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Abstract

An Assortment of Analyses of Optimal Transport Inspired by Domain Adaptation

by

Yannik Pitcan

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter Bartlett, Chair

This dissertation consists of several papers. First, we start off introducing domain adaptation
theory and briefly introduce optimal transport. Such an introduction allows the reader to
understand why studying problems in optimal transport theory is so valuable.

Our first key result establishes bounds between regularized and unregularized optimal trans-
port. Instead of using an entropic regularization, which is used in the Sinkhorn divergence,
we regularize using dual potentials in a reproducing kernel Hilbert space. After this, we
derive sample complexity bounds for the regularized optimal transport problem, and we
show this is a substantial improvement over unregularized optimal transport. With these
two results, one can approximate the theoretical optimal transport distance.

Next, we prove the first and second moments of the source and target distributions are enough
to determine explicitly the optimal transport map and also that this is a linear mapping.
Furthermore, we propose an alternative regularization for the transport map between two
distributions.

After this, we briefly diverge from optimal transport theory and introduce work on prior elic-
itation. In particular, we extend a result from [39] on non-asymptotic bounds for maximum
likelihood estimators to that for M-estimators. Crucially, we show sufficient assumptions for
these to hold and use these to theoretically justify our prior elicitation objective.

Last, we return to optimal transport and introduce a variant to compare multiple probabil-
ity measures, which we call sliced multi-marginal optimal transport. There, we propose a
paradigm based on random one-dimensional projections.
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Chapter 1

Introduction

First we give a primer on domain adaptation and then an introduction to optimal transport
theory.

1.1 Motivation
In statistical learning theory, many results study the problem of estimating when a hypoth-
esis from a select hypothesis class produces a low true risk. This is often expressed as a
generalization bound on the true risk. The typical generalization problem assumes that the
training and test distributions are identical.

One example of a case where training and test data differ is facial recognition, where
an image classification model is learned on a community and is then used to classify those
in another community who may have different facial features. The image recognition per-
formance will deteriorate when the classification model does not account for the disparity
between training and test distributions [41].

Another instance in which this assumption is violated is the spam filtering problem. A
given user will be targeted with spam messages depending on his browsing history. If a
working professional sets up his corporate mailbox on his home computer and transfers his
settings, many personal emails he may want could be perceived as spam by an algorithm
that learned preferences from professional communications. A classifier distinguishing spam
from non-spam may not perform as well on another user if it does not adapt to different
circumstances [41].

Such examples motivate the domain adaptation problem and extend traditional learning
paradigms. For the rest of this dissertation, we investigate the scenario where a model may
be learned on one distribution but evaluated on another.
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Figure 1.1: One application of transfer learning: spam filtering [41].

1.2 Background
For the applications considered above, the goal is to find a model that remains robust under
changes in the environment. In other words, if a model is learned from the source, we want
to measure how well it performs on the target domain. Formally, we describe this as follows.

Definition 1 (Transfer learning). Let S be a source data distribution called the source domain
and T be a target data distribution called the target domain. Consider XS×YS as the source
input and output spaces and XT × YT as target input and output spaces. Denote SX and
TX to be the marginal distributions of XS and XT and by tS and tT the source and target
learning tasks depending on YS and YT respectively. Tasks are defined as the combination
of an input and an output we want to predict, and, for now, we will focus on classification
tasks. We seek to improve the performance of fT : XT → YT for tT using information gained
from S where S 6= T .

Transfer learning scenarios

Furthermore, we have the following types of learning:

• Inductive transfer learning. XS
d
= XT but tS 6= tT . Here, one can imagine tS and tT

to be the tasks of detecting spam and hoaxes respectively for the same user.

• Transductive transfer learning. XS 6= XT but tS = tT . An example of a task here is
spam detection for two different users.
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Figure 1.2: Positioning of Domain Adaptation compared to other learning techniques [41]

• Unsupervised transfer learning. tS 6= tT and XS 6= XT . To make this more intuitive,
one can think of collecting web data for a user and pages taken from the web. For the
first user, one detects spam, and for the second, one detects hoaxes.

The category we focus on is transductive transfer learning, which we hereafter call domain
adaptation.

From a probabilistic point of view, we can categorize our problem via the causal link
between labels and instances.

• X → Y problems where the class label is causally determined by instance values. This
labeling comes up in image classification where the object description determines the
label. The joint distribution can be decomposed into P (X, Y ) = P (X)P (Y |X).

• Y → X where this is the reverse. Class labels causally determine instance values.
A good example here is in medical applications where we observe disease symptoms
but want to predict the disease [41]. The joint decomposition here is P (X, Y ) =
P (Y )P (X|Y ).

It follows that we can categorize different types of transfer learning scenarios based on
the probabilistic point of view. The following are some such scenarios:

• Covariate-shift P (XS) 6= P (XT ) but P (YT |XT ) = P (YS|XS)

This is a case of the X → Y problem where XS 6≡ XT while YS|XS ≡ YT |XT . Here, the
marginal distributions between the source and target are different while the predictive
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behavior stays the same. One example of this is the Office/Caltech dataset [27] with
domains:

1. Amazon images from online merchants.
2. Low-quality webcam images.
3. High-quality images taken with a DSLR.
4. Images from Caltech dataset for object recognition.

Solving the covariate shift problem involves a reweighting as seen by the following:

R`
T (h) = E(x,y)∼T (`(h(x), y))

= Ex∼T (x)ET (y|x)(`(h(x), y))

=

∫
dT (x)

dS(x)
dS(x)ET (y|x)`(h(x), y)

=

∫
dT (x)

dS(x)
dS(x)ES(y|x)`(h(x), y)

= Ex∼S(x)ES(y|x)[β(x)`(h(x), y)]

= E(x,y)∼S[β(x)`(h(x), y)]

where β(x) := dT (x)
dS(x)

, the Radon-Nikodym derivative of the target distribution with
respect to the source distribution.

• Target-shift P (XT |YT ) 6= P (XS|YS)

These occur in Y → X problems. In this case, YS 6≡ YT–the target distributions are
different. Generally, this occurs when different sampling methods are used for the
source and target datasets.

• Concept shift P (XT , YT ) 6= P (XS, YS) This occurs both in X → Y and Y → X
problems when P (YS|XS) 6= P (YT |XT ) and P (XS|YS) 6= P (XT |YT ) respectively.

• Sample-selection bias
Here, the source and target distributions differ because of a latent variable that excludes
some sample observations conditional on their labeling or nature. For example, if we are
classifying images of people, we may discard images that are unclear. This exclusion
leads to a sample-selection bias, since some devices may take less clear pictures by
default.

• Ideal joint error. We may claim the existence of a low-error hypothesis for both the
source and target domain. Usually, this is characterized by

λH = min
h∈H

RS(h) +RT (h)
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where RS(h) and RT (h) are the true risks over the source and target domains S and
T .

Definition 2 (True Risk). Given a loss function l : Y × Y → [0, 1], the true risk or
generalization error Rl

D(h) for a hypothesis h ∈ H on a distribution D over X × Y is
defined as

Rl
D(h) = E(x,y)∼Dl(h(x), y).

and for a given pair of hypotheses (h, h′) ∈ H2,

Rl
D(h, h′) = E(x,y)∼Dl(h(x), h′(x)).

As a side-note, there are three predominant algorithmic techniques used for domain
adaptation. They are

1. Reweighting the source labeled examples to be more similar to the target examples.
This is done in cases such as covariate shift.

2. Iteratively “auto-labeling" target examples. Here, a model is learned from source la-
beled examples and then automatically labels some target examples. We then learn a
new model from the new labeled examples.

3. Finding a common representation space. In this situation, we find a space where the
source and target domains are close while maintaining a good performance on the
source domain task.

Divergence between domains

In domain adaptation, we must quantify the difference between source and target domains.
Unlike classical supervised learning, transfer learning involves a discrepancy between the two
domains. There are many metrics, such as Hellinger distance, total-variation distance, Renyi
divergence, or Wasserstein metric, that exist to measure such a discrepancy [41].

Often, one wants to prove that a divergence measure can relate errors between source
and target domains. This relation means we can establish error guarantees by minimizing
the divergence between the source and target distributions.

Along with analyzing existing divergence measures, one may also design a new diver-
gence measure suitable for domain adaptation. Additionally, we investigate a new specific
divergence measure in Chapter 3.

In the subsequent paragraphs, we discuss seminal work in this area of research. We do
this to better demonstrate what we mean by relating errors between domains with respect
to a divergence measure.
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A First Theoretical Analysis

From a theory perspective, the seminal work was done by Ben-David et al. In their work,
they considered a binary loss function in a binary classification setting and the L1-distance
[6].

First, we provide some definitions.

Definition 3 (Rademacher complexity). Denote σ1, σ2, . . . , σm as independent random vari-
ables drawn from the Rademacher distribution i.e. Pr(σi = +1) = Pr(σi = −1) = 1/2 for
i = 1, 2, . . . ,m.

Given a sample S = (z1, z2, . . . , zm) ∈ Zm, and a class F of real-valued functions defined
on a domain space Z,

RadS(F ) =
1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]
Definition 4. Shattering

A family H shatters a set S ⊆ X if for every subset T ⊆ S there exists a function h ∈ H
such that h(s) = 1s∈T for all s ∈ S, that is, h(s) = 1 if s ∈ T and h(s) = 0 if s ∈ S \ T .

Intuitively, we say that H shatters some set S ⊆ X if we can realize any labelings on S
using functions from H.

Definition 5. VC Dimension
The VC dimension of a set of hypothesis functions H is the cardinality of the largest set

which H can shatter.

Definition 6. H-divergence
Denote A the set of measurable subsets under two probability distributions D and D′.

Then the H-divergence is defined as

d1(D,D′) = 2 sup
A∈A
|PD(A)− PD′(A)| .

This one compares how two classifiers disagree on both domains. Here, it finds the pair of
classifiers with the largest disparity in disagreements between the source and target domains.

Using this notion of distance, Ben-David et al. derived the first generalization bounds.

Definition 7 (Labeling function). A labeling function f : X → Y is a mapping of feature
input X to a class label Y . In the next theorem, Y = {0, 1}.

Theorem 1.2.1. Generalization bound with respect to H-divergence [6]
Let l represent the 0 − 1 loss function and fS, fT the source and target true labeling

functions respectively.

Rl
T (h) ≤ Rl

S(h) + d1(XS, XT ) + min {Ex∼XS [‖fS(x)− fT (x)‖],Ex∼XT [‖fS(x)− fT (x)‖]}
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This was the first theoretical generalization bound, and it had some flaws. In practice,
one may want to obtain finite-sample estimates, but that isn’t possible with H-divergence.
Also, the H-divergence does not incorporate the hypothesis class. Both of these issues
are resolved with the introduction of another type of divergence: the symmetric difference
hypothesis divergence.

Definition 8 (Symmetric Difference Hypothesis Divergence).

DH∆H(S, T ) = 2 sup
h,h′∈H

|PS[h(x) 6= h′(x)]− PT [h(x) 6= h′(x)]|

Definition 9 (Empirical Symmetric Difference Hypothesis Divergence).

D̂H∆H(Ŝ, T̂ ) = 2 sup
h,h′∈H

∣∣∣∣∣
m∑
i=1

I[h(xsi ) 6= h′(xsi )]−
m∑
i=1

I[h(xti) 6= h′(xti)]

∣∣∣∣∣ .
Theorem 1.2.2. Here, Ŝ, T̂ are independent size-m samples drawn from S and T respec-
tively. For δ ∈ (0, 1), the following holds with probability at least 1− δ:

DH∆H(S, T ) ≤ D̂H∆H(Ŝ, T̂ ) + 4

√
2V C(H) log(2m) + log(2/δ)

m

The above tells us that, for a finite V C dimension classH, the empiricalH∆H divergence
is a good estimate for its true variant.

Furthermore, one can compute the empirical divergence. Ben-David et al then obtained
a bound for risk on the target domain that involved the empirical divergence.

We first define empirical risk. Unlike true risk, which defines the theoretical error over
a distribution, empirical risk represents the error of a hypothesis on an observed training
sample.

Definition 10 (Empirical Risk). Given a loss function l : Y × Y → [0, 1] and a training
sample S = (xi, yi)

m
i=1 where each sample is drawn i.i.d. from D, the empirical risk Rl

D̂
(h)

for a hypothesis h ∈ H is

Rl
D̂

(h) =
1

m

m∑
i=1

l(h(xi), yi),

where D̂ is the empirical distribution associated with S.

Theorem 1.2.3. Let λ∗ = minh∈HRS(h) + RT (h) be the minimum joint risk. With proba-
bility at least 1− δ:

Rl
T (h) ≤ R̂l

S(h) +
1

2
DH∆H(Ŝ, T̂ ) + λ∗ +O

(√
V C(H) log(m) + log(2/δ)

m

)
Of note is that the risk bound presented is only relevant if the optimal joint risk is

controlled.
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Critique of H∆H-divergence
A flaw of theH∆H-divergence is that it relies on a specific loss function (0-1 loss). Contrarily,
one may want to work with a more general loss function. This desire motivated other work
[29] to use Renyi and Y-discrepancy distances.

Definition 11 (Renyi Divergence). Let p and q be two probability densities.

Dα(p, q) =
1

α− 1
log2

∫
X
pα(x)/qα−1(x) dx,

where α denotes its order.

Definition 12 (Expected Loss). Let f, g : X → Y be labeling functions and L : Y × Y → R
be a loss function. Then for any distribution D, our expected loss is

LD(f, g) = Ex∼D[L(f(x), g(x))].

Definition 13. Y-Discrepancy
Let fP and fQ be the labeling functions on P and Q. Then the Y-discrepancy between

domains (P, fP ) and (Q, fQ) is

discY(P,Q) = sup
h∈H
|LQ(h, fQ)− LP (h, fP )|

In the majority of this dissertation, we study divergences inspired by optimal transport
theory. This brings us to the next section, which introduces some of the foundational material
on Wasserstein spaces.

1.3 Brief Introduction to Optimal Transport

Monge Problem

In 1781, Gaspard Monge asked how one can transport a pile of sand into a pit when both
have equal volumes.

Intuitively, the goal is to minimize the expected “cost" of moving the sand, and it turns
out this has a mathematical formulation as follows:

Let X be the space of sand, Y be the space for the pit, and define a cost function
c : X × Y → R that demonstrates the cost of moving a unit of sand x ∈ X to a pit location
y ∈ Y . And denote µ to be the distribution on X

The choice of where to place a unit of sand can be represented as the function T : X → Y ,
which has a total transport cost of ∫

X

c(x, T (x)) dµ(x).
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Moreover, the function T must satisfy a mass-preservation requirement: the volume ν(B)
of any region in the pit B ⊆ Y must be the same as the volume of the sand moved into B.

Formally, we can write this as

µ(T−1(B)) = ν(B) for all B ⊆ Y

which we denote T#µ = ν. We say that ν is the push-forward measure of µ under T .
If c and T are measurable, and µ(T−1(B)) = ν(B) for all measurable subsets B of Y ,

then T is called a transport map. Normalizing µ and ν to be probability measures, the
Monge problem finds the optimal transport map minimizing transport costs [34].

Definition 14. Monge Problem
Let T : X → Y be a transport map with an associated total cost

C(T ) =

∫
X

c(x, T (x)) dµ(x),

where µ and ν are again the probability measures assigned to X and Y .
The Monge problem finds

inf
T :T#µ=ν

C(T ).

The Monge problem is very hard because the set of transport maps {T : T#µ = ν} is
intractable to work with. If µ = δ{x0} is a Dirac measure and ν is not, then no transport
maps exist.

But what if we can split the mass of sand particles? That is to say, what if we don’t have
the strict conditions as above. This brings us to the Kantorovich relaxation.

Kantorovich Relaxation

For each point x ∈ X, a probability measure µx defines how the mass at x is split. If
µx = δ{y} for y ∈ Y , then all the mass at x is sent to y.

Represent π to be the joint probability measure on X×Y , where π(A×B) is the amount
of sand moved from A ⊆ X to B ⊆ Y . The total mass sent from A is π(A × Y ) and the
total moved into B is π(X ×B). Such a measure π is called a transference plan when

π(A× Y ) = µ(A), A ⊆ X

π(X ×B) = ν(B), B ⊆ Y

where A and B are Borel sets. The set of transference plans is denoted Π(µ, ν).

Definition 15. Kantorovich Problem
Let π ∈ Π(µ, ν) be a transference plan with an associated total cost

C(π) =

∫
X×Y

c(x, y) dπ(x, y).

The Kantorovich problem solves for the optimal plan given by

inf
π∈Π(µ,ν)

C(π).



CHAPTER 1. INTRODUCTION 10

Probabilistic Interpretations of Monge and Kantorovich Problems

We can view the above optimization problems from a probabilistic perspective. The Monge
solution minimizes EX [c(X,T (X))] over T (measurable) whereas the Kantorovich solution
minimizes Eπ∈Π(µ,ν)[c(X, Y )]. We call π ∈ Π(µ, ν) a coupling between µ and ν.

A Divergence Measure Inspired by Optimal Transport

If X = Y , then we can define a distance between measures µ and ν using a special cost
function c.

Let c(x1, x2) = [d(x1, x2)]p, where d(x1, x2) denotes the distance between x1 and x2 and
p is a real-valued constant.

Definition 16. Wasserstein Distance of Order p

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x1, x2)p dπ(x1, x2)

)1/p

=

(
inf

π∈Π(µ,ν)
Eπ[d(x1, x2)p]

)1/p

.

With this being said, let’s begin.
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Chapter 2

Theoretical Analysis of Domain
Adaptation with Optimal Transport

Previously, we gave a glimpse at domain adaptation and briefly discussed optimal transport
(OT), without tying the two concepts together. Thus, we give a more in-depth introduction
here to how optimal transport and domain adaptation are linked from a theoretical viewpoint.
Specifically, we explicitly show how generalization bounds for domain adaptation may involve
optimal transport quantities. This subsequently inspires our analysis of OT.

Why Use Optimal Transport in Domain Adaptation?
Optimal transport is capable of taking into consideration the geometry of the data. In
domain adaptation problems, this is helpful, especially since when dealing with a source and
target distribution, a natural idea is to look for a nonlinear transformation between the two
distributions. This makes optimal transport distances (e.g. Wasserstein) highly promising.
Another concern is that the source and target distributions lack a shared support. Using
a distance that does not require a shared support makes sense, and the Wasserstein is one
such distance. This property distinguishes it from other divergences, such as Maximum
Mean Discrepancy or Kullback-Leibler, which usually require a common support.

2.1 Notation and Preliminaries
Definition 17. Reproducing Kernel Hilbert Space

Let X be an arbitrary set and H a Hilbert space of real-valued functions on X. The eval-
uation functional over the Hilbert space of functions H is a linear functional that evaluates
each function at a point x,

Lx : f 7→ f(x) ∀f ∈ H.
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We say that H is a reproducing kernel Hilbert space if, for all x ∈ X, Lx is continuous at
any f ∈ H or, equivalently, if Lx is a bounded operator on H, i.e. there exists some M > 0
such that

|Lx(f)| := |f(x)| ≤M‖f‖H ∀f ∈ H.

Definition 18. Kullback-Leibler Divergence If P and Q are probability measures on a set
X , and P is absolutely continuous with respect to Q, then the Kullback-Liebler divergence
from Q to P is

DKL(P ‖ Q) =

∫
X

log

(
dP

dQ

)
dP.

Definition 19. Maximum mean discrepancy
MMD represents distances between distributions as distances between mean embeddings

of features. If we have distributions p and q over a set X , the MMD is defined by a feature
map ϕ : X → H where H is a reproducing kernel Hilbert space with ϕ the reproducing kernel.

MMD(p, q) = ‖EX∼p[ϕ(X)]− EY∼q[ϕ(Y )]‖H.
We can alternatively characterize the MMD as follows:

MMD(p, q) = ‖EX∼p[ϕ(X)]− EY∼q[ϕ(Y )]‖H
= sup

f∈H:‖f‖H≤1

〈f,EX∼p[ϕ(X)]− EY∼q[ϕ(Y )]〉H

= sup
f∈H:‖f‖H≤1

[
〈f,EX∼p[ϕ(X)]〉H − 〈f,EY∼q[ϕ(Y )]〉H

]
= sup

f∈H:‖f‖H≤1

[EX∼p[f(X)]− EY∼q[f(Y )]]

The alternative characterization holds because of the reproducing property: 〈f, ϕ(x)〉H =
f(x) for any f ∈ H. The second line holds since supf :‖f‖≤1〈f, g〉H = ‖g‖ is attained when f =
g/‖g‖. The fourth relies on Bochner integrability, but assuming our kernel or distributional
support is bounded, this is true.

