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Abstract

Beyond Standard Assumptions - Semiparametric Models, A Dyadic Item Response Theory
Model, and Cluster-Endogenous Random Intercept Models

by

Nicholas Sim

Doctor of Philosophy in Education

University of California, Berkeley

Professor Sophia Rabe-Hesketh, Chair

In most statistical analyses, quantitative education researchers often make simplifying as-
sumptions regarding the manner in which their data was generated in order to answer some
of these questions. These assumptions can help to reduce the complexity of the problem,
and allow the researcher to describe their data using a simpler, and often times more inter-
pretable, statistical model. However, making some of these assumptions when they are not
true can lead to biased estimates and misleading answers. While the standard sets of as-
sumptions associated with commonly-used statistical models are usually sufficient in a wide
range of contexts, it will always be beneficial for education researchers to understand what
they are, when they are reasonable, and how to modify them if necessary.

This dissertation focuses on three of the most common models used in quantitative education
research (viz. parametric models like Linear Models (LMs), Item Response Theory (IRT)
models, and Random-Intercept Models (RIMs)), discusses the standard sets of assumptions
that accompany these models, and then describes related models with less stringent sets of
assumptions. In each of the following three chapters, we either explicitly unpack existing
models that are useful but are currently still uncommon in the field of education research,
or propose novel models and/or estimation strategies for these models.

We begin in Chapter 1 with a common parametric model known as the Gaussian LM, and use
it as a scaffold to better understand semiparametric models and their estimation. We begin
by reviewing how the coefficients of the Gaussian LM are usually estimated using Maximum
Likelihood (ML) or Least-Squares (LS). We then introduce the notion of an m-estimator
as well as that of a Regular Asymptotically Linear estimator, and show how they relate to
the ML estimator. In particular, we introduce the notion of influence functions/curves and
discuss their geometry together with concepts such as Hilbert spaces and tangent spaces.
We then demonstrate, concretely, how to derive the so-called efficient influence function
under the Gaussian LM, and show that it is precisely the influence function of the ML and
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(Ordinary) LS estimators. This shows that the ML estimator (at least under the Gaussian
LM) is efficient. Using the foundation built, we move on from the Gaussian LM by relaxing
both the assumption that the residuals are normally distributed, as well as the assumption
that they have a constant variance, and define this as the Heteroskedastic Linear Model.
Unlike the Gaussian LM, this is a semiparametric model. Where possible, we make use of
intuition and analogous results from the parametric setting to help describe the workflow for
obtaining an efficient estimator for the coefficients of the Heteroskedastic Linear Model. In
particular, we derive the nuisance tangent space for this semiparametric model, and use it to
obtain the efficient influence function for our model. We then show how to use the efficient
influence function to obtain an efficient estimator (which happens to be the Weighted LS
estimator) from the (Ordinary) LS estimator via a one-step approach as well as an estimating
equations approach. We then conclude by directing readers to more advanced material,
including references on more modern approaches to estimating more general semiparametric
models such as Targeted Maximum Likelihood Estimation.

In Chapter 2, we focus on a class of measurement models known as Item Response The-
ory models which are useful for measuring latent traits of a subject based on the subject’s
response to items. We relax the condition that the responses are only a result of the indi-
vidual’s latent trait (and possibly an external rater), and propose a dyadic Item Response
Theory (dIRT) model for measuring interactions of pairs of individuals when the responses
to items represent the actions (or behaviors, perceptions, etc.) of each individual (actor)
made within the context of a dyad formed with another individual (partner). Examples of
its use in education include the assessment of collaborative problem solving among students,
or the evaluation of intra-departmental dynamics among teachers. The dIRT model gener-
alizes both Item Response Theory models for measurement and the Social Relations Model
for dyadic data. Here, the responses of an actor when paired with a partner are modeled as
a function of not only the actor’s inclination to act and the partner’s tendency to elicit that
action, but also the unique relationship of the pair, represented by two directional, possibly
correlated, interaction latent variables. We discuss generalizations such as accommodating
triads or larger groups, but focus on demonstrating the key idea in the dyadic case. We
show that estimation may be performed using Markov-chain Monte Carlo implemented in
Stan, making it straightforward to extend the dIRT model in various ways. Specifically,
we show how the basic dIRT model can be extended to accommodate latent regressions,
random effects, distal outcomes. We perform a simulation study that demonstrates that
our estimation approach performs well. In the absence of educational data of this form,
we demonstrate the usefulness of our proposed approach using speed-dating data instead,
and find new evidence of pairwise interactions between participants, describing a mutual
attraction that is inadequately characterized by individual properties alone.

Finally, in Chapter 3, we consider the often implicit assumption made when estimating the
coefficients of structural Random Intercept Models (RIMs) that covariates at all levels do
not co-vary with the random intercepts. A violation of this assumption (called cluster-level
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endogeneity) leads to inconsistent estimates when using standard estimation procedures.
For two-level RIMs with such endogeneity, Hausman and Taylor (HT) devised a consistent
multi-step instrumental variable estimator using only internal instruments. We, instead,
approach this problem by explicitly modeling the endogeneity using a Structural Equation
Model (SEM). In this chapter, we compare, through simulation, the HT and SEM estimators,
and evaluate their asymptotic and finite sample properties. We show that the SEM approach
is also flexible enough to deal with different exchangeability assumptions for the covariates
(e.g., whether the correlations between pairs of all units in a cluster are the same) and
investigate how these exchangeability assumptions affect finite sample properties of the HT
estimator. For the simulations, we propose a new procedure for generating cluster- and unit-
level covariates and random intercepts with a fully flexible covariance structure. We also
compare our approach to another common approach known as Multilevel Matching using
data from the High School and Beyond survey.
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Chapter 1

Using the Linear Model to
Understand Semiparametric Efficient
Estimation

1.1 Introduction

For many decades, the Linear Model (LM) has served as the workhorse of quantitative
research in Education and other Social Science disciplines. The popularity of the LM may,
in part, be due to the fact that the model parameters have a simple and clear interpretation,
are computationally easy to estimate, and have estimators whose finite-sample and asymp-
totic behaviors are well-understood. Under some additional assumptions, the LM also may
be used in conjunction with the Potential Outcomes (PO) or the Structural Equation Mod-
eling (SEM) frameworks to imbue parameter estimates with a causal interpretation. This
has, in particular, been immensely useful to researchers interested in evaluating educational
programs, policies and initiatives. However, as with all statistical models, utilizing an LM to
analyze data presupposes a set of assumptions on the distribution of the data. The validity
and interpretability of the parameter estimates of an LM thus depend very much on how
reasonable these assumptions are.

Much like the LM, the underlying theory behind semiparametric models is also well-
developed. These models serve as a middle ground between parametric models like the LM,
which make assumptions that in certain situations the researcher may not be comfortable
with making, and nonparametric models, which make no assumptions on the distribution of
the data even when there could be some knowledge available. For example, in the causal
inference setting where all confounders are measured, the average causal effect of a treatment
on an outcome is identified using the G-computation formula (Robins, 1986) which only uses
the conditional distribution of the outcome given the treatment and the covariates, as well
as the marginal distribution of the covariates, and ignores the conditional distribution of
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the treatment given the covariates (otherwise known as the treatment mechanism). Since no
assumptions are made regarding these distributions under the nonparametric model, complex
density estimators as well as large amounts of data are sometimes required to estimate the
causal effect of interest. If there is some knowledge on the treatment mechanism, say for
example if the experiment is a Randomized Controlled Trial (RCT), then this knowledge
could be incorporated into the model, resulting in a semiparametric model, to improve
statistical efficiency.

We posit that the main reason why semiparametric models are not part of a typical
education researcher’s arsenal lies in their perceived complexity. In this chapter, we aim to
utilize the reader’s existing knowledge of the LM, as well as Maximum Likelihood (ML) and
Least-Squares (LS) theories to try to elucidate some of concepts behind the estimation of
parameters in semiparametric models. To this end, we follow the general theory and nota-
tion in Tsiatis (2007) closely, but also draw inspiration from Bickel, Klaassen, Ritov, and
Wellner (1993) and Newey (1988). Since our main target audience is quantitative education
researchers and methodologists, we focus less on mathematical precision and regularity con-
ditions, and more on developing the intuition for these concepts. We refer advanced readers
interested in these details to the running example on the restricted moment model in Tsiatis
(2007) instead.

We contribute to the vast literature of efficient estimation in semiparametric models not
with novel theory, but in directly drawing links of existing theory with the LM as well as
ML and LS theories. We also work through proofs for the specific concepts for the case of
the LM, which to our knowledge has not been presented concretely, and provide our own
analogous derivation of the so-called nuisance tangent space of the Heteroskedastic Linear
Model.

The rest of this chapter proceeds as follows. In section 2, we begin by defining the
parametric Gaussian Linear Model, and demonstrate how parameter estimates are typically
obtained via ML estimation. In section 3, we introduce m-estimators and discuss how these
estimators are a class of Regular Asymptotically Linear (RAL) estimators. In section 4, we
then introduce the notion of influence functions/curves, Hilbert spaces, tangent spaces, and
show how to obtain the efficient influence function/curve using the geometry of influence
functions/curves. In section 5, we generalize concepts introduced in section 3 and 4 to semi-
parametric models, and in particular, show how to derive the nuisance tangent space, and
how to obtain efficient estimators of the regression coefficients via both the estimating equa-
tion approach as well as the one-step estimator. As some of the results in the semiparametric
case are analogous to the parametric case, we will use them directly rather than focus on
proving them. Lastly, in section 6, we conclude by directing readers to what they can read
next, including modern approaches to estimating more general semiparametric models such
as Targeted Maximum Likelihood Estimation.
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Throughout this chapter, we will assume that regularity conditions hold as and when
we need them to and refer the reader specifically to Newey (1988) for more details. These
assumptions include, but are not limited to, the existence of inverses, the existence of mo-
ments, smoothness of functions, those required by to interchange derivatives and integrals,
etc. We will also ignore any measure-theoretic niceties in our explanation.

For mathematical consistency, we will define all vectors as column vectors. We also define
the derivative of a scalar u with respect to a q-dimensional vector β = (β1, β2, . . . , βq)

ᵀ to be
the q-dimensional vector given by

∂

∂β
u :=


∂
∂β1
u

∂
∂β2
u

...
∂
∂βq
u

 ,

and the derivative of a q-dimensional vector β = (β1, β2, . . . , βq)
ᵀ with respect to a scalar u

to be the q-dimensional vector given by

∂

∂u
β :=


∂
∂u
β1

∂
∂u
β2
...

∂
∂u
βq

 .

Note that in the cases where we take the derivative of a scalar with respect to the transpose of
a vector, and the case where we take the derivative of the transpose of a vector with respect
to a scalar, we would obtain results similar to above except that they would be transposed
into row vectors instead.

Compatible to the definitions above, we will likewise define the derivative of a q-dimensional
vector β = (β1, β2, . . . , βq)

ᵀ with respect to the transpose of an r-dimensional vector η =
(η1, η2, . . . , ηr)

ᵀ to be given by the q × r matrix

∂

∂ηᵀ
β :=


∂
∂ηᵀ
β1

∂
∂ηᵀ
β2

...
∂
∂ηᵀ
βq

 =

 ∂
∂η1
β ∂

∂η2
β . . . ∂

∂ηr
β

 .
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1.2 The Gaussian Linear Model and the Maximum

Likelihood and Ordinary Least Squares

Estimators

For the remainder of this chapter, we consider the scenario where we are interested
in a random variable, Y ∈ R, representing a continuous outcome, and a q-dimensional
random vector, X ∈ Rq, comprising q − 1 covariates of interest and a constant. We also
suppose that we have access to n independent observations Z1, Z2, . . . , Zn of this k+ 1-tuple
Z = (Y,Xᵀ)ᵀ ∈ Rq+1.

1.2.1 The Gaussian Linear Model

For this section, let the Gaussian LM be defined as the set of conditional distributions
of an outcome Y given the covariates X with the following assumptions. Given the ran-
dom vector X, these conditional distributions, written as pY |X;β,σ2(y | x), (i) take the form
of a normal/Gaussian distribution (commonly known as the “Normality” assumption), (ii)
have mean equal to Xᵀβ where β ∈ Rq (commonly called the “Linearity” assumption), and
(iii) have variance given by a constant σ2 ∈ R≥0 (commonly called the “Homoscedastic-
ity” assumption). Since all normal distributions are fully characterized by their mean and
variance, every distribution in the Gaussian LM is fully characterized by the vector of pa-
rameters θ = (βᵀ, σ2)ᵀ. When all distributions in a model can be characterized by a finite
set of parameters, we say that the model is parametric. The Gaussian LM is therefore a
parametric model that is indexed by θ = (βᵀ, σ2)ᵀ.

We can represent the Gaussian LM as

MGauss :=
{
pY |X;β,σ2(y | x) : Y = Xᵀβ + ε, ε | X ∼ N (0, σ2)

}
.

Implicitly, by assuming the Gaussian LM, we assume that the probability distribution
pY |X;β0,σ2

0
(y | x) that gave rise to the data (sometimes called the data-generating distribution)

for some fixed values of β0 and σ2
0, is indeed normal with mean Xᵀβ0 and variance σ2

0. In

most situations, we are interested in β0, and hence, the goal is to now find estimators β̂ that
have ‘good’ (asymptotic) properties. The preferred estimator in this setting is the Maximum
Likelihood (ML) estimator which is identical to the Ordinary Least-Squares (LS) estimator
implemented in most statistical software.

Remark 1 (Fixed/Random Designs). The typical approach when looking at Gaussian LMs
is to consider a fixed design. That is, we treat X as fixed for each observation, and so the
randomness in our system only comes from Y . We choose, instead, to consider a random
design with X drawn from some distribution to facilitate the discussion of asymptotics.
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Remark 2 (Joint/Conditional Distributions). In the random design setting, the Gaussian
LM is typically defined to be the set of all joint distributions of Y and X (e.g., in Tsiatis
(2007)), rather than the set of conditional distributions. In such a situation, the Gaussian
LM is actually a Semiparametric Model unless further assumptions are made on the marginal
distribution of X. We chose to focus on conditional distributions of Y given X in this section
for pedagogical purposes as we in fact do not lose anything by doing so.

Remark 3 (Expectations). Throughout the rest of this section, expectations involving X are
taken over that true unspecified distribution of X unless stated otherwise. When we write
E(·), we implicitly mean that the expectation is taken over the joint distribution of all random
variables within the parentheses, whereas when we write Eθ(·) we mean that the expectation
is taken only over the conditional distribution of Y given X (i.e., treating X as fixed). In
general, we will use the former when evaluating properties of an estimator, and the latter
when deriving an estimator.

1.2.2 Maximum Likelihood Estimation

Suppose we believe that each observation of the data we have at hand is generated first by
a draw of X from its distribution, and then by a draw of Y from its conditional distribution
given X in MGauss with parameter values θ0 = (βᵀ

0 , σ
2
0)ᵀ. Then, we can write

Y = Xᵀβ0 + ε

where ε := Y −Xᵀβ0. Since E(εX) = 0 by construction, we have, under regularity conditions,
that

β0 = (E[XXᵀ])−1 E[XY ]. (1.1)

Suppose, that β0 is the parameter that answers our scientific query. Then, σ2
0 is relevant

insofar as it is needed to fully characterize the data-generating distribution, but is of little
interest to us. As such, in the Gaussian LM, the parameter σ2 is called a nuisance parameter.
We label nuisance parameters as η = σ2 following the notation in Tsiatis (2007).

Within the context of a Gaussian LM, one popular method to estimate β0 is via ML.
That is, we can first define the likelihood function

L(β, η) =
n∏
i=1

1√
2πη

exp

(
−(Yi −Xᵀ

i β)2

2η

)
,

and then define the ML estimator β̂ as the β that maximizes this function.

To do so, one typically tries to find the β that maximizes the log-likelihood function given
below instead:

`(θ) = logL(β, η) =
n∑
i=1

[
− log

√
2πη − (Yi −Xᵀ

i β)2

2η

]
.
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This is equivalent, in almost all cases, to taking the first derivative of the log-likelihood
function, and finding the β such that the first derivative evaluates to zero. That is, we want
to find β such that

∂`(θ)

∂β
=

1

η

n∑
i=1

Xi [Yi −Xᵀ
i β] =

1

η

n∑
i=1

Xiεi = 0 ∈ Rq. (1.2)

With a little arithmetic, and some regularity assumptions, the ML estimator for β0 which
solves (1.2) is given by

β̂ =

(
1

n

n∑
i=1

XiX
ᵀ
i

)−1(
1

n

n∑
i=1

XiYi

)
. (1.3)

It is worthwhile to note from (1.2) that the ML estimator for β0 does not depend on knowing
or estimating η. As such, the ML estimator is actually identical to the Ordinary Least-
Squares estimator which we will elaborate on in subsequent sections.

ML estimators are favored because they have ‘good’ asymptotic properties. They are
consistent, asymptotically normal, and asymptotically efficient. It is instructive at this
point to look at the proof for why the ML estimator for β0 is consistent and asymptotically
normal. We will discuss its asymptotic efficiency in a subsequent section.

1.2.2.1 Consistency

To establish consistency of the ML estimator, we first appeal to the Law of Large Numbers
to obtain (

1

n

n∑
i=1

XiX
ᵀ
i

)
p−→ E[XXᵀ], and (1.4)

1

n

n∑
i=1

XiYi
p−→ E[XY ]. (1.5)

Then, under regularity conditions, β̂ is consistent by applying the Continuous Mapping
Theorem together with (1.4) and (1.5) to (1.1).
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1.2.2.2 Asymptotic Normality

To determine the asymptotic distribution of β̂, we first consider that

β̂ − β0 =

(
1

n

n∑
i=1

XiX
ᵀ
i

)−1(
1

n

n∑
i=1

XiYi

)
− β0

=

(
1

n

n∑
i=1

XiX
ᵀ
i

)−1(
1

n

n∑
i=1

Xi (X
ᵀ
i β0 + εi)

)
− β0

=

(
1

n

n∑
i=1

XiX
ᵀ
i

)−1(
1

n

n∑
i=1

Xiεi

)
.

Looking at the second term on the right-hand side, we then appeal to the Central Limit
Theorem to obtain

√
n

(
1

n

n∑
i=1

Xiεi

)
=
√
n

(
1

n

n∑
i=1

Xiεi − E(Xε)

)
D−→ N

(
0,E(ε2XXᵀ)

)
since E(Xε) = 0 by construction. Hence, together with (1.4), we see that

√
n
(
β̂ − β0

)
=

(
1

n

n∑
i=1

XiX
ᵀ
i

)−1
√
n

(
1

n

n∑
i=1

Xiεi

)
D−→ N

(
0, (E[XXᵀ])−1 E(ε2XXᵀ) (E[XXᵀ])−1) (1.6)

by Slutsky’s Theorem under regularity conditions. We thus also have an expression for the
asymptotic variance of the ML estimator. It is useful to point out here that the plug-in
estimator for the expression of the asymptotic variance in (1.6) which is given by(

1

n

n∑
i=1

[XiX
ᵀ
i ]

)−1
1

n

n∑
i=1

(ε̂2iXiX
ᵀ
i )

(
1

n

n∑
i=1

[XiX
ᵀ
i ]

)−1

is in fact the Huber-White Sandwich Estimator for the variance of the sampling distribution
of β̂.

In the case of the Gaussian LM where E (ε2 | X) = σ2, we see that

E(ε2XXᵀ) = EE(ε2XXᵀ | X) = σ2 E(XXᵀ),

which yields a variance formula of σ2 (E[XiX
ᵀ
i ])−1 and a corresponding estimator

σ̂2

(
1

n

n∑
i=1

[XiX
ᵀ
i ]

)−1

which is the familiar “model-based” estimator for the variance of the sampling distribution
of β̂.
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1.3 m-estimators and Regular Asymptotically Linear

Estimators

In this section, we introduce the concept of an m-estimator and intuit some of its asymp-
totic properties. In particular, we demonstrate that it is an asymptotically linear estimator
and define the notion of an influence function/curve in that context.

1.3.1 m-estimators

The so-called m-estimators can be thought of as generalizations of ML estimators. In
fact, the “m” stands for “Maximum-Likelihood-type”. In our setting, suppose we have a
p-dimensional function m(Y,X, θ) of data and parameters such that

Eθm(Y,X, θ) = 0 ∈ Rp.

Then, under some regularity conditions, the solution θ̂ to the equation

n∑
i=1

m(Yi, Xi, θ̂) = 0 ∈ Rp

is defined to be an m-estimator for the true parameter θ0.

As an example for what the function m(·) may look like, consider the p-dimensional score
function defined to be

Sθ(Y,X, θ) : =
∂

∂θ
`(θ)

=
∂

∂θ
log pY,X;θ(Y,X)

=
∂
∂θ
pY,X;θ(Y,X)

pY,X;θ(Y,X)
.

Then since it can be easily verified that Eθ(Sθ(Y,X, θ)) = 0 under regularity conditions,

the solution θ̂ to the equation

n∑
i=1

Sθ(Yi, Xi, θ̂) = 0 ∈ Rp (1.7)

is an m-estimator. However, by simple arithmetic, we see that any solution that maximizes
the log-likelihood function must be a solution to (1.7). Hence, all ML estimators are in fact
m-estimators for the special case where m(Y,X, θ) ≡ Sθ(Y,X, θ).
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To illustrate this point in our running example concretely, let us consider the score
functions for the Gaussian LM with respect to β and η separately as follows. We call
Sβ(Yi, Xi, θ) the score with respect to the target parameter, and Sη(Yi, Xi, θ) the score with
respect to the nuisance parameter.

Sβ(Yi, Xi, θ) : =
∂

∂β
log pY |X;β,η(Yi, Xi) =

1

η
Xi [Yi −Xᵀ

i β] , and

Sη(Yi, Xi, θ) : =
∂

∂η
log pY |X;β,η(Yi, Xi) = − 1

2η
+

(Yi −Xᵀ
i β)2

2η2
.

Then, the overall score function is given by

Sθ(Yi, Xi, θ) = (Sβ(Yi, Xi, θ)
ᵀ, Sη(Yi, Xi, θ)

ᵀ)ᵀ .

It is thus clear that the solution to (1.2) corresponds to an m-estimator where m(·) = Sθ
which also solves (1.7). Hence, our ML estimator for β0 is also an m-estimator.

Remark 4 (Subscripts/Arguments for Score Functions). In the notation for the score func-
tion Sθ(Yi, Xi, θ), we distinguish using θ as a subscript to indicate which parameters the score
function is for and using θ as an argument to indicate at what parameter value θ the score
function is evaluated.

1.3.2 Consistency, Asymptotic Linearity and Asymptotic
Normality

In much the same way as for ML Estimators, m-estimators can be shown to be consistent.
As such, we will omit the proof here.

