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Abstract

Cell classification based on phenotypical, spatial, and genetic information greatly advances our 

understanding of the physiology and pathology of biological systems. Technologies derived from 

next generation sequencing (NGS) and fluorescent activated cell sorting (FACS) are cornerstones 

for cell- and genomic-based assays supporting cell classification and mapping. However, there 

exists a deficiency in technology space to rapidly isolate cells based on high content image 

information. Fluorescence-activated cell sorting can only resolve cell-to-cell variation in 

fluorescence and optical scattering. Utilizing microfluidics, photonics, computation microscopy, 

real-time image processing and machine learning, we demonstrate an image-guided cell sorting 

and classification system possessing the high throughput of flow cytometer and high information 

content of microscopy. We demonstrate the utility of this technology in cell sorting based on 1) 

nuclear localization of glucocorticoid receptors, 2) particle binding to the cell membrane, and 3) 

DNA damage induced γ-H2AX foci.

INTRODUCTION

There are a far greater number of cell types than people realized in the past, and classifying 

cells from healthy and diseased tissues in much finer detail than before can bring significant 

insight in biology and medicine. While sequencing of single cells becomes the technology 

cornerstone for cell classification, selection of these single cells for genomic analyses rely 

on fluorescence activated cell sorting (FACS) systems [1,2]. A small biological sample can 

contain millions of cells, hence analyzing even as many as 100,000 single cells represent 

only a very small percentage of cells in the sample. Thus intelligent selection of this small 

percentage of cells for downstream analysis is critical to efficient and accurate cell 

classification. However, today’s cell selection techniques are purely based on fluorescent 

biomarkers and/or light scattering intensity, without resorting to high content image 

information that has the most distinctive power to support smart and logical selection of 

cells, especially those rare cells and cells without known or unique biomarkers.
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Using machine learning and other innovative techniques, we demonstrate an image-guided 

flow cytometer cell sorter. The availability of flow cytometers with the capability to classify 

and isolate cells guided by high-content cell images is enabling and transformative[3]. It 

provides a new paradigm to allow researchers and clinicians to isolate cells using multiple 

user-defined characteristics encoded by both fluorescent signals and morphological and 

spatial features.

Examples of applications include isolation of cells based on organelle translocation, cell 

cycle, detection and counting of phagocytosed particles, and protein co-localization, to name 

a few.[4–7] Some specific applications include translocation of glucocorticoid receptor (GR) 

from cytosol to nucleus under dexamethasone treatment[8], glucocorticoid receptor and 

sequential p53 activation by drug mediated apoptosis[9], and translocation of protein kinase 

C (PKC) from cytosol to membrane in the context of oncogenesis[10]. β-arrestin-GFP is 

often used to measure the internalization (inactivation) of g-protein coupled receptors 

(gpcrs) as β-arrestin-GFP moves from cytosol to membrane. The ~800 Gpcrs include the 

opioid receptors (heroin, morphine, pain pills), the dopamine receptors (cocaine, 

methamphetamine, addiction/reward), and hundreds of others, many awaiting discovery or 

“adoption” of ligands. Other specific application examples include immunology studies of 

B-cell or T-cell responses to various drug treatments, asymmetric B-cell division in the 

germinal center reaction [11,12], the erythroblast enucleation process, signaling and 

cytoskeletal requirements in erythroblast enucleation [13,14], uptake and internalization of 

exosomes by various cancer cells, response of infected cells to drugs, use of antibody-drug 

conjugates for tracking drugs in/outside sub-cellular compartments, and locating antigens, 

enzymes or other molecules [15–19].

The reported machine learning based real-time image-guided cell sorting and classification 

technology possesses the high throughput of flow cytometer and high information content of 

microscopy, being able to isolate cells according to their imaging features at 1000X faster 

rate than laser microdissection[20] and single-cell aspiration[21]. We have applied a 

microfluidic platform and a spatial-temporal transformation method [22–24] to acquire cell 

images in real time with extremely simple hardware. We also developed a methodology of 

user-interface (UI) to generate sorting criteria by supervised machine learning, as described 

next.