The following extension of Wasserstein to empirical measures will be used when contrast-
ing empirical to theoretical distances.

Definition 20. Discrete Wasserstein [41]
If we deal with empirical measures µ̂S = 1

NS

∑NS
i=1 δxis and µ̂T = 1

NT

∑NT
i=1 δxiT represented

by the uniformly weighted sums of NS and NT Diracs with mass at locations xiS and xiT
respectively, then the Kantorovich problem is defined in terms of the inner product between
the coupling matrix γ and the cost matrix C:

W1(µ̂S, µ̂T ) = min
γ∈Π(µ̂s,µ̂T )

〈C, γ〉F
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where 〈 , 〉F denotes the Frobenius inner product, Π(µ̂s, µ̂T ) = {γ ∈ RNS×NT
+ |γ1 = µ̂S, γ

T1 =
µ̂T} is a set of doubly stochastic matrices and C is a dissimilarity matrix, i.e., Cij =
c(xiS, x

j
T ), defining the cost needed to move a probability mass from xiS to xjT .

Definition 21 (Expected Loss). Let l be a convex loss-function. Given a distribution µD, a
hypothesis h ∈ H and a labeling function fD (which may be a hypothesis in H), the expected
loss is defined as

Rl
D(h, fD) = EX∼µD [l(h(x), fD(x))].

Our source and target spaces are denoted by S and T respectively. S has a distribution µS
and T has as its underlying distribution, µT . Our loss function is denoted by l : Y×Y → R+.

2.2 Prior Work
First, we introduce some past results pertaining to risk bounds with respect to the Wasser-
stein distance. The purpose of this is to show the explicit connections between optimal
transport work and domain adaptation theory and also serve as inspiration for the research
presented in the next several chapters.

First Theoretical Bounds

Lemma 2.2.1. This lemma and theorem are from [41].
Let µS, µT ∈ P(X) be two probability measures on Rd. And assume the following hold.

• The cost function c (x,x′) = ‖φ(x)− φ (x′)‖Hk` , where H is a reproducing kernel hilbert
space (RKHS) 17 equipped with kernel k` : X ×X → R induced by φ : X → Hk` and
k` (x,x′) = 〈φ(x), φ (x′)〉Hk` .
And let us briefly discuss the use of the aforementioned cost function. It can be seen
that:

c(x, x′) = ‖φ(x)− φ(x′)‖Hkl
=
√
〈φ(x)− φ(x′), φ(x)− φ(x′)〉Hkl

=
√
kl(x, x)− 2kl(x, x′) + kl(x′, x′).

There also exists a one-to-one relationship between the choice of a positive-definite
kernel k and the cost function c as proven in [44].
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• The loss function `h,f : x −→ `(h(x), f(x)) is convex, symmetric, bounded, obeys
triangle equality, and has the parametric form |h(x)− f(x)|q for some q > 0. The loss
function ` is a nonlinear mapping of Hk for the family of `q losses.

`h,f also belongs to the RKHS Hk` admitting the reproducing kernel k` and that its
norm obeys the following inequality:

‖`h,f‖2
Hk`
≤ ‖h− f‖2q

Hk .

• The kernel k` in the RKHS Hk` is square-root integrable w.r.t. both µS, µT for all
µS, µT ∈ P(X) where X is separable and 0 ≤ k` (x,x′) ≤ K, ∀x,x′ ∈ X.

• ‖`‖Hk` ≤ 1.

Then the following bound holds

∀ (h, f) ∈ H2
k`
, R

`q
T (h, f) ≤ R

`q
S (h, f) +W1 (µS, µT ) .

With the use of a concentration inequality on Wasserstein distances [10], empirical risk
bounds are obtained. The theorem is provided below for convenience.

Theorem 2.2.2. Let µ be a probability measure on Rd such that

∃α > 0,

∫
Rd
eα‖x‖

2

dµ(x) <∞

and let µ̂ = 1
N

∑N
i=1 δXi be the empirical measure on {xi}. The {xi} are sampled from µ.

Then for all d′ > d and all ξ <
√

2, there exists N0(d′) and α > 0 with∫
eαc(x,x

′) dµ(x) <∞

for a fixed x′ such that for all ε > 0 and all N ≥ N0 max{ε−(d′+2), 1},

Pr[W1(µ, µ̂) > ε] ≤ e−
ξ
2
Nε2 .

Theorem 2.2.3. [41] Under the assumptions of 2.2.1, let Su and Tu be two samples of
size NS and NT drawn i.i.d. from µS and µT , respectively. Let µ̂S = 1

NS

∑NS
i=1 δxsi and

µ̂T = 1
NT

∑NT
i=1 δxTi be the associated empirical measures. Then for any d′ > d and ς ′ <

√
2,

there exists some constant N0 depending on d′, such that for any δ > 0 and min (NS, NT ) ≥
N0 max

(
δ−(d′+2), 1

)
with probability of at least 1− δ for all h, we have

R
`q
T (h) ≤ R

`q
S (h) +W1 (µ̂S, µ̂T ) +

√
2 log

(
1

δ

)
/ς ′
(√

1

NS

+

√
1

NT

)
+ λ

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error
of R

`q
S (h) + R

`q
T (h).
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In this chapter, we introduced optimal transport in the context of domain adaptation
and discussed how these calculations appear in theoretical and empirical risk bounds. This
serves to show the significance of studying the statistical properties of optimal transportation,
which is the motivation for the next three chapters in this dissertation.
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Chapter 3

Regularized Optimal Transport for
Domain Adaptation Problems

3.1 Introduction
Previously, we looked at unregularized optimal transport for domain adaptation and some
statistical properties – in particular, how it may be used in theoretical generalization bounds.
However, a fundamental limitation of the optimal transportation methods for domain adap-
tation is that they turn out to be computationally difficult. For example, in the discrete
optimal transport problem, assuming P and Q were of size n, algorithms such as the simplex
algorithm and Hungarian algorithm have a complexity of at most O(n3 log(n)).

In this chapter, we examine regularization methods for optimal transport that statistically
outperform that of unregularized optimal transport. This then leads us to introduce an
alternative concept of regularization involving dual potentials that may be more suitable for
domain adaptation problems. In particular, we study briefly the behavior of joint couplings
in a simpler setting and then introduce our main result of this chapter, which are sample
complexity bounds for this alternative regularization. And lastly, we demonstrate that,
under certain assumptions, it also has statistical benefits over unregularized OT.

3.2 Entropic Regularization
One popular method of addressing the aforementioned limitation of OT is by using an
entropic regularization as seen in [16].

Definition 22 (Entropic Regularization of Wasserstein).

Wε(P,Q) = inf
π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y) + εH(π|P ⊗Q)
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where
H(π|P ⊗Q) =

∫
X×Y

log(
dπ(x, y)

dP (x)dQ(y)
)dπ(x, y).

If we use the relative entropy as a regularizer, then we can formulate the dual of regular-
ized OT as the maximization of an expectation problem [23].

Wε(P,Q) = sup
u∈L1(P ),v∈L1(Q)

∫
X
u(x)dP (x) +

∫
y

v(y)dQ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dP (x)dQ(y) + ε

= sup
u∈L1(P ),v∈L1(Q)

EP⊗Q[fXYε (u, v)] + ε

where fXYε (u, v) = u(x) + v(y)− εeu(x)+v(y)−c(x,y)
ε .

Results in [23] demonstrated the superiority of entropic regularized OT over unregularized
OT in terms of sample complexity. In the case where c(x, y) = 1

2
‖x− y‖2, they showed the

following:

Theorem 3.2.1. Let P and Q be two probability measures on a bounded domain in Rd of
diameter D. Then

sup
P,Q

EP,Q |Wε(P,Q)−Wε (Pn, Qn)| ≤ KD,d

(
1 +

1

εbd/2c

)
eD

2/ε

√
n

where KD,d is a constant depending on D and d.

3.3 Downside of Entropic Regularization
Although entropic regularized OT has benefits over unregularized OT as demonstrated in
3.2.1, it may not be the best regularization for domain adaptation work. When we prescribe
a divergence measure for domain adaptation, we seek to penalize when the source and target
distributions are not identical. However, with entropic regularization, we penalize when the
source and target distributions are not independent. But if one can look at a "mapping"
between the two distributions, it makes sense to regularize with respect to the deviation
between our "mapping" and an identity map. What we eventually demonstrate is that we
can perform such a regularization by looking at the dual potentials.

In order to discuss this more rigorously, first we give a more precise description of a
mapping between two probability measures.

Let Z and X be two measurable spaces and T : Z → X a measurable map. Let η ∈ P(Z)
be a probability measure over Z. The pushforward of η via T is defined to be the measure
T#η in P(X ) such that for any Borel subset B of X ,

(T#η) (B) = η
(
T−1(B)

)
.
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From here on, we will refer to a measure T#η as pushforward measure, and to the corre-
sponding T as pushforward map.

Lemma 3.3.1. For any measurable f : X → R∫
X
f(x)d (T#η) (x) =

∫
Z
f(T (z))dη(z)

3.4 Existence and Uniqueness of an Optimal Transport
Map

The intuition behind our proposed regularization stems from Brenier’s theorem, which con-
cerns the existence and uniqueness of optimal maps.

Theorem 3.4.1 (Brenier’s Theorem). Let µ ∈ P(X), ν ∈ P(Y ) with X, Y ⊂ Rn and assume
that µ, ν both have finite second moments and that µ is absolutely continuous. Then there
is a unique solution π† ∈ Π(µ, ν) to the Kantorovich optimal transport problem with cost
c(x, y) = 1

2
|x− y|2 which is given by

π† = (Id×∇ϕ)#µ or equivalently dπ†(x, y) = dµ(x)δ(y = ∇ϕ(x))

where ∇ϕ is the gradient of a convex function (defined µ -almost everywhere) that pushes µ
forward to ν, i.e. (∇ϕ)#µ = ν.

Any convex function is locally Lipschitz on the interior of its domain and u is almost
everywhere differentiable on the interior of its domain.

When c(x,y) = 1/2‖x − y‖2, we have an explicit representation for T , the transport
map.

T (x) = x−∇u(x) = ∇
[

1

2
‖x‖2 − u(x)

]
= ∇ϕ(x).

In this case, the Brenier’s potential ϕ and the Kantorovich’s potential u are related by
the following: ϕ(x) = 1

2
‖x‖2 − u(x)

Corollary 3.4.1.1. Under the assumptions of Theorem 3.4.1, ∇u is the unique solution to
the Monge transportation problem:

1

2

∫
X

|x−∇ϕ(x)|2 dµ(x) =
1

2
inf

T#µ=ν

∫
X

|x− T (x)|2 dµ(x).

This motivates our proposed regularization as now we have a clear relationship between
potentials and the optimal transport map. Since we established a relationship between those
and the Kantorovich potentials and the latter potentials are easier to work with as they
come up in the dual form of the optimal transport problem, we may try to regularize on the
Kantorovich potentials.



CHAPTER 3. REGULARIZED OPTIMAL TRANSPORT FOR DOMAIN
ADAPTATION PROBLEMS 19

Proposed Regularization Problem
The first optimization problem we examine is the following, where H is a reproducing kernel
Hilbert space and c(x, y) denotes an arbitrary cost function in x and y. The functions u and
v here are dual potentials.

inf
u,v

[∫
u ds+

∫
v dt+ λ(‖u‖2

H + ‖v‖2
H)

]
,

1

2
‖x‖2 +

1

2
‖y‖2 − u(x)− v(y) ≤ c(x, y)∀x, y.

In particular, we can derive a general form of the primal for this and then investigate
behavior of the optimal coupling in this setting.

We will circle back to this after the next section.

3.5 Convex Analysis Prerequisites
Before we continue, we introduce some concepts from convex analysis that will be needed
going forward.

Definition 23. Let X ⊂ Rn and f : X → R ∪ {+∞} be a lower semicontinuous function
and

X∗ =

{
x∗ ∈ R : sup

x∈X
(〈x∗, x〉 − f(x)) <∞

}
.

The Fenchel-Legendre transform f ∗ : X∗ → R ∪ {+∞} is defined by

f ∗(x∗) = sup
x∈X

[〈x∗, x〉 − f(x)]

This f ∗ is always convex.

Definition 24. The subdifferential of a lower semi-continuous convex function φ at x ∈
dom φ is defined by

∂φ(x) = {x∗ ∈ X∗ : ∀y ∈ X, φ(y)− φ(x) ≥ 〈x∗, y − x〉}

Theorem 3.5.1. Let f : X → R∪{+∞} be a convex function. Then for any x ∈ int dom f ,

∂f(x) 6= ∅.

Theorem 3.5.2 (Fenchel-Young inequality). For any function f ,

f(x) + f ∗(x∗) ≥ 〈x∗, x〉
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Theorem 3.5.3 (Fenchel-Young equality).

f(x) + f ∗(x∗) = 〈x∗, x〉

iff
x∗ ∈ ∂f(x).

Theorem 3.5.4. Let v(y) = infx[f(x) + g(x+ y)]. The Fenchel primal problem is

p = v(0) = inf
x

[f(x) + g(x)].

The dual problem is

d = v∗∗(0) = sup
y∗

[−f ∗(y∗)− g∗(−y∗)].

Proof. Calculate v∗(−y∗) = supx,y[〈−y∗, y〉 − f(x)− g(x+ y)].
Let u = x+ y, so we have

v∗(−y∗) = sup
x,u
〈−y∗, u− x〉 − f(x)− g(u)

= sup
x

[〈y∗, x〉 − f(x)] + sup
u

[〈−y∗, u〉 − g(u)]

= f ∗(y∗) + g∗(−y∗).

Thus,
d = v∗∗(0) = sup

−y∗
[0− v∗(−y∗)] = sup

−y∗
[−f ∗(y∗)− g∗(−y∗)].

3.6 Derivation of Primal Formulation
Our goal is to find the primal formulation for the following optimization problem:

inf
u,v

[∫
u ds+

∫
v dt+ λ(‖u‖2

H + ‖v‖2
H)

]
,

1

2
‖x‖2 +

1

2
‖y‖2 − u(x)− v(y) ≤ c(x, y) ∀x, y.

Ultimately, this is done in order to understand how to relate the optimal joint couplings
with the source and target measures. Such a coupling then determines a "transport plan"
between the source and target distributions via a computation of its barycentric projections
[43]. The arguments that follow are similar to those used to prove Kantorovich duality.

Let

φc = {(u, v) ∈ C(X)× C(Y ) :
1

2
‖x‖2 +

1

2
‖y‖2 − u(x)− v(y) ≤ c(x, y) ∀x, y}
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.
In the next few lines, z ∈ E = C(X × Y ) is the set of continuous functions on X × Y

with sup. norm and π ∈ E∗ = M(X × Y ) is the set of regular Radon measures with total
variation norm.

f(z) =

{
λ(‖u‖2

H + ‖v‖2
H) +

∫
u ds+

∫
v dt, if z(x, y) = u(x) + v(y) ∀x, y

+∞, otherwise.

g(z) =

{
0, if 1

2
‖x‖2 + 1

2
‖y‖2 − z(x, y) ≤ c(x, y) ∀x, y

+∞, otherwise.

f(z)+g(z) =

{∫
X
u ds+

∫
Y
v dt+ λ(‖u‖2

H + ‖v‖2
H), if 1

2
‖x‖2 + 1

2
‖y‖2 − u(x)− v(y) ≤ c(x, y)

∞, otherwise.

inf
z∈E

[f(z) + g(z)] = inf
(u,v)∈Φc

{∫
X

u ds+

∫
Y

v dt+ λ(‖u‖2
H + ‖v‖2

H)

}

g∗(−π) = sup
z∈E

[
−
∫
X×Y

z dπ − g(z)

]
= sup

z∈E

[
−
∫
X×Y

z dπ :
1

2
‖x‖2 +

1

2
‖y‖2 − c(x, y) ≤ z(x, y)

]
=

{∫
X×Y

[
c(x, y)− 1

2
‖x‖2 − 1

2
‖y‖2

]
dπ, if π ∈M+(X × Y )

+∞, otherwise

f ∗(π) = sup
z∈E

[∫
X×Y

z dπ − f(z)

]
= sup

z∈E

[∫
X×Y

z(x, y) dπ(x, y)−
∫
X

u ds−
∫
Y

v dt− λ(‖u‖2
H + ‖v‖2

H) : z = u⊕ v
]

=

{
−λ(‖u‖2

H + ‖v‖2
H), if π ∈ Π(s, t)

− infu(
∫
u ds−

∫
u dπ + λ‖u‖2

H)− infv(
∫
v dt−

∫
v dπ + λ‖v‖2

H), otherwise

Let π1 and π2 be the projections of the measure π onto the spaces X and Y respectively
and let

Q(s, π1, λ) := inf
u

(∫
u ds−

∫
u dπ + λ ‖u‖2

H

)
and

Q(t, π2, λ) := inf
v

(∫
v dt−

∫
v dπ + λ ‖v‖2

H

)
.
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Then our dual problem is

sup
π∈E∗

(−f ∗(π)−g∗(−π)) = sup
π∈M+

[
Q(s, π1, λ) +Q(t, π2, λ)−

∫ (
c(x, y)− 1

2
‖x‖2 − 1

2
‖y‖2

)
dπ

]
.

If c(x, y) = 1
2
‖x− y‖2, this becomes

sup
π∈E∗

(−f ∗(π)− g∗(−π)) = sup
π∈M+

[
Q(s, π1, λ) +Q(t, π2, λ) +

∫
〈x, y〉 dπ

]
.

If we have additional knowledge about H, we can explicitly calculate closed form expres-
sions for Q(s, π1) and Q(t, π2) that are dependent only on s, t, λ, and π.

3.7 An Alternative Optimization Problem
If we are working with finite sets S and T , we can represent the joint distribution on S × T
by a doubly stochastic |S| × |T | matrix Π. We can write the marginal distributions on S
and T as π1 = Π1 and πT2 = 1TΠ, i.e. taking the row and column marginals of Π.

Here, we propose an alternative optimization inspired by our primal derivation in the
previous section.

One possible optimization problem is

sup
Π

1

4λ
(−‖s− Π1‖2 − ‖t− ΠT1‖2) + tr(Π) = inf

Π

1

4λ
(‖s− Π1‖2 + ‖t− ΠT1‖2)− tr(Π).

We analyze the behavior of solutions when |S| = |T | = 2.
What we will see is that the mass is concentrated along the diagonal of the joint proba-

bility matrix.
We look at the Karush-Kuhn-Tucker conditions and take derivatives with respect to

Π,f(Π, λ) =
(Π~1− s)T (Π~1− s) + (ΠT~1− t)T (ΠT~1− t)

4λ
−Tr[Π] + τ(1−~1TΠ1)− v1E

T
1 ΠE1−

v2E
T
2 ΠE1 − v3E

T
1 ΠE2 − v4E

T
2 ΠE2

where E1 =

(
1
0

)
and E2 =

(
0
1

)
.

df
dΠ

= 2(Π~1− s)~1T + 2(ΠT~1− t)~1T − I − τ~1 ~1T = 2[(Π + ΠT )~1− (s + t)]~1T − I − τ11T −
v1

(
1 0
0 0

)
− v2

(
0 0
1 0

)
− v3

(
0 1
0 0

)
− v4

(
0 0
0 1

)
By Karush Kuhn Tucker conditions, we have
π11−π22−(s1+t1)+1

2λ
− (τ + v1 + 1) = 0

π22−π11−(s2+t2)+1
2λ

− (τ + v2) = 0
π11−π22−(s1+t1)+1

2λ
− (τ + v3) = 0

π22−π11−(s2+t2)+1
2λ

− (τ + v4 + 1) = 0
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And it follows that
v1 + 1 = v3

v4 + 1 = v2

and also
1

2λ
− 1 = v1 + v2 + 2τ = v3 + v4 + 2τ .