Additionally, m-estimators, and as a consequence ML Estimators, are also asymptotically
linear. That is, there exists a random function ϕ(Y,X) = ϕβ̂(Y,X, θ0) ∈ Rq known as the

influence function/curve of the estimator β̂ such that E[ϕ(Y,X)] = 0 ∈ Rq and(
β̂ − β0

)
=

1

n

n∑
i=1

ϕ(Yi, Xi) + op

(
1√
n

)
. (1.8)

That is, as n gets large, we can approximate the difference between the estimator and the
parameter of interested as an empirical mean of its influence function evaluated at all data

points. The remainder term op

(
1√
n

)
diminishes to 0 very quickly as n increase. This is

sometimes referred to as the
√
n-rate.

Remark 5 (Subscripts/Arguments for Influence Functions). When we suppress the subscript

β̂ and the argument θ0, we mean that in influence function pertains to our estimator for β
evaluated at the true vector of parameters θ0.



CHAPTER 1. USING THE LINEAR MODEL TO UNDERSTAND SEMIPARAMETRIC
EFFICIENT ESTIMATION 10

From here, it is clear from the Central Limit Theorem that

1√
n

n∑
i=1

ϕ(Yi, Xi) =
√
n

[
1

n

n∑
i=1

ϕ(Yi, Xi)− E[ϕ(Y,X)]

]
D−→ N (0,E[ϕ(Y,X)ϕᵀ(Y,X)])

and as such, from (1.8) and by Slutsky’s Theorem, we have

√
n
(
β̂ − β0

)
D−→ N (0,E[ϕ(Y,X)ϕᵀ(Y,X)]) .

That is, we have established that m-estimators are asymptotically normal with asymptotic
variance given by 1

n
E[ϕ(Y,X)ϕᵀ(Y,X)].

All that is left is to show is that m-estimators are in fact asymptotically linear, which we
will do for the Gaussian LM case. To do so, and to find the influence function of our estimator,
we start by computing the derivative Sθθ(Y,X, θ0) of the score function component-wise. To
make notations compact, we write

Sβ ≡ Sβ(Y,X, θ0) =
1

η0

X [Y −Xᵀβ0] =
1

η0

Xε

Sη ≡ Sη(Y,X, θ0) = − 1

2η0

+
(Y −Xᵀβ0)2

2η2
0

= − 1

2η0

+
ε2

2η2
0

Sθ ≡ Sθ(Y,X, θ0) =
(
Sᵀ
β, Sη

)ᵀ
Remark 6 (Further Notation for Score Functions). When we suppress the arguments of the
score functions, we implicitly mean that the score function for the random variable Y and
the random vector X is evaluated at the vector of true parameters θ0.

By straightforward computations, we have

Sββ ≡
∂

∂βᵀ
Sβ = − 1

η0

XXᵀ,

Sβη ≡
∂

∂η
Sβ = − 1

η2
0

X [Y −Xᵀβ0] = − 1

η2
0

Xε,

Sηβ ≡
∂

∂βᵀ
Sη = − 1

η2
0

Xᵀ [Y −Xᵀβ0] = − 1

η2
0

Xᵀε,

Sηη ≡
∂

∂η
Sη =

1

2η2
0

− (Y −Xᵀβ0)2

η3
0

=
1

2η2
0

− ε2

η3
0

.

And so, we have

Sθθ ≡ Sθθ(Y,X, θ0) =
∂

∂θᵀ
Sθ =

(
Sββ Sηβ
Sβη Sηη

)
.
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Since the m-estimator θ̂ (and equivalently, the ML estimator) solves the score equation
(1.7), we can consider the Mean Value expansion of the sum of the scores to achieve

0 =
n∑
i=1

{
Sθ(Yi, Xi, θ̂)

}
=

n∑
i=1

{
Sθ(Yi, Xi, θ0) + Sθθ(Yi, Xi, θ

∗)
[
θ̂ − θ0

]}
for some θ∗ that lies between θ and θ̂ component-wise.

By extracting only the first q components which correspond to the parameter β, we have

0 =
n∑
i=1

{
Sβ(Yi, Xi, θ0) + Sββ(Yi, Xi, θ

∗)
[
β̂ − β0

]}

Assuming regularity, rearranging the equation above yields

β̂ − β0 =

{
− 1

n

n∑
i=1

Sββ(Yi, Xi, θ
∗)

}−1{
1

n

n∑
i=1

Sβ(Yi, Xi, θ0)

}

=

{
1

n

n∑
i=1

1

η∗
XiX

ᵀ
i

}−1{
1

n

n∑
i=1

1

η0

Xi [Yi −Xᵀ
i β0]

}

Under regularity conditions (where there is uniform convergence of all θ to θ0 within a
neighborhood of the true value containing θ∗), we have{

1

n

n∑
i=1

1

η∗
XiX

ᵀ
i

}−1

p−→
{
E
[

1

η0

XXᵀ

]}−1

.

And so,

√
n
(
β̂ − β0

)
=

{
E
[

1

η0

XXᵀ

]}−1
{

1√
n

n∑
i=1

1

η0

Xi [Yi −Xᵀ
i β0]

}
+ op(1).

Hence, we have shown that β̂ is an asymptotically linear estimator with influence function
equal to

ϕ(Yi, Xi) =

{
E
[

1

η0

XXᵀ

]}−1
1

η0

Xi [Yi −Xᵀ
i β0]

= {E [XXᵀ]}−1Xi [Yi −Xᵀ
i β0] . (1.9)
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Remark 7 (DFBETA). It turns out that the estimated influence function evaluated at a
point (Yi, Xi) is in fact similar to a quantity commonly used to measure the influence of the

data point (Yi, Xi) on the estimator β̂ - the DFBETA (unscaled version). The DFBETA and
the estimated influence functions for observation i can be expressed as

DFBETAi = β̂ − β̂[−i] =

(
n∑
i=1

XiX
ᵀ
i

)−1

Xi
ε̂i

1− hii
=

(
n∑
i=1

XiX
ᵀ
i

)−1

Xiε̂[−i]

ϕ̂(Yi, Xi) =

(
n∑
i=1

XiX
ᵀ
i

)−1

Xi
ε̂i
n
,

where β̂[−i] =
(

1
n

∑n
j=1,j 6=iXjX

ᵀ
j

)−1 (
1
n

∑n
j=1,j 6=iXjYj

)
, ε̂[−i] = Yi − Xᵀ

i β̂[−i] and ε̂i = Yi −

Xᵀ
i β̂. Other than the additional scaling by the size of the sample, the main difference between

these two quantities is the choice of residuals. Where the estimated influence function is
evaluated using the residual with β̂ as the estimator for β, the DFBETA is evalued using
ε̂i

1−hii = ε̂[−i] which is the residual with β̂[−i] as the estimator for β.

Correspondingly, the asymptotic variance of β̂ is given by

{E [XXᵀ]}−1 E
(
X [Y −Xᵀβ0]2Xᵀ

)
{E [XXᵀ]}−1

= {E [XXᵀ]}−1 E
[
ε2XXᵀ

]
{E [XXᵀ]}−1 ,

which is exactly the same as the asymptotic variance computed in (1.6). We can also derive
exactly the same influence functions and asymptotic variance using the general formula given
in (1.11) and (1.12) below.
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Some General Results. In general, we state here, without proof, that for independent and
identically distributed points Z1, Z2, . . . , Zn, any m-estimator with respect to the function
m(Z, θ0) has an influence function evaluated at each point given by

ϕ(Zi) = −
(
E
[
∂m(Z, θ0)

∂θᵀ

])−1

m(Zi, θ0), (1.10)

and hence, have asymptotic variance given by(
E
[
∂m(Z, θ0)

∂θᵀ

])−1

E [m(Zi, θ0)mᵀ(Zi, θ0)]

(
E
[
∂m(Z, θ0)

∂θᵀ

])−1ᵀ

It is also useful to point out here that if m(Z, θ) ≡ Sθ(Z, θ), then the influence function
of the point Zi is given by the expected Fisher Information Matrix multiplied by the score
evaluated at the point Zi. That is,

ϕ(Zi) = − (E [Sθθ(Z, θ0)])−1 Sθ(Zi, θ0), (1.11)

where Sθθ(Z, θ0) = ∂
∂θᵀ
Sθ(Z, θ0) = ∂2

∂θ∂θᵀ
log pZ;θ(Z), yielding an asymptotic variance of

(E [Sθθ(Z, θ0)])−1 E [Sθ(Z, θ0)Sᵀ
θ (Z, θ0)] (E [Sθθ(Z, θ0)])−1

=− (E [Sθθ(Z, θ0)])−1 , (1.12)

where the equality is due to a commonly know fact under regularity conditions that

−E [Sθθ(Z, θ0)] = E [Sθ(Z, θ0)Sᵀ
θ (Z, θ0)] . (1.13)

Here, readers familiar with ML theory will recognize that (1.12) is in fact the Cramer-Rao
Lower Bound, indicating that the ML estimator is in fact asymptotically efficient, a result
which we will verify by finding the so-called efficient influence function later.

We considerm-estimators because they belong to the class of Regular Asymptotically Lin-
ear (RAL) estimators (where regularity is a technical condition that excludes super-efficient
estimators). RAL estimators also come about by applying the functional delta-method, un-
der some regularity conditions, to functionals of estimators whose influence functions are
known. One example of this is the so-called substitution or plug-in estimator where for a
parameter f(P ) that is a functional f(·) of the data generating distribution P , the plug-in

estimator is simply the functional f(·) applied to the empirical distribution P̂ of the data.
The estimator in (1.3) is precisely such an estimator.
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1.4 Finding the Efficient Influence Function

In this section, with the goal of finding the ‘best’ influence function within a certain
class of influence function, we introduce, within the context of a parametric Gaussian LM,
concepts such as tangent spaces that are relevant to semiparametric efficient estimation. We
aim to build intuition for these concepts in this section as the results largely hold true for
semiparametric models in the next section even though the proofs thereafter require a little
more technical finesse which we will avoid presenting.

1.4.1 Influence Functions

It is worthwhile to point out here, without proof, that every asymptotically linear es-
timator has a unique influence function (almost surely). This means that once we are in
possession of an asymptotically linear estimator, we can assess its asymptotic properties by
looking at its influence function. Conversely, once we know the influence function of an
estimator, we can attempt to recover what that estimator actually is.

One important problem in statistics is to identify an estimator that is ‘best’ in some
predefined sense among a specific class of estimators. If we only consider RAL estimators, we
can then define the ‘best’ estimator among this class of estimators to be the one that has the
smallest asymptotic variance1. We call such an estimator the asymptotically efficient RAL
estimator. Since the asymptotic variance of an asymptotically linear estimator is precisely
the variance of its influence function, our problem reduces to finding the influence function
with the smallest variance which we will call the Efficient influence function. Recovering an
estimator that has the efficient influence function as its influence function may be done by the
One-Step Estimator or Estimating Equations approaches (Bickel et al., 1993; Liang & Zeger,
1986; Tsiatis, 2007). One of the more modern approaches for recovering an efficient estimator
using the Efficient Influence Function is via the Targeted Maximum Likelihood Estimation
approaches (van der Laan & Rose, 2011) which we encourage the reader to explore, but leave
out of the chapter for brevity.

In order to find the efficient influence function, we first introduce some brief concepts
about the relationship between influence functions and score functions, as well as their
geometry.

1We say that a q-dimensional estimator β̂ has smallest asymptotic variance avar
(
β̂
)

if for any other

estimator β̃, we have avar
(
β̂
)
− avar

(
β̃
)
� 0. That is, the difference between their Variance-Covariance

matrices is negative semi-definite.
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1.4.2 The Geometry of Influence Functions and Scores

Some General Results. In a model indexed by θ = (βᵀ, η)ᵀ ∈ Rq+r, ϕ(Y,X) is the

influence function of an RAL estimator β̂ for the parameter β if and only if it satisfies the
following identities:

E
[
ϕ(Y,X)Sᵀ

β(Y,X, θ0)
]

= I ∈ Rq×q (1.14)

E
[
ϕ(Y,X)Sᵀ

η (Y,X, θ0)
]

= 0 ∈ Rq×r (1.15)

Instead of a general proof, we show why (1.14) and (1.15) hold in our example. First, we
note that the score functions of our model evaluated at the true parameter vector θ0 satisfy
(1.13). Rearranging, we have

− [E [Sθθ(Y,X, θ0)]]−1 E [Sθ(Y,X, θ0)Sᵀ
θ (Y,X, θ0)] = I ∈ R(q+r)×(q+r). (1.16)

Separately, we also know that the influence function of the m-estimator θ̂ for the param-
eter θ0 is given by (1.11). That is,

ϕθ̂(Y,X) = − (E [Sθθ(Y,X, θ0)])−1 Sθ(Y,X, θ0)

Post-multiplying this by Sᵀ
θ (Zi, θ0), and then taking expectations, we have

E
[
ϕθ̂(Y,X)Sᵀ

θ (Y,X, θ0)
]

= − (E [Sθθ(Y,X, θ0)])−1 E [Sθ(Y,X, θ0)Sᵀ
θ (Y,X, θ0)] . (1.17)

Notice that the left-hand side of (1.16) is identical to the right-hand side of (1.17). Equating
the two equations yields

E
[
ϕθ̂(Y,X)Sᵀ

θ (Y,X, θ0)
]

= I ∈ R(q+r)×(q+r).

By expressing the equation above as block matrices,(
E
[
ϕβ̂(Y,X)Sᵀ

β(Y,X, θ0)
]

E
[
ϕβ̂(Y,X)Sᵀ

η (Y,X, θ0)
]

E
[
ϕη̂(Y,X)Sᵀ

β(Y,X, θ0)
]

E
[
ϕη̂(Y,X)Sᵀ

η (Y,X, θ0)
]) =

(
I 0
0 I

)
.

we see that the conditions in (1.14) and (1.15) must hold for any RAL estimator by looking
at the upper-left and lower-left blocks.

With necessary and sufficient conditions in hand for a random function with zero mean
and finite variance to be an influence functions, we can try to better understand their prop-
erties and how they relate to each other by studying their geometry.
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1.4.3 The Hilbert Space of Random Functions

We begin by considering the space H of all q-dimensional measurable random functions
of (Y,X) with zero mean and finite variance. It is useful to think of this space in the same
way one would think of a three-dimensional Euclidean space where each element of the space
is a point defined by a 3-dimensional vector from the origin to the point. In H, each element
just represents a random function.

In Euclidean space Rn, there is also the concept of an inner product, 〈·, ·〉Rn , of two
points u and v in that space which is defined to be the sum of the coordinate-wise products
of the two points. While this inner product does satisfy some additional criteria, the most
important property is that it also induces the concept of orthogonality and of distance. In
Euclidean space, the inner product of two orthogonal vectors is zero, and the inner product
of a vector with itself gives the squared length of that vector or, in other words, the squared
distance of that point from the origin. That is, 〈u, v〉Rn = 0 if u ⊥ v, and 〈u, u〉Rn = ‖u‖2

2

for all u ∈ Rn.

It turns out that inH, for any two random functions of Z, we can define the inner product
to be the expectation of the sum of the component-wise product of the two functions. That
is, for f, g ∈ H, we have 〈f, g〉H = E (fᵀ(Y,X)g(Y,X)). Since these are all random functions
with zero mean, the inner product thus corresponds to the sum of the component-wise
covariances between the random functions f and g. Like in the case of Euclidean space, two
functions in H are said to be orthogonal if their inner product is zero. Also interestingly,
the inner product 〈f, f〉H = E (fᵀ(Y,X)f(Y,X)) of a random function with itself yields
the sum of the component-wise variances of the random function. This is equivalent to the
trace of the variance-covariance matrix of the random function given by the outer product
E (f(Y,X)fᵀ(Y,X)). Finally, the inner product also allows us to define the notion of a
unique orthogonal projection of the random function f ∈ H onto a subspace S ⊂ H spanned
by the r-dimensional function g. We denote this projection as Π(f | S) and it takes the form

Π(f | S) = (E fgᵀ) (E ggᵀ)−1 g. (1.18)

This is similar in spirit to projections in Euclidean space where we want to project a vector
u onto the line spanned by the vector v. Since the resulting projection Π(u | Bv) must
be a scalar multiple of v for a unique scalar B0, the projection can be represented by B0v.
Furthermore, the residual from the projecion, given by u−B0v must then be orthogonal to
the all vectors on the line. Hence, we have that

〈u−B0v,Bv〉Rn = 0

for all B ∈ R. In order to find a formula for the projection, we need only solve for B0 to get

Π(u | Bv) = B0v = 〈u, v〉Rn〈v, v〉−1
Rnv.
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The observant reader will notice that the projection formula here consists of inner products,
whereas what is provided in (1.18) involves outer products. They may also notice that in
solving for B0, the choice of B does not play any role.

We now contrast this with the case in our Hilbert space H where we want to project a
function f onto a space S spanned by g. Like the Euclidean case, since the projection of f
onto S must lie on S, we can represent the projection as Π(f | S) = B0g for some scalar
q × r matrix B0. The projection residual, given by f − B0g must also be orthogonal to the
space S and hence,

〈f −B0g,Bg〉H = 0

for all B ∈ Rq×r. Unlike the Euclidean case, B now plays an important role since it cannot
easily be eliminated from the equation, and it turns out that the statement above being true
for all B is equivalent to (1.18) being true. We refer the reader to Tsiatis (2007) for more
details on the derivation, but will state that this discrepancy also arises because of how we
define the term “span” in these two spaces. In Rn, we usually consider spaces spanned by
vectors in Rn (i.e., our generator v ∈ Rn). However, in our Hilbert space H, notice that S is
spanned by g which is an r-dimensional function rather than a q-dimensional function, and
hence does not have to be in H. All g provides, is a set of r unidimensional functions of
which each of the q components of an element in S is a linear combination of. We describe
more about the spaces spanned by functions in the next subsection.

With these tools, and knowing that the necessary and sufficient conditions (1.14) and
(1.15) for a random function in H to be the influence function of an RAL estimator depend
on its relationship with the score functions, we can try to identify the class of these influence
functions by exploring the geometry of the spaces spanned by these score functions.

1.4.4 Tangent Spaces

For the parameter θ = (βᵀ, ηᵀ)ᵀ ∈ Rq+r, we define the subspace T of H spanned by the
score function Sθ to be

T :=
{
BθSθ | Bθ ∈ Rq×(q+r)

}
We can interpret this space to contain all random q-dimensional functions with each com-
ponent being linear combination of the (q+ r) components of the score function Sθ. We call
this subspace the tangent space. The space of functions that are orthogonal to all functions
in T is called the orthogonal compliment of T which we represent by T ⊥.

Since Sθ =
(
Sᵀ
β, Sη

)ᵀ
, we can likewise define two other subspaces similarly as follows:

Tβ : =
{
BβSβ | Bβ ∈ Rq×q}

Λ : =
{
BηSη | Bη ∈ Rq×r}
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In particular, we call Tβ and Λ the tangent space of the target parameter and the nuisance
tangent space respectively, because they are spanned by the score function of the target
parameter and the nuisance parameter respectively.

In these tangent spaces, each of the q components of any random function can be thought
of as being themselves a linear combination of the relevant score function. As such, the
tangent spaces are therefore called q-replicating linear spaces. It turns out that this is
important because a well-known fact that the variance of the sum of two univariate functions
f and g that are orthogonal to each other is equal to the sum of their individual variances,
can be extended for q-dimensional functions if they lie in a q-replicating linear space (see
Tsiatis (2007) for more details). In short, if f ∈ T and g ∈ T ⊥, then

Var(f + g) = Var(f) + Var(g) (1.19)

where we note that here, Var(·) represents the Variance-Covariance matrix of the random
functions. This will become important when we try to find the influence function of an RAL
estimator (and by extension, the estimator itself) that has the lowest variance among all
other influence functions of RAL estimators.

In our running example, the tangent spaces take the forms

Tβ =

{
Bβ

1

η0

Xε

∣∣∣∣Bβ ∈ Rq×q
}

Λ =

{
Bη

(
− 1

2η0

+
ε2

2η2
0

)∣∣∣∣Bη ∈ Rq×1

}
T =

{
Bβ

1

η0

Xε+Bη

(
− 1

2η0

+
ε2

2η2
0

)∣∣∣∣Bβ ∈ Rq×q, Bη ∈ Rq×1

}

1.4.5 The Linear Variety of Influence Functions

Now suppose we are given an initial RAL estimator β̂∗ with influence function ϕ∗(Y,X).
Then, it is easy to check that for any random function h(Y,X) ∈ T ⊥, the random function
given by ϕ∗(Y,X)+h(Y,X) also satisfies conditions (1.14) and (1.15), i.e., ϕ∗(Y,X)+h(Y,X)
is also an influence function. Conversely, it is also easy to check that given any two RAL
estimators with influence functions ϕ(1)(Y,X) and ϕ(2)(Y,X), we have that ϕ(1)(Y,X) −
ϕ(2)(Y,X) ∈ T ⊥. This implies that if one has an initial RAL estimator with influence
function ϕ∗(Y,X), the set containing all possible influence functions of RAL estimators is
given by

ϕ∗(Y,X) + T ⊥ =
{
ϕ∗(Y,X) + h(Y,X) | h(Y,X) ∈ T ⊥

}
.

ϕ∗(Y,X) + T ⊥ while not a subspace, since it does not contain zero, is called a linear variety.
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1.4.6 Finding the Efficient Influence Function

Suppose we had an RAL estimator and its associated influence function ϕ∗(Y,X). Then,
since the projection Π(ϕ∗(Y,X) | T ) can be rewritten as ϕ∗(Y,X)− Π(ϕ∗(Y,X) | T ⊥), and
−Π(ϕ∗(Y,X) | T ⊥) ∈ T ⊥, we see that it is a valid influence function since it belongs to the
linear variety of influence functions.

Let ϕeff(Y,X) := Π(ϕ∗(Y,X) | T ). Then, any influence function ϕ(Y,X) can be written
as ϕ(Y,X) = ϕeff(Y,X)+h(Y,X) where h(Y,X) ∈ T ⊥. However, since ϕeff(Y,X) ∈ T which
is a q-replicating space, and ϕeff(Y,X) ⊥ h(Y,X), we know from (1.19) that

Var(ϕ(Y,X)) = Var(ϕeff(Y,X)) + Var(h(Y,X)).

And so,
Var(ϕeff(Y,X))− Var(ϕ(Y,X)) = −Var(h(Y,X)) � 0,

which shows that ϕeff(Y,X) has the smallest variance out of all influence functions of RAL
estimators. We call ϕeff(Y,X) the efficient influence function. The argument above critically
works only for ϕeff(Y,X) because it lies in T .

