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ABSTRACT OF THE DISSERTATION

Making sense of microbial populations from representative samples

by

James T. Morton

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Rob Knight, Chair

Microbiomes make up the vast majority of life on Earth, and we are just beginning to

understand how to study them using high-throughput omics. However, analysis of microbial

populations is complicated by numerous statistical challenges. We first outline these challenges

in the context of phylogenetically-aware methods, then focus on two concepts: the horseshoe

effect and compositionality.

The horseshoe effect is a phenomenon that can lead to horseshoe patterns appearing in

low dimensional representations of high dimensional data. For multiple decades, this pattern

confounded ecologists when studying populations across multiple environmental conditions.

Here, we show that the horseshoe effect arises from distance saturation, and can be indicative

xvii



of microbial population displacement. This phenomenon is illustrated across a soil study and a

decomposition study.

In the second part of the thesis, we will discuss identifiability due to representative

sampling, also known as compositionality. Statistical laws have shown that it’s possible to obtain

unbiased estimators for population proportions from representative samples. However, based

on representative samples alone, it is not possible to determine which species abundances have

grown or declined, since there is an infinite number of outcomes that can explain the same change

in proportions. In the biological sciences, this problem is also known as the differential abundance

problem, which is critical for determining which microbes have been altered across experimental

outcomes. Here, we show that in order to estimate which species have been altered, the total

population size needs to be estimated.

We present two workarounds to this problem that ultimately negate the need to estimate

total population size. The first solution is using ratios, analogous to concentrations in chemistry.

We will showcase the usefulness of this technique on a soils study and a cystic fibrosis study.

The second solution is using ranks as a proxy to feature importances. Rather than attempting to

compute absolute change, we can compute relative change, ultimately ranking which microbes

have increased or decreased the most across different experimental conditions. We show how

these ranks can be computed using multinomial regression and can facilitate reproducible findings

in the context of oral microbial communities and atopic dermatitis.

xviii



Chapter 1

Methods for phylogenetic analysis of

microbiome data
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How does knowing the evolutionary history of microbes affect our analysis of microbi-

ological datasets? Depending on the research question, the common ancestry of microbes can

be a source of confounding variation or can be a scaffolding used for inference. For example,

when performing regression on traits the common ancestry is a source of dependence among

observations, whereas when searching for clades with correlated abundances the common ancestry

is the scaffolding for inference. The common ancestry of microbes and their genes is organized

in trees – phylogenies – which can and should be incorporated into the analysis of microbial

datasets.

While there has been a recent expansion of phylogenetically informed analytical tools,

little guidance exists for which method best answers which biological questions. Here, we review

methods for phylogeny-aware analyses of microbiome datasets, considerations for choosing

the appropriate method, and challenges inherent in these methods. We introduce a conceptual

organization of these tools, breaking them down into phylogenetic comparative methods, ancestral

state reconstruction, analysis of phylogenetic variables, and analysis of phylogenetic distances.

Careful consideration of the research question and ecological and evolutionary assumptions will

help researchers choose a phylogeny and appropriate methods to produce novel, accurate, and

biologically informative insights.

1.1 Introduction

High-throughput sequencing yields information about microbial communities in quantities

that outstrip our ability to make sense of it. Most microbial taxa have never been cultivated

or experimentally characterized. For many, we have only sequence fragments, whole genome

sequence data for a few distant relatives, and a tree capturing the microbes’ evolutionary histories.

How can we organize and analyze the deluge of information about uncharacterized microbes and

their sequence fragments?

2



Two main tools for organizing the diversity of life are the taxonomy and the phylogeny.

The taxonomy classifies a microbe based on a hierarchy of taxonomic names ranging from one of

three domains (Bacteria, Archaea and Eukarya) to one of several million species. The phylogeny

is an estimation of the microbes’ evolutionary history which classifies every organism by a series

of splits corresponding to estimated events in which a most recent common ancestor speciated to

form two daughter species.

Microbial taxonomy and phylogeny may eventually be equivalent, with every clade in the

phylogeny having a taxonomic name. However, contemporary taxonomic classification is coarse

relative to the phylogeny; modern taxonomic labels categorize a small fraction of the branches in

the phylogeny. For the time being, the phylogeny is a more detailed source of knowledge about

the common ancestry of microbes.