If π11, π22 = s1+t1
2
, s2+t2

2
, then π11 + π22 = 1 and thus π12 = π21 = 0. Letting v1 = v4 = 0

and v2 = v3 = 1, this satisfies slackness constraints.
So the joint probability matrix has all its mass concentrated on the diagonal and fur-

thermore, the diagonal elements are averages of the source and target probabilities. This
was also checked empirically – code is provided in the appendix. We also empirically note
this result seems to hold when ‖S‖ = ‖T‖ ≥ 3 as well. Extending this proof to S and T of
arbitrary size and analyzing the significance of these solutions are left for future work.

3.8 Error Bounds
In this section, we have our main results where we examine the tradeoffs between OT and
another dual regularized OT. The optimization problem considered here is slightly different
from what we introduced earlier, but this is easier to use in order to demonstrate some
statistical properties. First, we will compare theoretical regularized OT versus unregularized
OT, and then we examine the sample complexity of regularized OT in the subsequent section.

Consider the RKHS dual regularized optimal transport problem

S(P, Q) = sup
f∈H,g∈H

∫
f(x)dP (x) +

∫
g(y)dQ(y)− λ(‖f‖H + ‖g‖H), f ⊕ g ≤ c

and the unregularized OT,

OT (P, Q) = sup
f∈H,g∈H

∫
f(x)dP (x) +

∫
g(y)dQ(y), f ⊕ g ≤ c.

We will next see that the difference between these two quantities is dependent on the
norms of the dual potentials for the unregularized and regularized optimal transport problem.
The proof here is similar to that of [45] but here, we generalize from the discrete setting.

Theorem 3.8.1. Let f0, g0 be dual solutions to OT (P,Q) and f ∗, g∗ be corresponding solu-
tions to S(P,Q). Then

λ(‖f ∗‖H + ‖g∗‖H) ≤ OT (P,Q)− S(P,Q) ≤ λ(‖f0‖H + ‖g0‖H)

Proof. Since f ∗, g∗ satisfy the constraint f ∗ ⊕ g∗ ≤ c, we have

∫
f ∗(x)dP (x) +

∫
g∗(y)dQ(y) ≤

∫
f0(x)dP (x) +

∫
g0(y)dQ(y) = OT (P,Q)
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Subtracting λ(‖f ∗‖+ ‖g∗‖) from both sides gives us

S(P,Q) =

∫
f ∗(x)dP (x) +

∫
g∗(y)dQ(y)− λ(‖f ∗‖H + ‖g∗‖H)

≤
∫
f0(x)dP (x) +

∫
g0(y)dQ(y)− λ(‖f ∗‖H + ‖g∗‖H)

= OT (P,Q)− λ(‖f ∗‖+ ‖g∗‖)

Thus we have OT (P,Q)− S(P,Q) ≥ λ(‖f ∗‖+ ‖g∗‖).
Next, note that

−
∫
f0(x)dP (x)−

∫
g0(y)dQ(y) + λ(‖f0‖H + ‖g0‖H) ≥ −S(P,Q).

Rearranging this gives us OT (P,Q)− S(P,Q) ≤ λ(‖f0‖H + ‖g0‖H).
Combining these two inequalities, we get our desired bound.

3.9 Sample Complexity Bound

Introduction

Previously, we investigated the dual form of the dual norm regularized optimal transport and
examined some of its fundamental properties. In particular, we show that our convergence
rate is faster than that of unregularized OT under certain conditions.

Our quantity can be expressed as follows, where we regularize by the norms of the dual
potentials f, g in an RKHS H,

S(P, Q) = sup
f∈L1(P )∩H,g∈L1(Q)∩H

∫
f(x)dP (x) +

∫
g(y)dQ(y)− λ(‖f‖H + ‖g‖H).

Throughout this section, we assume P and Q are measures on compact subsets X and Y
in Rd. And assume the cost function c is continuous in X × Y . Let K = maxX×Y c(x, y).

Also assume the RKHS H exhibits a Gaussian radial basis function kernel.

Proof Technique

The proof technique here is inspired by work on entropic optimal transport sample complexity
[30]. First, we use a simple argument to remove the regularization terms. Then we examine
the empirical process over some set that the optimal potentials belong to. Key to our
results are the establishment of uniform bounds of the potential functions. And since these
potentials are in an RKHS, we can exploit the structure of the RKHS to establish empirical
process bounds. After controlling the potentials, we use a chaining bound.
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Uniform bounds on the optimal potentials

Proposition 1. The optimal f, g, denoted f ∗, g∗, that maximize∫
f(x)dP (x) +

∫
g(y)dQ(y)− λ(‖f‖H + ‖g‖H)

subject to the constraint that f ⊕ g ≤ c lie in a RKHS ball of radius W (P,Q)/λ, where

W (P,Q) = min
π∈Π(P,Q)

∫
c dπ.

Proof. Let f0, g0 be arbitrary potentials that satisfy the constraint f0 ⊕ g0 ≤ c.

λ(‖f ∗‖+ ‖g∗‖) ≤ λ(‖f ∗‖+ ‖g∗‖) + sup
f,gs.t.f⊕g≤c

{∫
f dP +

∫
g dQ

}
−
(∫

f ∗ dP +

∫
g∗ dQ

)
≤ λ(‖f ∗‖+ ‖g∗‖) +W (P,Q)−

(∫
f ∗ dP +

∫
g∗ dQ

)
≤
{
λ(‖f0‖+ ‖g0‖) +W (P,Q)−

(∫
f0 dP +

∫
g0 dQ

)}
Assuming c(x, y) ≥ 0, we can choose f0 = 0 and g0 = 0 and thus we get

λ(‖f ∗‖+ ‖g∗‖) ≤ W (P,Q)

which implies that f ∗ and g∗ lie in an RKHS ball of radius W (P,Q)/λ.

We denote by F the set of functions in the RKHS ball with radius K
λ
. The following

proposition shows that it suffices to control an empirical process indexed by this set.

Proposition 2. Let P,Q, and Pn be probability distributions. Then

|S(Pn, Q)− S(P, Q)| ≤ 2 sup
u∈F
|EPu− EPnu|.

Proof. We define the operator Aα,β(u, v) for the pair of probability measures (α, β) and
functions (u, v) ∈ L1(α)⊗ L1(β) as:

Aα,β(u, v) =

∫
u(x)dα(x) +

∫
v(y)dβ(y)− λ(‖u‖H + ‖v‖H).

Denote by (fn, gn) a pair of optimal potentials for (Pn, Q) and (f, g) for (P, Q),
respectively. We can choose smooth optimal potentials (f, g) and (fn, gn) to lie in the
RKHS balls with radii W (P,Q)/λ and W (Pn, Q)/λ respectively for all x, y ∈ Rd. And
W (P,Q) ≤ K by construction and similarly for W (Pn, Q). Thus f , fn ∈ F .

Note that S(P, Q) = AP,Q(f, g) and S(Pn, Q) = APn,Q(fn, gn).
Moreover, by the optimality of (f, g) and (fn, gn), we obtain



CHAPTER 3. REGULARIZED OPTIMAL TRANSPORT FOR DOMAIN
ADAPTATION PROBLEMS 26

AP,Q(fn, gn)−APn,Q(fn, gn) ≤ AP,Q(f, g)−APn,Q(fn, gn) ≤ AP,Q(f, g)−APn,Q(f, g).

From the above bound, we see that
|S(P, Q)− S(Pn, Q)| = |AP,Q(f, g)−APn,Q(fn, gn)|

≤ |AP,Q(f, g)−APn,Q(f, g)|+ |AP,Q(fn, gn)−APn,Q(fn, gn)|.

All that is left is bounding the differences |AP,Q(f, g)−APn,Q(f, g)| and |AP,Q(fn, gn)−
APn,Q(fn, gn)|.

∣∣AP,Q(f, g)−APn,Q(f, g)
∣∣ =

∣∣∣∣∫ f(x)(dP (x)− dPn(x))

∣∣∣∣
≤ sup

u∈F
|
∫
u(x)(dP (x)− dPn(x))|.

and similarly,

∣∣AP,Q(fn, gn)−APn,Q(fn, gn)
∣∣ =

∣∣∣∣∫ fn(x)(dP (x)− dPn(x))

∣∣∣∣
≤ sup

u∈F
|
∫
u(x)(dP (x)− dPn(x))|.

Corollary 3.9.0.1. Let P,Q, Pn, and Qn be probability distributions. Then

|S(Pn, Qn)− S(P,Q)| . 2 sup
u∈F
|
∫
u(x)(dP (x)− dPn(x))|+ 2 sup

u∈F
|
∫
u(x)(dQ(x)− dQn(x))|

PROOF. By the triangle inequality,

|S(Pn, Qn)− S(P, Q)| ≤ |S(P, Q)− S(Pn, Q)|+ |S(Pn, Q)− S(Pn, Qn)|.

almost surely. �

Bounding the empirical process

Denote by N(ε, F s, L2(Pn)) the covering number with respect to the (random) metric
L2(Pn) defined by

‖f‖L2(Pn) =

(
1

n

n∑
i=1

f(Xi)
2

)1/2
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The empirical process bounds established in this chapter rely on our reproducing kernel
Hilbert space (RKHS) having a special structure. Particularly, the reason we assumed that
the RKHS exhibits a Gaussian radial basis function kernel will soon be clear.

Our first preliminary result is the following proposition:

Proposition 3. Let Hσ be a Gaussian radial basis function RKHS with the kernel defined
as k(x, y) = e−σ

2‖x−y‖22. If Pn is an empirical distribution, then, given the sample X1, . . . ,
Xn, we have the bound

max
f∈F
‖f‖2

L2(Pn) ≤ ‖f‖2
Hσ ≤

K2

λ2
.

Proof. Denote

f(x) = 〈f(·), K(x, ·)〉 ≤ ‖f‖Hσ max
x∈X

√
k(x, x)∀f ∈ Hσ, ∀x ∈ X

and notice that k(x, x) = 1 if k(x, y) = e−σ
2‖x−y‖22 . Thus |f(x)| ≤ ‖f‖Hσ for all x ∈ X. This

proposition actually holds for any RKHS exhibiting a kernel where k(x, x) = 1 for all x.

Assuming the RKHS is Gaussian like in the previous proposition, then we have the
covering number bound.

Theorem 3.9.1. [47] Let σ ≥ 1, X ⊂ Rd be a compact subset with nonempty interior, and
Hσ(X) be the RKHS of the Gaussian RBF kernel kσ on X. Then for all 0 < p ≤ 2 and all
δ > 0, there exists a constant cp,δ,d > 0 independent of σ such that for all ε > 0 we have

sup
T∈(X×Y )n

logN(ε, F , L2(Pn)) ≤ cp,δ,dσ
(1−p/2)(1+δ)dε−p.

Define
‖P − Pn‖F := sup

u∈F

(∫
u(x) (dP (x)− dPn(x))

)
.

Using 3.9.1, we then have, by the use of a chaining bound [24],

E‖P − Pn‖2
F .

1

n
E(

∫ √
maxf∈F ‖f‖2L2(Pn)

0

√
log 2N(ε,F , L2(Pn))dε)2

≤ 1

n
E(

∫ K/λ

0

√
1 + cp,δ,dσ(1−p/2)(1+δ)dε−pdε)2

≤
c′p,δ,dσ

(1−p/2)(1+δ)d

n
E(

∫ K/λ

0

ε−p/2dε)2

=
c′p,δ,dσ

(1−p/2)(1+δ)d

n(1− p/2)2

(
K

λ

)2−p

Here, cp,δ,d and c′p,δ,d denote constants with respect to n.
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And by an application of Cauchy-Schwarz,

E‖P − Pn‖F ≤
[
E‖P − Pn‖2

F
]1/2

and we obtain the main result of this chapter, which is

Theorem 3.9.2. Let σ ≥ 1, X ⊂ Rd be a compact subset with nonempty interior, and let
H = Hσ(X) be the RKHS of the Gaussian RBF kernel kσ on X. And let Pn and Qn be the
empirical distributions for P and Q. Then for all 0 < p ≤ 2 and all δ > 0, there exists a
constant cp,δ,d > 0 independent of σ such that for all ε > 0 we have

E‖P − Pn‖F ≤
√
cp,δ,dσ(1−p/2)(1+δ)d

√
n(1− p/2)

(
K

λ

)1−p/2

and by an application of 3.9.0.1, we have that

|S(Pn, Qn)− S(P,Q)| ≤
√
cp,δ,dσ(1−p/2)(1+δ)d

√
n(1− p/2)

(
K

λ

)1−p/2

.

Conclusion
We showed that our dual regularized optimal transport exhibits an O(n−1/2) sample com-
plexity, which is much stronger than the O(n−1/d) rate of unregularized OT. One upside
to our bounds is that there is no requirement that our probability measures must be sub-
gaussian unlike those in [30]. And, by the results from 3.8.1, we can control the difference
between regularized and unregularized OT via the size of the potential functions.

Of note is that the Gaussian RBF kernel assumption is not needed to obtain sample
complexity bounds – it is sufficient to use an RKHS with a kernel where k(x, x) = 1 and
there exist covering number bounds for non-Gaussian RKHSes as shown in [54]. However,
the bounds will not be as sharp since those bounds were with respect to L∞ instead of L2(Pn)
and a future direction for this work is to obtain sharper bounds that are less dependent on
the structure of the RKHS. Another possible direction is seeing how to relax the compactness
assumptions.
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Chapter 4

Domain adaptation using Monge
mappings

4.1 Introduction
Previously, we discussed two methods of regularized optimal transport for domain adapta-
tion:

• Entropic regularization

• Regularization with respect to dual potentials

However, the emphasis earlier was not on finding the explicit mapping between datasets.
One may instead seek to directly estimate the Monge map between source and target
datasets. In this chapter, we show how to establish the optimal linear transport map under
arbitrary distributions with finite second moments, demonstrate that this is also the optimal
transport map, and propose another regularization scheme that incorporates the explicit
transport map.

We show why estimating the linear Monge map may be of importance if we know the
second-order moments. And, as stated previously, the optimal linear transport map is the
optimal transport map in this setting. This result was also discovered concurrently but
independently in [20].

4.2 Background
Let A and B be positive matrices. Most of these definitions and propositions are taken from
[9].

Definition 25. An n× n symmetric matrix M is a positive matrix if and only if x′Mx > 0
for all x ∈ Rn where x 6= 0.
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And we also introduce the concept of fidelity measure between matrices.

Definition 26 (Fidelity). If A and B are positive matrices, then the fidelity F (A,B) =
tr(A1/2BA1/2)1/2.

Definition 27 (Bures distance). d(A,B) = [tr(A) + tr(B)− 2tr(A1/2BA1/2)1/2]1/2.

Definition 28 (Operator norm). Define ‖ · ‖ as the operator norm such that

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖≤1

‖Ax‖.

The next two propositions and lemma build up on each other and can be seen in [9] along
with much of the other background details here.

Proposition 4. The operator A is contractive, i.e. ‖A‖ ≤ 1 if and only if the operator[
I A
A∗ I

]
is positive.

Proof. We do a singular value decomposition on A (A = USV ). Then[
I A
A∗ I

]
=

[
I USV

V ∗SU∗ I

]
=

[
U O
O V ∗

] [
I S
S I

] [
U∗ O
O V

]
.

This is unitarily equivalent to
[
I S
S I

]
, which is also (unitarily) equivalent to the direct

sum [
1 s1

s1 1

]
⊕
[

1 s2

s2 1

]
⊕ · · · ⊕

[
1 sn
sn 1

]
where s1, . . . , sn are the singular values of A. These 2 × 2 matrices are all positive if and
only if s1 ≤ 1 (i.e., ‖A‖ ≤ 1 ).

Proposition 5. Let A,B be positive. Then the matrix
[
A X
X∗ B

]
is positive ⇔ if X =

A1/2KB1/2 for some contraction K.

Proof. [
A X
X∗ B

]
∼
[
A−1/2 O
O B−1/2

] [
A X
X∗ B

] [
A−1/2 O
O B−1/2

]
=

[
I A−1/2XB−1/2

B−1/2X∗A−1/2 I

]
Let K = A−1/2XB−1/2. This matrix is positive if and only if K is a contraction.
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Lemma 4.2.1.
F (A,B) = max

X>0

{
| trX| : A ≥ XB−1X∗

}
Proof. Note that

A ≥MB−1M∗ ⇔
[

A M
M∗ B

]
≥ 0⇔M = A1/2KB1/2

for some contraction K.
By the Schwarz inequality we have

| trM | =| tr
(
A1/2KB1/2) | ≤

∥∥A1/2K
∥∥

2

∥∥B1/2
∥∥

2

≤
∥∥A1/2

∥∥
2

∥∥B1/2
∥∥

2
=
√

trA trB

If [
A M
M∗ B

]
≥ 0

then for every X > 0 we have

0 ≤
[
X1/2 O
O X−1/2

] [
A M
M∗ B

] [
X1/2 O
O X−1/2

]
=

[
X1/2AX1/2 X1/2MX−1/2

X−1/2M∗X1/2 X−1/2BX−1/2

]
Hence ∣∣trX1/2MX−1/2

∣∣ ≤√tr (X1/2AX1/2) tr (X−1/2BX−1/2)

In other words,
| trM | ≤

√
tr(AX) tr (BX−1)

This is true for all M satisfying the condition A ≥MB−1M∗ and for all X > 0.
So

max
{
| trM | : A ≥MB−1M∗} ≤ min

X>0

√
tr(AX) tr (BX−1)

= F (A,B)

Let M = (AB)1/2 = A (A−1#B). Then

MB−1M∗ = (AB)1/2B−1(BA)1/2 = B−1B(AB)1/2B−1(BA)1/2

= B−1(BA)1/2(BA)1/2 = B−1BA = A

The maximum on the left hand side of 4.2.1 is attained when M = (AB)1/2 and it is equal
to tr

(
A1/2BA1/2

)1/2
= F (A,B). This completes the proof.

Also let A#B = A1/2(A−1/2BA−1/2)1/2A1/2 be the matrix geometric mean. With this
established, we can introduce our main lemma.
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4.3 Optimal Linear Transport Mapping
Definition 29 (Optimal linear transport map). Let X and Y be sets with measures µ and
ν respectively. Then the optimal linear transport map T : X → Y is the one minimizes

E ‖x− Tx‖2

over linear maps T .

Theorem 4.3.1 (Optimal Linear Transport is Optimal Transport). Let µ and ν be probability
measures with zero means and positive-definite covariance matrices A,B respectively such
that ν = T̃#µ for a linear positive-definite T̃ . And define our cost function as c(x, y) :=
‖x− y‖2 . Then the optimal linear transport map coincides with the optimal transport map.

Proof. The first half of this proof demonstrates the existence of an optimal linear transport
map by construction and is adapted from [9] from complex to real matrices. The second half
of the proof shows that this optimal linear transport map is the optimal transport map by
an application of 3.4.1.

Let x ∼ µ and y ∼ ν be random vectors with values in Rn, each having zero mean
WLOG, and with covariance matrices A and B, respectively.

Aij = [E(xixj)], Bij = [E(yiyj)].

We want to find x and y for which E‖x− y‖2 is minimal.
The covariance matrix of the vector (x, y) is[

[E(xixj)] [E(xiyj)]
[E(yixj)] [E(yiyj)]

]
=

[
A M
M∗ B

]
We aim to minimize the following:

E‖x− y‖2 = E(
n∑
i=1

(|xi|2 + |yi|2 − 2xiyi))

=
n∑
i=1

E(|xi|2 + |yi|2 − 2xiyi)

= tr(A+B)− 2trM.

This is equivalent to the following optimization problem:

max{|trM | : C =

[
A M
M∗ B

]
≥ 0}.

The value of the maximum is F (A, B) by 4.2.1. So

minE‖x− y‖2 = tr(A+B)− 2tr(A1/2BA1/2)1/2 = d2(A, B).
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Let x be a vector with mean 0 and covariance matrix A. Then for any n× n real-valued
matrix, we have

E(〈x, Tx〉) = E(
∑
i,j

tijxixj) =
∑
i,j

tijE(xixj)

=
∑
i,j

tijaij = trTA.

Hence,

E‖x− Tx‖2 = E(‖x‖2 + ‖Tx‖2 − 2〈x, Tx〉)
= trA+ trT ∗TA− 2trTA

= trA+ trTAT ∗ − 2trA1/2TA1/2

If we choose T = A−1#B, then we see that tr A1/2TA1/2 = tr (A1/2BA1/2)1/2, and that
trTAT ∗ = trB.