It is useful to point out here that since the starting choice of ϕ∗(Y,X) is arbitrary, the
projection of any influence function onto T is unique. This means that the efficient influence
function is the only influence function that lies on T .

In our running example, the efficient influence function can be computed using the pro-
jection formula in (1.18) as follows. First we note that

ϕeff(Y,X)) = Π(ϕ∗(Y,X) | T ) = (Eϕ∗Sᵀ
θ ) (ESθSᵀ

θ )−1 Sθ,

where we write ϕ∗ ≡ ϕ∗(Y,X).

Looking at the parts separately, we see that

Eϕ∗Sᵀ
θ = Eϕ∗

[
Sᵀ
β Sη

]
=
[
Eϕ∗Sᵀ

β Eϕ∗Sη
]

=
[
Iq×q 0q×1

]
∈ Rq×(q+1)

from conditions (1.14) and (1.15) of influence functions.
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Next, we see that

(ESθSᵀ
θ )−1 = − (ESθθ)−1

= −
(
E
[
Sββ Sηβ
Sββ Sβη

])−1

=

E [ 1
η0
XXᵀ

]
E
[

1
η20
Xε
]

E
[

1
η20
Xᵀε

]
E
[
− 1

2η20
+ ε2

η30

]−1

=

(E [ 1
η0
XXᵀ

])−1

0

0
(
E
[

1
2η20

])−1


Finally, putting the pieces together, we have

ϕeff(Y,X) =
[
Iq×q 0q×1

] (E [ 1
η0
XXᵀ

])−1

0

0
(
E
[

1
2η20

])−1

[ 1
η0
X [Y −Xᵀβ0]

− 1
2η0

+ (Y−Xᵀβ0)2

2η20

]

=

(
E
[

1

η0

XXᵀ

])−1(
1

η0

X [Y −Xᵀβ0]

)
= (E [XXᵀ])−1 (X [Y −Xᵀβ0]) , (1.20)

which is identical to what we derived in (1.9).

1.4.7 Finding the Efficient Influence Function via the Efficient
Score

Another way of deriving the Efficient influence function, and the manner which we will
adopt in the case of a semiparametric model in the next section, is via the Efficient Score
which we will define now. Recall that since any influence function must satisfy (1.15), it
must be orthogonal to every element in the nuisance tangent space Λ. That is, the influence
function of any RAL estimator must lie in Λ⊥.

We then note that the projection of the score function of the target parameter, Sβ, onto
the orthogonal complement of the Nuisance Tangent Space, Λ⊥, represented by Π(Sβ | Λ⊥),
also satisfies (1.15) in that E

[
Π(Sβ | Λ⊥)Sᵀ

η

]
= 0. We call this projection the Efficient Score.

That is
Seff = Π(Sβ | Λ⊥) = Sβ − Π(Sβ | Λ). (1.21)

We note that Seff may not be the efficient influence function since it may not satisfy
(1.14). Therefore, our goal now is to find B ∈ Rq×q such that E

(
BSeffS

ᵀ
β

)
= I, and in so
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doing, BSeff will be an influence function. Since Sβ and Π(Sβ | Λ) both lie in T , we also
know that BSeff ∈ T , and will hence be the efficient influence function.

As seen from above, it is clear that

B =
(
E
(
SeffS

ᵀ
β

))−1

= (E (Seff (Sᵀ
eff − Π(Sβ | Λ)ᵀ)))−1

= (E (SeffS
ᵀ
eff))−1 ,

since Seff ⊥ Π(Sβ | Λ).

Hence, the efficient influence function may also be written as a function of the Efficient
Score as follows:

ϕeff(Y,X) = BSeff(Y,X) = (E (Seff(Y,X)Sᵀ
eff(Y,X)))−1 Seff(Y,X) (1.22)

In our running example, the efficient score is given by

Seff = Sβ − Π(Sβ | Λ) = Sβ − E(SβSη)
(
E
(
S2
η

))−1
Sη.

Furthemore, since ε | X ∼ N (0, η), we know that E(ε | X) = E(ε3 | X) = 0. Hence,

E(SβSη) = E
(

1

η0

Xε

(
− 1

2η0

+
ε2

2η2
0

))
= − 1

2η2
0

E(Xε) +
1

2η3
0

E(Xε3)

= − 1

2η2
0

E(X E(ε | X)) +
1

2η3
0

E(X E(ε3 | X))

= 0.

As such,
Seff = Sβ.

And the efficient influence function is given by

ϕeff(Y,X) = (E (Seff(Y,X)Sᵀ
eff(Y,X)))−1 Seff(Y,X)

=
(
E
(
SβS

ᵀ
β

))−1
Sβ

= (−E (Sββ))−1 Sβ

= (E (XXᵀ))−1 (X [Y −Xᵀβ0]) ,
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which is the same as in (1.9) and (1.20).

Since the OLS estimator has influence function which is equal to the efficient influence
function, we can conclude that it is the efficient estimator in our parametric model. We
will show in Section 1.5.6 how to derive an efficient estimator using the efficient influence
function if the original estimator is not efficient to begin with.

1.5 The Heteroskedastic Linear Model and

Semiparametric Efficient Estimation

In this section, even though we will be working within a semiparametric model that can-
not be indexed by a finite set of parameters, we will treat the results obtained in the previous
section as true and point out distinctions in the proof where it will aid in understanding.
In particular, the workflow for finding the efficient estimator in our model will remain the
same. That is, we need to work out what the score of the target parameter is, determine
the nuisance tangent space, project the score onto the nuisance tangent space to obtain the
efficient score, and re-scale the efficient score to obtain the efficient influence curve. We will
then show how to obtain the efficient estimator once we have the efficient influence function
via a one-step estimator approach and the estimating equation approach.

1.5.1 The Heteroskedastic Linear Model

We consider a statistical model of the joint distribution of Y and X, and also relax the
assumptions that (i) the conditional distribution of Y given X is Gaussian, and (ii) that the
conditional variance of the residuals ε is constant across X. We call this the Heteroskedastic
Linear Model and represent it as

MHet := {pY,X(y, x) : Y = Xᵀβ + ε,E(ε | X) = 0} .

We point out that since we do not make any assumptions on the shape of each distribution
inMHet, each of these distributions cannot be indexed by a finite set of parameters. However,
since our interest is still in the parameter β, we can instead index each distribution by β and
an infinite nuisance parameter, η. To some extent, though it can be helpful to think of η as
an infinite ‘vector’, strictly speaking, it is actually more mathematically precise to think of
it as an infinite dimensional vector function η(·) instead.

To get a better handle on what η(·) is, we consider the following. For each distribution,
since there is a one-to-one relationship between Y and ε given X, for any density pY,X(y, x)
in MHet we can write

pY,X(y, x) = pε,X(ε, x)

= pε|X(ε | x)pX(x).
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Now let the functions η∗(·), η∗∗(·) and η(·) be defined in the following manner: η∗(ε, x) =
pε|X(ε | x), η∗∗(x) = pX(x), and η(ε, x) = η∗(ε, x)η∗∗(x). Then treating η∗(·) as a function
(rather than a density), we see that for all x,∫

η∗(ε, x)dε = 1 and

∫
εη∗(ε, x)dε = 0.

Similarly, η∗∗(·) as a function must satisfy∫
η∗∗(x)dx = 0.

We can thus think of the joint distributions of Y and X in the model MHet as being
indexed by the parameter β as well as the functions η∗(·), and η∗∗(·). That is, for each
pY,X(y, x) ∈MHet, we can write

pY,X(y, x) ≡ pY,X;β,η∗,η∗∗(y, x),

and in particular, the true data generating p0(y, x) distribution is indexed by β0, η∗0(·), and
η∗∗0 (·) as follows:

p0(y, x) = pY,X;β0,η∗0 ,η
∗∗
0

(y, x).

1.5.2 Parametric Submodels

At this point, we should note that it is incredibly difficult to work with infinite dimen-
sional parameters. Furthermore, the concepts and tools we developed in the previous section
were applicable only to models that could be indexed by a finite number of parameters. As
such, in order to make progress, we first consider working with submodels withinMHet that
are indexed only by a finite number of parameters and then consider what happens in the
limit when we take the union over all these submodels.

To that end, we define a parametric submodel Mβ,γ∗,γ∗∗ as a collection of joint distribu-
tions of Y and X inMHet that are indexed by a finite vector of parameters (βᵀ, γ∗ᵀ, γ∗∗ᵀ)ᵀ ∈
Rq+r1+r2 , and that contains the true data-generating distribution. Note that since
the definition of a parametric submodel above necessitates that it contains the true data
generating distribution, we are, in practice, usually not able to write down an explicit form
of the distributions contained in any parametric submodel. We will only be using para-
metric submodels purely as a conceptual tool to get a better understanding of the larger
semiparametric model.

Since every parametric submodel contains the true data generating distribution by defini-
tion, we can now index that distribution by a finite vector of true parameters (βᵀ

0 , γ
∗ᵀ
0 , γ

∗∗ᵀ
0 )ᵀ,

and write
p0(y, x) ≡ pY,X;β0,γ∗0 ,γ

∗∗
0

(y, x).
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For each parametric submodelMβ,γ∗,γ∗∗ , we can then define an associated nuisance tan-
gent space Λγ∗,γ∗∗ as the space of q-dimensional mean-zero random functions that are spanned
by the score function of the nuisance parameters. That is,

Λγ∗,γ∗∗ =
{
B∗Sγ∗ +B∗∗Sγ∗∗ | B∗ ∈ Rq×r1 , B∗∗ ∈ Rq×r2

}
.

In any parametric submodel, we can define the score function of the nuisance parameters
like we did before as the first derivative of the log-likelihood of the density. In particular,
when these score functions are evaluated at the truth, we have

Sγ∗ ≡ Sγ∗(Y,X, β0, γ
∗
0 , γ

∗∗
0 )

=
∂

∂γ∗
log pY,X;β0,γ∗0 ,γ

∗∗
0

(y, x)

=
∂

∂γ∗
(
log pε|X;β0,γ∗0

(ε | x) + log pX;γ∗∗0
(x)
)

=
∂

∂γ∗
log pε|X;β0,γ∗0

(ε | x), and (1.23)

Sγ∗∗ ≡ Sγ∗∗(Y,X, β0, γ
∗
0 , γ

∗∗
0 )

=
∂

∂γ∗∗
log pY,X;β0,γ∗0 ,γ

∗∗
0

(y, x)

=
∂

∂γ∗∗
(
log pε|X;β0,γ∗0

(ε | x) + log pX;γ∗∗0
(x)
)

=
∂

∂γ∗
log pX;γ∗∗0

(x).

We can then define the nuisance tangent space Λ forMHet to be the mean-square closure
of the union of the nuisance tangent spaces Λγ∗,γ∗∗ associated with all parametric submodels.
The notion of the mean-square closure is a technical detail which the reader can read more
about in Tsiatis (2007). In essence, by ‘closure’ we mean that Λ is not only the union of the
nuisance tangent spaces of all parametric submodels, but also contains the limits of sequences
of elements from the union, and by ‘mean-square’ we mean that the limit is defined by the
mean of the squared-distance induced by the inner product.

This, together with the regularity assumption that the resultant space Λ is still a linear
space, is important as it guarantees the existence and uniqueness of the projection of a
random function onto Λ, and in particular, the existence and uniqueness of the projection
Π(Sβ | Λ) of the score function of the target parameter onto the nuisance tangent space Λ.

1.5.3 The Nuisance Tangent Space Λ

One way of deriving the nuisance tangent space Λ is to first hypothesize a set of functions
the space should encompass by looking at properties of the scores that span them, and then
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show that the set is precisely the mean-square closure of the nuisance tangent spaces of all
parametric submodels. While this is the approach taken in Tsiatis (2007), he does so in a
way that also explores the geometric relationship between the different conditions implied
by conditional distribution of ε given X and the marginal distribution of X. Since our goal
here is simply to didactically derive an expression of Λ, we present a more compact and
direct derivation of our own.

1.5.3.1 Our Conjecture

In MHet, we know that E[ε | X] = 0 for all X. This implies that E[ε | X] = 0 also holds
in any parametric submodel Mγ∗,γ∗∗ . As such, we have∫

εpε|X;β0,γ∗0
(ε | x)dε = 0

(i)
=⇒ ∂

∂γ∗

∫
εpε|X;β0,γ∗0

(ε | x)dε = 0

(ii)
=⇒

∫
ε
∂

∂γ∗
pε|X;β0,γ∗0

(ε | x)dε = 0

(iii)
=⇒

∫
ε

∂
∂γ∗

pε|X;β0,γ∗0
(ε | x)

pε|X;β0,γ∗0
(ε | x)

pε|X;β0,γ∗0
(ε | x)dε = 0

(iv)
=⇒

∫
ε
∂

∂γ∗
(
log pε|X;β0,γ∗0

(ε | x)
)
pε|X;β0,γ∗0

(ε | x)dε = 0

(v)
=⇒

∫
εSγ∗pε|X;β0,γ∗0

(ε | x)dε = 0

(vi)
=⇒ E [εSγ∗ | X] = 0,

where in (i), we take partial derivatives with respect to γ∗ on both sides, in (ii), we assume
sufficient regularity to swap the integral and derivative, in (iii), we multiply and divide the

integrand by pε|X;β0,γ∗0
(ε | x), in (iv) we use the identity that ∂

∂γ
log pZ,γ(z) =

∂
∂γ
pZ,γ(z)

pZ,γ(z)
, in (v)

we use (1.23), and finally, in (vi), we use the definition of the conditional expectation of a
function.

Next, we also notice that Sγ∗∗ is a function only of X. Hence,

E[εSγ∗∗ | X] = Sγ∗∗ E[ε | X] = 0,

since E[ε | X] = 0.

And so, for any element l(ε,X) in the nuisance tangent space Λγ∗,γ∗∗ of an arbitrary
parametric submodel Mβ,γ∗,γ∗∗ , since

l(ε,X) = B∗Sγ∗ +B∗∗Sγ∗∗
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for some B∗ ∈ Rq×r1 and B∗∗ ∈ Rq×r2 , we know that

E [εl(ε,X) | X] = B∗ E [εSγ∗ | X] +B∗∗ E [εSγ∗∗ | X] = 0. (1.24)

Since Λ is the mean-square closure of the nuisance tangent spaces Λβ,γ∗,γ∗∗ of all para-
metric submodels, it is a reasonable conjecture that Λ should contain all mean-zero random
functions whose conditional expectation given X when multiplied by ε is zero. That is, we
hypothesize that Λconj = Λ where

Λconj = {l(ε,X) ∈ H : E [εl(ε,X) | X] = 0} .

1.5.3.2 Proving Our Conjecture

To show that Λconj = Λ, we need to show that Λconj is indeed the mean-square closure of
the nuisance tangent spaces of all parametric submodels. We do this via the usual approach
of showing that two sets are equal by showing that they are subsets of each other. In this
case, we want to show that the mean-square closure is a subset of Λconj and vice-versa. This
can be done by showing that

1. any element in the nuisance tangent space of any parametric submodel is an element
in Λconj, and

2. any element in Λconj is an element in the nuisance tangent space of at least one para-
metric submodel or is the limit of elements of the nuisance tangent spaces of parametric
submodels.

The first statement is an immediate consequence, by construction, of (1.24) since the
choice of parametric submodel there was arbitrary.

To show the second statement, we will first choose an arbitrary bounded function in
Λconj and then try to construct a parametric submodel that has a nuisance tangent space
that contains it. In the following steps, we make the distribution explicit that expectations
are taken over by using subscripts.

We first let l(ε,X) ∈ Λconj be a bounded, (jointly) mean-zero random function such that

Eε|X [εl(ε,X) | X] = 0.

In order to define a parametric submodel that contains the true joint distributions of ε and
X more easily, we consider perturbations of the conditional distribution of ε given X and
the marginal distribution of X about the true distributions separately.
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Decomposing the function l(ε,X). We begin by defining

l∗∗(X) := Eε|X [l(ε,X) | X] .

It is easy to see that l∗∗(X) satisfies

EX [l∗∗(X)] = EX
[
Eε|X [l(ε,X) | X]

]
= 0, (1.25)

and
Eε|X [εl∗∗(X) | X] = l∗∗(X)E [ε | X] = 0,

since E [ε | X] = 0 in MHet.

Now, we define
l∗(ε,X) := l(ε,X)− l∗∗(X),

and similarly see that

Eε|X [l∗(ε,X) | X] = Eε|X [l(ε,X) | X]− Eε|X [l∗∗(X) | X] = l∗∗(X)− l∗∗(X) = 0, (1.26)

and
Eε|X [εl∗(ε,X) | X] = Eε|X [εl(ε,X) | X]− Eε|X [εl∗∗(X) | X] = 0. (1.27)

Defining a set of functions Mγ∗,γ∗∗. With l∗(ε,X) and l∗∗(X), we can now use two
finite-dimensional parameters γ∗ and γ∗∗ to define a set Mγ∗,γ∗∗ that contains functions of
the form

pε|X;η∗0
(ε | X)

(
1 + γ∗

ᵀ
l∗(ε,X)

)︸ ︷︷ ︸
pε|X;γ∗ (ε|X)

pX;η∗∗0
(X)

(
1 + γ∗∗

ᵀ
l∗∗(X)

)︸ ︷︷ ︸
pX;γ∗∗ (X)

. (1.28)

Verifying that Mγ∗,γ∗∗ is a parametric submodel. In the expression above, we
treat the true densities pε|X;η∗0

(ε | X) and pX;η∗∗0
(X) as known functions. As such, we see

thatMγ∗,γ∗∗ contains the density of the true data-generating distribution given by pε|X;η∗0
(ε |

X)pX;η∗∗0
(X) for parameter values γ∗ = γ∗∗ = 0. This is an important first criteria to ensure

that Mγ∗,γ∗∗ is indeed a valid parametric submodel.

Next, we have to check that the functions in Mγ∗,γ∗∗ are indeed densities. That is, we
need to check that are non-negative, and integrate to 1.

To guarantee the functions in (1.28) are non-negative, we simply restrict the range of γ∗

and γ∗∗ defining Mγ∗,γ∗∗ to be small enough values to ensure that (1 + θ∗ᵀl∗(ε,X)) ≥ 0 and
(1 + θ∗∗ᵀl∗∗(X)) ≥ 0 for all ε and X.

We can then check that the functions integrate to 1 directly by first noting that∫ ∫
pε|X;γ∗(ε | X)pX;γ∗∗(X)dεdX =

∫
pX;γ∗∗(X)

[∫
pε|X;γ∗(ε | X)dε

]
dX.
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Looking at the inner integral, we have that∫
pε|X;γ∗(ε | X)dε =

∫
pε|X;η∗0

(ε | X)
(
1 + γ∗

ᵀ
l∗(ε,X)

)
dε

=

∫
pε|X;η∗0

(ε | X)dε+ γ∗
ᵀ

∫
l∗(ε,X)pε|X;η∗0

(ε | X)dε

(i)
= 1 + γ∗

ᵀ Eε|X [l∗(ε,X) | X]

(ii)
= 1,

where in (i) we make use of the fact that pε|X;η∗0
(ε,X) is a valid density, and in (ii) we make

use of (1.26).

Looking at the outer integral, we have that∫
pX;γ∗∗(X)dX =

∫
pX;η∗∗0

(X)
(
1 + γ∗∗

ᵀ
l∗∗(X)

)
dX

=

∫
pX;η∗∗0

(X)dX + γ∗∗
ᵀ

∫
l∗∗(X)pX;η∗∗0

(X)dX

(i)
= 1 + γ∗∗

ᵀ EX [l∗∗(X)]

(ii)
= 1,

where in (i) we similarly make use of the fact that pX;η∗∗0
(X) is a valid density, and in (ii)

we make use of (1.25).

We have thus verified that under the restricted set of values for γ∗ and γ∗∗, the functions
of the form in (1.28) are in fact densities.

The last thing we have to check in order to be sure that Mγ∗,γ∗∗ is in fact a parametric
submodel is whether Mγ∗,γ∗∗ ⊂ MHet. That is, we need to verify that all densities pε|X(ε |
X)pX(X) ∈Mγ∗,γ∗∗ satisfy the condition that

Eε|X [ε | X] =

∫
εpε|X(ε | X)dε = 0.

Evaluating the integral above directly, we have∫
εpε|X;γ∗(ε | X)dε =

∫
εpε|X;η∗0

(ε | X)
(
1 + γ∗

ᵀ
l∗(ε,X)

)
dε

=

∫
εpε|X;η∗0

(ε | X)dε+ γ∗
ᵀ

∫
εl∗(ε,X)pε|X;η∗0

(ε | X)dε

(i)
= 0 + γ∗

ᵀ Eε|X [εl∗(ε,X) | X]

(ii)
= 0,
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where in (i) we make use of the fact that pε|X;η∗0
(ε | X) ∈ MHet, and in (ii) we make use of

(1.27).

Showing that the nuisance tangent space of our parametric submodel contains
the function l(ε,X). Now, all that is left is to show that l(ε,X) lies in the nuisance
tangent space of this parametric submodel. To do so, we first need to evaluate the scores of
the nuisance parameters γ∗ and γ∗∗ as follows:

Sγ∗ =
∂

∂γ∗
log
{
pY |X;β0,η∗0

(ε,X) (1 + γ∗ᵀl∗(ε,X)) pX;η∗∗0
(X) (1 + γ∗∗ᵀl∗∗(X))

}∣∣∣∣
γ∗=0

=
∂

∂γ∗
log (1 + γ∗ᵀl∗(ε,X))

∣∣∣∣
γ∗=0

= l∗(ε,X)

Sγ∗∗ =
∂

∂γ∗∗
log
{
pY |X;β0,η∗0

(ε,X) (1 + γ∗ᵀl∗(ε,X)) pX;η∗∗0
(X) (1 + γ∗∗ᵀl∗∗(X))

}∣∣∣∣
γ∗∗=0

=
∂

∂γ∗∗
log (1 + γ∗∗ᵀl∗∗(X))

∣∣∣∣
γ∗∗=0

= l∗∗(X).

Since the nuisance tangent space of Mγ∗,γ∗∗ is spanned by the scores of the nuisance
parameters, it must contain l∗(ε,X) + l∗∗(X) = l(ε,X). Since our choice of l(ε,X) was
arbitrary, we can choose them to also be the limits of a sequence of bounded mean-zero
random variables and arrive at the same result.

Hence, we have shown that

Λ = Λconj = {l(ε,X) ∈ H : E [εl(ε,X) | X] = 0}

1.5.4 The Efficient Score

Recall that we define in (1.21) that the efficient score Seff is the projection of the score
of the target parameter Sβ onto the orthogonal complement of the nuisance tangent space
Λ⊥ which we can think of as the collection of all the residuals h(ε,X) − Π(h | Λ) for every
h ∈ H.

