3.10) for multiple kidney transplants. For

example, we can simply add another varying-coefficient term ζ(τij − Ri, Ti − τij) where Ri

represents the time at the second kidney transplant, if it ever happens. This adds a third

step to the estimation procedure, which could complicate the bandwidth selections in all

three steps and may suffer from the shrinking sample size of patients who received two or
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more transplants.

3.4 Simulation

In this section we conduct two simulation experiments to examine the estimation and infer-

ence procedures proposed for the two models.

3.4.1 Simulation for the Semi-Varying Coefficient Model

For model (3.2) we consider two covariates with constant coefficients and two covariates (in-

cluding the intercept) with bivariate time-varying coefficients. Specifically, we generate Zw∗
1

and Zw
2 from a bivariate normal distribution with standard normal marginal distributions

and a correlation coefficient of 0.5, then transform Zw∗
1 by Zw

1 = I(Zw∗
1 > 0) that mimics the

Waitlisted variable in model (3.2); Xw
1 is always 1; and Xw

2 is a time-varying binary covariate

generated in the following: at t0 = 0, Xw
2 (0) follows a Bernoulli distribution with probability

0.5, then Xw
2 (t) alternates between 0 and 1 at time points t1, t2, ... where tj − tj−1 follows

an exponential distribution with rate 0.05. This time-varying binary covariate mimics the

variable PD in model (3.2). Death time T is generated by adding constant 1 to an exponen-

tially distributed random variable with rate exp(0.5Zw
1 +0.2Zw

2 −3.5). The added constant 1

avoids small T values happening before the first observation time τ1. The censoring time C

follows a uniform distribution between 20 and 40, which yields a censoring rate of 34%, which

is higher than the actual censoring rate of around 10% among ESRD patients who started

first service in 2007-2011 and at least 65 years old. The uniform distribution mimics the

real data because we only retain ESRD patients who started first service in 2007-2011 and

the follow-up ends at the end of 2017. For observation times, we follow the same procedure

in [50]. That is, we generate τ1 from a uniform distribution between 0 and 1. Observation
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α̂I α̂D

MSE (15.56·10−4, 4.04·10−4) (14.34·10−4, 3.76·10−4)
Coverage (0.954, 0.952) (0.936, 0.938)

Table 3.2: MSE and CI coverage probability for two PWLS estimators of α.

times τij, j > 1, is generated independently from τij − (j− 1) ∼ Beta(τi1/4ν
2, (1− τi1)/4ν

2),

where ν serves as an upper bound of standard deviation of the Beta distribution and is set to

be 0.01. The generated interarrival time τij − τi,j−1 has mean 1 and a small variance. Obser-

vation times beyond min(T,C) are dropped. The error term ε(τj, Ti − τij) is generated by a

nonhomogeneous Ornstein-Uhlenbeck (NOU) process U(τj) plus a random error. In particu-

lar, the NOU process satisfies Var(U(t)) = exp(1−0.1t) and Corr(U(t), U(s)) = 0.5|t−s|, and

the random error follows a standard normal distribution. The longitudinal outcome Y w(τj)

is generated according to model (3.2) with α1 = 1, α2 = 2,

β1(t, s) =
t

4
exp

(
−t2 + s2

100

)
, and β2(t, s) =

1

2

[
sin

(
2t

5

)
− cos

(s
2

)]
.

We simulate 500 datasets following the simulation design. For each dataset we generate

n = 1000 subjects and only keep the subjects with T ≤ C. To save the computing cost, we

conduct 5-fold CV for only 10 datasets , which yields an average bandwidth of 1.55. We then

undersmooth it to obtain a bandwidth of 1.55 × 660−0.05 ≈ 1.12, where 660 is the average

number of complete cases, and fix it for all the 500 datasets. In Table 3.2, we report the mean

squared error (MSE) of the PWLS estimators α̂I = (α̂1,I, α̂2,I)
T and α̂D = (α̂1,D, α̂2,D)

T , as

well as the coverage probabilities of the 95% confidence intervals constructed using their

respective sandwich variance estimators (3.8). From Table 3.2 we see that α̂D improves the

MSE of α̂I by 8% and 7% respectively and the sandwich variance estimators yield coverage

probabilities close to the nominal level for both estimators.