Thus, for this choice of T , we have

E‖x− Tx‖2 = tr(A+B)− 2tr(A1/2BA1/2)1/2 = d2(A, B) .

Thus the problem
minE‖x− y‖2

where x, y are vectors with mean zero and covariance matrices A and B, respectively, has as
its solution the pairs (x, y) , where x is any vector centered at zero with covariance A and
y = Tx, with T = A−1#B.

Let x be a vector with covariance matrix A, and let y = Tx. Then

E(yiyj) = E
∑
k,l

tiktklxkxl

=
∑
k,l

tiktklakl = (TAT )ij.

If T = A−1#B, then TAT ∗ = B. This shows that the covariance matrix of the vector y is
B.

Now we have shown that T is the optimal linear transport map, but this is not enough
to show T is the optimal transport map because we have only shown that T = A−1#B
preserves means and second moments. This does not necessarily mean T = T̃ , i.e. that it
maps the distribution µ into ν.

The insight we had was that we can combine the above result with Brenier’s theorem.
This is because T = A−1

# B is the gradient of a convex function, 1
2
xTTx. And recall that

theorem 3.4.1 by Brenier states that the gradient of a convex function is the optimal transport
map. Thus T is the optimal transport map, i.e. T = T̃ .
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One could extend this result to nonzero means if we allow for affine maps (ν = T̃#µ+ b)
where b is a constant vector. The proof is mostly the same except we first center µ and ν.

4.4 Proposed Regularized Optimization
One may want to look at a regularization of the combination of the squared Bures distance
and the expected distance moved under the transport map T by the squared Hilbert-Schmidt
norm of T . The motivation behind this is we want to match the second moments between
source and target distributions (squared Bures distance) while controlling the ’size’ of the
transport map with the Hilbert-Schmidt norm.

Definition 30 (Hilbert-Schmidt Norm). For a matrix A,

‖A‖HS :=

√∑
i,j

a2
ij.

The reason for this section is just to propose a conjectured regularization and that one
can feasibly solve for the mapping.

Definition 31 (Regularization With Transport Map).

min
T
Q(T ) where Q(T ) = λE ‖TX −X‖2 + d2(Cov(TX),Σv) + µ ‖T‖2

HS

Differentiating Q(T ), we get

2λ(TX −X)XT + (
2

n− 1
)CTX(I − (BA)−1/2B)XT + 2µT

where A = Cov(TX) = ( 1
n−1

)(TX)TC(TX), B = Σv, the covariance matrix on the target
distribution, and C = (1− 1

n
J) = CT is a centering matrix. See 7.2 for more details on how

this is derived.
Solving for T̂ such that Q′(T̂ ) = 0, we get

λXXT = λT̂XXT + µT̂ +
1

n− 1
CT̂ [X(I − (BA)−1/2B)]XT .

This is a Sylvester equation that has a closed form solution.
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Chapter 5

Asymptotics for Prior Elicitation

5.1 Statistical Elicitation
In this section, the main focus of the study will be on the case of elicitation to obtain a
prior that will be used in a subsequent machine learning task. Elicitation is the process of
forming a probability distribution from a person’s knowledge and beliefs. However, most of
the results will apply to other motivations for elicitation.

Classically, elicitation is a human-centered process with multiple roles: The modeler will
ultimately do the modeling, with the elicited prior. The facilitator has a strategy and asks
questions to gather information to use for inference. The expert has the knowledge that the
facilitator will use. A statistician will train the expert on probability and provide feedback.

An individual may fill multiple roles; for example, a single individual commonly fills both
the statistician and facilitator roles. The expert may also be the modeler who will ultimately
use the elicited prior.

Elicitation is a multi-stage process, typified by the following steps. The modeler and the
statistician will determine the target value during the structuring and decomposition steps.

Then, during the elicitation phase, there is further iteration over three steps, which we
list below.

1. Elicit summaries.

2. Fit a distribution.

3. Assess adequacy.

It is important to highlight that these three steps are the backbone in fitting and assess-
ment of the automated tool. In higher dimensions, summaries are less intuitive and even
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cumbersome to communicate. In automated facilitator-statistician discussion, we will shift
from eliciting summaries to eliciting samples. Sample based elicitation has been applied for
fitting beta distributions.

Literature on elicitation focuses on making inferences from the type of information pro-
vided by elicitation and the related psychological literature. The psychology of elicitation
relates to how people characterize uncertainty (not consistently) to what information is ac-
tually needed in order to make inferences about uncertainty that are themselves useful for
further inferences.

5.2 Sample Based Elicitation
Prior work using sample-based elicitation used a method of moments technique with weighted
samples. We propose a similar elicitation procedure, but consider a distinct inference tech-
nique. Moving to a least squares based approach with a stated objective function for the
prior enables cases where the moments do not exist.

In order to build a general automated elicitation tool, we need to consider how the tool
will learn from the expert. In the end, this learning will be an online process which learns
from each sample sequentially and then presents the updated model to the user for feedback.

In elicitation, the examples will be provided by a human expert along with given instruc-
tions. For our work, we assume this will result in samples that are more diverse than a
sample directly from the distribution for two reasons. First, an expert is unlikely to give an
example that is very close to a previous sample, which leads to the generation of a represen-
tative sample that explains the range of their belief. Second, the instructions can prompt
the user to provide examples that are both likely and unlikely. Therefore, by examining the
i.i.d case, we are obtaining a worst-case estimate of the learnability of the problem.

In this section, we present our main analytical results. First, we will introduce our least
squares based objective function. Next, we will consider the large sample behavior of the
proposed estimator by evaluating the consistency of the estimator, and we will show the
conditions under which we achieve asymptotic normality. Third, we present a finite sample
result.

5.3 A Least-Squares Based Approach to Elicitation

Proposed Objective Function

Assume that we elicit i.i.d. observations xi with corresponding sample log-likelihoods zi for
i = 1, . . . , n. Let `(x, θ) be the log-likelihood function evaluated at parameter θ and obser-
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vation x. Assuming we have a parametric model class, our proposed method of estimating
θ involves minimizing an objective function, which we illustrate below. Let

Q((~x, ~z), θ) =
∑
i

(`(xi, θ)− zi)2 .

Our proposed optimization problem is

θ̂ = arg min
θ

∑
i

(`(xi, θ)− zi)2 = arg min
θ
Q((~x, ~z), θ),

where xi, zi is the ith sample and likelihood.

dQ

dθ
= 2

∑
i

(
(`(xi, θ)− zi)

∂

∂θ
l(xi, θ)

)
and let ψ((xi, zi), θ) = `(xi, θ)− zi.
θ̂ is a solution to ∑

i

(
(`(xi, θ)− zi)

∂

∂θ
l(xi, θ)

)
= 0

and θ0 solves

Eθ

[
(`(xi, θ)− zi)

∂

∂θ
l(xi, θ)

]
= 0

Asymptotic Analysis
The following details are immediate applications of results in [49], which are also provided
in the appendix in section 7.3.
Let Ω be the parameter space with an open set ω such that θ0, the true parameter value, is
an interior point.

Consistency

Then if
(
(`(xi, θ)− zi) ∂

∂θ
`(xi, θ)

)
is monotone in θ, continuous in a neighborhood of θ0, and

θ0 is an isolated root, θ̂ P−→ θ0.

Asymptotic Normality

Note that
∂

∂θ
ψ((x, z), θ) =

[
∂

∂θ
`(x, θ)

]2

+ (`(x, θ)− z)
∂2

∂θ2
`(x, θ).

If

Eθ0

[[
∂

∂θ
`(x, θ)

]2

+ (`(x, θ)− z)
∂2

∂θ2
`(x, θ)

]
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is finite and nonzero and

Eθ0

{[ ∂
∂θ
`(x, θ)

]2

+ (`(x, θ)− z)
∂2

∂θ2
`(x, θ)

}2
 <∞

then √
n(θ̂ − θ0)

L−→ N (0, σ2
θ̂
)

where
σ2
θ̂

=
Eθ0 [ψ

2((X,Z), θ0)]

(Eθ0 [
∂
∂θ
ψ((X,Z), θ)|θ=θ0 ])2

.

5.4 Main Result

Setting and Assumptions

Let X,X1, X2, . . . be random variables mapping from (Ω,A) to (X ,B) and let (Pθ)θ∈Θ be
a parametric family of probability measures such that X,X1, X2, . . . are i.i.d. drawn from
some Pθ with θ ∈ Θ. Importantly, Θ ⊆ R, i.e. the parameter space Θ is a subset of the real
line.
Let Eθ be the expectation with respect to Pθ. For each θ ∈ Θ, X has a density pθ with
respect to a measure µ on B. And assume `x,z, the log-likelihood function, is continuous in
θ.

Since the extended real line [−∞,∞] is compact, for each n ∈ N and points x = xn =
(x1, . . . , xn) ∈ X n and z = zn = (z1, . . . , zn) ∈ Zn, the function Θ 3 θ 7→ `x,z(θ) =∑n

i=1−(`xi(θ) − zi)2 has at least one generalized maximizer θ̂n(x, z) in the closure of Θ in
the sense that supθ∈Θ `x,z(θ) = lim supθ→θ̂n(x,z) `x,z(θ).

Picking, for each x = (x1, . . . , xn) ∈ X n and z = zn = (z1, . . . , zn) ∈ Zn, any one of
such generalized maximizers θ̂n(x, z), one obtains a map Ω 3 ω 7→ θ̂n(X(ω),Z(ω)), where
X := Xn := (X1, . . . , Xn) and Z := Zn := (Z1, . . . , Zn). Any such map will be denoted here
by θ̂n(X,Z) (or by θ̂n or θ̂ ).
Let θ0 ∈ Θ be the expert’s target value of the parameter θ, such that

[θ0 − δ, θ0 + δ] ⊆ Θ◦

for some real δ > 0, where Θ◦ denotes the interior of the subset Θ of R.
And

`X,Z(θ) := −
n∑
i=1

(`(Xi, θ)− Zi)2.
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for θ ∈ θ, X = (X1, . . . , Xn) and Z = (Z1, . . . , Zn).

Sufficient assumptions for ` are below.

1. The set X>0 := {x ∈ X : pθ(x) > 0} is the same for all θ ∈ [θ0 − δ, θ0 + δ], and for
each x ∈ X>0 `x(θ) is thrice differentiable in θ at each point θ ∈ [θ0 − δ, θ0 + δ].

2. E`
′
X,Z(θ0)2 = I1(θ0) and −E`

′′
X,Z(θ0) = I2(θ0) ∈ (0,∞).

3. E|`′X,Z(θ0)|3 + E|`′′X,Z(θ0)|3 <∞.

4. E sup |`′′′X,Z(θ)|3 <∞.

5. `x,z(θ) is concave in θ ∈ Θ, for each x, z ∈ X × Z.

6.
E

exp(`X,Z(θ0 ± h))

exp(`X,Z(θ0))
< 1

Theorem 5.4.1 (Finite-Sample Bound). Suppose that the above conditions hold. Then∣∣∣∣∣P
(√

n
I2(θ0)2

I1(θ0)
(θ̂ − θ0) ≤ z

)
− Φ(z)

∣∣∣∣∣ ≤ C√
n

for all real z, and ∣∣∣∣∣P(

√
n
I2(θ0)2

I1(θ0)
(θ̂ − θ0) ≤ z)− Φ(z)

∣∣∣∣∣ ≤ Cω
z3
√
n

for z ∈ (0, ω
√
n] for any ω ∈ (0,∞). Cω is a finite expression that depends on ω and neither

C and Cω depend on n or z.

5.5 Proof of Theoretical Bound
Here, we provide a theoretical proof of Theorem 5.4.1. This follows closely the technique
introduced in [39] for maximum likelihood estimators. Here, we extend the result in [39] to
M-estimators, and in particular, we fully exposit the proof for our proposed estimator. The
proof requires substantial new adjustments to the assumptions, which were not discussed in
[39].

This proof is organized as follows.
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1. We demonstrate tight bracketing of our M-estimator between two functions of the sum
of independent random vectors. The key here is to show θ̂−θ0 is bounded on a specific
subset.

2. We present uniform and nonuniform optimal-order bounds on the convergence rate in
the multivariate delta method [40].

3. We apply the general bounds in the multivariate delta method such that we can make
bracketing work.

|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)|

is bounded above by the sum of a "error" term and a remainder term. We show here
the error term is O(1/

√
n).

4. We bound the remainder term and show this is asymptotically negligible under certain
conditions. In particular, we show a sufficient condition for this to be exponentially
decreasing with respect to n.

Tight Bracketing

Without loss of generality (w.l.o.g.), X>0 = X . Then on the event

G := {θ̂ ∈ [θ0 − δ, θ0 + δ]} (5.1)

(G for "good event"), one must have

0 = `′X,Z(θ̂) = `′X,Z(θ0) + (θ̂ − θ0)`′′X,Z(θ0) +
(θ̂ − θ0)2

2
`′′′X,Z(θ0 + ξ(θ̂ − θ0)) (5.2)

= n(K − (θ̂ − θ0)U +
(θ̂ − θ0)2

2
R) (5.3)

for some ξ ∈ (0, 1) as a function of the Xi’s and Zi’s, where K = 1
n

∑n
i=1 Ki, U = 1

n

∑n
i=1 Ui,

R := 1
n

∑n
i=1Ri, R∗ := 1

n

∑n
i=1R

∗
i ,

Ki = `′Xi,Zi(θ0), Ui = −`′′Xi,Zi(θ0) (5.4)

Ri = `′′′Xi,Zi(θ0 + ξ(θ̂ − θ0)) ∈ [−R∗i , R∗i ], R∗i = sup
θ∈[θ0−δ,θ0+δ]

|`′′′Xi,Zi(θ)|. (5.5)

On the event G one has

θ̂ − θ0 =
K

U
if R = 0 & U 6= 0,

θ̂ − θ0 ∈ {d+, d−} if R 6= 0,
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where

d± :=
U ±

√
U

2 − 2KR

R
.

One defines a "bad event" by letting
B := B1 ∪B2, where

B1 := {R 6= 0, θ̂ − θ0 = d+} ∪ {U ≤ 0} and B2 := {U2 ≤ 2|K|R∗}.

In the rest of this section, we prove the following two lemmas:

Lemma 5.5.1.
P(G ∩B) ≤ P(G ∩B1) + P(B2) ≤ C

n3/2
, (5.6)

where C depends on `, the measure µ, and the choice of θ0− but not on n.

and

Lemma 5.5.2. On G\B one has

U > 0 and θ̂ − θ0 =
2K

U +

√
U

2 − 2KR

∈ [T−, T+] (5.7)

where

T± :=
2K

U +

√
U

2 ∓ 2|K|R∗
. (5.8)

Proof. On the event B1 ∩ {U > 0}, one sees |θ̂ − θ0| = |d+| ≥ U/|R| ≥ U/R∗

By (5.1),

P(G ∩B1) ≤ P(U ≤ 0 or
U

R∗
≤ δ) = P(

U

R∗
≤ δ) = P(

n∑
i=1

(Ui − δR∗i ) ≤ 0). (5.9)

And by the assumptions for ` and the definitions for Ki, Ui, Ri, and R∗i ,

EU1 > 0, E|K1|3 <∞, E|U1|3 <∞, E(R∗1)3 <∞.

Therefore, ER∗1 <∞. Choose δ > 0 to be small enough such that

δ1 := E(Ui − δR∗i ) > 0.



CHAPTER 5. ASYMPTOTICS FOR PRIOR ELICITATION 42

Then, letting Yi := (Ui − δR∗i ) − E(Ui − δR∗i ), we use (5.9) with Markov’s inequality and
7.4.1 to have

P(G ∩B1) ≤ P(
n∑
i=1

Yi ≤ −nδ1) ≤ 1

(nδ1)3
E|

n∑
i=1

Yi|3

≤ nE|Y1|3 +
√

8/π(nEY 2
1 )3/2

(nδ1)3
≤ C

n3/2

where C := (E|Y1|3 +
√

8/π(EY 2
1 )3/2)/δ3

1, which depends on δ1 > 0,EY 2
1 <∞, and E|Y1|3 <

∞. However, this does not depend on n.

B2 implies at least one of the following events:

B21 = {U ≤ 1

2
EU1}

B22 = {R∗ ≥ 1 + ER∗1}, or

B23 = {|K| ≥ 1

8
(EU1)2/(1 + ER∗1)}.

Therefore,
P(B2) ≤ P(B21) + P(B22) + P(B23). (5.10)

The bounding of each of the probabilities P(B21), P(B22) , P(B23) is quite similar to the
bounding of P(G ∩B1) – because

P(B21) = P(
n∑
i=1

Yi,21 ≤ −nδ21),

P(B22) = P(
n∑
i=1

Yi,22 ≥ nδ22) ,and

P(B23) = P(
n∑
i=1

|Yi,23| ≥ nδ23).

It follows that

P(G ∩B) ≤ P(G ∩B1) + P(B2) ≤ C

n3/2
, (5.11)

where C depends on `, the measure µ, and the choice of θ0− but not on n.
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On the other hand, if R 6= 0 and U > 0, then d− =
2K̄

Ū +
√
Ū2 − 2K̄R̄

. Here, the condition

U > 0 ensures that the denominator of the latter ratio is nonzero. Thus, on the event G\B
one has

U > 0 and θ̂ − θ0 =
2K

U +

√
U

2 − 2KR

∈ [T−, T+] (5.12)

where

T± :=
2K

U +

√
U

2 ∓ 2|K|R∗
. (5.13)

Thus we have our bracketing of θ̂ − θ0 between T− and T+.

General uniform and nonuniform bounds on the rate of
convergence to normality for smooth nonlinear functions of sums of
independent random vectors

Denote the standard normal distribution function (d.f.) by Φ. For any Rd-valued random
vector ζ,

‖ζ‖p := (E‖ζ‖p)1/p for any real p ≥ 1,

where ‖ . ‖ denotes the Euclidean norm on Rd.
Take any Borel-measurable functional f : Rd → R satisfying the following smoothness

condition: there exist ε ∈ (0, ∞),Mε ∈ (0, ∞) , and a linear functional L : Rd → R such
that

Definition 32 (Smoothness Condition).

|f(x)− L(x)| ≤ Mε

2
‖x‖2 for all x ∈ Rd with ‖x‖ ≤ ε. (5.14)

Thus, f(0) = 0 and L necessarily coincides with the first Fréchet derivative, f ′(0) , of
the function f at 0. Moreover, for the smoothness condition to hold, it is enough that

Mε ≥M∗
ε := sup{ 1

‖x‖2
| d

2

dt2
f(x + tx)|t=0| : x ∈ Rd, 0 < ‖x‖ ≤ ε}.

Notice that f does not need to be twice differentiable at 0. One example is if d = 1 and
f(x) =

x

1 + |x| for x ∈ R.
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Let V, V1, . . . , Vn be i.i.d. random vectors in Rd, with EV = 0 and

V :=
1

n

n∑
i=1

Vi.

And let
σ̃ := ‖L(V )‖2, v3 := ‖V ‖3, and ς3 :=

‖L(V )‖3

σ̃
. (5.15)

Theorem 5.5.3. Suppose that the smoothness condition holds and that σ̃ > 0 and v3 <∞.
Then for all z ∈ R

|P(
f(V )

σ̃/
√
n
≤ z)− Φ(z)| ≤ C√

n
, (5.16)

where C is a finite positive expression that depends only on the function f and the moments
σ̃, ς3, and v3. Moreover, for any ω ∈ (0, ∞) and for all

z ∈ (0, ω
√
n], (5.17)

one has

|P(
f(V )

σ̃/
√
n
≤ z)− Φ(z)| ≤ Cω

z3
√
n

(5.18)

where Cω is a positive, finite, and only depends on f through the smoothness condition,
the moments σ̃, ς3, and v3, and ω. This is in [40].

Applying bracketing

In this section, we apply the previous bounds from Theorem 5.5.3 for a particular function
that we construct that satisfies the smoothness condition (5.14). Specifically, we prove the
following lemma:

Lemma 5.5.4. For all real z,

|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C√

n
+ P(|θ̂ − θ0| > δ). (5.19)

And
|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C

z3
√
n

+ P(|θ̂ − θ0| > δ) (5.20)

for z ∈ (0, ω
√
n].
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Proof. Let d = 3 and

D := {x = (x1, x2, x3) ∈ R3 : x2 + EU1 > 0, (x2 + EU1)2 > 2|x1||x3 + ER∗1|}.