At this point, we do not know what the space Λ⊥ comprises, but we can hypothesize that
it contains all functions of the form A(X)ε since we observe that

E [(A(X)ε)ᵀl(ε,X)] = E [(Aᵀ(X)E [εl(ε,X) | X]] = 0

for all l(ε,X) ∈ Λ.
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To show that Λ⊥ does indeed comprise elements of the form A(x)ε, we need to find a
unqiue random function A(X) ∈ H such that for any element h(ε,X) ∈ H,

Π(h | Λ⊥) = A(X)ε. (1.29)

Since we also know that the residual h(ε,X)−Π(h | Λ⊥) of the projection of h(ε,X) onto
the orthogonal complement Λ⊥ is by definition an element of Λ, we have that

E
[
ε
(
h(ε,X)− Π(h | Λ⊥)

)
| X
]

= 0.

By rearranging the equation above, and using (1.29) we thus have

E [εh(ε,X) | X] = E
[
εΠ(h | Λ⊥)) | X

]
= E [ε(A(X)ε) | X]

= A(X)E
[
ε2 | X

]
= A(X)σ2(X),

where we use σ2(X) to represent E [ε2 | X] to simplify notation. Note that the notation is
intentional because E [ε2 | X] is really the conditional variance of the residual within strata
of X.

Solving for A(X), and assuming σ2(X) 6= 0, we thus see that we have a unique solution
for A(X) is given by

A(X) =
1

σ2(X)
E [εh(ε,X) | X] .

We have thus shown that the orthogonal complement Λ⊥ consists of elements of the form
A(X)ε. In particular, if we replace h(ε,X) in the derivation above with Sβ, we see that the
projection of Sβ onto Λ⊥, which is the efficient score Seff, is given by

Seff = Π(Sβ | Λ⊥) =
1

σ2(X)
E [εSβ | X] ε.

All that remains to determine the exact form of the efficient score is to evaluate E [εSβ | X].
To do so, we first make use of the fact that Sβ is the derivative of the log-likelihood with
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respect the β evaluated at β0 and η0(·). That is,

Sβ =
∂

∂β
log pY,X;β,η0(·)(y, x)

∣∣∣∣
β=β0

=
∂

∂β
(log η∗0(y − xᵀβ, x) + log η∗∗0 (x))

∣∣∣∣
β=β0

=
∂

∂β
log η∗0(ε, x)

∣∣∣∣
β=β0

=

∂
∂β
η∗0(ε, x)

∣∣∣
β=β0

η∗0(ε, x)
.

And so, we have that

Sβη
∗
0(ε, x) =

∂

∂β
η∗0(ε, x)

∣∣∣∣
β=β0

. (1.30)

Secondly, we know that
∫
εη∗(ε, x)dε = 0 since E [ε | X] = 0. Taking the derivative with

respect to β on both sides, we thus have

∂

∂β

∫
εη∗(ε, x)dε

∣∣∣∣
β=β0

= 0

(i)
=⇒

∫
∂

∂β
εη∗(ε, x)

∣∣∣∣
β=β0

dε = 0

(ii)
=⇒

∫
∂

∂β
ε

∣∣∣∣
β=β0

η∗(ε, x)dε+

∫
ε
∂

∂β
η∗(ε, x)

∣∣∣∣
β=β0

dε = 0

(iii)
=⇒

∫
(−X)η∗(ε, x)dε+

∫
εSβη

∗
0(ε, x)dε = 0

(iv)
=⇒ −X + E [εSβ | X] = 0,

where in (i) we swap the order of the integral and the derivative, in (ii), we apply the product
rule, in (iii), we note that ε = Y −Xᵀβ, find its derivative with respect to β and then evaluate
the result at β0 for the term on the left, and make use of (1.30) for the term on the right,
and finally in (iv), we use the fact that η∗(ε, x) is a (conditional) density which integrates to
1.

And so, our expression for the efficient score reduces to

Seff =
1

σ2(X)
Xε.
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1.5.5 The Efficient Influence Function

Following the result from (1.22), we know that the efficient influence function can be
obtained by scaling the efficient score such that it lies on the tangent space T . Hence,

ϕeff(Y,X) = {E [Seff(Y,X)Sᵀ
eff(Y,X)]}−1 Seff(Y,X)

=

{
E
[(

1

σ2(X)
Xε

)(
1

σ2(X)
Xε

)ᵀ]}−1(
1

σ2(X)
Xε

)
=

{
E

[(
1

σ2(X)

)2

XXᵀε2

]}−1
1

σ2(X)
Xε

=

{
E

[
E

[(
1

σ2(X)

)2

XXᵀε2 | X

]]}−1
1

σ2(X)
Xε

=

{
E

[(
1

σ2(X)

)2

XXᵀ E
[
ε2 | X

]]}−1
1

σ2(X)
Xε

=

{
E

[(
1

σ2(X)

)2

XXᵀσ2(X)

]}−1
1

σ2(X)
Xε

=

{
E
[

1

σ2(X)
XXᵀ

]}−1
1

σ2(X)
Xε (1.31)

1.5.6 The Efficient Estimator

Unlike the parametric case, the OLS estimator given by (1.3) is not the efficient estimator
since its influence function is not given by (1.31). In fact, in our semiparametric model, it is
commonly known that the efficient estimator is in fact the Weighted Least-Squares (WLS)
estimator given by

β̂WLS =

(
1

n

n∑
i=1

WiXiX
ᵀ
i

)−1(
1

n

n∑
i=1

WiXiYi

)

where Wi = 1
σ2(Xi)

. We now show how to derive the WLS estimator from the efficient
influence function via two approaches: the one-step estimator approach and the estimating
equation approach.

Remark 8 (Estimating the Weights). As is commonly known, an important step in eval-

uating β̂WLS is figuring out what the weights Wi are. This can be done via parametric or
semi-/non-parametric modeling, but not to stray from the intent of this section, we will treat
the function σ2(X) as known or simply assume that it can be consistently estimated. It should
be noted, however, that the WLS being the efficient estimator hinges on σ2(X) being known.
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1.5.6.1 The One-Step Estimator

In the one-step approach, we start with a plug-in estimator of the parameter β. Then,
it is known that we can derive the efficient estimator by simply adding the empirical mean
of the estimated efficient influence function evaluated at each data points to this plug-in
estimator. In our case, the OLS estimator is a plug-in estimator, and we will show that

β̂WLS = β̂OLS +
1

n

n∑
i=1

ϕ̂eff(Yi, Xi).

Firstly, since we note that we can estimate the efficient influence function by its plug-in
analogue

ϕ̂eff(Yi, Xi) =

{
1

n

n∑
j=1

1

σ2(Xj)
XjX

ᵀ
j

}−1
1

σ2(Xi)
Xiε̂i

=

{
1

n

n∑
j=1

WjXjX
ᵀ
j

}−1

WiXiε̂i

where ε̂i = Yi −Xᵀ
i β̂OLS.

Then, we see that

β̂WLS −
1

n

n∑
i=1

ϕ̂eff(Yi, Xi)

=

(
1

n

n∑
i=1

WiXiX
ᵀ
i

)−1(
1

n

n∑
i=1

WiXiYi

)
− 1

n

n∑
i=1

( 1

n

n∑
j=1

WjXjX
ᵀ
j

)−1

WiXiε̂i


=

(
1

n

n∑
i=1

WiXiX
ᵀ
i

)−1(
1

n

n∑
i=1

WiXiYi

)
−

(
1

n

n∑
j=1

WjXjX
ᵀ
j

)−1(
1

n

n∑
i=1

WiXiε̂i

)

=

(
1

n

n∑
i=1

WiXiX
ᵀ
i

)−1(
1

n

n∑
i=1

WiXi (Yi − ε̂i)

)

=

(
1

n

n∑
i=1

WiXiX
ᵀ
i

)−1(
1

n

n∑
i=1

WiXiX
ᵀ
i β̂OLS

)
=β̂OLS.

Hence, we have shown that the one-step estimator approach applied to the OLS estimator
yields the efficient WLS estimator.
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1.5.6.2 The Estimating Equation Approach

Another approach for deriving the efficient estimator is to identify the estimating equation
that produces an estimator with the efficient influence function as its influence function.
Recalling from (1.10) that the influence curve of an m-estimator for β with the function
m(·) has the form

ϕ(Yi, Xi) = −
(
E
[
∂m(Y,X, β0)

∂βᵀ

])−1

m(Yi, Xi, β0).

A good guess for the from for m(Yi, Xi, β0) would be taking m(Yi, Xi, β0) = 1
σ2(X)

Xε =
1

σ2(X)
X (Y −Xᵀβ0). We can then check that its influence function ϕm(Yi, Xi) associated with

the m-estimator with function m(·) is precisely the efficient influence function ϕeff(Yi, Xi) as
follows.

ϕm(Yi, Xi) = −
(
E
[
∂m(Y,X, β0)

∂βᵀ

])−1

m(Yi, Xi, β0)

= −

(
E

[
∂

∂βᵀ

(
1

σ2(X)
X (Y −Xᵀβ)

)∣∣∣∣
β=β0

])−1(
1

σ2(Xi)
Xi (Yi −Xᵀ

i β0)

)
= −

(
E
[
− 1

σ2(X)
XXᵀ

])−1(
1

σ2(Xi)
Xi (Yi −Xᵀ

i β0)

)
=

(
E
[

1

σ2(X)
XXᵀ

])−1(
1

σ2(Xi)
Xiεi

)
= ϕeff(Yi, Xi).

Furthermore, m(Yi, Xi, θ0) is a valid function for an m-estimator since

E [m(Yi, Xi, β0)] = E
[

1

σ2(X)
Xε

]
= E

[
E
[

1

σ2(X)
Xε | X

]]
= E

[
1

σ2(X)
X E [ε | X]

]
= 0

since E [ε | X] by our model assumption.

Hence, the efficient estimator can also be expressed at the solution, β̂ to the estimating
equation

n∑
i=1

1

σ2(Xi)
Xi

(
Y −Xᵀβ̂

)
= 0,
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which is clearly the WLS estimator after rearranging the equations.

Remark 9. We note that replacing 1
σ2(Xi)

with a function f(Xi) yields an estimating equation
with a solution that is still a consistent estimator for the parameter β. In fact, letting
f(Xi) = 1 yields the estimating equation with the OLS estimator as the solution. The
function f is sometimes known as a projection function (for example in the Generalized
Estimating Equation literature) and affects only the efficiency of the estimator and not its
consistency so long as the modeling assumptions (in this case that the mean structure is
linear and that E(ε | X) = 0) hold.

1.6 Concluding Remarks

The purpose of this chapter was to shed some light on the mechanics behind semiparamet-
ric efficient estimation using the familiar Linear Model as a scaffold. We have done so at the
expense of not showcasing its benefits concretely beyond that of the Linear Model. There-
fore to conclude, we briefly mention three important reasons for adopting a semiparametric
approach in modern statistical analysis.

Firstly, adopting a semiparametric approach frees researchers from the constraints of
thinking about parameters merely as coefficients of a regression, but more generally as func-
tionals of a data-generating distribution. This gives researchers access to a much larger class
of parameters that may provide more targeted and direct answers to their scientific ques-
tions of interest. Secondly, semiparametric methods are becoming increasingly important in
high-dimensional data analysis. They allow the researcher to partition a problem into a low-
dimensional parameter of interest that can be easily understood and interpreted, and a high
dimensional nuisance parameter that provides greater flexibility in model fitting and usually
does not require many assumptions on the data-generating distribution. Lastly, many semi-
parametric estimators make use of modern machine learning methods while still providing
valid inference. The class of Targeted Maximum Likelihood Estimators for example has been
increasingly popular in the estimation of causal effects.

Readers interested to learn more may hopefully find the transition to reading Tsiatis
(2007) smoother. We direct readers also to an excellent pedagogical piece by Fisher and
Kennedy (2018) for more insight and intuition on influence function based estimation. For
even more advanced readers, Bickel et al. (1993) and Newey (1988) are classical but chal-
lenging references. And finally, for a modern approach to semiparametric estimation, we
direct the reader to van der Laan and Rose (2011) and van der Laan and Rose (2018) which
cover the Targeted Maximum Likelihood Estimation framework.
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Chapter 2

A Dyadic Item Response Theory
Model

2.1 Introduction

The study of how individuals interact within a group has been and continues to be
of interest to researchers in the behavioral sciences. Even in this setting, the majority of
statistical models focus primarily on how each individual behaves isolated from the influences
of other group members. However, one model developed to handle the simplest case of
two individuals interacting in a dyad is the Social Relations Model (SRM) (e.g., Kenny,
Kashy, & Cook, 2006; Kenny & La Voie, 1984; Warner, Kenny, & Stoto, 1979). Here,
the ways one individual (often called an actor or perceiver) of a dyad behaves when paired
with the other (often called the partner or target) and vice-versa are analyzed to infer
individual-level and dyad-level effects. The behavior of the actors can be directed towards
the partner (e.g., an individual’s perception of the partner’s attractiveness) or undirected
(e.g., the number of times an individual takes the lead in a collaborative problem solving
task), and can be measured during or after socially interacting with the partner. Compared
with traditional “isolated” models, the innovative SRM considers both members of the dyad
as contributors to the eventual observed behavior. The SRM model has been most often
used in social psychology (e.g., Kenny & Kashy, 1994), but is increasingly being used in
other fields. A diverse set of examples include relationships in pharmacy and therapeutics
hospital-committee decision-making (Bagozzi & Ascione, 2005), social media ties among
basketball teammates (Koster & Brandy, 2018), and militarized interstate disputes (Dorff &
Ward, 2013).

In the original formulation of the SRM, the specific behavior of an actor when paired with
a partner depends on a composite dyad-level latent trait that can be decomposed into three
parts: (i) an individual-level latent trait reflecting a general inclination of the actor to behave
in a certain way when paired with a partner, (ii) an individual-level latent trait reflecting the
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general tendency of the partner to elicit such a behavior, and (iii) a dyad-level latent trait
that characterizes the effect of the unique (directed) relationship between both parties on
the behavior of the actor that is independent of the two individual-level latent traits (Back
& Kenny, 2010). More concretely, if one is interested in the level of physical attraction of
an actor towards a partner, then the three components reflect (i) how, on average, an actor
tends to find others attractive, (ii) how, on average, the partner tends to be found attractive,
and how (iii) the actor uniquely finds the partner attractive. As a result of this formulation,
the SRM is identifiable only if individuals belong to multiple pairs.

While the SRM is a useful tool in the analysis of dyads, it has not yet been extended
for the case where a set of behaviors or responses of an actor can be viewed as measuring
a latent variable, such as the actor’s perception of or disposition towards a partner. Multi-
variate SRM (e.g., Card, Little, & Selig, 2008; Kenny, 1994; Nestler, 2018) accommodates
multiple measures, but it effectively corresponds to a set of univariate SRMs with additional
correlations of individual-level and dyad-level latent traits across measures. When there are
more than two or three measures, the multivariate SRM has an abundance of cross-variable
correlations that are not easy to interpret. More importantly, multivariate SRMs do not pro-
vide a means for predicting or scoring actor, partner and dyad effects on an underlying latent
trait. With existing methodology, a better alternative would be to specify a univariate SRM
for some summary of the measures, such as a sum-score or mean. However, this could result
in a loss of information analogous to educational testing where the scores on different items
of the test are sometimes summed up, and only the sum score is used. Our proposed dyadic
Item Response Theory (dIRT) model therefore incorporates an Item Response Theory (IRT)
model. Advantages include having the ability to account for differences in item difficulty,
allowing for missing responses in subsets of items (under the Missing-at-Random assump-
tion), and having individualized standard errors of the latent trait scores (e.g., Embretson
& Reise, 2000).

IRT is the standard approach for modeling the relationship between the latent traits of
individuals and their responses to a set of items in educational testing. There are a variety
of IRT models that may differ, among other things, in terms of the numbers of parameters
in the model, the type of link function used, or the approach taken (e.g., confirmatory or
exploratory) (e.g., van der Linden, 2016). However, existing models treat the latent trait as
a property of the individuals who responded to the items, and perhaps an external party
like a rater, but do not include a unique interaction between individuals in a dyad. That is,
traditional IRT can be used to model the behavior of an actor when paired with a partner as
a function of the items/stimuli, the actor’s tendency to behave in a certain way and perhaps
the partner’s tendency to elicit the behavior, but does not accommodate the unique dyadic
effect due to both individuals interacting in a social setting. Thus, if individuals interact
with one another, and the manner and effect of this interaction is of interest, then existing
IRT models are not useful.
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Although SRM and IRT models each have limitations that could be overcome by the
other, there is, to our knowledge, no prior work on integrating the models. Only two related
cases appear to exists: Alexandrowicz (2015) extended the Actor-Partner Interdependence
Model (APIM) and Common Fate Model (CFM) that we describe in Section 2.2.4 to work
within an IRT framework. While these models relax the condition that only an individual’s
latent ability affects the individual’s response to an item, neither of them models the dyadic
interaction as a latent trait of the dyad. Furthermore, the APIM and CFM are limited to a
dyadic design where each individual is paired with only one other partner whereas the SRM
handles the case where individuals belong to multiple pairs (Kenny et al., 2006).

Our contributions include the following. First, we describe our proposed dIRT model
that incorporates the key features of both the SRM and IRT. The model includes individual
and dyad-level latent traits and corresponding variance and covariance parameters afforded
by the SRM, while retaining all the important measurement properties of IRT. We also
indicate how the model can be extended to larger groupings than dyads, such as triads.
Second, we provide a literature review of related classes of models and discuss data designs
and conditions for identifiability. Importantly, unlike the SRM, the dIRT model is identified
for cross-sectional data. Third, we extend the basic dIRT model to let the latent traits
affect a distal outcome and depend on observed covariates and cluster-level random effects.
Finally, we demonstrate the practical utility of the model by applying it to a speed dating
dataset and making Stan code available, together with a case-study explaining the code.
While univariate SRMs for one Likert scale item at a time, treated as continuous, have been
applied to speed-dating data (e.g., Ackerman, Kashy, & Corretti, 2015), our multivariate
model accommodates the ordinal nature of the responses and allows estimation of the unique
interaction variance separate from the error variance. We hope that our contributions will
inspire researchers to collect and analyze dyadic data in new settings.

The structure of the chapter is as follows. In Section 2.2, we introduce the basic dIRT
model, discuss data design and identification, propose various extensions of the basic model,
and provide a review of related models. We present a Markov-chain Monte Carlo approach
to estimating the model in Section 2.3, using Stan for estimation. In Section 2.4, we apply
our model and estimation method to a publicly available speed-dating dataset. In Section
2.5 we conduct a simulation study to evaluate the performance of our estimator under a
variety of conditions. Finally, we make some concluding remarks in Section 2.6.

2.2 Dyadic Item Response Theory (dIRT)

2.2.1 Basic dIRT Model

In a social setting where groups of individuals interact, it is likely that the behavior of
individual a ∈ {1, 2, . . . , n} (called the actor) in group g is affected not only by his/her own
latent traits, but also those of the individuals he/she interacts with. Additionally, there
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could also be a “unique” component attributable to the specific composition of the group
that could affect the actor’s behavior above and beyond the effects at the individual level.
We can extend any IRT model to deal with such a setting by replacing the latent trait θa of
individual a, with a composite latent trait θa,g of individual a in the context of group g of
size n:

θa,g ≡ αa +
n∑
j=1
j 6=a

βj +
∑
k∈K

γa,g(k). (2.1)

Here, αa represents the inclination of the actor to behave in a certain way, βj represents
the tendency of another member j of the group to elicit the behavior, and γa,g(k) represents
the unique way members of subgroup g(k) interacted to elicit the behavior from actor a.
The last sum above is over all possible subgroups g(k) of sizes 1 to n − 1 excluding the
actor. (The index set is defined as K := {A ⊆ {1, 2, . . . , n} \ {a} | |A| ≥ 1}, i.e., the set of
all subsets of {1, 2, . . . , n} \ {a} except the empty set). Note that γa,g(k) includes not only
physical interactions between actor a and the other members of the group, but also how the
behavior of actor a is altered by the mere presence of the rest of the group. For example,
in a collaborative problem solving task, αa could represent the inclination of actor a to be
vocal, βj how much partner j tends to elicit opinions from actors, and γa,g(k) how vocal the
actor is due to the composition of the group g(k). In practice, it may not be necessary to
include anything more than pairwise and possibly three-way interactions.

To simplify notation, in the rest of the chapter, we focus on the case when n = 2 as it is
clear how the model can be extended when working with larger group sizes. In this dyadic
setting, for actor a and partner p, the composite latent trait is modeled as

θa,p ≡ αa + βp + γa,p.

Unlike (2.1) where the composite latent variable θ, and in particular the dyad-level latent
trait γ, are indexed by the actor and the group, we can instead index θ and γ by both
individuals a and p since the index set K reduces to the singleton set {{p}}. Here, αa is the
actor latent trait (sometimes called actor effect), βp the partner latent trait (sometimes called
partner effect), and γa,p the dyadic latent trait (sometimes called interaction or relationship
effect) which represents the unique contribution of pairing actor a with partner p to the
behavior of the actor. Note that γa,p is not assumed to be identical to γp,a when the roles of
actor and partner are reversed.

We could consider any traditional IRT model for measuring θa,p. The model for response
ya,p,i to item i by actor a, when paired with the partner p, is of the form

g(P(ya,p,i = j | θa,p, ξi,j)) = f(θa,p, ξi,j)

for some link function g(·), item parameters ξi,j, and functional form f(·). For instance,
for ordinal responses we can obtain the standard partial credit model (Masters, 1982) by
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using the adjacent-category logit link, letting ξi,j represent (unidimensional) step difficulty
parameters, and taking f(·) to be the identity function. If item i has mi categories (from 0
to mi − 1), the model becomes

log

(
PPCM(ya,p,i = j | θa,p, δi,j)

PPCM(ya,p,i = j − 1 | θa,p, δi,j)

)
= θa,p − δi,j ≡ (αa + βp + γa,p)− δi,j, (2.2)

subject to the constraint that
∑mi−1

j=0 PPCM(ya,p,i = j | θa,p, δi,j) = 1, where j ∈ {1, 2, . . . ,mi−
1}, and δi,j are item step difficulties. Note that we condition on δi,j because we will adopt a
(pragmatic) Bayesian perspective (see Section 3).

In the dIRT model, we assume that the latent traits (or random effects) have bivariate
normal distributions: [

αa
βa

]
∼ N

([
µα
µβ

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
,[

γa,p
γp,a

]
∼ N

([
µγ
µγ

]
,

[
σ2
γ ργσ

2
γ

ργσ
2
γ σ2

γ

])
. (2.3)

The parameters are (i) the variances σ2
α, σ2

β, and σ2
γ of the individual and dyad latent traits,

(ii), the expectations µα, µβ, and µγ of each of the individual and dyadic latent traits, and
(iii) the correlations ραβ and ργ.