We further examine the estimators of the time-varying coefficients β̂. Here we follow the

same way of [50] to visualize a bivariate function. That is, we fix T and plot β̂k(t, T − t)
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Figure 3.1: True βk(t, T − t) vs sample mean of β̂k(t, T − t), k = 1, 2 and 95% empirical
bands vs mean of 95% confidence bands at T = 5, 10, 15.

varying with t. Among the 2 × 3 panels in Figure 3.1, each row represents a time-varying

coefficient and each column represents a value of T . Within each panel, we plot the true

coefficient curves βk (black solid line), the sample mean of the estimates β̂k (red dashed line),

the 95% empirical bands calculated by the mean ± 1.96 times the standard deviation of β̂k

(blue dotted lines) and the mean of 95% confidence bands calculated using the sandwich

estimator (green dash-dot lines). We can see across all panels that the estimators β̂k have

negligible biases relative to their variabilities. Moreover, the empirical 95% bands overlap

well with the mean of 95% confidence intervals, which indicates the validity of the sandwich

variance estimator (3.8).
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3.4.2 Simulation for the Mixed-Time Varying-Coefficient Model

For the mixed-time varying-coefficient model (3.10), we conduct a simulation study as follows:

X t
1 is always 1, X t

2 and X t
3 are generated in the same way as Zw

1 and Zw
2 in the previous

subsection. We do not simulate time-varying covariate as there is no such covariate in the

proposed model (3.10) for the ESRD data. Both the death time T and the censoring time

C are generated similarly as in the previous subsection, where T is 1 plus a random number

generated from an exponential distribution with rate exp(0.5X t
2 + 0.2X t

3 − 3.5) and C is

uniform between 20 and 40, yielding a censoring rate of around 34%. The transplant time S

is generated in the following. When T is smaller than 20, we generate a Bernoulli random

variable that takes the value of 1 with a probability of 0.3, and if it is 1, S is generated

under a uniform distribution between 0 and T ; When T is larger than or equal to 20, we

generate a Bernoulli random variable that takes the value of 1 with a probability of 0.7,

and if it is 1, S is generated under a uniform distribution between 0 and 20. This design

mimics the situation where a patients who lives longer since the onset of ESRD has a larger

probability of receiving a transplant. Under this design, the percentage of transplanted

patients is around 40% among deceased patients. We follow the same simulation design in

the previous subsection to generate the visiting times τij and the error term ε(τj, Ti − τij).

The longitudinal response is generated from model (3.10) with the following coefficients:

ξ1(t, s) =
t

4
exp

(
−t2 + s2

100

)
,

ξ2(t, s) = exp

(
− ts

t2 + s2

)
,

ξ3(t, s) = cos

(
t2 + s2

100

)
,

γ(t, s) =
1

2

[
sin

(
2t

5

)
− cos

(s
2

)]
.
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Following the simulation design, we simulate 500 datasets each with n = 1000 and then

only keep the subjects with T ≤ C. For bandwidth selection, we first run a 5-fold CV on

untransplanted subjects for 10 datasets using (3.14), which yields an average bandwidth of

2.1. For each dataset, we use the bandwidth 2.1 to estimate ξ and obtain the partial residuals

for post-transplant observations of transplanted subjects using (3.13). We then run another

5-fold CV on transplanted subjects for the same 10 datasets using (3.15). The second CV

yields an average bandwidth of 2.2, which is later undersmoothed to be 2.2 × n−0.1 ≈ 1.1.

Notice that we only shrink the second bandwidth for undersmoothing with a larger factor

compared to the previous subsection, which leads to a faster convergence rate for ξ̂ in order

to achieve a desirable asymptotic behavior of γ̂.

Our main interest is to estimate γ. The performance of the bivariate time-varying coefficient

estimator γ̂ given T − S is presented in Figure 3.2. Within each panel, we plot the true

coefficient curve γ (black solid line), the sample mean of the estimator γ̂ (red dashed line),

the 95% empirical confidence bands calculated by the mean ± 1.96 times the standard

deviation of γ̂ (blue dotted lines) and the mean of 95% confidence bands calculated using

the sandwich estimator in (3.16) (green dash-dot lines). The bias is larger than that in the

previous subsection, which is likely due to the first step estimation error, but still relatively

small compared to the variability of γ̂. The empirical bands overlap well with the mean of the

confidence intervals, which shows that the variance is approximately well by the sandwich

estimator.
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Figure 3.2: True γ(t, T − S − t) vs sample mean of γ̂(t, T − S − t) and 95% empirical bands
vs mean of 95% confidence bands at T − S = 5, 10, 15.

3.5 ESRD Data Analysis

3.5.1 Cost Difference Associated with Waitlisting

In this subsection, we report the results of estimating coefficients in model (3.2), where the

constant coefficients are estimated by the reweighted PWLS estimator (3.3) and the time-

varying coefficients are estimated by the bivariate kernel estimator (3.6). Implementing

the CV criterion in Section 3.1 yields a bandwidth of 30, which is then shrunken to be

30/(n1+n2)
0.05 ≈ 19 for undersmoothing. Coefficients α1 and α2 are of great interest, which

represent the overall medical cost difference at the time of the first ESRD service and the

increase in cost difference over time between unwaitlisted and waitlisted patients with the

same lifespan and the same age of onset of ESRD, adjusting for all other covariates. The

point estimates of all the constant coefficients α are listed in Table 3.3 together with their

95% confidence intervals and p-values calculated from the sandwich variance estimator (3.8).