After hundreds of cells pass through the imaging flow cytometer, the software generates a 

distribution of cell parameters, as well as several categories of cell images based on the 

built-in image processing and statistical classification algorithms. Users then apply point-

and-click selection of desired cell images for the basis of gating the cells for sorting from the 

sample. After collecting an additional number of cells based on user’s instructions, the 

software displays both the conventional flow cytometer parameters (i.e. fluorescence 

intensity) and a new set of image/morphology related parameters (e.g. nucleus size, cell 

area, circularity, fluorescence patterns, etc.), as well as the representative cell images of the 

cells. This iterative feedback process gives users the chance to confirm their original choice 

criteria and to modify the “gating”. Based on the displayed image and conventional data 

feedback, users may adjust the gating criteria. These criteria can be “ratio of fluorescence 

area over the total cell area”, “variations of fluoresce intensity profile over the cell”, “size of 
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nucleus”, or numerous other choices utilizing the spatial features of the cells. As a result, the 

image-guided cell selection process becomes a user-interface (UI) and user-experience (UX) 

interactive process with machine learning occurring in the background to present users with 

representative images of cell classes that most closely match the user needs and even suggest 

features possibly overlooked by users. As a result, users are given unprecedented intuitive 

visual assistance and insight to enhance their studies.

To demonstrate the above concepts and enabling capabilities, we report three experiments in 

this paper: (1) sorting of pEGFP-GR plasmids translocated HEK-297T Human Embryonic 

Kidney Cells based on intracellular protein distribution, (2) sorting of MDCK Madin-Darby 

Canine Kidney Epithelial Cells based on the number of particles bound to cell membrane, 

and (3) sorting of Human Glioblastoma Cells by extent of radiation-induced DNA damage. 

In all these experiments, we have set the flow speed of cells at 8cm/s in a microfluidic 

device, and used a throughput of 100 cells per second, limited by the processor speed of our 

current electronic (FPGA) hardware which can be upgraded by at least 5 fold with GPUs.

METHODS AND MATERIALS

System design of machine learning based real-time image-guided cell sorter

As shown in Figure 1 (a), the image-guided cell sorting and classification system consists of: 

(1) an imaging optical system with a spatially coded optical filter to perform spatial-

temporal transformation, (2) a real-time image processing and feature extraction module, (3) 

an off-line post processing module for construction of cell images for human vision and 

generation of cell classification criteria, and (4) a microfluidic chip integrated with an on-

chip piezoelectric (PZT) cell sorting actuator.

The optical filter encodes the fluorescent or light scattering signal of a cell into a temporal 

photocurrent waveform in the output of a photomultiplier tube (PMT) detector. Through a 

mathematical transformation described in [22,25], the 1D time domain signal is transformed 

into a 2D cell image. Due to the simplicity of the transformation algorithm, real-time signal 

processing can be implemented to extract image features of each cell to allow cell sorting 

based on these image features.

Machine learning is needed to generate and adjust image features to guide cell sorting [26–

28]. To start, training samples are flowed through the system to produce a set of training 

data. Off-line processing is employed to construct high resolution, cell images to interface 

with users whose inputs will aid the selection and adaptation of cell classification criteria for 

real-time sorting, a method of supervised machine learning. During the real-time cell sorting 

experiments, real-time processing module reconstructs cell images, extracts image features 

and makes sorting decisions based on the off-line trained sorting criteria. When a decision is 

made to sort a cell, a voltage pulse is applied to the on-chip PZT actuator, which 

instantaneously bends the bimorph PZT disk to deflect the cell away from the central flow 

into the sorting channel. For a proof-of-concept prototype, we have used a field-

programmable-gate-array (FPGA) platform to implement real-time image processing which 

produces a latency of a few milliseconds. Higher performance GPU processors can reduce 

the processing time by 100 folds or more to microseconds.
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Optical imaging setup

In the optical imaging system, suspended single cells flow in a microfluidic channel made of 

soft-molded polydimethylsiloxane (PDMS) bonded to a glass substrate. Sheath flow is used 

to hydro-dynamically focus the travelling cells to the center of the microfluidic channel. At 

the interrogation zone, each flowing cell is illuminated simultaneously by a 500mW 455nm 

LED (Thorlabs) and a 100mW 488nm laser (iBeam-SMART, Toptica) to generate bright 

field and fluorescent images. The output beam of 488nm laser is collimated, focused and 

expanded to illuminate a 100μm (x-direction) by 250μm (y-direction) area. The LED light is 

collimated and focused at the laser illumination area. Both the fluorescent emissions and the 

transmitted bright field signal are detected by PMTs (H9307–02, Hamamatsu). To 

accommodate the geometry of the microfluidic device, the laser beam is introduced to the 

optical interrogation area by a 52-degree miniature dichroic mirror positioned in front of a 

50X objective lens (NA=0.55, working distance=13 mm, Mituyoyo). The LED is placed at 

the opposite side of the channel and the light is focused to the same position as the laser 

beam. The spatially coded optical filter is inserted at the image plane in the detection path. 

