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Marker-Assisted Selection in Public Breeding Programs: The Wheat Experience

Jorge Dubcovsky*

are usually beyond the resources of public breedingIt has been suggested that the recent progress in the
programs and, therefore, are not currently used in mostarea of plant molecular biology and plant genomics
cultivated plants.have the potential to initiate a new Green Revolution.

Fortunately, biotechnology has provided additionalHowever, these discoveries need to be implemented in
tools that do not require the use of transgenic crops tonew cultivars to realize that potential. The controversy
revolutionize plant breeding. Progress in molecular genet-about transgenic crops has delayed the incorporation
ics has resulted in the development of DNA tags, whichof alien genes into plants and significantly increased the
can be used in marker-assisted selection (MAS) strate-cost to develop and release transgenic crops. These costs
gies for cultivar development (Paterson et al., 1991). These

Dep. of Agronomy & Range Science, Univ. of California, One Shields
Ave., Davis, CA 95616. Received 23 July 2003. *Corresponding author Abbreviations: BAC, bacterial artificial chromosome; MAS, marker-

assisted selection; SNP, single nucleotide polymorphism.(jdubcovsky@ucdavis.edu).
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molecular markers can be used as chromosome landmarks germplasm that significantly affected U.S. wheat pro-
duction were developed in public plant breeding pro-to facilitate the selection of chromosome segments includ-

ing useful agronomic traits during the breeding process. grams (Mercado et al., 1996). These data provide con-
vincing support of the broad impact of public wheatThese markers are particularly useful for incorporating

genes that are highly affected by the environment, genes breeding efforts both in cultivar development and in
germplasm enhancement.for resistance to diseases that cannot be easily screened

for, and to accumulate multiple genes for resistance to Public wheat-breeding programs are typically sup-
ported by wheat grower associations. However, lowspecific pathogens and pests within the same cultivar, a

process called gene pyramiding. An additional advantage wheat prices in the past years have resulted in a reduc-
tion of resources available to the U.S. wheat growers andof the incorporation of MAS into breeding programs is

that very different types of traits, e.g. a disease resistance a shrinking of resources for research and development in
new technologies. This situation was aggravated by agene or a gene to increase grain protein content, can

be manipulated using the same technology. Dekkers and limited investment of federal funding agencies during
the 1990s in implementation grants for public wheatHospital (2002) have recently reviewed some of the po-

tential limitations of MAS strategies, and concluded that breeding programs. This limited investment in practical
applications is difficult to understand in light of the largethe use of MAS will be determined by the economic

benefit relative to conventional selection. investment made by the same funding agencies in wheat
molecular genetics and wheat genomics.The alleles that are incorporated by MAS are gener-

ally present within the gene pool of a particular crop and During the last 10 yr, public researchers constructed
detailed wheat genetic maps including more than 3000are transferred by meiotic chromosome recombination.

One of the positive aspects of this approach is that these molecular markers and physical maps including more
than 16 000 loci (http://wheat.pw.usda.gov/NSF/; verifiedgenes reside at their natural chromosomal locations,

thereby minimizing the possibility of gene silencing. An- 2 July 2004). In addition to mapping, U.S. federal agencies
have funded the sequencing of more than 105 000 wheatother important aspect of cultivars developed by MAS

is that they are not transgenic and therefore, do not face ESTs, the construction of wheat Bacterial Artificial Chro-
mosome (BAC) libraries (Cenci et al., 2003; Lijavetzkythe public resistance against transgenic crops.