Phylogenies are a tool to organize and understand the microbial world[1, 2]. Because

related organisms tend to have similar characteristics, phylogenies can incorporate those charac-

teristics into our analyses even if we can’t measure them directly. Phylogenies are a scaffold to

classify lineages and infer functional ecological traits, even for lineages that have not been classi-

fied taxonomically or physiologically. Microbial ecology can be accelerated by high-throughput

classification and inferences made possible with phylogenies. Resource consumption [3], habitat

associations[4] and species interactions[5, 6] are causes and consequences of traits, and using

phylogenies to infer or implicitly work with traits may enhance our ability to manipulate microbial

communities to impact human health [7], biogeochemistry [8], and climate change [9].

How can a phylogeny assist analyses of microbiome data? Different research questions

require different considerations about how to amend statistical analyses when considering a

phylogeny. For example, studies testing associations between traits should consider the phylogeny

as a source of dependence among observations, whereas studies looking for simpler ways of

binning species should consider the phylogeny as a scaffolding for possible bins. There is a

vast and growing literature on methods for analyzing phylogenetically-structured data, methods

3



with subtle yet consequential differences in the questions they seek to answer. There is a need

to simplify the diverse field into a set of conceptually distinct classes of methods and thereby

provide a framework for instruction, comparison, and development of methods for analyzing

phylogenetically-structured data.

In this review, we organize the field of phylogenetically-structured data analysis by

discussing the major classes of methods. We first emphasize a fundamental issue in the field: the

imperfection of estimated phylogenies. We then define four categories: (1) comparative methods,

(2) ancestral state reconstruction and descendant trait imputation (3) variable analysis, and (4)

phylogeny-aware distances (Table 1). Most statistical tools can be revisited for phylogeny-aware

analyses, but the categories we cover capture the most commonly used and actively developed

classes of methods. We discuss challenges of phylogenetically-aware analysis of microbiome

data, including (Horizontal Gene Transfer (HGT)) and the choice of which genes to use when

building phylogenies. By partitioning the literature into distinct conceptual classes of methods,

we provide a common framework for the development and implementation of these important

methods in microbiome data analysis. See Box 1 for a glossary of relevant terms in Appendix A.

1.2 Phylogenetic Inference

The tree of life is not known; it is estimated, and accurate phylogenies improve accuracy

of phylogenetically-structured data analysis. Microbial phylogenies are commonly estimated by

collecting gene sequences, aligning sequences based on homologies, and using models of mutation

to infer most-likely evolutionary histories. The estimated phylogeny can vary depending on which

genes are sequenced, how sequence positions are aligned, which model of evolution is used, and

the method for inferring histories. Errors in phylogenetic inference can propagate to errors in

phylogenetically-structured data analysis. Here, we discuss the interplay between phylogenetic

inference and phylogenetically-aware analyses; for a review of methods for phylogenetic inference,
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readers can consult focused reviews of that topic [22, 23].

One can construct a phylogeny for any gene, and different genes will vary in the number

of species containing the gene, the accuracy of the phylogeny, and phylogenetic signal of a set

of traits. The 16S rRNA gene is commonly used for phylogenetic inference in Bacteria and

Archaea, but one could also construct a phylogeny for other genes such as beta lactamases and

their relatives, yielding a phylogeny with edges along which antibiotic resistance traits arose [22].

Microbial Eukaryotes likewise have many genes which can be used for phylogenetic inference,

the 18S rRNA gene being most commonly used[24].

The genes chosen for phylogenetic inference ultimately determine the set of traits corre-

lated with the phylogeny. Bacterial genome trees generally correlate with the 16S rRNA gene

(16S)-derived phylogenies[25], but the correlation between a 16S tree and gene content varies

over lineages and phylogenetic depths[26]. HGT disrupts the correlation between 16S trees and

gene content by allowing bacteria with distant 16S genes to share common and consequential

traits, such as pathogenicity islands and antibiotic resistance genes[27, 28]. Moreover, the 16S

sequence has multiple variable regions, and can vary among multiple copies within the same

genome, complicating phylogenetic inference[29]. More complicated scenarios, such as when

epistasis underlies a functional ecological trait and one of the epistatic genes can be horizontally

transmitted, prohibit a clear prescription for which gene’s tree should be used for phylogenetic

inference.