By (5.5) and assumptions 2 and 4 for `, EU1 = I2(θ0) ∈ (0, ∞) and ER∗1 ∈ [0, ∞). So, for
some real ε > 0, the set D contains the ε-neighborhood of the origin 0 of R3.

Define functions f± : R3 → R by the formula

f±(x) = f±(x1, x2, x3) =
2x1

x2 + EU1 +
√

(x2 + EU1)2 ∓ 2|x1||x3 + ER∗1|
(5.21)

for x = (x1, x2, x3) ∈ D, and let f±(x) := 0 if x ∈ R3\D.
Clearly, f±(0) = 0,

L±(x) := f ′±(0)(x) =
x1

EU1

=
x1

I2(θ0)
(5.22)

for x = (x1, x2, x3) ∈ R3, and the smoothness condition (5.14) holds for some ε and Mε

in (0, ∞) –because, as was noted above, EU1 = I2(θ0) ∈ (0, ∞) and ER∗1 ∈ [0, ∞), and
hence the denominator of the ratio in (5.21) is bounded away from 0 for x = (x1, x2, x3) in
a neighborhood of 0.

Next, let
Vi := (Ki, Ui − EUi, R

∗
i − ER∗i ) (5.23)

for i = 1, . . . , n, with Ki, Ui, R
∗
i as defined in (5.5) and (5.4) . Then, by (5.15), (5.22) and

condition 2, for f = f±,

σ̃ =

√
EK2

1

I2(θ0)2
=

√
I1(θ0)

I2(θ0)
> 0 (5.24)

and v3
3 = E‖V ‖3 < ∞ by the third and fourth conditions. This shows that all the required

conditions for (5.5.3) are satisfied for f = f±·.
Moreover, by (5.23), (5.21), and (5.5.2),

T± = f±(V )

on the event G\B. So, by the inclusion relation in (5.12) (which holds on the event G\B =
(Gc ∪B)c) and (5.24), inequality (5.16) in Theorem 5.5.3 implies

P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z) ≤ P(

√
n/I1(θ0)I2(θ0)f−(V ) ≤ z) + P(Gc ∪B)

≤ Φ(z) +
C√
n

+ P(Gc ∪B)



CHAPTER 5. ASYMPTOTICS FOR PRIOR ELICITATION 46

and

P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z) ≥ P(

√
n/I1(θ0)I2(θ0)f+(V ) ≤ z)− P(Gc ∪B)

≥ Φ(z)− C√
n
− P(Gc ∪B) ,

for all real z. Note that P(Gc ∪B) = P(Gc) + P(G∩B) . It follows now by (5.1) and (5.5.1)
that

|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C√

n
+ P(|θ̂ − θ0| > δ) (5.25)

for all real z. Quite similarly, but using (5.18) instead of (5.16) , one has

|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C

z3
√
n

+ P(|θ̂ − θ0| > δ) (5.26)

for z ∈ (0, ω
√
n] as in (5.17).

Under certain conditions, the remainder term P(|θ − θ0| > δ) typically decreases expo-

nentially fast in n and thus is negligible as compared with the "error" term
C√
n
, and even

with the error term
C

z3
√
n
− under condition (5.17).

In the next section, we will prove that the remainder term is negligible under special as-
sumptions.

Bounding the remainder

Before we proceed, we use the following assumptions:

1. `x,z(θ) is concave in θ ∈ θ, for each x ∈ X and z ∈ Z

2.
E

[
exp(`X,Z(θ0 ± h))

exp(`X,Z(θ0))

]
< 1.

Suppose that the `x,z(θ) is concave in θ ∈ θ, for each x ∈ X and z ∈ Z. By assumption 2,
E`′′X,Z(θ0) 6= 0. Hence, P(`X,Z(θ0 + h) 6= `X,Z(θ0)) > 0 for some h ∈ (0, δ) . The concavity
of `x,z(θ) in θ implies that of `X,Z(θ) . So, if θ̂ > θ0 + δ, then `X,Z(θ0 + h) ≥ `X,Z(θ0) . This
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is because θ̂ maximizes `X,Z and by concavity, ` is increasing when θ < θ̂.
Therefore,

P(θ̂ > θ0 + δ) ≤ P(`X,Z(θ0 + h) ≥ `X,Z(θ0)) = P

(
n∏
i=1

√
exp(`Xi,Zi(θ0 + h))

exp(`Xi,Zi(θ0)
≥ 1

)

≤ E
n∏
i=1

√
exp(`Xi,Zi(θ0 + h))

exp(`Xi,Zi(θ0)
= λn+,

where

λ+ := E

√
exp(`X,Z(θ0 + h))

exp(`X,Z(θ0)
<

√
E

exp(`X,Z(θ0 + h))

exp(`X,Z(θ0))
< 1;

the inequality here is an instance of a strict version of the Cauchy-Schwarz inequality, which
holds because P(`X,Z(θ0 + h) 6= `X,Z(θ0)) > 0. Similarly, P(θ̂ < θ0 − δ) ≤ λn− for some
λ− ∈ [0, 1), and so,

P(|θ̂ − θ0| > δ) ≤ 2λn (6.1)

for λ := max(λ+, λ−) ∈ [0, 1) .
Now recall Lemma 5.5.4, that said the following:
For all real z,

|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C√

n
+ P(|θ̂ − θ0| > δ). (5.27)

And
|P(
√
n/I1(θ0)I2(θ0)(θ̂ − θ0) ≤ z)− Φ(z)| ≤ C

z3
√
n

+ P(|θ̂ − θ0| > δ) (5.28)

for z ∈ (0, ω
√
n].

But since we showed the remainder is exponentially decreasing in n, the remainder is domi-
nated by C√

n
or C

z3
√
n
. Combining the remainder bounds with the bracketing earlier, we have

finished our proof.

5.6 Conclusion and Future Considerations
In this chapter, we proposed an elicitation approach involving minimizing a least-squares
objective functions and demonstrated that this has promising asymptotic and finite-sample
properties under certain assumptions. One can immediately note that the proof can be easily
generalized to any M-estimator by replacing `X,Z(θ) with another objective function.

Future work may entail relaxing the log-concavity assumptions on `x,z. One route to
consider may be seeing if this could be relaxed if we were to consider a compact parameter
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space Θ. Another condition to investigate may be if one can obtain similar finite sample
bounds for a multivariate parameter. In this chapter, θ ∈ Θ ⊂ R was necessary for our tight
bracketing results to hold.
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Chapter 6

Sliced Mixed-Marginal Wasserstein

6.1 Abstract
Multi-marginal optimal transport enables one to compare multiple probability measures,
which increasingly finds application in multi-task learning problems. One practical limi-
tation of multi-marginal transport is computational scalability in the number of measures,
samples and dimensionality. In this work, we propose a multi-marginal optimal transport
paradigm based on random one-dimensional projections, whose (generalized) distance we
term the sliced multi-marginal Wasserstein distance. To construct this distance, we intro-
duce a characterization of the one-dimensional multi-marginal Kantorovich problem and use
it to highlight a number of properties of the sliced multi-marginal Wasserstein distance. In
particular, we show that (i) the sliced multi-marginal Wasserstein distance is a (general-
ized) metric that induces the same topology as the standard Wasserstein distance, (ii) it
admits a dimension-free sample complexity, (iii) it is tightly connected with the problem
of barycentric averaging under the sliced-Wasserstein metric. We conclude by illustrating
the sliced multi-marginal Wasserstein on multi-task density estimation and multi-dynamics
reinforcement learning problems.

This chapter consists of joint work done with Alex Terenin, Samuel Cohen, Sesh Kumar,
and Marc Deisenroth at University College of London.

6.2 Introduction
Optimal transport is a framework for defining meaningful metrics between probability mea-
sures [51, 36]. These metrics find a wide range of applications, such as generative modeling
[22, 14], Bayesian inference [46], imitation learning [18], graph matching and averaging [53,
52]. Multi-marginal optimal transport [21] studies ways of comparing more than two prob-
ability measures in a geometrically meaningful way. Multi-marginal distances defined using
this paradigm are often useful in settings where sharing geometric structure is useful, such as
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multi-task learning. In particular, they have been applied for training multi-modal generative
adversarial networks [15], clustering [8], and computing barycenters of measures [4].

Following the establishment of key theoretical results, including by Gangbo and Święch
[21], Agueh and Carlier [1], and Pass [35], research is shifting toward applications. This
motivates a need for practical algorithms for the multi-marginal setting [28]. Standard
approaches based on linear programming and entropic regularization scale exponentially with
the number of measures, and/or the dimension of the space [7, 48]. A number of recent works
have therefore studied settings, where multi-marginal transport problems can be efficiently
solved via low-rank structures on the underlying cost function [4], but exponential cost in
the dimension remains [2, 3].

In parallel, a number of works on sliced transport [12] developed techniques for scalable
transport, which (i) derive a closed form for a problem in a single dimension, and (ii) extend
it into higher dimensions via random linear projections (slicing) and thereby inherit the
complexity of the one-dimensional problem. This strategy has been shown effective in the
classical Wasserstein [12, 11, 26, 33, 19, 42] and Gromov–Wasserstein [50] settings between
pairs of measures, but has not yet been applied to settings with more than two measures.

In this chapter, we address this gap and propose sliced multi-marginal transport, providing
a scalable analog of the multi-marginal Wasserstein distance. To do so, we derive a closed-
form expression for multi-marginal Wasserstein transport in one dimension, which lifts to
a higher-dimensional analog via slicing. This one-dimensional closed-form expression can
be computed with a complexity of O(PN logN), where P is the number of measures and
N is the number of samples per measure. Sliced multi-marginal Wasserstein (SMW) can
be estimated by Monte Carlo in O(KPN logN), where K is the number of Monte Carlo
samples.

Furthermore, we study SMW ’s theoretical properties. We prove that (i) it is a general-
ized metric, whose associated topology is the topology of weak convergence, (ii) its sample
complexity is dimension free, just like the sliced Wasserstein case involving two measures,
and (iii) sliced multi-marginal transport is closely connected with the problem of barycentric
averaging under the sliced Wasserstein metric. We also showcase applications, where we
focus on multi-task learning on probability spaces, where sharing knowledge across tasks
can be beneficial and sliced multi-marginal Wasserstein can be used as a regularizer between
task-specific models. We demonstrate this on a multi-task density estimation problem, where
individual estimation tasks are corrupted and shared structure is needed to solve the prob-
lem, as well as a reinforcement learning problem, where certain agents receive no reward and
must instead learn from other agents to solve their given task.

6.3 Background
Multi-marginal optimal transport [21] is a class of optimization problems for comparing
multiple measures µ1, . . . , µP ∈ M(Rd), all supported on the metric space (Rd, || · ||2). The
most common such problem is computing the multi-marginal Wasserstein distance, defined
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Figure 6.1: Illustration of the optimal coupling’s structure on R between discrete measures
µ1, µ2 and µ3. Points are samples of each measures, with weights next to them. Left:
histogram of measures (horizontal); joint samples are obtained by sampling a (black) line
uniformly (drawn vertically), and picking points that are associated with the bin intersected
by that line. Right: Corresponding triples of points that are aligned according to the coupling
are linked by a pair of lines.

as
MW2(µ1, . . . , µP ) = min

π∈Π(µ1,...,µP )

∫
(Rd)P

c(x1, . . . , xP ) dπ(x1, . . . , xP ), (6.1)

where c : Rd × . . . × Rd → R is a cost function and Π(µ1, . . . , µP ) is the set of probability
measures in M((Rd)P ) with marginals µ1, . . . , µP . We focus on the barycentric cost of
Gangbo and Święch [21] and Agueh and Carlier [1], given by

c(x1, . . . , xP ) =
P∑
p=1

βp

∥∥∥xp − P∑
j=1

βjxj

∥∥∥2

, β1, . . . , βP ≥ 0,
P∑
p=1

βp = 1.

Above, the β1, . . . , βP are fixed.
This cost was originally motivated from an economics-inspired perspective, but is also

often preferable because it leads to connections with barycentric averaging [1], giving it a
simple interpretation. It also recovers the Wasserstein distance with squared Euclidean cost
in the case P = 2 (up to constants), referred to as W . Algorithms for estimating (6.1) from
a set of samples scale exponentially with the number of measures P and/or the dimension d
of the ground space [4, 2, 7].
MW is useful in multi-task settings for regularizing measures µ1, . . . , µP by adding

MW(µ1, . . . , µP ) to a multi-task loss. It can also be used in a setting, where we aim for
a model output µ to be close to a given set of measures ν1, . . . , νP , which can be done by
introducing a loss of the formMW(µ, ν1, . . . , νP ) and minimizing it with respect to µ.

Sliced transport. With the usual Euclidean-type cost structures, the Wasserstein dis-
tance between pairs of one-dimensional discrete measures can be computed efficiently using
sorting with O(N logN) complexity. More generally, we can consider the average distance
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between measures projected onto R along a random axis, which gives [12, 11]

SW2(µ, ν) =

∫
Sd−1

W2
(
M θ

#(µ),M θ
#(ν)

)
dΘ(θ),

where M θ(x) = xT θ, (.)# denotes the push-forward of measures, and Θ is the uniform
distribution on the unit sphere Sd−1. We sample from M θ

#(µ) by sampling from µ and
projecting onto θ.

A fundamental result by Bonnotte [12] is that SW is a metric that metrizes the topology
of weak convergence—the exact same topology asW . SW can be estimated via Monte Carlo
and preserves the computational complexity of estimating W on R, which is O(N logN).
Owing to the Monte Carlo nature, the sample complexity of SW is dimension free [12, 32],
in contrast with the exponential dependency of the Wasserstein distance on dimension. The
combination of good computational and statistical properties makes SW an attractive choice
for minimization problems on measure spaces, including generative modeling and imitation
learning [19, 18]. This immediately raises the question whether SW extends to the multi-
marginal case so that it preserves its key appealing properties.

Definition 33. For a measure µ ∈M(R), define its CDF Cµ : R > [0, 1] as

Cµ(x) =

∫ x

−∞
dµ(y) ∀x.

Also, define its pseudo-inverse C−1
µ : [0, 1]→ R ∪ {−∞} as

C−1
µ (r) = min

x
{x ∈ R ∪ {−∞} : Cµ(x) ≥ r}.

This function is a generalization of the quantile function.

Proposition 6. If µ1, . . . , µP ∈ M̧(R) and U̧(0, 1) is the uniform measure, then

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)

∣∣∣∣∣
2

dx, (6.2)

and the optimal coupling solving (6.1) is of the form

π? = (C−1
µ1
, . . . , C−1

µP
)# U̧(0, 1).

Sliced Multi-Marginal Wasserstein Distance

To define the sliced multi-marginal Wasserstein distance, we average the expressions given
in (6.2) along one-dimensional random projections, which gives

SMW2(µ1, . . . , µP ) =

∫
Sd−1

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µθp

(x)−
P∑
j=1

βjC
−1
µθj

(x)
∣∣∣2 dx dΘ(θ), (6.3)

where µθj = M θ
#(µj) for j = 1, . . . , P . SMW in (6.3) can be estimated via Monte Carlo in

O(KPN logN), where K is the number of Monte Carlo samples (projections).
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Topological properties We now study SMW ’s topological properties. We first show
that SMW is the weighted mean of sliced Wasserstein distances between pairs of measures.

Proposition 7. Let µ1, . . . , µP ∈M(Rd). We have that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj).

Proposition 7 is useful in deriving statistical and topological properties of SMW . It is
however more efficient to estimate it via our closed-form formula for multi-marginal transport
– see (6.3). This leads to a computational complexity of O(KPN logN), whereas naively
implementing (7) scales in O(KP 2N logN). Furthermore, as the sliced-Wasserstein metric
is upper-bounded by the Wasserstein [12], an immediate consequence of Proposition 7 is that

SMW2(µ1, . . . , µP )
(7)
=

1

2

P∑
i,j=1

βiβjSW2(µi, µj) ≤
1

2

P∑
i,j=1

βiβjW2(µi, µj).

This shows that SMW gives rise to the topology of weak convergence—one of the key
properties that made SW an attractive choice in the first place. We now study metric
properties of SMW .

Proposition 8. SMW is a generalized metric. In particular, this means that SMW is

• non-negative,

• zero if and only if all measures are identical,

• permutation-equivariant, and

• satisfies a generalized triangle inequality involving multiple measures.

These are all proven at the end of this chapter in Definition 34. Hence, SMW is well-
behaved topologically-wise as it is a generalized metric inducing weak convergence. We
continue by studying SMW ’s statistical properties.

Statistical Properties In the following proposition, we assess the impact of the number
of samples and random projections used to estimate SMW .

Proposition 9. If µ1, . . . , µP ∈ M(Rd), and assuming W2 has sample complexity ρ(N) on
R, i.e.

E[W2(µ1, . . . , µP )−W2(µ̂1, . . . , µ̂P )]2 ≤ ρ(N),
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then
E[SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )]2 ≤ 1

2
ρ(N),

where µ̂p refers to empirical measures with N samples.

Proposition 9 shows that the sample complexity of SMW is dimension-free—this stands
in contrast to the sample complexity of the multi-marginal Wasserstein, which is exponen-
tial in the dimension. In practice, we use Monte Carlo sampling to compute SMW , which
introduces additional error. To understand this error, we examine SMW ’s projection com-
plexity.

Proposition 10. Let µ1, . . . , µP ∈ M(Rd), and define SMW the approximation obtained
by uniformly picking L projections on Sd−1, then

E
[
SMW2

(µ1, . . . , µP )− SMW2(µ1, . . . , µP )
]2

≤ L−1/2Varθ[MW2(µθ1, . . . , µ
θ
P )],

where θ follows the uniform distribution on Sd−1 and µθp = M θ
#(µp).

This shows that the quality of Monte Carlo estimates of SMW is controlled by number
of projections and the variance of evaluations of the base multi-marginal Wasserstein in 1D.

Connection to Barycenters We now study connections of SMW to the problem of
barycentric averaging, which extends the notion of a mean to more general settings. Let
D :M(Rd)×M(Rd)→ R be a divergence on the space of probability measures. Recall that
the barycenter of P measures µ1, . . . , µP is defined as

µ? := arg min
µ∈M(Rd)

F(µ), Fµ1,...,µPD (µ) :=
P∑
p=1

D(µp, µ).

Barycentric averaging is well-studied from theoretical and computational view-points,
notably under the squared Wasserstein [17], sliced Wasserstein [11] and Gromov–Wasserstein
[37] metrics.

Proposition 11. Let µ1, . . . , µP ∈ M(Rd), βp ≥ 0,
∑P

p=1 βp = 1. Furthermore, let β̂p
be augmented multi-marginal weights, so that for m ∈ [0, 1] it holds that β̂p = mβp for
p = 1, . . . , P ,

∑P+1
p=1 β̂p = 1, and D = SW2. Then

arg min
µ∈M(Rd)

SMW2
β̂
(µ1, . . . , µP , µ) = arg min

µ∈M(Rd)
Fµ1,...,µPD,β (µ),

where β is the weight vector of Fµ1,...,µPD and β̂ is the weight vector of SMW.

Proposition 11 reveals a connection between sliced multi-marginal transport and barycen-
ters under the sliced-Wasserstein: the measure that is closest to µ1, . . . , µP in SMW is ac-
tually the barycenter of such measures under SW . We continue by studying differentiability
of SMW as a loss function.
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0
T

targets
 flow

Figure 6.2: Gradient flow ∂µt = −∇SMW2(µt, ν1, . . . , νP ) starting from a randomly initial-
ized Gaussian µ0. It is solved iteratively following Bonneel et al. [11].

Differentiability Sliced Wasserstein variants are desirable candidate losses for learning
on probability spaces thanks to their smoothness properties. We show SMW inherits these
properties.