The MAS strategy is a way to capitalize on available et al., 1999), the assembly of BACs into physical maps
(http://wheat.pw.usda.gov/PhysicalMapping/; verified 2markers and to incorporate valuable traits into elite

lines that are suitable for cultivar release. In addition, July 2004), and the sequencing of large segments of
wheat DNA (SanMiguel et al., 2002). These powerfulrelease of these MAS-improved cultivars is an efficient

way of demonstrating the power of these technologies genomic resources have started to yield the first success-
ful positional cloning efforts in wheat (Faris et al., 2003;to the public. However, limited funding for implementa-

tion efforts had delayed the incorporation of these pow- Feuillet et al., 2003; Huang et al., 2003; Yahiaoui et al.,
2004; Yan et al., 2003; Yan et al., 2004). Cloning of agro-erful technologies into most public breeding programs.
nomically important genes has made possible to develop
“perfect markers,” based directly on the allelic variationWheat Breeding in the USA: A Public Effort
responsible for the differences in the trait. Examples of

Wheat (Triticum aestivum L.) is a self-pollinating spe- perfect markers in wheat include the glutenin genes for
cies and therefore, growers can save seed from one gluten strength (Anderson et al., 1989), the waxy genes
harvest for the next year. This has reduced the profit- for starch properties (Briney et al., 1998), the puroindo-
ability of wheat breeding for the private sector and has line genes for hardness (Beecher et al., 2002), the vernal-
resulted in the continuous existence of a large, vibrant ization genes for vernalization requirement (Yan et al.,
public sector involved in cultivar development. For ex- 2003; Yan et al., 2004), the Rht genes for semi-dwarf
ample, the total number of cereal crop breeders in the habit (Peng et al., 1999), and the Lr10 and Lr21 genes
USA in the last census was 893, with 80% being in the for leaf rust resistance (Feuillet et al., 2003; Huang et al.,
private sector and 20% being in the public sector (Frey, 2003). Wheat researchers have also developed closely
1996). In wheat, approximately 60% of the breeders linked molecular markers to yet unidentified genes with
were in the public sector. By comparison, only 7% of positive effects on quality characteristics and resistance
the corn breeders were in the public sector. Public in- to fungi, viruses, and insects (reviewed by Dubcovsky
vestments in wheat breeding during the past century et al., 2000; Anderson, 2000).
have resulted in the development of the majority of The most efficient way to develop a positive syner-
cultivars grown by U.S. farmers. State agricultural col- gistic effect between the large research investments in
leges and experimental stations, USDA, or CIMMYT wheat genomics and the growers’ investment in public
developed approximately 60% of the cultivars released wheat breeding is to fund implementation research proj-
in the USA during the 20th century. In addition, a high ects. The MAS programs are good examples of imple-
percentage of the area of wheat production in the USA mentation projects that have the potential to facilitate
is attributed to publicly developed cultivars (KS 62%, the transfer of valuable genes identified in basic research
ND 64%, WA 88%, NE 90%) (NASS, 2001). programs into public wheat varieties.

Fuglie et al. (1996) found a typical range of 40 to 60%
return on public research investment, with public wheat MASwheat: A Public MAS Programbreeding consistently at the top of this range. In addi-
tion, nine out of the 10 interspecific translocations in- The wheat public research sector has a long tradition

of collaborative projects that were initiated at the begin-volving the introgression of novel genes into cultivated
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ning of the 1990s by the International Triticeae Mapping the actual MAS programs and to incorporate new marker
technologies.Initiative. Large multi-laboratory projects continued later

in the USA under the funding of the NSF-Plant Genome One important aspect of the new genomic revolution is
that most of the information is publicly available. There-Initiative (http://wheat.pw.usda.gov/NSF/; verified 2 July

2004). Many of the collaborators of these projects were fore, competitiveness will not be determined by access
to the information but by the speed in which these tech-wheat breeders, facilitating the integration of basic and

applied wheat researchers. This integrated research com- nologies are incorporated into the breeding programs.
This represents both a challenge and a fantastic opportu-munity and the availability of the results from previous

research efforts in marker development were instrumental nity for the public breeding programs that have the exper-
tise to utilize successfully MAS technologies.in developing a successful proposal for MAS in wheat.