Different methods for analyzing phylogenetically-structured data use different features of

the phylogeny. Distances and phylogenetic comparative methods which aggregate information

over many branches in the phylogeny are more robust to errors in phylogenetic inference[30, 31]

. Methods which rely on a few branches are more sensitive to errors in phylogenetic inference

[32]. For methods relying on a few internal nodes or branches, the uncertainty in phylogenetic

inference – particularly the bootstrap support for the monophyly of critical branches[33] –

may be an important measure of uncertainty to incorporate into downstream data analysis.
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Where monophyly is crucial, researchers can collapse resolved nodes into polytomies to improve

the bootstrap support across the whole tree. A more certain yet coarse-grained phylogeny

may be preferable to a less certain yet fully resolved phylogeny. Incorporating phylogenetic

information has the capacity of drawing hypotheses on organisms never observed before. While

the vast majority of microbial life on the planet is not cultureable,phylogenetic analyses allow

us to extrapolate and infer characteristics about unknown organisms based on closely related,

cultureable organisms.

1.3 Phylogenetic Comparative Methods

Phylogenetic comparative methods (PCM)s are used when comparing multiple traits

across organisms. Closely related organisms often have similar traits due to inheritance from a

common ancestor; such dependence of traits across organisms can affect tests of trait:trait and

trait:habitat associations.

For example, we may find an association between 16S copy number (trait) and pH

preference (habitat) through a correlation between 16S copy number and a measure of pH

preference across 1,000 species of microbes (Figure 1.1a). Such an association could yield a

false positive result if the taxa consist of a set of closely related of Acidobacteria with low 16S

copy number and low pH preference, and a set of closely related Fusobacteria with high 16S

copy number and a high pH preference[29]. Intuitively, the phylogenetic signal of these traits

reduces our sample size because the observed traits represent samples from two lineages, not

1,000 independent species. More rigorously, the phylogeny affects the covariance structure of

residuals under null models of trait evolution. Robust tests of trait-associations are done using

PCMs[34, 11] (Figure 1.1b).

Generalized Least Squares (GLS) can control for dependence among observations when

performing regression. In GLS, residuals—the difference between predictions and observa-
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tions—are expected to covary and the covariance matrix is used to modify least-squares calcu-

lations. Random evolution produces close relatives whose observed traits will covary due to

the shared variation acquired during their shared ancestry[34]. Phylogenetic generalized least

squares[35] (PGLS; Figure 1.1), a tool for trait:trait and trait:habitat associations, implements

GLS with residual covariances defined by a model of evolution.

A common first step in PCMs is to estimate and test the phylogenetic signal against a null

model of no phylogenetic signal. The λ of Pagel [36] or the κ of Blomberg [37] are commonly

used test statistics for phylogenetic signal. For PGLS, one must assume an evolutionary model;

a Brownian motion, that is, a branching, random walk of trait values from an ancestral value at

the root to the tips of the tree, is the default. The evolutionary model defines a covariance matrix

for the residuals 1.1b. Under a Brownian motion model of evolution, the covariance between the

residuals of two species’ trait values is proportional to the amount of shared evolutionary history;

more closely related species have more closely related traits even under a null model of random

evolution. For more complicated models of evolution, one can jointly estimate the parameters for

the evolutionary model and the regression coefficients [38].