From the table we see that waitlisting is significantly associated with a lower daily medical

cost at the beginning of ESRD service among waitlisted patients, but the medical cost

gradually increases over time. Averaging over the lifespan, however, the waitlisting effect,

modeled by only including the main effect of Waitlisted variable in model (3.2), disappears
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Variable Point estimate α̂ · 10−2 95% CI·10−2 P-value
Waitlisted -3.359 (-4.701, -2.016) < 10−4

Time×Waitlisted 1.217 (0.846, 1.588) < 10−4

Race: black 0.311 (-0.798, 1.420) 0.582
Race: other -1.395 (-3.408, 0.618) 0.174
Sex: female 2.183 (1.320, 3.047) < 10−4

Age 0.066 (-0.021, 0.153) 0.137
Hypertension -1.455 (-2.683, -0.228) 0.020
Other comorbidities 2.033 (1.036, 3.031) < 10−4

25 ≤ BMI < 30 1.646 (0.588, 2.704) 0.002
BMI ≥ 30 3.955 (2.879, 5.032) < 10−4

Table 3.3: Re-weighted estimates of the constant coefficients. The variable Time is the time
since first ESRD service in year (365 days).

(results not shown). Female gender, comorbidities except hypertension and higher BMI

are all significantly associated with higher amount of daily Medicare claims. Hypertension is

associated with a lower amount of daily Medicare claims, and race and age are not significant.

It is also of interest to examine β̂k, k = 1, 2. Similar to how we visualize the bivariate curves

in the simulations, we draw β̂k(t, T − t) as univariate functions of t for three values of T

at 500, 1250 and 2000 days, respectively, in Figure 3.3. These numbers are roughly the

quantiles of patients’ lifetime durations from the onset of ESRD. In the figure we can see

that the overall medical cost trajectory is U-shaped. This is true for both unwaitlisted and

waitlisted patient groups because the waitlisting effects (both main effect and interaction

with time) are of a much smaller magnitude comparing to β̂1. A similar pattern was also

observed by [50] for the inpatient cost of ESRD patients who never received transplantation.

Compared to HD patients, PD patients tend to have a lower medical cost during early days

since the onset of ESRD, but this difference gradually disappears as time goes by.

Because of the logarithmic transformation on the claim amount, the estimates can not be

straightforwardly interpreted as the increment of daily Medicare claims in dollars associated

with one-unit increase in the corresponding variable. The estimates, however, can be trans-

lated into the increment over a reference value. Taking the estimate of α1 as an example,
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Figure 3.3: β̂k(t, T − t), k = 1, 2 (solid curves) and their confidence bands (dashed curves)
at T = 500, 1250, 2000 days.

it can be interpreted in the following way: compared to an unwaitlisted patient for whom

Medicare pays $100 on the day of his/her first service (this is within a normal range as the

mean daily claim amount is $192 and the median is $85), a waitlisted patient with the same

values of all other variables claims $6.61 less on the day of the first service. This is obtained

from

log

(
100− 6.61

100
+ 1

)
− log

(
100

100
+ 1

)
≈ α̂1.

Similar calculations can be done for other reference values and other variables.
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Figure 3.4: γ̂(t, T −S− t) (solid curves) and its confidence bands (dashed curves) at T −S =
800, 1600, 2200 days.

3.5.2 Cost Difference Associated with Kidney Transplant

Now we apply the two-stage estimation and inference procedure described in Subsection 3.2

to model (3.10). For bandwidth selection in the first stage, we conduct a 5-fold CV using the

data of waitlisted patients. The selected bandwidth in this stage is 300 that is used for the

estimation without any shrinkage. In the second stage, we conduct a 5-fold CV using the

data of transplanted patients. The selected second-step bandwidth is 20 and then shrunken

by n0.1
3 for undersmoothing, which yields a bandwidth of 9.1.

The estimator γ̂ for the total claim amount are shown in Figure 3.4 with their pointwise

confidence bands calculated from the sandwich variance estimator (3.16). The three selected

T−S values are roughly quantiles among the transplanted patients. Note that γ(t, T−S−t)

represents the cost difference between transplanted and waitlisted ESRD patients during

their lifespan since the time of transplantation adjusted by all other covariates in model

(3.10). From Figure 3.4 we see that there is an initial spike of added total Medicare cost for

transplanted patients after transplantation comparing to waitlisted patients and then the

total medical spending of transplanted patients quickly drops below the level of waitlisted

patients. There is an uptick of total medical spending among transplanted patients towards

their end of life compared to waitlisted patients.
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To better understand the overall cost difference between waitlisted and transplanted ESRD

patients, we dive into details by examining five major types of the Medicare claims, which are

inpatient, outpatient, skilled nursing, home health, and hospice costs. Replacing the total

cost in model (3.10) by each individual type of Medicare cost, we run five separate analyses

using the same two-stage estimation method. For each individual type of cost, we conduct

bandwidth selection, estimation and inference independently. For bandwidth selection in

both stages, we follow the same procedure described in Section 3.2 and carried out a 5-fold

CV. The selected first-stage bandwidth values are (60, 1000, 200, 300, 200) respectively and

are used directly for corresponding estimation without any shrinkage. The selected second-

step bandwidth values are (14, 150, 110, 100, 30) respectively and then shrunken by n0.1
3 for

undersmoothing.