The individual-level correlation ραβ (sometimes called the general or individual reci-
procity) relates the tendency of an individual to behave in a certain way (i.e., αa or αp) to
that same individual’s tendency to elicit the behavior from his/her partner (i.e., βa or βp).
The dyad-level correlation ργ (sometimes called dyadic reciprocity) relates the two (directed)
latent traits of each dyad (i.e., γa,p and γp,a) to each other.

We will extend the dIRT model in Section 2.2.3 after discussing data design and identi-
fication issues that will motivate and justify some of the extensions.

2.2.2 Data Design and Identification

The dIRT model has five variance-covariance parameters for the individual and dyadic la-
tent traits that imply five “reduced-form parameters” for the composite latent trait: one con-
stant variance, Var(θa,p) = σ2

α+σ2
β+σ2

γ, and four distinct non-zero covariances, cov(θa,p, θp,a) =
2ραβσασβ + ργσ

2
γ), cov(θa,p, θa,q) = σ2

α, cov(θa,p, θb,p) = σ2
β, and cov(θa,p, θb,a) = ραβσασβ

(where a, p, b, q are all different individuals). It is straightforward to find unique solutions
for the five variance-covariance parameters from the five equations above, showing that the
they are identified if the reduced-form parameters (variance and covariances) are identified.

The reduced-form parameters are identified if all the pairs of dyads involved in the co-
variances exist, i.e., actor/partner role reversal (sometimes referred to as “reciprocals”) must
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occur to identify cov(θa,p, θp,a) and it must be possible to belong to more than one dyad.
Specifically, it must be possible for actors to be paired with several partners to identify
cov(θa,p, θa,q), for partners to be paired with several actors to identify cov(θa,p, θb,p), and for
an actor paired with a partner p to also occur in a dyad as a partner of an actor b 6= p to
identify cov(θa,p, θb,a). It is necessary to set some mean parameters and/or step difficulty
parameters to constants for identification. Here, we set the expectations of the latent traits
to zero (µα = µβ = µγ = 0), and allow the item step difficulties δi,j to be unconstrained
(anchoring on latent trait scores instead of item difficulties), except that δi,0 = 0.

We have implicitly assumed that dyads and individuals within dyads are exchangeable
by restricting the mean of θa,p to be constant (set to 0 to identify the step-difficulties) and
allowing for only five distinct second-order reduced form parameters (one variance and four
covariances), i.e., by assuming that the variance is constant and that covariances between
dyadic composite latent variables depend only on the actor/partner roles of the individuals
that are present in both dyads. The corresponding five parameters σ2

α, σ2
β, σ2

γ, ραβ, and ργ
enforce no other constraints besides exchangeability and positive semi-definiteness. Li and
Loken (2002) make the point, for a regular SRM, that the model is in that sense justified by
exchangeability.

When dyads occur naturally, such as in families or work settings, and where different
individuals have different roles (e.g., father and daughter) or when interest centers on asym-
metric relationships (e.g., supervisor and trainee), the exchangeability restrictions enforced
by the model are no longer justified and we discuss how to relax them in Section 2.2.3.1. A
special case of non-exchangeability is where each dyad is composed of individuals from two
different groups, such as husbands and wives, and these groups are the same across dyads,
so that there cannot, for example, be husband and wife dyads as well as father and daughter
dyads. Kenny et al. (2006) refer to this design as distinguishable dyads.

We now explore several dyadic designs for which the SRM is identified, following Kenny
and La Voie (1984) and Malloy and Kenny (1986). The simplest and most common design
is the round robin design. In this design, each individual belongs to a dyad with every other
member of the study, and there are a total of n(n−1)

2
dyads and n(n− 1) directed dyads. In

graph theoretic language where we view each individual as a node, the round-robin design is
represented by a complete graph in the undirected case (see upper-left panel of Figure 2.1),
and a complete directed graph (digraph) in the directed case.

One immediate extension of the round-robin design is the block design where the n
individuals are split into two blocks of sizes p and q respectively, and p + q = n. Then,
each individual from every block forms a dyad with every individual from the other block,
but not with individuals in his/her block. That is, there are a total of pq undirected dyads
and 2pq directed dyads. In graph theoretic terms, such a design can be represented by a
complete bipartite graph (see upper-right panel of Figure 2.1). This occurs most naturally
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for distinguishable dyads, for example when interactions only occur between members of the
opposite gender. In this case, the n individuals are split into two blocks by their gender.
Kenny et al. (2006) refer to such a design as an asymmetric block design.

When individuals are nested in groups, such as families, work groups, or social networks,
where each individual from the group forms a dyad with each other individual of the group,
we have a “k-group round-robin design” (see lower-left panel of Figure 2.1). In addition to
such naturally occurring groups, the groups can also be created by the researcher to reduce
response burden and costs by reducing the number of partners per actor and the number
of dyads, respectively. Another reason for creating groups artificially is to allow individuals
to interact within a group as a way to create the context for the dyadic responses. For
example, Christensen and Kashy (1998) created an initial social situation for groups of four
lonely individuals that involved problem-solving tasks and subsequently collected dyadic
ratings on personal characteristics. There can also be a block design within each group,
resulting in the “k-group block design” (see lower-right panel of Figure 2.1). This is the data
design for the speed-dating application in Section 2.4.

Figure 2.1: Graphs representing round-robin design (upper-left panel), block design (upper-
right panel), k-group round-robin design (lower-left panel), and k-group block design (lower-
right panel). For the k-group designs each group is represented by a layer.
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2.2.3 Extended dIRT Model

2.2.3.1 Including Covariates for the Latent Traits

The dIRT model can be extended to take into account individual and dyadic covariates
that may affect the latent traits at both the individual and dyadic levels by generalizing
the idea of explanatory item response models (e.g., De Boeck & Wilson, 2004). One way
that this can be accomplished is by specifying how the means µα, µβ, and µγ depend on
covariates, such as

µα,a = x′α,acα, µβ,p = x′β,pcβ, µγ,a,p = x′γ,a,pcγ,

where xα,a are the covariates for αa, xβ,p are the covariates for βp, xγ,a,p are the covariates
for γa,p, and cα, cβ and cγ are the corresponding regression coefficients. If the dyads are all
pairs of individuals within a family (k-group round-robin design), the covariates can include
dummy variables for the roles, e.g., for the actor being a father (Snijders & Kenny, 1999).

Keeping in mind that the response probability for actor a when combined with partner
p is a function of the composite latent variable θa,p, whose mean is µα,a + µβ,p + µγ,a,p, care
must be taken to ensure that the regression coefficients are identified. For instance, if one
of the covariates for µγ,a,p is the difference in some attribute, za− zp, between the actor and
partner, it is not possible to also include both the attribute for the actor, za, in the model
for µα,a and the attribute for the partner, zp, in the model for µβ,p. Another example where
identification is impossible is where dyads are males paired only with females (i.e., if the
actor is a male, then the partner must be a female and vice versa) and gender is included
as a covariate in the models for both µα,a and µβ,p. Such an example is described in greater
detail in Section 2.4.

It is also possible to allow the variances of the latent traits to depend on covariates, for
instance to have different variances for different roles within families (Snijders & Kenny,
1999). Such an approach allows modeling non-exchangeable dyads in general.

2.2.3.2 Including Random Effects for the Latent Traits

If the individuals are clustered in different ways, e.g., in schools and/or neighborhoods,
it may make sense to include cluster-level random effects into the models for αa and βp, to
allow the actor and partner effects to be higher, on average, in some clusters than others, or,
in other words, to have intraclass correlations. (For simplicity, we do not consider random
effects in the model for γa,p.)

An obvious specification would be to introduce corresponding cluster-level actor and
partner effects, Aj and Bj, respectively, for cluster j. The corresponding expression for θa,p
then becomes

θa,p ≡ αa + βp + γa,p + Aj[a] +Bj[p],
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where j[a] is the cluster that individual a belong to. We could specify a bivariate normal
distribution for Aj, Bj with variances σ2

A, σ2
B and correlation ρA,B.

These three additional parameters are identified if individuals in the same dyad can
belong to different clusters. In this case, cov(θa,p, θb,q) = 0 if the four different individuals
a, p, b, q come from four different clusters. Otherwise, we add σ2

A to the covariance if and
only if (iff) j[a] = j[b], σ2

B iff j[p] = j[q], ρA,BσAσB iff either j[a] = j[q] or j[p] = j[b] but not
both, and 2ρA,BσAσB iff j[a] = j[q] and j[p] = j[b]. Depending on the cluster memberships
of these four individuals, each of these terms can be added in isolation or in combination,
producing eight distinct covariances. The parameters σ2

A, σ2
B and ρA,B are identified from

these reduced form parameters alone. Further distinct covariances arise if, for instance, the
actor is the same individual in both dyads. In this case, cov(θa,p, θa,q) = σ2

a + σ2
A if the

different individuals, a, p and q, all belong to different clusters and we follow the same rules
as above for adding the other terms besides σ2

A.

However, if dyads are formed only among individuals within the same cluster, e.g., stu-
dents are paired only with other students from the same school, then the term σ2

A + σ2
B +

2ρA,BσAσB appears in all variances and covariances unless the two dyads belong to different
clusters. This can occur only if the two dyads do not share any individuals in common, in
which case we obtain cov(θa,p, θb,q) = σ2

A + σ2
B + 2ρA,BσAσB if dyad (a, p) belongs to the

same cluster as dyad (b, q) and cov(θa,p, θb,q) = 0, otherwise. It follows that only the sum
σ2
A + σ2

B + 2ρA,BσAσB is identified and therefore it makes sense to define uj ≡ Aj +Bj, with
one variance parameter σ2

u, and to include uj directly in the model for θa,p.

It is of course possible to handle multiple nested or non-nested classifications by adding
the corresponding random intercepts u if dyads are formed within a classification and A and
B if dyads are formed across classifications (e.g., neighborhood when dyads are formed within
schools or firms). Non-exchangeability can be handled by specifying different (co)variances
for u or for A and B for different groups of individuals.

2.2.3.3 Distal Outcomes

The dIRT model can be extended by using, for instance, Generalized Linear Models to
model one or more distal outcomes, where αa, βp, and γa,p are latent covariates.

For example, we can consider a binary distal outcome da,p of a dyad (a, p) taking the
value of 1 with the conditional probability πa,p given the latent traits, and 0 otherwise. For
the speed-dating application considered in Section 4, the distal outcome is whether each
actor in a dyad elected to see the partner again. Here, πa,p can be modeled using the logistic
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regression

log

(
πa,p

1− πa,p

)
= b0 + b1αa + b2αp + b3βa + b4βp + b5γa,p + b6γp,a

+ b7αaαp + b8βaβp + b9γa,pγp,a. (2.4)

Distal outcome regressions can also include covariates of both the individual and the dyad
if necessary.

Notice that in the above example, the distal outcome is directed in the sense that it
depends on which individual in the dyad plays the role of the actor, and the individuals are
therefore not exchangeable in the sense that the effect of αa on the distal outcome for actor
a is not necessarily the same as the effect of αp. If the distal outcome is undirected, how-
ever, and individuals within dyads are exchangeable (e.g., in the case of pairs of individuals
participating in a collaborative problem solving task where the outcome of interest is how
well the task was completed per pair), then, (2.4) should be constrained to have b1 = b2,
b3 = b4, and b5 = b6. If there is one undirected outcome per dyad and the individuals in the
dyad are non-exchangeable (e.g., males paired with females), such a constraint is not needed
if, for instance, a represents the male and p the female in the dyad.

2.2.4 Relationship with Other Models

We first review models for dyadic designs for which the dIRT and SRM are not identified,
either because individuals can belong only to one dyad or because actor/partner role reversal
is not possible.

Starting with the situation where individuals belong to only one grouping (dyad or larger
group), the dIRT model reduces to a multilevel IRT where θa,g = ζg + ζa,g, sometimes called
a variance components factor/IRT model (e.g., Rabe-Hesketh, Skrondal, & Pickles, 2004).
Here ζg is a group-level random intercept and ζa,g an individual-level random intercept.

In the dyadic data literature, the most popular model for this case is the Actor-Partner-
Interdependence Model (APIM) proposed by Kenny (1996). The APIM for distinguishable
dyads is basically a bivariate regression model where the actor’s and partner’s continuous
responses ya and yp are both regressed on the covariates xa and xp of both the actor and the
partner:

ya = b1xa + c1xp + ζa, yp = c2xa + b2xp + ζp,

where the disturbances ζa and ζp are correlated. Here, b1 and b2 are interpreted as actor
effects and c1 and c2 as partner effects. In the exchangeable APIM the actor effects are
constrained to be equal, b1 = b2, as are the partner effects, c1 = c2, and the variances,
Var(ζa) = Var(ζp). Generalizations of the classical APIM have also been proposed. For
example, Loeys and Molenberghs (2013) used generalized linear mixed models for categorical
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ya and yp. Alexandrowicz (2015) replaced the observed variables, xa, xp and ya, yp, in the
APIM by latent variables measured by multiple items via IRT models.

The mutual-influence model (Kenny, 1996) has no partner covariate effects which allows
a reciprocal or mutual relationship between the responses of the actor and partner:

ya = d1yp + b1xa + ζa, yp = d2ya + b2xp + ζp,

where ζa and ζp are correlated. This is a simultaneous equation model where d1 and d2

represent the mutual influence between the responses in a pair and xa and xp serve as
instrumental variables for the endogenous explanatory variables ya and yp, respectively. In
the exchangeable version (Duncan, Haller, & Portes, 1968), the actor effects are constrained
to be equal, b1 = b2, as are the mutual effects, d1 = d2, and the variances, Var(ζa) = Var(ζp).

In the Common-Fate Model (CFM) of Kenny and La Voie (1984) a dyad-level latent
variable ηg for dyad g, measured by the continuous responses ya,g and yp,g, is regressed on a
dyad-level latent variable ξg, measured by the continuous covariates xa,g and xp,g:

xa,g = ξg + δa,g, xp,g = ξg + δp,g, ya,g = ηg + εa,g, yp,g = ηg + εp,g,

ηg = γξg + ζg.

The unique factors δa,g and εa,g for the actor-variables are correlated as are δp,g and εp,g for
the partner-variables. Hence, the relationships between the variables is decomposed into
a dyad-level relation (represented by γ) and two individual-level relations (represented by
the error covariances, cov(δa,g, εa,g) and cov(δp,g, εp,g)). In the exchangeable case, the follow-
ing constraints are necessary: Var(δa,g) = Var(δp,g), Var(εa,g) = Var(εp,g), cov(δa,g, εa,g) =
cov(δp,g, εp,g). To use the CFM in an IRT framework, Alexandrowicz, 2015 simply allowed all
items measuring the latent versions of xa,g and xp,g to load on ξg and all items measuring the
latent versions of ya,g and yp,g to load on ηg. We believe that a more appropriate approach
would have been to replace each of xa,g, xp,g, ya,g and yp,g by a separate (first-order) latent
variable, so that ξg and ηg become second-order latent variables and the error covariances
of the CFM can be directly accommodated as covariances among the disturbances of the
first-order latent variables.

We now discuss the situation where individuals appear in multiple dyads but actor/partner
role reversals (or reciprocals) do not occur. For example, if the dyads are raters and exam-
inees (with each examinee rated by several raters and each rater rating several examinees)
only the raters provide responses so that the raters are always the actors and the examinees
are always the partners. Then αa is the rater leniency, βp the examinee ability and γa,p,
interpretable as person-specific rater leniency, can be included only if raters assesses several
items by the same examinee (see, e.g., Shin, Rabe-Hesketh, and Wilson, 2019). In such a
design, ραβ and ργ are not defined because examinees and raters never switch roles.
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We now turn to designs of the kind discussed in Section 2.2.2, where the SRM or dIRT
are identified. Kenny and La Voie (1984) defined the original SRM for a continuous observed
outcome y of actor a in the presence of partner p measured over multiple time points t as

ya,p,t = αa + βp + γa,p + εa,p,t.

Here, εa,p,t can be viewed as test-retest measurement error. Since this term reduces to εa,p
if there is only one time point, the identifiability of the above model, and in particular the
variance of γa,p separately from that of εa,p,i, hinges crucially on measurements of the same
dyad across multiple time points. In the dIRT model, multiple items essentially play the
role of multiple time points, allowing for identification of the variance of γa,p. If one does
not have multiple items or time-points, the model may still be identifiable if we assume that
for two individuals a and p, γa,p = γp,a. That is, we assume that the dyadic effect of the
pair is symmetric across the role that the individuals play and in that sense is no longer
directional. In this case, γa,p simply induces additional dependence between the responses
for a given dyad and we can alternatively replace γa,p + εa,p by a single error term, typically
denoted γa,p, that is correlated across members of the same dyad. In a k-group round-robin
design, it may also make sense to include a group-level random intercept, for instance, when
the groups are families, with each pair of family members forming a dyad (Loncke et al.,
2018; Snijders & Kenny, 1999). Such a model is described at the end of Section 2.2.3.2.

In genetic experiments, a diallel cross is the set of all possible matings between several
genotypes. The genotypes may be defined as individuals, clones, homozygous lines, etc.
(Hayman, 1954). Some quantitative trait is measured for offspring from father a and mother
p, and there are reciprocal crosses, with the role of mother and father reversed. Li and
Loken (2002) show the correspondence between the SRM and a diallel model used in genetics
(e.g., Cockerham & Weir, 1977):

ya,p = µ+ ga + gp + sa,p + da − dp + ra,p,

where all terms are uncorrelated, except for ga and da, and where sa,p = sp,a and ra,p = −rp,a.
The correspondence with the SRM is that αa = ga + da, βp = gp − dp, and γa,p = sa,p + ra,p.

Multivariate extensions of the SRM have been proposed for the situation where actors pro-
vide ratings on several continuous variables (Lüdtke, Robitzsch, & Trautwein, 2018; Nestler,
2018). For the case with a single time-point, the model can be written as

ya,p,i = αa,i + βp,i + γa,p,i

for variable i, where εa,p,i has been removed because only one error term (correlated across
members of the same dyad) can be included. Unstructured covariance matrices are specified
for each of these terms across variables and, in addition to the same-variable covariances
between αa,i and βa,i and between γa,p,i and γp,a,i that are part of a univariate SRM, the
model allows for all corresponding cross-variable covariances as well. As far as we know,
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the common factor analogue to our dIRT model (where the measurement model for θa,p is a
univariate factor model) has not been discussed in the literature.

We are aware of only very few papers that extend the classic SRM model to handle non-
continuous responses, such as Koster and Leckie (2014) who used bivariate Poisson models for
counts and Koster and Brandy (2018) who used bivariate probit models for binary responses.

2.3 Estimation

The dIRT model includes crossed random effects so that the marginal likelihood involves
high-dimensional integrals. For example, in a k-group block design, the dimensionality
of integration for the likelihood contribution of a group is p + 1 or q + 1, whichever is
smaller (Goldstein, 1987). Numerical integration or Monte Carlo integration quickly becomes
prohibitive and approximate methods are often not satisfactory (see, e.g., Jeon, Rijmen, and
Rabe-Hesketh, 2017 and references therein). Fortunately, Bayesian estimation via Markov-
chain Monte Carlo (MCMC) is feasible, and we adopt this approach here. Specifically, we
use the the “No-U-Turn” sampler (Hoffman & Gelman, 2014) implemented in Stan (Stan
Development Team, 2018). The Stan language affords us great flexibility in extending the
basic dIRT model. We also verified all results using Matlab (version r2016b) via custom-
written code based on the Metropolis-Hastings algorithm (Metropolis & Ulam, 1949).

To use MCMC, we define prior distributions for the parameters in (2.3) as well as the
item parameters in (2.2) (and potentially the coefficients of the distal outcome regression in
(2.4)). In our approach, we take the distributions of all hyperparameters σ2

α, σ
2
β, σ

2
γ, ραβ and

ργ to be noninformative by assuming uniform distributions for the variances [0,+∞) and
correlations [−1, 1]. For step difficulties δi,j and regression coefficients b0, b1, . . . , b9 in the
distal outcome model (2.4), we specify noninformative uniform priors (−∞,+∞).

All parameter estimates were obtained using MCMC simulations of 4 chains with 2, 000
iterations, with a burn-in period of 1, 000 iterations. The parameter and hyper-parameter
estimates are expected a posteriori (EAP) values obtained as means over the converged (post
burn-in) MCMC draws for the four chains, i.e., they are based on an MCMC sample size of
4,000. Convergence was assessed by monitoring the R̂ statistic (Gelman & Rubin, 1992).

The distal outcome model in (2.4) can be estimated jointly with the dIRT model by
combining the log-likelihood contributions from the dIRT (`dIRT) and distal outcome (`distal)
models in forming the joint log posterior of all parameters, given the dIRT item responses
and distal outcome.

Joint estimation of the dIRT and distal outcome models is consistent and asymptoticaly
efficient if both models are correctly specified. However, to protect against misspecification
of the distal outcome (or “structural”) model, a sequential approach could be used where
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the parameters of the dIRT (“measurement”) model are estimated in step 1 and subsequent
steps are used to obtain estimates of the structural (distal outcome) model parameters. If
the measurement model is correctly specified, the estimates from step 1 are consistent even if
the structural model is misspecified. However, if the structural model is correctly specified,
joint estimation is more efficient than sequential approaches. From a conceptual point of
view, it has been argued in the structural equation modeling and latent class literature, that
altering the structural model by, for instance, adding or removing distal outcomes, affects
the interpretation of the measurement model because these distal outcomes play a similar
role to the items or indicators that define the latent traits. Sequential modeling can protect
against such “interpretational confounding” (Burt, 1976) where the meaning of a construct
is different from the meaning intended by the researcher (see Bakk and Kuha (2018) for
further discussion).

The most obvious sequential approach is to use factor score regression (Skrondal & Laake,
2001) where one estimates the measurement model (step 1), obtains judiciously chosen scores
for the latent traits from the measurement model (step 2), and substitutes these scores for
the latent traits to estimate the structural model as if the latent traits were observed (step
3). This approach was adopted by Loncke et al. (2018) for SRMs. However, factor score
regression is only consistent for link functions that are rarely of relevance in IRT (such as
the identity) and naive standard errors from this approach are moreover underestimated. To
address these limitations, a multiple imputation approach can be used, where multiple draws
of the latent traits are obtained from their posterior distribution and the estimates for the
structural model are combined using Rubin’s formula (Rubin, 1987). Lüdtke et al. (2018)
use such an approach in an SRM to estimate covariate effects on individual-level latent traits
(i.e., as discussed in Section 2.2.3.1). Multiple imputation is natural in a Bayesian setting
where full posteriors of the latent traits are available. A more straightforward pseudo-
likelihood estimator, in the sense of Gong and Samaniego (1981), was proposed by Skrondal
and Kuha (2012) (see also Bakk and Kuha (2018)). In this case the measurement model is
first estimated, followed by joint estimation of the measurement and structural models under
the constraint that the parameters of the measurement model are set equal to the estimates
from the first stage.