PCMs extend to many statistical tests. Testing whether the volume of bacterial spores

is smaller than the volume of daughter cells would involve a paired t-test, absent phylogenetic

signal. A phylogenetic paired t-test[39] was developed to account for phylogenetic signal in such

tests. There are many models of trait evolution, metrics of phylogenetic signal, and methods

to control for phylogenetic signal when comparing traits. A recent scholarly edition of modern

PCMs provides a review of the field and directions of current research[10].
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Figure 1.1: Advantages of using phylogenetic comparative methods. Phylogenetic comparative
methods control for the statistical dependence among traits resulting from evolution of traits
along the phylogenetic tree. (A) An exaggerated phylogeny with two distantly related clades. If
trait evolution is simulated as a random walk on the phylogeny, the two distantly related clades
will drive covariances between traits. Failing to correct for the effects of random trait evolution
can lead to a high false-positive rate. Methods such as phylogenetic generalized least squares
(PGLS) correct for the residual covariance expected under random trait evolution and produce
more accurate statistical tests of association. (B) PGLS should be used when testing associations
between traits, even trait quantities such as regression coefficients from abundance meta-data
associations. To implement PGLS, a model of trait evolution needs to be assumed or estimated.
Here, we estimate Blomberg’s κ. PGLS should be used regardless whether the traits used are
known or imputed through ancestral state reconstruction.

PCMs are not commonly used in microbiome studies, although a recent study[40] has

employed PCMs to identify genes associated with colonization of the human gut (trait:habitat).

Failure to correct for phylogenetic dependence in tests of trait:trait and trait:habitat association can
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yield a high false-positive rate (Figure 1.1). To amend this, we recommend researchers familiarize

themselves with and utilize PCMs. Many methods can be implemented through the R packages

[41] , phangorn [42], phytools[43], picante[44], caper [45], Geiger [46], and phylglm[47]. In

the supplemental online tutorial (https://knightlab-analyses.github.io/phylogenetic-tutorials/), we

illustrate how these packages can be used to simulate trait evolution and test associations between

traits. We also illustrate the sensitivity of these methods to HGT.

1.4 Ancestral State Reconstruction

Estimating, or reconstructing, ancestral trait values assists imputation of traits in uncharac-

terized species and identification of historical lineages along which major trait differences arose.

In studies of microorganisms, ancestral state reconstruction is commonly used to estimate genetic

and metabolic profiles of extant communities using a set of reference genomes. In microbiome

studies, this is commonly performed using PICRUSt[12], which uses pre-calculated ancestral

state reconstructions to impute trait values, such as genes encoding glycoside hydrolase activity,

for taxa whose traits are unknown.

PICRUSt operates on a phylogenetic tree, constructed from 16S sequences, connecting

various sequenced genomes and environmental sequences. First, trait information observed in the

sequenced genomes is used to infer ancestral trait profiles. Ancestral profiles are then used to

predict the profiles of each organism in an environmental sample. An input sample’s predicted

metagenomic profile is then estimated by adding the product of OTU abundances in the sample

and their corresponding profiles. Because this method relies strongly on the reference database,

and the available sequenced genomes, it underperforms in environments where few or no genomes

are known. Conversely, PICRUSt was able to predict the profiles of whole genome shotgun

human fecal samples with a Spearman R2 of > 0.9 [12], suggesting that the microbial phylogeny

is highly predictive of microbial genome content.
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The methodology underlying ancestral state reconstruction are very similar to phylogenetic

comparative methods, as both require a consideration of models of evolution [48]. Three main

types of algorithms are used to connect the tree, traits, a model of evolution, and estimates

of ancestral states given the model of evolution: maximum parsimony, maximum likelihood

and Bayesian inference[48]. Maximum parsimony reconstructs ancestral states by minimizing

the number of trait changes between the ancestor and the present descendants. This approach

assumes that trait changes are slow, and does not account for scenarios involving rapid evolution.

In addition, maximum parsimony treats all branches the same and minimizes the number of

changes on each branch; this can be problematic, particularly if not all of the species have been

observed [49]. Maximum likelihood and Bayesian inference improve on maximum parsimony

by incorporating explicit models of evolution – such as a Brownian motion model of trait

evolution along the tree - into the estimation of ancestral states. Rather than simply assuming

that changes are rare, these methods can account for some changes occurring more frequently

than others—for example, assuming synonymous substitutions are more frequent than non-

synonymous substitutions—and fit parameters to these models given an estimated phylogeny.