Wheat researchers and breeders from 12 public pro-
grams across the USA organized a national wheat MAS ACKNOWLEDGMENTS
consortium (MASwheat) that was funded by the USDA
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Crop Plant Genome Sequence: What Is It Good For?

Robert A. Martienssen*

and viruses are known, as well as their human hosts,With the commitment of resources from USDA-
drugs that uniquely target pathogens will follow thisIFAFS and NSF Plant Genome Program, it is
example in large numbers.likely that sequencing of plant genomes will be a major

With respect to education, the genome project raisedactivity in the next few years. Nonetheless, the value of
a new generation of biologist as much at home with athese sequences is still a matter of debate, leading to
computer algorithm as with a pipette, and has greatlyconcerns that priorities need to be carefully evaluated, not
raised the profile of biomedical sciences at campusesjust in research but also in education. It is worth there-
around the world. While the debate concerning geneticfore revisiting the largest genome project attempted so
privacy has widened considerably since the sequencefar—the human genome project—and the doubts raised
was announced, forensic applications have overturnedat the beginning of what seemed to be an unimaginably
hundreds of convictions and have made the “grave ofdifficult undertaking at the time.
the unknown soldier” a thing of the past (Williamson
and Duncan, 2002).The Human Genome Project

At the outset of the human genome project in the Plant Genome Sequencing
mid-1980s, there was heated debate over the merits of What lessons are there to be learned from this experi-a project scheduled to take 15 to 20 yr and to cost in ence for crop plant genomics and plant breeding? Asexcess of $3000 million. Arguments against the enor- with animals, model genomes (nematode, fly) have beenmous undertaking ranged from scientific, to economic, sequenced first (Arabidopsis and rice, Oryza sativa L.).ethical, and educational. It was argued that conventional However, now that they have been completed and their
biomedical research would have to be abandoned to impact is being felt in basic research, should we go on
fund the project; that graduate education would take a and sequence major crops such as maize (Zea mays
back seat as students were trained in sequencing and L.), soybean [Glycine max (L.) Merr.], wheat (Triticum
little else; and that the sequence of our genes would aestivum L.), cotton (Gossypium spp.), and trees? Much
breach our inalienable right to privacy. Finally, there of the debate over crop plant genomics echoes the de-
was an underlying conviction that the human genome bate surrounding the human genome project 15 yr ago.
sequence would be of little scientific value compared However, while the model plant genomes have trans-
to the outrageous cost. formed basic plant biology in much the same way as

In the event, the human genome project was com- animal genomes have, there are major differences be-
pleted in less than 10 yr, and cost the U.S. taxpayer less tween crop plant genomics and the human genome
than $500 million. Technological advances halved the project.
anticipated costs year after year, following “Moore’s For one thing, human genome research contributes to
Law,” which predicted comparable increases in com- biomedical research and development, a trillion dollar
puter speed and memory over the same time period. It activity worldwide. Crop plant genome research also
is projected that, by the end of this decade, an entire underlies enormously important industries in food, feed,
human genome will cost less than $10 000 to sequence. energy, and fiber, but here the analogy ends. First, sev-

Scientifically, the human genome project is already eral species must be targeted to cover agriculturally
revolutionizing our understanding of sporadic and in- important plants, rather than one genome in the case
herited diseases, including cancer, Alzheimer’s, autism, of biomedical research. Second, the seed industry oper-
and many more. It can be argued that the first drugs ates on far lower margins than the pharmaceutical indus-
designed on the basis of gene discovery were inhibitors try, and has raised public concerns over food safety and
of the novel protease found in the genome of HIV, security. Finally, the genetic information available to
drugs which have radically improved the prognosis for plant breeders is usually thought to be far less extensive
AIDS (Anon., 1996). Now that the genomes of microbes than the vast array of epidemiological data collected by

the biomedical community, making the sequence less
useful. Each of these arguments is certainly valid, butCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.

Received 23 July 2003. *Corresponding author (martiens@cshl.org). just as plant breeders embraced the vision of genetics
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