The estimates of γ̂ for all five types of services are presented in Figure 3.5 together with

corresponding pointwise confidence bands calculated from their sandwich variance estima-

tors. There are several interesting findings from Figure 3.5: (1) Inpatient cost is the one that

causes the initial spike after transplantation in the total medical cost among transplanted

patients. The inpatient cost difference between transplanted and waitlisted patients quickly

disappears after the initial spike. (2) Outpatient cost of transplanted patients is consistently

lower than that of untransplanted patients and the difference is stable over the entire lifespan

since transplantation. This is primarily due to patients stopping their dialysis services after

transplantation because the majority of outpatient spending is dialysis-related, and explains

the lower total cost among transplanted patients after the initial spike. Also, this implies that

the kidney transplant could significantly reduce the overall lifetime medical cost for ESRD

patients who have a relatively long survival after receiving the kidney transplantation. (3)

There is no significant difference in skilled nursing care. (4) There is a significantly higher

daily spending in home health care during the first a few months after transplantation. (5)

There is a significantly higher daily spending among transplanted patients in hospice service

before death. Note that although the total daily cost almost equals the sum of these 5 types
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of daily costs, the 5 separate groups of curves do not simply add up to their corresponding

curves in Figure 3.4 due to the logarithmic transformation.

3.6 Appendix: Summary Statistics of ESRD Data Sets

Here we provide some summary statistics for the covariates and response variables in the

analysis data sets with three groups (unwaitlisted, waitlisted, transplanted) of ESRD pa-

tients, respectively. The first row contains the mean and the standard deviation (SD) of

the within-subject number of selected days. The covariates are divided into four types:

subject-level continuous variables (rows 1-5), subject-level categorical variables (rows 6-12),

observation-level continuous variables (rows 13-18), and observation-level categorical vari-

ables (rows 19-20). For a subject- or observation-level continuous variable, its mean and

standard deviation are calculated over all subjects or all observations within a particular

group. For a subject- or observation-level categorical variable, the number and percentage

of subjects or observations in each category are calculated within a particular group.
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Figure 3.5: γ̂(t, T − S − t) and its confidence bands at T − S = 800, 1600, 2200 days for five
different types of costs (IP - inpatient, OP - outpatient, SN - skilled nursing, HH - home
health, HS - hospice).
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Chapter 4

A Generalized Product-limit

Estimator for Truncated and

Censored Data With Terminal Event

4.1 Introduction

In longitudinal cohort studies, participants are oftentimes followed for a period of time,

during which multiple events may occur for each person. One common situation features

two types of events: a non-terminal event at time S which in many cases is the onset of

some disease, and a terminal event at time T which is usually death. An example of the

non-terminal event is the onset of Alzheimer’s disease. This type of two events data where

the terminal event can censor the non-terminal event but not vice versa is referred to as the

semi-competing risks (SCR) data.

Under this framework, it is often desirable to understand to what extent the two events are

associated and to evaluate how the association varies with some covariates. Two widely used
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approaches in the existing literature are: (1) under the semicompeting risks framework, the

joint distribution of these events is formulated via a gamma frailty model in the upper wedge

where data are observable [6, 14]; and (2) an illness-death model is used with a shared frailty

to incorporate the dependence structure [36, 55]. In either case, assumptions about certain

semiparametric structure are made to model the joint distribution of the two events, which

may lead to model misspecification. Moreover, both approaches assume the independence

between the censoring time C and event times (S, T ).

We aim to relax those assumptions. To be more specific, we focus on the conditional distri-

bution of S given T that is used as a covariate. This becomes an estimation problem with a

censored covariate, for which the complete case analysis is a valid approach. In other words,

we remove the record when T is censored and only keep the record in which T is observed,

yielding the so-called “complete data”. In such a complete data set, it is possible for S to be

censored by T , which corresponds to the real life situation where patients die free of disease.

Left truncation of the non-terminal event could also happen, under which situation the cases

where S < L are not observed. With right censoring and left truncation, the conditional

distribution P (S ≤ s|T = t) can be estimated by a kernel weighted product-limit estimator

widely known as the “Beran’s estimator”. This type of analysis based on complete data can

be shown to only rely on the independence of (L,C) and S conditional on T , thus relaxing

the assumption made in the existing literature.