The pattern of the filter is shown in Figure 1 (b). With the spatial filter, fluorescence/

scattering from different parts of the cell will pass different slits at different times. As a 

result, the waveform of the fluorescent/scattering signal from the PMT consists of a 

sequence of patterns separated in time domain, and each section of the signal in the time 

domain corresponds to the fluorescent/scattering signal generated by each particular segment 

of the cell. After the light intensity profile over each slit is received, the cell image of the 

entire cell can be constructed by splicing all the profile together. The image resolution in x- 

(transverse to the flow) direction is primarily determined by the number of slits on the 

spatial filter, and the resolution in y- (flow) direction is mainly determined by the sampling 

rate and cell flow speed. In our system, the raw image resolution is 2 μm in x-direction and 

0.4 μm in y-direction.

Dichroic mirrors are used to route the desired emission bands to their respective PMTs.

Real-Time image processing

The real-time image processing module is implemented in a field-programmable-gate-array 

(FPGA) platform (National Instrument cRIO-9039). The processing module performs the 

functions of cell detection and image processing, to be discussed next.

Both the bright field and fluorescent images of a cell are reconstructed from respective PMT 

readouts. Each image covers a field-of-view of 20X20µm2 with 50X50 pixels, matched to 

the finest spatial resolution achievable by the system. All relevant image features are 

calculated and compared against the cell selection (gating) criteria to make sorting decision.

Cell detection algorithm

The cell detection function determines whether a cell exists within a certain time interval, 

and subsequently instructs the system whether to store and transmit the signal over this time 

interval. The system records the outputs from PMTs in the First-in First-out (FIFO) data 

structure over a chosen length of time. Each time a new set of PMT readout enters the FIFO, 

cell detection algorithm is activated to determine whether there is a cell within the optical 

Gu et al. Page 4

Cytometry A. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



system’s field of view. As soon as the system detects the presence of cell within the data set, 

the system processes the data immediately to construct images and extract image features. 

Otherwise, the system continues to examine the next set of PMT readout.

Since fluorescent and bright-field images are generated simultaneously, only one fluorescent 

signal is used in cell detection algorithm. To shorten the processing time, we calculate the 

Brightness of signal by integrating the fluorescent intensity stored in the FIFO. The cell 

detection algorithm is shown in Supplementary Figure 1.

First, the Brightness is compared to a preset threshold defined as Threshold1. If the 

Brightness is greater than Threshold1, the system assumes a cell is entering the field of view. 

The calculated Brightness enters a FIFO data structure named FIFOBrightness. The length of 

FIFOBrightness is 100.

Second, the time derivative of Brightness is evaluated to check if the cell is within the field 

of view. The time derivative of Brightness can be represented by the quantity of 

“difference”, defined as (maxBrightness-minBrightness)/maxBrightness, where maxBrightness and 

minBrightness are the maximum and minimum elements in FIFOBrightness. If the “difference” 

is smaller than a preset Threshold2 (e.g. Threshold2 = 5%), the system considers the cell is 

within the field of view, and the function of real-time image processing is activated. The 

values of maxBrightness and minBrightness are updated each time a new element enters 

FIFOBrightness. The algorithm to calculate maxBrightness and minBrightness is shown in 

Supplementary Figure 2.

Third, Brightness is compared to Threshold1 again as time goes on. If the Brightness falls 

below Threshold1 at some point of time, the algorithm determines the cell has left the field 

of view.

Brightness is calculated from the PMT readout stored in the FIFO data structure. The FIFO 

for fluorescent signal is referred as FIFOPMT. Each time when a new PMT readout enters 

FIFOPMT, Brightness value is updated by including the latest PMT readout and excluding 

the dequeued element in FIFOPMT. Brightness is calculated by equation 1.

Brightness[tn] = Brightness[tn − 1] + VoltagePMT − FIFOPMT[dequeue] (1)

where Brightness[tn] is the updated Brightness, Brightness[tn − 1] is Brightness of last time 

step, VoltagePMT is the incoming PMT readout, which is the enqueued element of FIFOPMT, 

and FIFOPMT[dequeue] is the dequeued element in FIFOPMT.

Image processing algorithm

For all applications, we essentially follow the same flow for real time image processing, 

involving denoising, image resizing, contour definition, area calculation, feature 

enumeration, etc. Some of the processes can run in parallel to simultaneously extract 
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multiple image derived features pertinent to image-guided sorting. In the following, we 

depict the specific processes applicable to each specific experiment.

Real time image processing algorithm for protein translocation experiment.

The image processing algorithm is illustrated in Supplementary Figure 3. The image 

processing algorithm includes the following steps: (1) Denoise PMT signals with a 10th-

order Hamming low-pass filter. (2) Reconstruct both bright-field and fluorescent images 

from PMT signals. Since both bright-field and fluorescent signals are generated by the same 

slit although from different light sources, they are well synchronized. Thus the image 

reconstruction algorithm only needs to be launched once for both bright-field and 

fluorescent images. (3) Resize the images from 10×50 pixels (due to asymmetric resolution 

in raw images) to 50×50 pixels. (4) Detect contours of cell images by first converting the 

grayscale images to binary images, then eliminating spurious noise with open filter, and 

finally applying the contour detection algorithm to the binary images. (5) Extract all image-

derived parameters.