However, maximum likelihood will often underestimate the number of changes within a single

branch and can generate suboptimal results, particularly if the rate of evolution changes across

the phylogeny [50]. Bayesian approaches can compute evolutionary parameters across a deep

sampling of possible evolutionary trees and evaluate more complex models of evolution that

account for non-uniform rates of evolution. While Bayesian methods can generate more accurate

results than maximum parsimony or maximum likelihood, they can be computationally expensive

with large numbers of species. Consequently, PICRUSt estimates microbial ancestral states using

maximum parsimony or maximum likelihood.

As for phylogenetic comparative methods, estimates of ancestral states can be quickly

confounded by HGT (see supplemental online tutorial), and thus applications of these methods to

microbial datasets should be performed with consideration of the observed rates of transfer for
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the gene families of interest.

1.5 Analysis of phylogenetic variables

Locations on the Earth’s surface can be described with three Cartesian (xyz) coordinates,

but they are more naturally described using two spherical coordinates (latitude and longitude).

A phylogeny, similar to a sphere, suggests natural coordinates. Phylogenetic variables are used

to reduce the dimension of community ecological data, simplify calculations of distances, and

describe meaningful features and directions of change in communities (Figure 1.2). We coin the

term “phylogenetic variables” to describe variables constructed using features in the phylogeny to

aggregate, contrast, and summarize data of species in the phylogenetic tree (Figure 1.2). Variables

and distances are related, but contain distinct information: saying the city is east doesn’t indicate

how far it is, and saying a city is 80 kilometers away doesn’t indicate which direction it is.

Directions are described through phylogenetic variables (Figure 1.2A), and the magnitude of

changes is measured through distances (Figure 1.2B). Phylogenetic variables include diversity

metrics, taxonomic abundances, differences of abundance along all edges [44], differences of

abundances between clades (Figures 1.2A, 1.2C, 1.2D) [13, 15], and more.
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Figure 1.2: A comparison between phylogenetic variable analysis and phylogenetic distances.
(a) Changing variables can allow more natural descriptions of complex topologies. A spherical
Earth indicates spherical coordinates. Phylogenetic variables use the tree as a scaffolding for
constructing coordinates corresponding to phylogenetic features. Phylofactorization constructs
coordinates for contrasting groups, G1 and G2, separated by edges where traits, such as flight,
arose. (b), A default path between two points is a straight line, but a more meaningful path
on a sphere is a geodesic—that is, the shortest path along the surface of the sphere. Likewise,
phylogeny-aware distances such as UniFrac define evolutionary paths and their distances between
one community and another. (c), PhILR constructs coordinates between contrasting sister clades.
(d), The space of possible phylogenetic variables and distances is infinitely large. Ratios
between distant clades, as illustrated here, are viable but currently unused phylogenetic variables.
Researchers should consider the biological interpretability of novel variables and distances, and
their ability to inform future studies.
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Phylogenetic variables simplify microbiome datasets by reducing the dimension of the

data to a few variables carrying biological information. If a few monophyletic clades explain the

majority of a microbiome dataset’s variance along an environmental gradient, then there may

be traits, shared among members of each clade, which are important determinants of abundance

along the environmental gradient and underlie the observed community compositional changes.

The set of possible phylogenetic variables is infinitely large. Consequently, researchers

must be deliberate in their choice of novel phylogenetic variables – what are important directions

of change that carry implications for further research? Community changes along the direction of

a phylogenetic variable, such as alpha diversity, does not necessarily convey useful biological

information or immediate implications for future study design. Two common challenges in the

analysis of phylogenetic variables can help guide the choice and development of phylogenetic

variables: statistical dependence and biological interpretability.

Statistical independence, or well-characterized dependence, facilitates robust multivariate

statistics and multiple comparisons corrections. For instance, when testing associations between

species’ abundances and environmental meta-data, and repeating the process for genera, families,

orders, classes, and phyla, the variables analyzed have a nested dependence: if one taxon increases

in abundance, all else being equal it will increase the abundance of all higher taxonomic groups

in which it is found. For another example, if every sequence discovered is novel, the Shannon

diversity of n sequences and n species will be H = log(n) and the species richness and evenness

across samples will be correlated. Failing to account for the dependence among phylogenetic

variables can increase error rates when performing multiple hypothesis tests.