Proposition 12. Let µ1, . . . , µP ∈ M(Rd) be discrete measures with N atoms, which we
gather into matrices {X(p)}Pp=1 where X(p) ∈ RN×d, and similarly define µX with N atoms
X. Assume X has distinct points. Then SMW2 is differentiable with gradient

∇XSMW2(µ1, . . . , µP , µX) = βP+1

P∑
p=1

βp

∫
Sd−1

Xθ −
(
X

(p)
θ ◦ σXθ

◦ σ−1

X
(p)
θ

)
dΘ(θ),

where σX is the permutation that sorts atoms of X and Xθ ∈ RN , such that (Xθ)i = 〈xi, θ〉.

Proposition 12 shows that SMW2 is differentiable almost everywhere, and is hence
well-suited for multi-task learning, as it allows to compare multiple task-representative
probability measures. We illustrate this in Figure 6.2. Here, we consider the problem
minµ SMW2(µ, ν1, . . . , ν4), amounting to estimating the sliced barycenter of ν1, . . . , ν4 (see
Proposition 11), and solve it iteratively via the gradient flow ∂µt = −∇SMW2(µt, ν1, . . . , ν4),
following Bonneel et al. [11] in the pairwise case.

6.4 Multi-Task Learning with Sliced Multi-marginal
Optimal Transport

In the previous section, we proposed a multi-marginal metric between probability measures,
which avoids exponential computational and statistical complexities and is thus practical for
applications where a large number of samples N , number of measures P , or dimension d is
of interest. SMW allows us to evaluate the closeness of probability measures µ1, . . . , µP ,
which makes it a good candidate regularizer in multi-task learning settings over probability
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spaces, by encouraging shared global structure across tasks through closeness in sliced multi-
marginal geometry. We now sketch potential areas of applications of SMW in the context
of multi-task learning on spaces of probability measures, and illustrate examples in density
estimation and multi-dynamics reinforcement learning.

Density Estimation with Shared Structure

Consider P target measures µ1, . . . , µP , which we aim to approximate by parametric models
ν1, . . . , νP , such as for instance generative adversarial networks. In applications, it is often
the case that these measures are affected by issues related to distributional shift [5], which
prevents us from obtaining accurate empirical samples of µ1, . . . , µP . One way to counteract
these issues is to introduce a shared structure between the measures, which can be enforced
through SMW regularization.

For example, consider empirical estimates µ̂1, . . . , µ̂P of µ1, . . . , µP , which are corrupted
because no data is available in certain regions of each measure’s support. Here, reconstruction
of µ1, . . . , µP is only possible through the use of shared structure on the generative models
ν1, . . . , νP , which we can enforce by using SMW(ν1, . . . , νP ) as a regularizer. This results
in the optimization problem

arg min
ν1,...,νP

P∑
p=1

SW2(µp, νp)

local loss

+γ SMW2(ν1, . . . , νP )

global loss (shared)

,

where SW2(µp, νp) ensures that the respective generative models (νp)
P
p=1 approximates tar-

gets (µp)
P
p=1, and SMW2(ν1 , . . . , νP ) ensures shared structure is present in the loss.

Multi-Dynamics Reinforcement Learning with Shared Structure

We now consider the problem of reinforcement learning in settings where the dynamics
change. In order to speed up learning, we use SMW to share structure across different
environments in this multi-dynamics reinforcement learning problem. Sharing knowledge is
not only useful to bias (and thereby speed up) learning, but it is also useful in settings, where
agents are ill informed, e.g., due to sparse reward signals. With a shared structure, these
agents can learn from other agents. Here, the challenge is in effectively utilizing information
from other agents in spite of differences in their respective environments. In the following,
we focus on this setting.

Consider P identical-task agents in finite-horizon Markov decision processes (S,A, Tp, renvp ),
where S is the state space andA is the action space, both shared by all agents, Tp(x

(p)
t , a

(p)
t ) =

x
(p)
t+1 is the transition model of agent p, which varies across agents, and renvp is the environ-

ment’s reward function. Since different agents’ tasks are identical, sharing structure can be
beneficial. We consider the case, where some agents receive rewards renvp = 0. These agents
are uninformed and can only learn via a shared structure that allows to transfer knowledge
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Figure 6.3: Properties of the sliced multi-marginal distance. (a) computational time as a
function of the number of samples; (b) computational time as a function of the number of
measures; (c) accuracy as a function of the number of projections

from other agents. Structure sharing is done by augmenting the agent-specific reward func-
tion with a global multi-task reward term. In particular, define the augmented reward Rp

as
Rp(x

(p)
t ,X) = renvp (x

(p)
t )

agent specific
(local)

+γ rmul(x
(p)
t ,X)

multi-task reward
(shared/global)

,

where X = {x(p)
t }P,Tp,t=1 is the collection of all states of every agent at all time steps, renvp (x

(p)
t )

is the single-task reward of the pth environment and rmul(x
(p)
t ,X) is a (multi-task) reward

signal. The former provides task-specific information about the task to be solved by agent
p, while the latter allows for agents to share structure through the history of their state
trajectories. If renvp = 0 for a given agent, then this agent can only learn through the shared
structure arising from the shared reward rmul. Finally, γ is a regularizer that controls the
influence of shared structure on the overall learning.

We now describe the shared reward rmul. Denote µp = 1
T

∑T
t=1 δx(p)

t
, which allows us

to interpret the rollout of agent p as a discrete probability measure supported on the state
space. Then,

rmul(x
(p)
t ,X) = −βp

K

K∑
k=1

∣∣∣〈x(p)
t −

P∑
j=1

βjx
(j)
ηp,j,k(t), θk〉

∣∣∣2,
where ηp,j,k returns the index of the atom in µj that is aligned with state x(p)

t after projecting
on (Monte Carlo-sampled) (θk) and sorting all projected states. Intuitively, the reward signal
attributed to the state x(p)

t of agent p at time t is computed by projecting all measures onto



CHAPTER 6. SLICED MIXED-MARGINAL WASSERSTEIN 58

(a) γ = 0 (b) γ = 0.3 (c) γ = 25 (d) Corrupted Targets

Figure 6.4: Multi-task density estimation experiment applied on corrupted nested ellipses
(plotted in orange), using SW2 as pairwise loss and SMW2 as regularizer. Learned models
are plotted in blue. We use regularization coefficients γ = 0 in (a), γ = 0.3 in (b), γ = 25 in
(c).

K vectors, gathering all states that are aligned with x
(p)
t for each projection θk, and summing

squared distances between them.

Remark. The barycentric cost structure with non-uniform weights β is particularly attractive
in this setting, as it allows to give more weight to the communication arising from agents
that perform well in their own environment. For instance, we can use Boltzmann weights

βp ∝ exp
(
α

T∑
t=1

renv
p (x

(p)
t )
)
,

where α is a temperature. It gives more weight in the reward to agents performing best.

We train all agents simultaneously by maximizing

Eπ1,...,πP
[ P∑
p=1

T∑
t=1

Rp(x
(p)
t )
]

= Eπ1,...,πP
[ P∑
p=1

T∑
t=1

renvp (x
(p)
t ) + γSMW2(µ1, . . . , µP )

=Rp(x
(p)
t ,X)

]

with respect to the parameters of policies πp, p = 1, . . . , P . Note that the extra term
in the augmented reward regularizes the objective via the sliced multi-marginal Wasserstein
distance. SMW thus enforces closeness of agents’ trajectories which allows to share structure
across agents.

6.5 Experiments
We now illustrate the behavior of sliced multi-marginal transport in simple multi-task learn-
ing setups.
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Scalability

Number of Samples (N). We study the impact of the number of samples on the computa-
tional time to compute the sliced multi-marginal distance in (6.3). In particular, we compute
SMW between P = 3, 10, 20 measures in R10, µp ∼ N (mp, η

2I), where p = 1, . . . , P for a
fixed number of projections K = 10. Figure 6.3(a) shows the O(N logN) scaling of SMW .
This enables computation of multi-marginal distances with over 107 samples and a large
number of measures.

Number of Measures (P ). We now examine scaling with respect to the number
of measures P . Figure 6.3(b) shows the time required to compute SMW against N =
500, 5000, 50000 measures. We observe the expected linear scaling of SMW .

Number of Projections (K). Finally, we consider the impact of the number of projec-
tions on the estimation of SMW for dimensions d = 2, 5, 20. We set N = 250, and P = 5.
Monte Carlo estimation is used to estimate SMW . Figure 6.3(c) shows the expected vari-
ance shrinkage as the number of projection grows, while the estimated mean converges to
SMW with rate O( 1√

K
) and constant factors depending on dimension.

Multi-Task Density Estimation

We consider the multi-task density estimation setting of Section 6.4. Each target measures
consist of a nested ellipse with corrupted samples. In particular, parts of each individual
ellipse have been removed from each measure’s support. Using the multi-task learning setup
allows for sharing knowledge of the structure of the target tasks across problems—namely,
that all target measures have the overall shape of nested ellipses. Figures 6.4(a)–6.4(c) show
the models obtained by multi-task training with regularization coefficients γ = 0, 0.3, 25.
When γ = 0, measures are learned individually without any structure sharing. ν1, . . . , νP
hence collapse to the corrupted measures µ1, . . . , µP . When structure is introduced (γ > 0)
knowledge of the inherent nested ellipse structure is shared across tasks, which leads to
solutions that have such structure (holes are filled), but that still preserve the task-specific
orientations and ellipse width/height as long as the structure coefficient η is not too large.
The latter causes the learned measures to be too close to each other. These effects can be
seen in Figure 6.4(c). When this happens, all learned measures collapse to the barycenter.

Multi-Dynamics Reinforcement Learning

We consider a multi-task RL application in the setting of Section 6.4. In particular, we con-
sider P = 5 pendulum swing-up tasks with different dynamics (gravities g ∈ {8, 9, 10, 11, 12}m/s2).
States consist of angle and angular velocities, and actions of are torques. Environment re-
wards are dense as implemented in OpenAI Gym [13], and following Dadashi et al. [18], we
transform the shared reward rmul via f(y) = e−5y. Two out of five agents do not receive
any reward. All other agents share the same reward function. We consider agents trained
with and without SMW-based regularization, and consider the uniform and non-uniform
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Figure 6.5: Multi-task (P = 5) RL experiment. Environments have different dynamics (dif-
ferent gravities), and 2/5 agents have no environmental reward. Without shared structure,
these agents do not solve their respective tasks (orange). By contrast, with shared structure,
all agents learn accurate policies (green, blue), on par with agents trained without corrupted
rewards (blue). Training curves (mean± standard deviation averaged over 5 runs) are shown.

barycentric weights β; see Section 6.4 for more details. To facilitate learning, we lower-bound
the weights of agents without reward. Policies are learned using Q-learning with function
approximation on state observations.

Figure 6.5 shows the results. Training without regularization (γ = 0, blue curve) does
not allow the two agents without environment rewards (renvp = 0) to solve their respective
tasks. By contrast, with regularization, all agents (even those with no environment reward)
solve their respective tasks (green, blue) as well as if all agents were receiving environmental
rewards (orange). Agents with non-uniform regularization significantly outperform agents
with uniform weights, showing that giving more weight in the regularizer to stronger agents
is helpful.

Overall, this demonstrates that knowledge transfer via the shared reward structure can
be effective. In particular, the regularization-based rewards encourage the state trajectories
of all agents to be close under the sliced multi-marginal geometry. Hence, agents without
environment rewards learn to follow agents trained with environment rewards. This is pos-
sible because of similarity of environments and of agent goals, so that agent rollouts share
geometric structure.

6.6 Conclusion
In this work, we proposed a scalable multi-marginal optimal transport distance. Our main
idea is to derive a closed-form formula for multi-marginal optimal transport in 1D in the
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general case and to extend it into a higher-dimensional metric via slicing. We show it is
well-behaved topologically, and in particular that it is a generalized metric. We also show it
is well-behaved statistically with dimension-free sample complexity (modulo a caveat arising
from projection complexity). We derive a range of other results illustrating the simple and
intuitive geometric structure of sliced multi-marginal transport. Finally, we propose areas of
applications of sliced multi-marginal transport in the context of multi-task learning on prob-
ability spaces, and concrete instantiations in density estimation, and reinforcement learning.
We hope these contributions enable practitioners in reinforcement learning, generative mod-
eling and other areas to share structure across tasks in a geometrically-motivated way. Our
work relies on the assumption that tasks live on the same space, and share structure. Future
work would extend our approach to allow for multi-task learning on incomparable spaces,
enabling structure sharing in more general set-ups, for instance via Gromov–Wasserstein-like
techniques.
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6.7 Proofs

Closed-form Formulas for Multimarginal Optimal Transport

Recall Definition 33, which states that for a measure µ ∈M(R), the CDF Cµ : R→ [0, 1] is

Cµ(x) =

∫ x

−∞
dµ(y) ∀x.

And its pseudo-inverse C−1
µ : [0, 1]→ R ∪ {−∞} is

C−1
µ (r) = min

x
{x ∈ R ∪ {−∞} : Cµ(x) ≥ r}.

1D Multi-Marginal

Proposition 13. If µ1, . . . , µP ∈M(R) and U(0, 1) is the uniform measure, then

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx,

and the optimal coupling solving (6.1) is of the form

π? = (C−1
µ1
, . . . , C−1

µP
)# U(0, 1).

Proof. Our aim is to provide a closed form formula for

MW2(µ1, . . . , µP ) = min
π∈Π(µ1,...,µP )

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj|2 dπ(x1, . . . , xP ),

where Π(µ1, . . . , µP ) is the set of probability measures inM((Rd)P ) with marginals µ1, . . . , µP .
First, notice∫

(Rd)P

P∑
p=1

βp‖xp−
∑
j

βjxj‖2dπ(x1, . . . , xP ) =
P∑
p=1

βp

∫
Rd
|xp|2dµp−2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπpj(xp, xj),

where πpj corresponds to marginalizing π onto all components but p, j. This can be formal-
ized by defining the map Lpj(x1, . . . , xP ) = (xp, xj) and πpj = Lpj#π.

Now define π? = (C−1
µ1
, . . . , C−1

µP
)#U(0, 1).
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Claim: π? is optimal
First observe Lpj#π? = (C−1

µp , C
−1
µj

)#U(0, 1) by marginalization. Note this is the optimal
coupling between pairs µp, µj, see [36] (this can easily be obtained by observing that plugging
in (C−1

µp , C
−1
µj

)#U(0, 1) into the Wasserstein objective achieves the minimum – it is also a valid
coupling, thus it has to be the optimal coupling.)

Now, note that

arg max
γ∈Π(µp,µj)

∫
(Rd)2

xpxj dγ = arg min
γ∈Π(µp,µj)

∫
(Rd)2
|xp − xj|2 dγ,

and also that for any multimarginal coupling π ∈ Π(µ1, . . . , µP ), πpj is a pairwise coupling
in Π(µp, µj) by the transfer lemma.

We can hence deduce that ∀π ∈ Π(µ1, . . . , µP )∫
(Rd)2

xpxjdπpj ≤
∫

(Rd)2
xpxjdπ

?
pj ∀p, j = 1, . . . , P,

because both πpj and π?pj are couplings of µp, µj and π?pj is optimal.
Therefore, it holds that∫

(Rd)P

P∑
p=1

βp‖xp −
∑
j

βjxj‖2 dπ?(x1, . . . , xP ) =
P∑
p=1

βp

∫
Rd
|xp|2dµp − 2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπ
?
pj(xp, xj)

≤
P∑
p=1

βp

∫
Rd
|xp|2dµp − 2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπpj(xp, xj)

=

∫
(Rd)P

P∑
p=1

βp‖xp −
∑
j

βjxj‖2 dπ(x1, . . . , xP ),

which proves the claim that π? is the optimal multi-marginal coupling. We now compute
the distance by plugging in the optimal coupling:

MW2(µ1, . . . , µP ) =

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj|2 dπ?(x1, . . . , xP )

=

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj|2 d(C−1
µ1
, . . . , C−1

µp )#U(0, 1)

=

∫ 1

0

P∑
p=1

βp|C−1
µp (x)−

∑
j

βjC
−1
µj

(x)|2 dx.



CHAPTER 6. SLICED MIXED-MARGINAL WASSERSTEIN 64

Generalized Metric Properties

Definition 34. Assume µp ∈ M(Rd), where p = 1, . . . , P , and let D : M(Rd) × . . . ×
M(Rd) → R be a multi-marginal Wasserstein metric with barycentric weights β. Then, D
is a generalized metric if the following properties hold:

1. D(µ1, . . . , µP ) ≥ 0

2. D(µ1, . . . , µP ) = 0⇔ µ1 = . . . = µP

3. D(µ1, . . . , µP ) = Dσ(µσ(1), . . . , µσ(P )), ∀σ ∈ SP where Dσ denotes that the barycentric
weights β are permuted by σ and SP is the group of permutations of order P .

4. ∀µ ∈M(Rd) : D(µ1, . . . , µP ) ≤
P∑
p=1

D(µ1, . . . , µp−1, µ, µp+1, . . . µP )

Proposition 14. MW is a generalized metric on the restrictionM(R).

Proof. Property (1), i.e., positivity is clear because

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx ≥ 0

Next, we prove property (2).
We begin by proving the forward implication (⇒).

MW(µ1, . . . , µP ) = 0 (6.4)

⇒
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx) 1

2
= 0 (6.5)

⇒
∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx = 0 (6.6)

⇒ C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x) = 0 ∀p = 1, . . . , P, ∀x ∈ [0, 1] (6.7)

Now assume for contradiction that ∃m,n, x : C−1
µm(x) 6= C−1

µn (x), then:

C−1
µm(x) =

P∑
j=1

βjC
−1
µj

(x), C−1
µn (x) =

P∑
j=1

βjC
−1
µj

(x) (6.8)

⇔ C−1
µm(x)− C−1

µn (x) =
P∑
j=1

βjC
−1
µj

(x)−
P∑
j=1

βjC
−1
µj

(x) = 0 (6.9)
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which is a contradiction, therefore C−1
µm(x) = C−1

µn (x) ∀m,n, x, thus µ1 = . . . = µP
We continue by proving the backward implication (⇐).
If µ1 = . . . = µP , then C−1

µp (x) = C−1
µp′

(x) ∀x, ∀p, p′ = 1, . . . , P .
Therefore, C−1

µp (x)−∑P
j=1 βjC

−1
µj

(x) = 0 ∀p = 1, . . . , P, ∀x ∈ [0, 1]. Thus,

MW(µ1, . . . , µP ) =
(∫ 1

0

P∑
p=1

βp|C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)|2 dx
) 1

2
= 0. (6.10)

We continue with permutation invariance (3),

MW(µ1, . . . , µP ) =
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx) 1

2 (6.11)

=
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βσ(j)C
−1
µσ(j)

(x)
∣∣∣2 dx) 1

2 (6.12)

=
(∫ 1

0

P∑
p=1

βσ(p)

∣∣∣C−1
µσ(p)

(x)−
P∑
j=1

βjC
−1
µσ(j)

(x)
∣∣∣2 dx) 1

2 (6.13)

=MWσ(µσ(1), . . . , µσ(P )) (6.14)

Equalities holds because sums are invariant under any permutation σ.
We finally prove the generalized triangle inequality (4). Note the slight abuse of notation

that p+ 1 component does not exist when p = P .
We begin by proving the case P ≥ 3. Firstly, we rewrite the multi-marginal functional

in the following way:

MW2(µ1, . . . , µP ) =
P∑
p=1

βp

∫ 1

0

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj

(x)
∣∣∣2 dx (6.15)

=
1

2

P∑
p,p′=1

βpβp′

∫ 1

0

∣∣∣C−1
µp (x)− C−1

µp′
(x)
∣∣∣2 dx (6.16)

=
1

2

P∑
p,p′=1

βpβp′

∫ 1

0

f 2
p,p′(x) dx (6.17)

where fp,p′(x) =
∣∣∣C−1

µp (x)− C−1
µp′

(x)
∣∣∣. The results holds because

P∑
m,n=1

βmβn|C−1
µm(x)− C−1

µn (x)|2 =
P∑

m=1

βm

∣∣∣C−1
µm(x)−

P∑
n=1

βnC
−1
µj

(x)
∣∣∣2, (6.18)
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which holds because

P∑
m=1

βm

∣∣∣xm − P∑
n=1

βnxn

∣∣∣2 (6.19)

=
P∑

m=1

βm

[
|xm|2 + |

P∑
n=1

βnxn|2 − 2
P∑
n=1

βnxmxn

]
(6.20)

=
P∑

m=1

βm|xm|2 +
∑
m,n=1

βmβnxmxn − 2
P∑

m,n=1

βmβnxmxn (6.21)

=
P∑

m=1

βm|xm|2 −
∑
m,n=1

βmβnxmxn (6.22)

=
P∑

m,n=1

βmβn|xm|2 −
∑
m,n=1

βmβnxmxn (6.23)

=
P∑

m,n=1

βmβn(
1

2
|xm|2 +

1

2
|xn|2 − xmxn) (6.24)

=
1

2

P∑
m,n=1

βmβn|xm − xn|2. (6.25)

Therefore, we have

P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) =
1

2

P∑
p=1

P∑
m,n 6=p

βmβn

∫ 1

0

f 2
n,m(x)dx+ C, (6.26)

where C > 0.
We now show that

∫ 1

0

∑P
p=1

∑P
m,n 6=p βmβnf

2
n,m(x) dx ≥ ∑P

p,p′=1 βpβp′
∫ 1

0
f 2
p,p′(x) dx. This

can be observed by noting that all
∫ 1

0
f 2
p,p′(x) dx terms on the RHS appear on the LHS.