Examples of image-derived parameters that can be extracted from each cell in real time are 

shown in Supplementary Table 1. As discussed later in this paper, these image-derived 

parameters are evaluated with Receiver Operating Characteristics (ROC). The 3 parameters 

receiving the highest ROC score are used as default parameters for real-time image-guided 

sorting. The latency of real-time processing algorithm is 5.8ms/cell with the current FPGA 

system, and the latency can be reduced by over 100 times with high performance GPU(e.g. 

NVIDIA QUADRO P6000).

Real time image reconstruction and speed detection.—An optical spatial filter 

consisting of 10 slits is placed at the image plane of the signal. With a 50X (or 20X if 

desired for extended focal depth) objective lens, the image projected onto the optical spatial 

filter is 50X (20X) times greater than the object in the microfluidic channel. For each cell 

travelling in the microfluidic channel, its PMT readout produces10 peaks, each 

corresponding to the cell’s fluorescent or bright-field transmitted signal passing one of 10 

slits on the spatial filter. At a cell travel speed of 8 cm/s and at 200 kSamples/s, each peak 

consists of 50 sampling points. To reconstruct cell images, two factors need to be 

considered. First, since cells do not travel at a perfectly uniform speed, the actual number of 

sampling points for each of 10 peaks may vary slightly. Second, since both cell travelling 

speed and cell position within the 20 μm by 20 μm image area can vary, the starting time 

point of the PMT readout also varies. In the image reconstruction algorithm, we refer “m” to 

be the starting point of PMT readout, “n” to be the number of sampled points in each peak. 

Based on cell speed variations, n ranges from 46 to 51. This leads to a range of m from 0 to 

519–10n. The algorithm sweeps m and n to assure the best combination of (m,n) to 

reconstruct the cell image. Summation of intensities at the starting point of each peak is 

calculated for every (m,n) combination. The combination yielding the smallest sum is the 

right (m,n) which we use to reconstruct the image. Travelling speed of the cell can be 

detected based on the calculated value “n”. The algorithm is shown in equation 2 and 

Supplementary Figure 4. In Supplementary Figure 4, The black “*” are starting points for 

each peak found by the reconstruction algorithm.
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(m, n) = (m, n) min
i = 0

10

m = 0

519 − 10n
FIFOPMT1[m + i × n] (2)

After image reconstruction, grayscale cell images are resized to 50×50 pixel images by 

linear interpolation. Then resized grayscale images are converted to binary images based on 

the preset intensity threshold. The conversion is described as follows:

binary_image i, j = 1, i f grayscale_image i, j > threshold
0, i f grayscale_image i, j < threshold

(3)

where (i, j) refers to the pixel located at row i and column j.

In the step of open filter, we use a 3×3 pixel neighborhood in our image processing 

algorithm.

Real time image contour detection.—As shown in Supplementary Figure 5, in the 

contour finding algorithm all the pixels in a binary cell image are scanned. For those pixels 

of non-zero value, the algorithm checks all eight pixels surrounding the center pixel in a 3×3 

matrix. If the number of non-zero neighboring pixels is between 1 and 7, then this pixel is 

determined to be on the cell contour. Otherwise, the pixel is either inside or outside the 

contour. The criteria can be described in (4):

image_contour i, j = 1, i f 0 < n < 8 & binary_image i, j = 1
 0, Otherwise

(4)

where n is the number of non-zeros pixels surrounding the center pixel of the 3×3 matrix.

Real time image processing algorithm for sorting MDCK cells according to the number of 
particles on cell surfaces.

The image processing algorithm for sorting MDCK Madin-Darby Canine Kidney Epithelial 

Cells based on the number of beads bonded to the cells is essentially the same as the 

previous cases except a top-hat filter with 7X7 pixels is used to extract features of small 

particles. The entire algorithm takes about 6 ms with current hardware. The flow chart of 

real-time image processing algorithm is shown in Supplementary Figure 6.

Real time image processing algorithm for sorting human glioblastoma cells by the extent 
of radiation induced DNA damage.

The image processing algorithm is illustrated in Supplementary Figure 7. The same top-hat 

filter with 7X7 pixels used before is also applied to remove background in gamma-h2ax 

image. Also the same algorithm is used to convert both the GFP image and the background 

removed gamma-h2ax image into binary images, and extract all image-derived parameters. 