One also needs to develop a reliable bandwidth selection approach for the Beran’s estimator,

which is crucial for any kernel estimation. [23] gave a theoretical formula for selecting the

optimal bandwidth. However, it is extremely difficult to use as it contains multiple unknown

functions. [39] proposed to minimize a mean integrated squared error (MISE) approximated

by bootstrap resamples. This approach requires a pilot bandwidth. Although the paper

provided a formula for it after conducting a preliminary analysis, the formula is not justified

universally. In this article, we propose a data-driven bandwidth selection procedure based
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on the C-index [18], which requires no pilot bandwidth and is easily implementable and

computationally efficient.

The work is organized as follows. In Section 4.2, we will introduce the Beran’s estimator,

which uses T as a covariate and deals with right censoring and left truncation for S. The

Nadaraya-Watson (NW) estimator will serve as a reference for comparison when there is no

left truncation. We will introduce a new bandwidth selection approach, which is based on

the C-index. A Greenwood variance estimator is also introduced to construct confidence

intervals for the Beran’s estimator. In Section 4.3, we conduct simulations under several

designs to demonstrate the validity of the Beran’s estimator and to compare its performance

to the NW estimator when there is no left truncation. In Section 4.4, we apply the proposed

method to The 90+ Study.

4.2 Estimation under Right Censoring and Left Trun-

cation

We first introduce some notation. Denote the individual non-terminal event time as Si

and the terminal event time as Ti that can censor Si (denoting Si = ∞ for mathematical

convenience in this situation) but not vice versa. Moreover, there exists a random right

censoring time, denoted as Ci, which can censor both Si and Ti or Ti only. There also exists

a left truncation time Li such that an individual is not observed if Si, Ti or Ci happened

before Li. Denote the distribution functions of Si, Ti, Ci and Li as FS, FT , FC and FL,

respectively. We further denote aL = inf{x : FL(x) > 0}, aS = inf{x : FS(x) > 0} and

bL = inf{x : FL(x) = 1}. Under left truncation and right censoring, the observable random
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variables are defined as follows:

Xi = Ti ∧ Ci, ηi = I(Ti ≤ Ci), Yi = Si ∧Xi, δi = I(Si ≤ Xi),

where a ∧ b represents the minimum of a and b. The observations can thus be described as

{(Li, Xi, ηi, Yi, δi) : i = 1, ..., n, Yi ≥ Li}.

For the methods we are going to introduce, we focus on estimating the conditional distribu-

tion P (S ≤ s|T = t). We denote this distribution by F (s|t). When aS < aL, F (s|t) is not

identifiable because we do not know the probability of S being left truncated. A common

practice under this situation is to switch the objective to estimating P (S ≤ s|T = t, S > l),

where l > aL [48]. We will denote this conditional distribution as F (s|t, l). Note when

aS > aL we can choose an l such that aS > l and then F (s|t, l) becomes the same as F (s|t).

In other words, this is the situation that F (s|t) is identifiable.

Since in real life S cannot happen beyond T , F (s|t, l) only has a valid interpretation when

s ≤ t. Thus F (s|t, l) can be constructed by two parts: the first part is a continuous sub-

distribution, which stops at t; the second part is a probability mass, which is placed at ∞ by

convention. Since the continuous sub-distribution does not reach 1 at t, we can normalize

it by F (t|t, l) to make it a valid distribution function. Denote F (s|t, l)/F (t|t, l) by F1(s|t, l)

that can be interpreted as the distribution of S conditional on death at T = t and disease

happens after l but before t. On the other hand, the probability mass 1− F (t|t, l), denoted

by F2(t|l), represents the probability of dying at t disease free. Therefore, F (s|t, l) gives

both F1(s|t, l) and F2(t|l) and vice versa.
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4.2.1 A Simple Case Without Left Truncation

We first consider the case that S is never left truncated. In other words, we have bL ≤ aS. In

this situation, F (s|t) is identifiable and can be estimated using a simple Nadaraya-Watson

estimator:

F̂NW (s|t) =
∑n

i=1 I(Yi ≤ s)ηiδiKh(Xi − t)∑n
i=1 ηiKh(Xi − t)

, (4.1)

where Kh(x) = K(x/h)/h, K is a kernel function and h > 0 is the bandwidth. Throughout

this article, we use a truncated Gaussian kernel K(x) = exp(−x2/2)I(|x| < 3).

Note that F̂NW (s|t) only uses the complete data, i.e., η = 1. It can be shown that F̂NW (s|t)

is a consistent estimator of P (S ≤ s|T = t, T ≤ C, T ≥ L, S ≥ L) [9]. If we further assume

the independence of S and (L,C) given T , together with bL ≤ aS, we can show that F̂NW (s|t)

converges to F (s|t) in probability.

Also note that we do not require the independence of T and (L,C), which is typically required

for the semi-competing risks model under left truncation and right censoring (see e.g. [21]).