Indeed, for any m′, n′,
∫ 1

0
f 2
m′,n′(x) dx appears in the p 6= m′, n′ summation, which always

holds for some p as P ≥ 3.
Therefore, we have shown that

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.27)
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Also,

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.28)

⇒MW(µ1, . . . , µP ) ≤

√√√√ P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.29)

≤
P∑
p=1

√
MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.30)

=
P∑
p=1

MW(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.31)

which proves the result. The case P = 2 has been proved via different approaches (e.g. [36]).

Proposition 8. SMW is a generalized metric on the restrictionM(Rd).

Proof. Property (1) holds by definition due to positivity ofMW on R and the definition of
the sliced multi-marginal distance.

Property (2) is more delicate. We begin with the forward direction (⇒).
We extend the proof of Nadjahi et al. [31] to the multi-marginal case. Define Θ as

the uniform distribution on Sd−1. Define ‘for (Θ-almost-every) θ’ as ∀Θ-a-e-θ. Firstly, the
following holds:

SMW(µ1, . . . , µP ) = 0 (6.32)

⇒
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP )dΘ(θ)
) 1

2
= 0 (6.33)

⇒MW(Mθ#µ1, . . . ,Mθ#µP ) ∀Θ-a-e-θ (6.34)
⇒Mθ#µ1 = . . . = Mθ#µP ∀Θ-a-e-θ (6.35)

Next, we define the Fourier transform of any measure µ onM(Rs), s ≥ 1 at any w ∈ Rs:

F [µ](w) =

∫
Rs
e−i〈w,x〉 dµ(x). (6.36)

Therefore, using properties of push-forwards, the following holds:

F [Mθ#µ](t) =

∫
R
e−itu dMθ#µ(u) =

∫
Rs
e−it〈θ,x〉 dµ(x) = F [µ](tθ). (6.37)

As ∀Θ-a-e-θ, Mθ#µ1 = . . . = Mθ#µP , then F [Mθ#µ1] = . . . = F [Mθ#µP ], which implies
that F [µ1] = . . . = F [µP ]. By injectivity of the Fourier transform, we conclude that µ1 =
. . . = µP .
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We continue with the backward direction (⇐).
We assume µ1 = . . . = µP , which implies the following:

µ1 = . . . = µP (6.38)
⇒Mθ#µ1 = . . . = Mθ#µP ∀Θ-a-e-θ (6.39)
⇒MW2(Mθ#µ1, . . . ,Mθ#µP ) = 0 ∀Θ-a-e-θ (6.40)

⇒ SMW(µ1, . . . , µP ) =
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ)
) 1

2
= 0.

(6.41)

We now prove Property (3)

SMW(µ1, . . . , µP ) =
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ)
) 1

2 (6.42)

=
( 1

Vol(Sd−1)

∫
Sd−1

MW2
σ(Mθ#µσ(1), . . . ,Mθ#µσ(P ))dΘ(θ)

) 1
2 (6.43)

= SMWσ(µσ(1), . . . , µσ(P )) (6.44)

We finally end by proving Property (4), the generalized triangle inequality.
Earlier, we showed that

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ). (6.45)

This implies that

SMW2(µ1, . . . , µP ) (6.46)

=
1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ) (6.47)

≤
P∑
p=1

1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µp−1,Mθ#µ,Mθ#µp+1, . . . ,Mθ#µP ) dΘ(θ)

(6.48)

=
P∑
p=1

SMW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ). (6.49)

Therefore, we conclude that

SMW2(µ1, . . . , µP ) ≤
P∑
p=1

SMW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.50)

⇒ SMW(µ1, . . . , µP ) ≤
P∑
p=1

SMW(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (6.51)



CHAPTER 6. SLICED MIXED-MARGINAL WASSERSTEIN 69

directly in the same way as in the proof of Proposition the generalized triangle inequality
forMW .

Mathematical Properties

Proposition 7.

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj)

Proof.

SMW2(µ1, . . . , µP ) =
1

Vol(Sd−1)

∫
Sd−1

∫
Rd

1

2

P∑
i,j=1

βiβj|xi − xj|2 dπ?θ(x1, . . . , xP ) dΘ(θ)

=
1

2Vol(Sd−1)

P∑
i,j=1

βiβj

∫
Sd−1

∫
R×R
|xi − xj|2 dπ?θij (xi, xj) dΘ(θ)

=
1

2

P∑
i,j=1

βiβj
1

Vol(Sd−1)

∫
Sd−1

W2(Mθ#µi,Mθ#µj) dΘ(θ),

where π?θ is the optimal coupling betweenMθ#µ1, . . . ,Mθ#µP andMθ(x) = 〈x, θ〉. Similarly
to proofs of closed-form formulas for multi-marginal Kantorovich transport, we know that
π?θij is the optimal coupling between Mθ#µi,Mθ#µj. As a result, it holds that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj).

Corollary 6.7.0.1.

SMW2(µ1, . . . , µP ) ≤ 1

2

P∑
i,j=1

βiβjW2(µi, µj)

Proof. By Proposition 7, it holds that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj).

Also, Bonnotte [12] shows that

SW2(µ, ν) ≤ W2(µ, ν) ∀µ, ν.
The result follows directly.
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Sample/Projection Complexity

We now study E[SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )]2 where µ̂p’s refers to empirical
measures with n samples. Then the following result holds:

Proposition 15. If µ1, . . . , µP ∈M(Rd), and assuming W2 has sample complexity ρ(N) on
R, then

E[SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )]2 ≤ 1

2
ρ(N).

This result shows the sample complexity is dimension free.

Proof. We conclude from Proposition 7

SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P ) =
1

2

P∑
i,j=1

βiβj

(
SW2(µi, µj)− SW2(µ̂i, µ̂j)

)
.

IfW2 on R has sample complexity ρ(N), then SW2 on Rd also has sample complexity ρ(N),
i.e., its sample complexity is dimension free. The proof relies on an application of Jensen’s
inequality and is a special case of Nadjahi et al. [32].

E
∣∣∣SW2(µ, ν)− SW2(µ̂n, ν̂n)

∣∣∣ = E
∣∣∣ ∫

Sd−1

{W2(θ∗#µ, θ
∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)} dΘ(θ)

∣∣∣
≤ E

{∫
Sd−1

∣∣∣W2(θ∗#µ, θ
∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)

∣∣∣ dΘ(θ)

}
≤
∫
Sd−1

E
∣∣∣W2(θ∗#µ, θ

∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)

∣∣∣ dΘ(θ)

≤
∫
Sd−1

ρ(N) dΘ(θ) = ρ(N)

Hence,

E
∣∣∣SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )

∣∣∣ = E
∣∣∣1
2

P∑
i,j=1

βiβj

(
SW2(µi, µj)− SW2(µ̂i, µ̂j)

)∣∣∣
≤ 1

2

P∑
i,j=1

βiβjE
∣∣∣SW2(µi, µj)− SW2(µ̂i, µ̂j)

∣∣∣
≤ 1

2

P∑
i,j=1

βiβjρ(N) =
1

2
ρ(N).
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Here we also derive projection complexity results.

Proposition 10. Let µ1, . . . , µP ∈ M(Rd), and define SMW the approximation obtained
by uniformly picking L projections on Sd−1, then

E
[
SMW2

(µ1, . . . , µP )− SMW2(µ1, . . . , µP )
]2

≤ L−1/2Varθ

[
MW2

(
µθ1, . . . , µ

θ
P )
]
,

where θ follows the uniform distribution on Sd−1 and µθp = M θ
#(µp).

Proof. We bound the error arising from the Monte Carlo approximation of SMW , similarly
to Nadjahi et al. [32] in the pairwise case. In particular, define

δ =

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ).

Then we have that

Eθ∼σ|SMW2
(µ1, . . . , µP )− SMW2(µ1, . . . , µP )|

≤
{
Eθ∼σ|SMW2

(µ1, . . . , µP )− SMW2(µ1, . . . , µP )|2
} 1

2

≤ L−1/2

∫
Sd−1

{
MW2(Mθ#µ1, . . . ,Mθ#µP )− δ

}2

dΘ(θ)

= L−1/2Varθ

[
MW2

(
µθ1, . . . , µ

θ
P )
]
,

which holds due to the same Monte-Carlo concentration inequality as in the proof of Theorem
6 of Nadjahi et al. [32].

Equivalence to Sliced Barycenters and Weak Convergence

Proposition 11. Let µ1, . . . , µP ∈M(Rd),
∑P

p=1 βp = 1. Furthermore, let β̂p be augmented
multi-marginal weights, so that for m ∈ [0, 1] it holds that β̂p = mβp for p = 1, . . . , P ,∑P+1

p=1 β̂p = 1, and D = SW2. Then

arg min
µ∈M(Rd)

SMW2(µ1, . . . , µP , µ) = arg min
µ∈M(Rd)

F(µ),

where β is the weight vector of F and β̂ is the weight vector of SMW.

Proof.

arg min
µ∈M(Rd)

SMW2(µ1, . . . , µP , µ) = arg min
µ∈M(Rd)

P∑
p=1

β̂pβ̂P+1SW2(µ, µp)

= arg min
µ∈M(Rd)

P∑
p=1

βpSW2(µp, µ)

= arg min
µ∈M(Rd)

F(µ).
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Differentiability

Proposition 12. Let µ1, . . . , µP ∈ M(Rd) be discrete measures with N atoms, which we
gather into matrices {X(p)}Pp=1, and similarly define µX with atoms X. Assume X has
distinct points. Then SMW2 is differentiable with gradient

∇XSMW2(µ1, . . . , µP , µX) = βP+1

P∑
p=1

βp

∫
Sd−1

Xθ −
(
X(p)
θ ◦ σXθ

◦ σ−1

X(p)
θ

)
dΘ(θ),

where σX is the permutation that sorts atoms of X.

Proof. Define σY be the permutation of {1, . . . , N} that sorts atoms of Y. Also, define
Xθ ∈ RN , such that (Xθ)i = 〈xi, θ〉.

Then

SMW2(µ1, . . . , µP , µX) =
P∑
p=1

βP+1βpSW2(µX, µp) + C(µ1, . . . , µP ).

Hence,

∇XSMW2(µ1, . . . , µP , µX) = ∇X

P∑
p=1

βP+1βpSW2(µX, µp)

=
P∑
p=1

βP+1βp

∫
Sd−1

Xθ −X(p)
θ ◦

(
σXθ
◦ σ−1

X(p)
θ

)
dθ.

The last equality is due to Bonneel et al. [11].



CHAPTER 6. SLICED MIXED-MARGINAL WASSERSTEIN 73

6.8 Additional Experimental Details
We now provide further experimental details. All experiments ran on CPU, besides the
benchmarking experiments, which ran on a single P100 GPU.

Ellipses - Multi-Task Density Estimation
We set the batch size to 150, and parametrize each measure νp as a discrete measure

with 150 atoms which we optimize over via stochastic gradient descent. We set the number
of projections to 20.

Multi-Task Reinforcement Learning
The horizon is set to T = 200. The learning rate is set to 2.5× 10−4, and the batch size

to optimize the Q-function to 32. The Q-network is a 2-layer MLP with tanh activation.
We use f(x) = e−5x to rescale the reward function following Dadashi et al. [18], we set the
number of projections to K = 50 and γ = 1. Also, we set α = 1

30
. Our implementation

extends the repository https://github.com/xtma/simple-pytorch-rl to the multi-task
setting, and leverages OpenAI gym environments [13].

Gradient Flow experiment
We follow the setup of Bonneel et al. [11]. In particular, we discretize the flow to nu-

merically estimate it via gradient descent X(l+1) = X(l+1)−∇SMW2(µ1, . . . , µP , µX(l)), and
plot the location of particles for l = 0, . . . , T where T is the number of steps (200), which
approximates the gradient flow. We estimate SMW with 30 projections. Each measure (in-
cluding the initial measure µ0) consists of samples from isotropic Gaussians, and the initial
measure.



74

Chapter 7

Appendix

In the following, we provide some sample code that demonstrates 3.7 empirically.

7.1 Example Code for 3.7

import cvxpy as cp
import numpy as np

n = 2
#b = 10

PP = cp . Var iab le ( ( n , n ) ,"PP")
KK = [ [ 4 , 1 ] , [ 1 , 4 ] ]
#s = np . array ( [ [ . 5 , . 5 ] ] ) . T
#t = np . array ( [ [ . 2 , . 8 ] ] ) . T
s = np . array ( [ [ . 3 , . 7 ] ] ) . T
t = np . array ( [ [ . 2 , . 8 ] ] ) . T
e = np . ones ( ( n , 1 ) )
x = PP.T@e − s
y = PP@e − t
f o r b in range ( 1 , 2 1 ) :
obj = (1/4/b) ∗ ( cp . quad_form(x ,KK) +
cp . quad_form(y ,KK) ) − cp . t r a c e (KK@PP)
prob = cp . Problem ( cp . Minimize ( obj ) , [PP>=0,cp . sum(PP)==1])
obj=prob . s o l v e ( )
p r i n t (" s t a tu s : " , prob . s t a tu s )
p r i n t (" obj : " , obj )
p r i n t (PP. va lue )
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n = 3
PP = cp . Var iab le ( ( n , n ) ,"PP")
KK = [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ]
s = np . array ( [ [ . 1 , . 4 , . 5 ] ] ) . T
t = np . array ( [ [ . 4 , . 2 , . 4 ] ] ) . T
e = np . ones ( ( n , 1 ) )
x = PP.T@e − s
y = PP@e − t
f o r b in range ( 1 , 2 1 ) :
obj = (1/4/b) ∗ ( cp . quad_form(x ,KK) +
cp . quad_form(y ,KK) ) − cp . t r a c e (KK@PP)
prob = cp . Problem ( cp . Minimize ( obj ) , [PP>=0,cp . sum(PP)==1])
obj=prob . s o l v e ( )
p r i n t (" s t a tu s : " , prob . s t a tu s )
p r i n t (" obj : " , obj )
p r i n t (PP. va lue )

Output a f t e r running on Ubuntu machine .

yannik@yannik−ubuntu :~/OTDA$ python optimizat ion_implementat ion . py
s t a tu s : opt imal
obj : −3.9925
[ [ 2 .50000000 e−01 1.22249411 e−23]
[ −1.23247236 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.99625
[ [ 2 .50000000 e−01 −1.74316142e−22]
[ 6 .32939582 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9975
[ [ 2 .50000000 e−01 −1.16215745e−22]
[ −2.16851043 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.998125
[ [ 2 . 5 0000000 e−01 5.50834936 e−23]
[ 5 . 59387059 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9985
[ [ 2 . 5 0000000 e−01 5.92447828 e−23]
[ 1 . 62799830 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.99875
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[ [ 2 .50000000 e−01 −1.05815269e−22]
[ −1.16229217 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9989285714285714
[ [ 2 .50000000 e−01 −1.91865798e−24]
[ 1 .12940857 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9990624999999995
[ [ 2 . 5 0000000 e−01 2.21829294 e−22]
[ 1 . 11237621 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9991666666666665
[ [ 2 . 5 0000000 e−01 1.68413892 e−22]
[ 5 . 36304987 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.99925
[ [ 2 .50000000 e−01 −1.11021317e−22]
[ −1.11023280 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.999318181818182
[ [ 2 .50000000 e−01 −1.66641110e−22]
[ −5.54035982 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.999375
[ [ 2 .50000000 e−01 −1.11238505e−22]
[ 2 .16099333 e−25 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.999423076923077
[ [ 2 .50000000 e−01 −1.11130073e−22]
[ 1 .07889446 e−25 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9994642857142857
[ [ 2 .50000000 e−01 −5.66878028e−23]
[ 5 .66878108 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9995
[ [ 2 .50000000 e−01 1.12085206 e−22]
[ −1.06311748 e−24 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9995312499999995
[ [ 2 . 5 0000000 e−01 5.51862768 e−23]
[ 5 . 58360336 e−23 7.50000000 e −01] ]



CHAPTER 7. APPENDIX 77

s t a tu s : opt imal
obj : −3.9995588235294117
[ [ 2 . 5 0000000 e−01 5.46823694 e−23]
[ 5 . 63399411 e−23 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.9995833333333333
[ [ 2 .50000000 e−01 −1.11130414e−22]
[ −1.10914183 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.999605263157895
[ [ 2 .50000000 e−01 −5.52883039e−23]
[ −1.66756293 e−22 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −3.999625
[ [ 2 .50000000 e−01 −1.10718444e−22]
[ −3.03850898 e−25 7.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9825
[ [ 2 .50000000 e−01 1.10709851 e−22 −1.11209797e−22]
[ 2 .22356962 e−22 3.00000000 e−01 −1.10897391e−22]
[ −1.10834732 e−22 −1.11147135e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.99125
[ [ 2 .50000000 e−01 −1.18086022e−22 5.54360229 e−23]
[ −1.03958191 e−22 3.00000000 e−01 −4.85221266e−23]
[ 5 .55859871 e−23 −6.24999931e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9941666666666666
[ [ 2 .50000000 e−01 1.67542279 e−24 −9.02920747e−25]
[ −1.67529689 e−24 3.00000000 e−01 −2.57830146e−24]
[ 2 .22947625 e−22 2.57835866 e−24 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.995625
[ [ 2 .50000000 e−01 1.07518204 e−22 −6.07356262e−23]
[ 3 .36570089 e−22 3.00000000 e−01 −5.72319709e−23]
[ 1 .71758402 e−22 −5.37898275e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9965
[ [ 2 .50000000 e−01 3.62041633 e−24 −2.23532165e−22]
[ −2.25665827 e−22 3.00000000 e−01 −1.16130663e−22]
[ −1.09534272 e−22 −2.16935737e−22 4.50000000 e −01] ]
s t a tu s : opt imal
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obj : −0.9970833333333333
[ [ 2 .50000000 e−01 −3.04602898e−25 1.08844672 e−22]
[ 2 .22349078 e−22 3.00000000 e−01 2.20171516 e−22]
[ 2 .24222382 e−22 1.12895546 e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9975
[ [ 2 .50000000 e−01 1.67389178 e−22 5.46058619 e−23]
[ 5 .46549226 e−23 3.00000000 e−01 −1.76082074e−24]
[ 2 .78460827 e−22 1.76149241 e−24 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9978125
[ [ 2 .50000000 e−01 1.12313616 e−22 −1.11893932e−22]
[ 1 .09729020 e−22 3.00000000 e−01 −2.16476158e−24]
[ −1.10148658 e−22 2.16510806 e−24 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9980555555555556
[ [ 2 .50000000 e−01 1.53521320 e−24 5.55069310 e−23]
[ −1.53498217 e−24 3.00000000 e−01 5.39719504 e−23]
[ 5 .55152244 e−23 5.70504391 e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.99825
[ [ 2 .50000000 e−01 −5.78584577e−23 2.20132019 e−22]
[ −5.31633945 e−23 3.00000000 e−01 1.66970182 e−22]
[ 1 .12932966 e−22 5.50760656 e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9984090909090909
[ [ 2 .50000000 e−01 −1.10159194e−22 5.78533683 e−23]
[ −1.11884677 e−22 3.00000000 e−01 −5.40302524e−23]
[ 5 .31672297 e−23 −5.69909081e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9985416666666667
[ [ 2 .50000000 e−01 1.58478915 e−24 −2.90879011e−25]
[ −1.58779679 e−24 3.00000000 e−01 −1.12899214e−22]
[ 1 .11314400 e−22 −1.09143652e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9986538461538461
[ [ 2 .50000000 e−01 1.29692731 e−24 −1.09306083e−22]
[ −1.12320800 e−22 3.00000000 e−01 −1.10603467e−22]
[ −3.34782807 e−22 −1.11440161e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.99875
[ [ 2 .50000000 e−01 3.05960762 e−25 −1.10047970e−22]
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[ −3.07807840 e−25 3.00000000 e−01 6.67870216 e−25]
[ −9.73800980 e−25 −1.11688797e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9988333333333334
[ [ 2 .50000000 e−01 −2.20472007e−22 −1.10265620e−22]
[ −4.45663084 e−22 3.00000000 e−01 −2.22859007e−22]
[ 1 .10264081 e−22 −1.10205137e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.99890625
[ [ 2 . 5 0000000 e−01 1.67831187 e−22 2.23235717 e−22]
[ 2 . 76255783 e−22 3.00000000 e−01 5.54049384 e−23]
[ 1 . 09830812 e−22 5.56200424 e−23 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9989705882352942
[ [ 2 .50000000 e−01 2.33062237 e−24 1.12105844 e−22]
[ −2.33398078 e−24 3.00000000 e−01 −1.24802428e−24]
[ −1.08251257 e−24 1.25052514 e−24 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9990277777777777
[ [ 2 .50000000 e−01 −5.37805096e−23 1.66737466 e−22]
[ 5 .37758046 e−23 3.00000000 e−01 −1.52711421e−24]
[ 5 .53077093 e−23 1.12553722 e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.9990789473684211
[ [ 2 .50000000 e−01 −5.39169018e−23 5.52124567 e−23]
[ −5.71093712 e−23 3.00000000 e−01 −1.12913039e−22]
[ 5 .58078346 e−23 −2.20147494e−22 4.50000000 e −01] ]
s t a tu s : opt imal
obj : −0.999125
[ [ 2 .50000000 e−01 5.63739603 e−23 1.67291982 e−22]
[ 5 .46420535 e−23 3.00000000 e−01 −1.05069787e−25]
[ −1.67291107 e−22 1.11132958 e−22 4.50000000 e −01] ]

7.2 Differentiating Bures Distance

Differentiating the Bures distance part I

In the derivation, the function

Sym(M) = 1
2
(M +MT )
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is utilized, as well as the trace/Frobenius product

P : M = Tr(P TM) = Tr(MTP ) = M : P

These have the following interaction

P : Sym(M) = Sym(P ) : M

For PSD matrices a drastic simplification is possible:

Tr((A1/2BA1/2)1/2) = Tr((BA)1/2)

In addition, there is a general result for the differential of the trace of any matrix function

dTr
(
f(X)

)
= f ′(XT ) : dX

where f ′ is the ordinary derivative of the scalar function f ; both f and f ′ are evaluated
using their respective matrix arguments.