Phylogenetic variables with a clear biological interpretation can carry implications for

future study design and biological theory development. Changes in the abundance of a mono-

phyletic clade may suggest a heritable trait driving changes in abundance; future experiments

can focus on the clade to search for possible functional ecological traits. In macroscopic ecology,

theoretical arguments justify the utility of various diversity metrics as proxies for extinction
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rates, island-biogeographic processes, ecosystem stability, and conservation goals[17, 19, 18].

Theoretical justification and interpretation of phylogenetic variables connects the analysis of

phylogenetic variables (e.g. associations between diversity and meta-data) with experimental

design and biological theory.

Two recently developed methods — PhILR [15] and phylofactorization [13] illustrate

the challenges of phylogenetic variables analysis. Motivated by the compositional nature of

sequence-count data [20, 21], both methods construct variables through average log-ratios of

abundances between two clades in the phylogeny. PhILR variables measure the difference between

sister clades (Figure 1.2C), and phylofactorization iteratively constructs variables measuring the

difference between clades separated by edges in the tree (such as those in Figure 1.2A,D).

Changes in a PhILR coordinate may indicate a trait differentiating sister clades, whereas

changes in coordinates from phylofactorization may indicate a trait arose along the identified edge.

In both methods, significant associations between phylogenetic variables and meta-data motivate

future work comparing genomes of two clades to search for functional traits. PhILR motivates

comparison of sister clades (e.g. placental mammals to marsupials, or birds to crocodiles),

whereas phylofactorization implicates comparison of clades separated by edges (e.g. birds to

non-birds). In the supplementary tutorial, we illustrate these two methods for phylogenetic

variables analysis, show how to construct these variables, compare them to EdgePCA, analyze a

simulated dataset where rRNA gene copy number drives associations with disturbance frequency

in soils[51], and interpret the results.

The goal of analyzing phylogenetic variables is to identify meaningful directions of

change in microbiome data. Much like how principal components analysis can identify major

directions/axes of variation in a dataset, phylogenetic variables can identify directions of change

in microbiome data which explain variance in community composition and have implications for

extinction risk, which organisms to cultivate, which genomes to search, and more.
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1.6 Using Phylogeny-Aware Distances

Quantifying the dissimilarity between different species and between different communities

comprising these species can facilitate accurate classification of meta-data (such as whether a

patient has a disease), clustering of samples, and inferences of community function. Trees in

forests sequester carbon in wood, whereas grasses do not. Consequently, measures of distance

between communities containing trees from communities containing grasses may be indicative of

differences in the ecosystem physiology of forests and grasslands. For the microbial world, traits

driving ecosystem function are often unknown, yet accurate classification of disease states can

have major consequences for human health and, where traits analogous to woody biomass underlie

habitat associations, incorporating the phylogeny into distance measures can aid classification

(Figure 1.3). Phylogeny-aware distances translate a dataset (figure 1.3a) into a distance matrix

between samples (Figure 1.3b), which can be used to classify samples (Figure 1.3c).

One of the most widely used methods for phylogeny-aware analysis of microbiome data

is the analysis of UniFrac distances between samples[16]. The UniFrac distance was motivated

as a more biologically meaningful distance between communities than standard Euclidean and

Bray-Curtis distances. The intuition behind UniFrac, and most phylogeny-aware distances,

is that communities containing more phylogenetically distinct species are more different than

communities with more closely related species. Incorporating phylogenetic distances along which

functional changes occur may better quantify functional differences between communities.

Many extensions of Unifrac have been explored with the aim of controlling statistical

artifacts in count data and tuning the importance of abundance in UniFrac distances. If counts

are randomly distributed among species, clades with more species will have higher variances in

total counts and thus have greater impact on UniFrac distances than clades with fewer species. To

remedy this effect, VAW-UniFrac[52] stabilizes the variance of UniFrac distances. VAW-UniFrac

was extended by the Generalized Unifrac Distance [53], which contains a tunable parameter to
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increase/decrease the importance of abundance in the distances between communities.