The latency of the algorithm is about 6.7ms/cell.
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Cell sample preparation

Translocating pEGFP-GR plasmids to HEK-297T human embryonic kidney 
cells.—First GR-GFP plasmid DNA is obtained from bacterial culture. Then two plates of 

HEK 293T cells are cultured and transfected with GR-GFP. After transfection, cells are 

cultured for 2~3 days. Then one plate of cells is treated with dexamethasone. The 

dexamethasone treatment is supposed to cause migration of pEGFP-GR protein from 

cytoplasm to nucleus. For untreated cells, pEGFP-GR protein stays in cytoplasm.

Bond fluorescent beads to MDCK cells.—MDCK cells are cultured in a 10cm 

diameter dish. Then add 100µL solution of 1μm diameter fluorescent beads to the culture 

dish and keep the cell culture overnight. In the final step, cells are fixed and stained with 

Carboxyfluorescein succinimidyl ester (CFSE).

Irradiation and antibody staining of Human Glioblastoma Cells.—To induce 

DNA double-strand breaks (DSB), GFP labeled Human Glioblastoma Cells (GBM-

CCC-001) are treated with 6Gy irradiation. The treated cells are washed once with 

phosphate buffered saline (PBS) and fixed with 1% paraformaldehyde 30 minutes post 

irradiation. The fixed cells are washed with PBS twice. Then 70% ethanol is added to the 

cells and the cells are incubated on ice for 1 hour. After ethanol treatment, cells are washed 

with PBS twice and incubated in 1% TritonX-100 at room temperature for 10 minutes. Then 

cells are washed with PBS once and incubated in 5% Bovine Serum Albumin (BSA) in PBS 

for 30 minutes at room temperature on shaker. Then cells are washed with PBS once and 

incubated in Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301 at 1:300 

dilution on ice on shaker for 1 hour. After the primary antibody treatment, cells are washed 

twice with 5% BSA and incubate in PerCP/Cy5.5 anti-mouse IgG1 Antibody at 1:100 

dilution on ice on shaker for 1 hour. At last, the stained cells are washed twice with 5% BSA 

and resuspended in 1:3 diluted stabilize fixative buffer in MilliQ water.

RESULTS

Sorting cells by spatial distribution of specific protein.

Spatial distribution of certain protein or organelles such as lysosomes and mitochondria 

carry important biological information. Image guided cell sorter is, to our knowledge, the 

only tool that can capture cells of sufficient quantity and purity based on such information. 

Here we demonstrate such functionality using pEGFP-GR plasmids translocated HEK-297T 

cells and un-translocated HEK-297T cells. pEGFP-GR expresses the eGFP protein fused to 

the N-terminal end of the glucocorticoid receptor.

Nuclear import and export of glucocorticoid receptor are important cellular processes related 

to numerous cancers, chronic inflammatory diseases and developmental disorders [29–31]. 

Protein translocation does not necessarily change the overall fluorescent or light scattering 

intensity of cells. Hence conventional flow cytometer is unable to distinguish translocated 

cells from un-translocated cells.

In the experiment, HEK-293T cells are transfected with GR-GFP and separated into 2 plates. 

One plate of cells is treated with dexamethasone that causes migration of GR-GFP protein 
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from cytoplasm to nucleus. The other plate of cells is untreated so the GR-GFP protein stays 

in cytoplasm. The example microscope cell images are shown in Figure. 2(a). The mixture 

of both types of cells are flown through the system and imaged, and the interested subgroup 

can be isolated based on the real-time captured cell images.

For supervised machine learning, treated and untreated cells are flown through the system 

and all image-related parameters from their fluorescent and bright field images are obtained. 

These extracted image parameters are used to generate gating criteria for real-time image 

guided cell sorting.

Figure 2(b) shows typical reconstructed cell images with bright-field image defining the cell 

boundary and the fluorescent image delineating the spatial distribution of GR-GFP protein. 

All image-derived parameters are also extracted to generate criteria for real-time image-

based cell sorting. In this example, the image-derived parameters include fluorescent area, 

bright-field area, perimeters, shape factors (i.e. area/perimeter ratio), etc.

Next all image-derived parameters are ranked by their Receiver Operating Characteristics 

(ROC) score, which quantifies each parameter’s ability to distinguish translocated cells from 

un-translocated cells. The three highest ranked parameters are selected for image-guided 

sorting parameters by default unless users enter extra inputs for the system to adopt different 

sorting criteria. In this experiment, the top 3 parameters are the area ratio between 

fluorescent and bright field signals, perimeter ratio of fluorescent and bright field signals, 

and total fluorescent area.