Combining these yields a straightforward solution for the problematic term

φ = Tr
(

(BA)1/2
)

dφ = 1
2

(
(BA)T

)−1/2
: d(BA)

= 1
2
(AB)−1/2 : B dA

= 1
2
B(AB)−1/2 : dA

∂φ

∂A
= 1

2
B(AB)−1/2 = 1

2
(BA)−1/2B

Where the final equality is a theorem due to [25]

B · f(AB) = f(BA) ·B

Therefore the gradient of the Bures Distance is

β(A,B) = Tr
(
A+B − 2(BA)1/2

)
dβ =

(
I −B(AB)−1/2

)
: dA

∂β

∂A
= I −B(AB)−1/2 = I − (BA)−1/2B

= I − A−1(AB)1/2 = I − (BA)1/2A−1
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Differentiating the Bures distance part II

Let J be the all-ones matrix and

C = (I − 1
n
J) = CT

(
CenteringMatrix

)
B = Σv

A = Cov(TX)

=
(

1
n−1

)
(TX)TC (TX)

From earlier, the Bures distance function and its differential can be simplified to

β(A,B) = Tr
(
A+B − 2(BA)1/2

)
dβ =

(
I − (BA)−1/2B

)
: dA

Now change the differentiation variable from dA→ dT .

dβ =
(
I − (BA)−1/2B

)
:
(

2
n−1

)
Sym(XTT TC dT X)

=
(

2
n−1

) (
I − (BA)−1/2B

)
: (XTT TC dT X)

=
(

2
n−1

)
CTX

(
I − (BA)−1/2B

)
XT : dT

∂β

∂T
=
(

2
n−1

)
CTX

(
I − (BA)−1/2B

)
XT

7.3 M-Estimator Asymptotics
These theorems and proofs are adapted from [49] for the reader’s convenience.

Theorem 7.3.1 (Consistency of M-Estimators). Let Θ be a subset of the real line and let Ψn

be random functions and Ψ a fixed function of θ such that Ψn(θ) → Ψ(θ) in probability for
every θ. Assume that each map θ 7→ Ψn(θ) is continuous and has exactly one zero θ̂n, or is
nondecreasing with Ψn

(
θ̂n

)
= oP (1). Let θ0 be a point such that Ψ (θ0 − ε) < 0 < Ψ (θ0 + ε)

for every ε > 0. Then θ̂n
P→ θ0.

Proof. If the map θ 7→ Ψn(θ) is continuous and has a unique zero at θ̂n, then

P (Ψn (θ0 − ε) < 0,Ψn (θ0 + ε) > 0) ≤ P
(
θ0 − ε < θ̂n < θ0 + ε

)
The left side converges to one, because Ψn (θ0 ± ε) → Ψ (θ0 ± ε) in probability. Thus the
right side converges to one as well, and θ̂n is consistent.
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If the map θ 7→ Ψn(θ) is nondecreasing and θ̂n is a zero, then the same argument is valid.
More generally, if θ 7→ Ψn(θ) is nondecreasing, then Ψn (θ0 − ε) < −η and θ̂n ≤ θ0− ε imply
Ψn

(
θ̂n

)
< −η, which has probability tending to zero for every η > 0 if θ̂n is a near zero.

This and a similar argument applied to the right tail shows that, for every ε, η > 0,

P (Ψn (θ0 − ε) < −η,Ψn (θ0 + ε) > η) ≤ P
(
θ0 − ε < θ̂n < θ0 + ε

)
+ o(1)

For 2η equal to the smallest of the numbers −Ψ (θ0 − ε) and Ψ (θ0 + ε) the left side still
converges to one.

Suppose a sequence of estimators θ̂n is consistent for a parameter θ that ranges over
an open subset of a Euclidean space. The next question of interest concerns the order at
which the discrepancy θ̂n − θ converges to zero. We now derive the asymptotic normality of
M -estimators.

We can use a characterization of M -estimators by solving estimating equations.

Theorem 7.3.2 (Asymptotic Normality of M-Estimators). Let X1, . . . , Xn be a sample from
some distribution P , and let a random and a "true" criterion function be of the form:

Ψn(θ) ≡ 1

n

n∑
i=1

ψθ (Xi) = Enψθ, Ψ(θ) = Eψθ

Assume that the estimator θ̂n is a zero of Ψn and converges in probability to a zero θ0 of Ψ.
Also assume Ψn

(
θ̃n

)
is OP (1).

Then
√
n
(
θ̂n − θ0

)
D→ N

(
0,

Eψ2
θ0(

Eψ′θ0
)2

)
.

Proof. Because θ̂n → θ0, it makes sense to expand Ψn

(
θ̂n

)
in a Taylor series around θ0.

Assume for simplicity that θ is one-dimensional. Then

0 = Ψn

(
θ̂n

)
= Ψn (θ0) +

(
θ̂n − θ0

)
Ψ′n (θ0) +

1

2

(
θ̂n − θ0

)2

Ψ′′n

(
θ̃n

)
where θ̃n is a point between θ̂n and θ0. This can be rewritten as

√
n
(
θ̂n − θ0

)
=

−√nΨn (θ0)

Ψ′n (θ0) + 1
2

(
θ̂n − θ0

)
Ψ′′n

(
θ̃n

) .
If Eψ2

θ0
is finite, then the numerator −√nΨn (θ0) = −n−1/2

∑
ψθ0 (Xi) is asymptotically

normal by the central limit theorem. The asymptotic mean and variance are Eψθ0 = Ψ (θ0) =
0 and Eψ2

θ0
, respectively. Next consider the denominator. The first term Ψ′n (θ0) is an average
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and can be analyzed by the law of large numbers: Ψ′n (θ0)
P→ Eψ′θ0 , provided the expectation

exists. The second term in the denominator is a product of θ̂n− θ = oP (1) and ψ′′n
(
θ̃n

)
and

converges in probability to zero. Together with Slutsky’s lemma, these observations yield

√
n
(
θ̂n − θ0

)
D→ N

(
0,

Eψ2
θ0(

Eψ′θ0
)2

)
.

Lemma 7.3.3 (Slutsky). Let Xn, X and Yn be random vectors or variables. If Xn
D→ X

and Yn
P→ c for a constant c, then

• Xn + Yn
D→ X + c;

• YnXn
D→ cX;

• Y −1
n Xn

D→ c−1X provided c 6= 0.

7.4 Rosenthal-type Inequality
This is also in [38]. Let X denote the class of all finite sequences X = (X1, . . . , Xn) of
independent zero-mean random variables (r.v.’s). For any X = (X1, . . . , Xn) ∈ X , let
SX := X1 + · · ·+Xn. Take any real number p > 2 and any positive real numbers A and B.
Consider

Xp;A,B :=

{
X = (X1, . . . , Xn) ∈ X :

n∑
1

EX2
i = B,

n∑
1

E |Xi|p = A

}
,

Xp;≤A,≤B :=

{
X = (X1, . . . , Xn) ∈ X :

n∑
1

EX2
i ≤ B,

n∑
1

E |Xi|p ≤ A

}
Xp;X;A,B := {X ∈ Xp;A,B : X is independent of X}

Xp;X;≤A,≤B := {X ∈ Xp;≤A,≤B : X is independent of X} .
Theorem 7.4.1. Suppose that p ∈ (2, 3] and E|X|p <∞. Then

sup
X∈Xp;X :≤A,≤B

E |X + SX|p = sup
X∈Xp;X;A,B

E |X + SX|p

= A+ E
∣∣X +B1/2Z

∣∣p .
Here, Z ∼ N(0, 1).



84

Bibliography

[1] Martial Agueh and Guillaume Carlier. “Barycenters in the Wasserstein Space.” In:
SIAM Journal on Mathematical Analysis 43.2 (2011), pp. 904–924.

[2] Jason Altschuler and Enric Boix-Adsera. “Wasserstein Barycenters are NP-hard to
Compute”. In: arXiv:2101.01100 (2021).

[3] Jason M. Altschuler and Enric Boix-Adserà. “Hardness results for Multimarginal Op-
timal Transport problems”. In: arXiv:2012.05398 (2020).

[4] Jason M. Altschuler and Enric Boix-Adserà. “Polynomial-time Algorithms for Multi-
marginal Optimal Transport Problems with Structure”. In: arXiv:2008.03006 (2020).

[5] Dario Amodei et al. “Concrete Problems in AI Safety”. In: arXiv:1606.06565 (2016).

[6] Shai Ben-David et al. “Analysis of representations for domain adaptation”. In: Advances
in Neural Information Processing Systems (2007), pp. 137–144. issn: 10495258. doi:
10.7551/mitpress/7503.003.0022.

[7] Jean-David Benamou et al. “Iterative Bregman Projections for Regularized Trans-
portation Problems”. In: SIAM Journal on Scientific Computing 37.2 (2015), A1111–
A1138.

[8] José Bento and Liang Mi. “Multi-Marginal Optimal Transport Defines a Generalized
Metric”. In: arXiv:2001.11114 (2020).

[9] Rajendra Bhatia, T. Jain, and Yongdo Lim. “On the Bures–Wasserstein distance be-
tween positive definite matrices”. In: Expositiones Mathematicae 37.2 (2019), pp. 165–
191. issn: 07230869. doi: 10.1016/j.exmath.2018.01.002. arXiv: 1712.01504.

[10] François Bolley, Arnaud Guillin, and Cédric Villani. “Quantitative concentration in-
equalities for empirical measures on non-compact spaces”. In: Probability Theory and
Related Fields 137.3-4 (2007), pp. 541–593. issn: 01788051. doi: 10.1007/s00440-
006-0004-7. arXiv: 0503123 [math].

[11] Nicolas Bonneel et al. “Sliced and Radon Wasserstein Barycenters of Measures”. In:
Journal of Mathematical Imaging and Vision 51.1 (2015), pp. 22–45.

[12] Nicolas Bonnotte. Unidimensional and Evolution Methods for Optimal Transportation.
2013.

[13] Greg Brockman et al. “OpenAI Gym”. In: arXiv:1606.01540 (2016). MIT License.



BIBLIOGRAPHY 85

[14] Charlotte Bunne et al. “Learning Generative Models across Incomparable Spaces”. In:
ICML. 2019.

[15] Jiezhang Cao et al. “Multi-marginal Wasserstein GAN”. In: NeurIPS. 2019.

[16] Marco Cuturi. “Sinkhorn Distances: Lightspeed Computation of Optimal Transport”.
In: NeurIPS. 2013.

[17] Marco Cuturi and Arnaud Doucet. “Fast Computation of Wasserstein Barycenters”.
In: ICML. 2014.

[18] Robert Dadashi et al. “Primal Wasserstein Imitation Learning”. In: arXiv:2006.04678
(2020).

[19] Ishan Deshpande et al. “Max-Sliced Wasserstein Distance and Its Use for GANs”. In:
CVPR. 2019.

[20] Rémi Flamary, Karim Lounici, and André Ferrari. “Concentration bounds for lin-
ear Monge mapping estimation and optimal transport domain adaptation”. In: arXiv
(2019). arXiv: 1905.10155.

[21] Wilfrid Gangbo and Andrzej Święch. “Optimal maps for the multidimensional Monge-
Kantorovich problem”. In: Communications on Pure and Applied Mathematics 51.1
(1998), pp. 23–45.

[22] Aude Genevay, Gabriel Peyre, and Marco Cuturi. “Learning Generative Models with
Sinkhorn Divergences”. In: AISTATS. 2018.

[23] Aude Genevay et al. “Sample Complexity of Sinkhorn divergences”. In: (Oct. 2018).
arXiv: 1810.02733. url: http://arxiv.org/abs/1810.02733.

[24] Evarist Gine and Richard Nickl. Mathematical Foundations of Infinite-Dimensional
Statistical Models. 2016. isbn: 9781107043169. doi: 10.1017/cbo9781107337862.

[25] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425. isbn:
978-0-898716-46-7.

[26] Soheil Kolouri et al. “Generalized Sliced Wasserstein Distances”. In: NeurIPS. 2019.

[27] R. Fergus L. Fei-Fei and P. Perona. “Learning generative visual models from few train-
ing examples: an incremental Bayesian approach tested on 101 object categories”. In:
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- Workshop on Generative-Model Based Vision (2004).

[28] Tianyi Lin et al. “On the Complexity of Approximating Multimarginal Optimal Trans-
port”. In: arXiv:1910.00152 (2019).

[29] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. “Multiple source adapta-
tion and the Rényi divergence”. In: Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence, UAI 2009 (2009), pp. 367–374. arXiv: 1205.2628.



BIBLIOGRAPHY 86

[30] Gonzalo Mena and Jonathan Weed. “Statistical bounds for entropic optimal transport:
sample complexity and the central limit theorem”. In: arXiv (2019), pp. 1–23. issn:
23318422. arXiv: 1905.11882.

[31] Kimia Nadjahi et al. “Statistical And Topological Properties of Sliced Probability Di-
vergences”. In: arXiv:2003.05783 (2020).

[32] Kimia Nadjahi et al. “Statistical and Topological Properties of Sliced Probability Di-
vergences”. In: NeurIPS. 2020.

[33] Khai Nguyen et al. “Distributional Sliced-Wasserstein and Applications to Generative
Modeling”. In: ICLR. 2021.

[34] Victor M. Panaretos and Yoav Zemel. An Invitation to Statistics in Wasserstein Space.
2020. isbn: 978-3-030-38437-1. doi: 10.1007/978- 3- 030- 38438- 8. url: http:
//link.springer.com/10.1007/978-3-030-38438-8.

[35] Brendan Pass. “Multi-Marginal Optimal Transport: Theory and Applications”. In:
arXiv:1406.0026 (2014).

[36] Gabriel Peyré and Marco Cuturi. “Computational Optimal Transport”. In: Foundations
and Trends in Machine Learning (2019).

[37] Gabriel Peyré, Marco Cuturi, and Justin Solomon. “Gromov-Wasserstein Averaging of
Kernel and Distance Matrices”. In: ICML. 2016.

[38] Iosif Pinelis. “Exact Rosenthal-type bounds”. In: The Annals of Probability 43.5 (Sept.
2015). issn: 0091-1798. doi: 10.1214/14-aop942. url: http://dx.doi.org/10.
1214/14-AOP942.

[39] Iosif Pinelis. “Optimal-order uniform and nonuniform bounds on the rate of conver-
gence to normality for maximum likelihood estimators”. In: Electronic Journal of Statis-
tics 11.1 (2017), pp. 1160–1179. issn: 19357524. doi: 10.1214/17-EJS1264.

[40] Iosif Pinelis and Raymond Molzon. “Optimal-order bounds on the rate of convergence
to normality in the multivariate delta method”. In: Electronic Journal of Statistics 10.1
(2016), pp. 1001–1063. issn: 19357524. doi: 10.1214/16-EJS1133. arXiv: 0906.0177.

[41] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical Analysis of Domain
Adaptation with Optimal Transport. Tech. rep. 2017. url: https://hal.archives-
ouvertes.fr/hal-01613564.

[42] Mark Rowland et al. “Orthogonal Estimation of Wasserstein Distances”. In: AISTATS.
2019.

[43] Vivien Seguy et al. “Large-Scale Optimal Transport and Mapping Estimation”. In:
(2018). arXiv: 1711.02283 [stat.ML].

[44] Dino Sejdinovic et al. “Equivalence of distance-based and RKHS-based statistics in
hypothesis testing”. In: Annals of Statistics 41.5 (2013), pp. 2263–2291. issn: 00905364.
doi: 10.1214/13-AOS1140. arXiv: 1207.6076.



BIBLIOGRAPHY 87

[45] Rishi Sonthalia and Anna C. Gilbert. “Dual Regularized Optimal Transport”. In:
(2020). arXiv: 2012.03126. url: http://arxiv.org/abs/2012.03126.

[46] Sanvesh Srivastava, Cheng Li, and David B. Dunson. “Scalable Bayes via Barycenter
in Wasserstein Space”. In: Journal of Machine Learning Research 19.1 (Jan. 2018),
pp. 312–346.

[47] Ingo Steinwart and Clint Scovel. “Fast rates for support vector machines using Gaussian
kernels”. In: Annals of Statistics 35.2 (2007), pp. 575–607. issn: 00905364. doi: 10.
1214/009053606000001226. arXiv: arXiv:0708.1838v1.

[48] N. Tupitsa et al. “Multimarginal Optimal Transport by Accelerated Alternating Min-
imization”. In: CDC (2020), pp. 6132–6137.

[49] A. W. van der Vaart. Asymptotic Statistics (Cambridge Series in Statistical and Proba-
bilistic Mathematics). Cambridge University Press, June 2000. isbn: 0521784506. url:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=
ASIN/0521784506.

[50] Titouan Vayer et al. “Sliced Gromov-Wasserstein”. In: NeurIPS. 2019.

[51] Cédric Villani. Optimal Transport: Old and New. Springer Science & Business Media,
2008.

[52] Hongteng Xu, Dixin Luo, and Lawrence Carin. “Scalable Gromov-Wasserstein Learn-
ing for Graph Partitioning and Matching”. In: NeurIPS. 2019.

[53] Hongteng Xu et al. “Gromov-Wasserstein Learning for Graph Matching and Node
Embedding”. In: ICML. 2019.

[54] Ding Xuan Zhou. “Capacity of reproducing kernel spaces in learning theory”. In: IEEE
Transactions on Information Theory 49.7 (2003), pp. 1743–1752. issn: 00189448. doi:
10.1109/TIT.2003.813564.