Figure 1.3: A demonstration of how to interpret Unifrac distances.(a) A heatmap of species
abundances with red indicating high abundance and yellow indicating low abundance across
different environments. The evolutionary history is represented by the phylogenetic tree, and
the main differences between Environment A and Environment B are being driven by the
abundances in clade A and clade B. (b) While variables contain information for each sample,
distances relate two samples. Plotted are the pairwise Unifrac distances between the samples;
distances between samples from Environments A and samples from Environment B are larger
compared to distances between samples from Environment A or distances between samples from
Environment B. (c) The Unifrac distance between a sample from the Environment A to all other
samples illustrates how distances can be useful for sample-site classification. Phylogeny-aware
distances can relate to functional distances by capturing flow of abundances through edges along
which traits arose.

There have been a number of other phylogenetically informed distance metrics such as

Sorensens’ index, Rao’s D and Rao’s H that have been proposed alternative methods to incorporate
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evolutionary information [54]. Furthermore, standard statistical techniques such linear regression

can be augmented to penalize differences between close relatives[55, 56, 57].The phylogeny is a

scaffold for many variables, and can serve as the basis for many useful distance metrics. Which

distance(s), of the possible distances, are of interest to a given microbiologist?

We suggest two main goals in the construction of phylogeny-aware distances: improving

sample-site classification/visualization and providing meaningful interpretations of community

differences.

If sample-site visualization is the goal of an experiment, a researcher may be inclined to

search through a space of possible distances until finding one that looks the best, irrespective of the

biological interpretability of the distance. Otherwise, searching too many distances risks dredging

the data and presenting statistically significant patterns which were obtained by testing multiple

candidates without proper corrections for multiple hypothesis tests performed. Correcting for

such multiple tests will face the same challenges of unclear dependence among tests that arise in

the analysis of multiple phylogenetic variables. While many existing distances can successfully

classify samples across a range of site categories and clinical variables, the biological implications

of discovered differences are often unclear. Does a larger distance indicate greater difficulty in

bioremediation of one community into another? Does a larger distance imply a larger difference

in ecosystem function or patient morbidity? What follow-up experiments should one conduct to

better understand the biochemical and microbiological causes of community differences, given a

large UniFrac distance?

Construction of new phylogeny-aware distances and their use in modified statistical meth-

ods should consider the performance gains relative to existing methods and whether they provide

a new interpretation of discovered differences. Careful justification of new distances can improve

the biological interpretation of results. For instance, macroscopic ecologists debate how beta

diversity can be used for conservation[19]. Such discussions can improve the interpretation of

existing and newly developed phylogeny-aware distances and help researchers understand any
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implications of high or low distances between communities. In addition, a high quality tree is

critical for revealing ecologically relevant patterns [58]. As with phylogenetic comparative meth-

ods and phylogenetic variables, phylogeny-aware distances benefit from explicit consideration of

ecological and evolutionary models to aid the biological interpretation of their results.

1.7 Challenges of phylogenetic analysis

There are challenges to phylogenetically structured data analysis, including HGT, the

choice of which gene tree to use, the sensitivity to errors in phylogenetic inference, and the

explicit consideration of ecological and evolutionary models. Here, we discuss broader challenges

of phylogenetic analysis; for challenges especially relevant to microbial and microbiome datasets,

(see Box 2 in Appendex A). HGT between microbial genomes complicates the evolutionary

story of vertical transmission captured in a phylogenetic tree [59]. HGT raises the question of

which phylogeny to use and how informative the phylogeny is for the research question. For

PCM, HGT can lead to improper corrections and poorly calibrated statistical tests (illustrated in

supplement). HGT of a major trait driving variation in the data can reduce the appropriateness of

the phylogenetic variables or distances being used.

It is favorable to choose gene families that are insensitive to HGT for inferring phylogenies.

Studies have evaluated the chance of HGT based on functional and ecological features[59, 60],

providing guidelines for this task. Perhaps there is no gene absolutely HGT-free throughout the

tree of life, including 16S [61]. Using multiple genes in phylogenetic inference can minimize

the negative impact of HGT [62], and reveal genes influenced by HGT within the selected range

of taxa[56]. Computational tools are available for assessing the probability of putative HGT

events based on species/gene tree reconciliation[63]. Exploration of genomic context, sequence

signature and atypical homology search results also help tracking HGTs[64].