The reason is that we do not need to estimate the distribution of T . The price we pay is the

loss of efficiency as the subset of data with η = 0 is removed.

4.2.2 A General Case With Left Truncation

When there is left truncation for S, i.e., aS < bL, we focus on estimating F (s|t, l). As we

discussed earlier, a special case is when aS > aL, where we can choose an l such that F (s|t, l)

becomes F (s|t). On the other hand, when aS ≤ aL, F (s|t) cannot be identified and we

turn to estimating F (s|t, l). The following discussion does not differentiate between the two

situations and focuses on the estimation of F (s|t, l).
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Under left truncation, the Nadaraya-Watson estimator (4.1) cannot be used to estimate

F (s|t, l). It cannot estimate F (s|t) either because the condition S ≥ L in P (S ≤ s|T =

t, T ≤ C, T ≥ L, S ≥ L) (see [9]) cannot be removed when there is left truncation. For this

reason, we resort to generalizing the Beran’s estimator that is a kernel weighted product-

limit estimator of the conditional survival function given a covariate for right censored data

[2]. A generalization of the kernel weighted product-limit estimator for left truncated and

right censored survival data given a covariate was considered by [20], where an almost sure

asymptotic representation was also established. We generalize the estimator further to the

case that T is the covariate that is subject to right censoring, which gives

F̂PL(s|t, l) = 1−
∏

l<sj≤s

(
1−

∑n
i=1 I(Yi = sj)ηiδiKh(Xi − t)∑n

i=1 I(Li ≤ sj ≤ Yi)ηiKh(Xi − t)

)
, (4.2)

where the subscript PL stands for “product-limit” and sj’s are the distinct disease onset

times. Similar to the Nadaraya-Watson estimator (4.1), F̂PL(s|t, l) only uses complete data.

Under the independence of S and (L,C) given T and other regularity conditions, the asymp-

totic normality of the generalized Beran’s estimator is given by [20]:

√√√√ n∑
i=1

ηih
[
F̂PL(s|t, l)− F (s|t, l)

]
d→ N

(
0, σ2(s|t, l)

)
, (4.3)

where

σ2(s|t, l) = µ2

µ2
1

(1− F (s|t, l))2
∫ s

l

dH(u|t)
C2(u|t)

du/m(t),

H(s|t) = P (Y ≤ s, δ = 1|X = t, η = 1, Y ≥ L),

C(s|t) = P (L ≤ s < Y |X = t, η = 1, Y ≥ L),

µ1 =

∫
K(z)dz,

µ2 =

∫
K2(z)dz
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and m is the conditional density of X given (Y ≥ L, η = 1).

4.2.3 Greenwood Variance Estimator

In this section, we introduce a plug-in variance estimator for the generalized Beran’s esti-

mator (4.2), where the asymptotic variance in (4.3) can be estimated by first estimating the

unknown components of σ2(s|t, l):

Ĥ(s|t) =
∑n

i=1 I(Yi ≤ s)δiηiKh(Xi − t)∑n
i=1 ηiKh(Xi − t)

,

Ĉ(s|t) =
∑n

i=1 I(Li ≤ s < Yi)ηiKh(Xi − t)∑n
i=1 ηiKh(Xi − t)

,

m̂(t) =

∑n
i=1 ηiKh(Xi − t)

µ1

∑n
i=1 ηi

.

Then the asymptotic variance σ2(s|t, l) can be estimated by replacing F (s|t, l), m(t), H1(u|t)

and C2(u|t) with F̂PL(s|t, l), m̂(t), Ĥ1(u|t) and Ĉ(u|t)Ĉ(u− |t), respectively. The resulting

variance estimator is

V̂ ar(F̂PL(s|t, l))

=
µ2∑n

i=1 ηihµ
2
1m̂(t)

(
1− F̂PL(s|t, l)

)2 ∫ s

l

dĤ(u|t)
Ĉ(u|t)Ĉ(u− |t)

du

=
(
1− F̂PL(s|t)

)2
×
∫ s

l

d
∑n

i=1 1(Yi ≤ u)δiηiK
∗ (Xi−t

h

)[∑n
i=1 1(Li ≤ u < Yi)ηiK∗

(
Xi−t
h

)] [∑n
i=1 1(Li < u ≤ Yi)ηiK∗

(
Xi−t
h

)] , (4.4)

where K∗(x) = K(x) ·µ1/µ2. This formula is the analog of Greenwood’s formula, an variance

estimator of the Kaplan-Meier estimator, with a weight K∗ (Xi−t
h

)
for each subject.
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4.2.4 Bandwidth Selection

For the bandwidth selection, we adopt a cross-validation (CV) criterion based on Harrell’s

concordance index, or C-index [18]. C-index is a widely used metric for the evaluation of

prediction accuracy of survival models and was first proposed for the Cox model specifically.