Next a 3D hyperplane separating two cell populations based on the selected top 3 parameters 

is formed by Support Vector Machine (SVM). This hyperplane (Figure 2 (c)) defines the 

criteria for real-time image-guided cell sorting. 300 un-translocated and 300 translocated 

cells were used as SVM training set. The accuracy of classifying the translocated cells using 

the SVM hyperplane was obtained by 4-fold cross-validation. Based on the 4-fold cross-

validation, the classification accuracy of translocated cells was 97%±3%.

To test the above methodology, we isolated translocated cells from a 50:50 mixture of 

translocated and un-translocated cells at a concentration of 200,000 cells/mL in phosphate 

buffered saline (PBS). After sorting, a fluorescence microscope was used to image the sorted 

cells. From 171 fluorescent microscope images, we calculated a sorting purity of 89% based 

on the above image-guided criteria.

Sorting cells according to particle binding on cell membrane

To show the capabilities of isolating cells based on surface markers, we sort MDCK cells 

based on the number of fluorescent particles bonded to the cell membrane. Fluorescent 

polystyrene beads (1µm diameter) functionalized with carboxylic groups can be adsorbed to 

almost any membrane proteins. By adjusting the concentration of the beads and cells in the 

mixture, the test system can produce a large variety of the number of beads bonded to each 

cell. Here we use a 20X objective lens to increase the depth of focus, and the dimension of 

optical spatial filter is adjusted accordingly. The fluorescent signals of cells (520nm 

wavelength) and beads (645nm wavelength) are detected by 2 PMTs. The image processing 
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algorithm is similar to the previous cases, including generation of fluorescent images (50×50 

pixels) of the cells and the beads, noise suppression with a digital filter, finding image 

contours by converting gray scaled images into binary images with defined thresholds, and 

extraction of image-derived features (See more details in Methods section). Examples of the 

reconstructed images are shown in Figure 3(a) from which one can unambiguously 

enumerate the number of particles on the cell surface. Figure 3(b) is the histogram of 

normalized fluorescence area from the beads. One can see a strong correlation between the 

fluorescent area and the number of beads. The hyperplane generated by SVM separating cell 

populations bonded with different number of beads is shown in Figure 3(c). The top 3 

parameters used to generate the 3D hyperplane are normalized fluorescent area from the 

beads, normalized perimeter of the beads and the net intensity within the central area of 

beads. The “net intensity within central area of beads” is different from the overall 

fluorescent intensity of beads because it includes signals only from the region of the highest 

intensity in each spot, thus minimizing the effects of background noise, blurring, and color 

bleeding in the signal of conventional FACS systems. 430 cells bonded with 1 bead, 327 

cells bonded with 2 beads, 185 cells bonded with 3 beads, and 145 cells bonded with 4 beads 

were used as SVM training set. The accuracy of classifying the cells bonded with 2 or more 

than 2 beads using the SVM hyperplane was obtained by 4-fold cross-validation. Based on 

the 4-fold cross-validation, the classification accuracy of cells bonded with 2 or more beads 

was 100%.

To test the above methodology, we isolated cells bonded with 2 or more beads. After sorting, 

a fluorescence microscope was used to verify the sorting purity. From 122 fluorescent 

microscope images, we calculated a sorting purity of 92%.

Sorting cells by the extent of radiation damage.

Next we report experiment of sorting human glioblastoma cells by the extent of radiation 

induced DNA damage. The number of gamma-h2ax foci is a key parameter measuring the 

number of DNA double-strand breaks (DSB) induced by cytotoxic agents including ionizing 

radiation.[32,33] Currently, fluorescent microscopy equipped with high throughput image 

processing is used to count gamma-h2ax foci number as a measure of DNA damage.[34] 

However, besides the lower than desired throughput for microscopy, no technique can 

efficiently isolate cells according to cell’s resistance to radiation or cytotoxic damage to 

support downstream molecular analysis over the targeted cell groups. The throughput of 

laser microdissection is much too low to support such studies. Image-guided cell sorter fills 

the technology gap by using machine learning and real time image processing to sort cells 

based on the foci count of gamma-h2ax that directly delineates the sections of broken DNAs 

by ionizing radiation.

GFP transfected human glioblastoma cells (GBM-CCC-001) are treated with 6Gy 

irradiation, and then the cells are fixed by paraformaldehyde. The fixed cells are stained with 

primary antibody (mouse-anti-gH2AX) and secondary antibody conjugated with fluorophore 

(PerCP-Cy5.5). The GFP signal delineates the area of the entire cell and the distribution of 

fluorescent signals from gamma-h2ax represents the fragments of double strand DNAs 

broken by radiation.
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As stated previously, the spatial resolution of the raw image of our system is 2µm by 0.4µm. 