We present the results of the joint approach in this chapter and include results for the
sequential approach with multiple imputation in Appendix B.

2.4 Speed-Dating Application

We use a speed-dating dataset (Fisman, Iyengar, Kamenica, & Simonson, 2006) to ex-
amine the mutual attractiveness ratings of both individuals in a dyad to look for evidence
of interactions that cannot be explained solely by the individuals’ attractiveness or rating
preferences. We also considered whether males and females differ in how they perceive their
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interactions. Additionally, by treating the final dating decision of whether the actor wants
to see the partner again as a distal outcome, we investigate to what extent it relates to the
dyadic latent trait.

The data was collected at 21 separate researcher-organized speed-dating sessions, over a
period of 2 years, with 10-44 students from graduate and professional schools at Columbia
University in each session. During these sessions, attended by nearly an equal number of
male and female participants, all members of one gender would meet and interact with every
member of the opposite gender for 5 minutes each. At the end of the 5 minute session,
participants would rate their partner based on five attractiveness factors on a form attached
to a clipboard that they were provided with. They also indicated whether or not they would
like to see the person again.

After data cleaning, we had a total of 551 individuals, interacting in 4,184 distinct pairs,
leading to 8,368 surveys completed (twice the number of pairs, given that both members of
a pair rated each other). This corresponds to the “k-group block-dyadic” design described
in Section 2.2.2. An illustrative example of data collected for one item in a balanced group
of 10 individuals is shown in Figure 2.2.

partner, p
F1 F2 F3 F4 F5 M6 M7 M8 M9 M10

actor, a

F1 y1,6 y1,7 y1,8 y1,9 y1,10

F2 y2,6 y2,7 y2,8 y2,9 y2,10

F3 y3,6 y3,7 y3,8 y3,9 y3,10

F4 y4,6 y4,7 y4,8 y4,9 y4,10

F5 y5,6 y5,7 y5,8 y5,9 y5,10

M6 y6,1 y6,2 y6,3 y6,4 y6,5

M7 y7,1 y7,2 y7,3 y7,4 y7,5

M8 y8,1 y8,2 y8,3 y8,4 y8,5

M9 y9,1 y9,2 y9,3 y9,4 y9,5

M10 y10,1 y10,2 y10,3 y10,4 y10,5

Figure 2.2: Example of responses ya,p of actor a rating partner p in a single-group block-
dyadic structure consisting of 5 females F1, . . . , F5 and 5 males M6, . . . ,M10.

In the data, the rating by actor a of partner p on item i is given by ya,p,i. Each item
was rated on a 10-point Likert-scale, which we collapsed to a 5-point scale by combining
pairs of adjacent response categories to mitigate sparseness. Participants rated each other
on 5 different items, all related to the overall attractiveness of the partner (viz. physical
attractiveness, ambition, how fun they were, intelligence, and sincerity). We dropped all
invalid ratings from an actor of a partner and the corresponding ratings from the partner of
the actor even if the latter was valid. This amounted to a loss of less than 5% of the data.
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In addition to each individual’s rating of his/her partner, we also had access to an in-
dicator da,p for whether actor a elected to see partner p again. Note that this indicator is
directional and da,p may therefore differ from dp,a. However, embedding the dIRT model
within a distal outcome regression where the distal outcome is non-directional is also possi-
ble. For example, if we knew whether the dyad did in fact go on a date, this outcome would
be unique to the dyad.

Using the joint MCMC estimation approach described in Section 2.3, the results of es-
timating the basic dyadic partial credit model (2.2) and the model also including a distal
regression (2.4) are presented in Tables 2.1 and 2.2 under the heading “without gender”.
The code used to obtain the subsequent results is provided in Appendix A and explained in
a Stan case-study (Sim, Gin, Skrondal, & Rabe-Hesketh, 2019). We estimate two versions
of the distal regression, one with all 10 parameters b0, . . . , b9 (labeled “with interactions”),
and another model with b7 = b8 = b9 = 0 (labeled “without interactions”). The estimates
presented are the posterior means of the MCMC draws, and the values in parentheses rep-
resent the 2.5th and the 97.5th quantiles of the posterior distribution of the MCMC draws.

Table 2.1: Estimates of Standard Deviations and Correlations of Individual and Dyadic
Latent Traits (Joint Approach)

without gender with gender
with interactions without interactions without interactions

µmale 0.08 (-0.10,0.24)
σα 1.03 ( 0.96,1.10) 1.03 ( 0.96,1.10) 1.03 ( 0.96,1.10)
σβ 0.63 ( 0.58,0.68) 0.63 ( 0.58,0.68) 0.63 ( 0.58,0.69)
σγ 0.98 ( 0.95,1.02) 0.98 ( 0.95,1.01) 0.98 ( 0.95,1.02)
ραβ -0.06 (-0.17,0.04) -0.06 (-0.16,0.04) -0.07 (-0.17,0.03)
ργ 0.46 ( 0.42,0.51) 0.46 ( 0.41,0.51) 0.46 ( 0.42,0.51)

2.4.1 Partitioning of Variance between Individual and Dyadic
Latent Traits

Standard deviation and correlation estimates are reported in Table 2.1. In the dIRT, the
variance of the composite latent variable θa,p is the sum of the variances of the individual and
dyad-level latent traits, αa, βp and γa,p. It is instructive to examine the relative contributions
of these latent traits to the composite. The percentage of the variance of θa,p that is due to
αa, βp and γa,p is estimated as 44%, 16% and 40%, respectively.
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Table 2.2: Estimates for Distal Outcome Regression (Joint Approach)

without gender with gender
with interactions without interactions without interactions

b0 -0.87 (-1.03,-0.71) -0.88 (-1.04,-0.73) -0.88 (-1.04,-0.73)
b1 0.15 (-0.04, 0.33) 0.14 (-0.05, 0.32) 0.14 (-0.04, 0.32)
b2 -0.02 (-0.13, 0.09) -0.02 (-0.13, 0.09) -0.03 (-0.13, 0.08)
b3 -3.03 (-3.62,-2.58) -2.92 (-3.46,-2.49) -2.91 (-3.44,-2.45)
b4 3.56 ( 3.17, 4.01) 3.48 ( 3.12, 3.93) 3.48 ( 3.11, 3.91)
b5 3.50 ( 3.06, 4.06) 3.42 ( 3.00, 3.95) 3.42 ( 2.99, 3.94)
b6 0.17 ( 0.00, 0.35) 0.13 (-0.04, 0.29) 0.13 (-0.04, 0.29)
b7 -0.01 (-0.13, 0.09)
b8 0.45 ( 0.06, 0.87)
b9 -0.28 (-0.53,-0.02)

Interestingly, the variance of αa is larger than that of βp, implying that the actor’s
perception of the partner is more influenced by the actor’s average tendency to rate others
as attractive, which we could call actor leniency, than by the partner’s average tendency to
be rated as attractive, which we could think of as the partner’s “universal” attractiveness.
While the majority (60%) of the variance is accounted for by the individual effects (αa and
βp), the dyadic effect (γa,p) accounts for a substantial proportion of the total variance, at
40%. A traditional IRT model, measuring individual latent traits only, would ignore this
contribution, which can be thought of as the “eye-of-the-beholder” effect. In particular, this
dyadic component would not be identifiable for standard IRT data where the individual only
belongs to a single dyad.

2.4.2 Correlations

The within-person correlation ραβ of αa and βa reflects the relationship between how
willing an individual was to rate someone else as attractive (“leniency”), and his/her own
attractiveness. If this correlation is positive, it indicates that the more attractive an indi-
vidual is, the more lenient he/she is in his/her ratings. If negative, it indicates that more
attractive an individual is, the harsher he/she tends to be in rating his/her partners’ attrac-
tiveness.

The between-person correlation ργ of a dyad reflects the extent to which the (directed)
dyadic trait is correlated between members of a given pair. If positive, it indicates that
when an individual is affected by a social interaction with his/her partner, the partner will
be more likely to also be affected in a similar manner. If negative, it suggests that members
of a pair perceive their interaction in opposing ways.



CHAPTER 2. A DYADIC ITEM RESPONSE THEORY MODEL 53

Table 2.1 shows that the estimate of the correlation ργ is positive with a 95% credi-
ble interval that does not contain zero. In contrast, the estimate of the correlation ραβ
is negative with a 95% credible interval containing zero. The relatively larger estimated
between-individual correlation indicates that members of each pair were likely to perceive
their interaction similarly.

2.4.3 Distal Outcome Regression

We estimate the distal outcome regression for each individual’s dating decision in (2.4)
using the joint approach described in Section 2.3 and compare the regression estimates
in Table 2.2 for the full model (under “with interactions”) and a reduced model without
interaction terms (under “without interactions”).

We see that the estimated distal outcome regression coefficients are largest, in absolute
value, for: a) the individual attractiveness α of both the actor (b̂3) and the partner (b̂4), and
b) the unique relationship of the dyad γ from the actor’s perspective (b̂5) but not for that
from the partner’s perspective (b̂6). Finding b) is consistent with our expectations given
that the distal outcome reflects the viewpoint of the actor, rather than that of the partner.
However, a less obvious finding is a) because the rater’s own attractiveness, b̂3, negatively
influences their dating decision. This suggests that the more attractive a rater was, the less
likely they were to want to see the partner again. The estimated coefficients are tiny for the
leniency of both the actor and the partner, as well as for the unique relationship of the dyad
from the perspective of the partner, and have 95% credible intervals either containing zero
or having one limit close to zero.

2.4.4 Gender Differences

Both the basic dIRT model and the model with a distal outcome can be extended to
account for differences in the way females and males perceived their social interactions. In
(2.3), we assumed that male and female participants shared the same expected leniency µα
and attractiveness µβ, by setting both of these expectations to zero. We can relax this by
allowing the genders to have a different expectation for one of these parameters whilst setting
the other to zero. The distribution for µα and µβ becomes:[

αa
βa

]
∼ N

([
maµmale

0

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
.

Here, µmale is the difference between the expected attractiveness of males and females re-
spectively, and ma is an indicator for whether individual a is male. This gender parameter
can also be interpreted as the difference between the expected leniency of females and males.
Hence, a positive µmale would suggest that males were on average more attractive than fe-
males, and/or females were more lenient in their ratings of males. We note that these effects
could be disentangled if males rated other males and females rated other females. However,
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because we do not have such data, µmale can only be interpreted as a linear combination
(with unknown constants) of the average additional male attractiveness and average addi-
tional female rater leniency.

Estimates are reported under the heading “with gender” in the tables. The gender
difference µmale is estimated to be 0.08 with a 95% credible interval containing zero. There
is therefore insufficient evidence to suggest a gender difference. The variance and correlation
estimates are virtually the same for the models with and without µmale.

2.5 Simulations

We first present the results of a simulation study exploring Bayesian properties of the
MCMC estimator for an extended dIRT model that includes a distal outcome. We generated
data for the same data design, size and parameter estimates as in the previous section.
Starting with the estimated values of the variance and correlation hyperparameters, we
generated 551 pairs of individual latent traits (αa, βa), and 8,126 directed dyadic latent
traits γa,p. Using the estimated item step-difficulties from Section 2.4, we then generated
responses from the dIRT model (2.2). Using the estimated regression coefficients, we finally
generated the distal outcomes according to model (2.4). We summarize our findings regarding
parameter recovery in the figures below.

Figure 2.3 depicts the difference between the estimated hyperparameters and the actual
parameters across all 4,000 draws after convergence. The square represents the posterior
mean of these estimates while the whiskers represent the bounds for the 95% credible intervals
based on the 2.5th and 97.5th quantiles. Similarly, Figures 2.4 and 2.5 provide the analogous
comparison for estimates of the item step parameters and the distal outcome regression
parameters, respectively. We see that all credible intervals contains the true value and our
procedure hence has good Bayesian performance.

In order to evaluate frequentist properties such as the bias of point estimates and the va-
lidity of model-based standard errors, we generated 50 datasets based on the same procedure
as above, and estimated the same model for each dataset. Based on these 50 replications,
we then estimated (i) the absolute bias of parameter estimates using the difference between
the mean (over replications) of the estimated parameters and the true values, and (ii) the
relative bias of standard error estimates using the mean (over replications) of the estimated
standard errors divided by the empirical standard deviation (over replications) of the point
estimates minus 1. Monte Carlo errors for these quantities were estimated using the formulae
in White (2010).

In Figure 2.6 we show the estimated absolute bias of the parameter estimates (top) and
relative error of the standard error estimates (bottom), together with error bars of ±1.96
times their Monte Carlo error estimates, representing approximate 95% confidence intervals
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Figure 2.3: Difference between hyperparameter estimates and true parameter values.

if the sampling distributions are approximately normal. We see that there is small absolute
bias in our point estimates across parameters, most of which can be attributed to Monte
Carlo error with the exception of b2, b4 and b5. There is also small relative bias for the
standard error estimates, most of which can be attributed to Monte Carlo error with the
exception of δ2,2 and δ3,4. In summary, our procedure has good frequentist properties.

2.6 Concluding Remarks

We have proposed a dyadic Item Response Theory (dIRT) model that integrates Item
Response Theory (IRT) models for measurement and the Social Relations Model (SRM) for
dyadic data by modeling the responses of an actor as a function of the actor’s inclination to
act and the partner’s tendency to elicit that action as well as the unique relationship of the
pair. We described how the model can be extended to larger group settings, include covariates
for the individual and dyad, include cluster-level random effects, and accommodate distal
outcomes. We also discussed data designs for which the dIRT model is identified, emphasizing
that longitudinal data is not required, and described how the model can be estimated using
standard software for Bayesian inference. The proposed estimation approach was shown to
have good performance in simulation studies.

The practical utility of the dIRT model was demonstrated by applying it to speed dating
data with ordinal items. The estimated variance of the actor effect suggests that there
was some variation in the way different individuals rated the same sets of partners, or
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Figure 2.4: Difference between item step difficulty estimates and true parameter values.

in other words that there was a large variation in how lenient individuals were in rating
their partners. The estimated variance of the partner effect can be thought of as reflecting
how attractive the partner is, on average, to all other individuals, and indicates that there
is some degree of universal attractiveness. We found that there is evidence for a unique
interaction effect (dyadic latent trait) and that the magnitude of this effect helps predict
whether the individuals want to see each other again. This finding suggests that the dyadic
latent trait has predictive validity, a conclusion that can perhaps be more easily justified when
a sequential estimation approach is used. A traditional IRT model, measuring individual
latent traits only, would ignore this dyadic latent trait, which can be thought of as the “eye-
of-the-beholder” effect. The dyadic latent traits were positively correlated within dyads,
suggesting that both members of a dyad tended to perceive their interaction similarly.

In the speed-dating application, the dyadic latent trait was of particular interest from
the point-of-view of matchmaking. In other applications where the actors can be viewed as
the raters, “perceivers” or informants used to make inferences regarding the partners, the
partner latent trait is of greatest interest. In this case, the advantage of the dIRT is that
it purges the measurement of the partner latent trait from both the global rater bias α and
the target-specific rater bias γ. In a collaborative problem-solving task, both the actor and
partner latent traits may be of interest, in which case it becomes important to accommodate
the dyadic latent trait in the model to prevent it from contaminating the individual latent
traits of interest. The dyadic latent trait could in this case be viewed as a nuisance reflecting
a fortunate or unfortunate choice of collaborator. For all these types of applications, dyadic
designs that permit estimation of the dIRT are essential.
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Figure 2.5: Difference between distal outcome regression estimates and true parameter val-
ues.

The formulation of the dIRT model, and providing a viable estimation approach for it,
provides researchers with the impetus to collect appropriate data for investigating dyadic
interactions or individual latent traits, free from such interaction effects, in a measurement
context.
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Figure 2.6: Performance of point estimates and standard errors across 50 replications.

Appendix A: Stan Code
# clears workspace:
rm(list = ls())

library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = 8)

library(tidyverse)

# load dataset:
load(file = "df.complete.Rdata")
load(file = "dpair.specific.Rdata")

# no gen with int stan model
modelngwi <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);
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}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
M = max(x);

}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
model {

AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]
+ beta[8]*AB[aaa[d],1]*AB[ppp[d],1]
+ beta[9]*AB[aaa[d],2]*AB[ppp[d],2]
+ beta[10]*GG[ddd[d], mmm[d]]*GG[ddd[d], (3-mmm[d])]));
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}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 10

data <- list(I = I,
A = A,
U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelngwi,

data=data,
iter=2000,
chains=4,
seed = 349)

pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"beta"),

probs = c(.025, .975))
View(pcm_estimated_values$summary)

# no gen no int stan model
modelngni <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);

}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
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int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
M = max(x);

}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
model {

AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]));

}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 7

data <- list(I = I,
A = A,
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U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelngni,

data=data,
iter=2000,
chains=4,
seed = 349)

pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"beta",
"delta"),

probs = c(.025, .975))
View(pcm_estimated_values$summary)

# with gen no int stan model
modelwgni <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);

}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 0, upper = 1> gg[N]; // size N array to index gender for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
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M = max(x);
}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real mu; // real value of mean of theta for males
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
model {

AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1] - mu*gg[n], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]));

}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 7

data <- list(I = I,
A = A,
U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
gg = as.numeric(df.complete$male),
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aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelwgni,

data=data,
iter=2000,
chains=4,
seed = 349)

pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"mu",
"beta"),

probs = c(.025, .975))
View(pcm_estimated_values$summary)
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Appendix B: Sequential Estimation

Using the sequential estimation approach with multiple imputation described in Section
2.3, the results of first estimating the dyadic partial credit model (ignoring the distal out-
come), and subsequently estimating the distal regression are presented in Tables 2.3 and 2.4.
We report estimates as means of draws, and the values in parentheses represent the 2.5th

and the 97.5th quantiles of the parameter estimates.

MCMC estimates for the standard deviations and correlations of the individual and
dyadic latent traits are shown in Table 2.3. The estimates are qualitatively similar to the
estimates from the joint approach reported in Table 2.1.

Estimates for the distal regression based on multiple draws of the latent traits from their
posterior distribution are shown in Table 2.4. While the sign of the coefficient estimates are
the same as for the joint approach in Table 2.2, their magnitudes differ substantially. Overall,
the estimates using the sequential approach are smaller in absolute value, particularly for
b3, b4 and b5. This may be because the joint approach effectively treats the distal outcome as
an item in the measurement model, and therefore makes the latent traits highly predictive
of the distal outcome.

Table 2.3: Sequential Estimation Approach: Estimates of Standard Deviations and Correla-
tions of Individual and Dyadic Latent Traits

without gender with gender
with interactions without interactions without interactions

µmale -0.15 (-0.36,0.06)
σα 1.05 ( 0.98,1.13) 1.05 ( 0.98,1.13) 1.05 ( 0.98,1.13)
σβ 0.71 ( 0.66,0.76) 0.71 ( 0.66,0.76) 0.71 ( 0.66,0.76)
σγ 0.89 ( 0.86,0.92) 0.89 ( 0.86,0.92) 0.89 ( 0.86,0.91)
ραβ 0.03 (-0.06,0.13) 0.03 (-0.06,0.13) 0.04 (-0.06,0.13)
ργ 0.35 ( 0.30,0.40) 0.35 ( 0.30,0.40) 0.35 ( 0.30,0.40)
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Table 2.4: Sequential Estimation Approach: Estimates for Distal Outcome Regression

without gender with gender
with interactions without interactions without interactions

b0 -0.36 (-0.43,-0.29) -0.36 (-0.43,-0.29) -0.36 (-0.43,-0.28)
b1 0.40 ( 0.36, 0.44) 0.40 ( 0.36, 0.44) 0.38 ( 0.34, 0.43)
b2 -0.03 (-0.07, 0.00) -0.03 (-0.07, 0.00) -0.02 (-0.06, 0.02)
b3 -0.35 (-0.44,-0.26) -0.34 (-0.42,-0.25) -0.32 (-0.42,-0.23)
b4 1.29 ( 1.19, 1.38) 1.28 ( 1.19, 1.37) 1.26 ( 1.16, 1.36)
b5 0.82 ( 0.76, 0.89) 0.82 ( 0.77, 0.89) 0.82 ( 0.76, 0.88)
b6 0.06 ( 0.01, 0.11) 0.06 ( 0.01, 0.11) 0.06 (-0.01, 0.11)
b7 -0.01 (-0.04, 0.01)
b8 0.18 ( 0.09, 0.28)
b9 -0.02 (-0.07, 0.04)
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Chapter 3

Handling Endogeneity with Structural
Equation Modeling

3.1 Introduction

Hierarchical Linear Modeling is a common modeling approach for clustered data. In
particular, the Random Intercept Model (RIM) is a straightforward model for cross-sectional
data with a nested structure (say students within schools, or patients within hospitals), or
longitudinal data (where repeated observations of the same individual are nested within
that individual). Like other linear models, there are occasions when an analyst would like
to treat the parameter estimates of a RIM causally. In this setting, we call the model
and its parameters “structural”, and the error terms now represent the effects of omitted
covariates (Castellano, Rabe-Hesketh, & Skrondal, 2014). Covariates in such a structural
RIM are called cluster-endogenous if they are correlated with the random intercept, and
their presence could lead to biased estimation of their structural coefficients in the RIM.

In this chapter, we explore some common approaches to achieve consistent estimation
of the structural model parameters. In particular, we highlight the most common approach
in Econometrics, the Hausman-Taylor estimator (Hausman & Taylor, 1981), that allows for
consistent parameter estimation in a RIM even in the face of cluster-level endogeneity.

We then propose setting a RIM up as a SEM (Muthén, 1994). This allows us to treat
covariates in the model as random rather than fixed, and in so doing, enables us to extend
the model naturally to allow endogenous covariates to co-vary with the random intercept.
Additionally, previous approaches (Allison, 2005, 2009; Allison, Williams, & Moral-Benito,
2017; Bollen & Brand, 2010; Teachman, Duncan, Yeung, & Levy, 2001) that use SEMs to
model RIMs have implicitly treated the units as non-exchangeable. We explore modeling
RIMs using SEMs that enforce exchangeability among units which are more suitable for most
cross-sectional, clustered data the units within each cluster are exchangeable.
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As this approach has never been compared to the Hausman-Taylor estimator, we simulate
data to evaluate both the asymptotic as well as finite sample properties of both estimators. In
particular, we show that while both estimators are consistent, they may perform differently
in finite samples depending on (i) whether the data are balanced, and (ii) whether the
data are assumed to be exchangeable. We also posit that with data that is assumed to be
non-exchangeable, the SEM-based estimator performs better.