C-index is defined as the percentage of concordant pairs among comparable pairs within

the dataset. A pair of subjects (i, j) is “comparable” if we can determine which of them

(i or j) was the first to experience an event from the data. A comparable pair (i, j) is

also “concordant” if the subject who experiences the earlier event is identified as having

the greater prognostic score, e.g., β̂1X1 + · · ·+ β̂pXp from the Cox model, and “discordant”

otherwise.

The C-index has not been directly used to evaluate the generalized Beran’s estimator since

the estimator does not generate a “prognostic score”. We borrow the concept by defining

“concordant” as subject i having a longer predicted survival than subject j with a probability

of more than 0.5 when subject i indeed outlives subject j. Thus the redefined C-index can

be expressed as

C-index =

∑
i,j δiI(Yi < Yj)I(p̂ji > 0.5)∑

i,j δiI(Yi < Yj)
, (4.5)

where i and j satisfy ηi = ηj = 1 and Yi, Yj > l. The numerator and the denominator

represent the number of concordant and the number of comparable pairs, respectively. The

predicted probability of subject j staying disease-free longer than subject i, p̂ji, is calculated

in the following:

p̂ji
d
= P̂ (Sj > Si|Ti = ti, Tj = tj, Si > l, Sj > l)

=

∫ ∞

l

(
1− F̂PL(u|ti, l)

)
dF̂PL(u|tj, l) + 0.5

(
1− F̂PL(∞|ti, l)

)(
1− F̂PL(∞|tj, l)

)
.
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Since F̂PL is a step function, the integral is in fact evaluated as a finite sum. It is well

known that when the last event is censored, the Kaplan-Meier estimator does not go to 0,

which is a property shared by product-limit estimators including the generalized Beran’s

estimator. When this happens, we assign the remaining probability mass to infinity, i.e.,

P̂ (S = ∞|T = t, S > l) = lims→∞(1 − F̂PL(s|t, l)), or simply 1 − F̂PL(∞|t, l). Note that

when both Si and Sj are estimated to take infinite value with positive probabilities, they are

treated as equal and thus only half of multiplied probabilities is added to p̂ij. Mathematically,

adding the term ensures p̂ij + p̂ji = 1.

For bandwidth selection, we consider using the revised C-index (4.5) in each fold of the

cross-validation (CV). The following criterion is defined for K-fold CV:

CV (h) =

∑K
k=1

∑
i,j∈Ck δiI(Yi < Yj)I(p̂

(−k)
ji > 0.5)∑K

k=1

∑
i,j∈Ck δiI(Yi < Yj)

,

where Ck’s are disjoint and ∪kCk = C is index set of all complete cases with Y > l. Note that

when evaluating on the k-th fold, all the other K − 1 folds are used to calculate p̂
(−k)
ji . The

numbers of concordant and comparable pairs across all folds are then summed up to form

the numerator and the denominator of the CV criterion, respectively.

4.3 Simulation Study

In this section, we conduct simulations that mimic The 90+ Study data to examine the

performance of estimators (4.1) and (4.2) respectively. We first generate T ∗, L∗ and C∗ from

a zero-mean three-dimensional multivariate normal distribution. The covariance matrix of

the multivariate normal distribution has diagonal elements 1 and off-diagonal elements 0.5.
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Then generate T , L and C as follows:

T = 20Ψ−1 (Φ(T ∗)) + 90, L = 10Φ(L∗) + aL, C = 20Ψ−1 (Φ(C∗)) + 100,

where Φ and Ψ are the cumulative distribution functions of standard normal distribution and

exponential distribution with rate parameter 1, respectively, and the constant aL determines

the lower bound of the left truncation time distribution. Thus marginally T and C follow

shifted exponential distributions and L follows a uniform distribution. Such a design allows

us to generate correlated T , L and C. Lastly we generate S by adding a constant 80 to

randomly generated values from an exponential distribution with rate 2/(T − 70).

For such generated data we have aS = 80 and bL = aL+10. Here we consider three different

values of aL: 69, 79 and 89. For each setting we visualize our estimators for three different T

values: 95, 100 and 110. These death times are roughly the quartiles of the distribution of T .

In the first setting where aL = 69, we have bL < aS which yields data without the occurrence

of left truncation. From our previous discussion, both estimators (4.1) and (4.2) can be used

to estimate F (s|t). In the second setting where aL = 79, we have aL < aS < bL. In this

case only estimator (4.2) can be used to estimate F (s|t) since estimator (4.1) is biased. In

the third setting where aL = 89, we have aS < aL, which means F (s|t) is not identifiable

anymore. We thus switch target to estimating F (s|t, l) for l = 89.1 using estimator (4.2). For

each of the three settings we conduct a simulation study to illustrate these aforementioned

points. Further in the third setting, we will illustrate the validity of the confidence intervals

constructed using the Greenwood variance estimator. Under each setting, we simulate 100

datasets, each containing 1000 subjects. We then apply left truncation to the datasets

and use the bandwidth selection approach we introduced earlier. The estimators calculated

using the undersmoothed bandwidths will be displayed. Specifically, we undersmooth the

CV-selected bandwidths by n0.05, where n is the average number of complete cases under

each simulation setting.
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Figure 4.1: Means and confidence bands for F̂NW (s|t) and F̂PL(s|t) under T = 95, 100 and
110.