Hence image processing is required to enhance the effective resolution to resolve the 

gamma-h2ax foci smaller than 1µm diameter. The typical images of the fluorescent spots 

from gamma-h2ax foci are shown in Figure 4 (a). Here off-line compressive sampling 

algorithm is used to produce higher spatial resolution (0.4µm x 0.4µm) images from the 

lower resolution (2µm x 0.4µm) raw images.[35,36] Such off-line processed higher 

resolution images are only displayed to users, but not used for real time image-derived 

parameter extraction.

The compressive sampling reconstruction can be described by equation 5, where Imeasure is 

the background removed image, f(x,y) is the spatial mask, and ψ(x, y) is the point spread 

function of objective lens (NA=0.55) approximated by a Gaussian function with 0.35µm 

root-mean-square (RMS) width, and IFoci is the gamma-h2ax fluorescence distribution. IFoci

is solved using ℓ1-Regularized Least Squares Solver.[37] Using the solved IFoci, the image 

IOb jctive formed by objective lens (NA=0.55) is calculated by equation 6. The image IOb jctive

has higher resolution compared to the raw image Imeasure, which has 2 µm by 0.4 µm 

asymmetric resolution equivalent to a 10×50 pixel image. The example cell images 

reconstructed by compressive sampling algorithm are shown in Figure 4 (b).

Imeasure = f (x, y) ⊗ ψ(x, y) ⊗ IFoci (5)

IOb jctive = ψ(x, y) ⊗ IFoci (6)

Although compressive sampling algorithms reconstruct images with high resolution, it is not 

used for image-guided sorting in our experiment because of the limited processing speed of 

our current hardware. In the experiment reported here we still use the lower resolution raw 

images in Figure 4 (a) to guide cell sorting. Two image-derived parameters extracted from 

the real-time reconstructed images are used to estimate the foci count: the total perimeter of 

gamma-h2ax images and the net gamm-h2ax intensity within the central area of each focus 

area. The latter is different from the overall fluorescent intensity of gamm-h2ax because it 

includes signals only from the region of highest intensity in each focus area, thus 

minimizing the effects of background noise, blurring, and color bleeding in the signal of 

conventional FACS systems. Figure 5 (a–c) shows how conventional intensity-based sorting 

is compared against image-guided sorting with the above image-derived parameters.

To obtain the ground truth for each cell being investigated, we apply off-line processing to 

resolve high-resolution images of 1800 cells, and then find how the total fluorescent 

intensity and real-time image-derived parameters are related to the ground truth images. The 

actual foci count is derived from the ground truth images, and Poisson regression is used to 

predict the foci count based on total fluorescent intensity and real-time image-derived 

parameters. The scatter plot of predicted foci count and actual foci count are shown in 
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Figure 5 (a) and (b), and the respective R-squared values are calculated. Using total 

fluorescent intensity to predict the foci count, the R-squared value is found to be 

0.632±0.029. In contrast, using real-time image-derived parameters to predict foci count, the 

R-squared value is increased to 0.881±0.008, significantly greater than intensity-based 

sorting. Figure 5 (d) and (e) shows histograms of foci count predicted by total gamma-h2ax 

fluorescent intensity and predicted by image derived parameters. Here bin1 includes cells 

with 16~17 foci and bin2 includes cells with 25~31 foci. Consistent with the conclusion 

from Figure 5(a–c), Figure 5 (d) and (e) indicates that intensity based sorting between bin1 

and bin2 has greater overlap (i.e. ambiguity) than image based sorting. The result can be 

more quantitatively represented from the Receiver Operating Characteristic (ROC) analysis 

in Figure 5 (f). The ROC analysis indicates superior performance of image-guided sorting 

compared to conventional intensity-based sorting. Also notably in Figure 5 (c), there are 

about 1% “outliers” in the scatter plot of total gamma-h2ax fluorescent intensity versus foci 

count, indicating the presence of a small population of cells with exceptionally high gamma-

h2ax intensity but not particularly large foci count. If cells of such properties are to be 

studied, one can use sorting criteria that combine intensity and image-derived parameters to 

isolate such rare population. On the other hand, using only intensity for sorting criteria as in 

conventional FACS, we would misclassify those high-intensity but moderate foci count cells, 

presenting the risk of missing vital biological information. This is just another example of 

the unique capability image-guided cell sorting can bring to the research community.

To quantitatively evaluate the performance of image-guided sorting and intensity-based 

sorting, we have compared sorting purity and yield by isolating cells with more than 23 foci 

using both techniques. By shifting the gating threshold, we estimated the sorting accuracy 

versus sorting yield. As shown in Figure 6 (b), image-guided sorting with 2µm x 0.4µm 

spatial resolution has consistently shown superior performance than conventional intensity-

based sorting.

