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Location error for different error distributions
Stat.
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Problem Description:Problem Description: NonNon--Linear Program Formulation of Localization ProblemLinear Program Formulation of Localization Problem

Proposed Solution:Proposed Solution: PairPair--wise Consistency Based Error Model Extraction and Localizationwise Consistency Based Error Model Extraction and Localization

NonparametricalNonparametrical Statistical Techniques for Location Statistical Techniques for Location 
Discovery Discovery –– Friendly DeploymentFriendly Deployment

We formulate the location discovery problem as a nonlinear function 
minimization instance with the objective function,

F = M(εij)
where εij denotes the discrepancy between the calculated distance 

and the measured distance.

M can be a norm subject to minimization, or an error distribution 
function, such as the pair-wise consistency-based error model, subject 
to maximization. As a function of the error distribution, M is 
formulated as

M =
where Pij is the probability, according to the error model, that error εij
is detected when the measured distance between sensors i and j is dij. 
We would like to maximize the likelihood of the proposed solution.

Jessica Feng, Vishwa Goudar, Lewis Girod, Miodrag Potkonjak

Introduction:Introduction: Accuracy of Error Model Critical to Solution of Localization PrAccuracy of Error Model Critical to Solution of Localization Problemoblem
Although a great variety of centralized and localized algorithms have 
been proposed as solutions to the localization problem, their 
effectiveness is constrained by the accuracy of the underlying error 
model. None of available error models, which range from closed 
form parametric models to sophisticated kernel estimation-based 
non-parametric models, is a-priori applicable in new environments. 

For example, consider the localization of the 10th node in a deployed 
network of 10 nodes where the location of 9 nodes are known and 
real distances of these to the 10th node are given. A comparison of 
the location errors of solutions from an exhaustive search following
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the maximum likelihood principle based on different data sets 
and error models are shown. Finally, we explore the problem of 
positioning nodes/beacons to maximally reduce error in location 
discovery.

GAUSSIAN STAT1 STAT 2 CONSISTENCY
GAUSSIAN 0.0208 7.993 4.258

5.275
0.0303

0.0302
STAT 1 8.179 0.0117 0.0215
STAT 2 7.658 6.042 0.0310

ij

k

l
ljliij dxx −−= ∑

=1

2)(ε

∏ ijP

1. Location discovery by minimization of non-linear function developed  
based on pair-wise consistency principle. 

Objective function:           F2 = F + ∑εs

εs - location error of hidden beacons, H - negative real constant, cij -
calculated distance between nodes i,j, dij - measured distance between 
nodes i,j

2. Obtaining error model based on measured and calculated distances.
3. Iterative usage of the error model as the objective function for

localization, and the resultant locations for the construction of the 
error model.
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Map continuous instance to the discrete domain and 
transform this instance to a graph format where the 
most consistent monotonic regression function of the 
instance is equivalent to the shortest path of the graph.

Solve shortest path problem using a simplified 
dynamic programming-based shortest path 
algorithm. Derive multiple regression functions 
based on statistically selected subsets of data.

Derive cumulative density functions (cdf) for 
different measured distances from resulting 
regression curves. Derive probability density 
function (pdf) from resulting cdf.

Simultaneous Location Discovery and Error Model Simultaneous Location Discovery and Error Model 
ConstructionConstruction
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Consistency of objective function with location error
Improvement of location error with number of neighbors

Improvement in location error with beacon placement

Location error for different dimensions

Location error increase with network sizeLocation error based on different data sets
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