4.3.1 First Design: aL = 69

In the first design, we examine the two estimators F̂NW (s|t) and F̂PL(s|t) as well as their

variabilities. In Figure 4.1, each of the three subfigures corresponds to a specific value of

t. Within each subfigure, the black curve represents the true values of F (s|t). The red and

blue dashed curves represent the means of F̂NW (s|t) and F̂PL(s|t) of the 100 replications,

respectively. The confidence bands are the 2.5% and 97.5% quantiles of the estimates. Under

this setting, the two estimators perform very similarly in terms of variability and both have

negligible biases.

4.3.2 Second Design: aL = 79

In the second design, we present the same set of subfigures as in the first setting. It can be

seen that the two estimators have very similar varibilities for all values of s. However, in

terms of bias, F̂NW (s|t) completely misses the truth.
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Figure 4.2: Means and confidence bands for F̂NW (s|t) and F̂PL(s|t) under T = 95, 100 and
110.

4.3.3 Third Design: aL = 89

In the third design, instead of estimating F (s|t), we switch to estimating F (s|t, l) where we

choose l = 89.1 to meet the requirement of l > aL. From Figure 4.3 we see that the means

of F̂PL(s|t, l) are very close to their true values with negligible biases.

We present the coverage probabilities of confidence intervals calculated from the Greenwood’s

formula (4.4) in Figure 4.4. The nominal level of 0.95 is shown in the figure as the dotted

horizontal line. Across all subfigures, coverage probabilities start from 0 at s = l and then

quickly rise to around 0.95. The low coverage towards the left end is not unique to the

generalized Beran’s estimator which was reported before for the Kaplan-Meier estimator

[13]. This can be seen easily prior to the first observed event time, where F̂PL(s|t, l) = 0

with a confidence interval [0, 0]. Clearly the confidence interval fails to cover the true value

F (s|t, l) as long as F (s|t, l) is non-zero. The same issue can happen during the first a few

observed event times. Ad hoc fixes were proposed to resolve this issue, e.g., [1] and [13].

However, since our primary objective is to obtain valid estimator F̂PL(s|t, l), we do not

pursue those methods in this work.
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Figure 4.3: Mean and confidence bands for F̂PL(s|t, l) under T = 95, 100 and 110.

Figure 4.4: Coverage probabilities of Greenwood confidence intervals for F̂PL(s|t, l) under
T = 95, 100 and 110.
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4.4 The 90+ Study

We apply our approach to the data obtained from The 90+ Study. See [5] for a detailed

description of the study. The participants were from two cohorts, one is the Leisure World

Cohort Study [38], where everyone was recruited from a retirement community named Leisure

World, and one consisted of volunteers recruited later. As of April 2023, the number of

participants reached 921 after excluding those with no initial or follow-up evaluation and

those already demented at enrollment. For this analysis, we only use data from participants

who are already deceased. A breakdown by cohort and gender of the deceased participants

are displayed in Table 4.1.

Male Female Total
Leisure World 166 416 582
Volunteer 94 103 197
Total 260 519 779

Table 4.1: Number of participants by gender and cohort.

In Figure 4.5, we provide the estimated lifetime dementia distribution for all participants

as well as the four groups stratified by gender and cohort. The estimator is calculated

using the undersmoothed bandwidths (by a factor of 7790.05). Three different death ages are

conditioned on: T = 95, 100 and 103. It can be seen that the dementia distributions are

approximately uniform, particularly for all participants, given that dementia does happen

in the lifetime.

We further display the lifetime dementia probability as a function of death age in Figure

4.6. It can be seen that male participants from the volunteer cohort has a relatively low

lifetime dementia probability compared to all other groups conditional on death around age

96. However, the difference tends to vanish for the oldest old (more than 100 years old).

Specifically, the lifetime dementia probabilities conditional on death age at 92, 94, 96, 98,

100, 102 are 0.13, 0.33, 0.49, 0.61, 0.70, 0.81, respectively. This shows that dementia is
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Figure 4.5: Estimated dementia onset distributions for all The 90+ Study participants and
within four stratified groups who developed dementia during lifetime conditional on T = 95,
100 and 103.

extremely prevalent among the oldest old.

To summarize, the probability of having dementia during lifetime is increasing when people

live longer; Among those who had developed dementia, the onset of the disease can happen

at any age equally likely.
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Figure 4.6: Lifetime dementia probabilities for all The 90+ Study participants and within
four stratified groups conditional on T = 95, 100 and 103.
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