We highlight here that most simulations for clustered data are often overly simplistic
and are not adequately explicit about assumptions regarding the covariance structure of the
data. In this study, we propose a sequential simulation scheme that can be used to generate
two-level data for any covariance structure. This is particularly important for us because
unlike most of the previous work in this area which focused on panel data, we are interested
in hierarchical data which necessitates additional exchangeability assumptions.

Additionally, we point out that in order to assess the asymptotic properties of the SEM
estimator, we adopt an approach highlighted in Muthén, Kaplan, and Hollis (1987), which
treats the model-implied population covariance matrix as data to determine how the esti-
mator will perform as the number of clusters tends to infinity.

The structure of this chapter is as follows. We begin in Section 2 by reviewing concepts
of endogeneity in Linear Models as well as in RIMs and the approaches one can take to
estimate the structural parameters consistently. We then provide a detailed description
of the Hausman-Taylor estimator and describe how one can also model the cluster-level
endogeneity using SEM. In Section 3, we set up a simulation study accounting for the
exchangeability assumptions in simulating the data. To generate the simulated data, we
first carefully specify the population covariance matrix for all observed variables making
sure to account for all variance-covariance parameters and extra exchangeability constraints.
We then present findings regarding the asymptotic as well as finite-sample properties of
both the Hausman-Taylor and Maximum-Likelihood SEM estimators. Finally in Section 4,
we conclude with the pros and cons of using our proposed SEM approach, as well as suggest
related areas where more work needs to be done.

3.2 Endogeneity

3.2.1 Endogeneity in a Linear Regression Model

When considering the linear regression model, yi = xᵀ
i β+εi, as a structural model,

the Ordinary Least Squares (OLS) and Maximum Likelihood (ML) estimators for β are
consistent under the assumption that xi is exogenous - that is, E(xiεi) = 0, and hence, xi
is uncorrelated with εi. In some instances, however, such an assumption is not valid. For
example, when (i) covariates are measured with error; (ii) the outcome and covariates are
jointly related through simultaneous equations; or (iii) variables correlated with the outcome
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and the covariates are omitted from the model, it can be shown that E(xiεi) 6= 0. In these
cases, we call xi endogenous, and both the OLS and ML estimators for β are inconsistent.

In econometrics, the most common way of handling endogeneity (the existence of en-
dogenous covariates in a model) is through the use of Instrumental Variables (IV) where the
instruments zi are correlated with xi and not correlated with εi. It is worthwhile to note
that the instrumental variables zi can be existing variables in the assumed model. In this
case, we call these variables internal instrumental variables.

3.2.2 Endogeneity in a Random Intercept Model

In the case where the structural model is hierarchical in nature (consisting of units nested
within clusters), it is sometimes useful to consider a structural Random Intercept Model
(RIM) among other competing models. However, just like the regular Linear Regression
Model, any RIM that includes endogenous covariates will likewise suffer from having incon-
sistent OLS and ML estimators of its parameters. Dealing with endogeneity in the setting
of a RIM, however, is more complex.

For illustration, we consider a two-level RIM given by

yij = xᵀ
ij β+zᵀj γ +ζj + εij, for i = 1, 2, . . . , nj, and j = 1, 2, . . . , J

where the outcome yij of individual i in cluster j depends on both unit-level covariates xij as
well as cluster-level covariates zj with coefficients β and γ respectively. In this model, the
error term has been decomposed into two parts to account for variation at the unit-level (εij)
and at the cluster-level (ζj) separately. We typically assume that εij is normally distributed
with mean 0 and variance θ, and ζj is normally distributed also with mean zero and variance
ψ. In the context of longitudinal or panel data, the cluster is often a person, whereas the
unit is a measurement taken of that person at a given time. In both cross-sectional or
longitudinal data, there are two ways to define endogeneity: when covariates at either the
unit or cluster level are correlated with εij, we call this “unit-level endogeneity”; and when
they are correlated with ζj, we call this “cluster-level endogeneity”. In this chapter, we
assume that there is no “unit-level endogeneity”, but only “cluster-level endogeneity”.

Much like the single-level case, it can be shown that the OLS and ML estimators for both
β and γ are inconsistent when there is cluster-level endogeneity.

One traditional approach to obtain consistent estimators for β is by “de-meaning” each
variable in the model. That is for each cluster j, we subtract from each variable its cluster
specific mean as shown below.

yij − y·j = (xij − x·j)ᵀ β+(zj − zj)ᵀ γ +(ζj − ζj) + (εij − ε·j)
=⇒ yij − y·j = (xij − x·j)ᵀ β+(εij − ε·j).
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The estimator of the model above is known as the within-effects estimator. Notice that in
this model, all cluster-level covariates zj and the random intercept ζj are eliminated from
the model. Since none of the covariates in this model are endogenous, the OLS and ML
estimators for β are consistent. In fact, it can be shown that the within-effects estimator for
β is identical to the so-called “fixed-effects” estimator where we include a dummy variable
for each cluster instead of including a random intercept. Mundlak (1978) and Chamberlain
(1982) also came up with alternative, consistent estimators for β that make use of an “aux-
iliary model” where the random intercept is projected onto either the cluster-mean or a full
set of leads and lags (in the longitudinal setting) of each of the unit-level covariates. The
downside to all these estimators is that they do not allow for the consistent estimation of the
coefficients γ of cluster-level covariates zj which may be of interest, even if zj is exogenous.
In this chapter, we focus specifically on the Hausman-Taylor estimator (Hausman & Taylor,
1981) that allows for the consistent estimation of both β and γ. One nice feature of this
estimator is that it is an IV estimator that makes use of IVs that are only internal to the
model.

3.2.3 Hausman-Taylor Estimator

Hausman and Taylor (1981) described an estimation method to (i) make use of unit-
level covariates to obtain consistent estimates for their own coefficients, and (ii) make use of
exogenous covariates at both levels to serve as internal instruments for consistent estimation
of the coefficients of endogenous cluster-level covariates. Their method assumes the existence
of at least the same number of exogenous unit-level covariates (to be used as instruments) as
endogenous cluster-level covariates, and although not explicitly stated in their paper, that
there is sufficient correlation between these instruments and the endogenous cluster-level
covariates. They showed, among other things, that this estimator, called the Hausman-
Taylor (HT) estimator, is both consistent and asymptotically efficient.

At its core, the HT estimator makes use of the so-called Generalized Least Squares (GLS)
or Fuller-Battese Transformation, to transform the model from

yij = xᵀ
ij β+zᵀj γ +ζj + εij = xᵀ

ij β+zᵀj γ +ξij (3.1)

to
yij − κjy·j︸ ︷︷ ︸

ỹij

= (xij − κjx·j)ᵀ︸ ︷︷ ︸
x̃ᵀ
ij

β+ (1− κj)zᵀj︸ ︷︷ ︸
z̃ᵀj

γ + (ξij − κjξ·j)︸ ︷︷ ︸
ξ̃ij

(3.2)

so that with an appropriate choice of κj, the transformed error terms, ξ̃ij, can be shown to be
uncorrelated. With uncorrelated errors, the model can now be estimated consistently using
an IV approach (e.g., via two-stage least squares) with mean-centered level-1 covariates, the
means of level-1 exogenous covariates, and the exogenous level-2 covariates as instruments.
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Fuller and Battese (1973) showed that the choice of κj for this transformation depends
on the variances of ζj and εij and is given by

κj = 1−
(

θ

θ + njψ

) 1
2

. (3.3)

Hence, the HT estimator can be obtained by finding consistent estimators for θ and ψ,
which in turn depend on finding consistent (though not necessarily efficient) estimators for
β and γ. Hausman and Taylor thus suggested the following procedure:

Step 1: Obtain consistent estimators β̂ and θ̂.
In order to obtain consistent estimators for β and θ, both of which at the unit-level, Hausman
and Taylor suggested estimating the de-meanded model

yij − y·j = (xij − xij)ᵀ β+(εij − ε·j).

In this transformed model, the cluster-level covariates as well as the random intercept disap-
pears, and we are left with a model where the covariates are all uncorrelated with the error
term by the unit-level exogeneity assumption. The OLS estimator for β as well as V(εij−ε·j)
(and by extension θ) in this model are thus consistent.

Step 2: Obtain consistent estimator γ̂.
Next, a consistent estimator for γ can be obtained by considering the between-cluster model,
obtained by taking the cluster means of the original model:

y·j = xᵀ
·j β+zᵀj γ +ζj + ε·j (3.4)

Since we have a consistent estimator β̂ of β, with some rearranging of (3.4), we can use

the resultant estimates of xᵀ
·jβ̂ to transform y·j as follows:

y·j − x
ᵀ
·jβ̂ ≈ z

ᵀ
j γ +ζj + ε·j.

However, since there may still be endogenous cluster-level covariates, instead of perform-
ing OLS or ML estimation, we make use of an IV approach (via two-stage least-squares)
using the cluster means of the unit-level exogenous covariates as well as the cluster-level
exogenous covariates as instruments. This results in a consistent estimator for γ.

Step 3: Obtain consistent estimator ψ̂.
With consistent (but not necessarily efficient) estimators for β and γ, we now return to

(3.1), and compute the residuals ξ̂ij = yij−xᵀ
ijβ̂+zᵀj γ̂. Using these residuals, Hausman and

Taylor, 1981 showed that as J →∞,

1

J

J∑
j=1

ξ̂2
ij

p−→ J∑J
j=1

1
nj

ψ + θ.
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Hence, a consistent estimator for ψ is given by∑J
j=1

1
nj

J

[
1

J

J∑
j=1

ξ̂2
ij − θ

]
. (3.5)

While (3.5) is a common consistent estimator for ψ implemented in existing software
packages, Castellano et al. (2014) also showed that another consistent estimator can be

achieved by replacing the reciprocal of the harmonic mean of cluster sizes,

∑J
j=1

1
nj

J
, in (3.5)

with the reciprocal of the arithmetic mean, J∑J
j=1 nj

. In our own implementation of the

Hausman-Taylor estimator, we consider the MLE of ψ.

Step 4: Obtain efficient estimators.
Finally, with consistent estimates for ψ and θ, we can now obtain a consistent estimate
of κj in (3.3). We then perform the Fuller-Battese Transformation in (3.2) and estimate
all parameters consistently using two-stage least-squares as described above. This yields
consistent and efficient estimators for β and γ.

3.2.4 Modeling endogeneity using SEM

In this chapter, we propose estimating a RIM with cluster-level endogeneity using Struc-
tural Equation Modeling (SEM) which enables us to treat all variables in the models as
responses, and in so doing, provides us with the flexibility to model the endogeneity natu-
rally. For example, within a SEM framework, a standard two-level RIM with 20 units per
cluster, two unit-level covariates xaij and xbij, as well as two cluster-level covariates zaj , zbj can
be represented by the graph in Figure 3.1 as per Teachman et al. (2001). Using the reduced
form in a typical RIM setting, this graph represents the model

yij = α + β1x
a
ij + β2x

b
ij + γ1z

a
j + γ2z

b
j + ζj + εij. (3.6)

In this path diagram, the loadings from ηj to y1j, y2j, . . . , y20j are set to one because ζj
is a random intercept. The regression coefficients for yij on xaij and xbij for i = 1, 2, . . . 20 are
denoted β1 and β2 respectively. ηj is also regressed on zaj and zbj with coefficients denoted
by γ1 and γ2, and a disturbance term ζj.

As such, the measurement and structural components of the SEM depicted by Figure 3.1
are given by

yij = α + β1x
a
ij + β2x

b
ij + ηj + εij for all i = 1, 2, . . . , 20

ηj = γ1z
a
j + γ2z

b
j + ζj.
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. . .

ηj

y20jy1j

xa20jxa1j xb20jxb1j . . .

zaj zbj

ζj

11

β1β1 β2β2

γ1 γ2

1

Figure 3.1: Structural Model for Two-Level RIM with no Endogeneity

These regression coefficients coincide precisely with the parameters β1, β2, γ1, and γ2 in
Equation 3.6. In fact, by substituting the equation for ηj into the equations for yij, we
recover Equation 3.6 exactly.

Note that in Figure 3.1, the covariates xaij, x
b
ij, z

a
j , and zbj are allowed to covary with each

other, but not with ζj as per the cluster-level exogeneity assumption.

At this junction, it is important to highlight a subtlety in interpreting a RIM expressed
as a SEM. In a traditional RIM with students clustered in schools for example, the unit of
analysis is the student. That is, for a school with nj students, each set of random variables
yij, x

a
ij, x

b
ij, z

a
j , zbj , and ζj represents characteristics of student i in school j. Another way to

think of this is that data for a traditional RIM are usually represented in ‘long’ form, where
each row represents characteristics of a student in a school (in this case, there are nj rows
of data for this school). However, when viewing the RIM as a SEM, the unit of analysis is
now the school rather than the student. For example, in a school with nj students, each k-
tuple, consisting of the outcome of interest and the unit-level covariates (in this case a triple
(yij, x

a
ij, x

b
ij)) is now treated as a set of variables for the school together with the cluster-level

covariates and the random intercept. Another way to think of this is that the data for RIM
expressed as a SEM is usually in ‘wide’ form where each row represents a school. Mehta
and Neale (2005) highlight this distinction best in their paper with a tongue-in-cheek title
“People are variables too”.
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Since panel data may not be exchangeable, previous approaches to model RIMs using
SEM implicitly treat units as non-exchangeable (Allison, 2005, 2009; Allison et al., 2017;
Bollen & Brand, 2010). This assumption, however, does not make sense for cross-sectional
data, and this fact has not been pointed out or incorporated in previous estimators using
SEM. We set up our simulation and estimator specifically for this case. In the later sections,
we compare the results for different estimators on data with an exchangeable and an un-
structured covariance structure. In the meantime, we thus impose the following constraints
on the covariances: for all i = 1, 2, . . . , 20, i′ = 1, 2, . . . , 20 but i 6= i′

• among different unit-level covariates, within the same unit (within the same cluster):
cov(xaij, x

b
ij) = cwithin;

• among different unit-level covariates, across different units (within the same cluster:
cov(xaij, x

b
i′j) = cxaxb ;

• among the same unit-level covariates, across different units (within the same cluster:

– cov(xaij, x
a
i′j) = cxa ;

– cov(xbij, x
b
i′j) = cxb ;

• among cluster-level covariates and unit-level-covariates:

– cov(xaij, z
a
j ) = cxaza ;

– cov(xaij, z
b
j) = cxazb ;

– cov(xbij, z
a
j ) = cxbza ;

– cov(xbij, z
b
j) = cxbzb ; and

• among cluster-level covariates: cov(zaj , z
b
j) = czazb .

We make analogous constraints on the variances V(xaij) = σ2
a and V(xbij) = σ2

b for all i =
1, 2, . . . 20. The remaining variance-covariance parameters are the variances of the covariates
at the cluster level (viz. V(zaj ) and V(zbj)). As such, the SEM model we have defined has
13 parameters from the variance-covariance structure for the explanatory variables on top
of the 5 parameters from the mean-structure, as well as 2 coming from ψ and θ for a total
of 20 parameters to estimate.

Since the model we have defined in Figure 3.1 is equivalent to the RIM in Equation 3.6,
we can extend it to deal with cluster-level endogenous covariates by simply allowing the
endogenous covariates to covary with ζj in our model. For instance, if we consider xbij and
zbj to be endogenous, then the pictorial representation of the modified SEM will be given by
Figure 3.2. For ease of interpretation, we now label the exogenous covariates xaij ≡ xex

ij and
zaj ≡ zex

j , and the endogenous covariates xbij ≡ xen
ij and zbj ≡ zen

j .
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We continue to impose the exchangeability constraints described previously for this new
SEM, but by allowing xen

ij and zen
j to covary with ζj, we now have to estimate the covariances

between these variables. Analogous to the previous model, we also impose exchangeability
constraints that for all i = 1, 2, . . . 20, cov(xen

ij , ζj) = cxenij ζ . Using a similar notation, we

denote cov(zen
j , ζj) = czenj ζ . This adds an additional 2 parameters of the variance-covariance

structure to be estimated for a total of 22 parameters.

It should be pointed out here that we adopt the ML SEM estimator throughout the rest
of this chapter. When the data is unbalanced, the SEM described above is defined based on
the largest cluster size, and as a result will contain clusters with missing k-tuples for some
units (where k− 1 is the number of unit-level covariates). In such cases, we make use of the
Full-Information Maximum Likelihood SEM estimator (Muthén et al., 1987) to deal with the
missingness. Additionally, when maxj nj > J , the implied covariance matrix has dimensions
greater than the total number of clusters J but is identifiable because of the exchangeability
constraints we placed on the covariances. However, many existing SEM packages evaluate
the identifiability of the SEM without accounting for these constraints, which may make the
model practically inestimable.

Figure 3.2: Structural Model for Two-Level RIM with Endogeneity

. . .

ηj

y20jy1j

xex
20jxex

1j xen
20jxen

1j . . .

zex
j zen

j

ζj

11

β1β1 β2β2

γ1 γ2

1



CHAPTER 3. HANDLING ENDOGENEITY WITH STRUCTURAL EQUATION
MODELING 76

3.3 Simulation

In this simulation, we are interested in validating the consistency of both the SEM and
HT estimators. Additionally, we also consider the finite sample performance of both these
estimators in terms of their bias and variability. Throughout this simulation, we implement
the HT estimator using (i) the pht function (henceforth called the HT1 estimator) in the plm
package (Croissant & Millo, 2008), as well as (ii) a direct implementation using the ivreg

function (henceforth called the HT2 estimator) in the AER package (Kleiber & Zeileis, 2008)
in R. We point out here that the estimate for ψ in the plm package was obtained using the
method described earlier using the harmonic mean as in Castellano et al. (2014), whereas
when we implement the HT estimator directly using the AER package, we make use of the ML
estimate for ψ. We also implement the ML SEM estimator in R using the lavaan package
(Rosseel, 2012).

We assess properties of the SEM estimator versus the HT estimator via simulation by
considering a two-level RIM as in Subsection 3.2.4 and Figure 3.2. That is, our data-
generating process is given by

yij = α + β1x
ex
ij + β2x

en
ij + γ1z

ex
j + γ2z

en
j + ζj + εij. (3.7)

We generate data for our simulation based on the model given in (3.7) with the ex-
changeability constraints for the variance-covariance matrix discussed in Section 3.2.4. In
generating the data, we considered a range of values for J , as well as both the balanced case
with an equal number of units per cluster (where nj = N

J
), and the unbalanced case where

the size of cluster j was drawn from a scaled-uniformed distribution.

As we proceed, we also count the number of mean-structure and variance-covariance
structure parameters we fixed to ensure that we did not inadvertently constrain the data
with fewer than the 22 parameters described in Subsection 3.2.4. For this chapter, we selected
true values α = 1.4, β1 = 2.3, β2 = −1.1, γ1 = −0.7, and γ2 = 1.8 for the main parameters
of the model (for a total of 5 specified mean-structure parameters), as well as ψ = 1.2 and
θ = 0.8 for the variance components.

3.3.1 Data-Generating Process

We begin this section with a brief overview of the approach we will take to simulate the
data. Note that in Steps 1 to 3, we create the variables ζj, z

ex
j , zen

j , xex
ij , and xen

ij .

As a brief overview, in Step 1, we generate independent values of ζj, two cluster-level
variables, and two unit-level variables, and collect them in the N×5 matrix X. At this point,
ζj and each covariate is independent from each other. In Step 2, we impose a covariance
structure onto X by post-multiplying X with the Cholesky decomposition of a correlation
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matrix with the specified structure. In Step 3, we induce additional intraclass correlations
(ICCs) for unit level covariates by adding cluster-level variables generated from a Multivariate
Normal distribution. Finally, in Step 4, we generate the observed outcome values Yij.

3.3.1.1 Step 1

For J clusters, we generated two independent variables with J values, s
(1)
j and s

(2)
j for

j = 1, . . . , J , each drawn from independent standard normal distributions, as well as another
variable with J values, ζj drawn from an independent normal distribution with mean 0 and
variance ψ = 1.2 (hence, fixing 3 variance-covariance parameters). For j = 1, . . . , J , we then

expanded s
(1)
j , s

(2)
j and ζj by replicating each variable depending on the cluster size nj for a

total of N =
∑J

j=1 nj observations.

We then generated two variables with N values, t
(1)
ij and t

(2)
ij for j = 1, . . . , J , i = 1, . . . , nj,

each drawn from independent standard normal distributions, as well as another variable with
N values, εij for j = 1, . . . , J , i = 1, . . . , nj, drawn from a normal distribution with mean 0
and variance θ (for an additional 3 variance-covariance parameters).

We collected ζj, s
(1)
j , s

(2)
j , t

(1)
ij and t

(2)
ij in an N × 5 matrix X. The columns of X are thus

independent of each other in the population.

3.3.1.2 Step 2

Next, we needed to generate an initial population covariance matrix Σ(0) for ζj, z
ex
j , zen

j ,
xex
ij , and xen

ij . Since it is non-trivial to directly generate a valid correlation/covariance matrix
that is positive semi-definite, we instead approached this by specifying a lower triangular
matrix L (whose elements we generated randomly), and considered the covariance matrix
associated with L given by Σ(0) = LLT . We then obtained the correlation matrix R by stan-
dardizing Σ(0) with its diagonal elements. That is, if D =

√
diag(Σ(0)) where

√
diag(Σ(0)) is

a 5×5 diagonal matrix with diagonal entries equal to the square-root of the diagonal entries
of Σ, then ρ = D−1ΣD−1.

For the purposes of our simulation, we only considered matrices Σ(0) that were strictly
positive-definite so that in the population, ζj and the other covariates were not perfectly
collinear. We checked this in our simulation by using the matrixcalc package (Novomestky,
2012) in R. This meant that the matrix L was precisely the unique lower triangular matrix
associated with the Cholesky Decomposition of Σ. This one-one correspondence between L
and Σ(0) ensures that our approach to generating Σ covers the space of all possible positive-
definite covariance matrices that satisfies the exogeneity constraints below.

Using this approach, each element in L was drawn from a normal distribution with mean
0 and standard deviation 0.2. In L, we then set the two elements corresponding to the
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relationship between ζj and the exogenous covariates xex
ij and zex

j to zero and generated R
as described above. The resulting population correlation matrix, R and the associated lower
triangular matrix LR = D−1L are presented below.