DISCUSSION

We demonstrate a machine learning based real-time image-guided cell sorting and 

classification system that enables: (1) generation of bright-field and fluorescent images of 

single cells in real time, (2) generation of image-derived gating criteria with machine 

learning, (3) generation and scoring of image-guided sorting parameters adaptive to user 

inputs, (4) cell sorting based on image-guided “gating”.

Importantly, all these additional features are established with essentially the same hardware 

as conventional FACS, allowing cost effective realization of the system. For the same token, 

the system can be easily expanded to include more parameters/colors by leveraging the 

multi-parameter FACS systems available today, and the throughput of the system can be 

enhanced with higher speed electronics.

For purposes of functionality demonstration, we report tree experiments representing 

applications enabled by the system: (1) sorting of pEGFP-GR plasmids translocated 

HEK-297T human embryonic kidney cells, (2) sorting of MDCK cells based on the number 

of beads bonded to the cell surface, (3) sorting of human glioblastoma cells by the extent of 
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radiation induced DNA damage. Of course many other applications such as isolating cells by 

subcellular phenotype, particle internalization, protein co-localization, etc. can be conceived 

and inspired by the system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Machine Learning Based Real-Time Image-Guided Cell Sorting and Classification 

system. (a) Schematic diagram of the image-guided cell sorting system. (Scale bar is 5µm). 

Bright field and fluorescence cell images are at first encoded into time domain waveforms 

and detected by PMTs. Cell images are then reconstructed from time domain waveforms. 

Next, image features are extracted and image-based gating criteria are generated. Finally, 

cell images are processed and sorting decision is made in real-time based on the image-

guided gating criteria with supervised machine learning. DM, dichroic mirror; SF, spatial 

filter; EF, emission filter; PMT, photomultiplier tube. (b) Design of optical spatial filter 

having ten 100 μm by 50 μm slits positioned apart. (c) Microfluidic device with an on-chip 

piezoelectric PZT actuator to deflect selected cells in the microfluidic channel for image-

guided cell sorting.
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Figure 2. 
Sorting cells by spatial distribution of specific protein. (a) Example of microscope cell 

images. Row(1) shows translocated cells, and row(2) shows un-translocated cells. 

Column(1) shows fluorescent images, column(2) shows bright-field images, and column(3) 

shows overlaid images with their respective contours defined by the computer-generated red 

and white curves. (b) Example cell images generated by our system. Row(1) shows 

translocated cells, and row(2) shows un-translocated cells. Column(1) shows fluorescent 

images, column(2) shows bright-field images, and column(3) shows fluorescent images 

overlaid with bright-field images with their respective contours defined by the computer-

generated red and white curves. (c) Hyperplane formed by SVM. A 5µm scale bar is shown 

in each row of micrographs.
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Figure 3. 
Sorting cells according to particle binding on cell membrane. (a) Example cell images 

generated by our system. Column(1) shows fluorescent images at 645nm, column(2) shows 

fluorescent images at 520nm, and column(3) shows overlaid images. (b) Histogram for 

normalized fluorescent area from beads. (c) Hyperplane formed by SVM. A 5µm scale bar is 

shown in each row of micrographs.

Gu et al. Page 19

Cytometry A. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Example images of irradiated cells. (a) Example cell images generated by real-time 

algorithm. Column(1) shows GFP images, column(2) shows gamma-h2ax images with 

background removed, column(3) shows overlaid images, and column(4) shows image 

contours, with green contour for GPF image and red contours for gamma-h2ax images. (b) 

Example cell images generated by off-line processing for human vision. Column(1) shows 

GFP images, column(2) shows gamma-h2ax images, and column(3) shows overlaid images. 

A 5µm scale bar is shown in each row of micrographs.
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Figure 5. 
Estimation of foci count based on image-derived parameters and total fluorescent intensity. 

(a) Scatter plot of predicted foci count based on total gamma-h2ax intensity versus actual 

foci count (b) Scatter plot of predicted foci count based on image-derived parameters versus 

actual foci count (c) Scatter plot of total gamma-h2ax intensity versus actual foci count 

including outliers (d) Histogram of predicted foci count based on total gamma-h2ax 

intensity of bin1 and bin2 (e) Histogram of predicted foci count based on image-derived 

parameters of bin1 and bin2 (f) Receiving Operating Characteristic(ROC) analysis of bin1 

and bin2, showing superior performance of image-guided sorting than conventional 

intensity-based sorting.
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Figure 6. 
Sorting purity and yield. (a) Histogram of actual foci count for Gamma-ray irradiated cells. 

(b)Sorting yield versus sorting accuracy for isolation of cells with greater than 23 foci using 

image-guided and intensity-based methods.
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