R =


1.000
0.000 1.000
−0.570 −0.456 1.000

0.000 −0.208 0.380 1.000
0.714 −0.185 −0.232 0.562 1.000



LR =


1.000
0.000 1.000
−0.570 −0.456 0.683

0.000 −0.208 0.417 0.885
0.714 −0.185 −0.133 0.529 0.398


In order to impose the correlations summarized by R on X, we considered the Cholesky

decomposition of R = LRL
T
R, and post-multiplied X with LTR. That is, we considered the

new dataset X∗ = [X∗1 , X
∗
2 , X

∗
3 , X

∗
4 , X

∗
5 ] = XLTR which has a sample correlation matrix as if

it came from a population with a population correlation matrix equal to R. We note that the
variances of the elements of X∗ are the same as the variances of X and equal to (ψ, 1, 1, 1, 1)
since LR is the Cholesky deomposition of a correlation matrix R. Further, through this
transformation, X∗1 , X∗2 , and X∗3 continue to vary only at the cluster-level, while X∗4 and
X∗5 vary at the unit-level, but with ICCs induced by the transformation. Note that the
order of the columns of X are important. As a result of this transformation, we have fixed
another 8 parameters for the non-zero correlations induced in the data by LR for a total
of 14 variance-covariance structure parameters and 5 mean structure parameters, and are
hence short of 3 parameters.

3.3.1.3 Step 3

At this junction, we note that while X∗ has population correlations equal to R, the ICCs
for xex

ij and xen
ij are induced through the contributions from ζj, s

(1)
j , and s

(2)
j via corresponding

non-zero weights in LR. As such, to ensure that a portion of the ICCs of xex
ij and xen

ij are
induced independently of the other variables, we modify X∗ in the following way.

We first generate another two variables with J values, r
(1)
j and r

(2)
j for j = 1, . . . , J ,

drawn from a bivariate normal distribution with mean 0, variances 1 and covariance 0.2, and
then replicate each variable depending on the cluster sizes nj for a total of N =

∑J
j=1 nj

observations. We then add r
(1)
j and r

(2)
j to X∗4 and X∗5 respectively to induce an additional

intraclass correlation that does not arise due only to ζj, s
(1)
j , and s

(2)
j . This fixes an additional
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3 parameters for a total of 22 parameters as required.

ζj = X∗1 ;

zex
j = X∗2 ;

zen
j = X∗3 ;

xex
ij = X∗4 + r

(1)
j ; and

xen
ij = X∗5 + r

(2)
j .

3.3.1.4 Step 4

Finally, using the parameters generated earlier and Equation 3.7, we generated values for
the observed outcome yij.

3.3.2 The Population Covariance Matrix for Observed Variables

As described in our data-generating process, we obtained X∗ by post multiplying X with
LTρ . This means that the variables in X∗ are linear combinations of the variables in X with
coefficients given by LTρ . As such, the covariance matrix of X∗, ΣX∗ can be obtained from
the covariance matrix of X, ΣX = diag(ψ, 1, 1, 1, 1) by the quadratic form ΣX∗ = LρΣXL

T
ρ .

Since the addition of r
(1)
j , and r

(2)
j only changes the variances and covariances of the affected

variables, we can obtain the population covariance matrix ΣP in terms of ζj, z
ex
j , zen

j , xex
ij ,

and xen
ij by adding to ΣX∗ , a matrix 5× 5 matrix C whose elements are all zero except for

C[4, 5; 4, 5] = cov(r
(1)
j , r

(2)
j ) =

(
1.0 0.2
0.2 1.0

)

In our study, we thus have

ΣP = Lρdiag(ψ, 1, 1, 1, 1)LTρ + C

=


1.200
0.000 1.000
−0.684 −0.456 1.065

0.000 −0.208 0.380 2.000
0.857 −0.185 −0.313 0.762 2.102

 .

In this matrix, we make note particularly of the fact that V(xaij) = 2.000, V(xbij) = 2.102
and cwithin = 0.762.

In order to compute the population covariances between unit-level covariates within the
same cluster but between different units, say cov(xaij, x

a
i′j) = cxa , we first realize that the
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contribution to the covariances of the unit-level factors t
(1)
ij and t

(2)
ij is 0.2. As such, we

consider the sub-matrix ΣB obtained by taking the 4th and 5th rows and columns from the
analogue of the matrix ΣP above by using diag(ψ, 1, 1, 0, 0) instead of ΣX . We thus obtain

ΣB = (Lρdiag(ψ, 1, 1, 0, 0)LTρ + C)[4, 5; 4, 5]

=

(
1.217
0.294 1.664

)
.

In this matrix, we make note particularly of the fact that cxa = 1.217, cxb = 1.664 and
cxaxb = 0.294. The ICCs for xa and xb are 1.217

2
= 0.609 and 1.664/2.102 = 0.792, respectively.

Since εij is uncorrelated with all other variables, we can augment ΣP and ΣB (which we
denote as Σ∗P and Σ∗B respectively) to include εij by including an additional row and column
consisting of all zeros for the covariance terms, and θ for the variance term.

Now, all that is left to obtain a covariance matrix of only the observed variables yij, z
ex
j ,

zen
j , xex

ij , and xen
ij . Since yij is a linear combination of the variables whose covariance structure

is captured by Σ∗P and Σ∗B, we can consider Σ∗∗P = AΣ∗PA
T , and Σ∗∗B = AΣ∗BA

T where

A =


0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
1.0 γ1 γ2 β1 β2 1.0

 .

Hence, the population covariance matrix in terms of observed variables is given by

Σ∗∗P =


1.000
−0.456 1.065
−0.208 0.380 2.000
−0.185 −0.313 0.762 2.102
−1.796 2.771 4.591 −0.137 16.782


and

Σ∗∗B = ΣB =

(
1.217
0.294 1.664

)
.

3.3.3 Results

3.3.3.1 Evaluating Consistency

An estimator of a parameter is said to be (weakly) consistent if it converges in prob-
ability to the true value of the parameter as the sample size (which, in this case, is the
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number of clusters) approaches infinity. In order to assess the consistency of both the HT
and the ML SEM estimators, we considered a single unbalanced dataset generated by the
method described in the previous section for each condition of 100, 1000, 10,000, 100,000 and
1,000,000 clusters with 5, 10 or 15 units per cluster, each occurring with equal probability.
We summarize the results in Table 3.1 and Fig 3.3 below.

Table 3.1: Summary of Parameter Estimates using Different Estimators and Packages for
Unbalanced Data Assuming Exchangeability

parameter no. of HT1 HT2 ML SEM
(true value) clusters plm AER lavaan

α (1.4)
100 1.626 1.626 1.544

1, 000, 000 — 1.399 1.401

β1 (2.3)
100 2.277 2.277 2.277

1, 000, 000 — 2.300 2.300

β2 (−1.1)
100 −1.081 −1.081 −1.081

1, 000, 000 — −1.100 −1.100

γ1 (−0.7)
100 −0.661 −0.661 −0.661

1, 000, 000 — −0.700 −0.699

γ2 (1.8)
100 2.275 2.275 2.233

1, 000, 000 — 1.801 1.803

ψ (1.2)
100 2.537 2.199 1.853

1, 000, 000 — 1.199 1.203

θ (0.8)
100 0.758 0.758 0.758

1, 000, 000 — 0.800 0.800

Based on Table 3.1 and Figure 3.3, we note that as the number of clusters increased,
both the SEM and the HT estimates for all the parameters approached the true value. This
provides us with some evidence that, like the HT estimator, the SEM estimator is also
consistent. We note that the plm package in R did not converge when the number of clusters
exceeded 10,000. We also note here that the parameter estimates are not identical in finite
samples.

3.3.3.2 Population Study for Consistency

We also assessed consistency of the SEM estimator (with and without the exchangeability
constraints) by making use of the population level covariance structures as per Muthén et
al. (1987). To do so, we transform the true population covariance matrix Σ∗∗P from long
from (where each row represents a unit-cluster combination) to wide form (where each row
represents a cluster), making sure to use the covariances from Σ∗∗B for covariances between
unit-level covariates from different clusters. Since the largest cluster in our data had 15
units, we then transformed Σ∗∗P and Σ∗∗B to account for 15 repetitions of yij, x

ex
ij , and xen

ij .
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Figure 3.3: HT and SEM Estimates from Table 1 for Model Parameters
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This block-matrix in wide-form, ΣL, is then used as input to lavaan together with a vector
of means consisting of all zeros except the last 15 entries being α = 1.4. In estimating a SEM
using only a covariance matrix and a vector of means, lavaan also requires a specification
of the number of observations in the dataset. Since we input a population covariance matrix
and a population vector of means, instead of the sample analogues, we arbitrarily declare
our sample size to be 1000. This choice did not affect our point estimates.

The results of our SEM estimators are presented in Table 3.2 below. Both the models
with and without the exchangeability constraints produced the same parameter estimates.
The SEs for the parameters estimates are also the same for both models for N = 1000.
However, the SEs are greater for the variance-covariance parameters that were unrestricted
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in the non-exchangeable SEM. The SEs from the exchangeable SEM estimator versus the
unrestricted SEM estimator are as follows. For cxaza it is 0.036 vs 0.045, for cxbza it is 0.042
vs 0.046, for cxazb it is 0.039 vs 0.044, for cxbzb it is 0.039 vs 0.047, for cxa it is 0.057 vs 0.065,
for cxb it is 0.076 vs 0.078, cxaxb it is 0.047 vs 0.056.

Table 3.2: Summary of SEM Estimates using the Population Covariance Matrix

parameter exchangeable SEM unrestricted SEM

α (1.4) 1.400 (0.022) 1.400 (0.022)
β1 (2.3) 2.300 (0.014) 2.300 (0.014)
β2 (−1.1) −1.100 (0.019) −1.100 (0.019)
γ1 (−0.7) −0.700 (0.075) −0.700 (0.075)
γ2 (1.8) 1.800 (0.145) 1.800 (0.145)
ψ (1.2) 1.199 (0.203) 1.199 (0.203)
θ (0.8) 0.799 (0.010) 0.799 (0.010)

3.3.3.3 Finite Sample Properties

While both the Hausman-Taylor Estimator and the SEM estimators are consistent, in
this chapter, we also explore their finite sample properties. In a simulation using the same
data-generating mechanism described previously, we simulated 100 sets of 100 clusters with
5, 10, 15 and 20 units. The estimated bias and empirical standard errors along with their
respective Monte Carlo errors are presented in Table 3.3 below. We see that the ML SEM
estimator performs no worse compared to the standard Hausman-Taylor estimators. In fact,
due to a small number of clusters, we notice that the estimated bias for ψ is higher when
using the plm function compared to the other two approaches. This could due to the fact
that it uses the harmonic mean of the residuals in Step 3 of the approach by Hausman and
Taylor.

3.4 Application to Estimating Causal Effect of

Catholic Schools

One of the benefits of the Hausman-Taylor approach, and by extension, our SEM ap-
proach, is that it allows the causal effect of a cluster-level treatment that is cluster-endogenous
to be estimated consistently provided we have at least one unit-level exogenous covariate.
That is, we can estimate the causal effect even if we have have not measured and accounted
for all the necessary confounders in our model. This is in contrast to another approach
called “multilevel matching”. In this approach, we need to assume that all the necessary
confounders at both levels are measured, and then try to balance these measured covariates
by matching. A consistent estimate of the causal effect can then be obtained by estimating
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Table 3.3: Evaluating bias and variance of different estimators (100 replications of 100
clusters of size 5, 10, 15 or 20) when the data satisfy exchangeability

parameter HT1 HT2 ML exch SEM
(true value) plm AER lavaan

α (1.4)

Estimated Bias 0.008 0.008 0.003
MCE Bias 0.013 0.013 0.013

Empirical SD 0.131 0.131 0.128
MCE SD 0.009 0.009 0.009

β1 (2.3)

Estimated Bias −0.008 −0.008 −0.008
MCE Bias 0.005 0.005 0.005

Empirical SD 0.052 0.052 0.052
MCE SD 0.004 0.004 0.004

β2 (−1.1)

Estimated Bias 0.003 0.003 0.003
MCE Bias 0.007 0.007 0.007

Empirical SD 0.074 0.074 0.074
MCE SD 0.005 0.005 0.005

γ1 (−0.7)

Estimated Bias −0.020 −0.020 −0.014
MCE Bias 0.032 0.032 0.032

Empirical SD 0.314 0.314 0.318
MCE SD 0.022 0.022 0.023

γ2 (1.8)

Estimated Bias −0.017 −0.018 −0.008
MCE Bias 0.057 0.057 0.057

Empirical SD 0.569 0.569 0.569
MCE SD 0.041 0.041 0.041

ψ (1.2)

Estimated Bias 0.420 0.132 0.133
MCE Bias 0.051 0.042 0.045

Empirical SD 0.504 0.418 0.449
MCE SD 0.036 0.030 0.032

θ (0.8)

Estimated Bias −0.002 −0.002 −0.002
MCE Bias 0.004 0.004 0.004

Empirical SD 0.036 0.036 0.036
MCE SD 0.003 0.003 0.003
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a three-level RIM of the outcome on the treatment with a random intercept for clusters and
another for matched pairs.

We emphasize here, however, that there is no free lunch in the sense that our approach
requires that the effect of the treatment and the covariates on the outcome is indeed linear,
and that the variables we declare to be exogenous are precisely so. Since these two assump-
tions as well as the no unmeasured confounding assumption are fundamentally untestable,
the choice of which method to utilize will depend on contextual knowledge.

As a proof of concept, we make use of the publicly-available “High School and Beyond”
dataset that can be found in the multiMatch package (Pimentel, Page, & Keele, 2016).
Following Pimentel et al. (2016), we are interested in determining the effect of a student’s
enrolment in a Catholic school versus a non-Catholic school on his/her math achievement. In
our demonstration, we use the following covariates: (i) an indicator of each student’s gender
(which we assume is exogenous), (ii) a measure of each student’s Socio-Economic Status
(SES) (which we allow to be endogenous), (iii) an indicator of whether a student’s school is
Catholic (which we allow to be endogenous), and (iv) a measure of the disciplinary culture
in the school (which we assume to be exogenous). We argue that there are important
school-level covariates that we have omitted such as the size of the school - which may
affect a student’s math achievement through various mechanisms such as the distribution
of resources to students or peer-effects. The size of the school may also be correlated with
(i) the SES of a student since higher SES students may opt to enroll in smaller schools
where teachers can provide more dedicated attention to their students, and (ii) whether the
school is Catholic since Catholic schools tend to be smaller. Additionally, instead of using
the full dataset, we randomly sampled only 14 students for each cluster. This was done to
avoid technical difficulties with the current implementation of lavaan which does not take
parameter constraints into consideration when evaluating the identifiability of the model.
We point out again that this is purely a software issue which can be overcome.

We present the estimates of the “Catholic School Effect” using the different approaches
with the 95% confidence intervals appended in parentheses next to the point estimates.
As a baseline, we regressed the outcome on the treatment and the three other covariates
and included a random intercept for the school. In this model, the estimated mean math
achievement score for students in Catholic schools was 0.39 (−0.38, 1.15) points higher than
those from non-Catholic schools, after adjusting for the other covariates. The multilevel
matching approach yielded an estimated difference in means of about 1.21 (0.05, 2.38). The
built-in HT estimator and our SEM estimator produced similar estimates of about 9.38
(−2.48, 21.20) and 9.38 (−2.47, 21.24) respectively.

While none of the estimates were significant, the point estimates themselves as well as
their precision heavily depended on the method of choice and by extension the assumptions
made. It is unsurprising that the estimates were so different, and clearly illustrates the point
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that in empirical studies like this, contextual knowledge must be used to guide the researcher
in choosing his/her estimation strategy.

3.5 Concluding Remarks

Based on our simulation study with exchangeable data, we see that the exchangeable-
SEM estimator produces similar estimates to the Hausman-Taylor estimator with balanced
data. With unbalanced data, it performs no worse than the Hausman-Taylor in terms
of consistency, and finite sample properties. This is important because under the SEM
framework, estimation of structural RIMs with endogeneity can be extended to situations
that are more naturally handled with SEM. For example, our approach can (i) incorporate
measurement error in the covariates, (ii) be extended to deal with endogeneity involving
random slopes, and (iii) be extended to deal with binary outcomes (although consistency
of the resultant estimator is not guaranteed, and more work has to be done to study the
performance of this estimator).

There are, however, two main drawbacks to the exchangeable-SEM estimator. Firstly,
the exchangeable-SEM estimator is computationally more expensive compared to existing
packages that implement the Hausman-Taylor estimator. This is especially so in the un-
balanced case where we make use of Full Information Maximum Likelihood to fit the SEM
model. Secondly, even though the number of parameters to be estimated in the SEM model
is reduced by constraining some parameters to be the same, current software packages do not
take this into account when determining the identifiability of the model. As such, it is sub-
stantially easier to fit models with smaller cluster sizes. However, these technical problems
can be overcome by software that is optimized to estimate such models.

Despite the drawbacks, we believe that, on balance, there is still value in the exchangeable-
SEM estimator. Chief among the next steps would be to explore the finite sample perfor-
mance of the exchangeable-SEM estimator compared to the Hausman-Taylor estimator on
panel data where the true data-generating covariance structure is not exchangeable.



87

Bibliography

Ackerman, R. A., Kashy, D. A., & Corretti, C. A. (2015). A tutorial on analyzing data from
speed-dating studies with heterosexual dyads. Personal Relationships, 22, 92–110.

Alexandrowicz, R. W. (2015). Analyzing dyadic data with IRT models. In M. Stemmler,
A. von Eye, & W. Wiedermann (Eds.), Dependent data in social sciences research
(pp. 173–202). New York: Springer.

Allison, P. D. (2005). Fixed effects regression methods for longitudinal data using sas. SAS
Institute.

Allison, P. D. (2009). Fixed effects regression models. Sage.
Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum likelihood for cross-lagged

panel models with fixed effects. Socius, 3, 1–17.
Back, M. D., & Kenny, D. A. (2010). The social relations model: How to understand dyadic

processes. Social and Personality Psychology Compass, 4, 855–870.
Bagozzi, R. P., & Ascione, F. J. (2005). Inter-role relationshis in hospital-based pharmacy

and therapeutics committee decision making. Journal of Health Psychology, 10, 45–64.
Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between latent classes and

external variables. Psychometrika, 83, 871–892.
Bickel, P. J., Klaassen, C. A., Ritov, Y., & Wellner, J. A. (1993). Efficient and adaptive

estimation for semiparametric models. Johns Hopkins University Press Baltimore.
Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects:

A structural equations approach. Social Forces, 89, 1–34.
Burt, R. S. (1976). Interpretational confounding of unobserved variables in structural equa-

tion models. Sociological Methods & Research, 5, 3–52.
Card, N. A., Little, T. D., & Selig, J. P. (2008). Using the bivariate social relations model

to study dyadic relationships: Early adolescents’ perceptions of friends’ aggression and
prosocial behavior. In N. A. Card, T. D. Little, & J. P. Selig (Eds.), Modeling dyadic
and interdependent data in the developmental and behavioral sciences (pp. 245–276).
New York: Routledge.

Castellano, K. E., Rabe-Hesketh, S., & Skrondal, A. (2014). Composition, context, and
endogeneity in school and teacher comparisons. Journal of Educational and Behavioral
Statistics, 39, 333–367.



BIBLIOGRAPHY 88

Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econo-
metrics, 18, 5–46.

Christensen, P. N., & Kashy, D. A. (1998). Perceptions of and by lonely people in initial
social interactions. Personality and Social Psychology Bulletin, 24, 322–329.

Cockerham, C. C., & Weir, B. S. (1977). Quadratic analysis of reciprocal crosses. Biometrics,
33, 187–203.

Croissant, Y., & Millo, G. (2008). Panel data econometrics in R: The plm package. Journal
of Statistical Software, 27, 1–43.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized
linear and nonlinear approach. New York: Springer.

Dorff, C., & Ward, M. D. (2013). Networks, dyads, and the social relations model. Political
Science Research and Methods, 1, 159–178.

Duncan, O. D., Haller, O. A., & Portes, A. (1968). Peer influences on aspirations: A reinter-
pretation. American Journal of Sociology, 74, 119–137.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New York,
NY: Psychological Press.

Fisher, A., & Kennedy, E. H. (2018). Visually communicating and teaching intuition for
influence functions. arXiv preprint arXiv:1810.03260.

Fisman, R., Iyengar, S. S., Kamenica, E., & Simonson, I. (2006). Gender differences in
mate selection: Evidence from a speed dating experiment. The Quarterly Journal of
Economics, 121, 673–697.

Fuller, W. A., & Battese, G. E. (1973). Transformations for estimation of linear models with
nested-error structure. Journal of the American Statistical Association, 68, 626–632.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical Science, 7, 457–472.

Goldstein, H. (1987). Multilevel variance components models. Biometrika, 74, 430–431.
Gong, G., & Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and

applications. The Annals of Statistics, 74, 861–869.
Hausman, J. A., & Taylor, W. E. (1981). Panel data and unobservable individual effects.

Econometrica, 49, 1377–1398.
Hayman, B. I. (1954). The theory and analysis of diallel crosses. Genetics, 39, 789–809.
Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–
1623.

Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2017). A variational maximization-maximization
algorithm for generalized linear mixed models with crossed random effects. Psychome-
trika, 82, 693–716.

Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. New York: Guil-
ford.

Kenny, D. A. (1996). Models of nonindependence in dyadic research. Journal of Social and
Personal Relationships, 13, 279–294.



BIBLIOGRAPHY 89

Kenny, D. A., & Kashy, D. A. (1994). Enhanced co-orientation in the perception of friends: A
social relations analysis. Journal of Personality and Social Psychology, 67, 1024–1033.

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. New York: Guilford.
Kenny, D. A., & La Voie, L. (1984). The social relations model. Advances in Experimental

Social Psychology, 18, 141–182.
Kleiber, C., & Zeileis, A. (2008). Applied econometrics with R. Springer.
Koster, J. M., & Brandy, A. (2018). The effects of individual status and group performance

on network ties among teammates in the National Basketball Association. PLoS ONE,
13 (e0196013).

Koster, J. M., & Leckie, G. (2014). Food sharing networks in lowland Nicaragua: An appli-
cation of the social relations model to count data. Social Networks, 38, 100–110.

Li, H., & Loken, E. (2002). A unified theory of statistical analysis and inference for variance
components models for dyadic data. Statistica Sinica, 12, 519–535.

Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear
models. Biometrika, 73 (1), 13–22.

Loeys, T., & Molenberghs, G. (2013). Modeling actor and partner effects in dyadic data
when outcomes are categorical. Psychological Methods, 18, 220–236.

Loncke, J., Eichelsheim, V. I., Branje, S. J. T., Buysse, A., Meeus, W. H. J., & Loeys, T.
(2018). Factor score regression with social relations model components: A case study
exploring antecedents and consequences of perceived support in families. Frontiers in
Psychology, 9 (1699).
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