HGT does not invalidate phylogeny-aware analyses of microbiome data. HGT of func-
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tional traits could be hypothesized through phylogeny-aware analyses by strong effects with little

phylogenetic signal [65]. If phylofactorization identifies an unusually large number of tips of the

tree associated with antibiotic exposure, HGT may be driving variation in the data and can be

further tested by comparison of genomes among the phylogenetic factors identified. Nonetheless,

HGT requires consideration when analyzing phylogenetically-structured data. The sensitivity

of many methods to the horizontal transfer of functional traits is currently understudied. The

combination of HGT and the existence of different phylogenies for each gene motivates careful

justification of which genes to use to make phylogenies. Finally, all methods face the challenge

of being interpretable and advancing our knowledge of microbiological systems. To that end,

new methods should explicitly consider ecological and evolutionary models for how traits evolve

and drive patterns in the data. One study simulated trait evolution on a tree and compared PGLS

with phylogenetic eigenvector regression methods[66], which use eigenvectors from phylogenetic

distance matrices as explanatory variables and do not correspond to a clear evolutionary model.

The study found that PGLS produced more reliable and better-calibrated statistical results[66].

Considering evolutionary and population genetic models in method development promotes accu-

rate understanding of the assumptions under which a phylogeny-aware analysis performs well

and interpretation of findings in terms of the biological processes at play[67].

As more methods are developed, researchers should be aware of the tradeoffs between

machine learning and human understanding: the former may produce more accurate predic-

tions in the short term, whereas the latter produces theory that can generate more accurate and

generalizable predictions in the long term.

1.8 Discussion

The common ancestry of microorganisms can be a source of confounding variation in

our data, or a scaffolding on which we make inferences. There are many existing and emerging
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methods for analyzing microbiome datasets in light of evolution, and choosing the right method

requires precise statements of the research question (Table 1).

First, decide which tree to use. Commonly, microbiome studies use the 16S tree for

Bacteria and Archaea and the 18S tree for microbial eukaryotes, but there is a phylogeny for

every gene and some questions are better analyzed with trees from other genes. The phylogeny

obtained will be an estimate, and uncertainty in phylogenetic inference can translate to uncertainty

in downstream phylogenetically-structured data analysis.

If the research question uses a trait as a response variable, the phylogeny may be a

source of confounding variation. Phylogenetic comparative methods, such as PGLS, correct for

dependence among traits one expects under null models of evolution along the tree.

If the research question is seeking historical trait values, or edges along which major trait

differences arose, ancestral state construction is needed. If testing associations between imputed

traits, researchers need to combine ancestral state reconstruction for imputation of missing traits

with phylogenetic comparative methods which correct for confounding variation.

If the research question aims to simplify patterns of community composition, the phy-

logeny is a scaffolding that can be used to produce biologically informative variables and direc-

tions of change. The choice of variables should be made according to their ability to capture

features in data, their statistical dependence, and their biological interpretation.

If the research question is to differentiate microbial samples, the phylogeny can define

distances between samples. By re-defining distances, the phylogeny can be used to modify

virtually any statistical method, but the choice of which distance to use should be based on the

research goals of sample-site classification or biological interpretation of differences.

Phylogenetic analysis of microbiome data can allow researchers to categorize unclassified

microorganisms, test evolutionary hypotheses about trait associations or traits driving habitat

associations, and better understand how microbial communities differ and how they change over

time, space, and treatments. There are several classes of methods for analyzing microbiome
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data in light of evolution. Careful consideration of the research question and the allowable

ecological and evolutionary assumptions enables researchers to identify existing methods or

produce novel methods that address their research question and produce novel, accurate, and

biologically informative insights. The deluge of information about microbial sequences is

producing phylogenetically-structured data which, given the right tools, can accelerate our

understanding of microbial community structure and function.
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Table 1.1: Comparison of different phylogentically aware methods. Different classes of methods
for using the phylogeny in data analysis address different classes of questions. These methods
can be summarized based on their use of given a dataset of abundance vectors, x, observed or
imputed trait values, y, and the phylogeny, P.

Class of
Methods

Brief Description Specific Exam-
ple

General Formula Highlighted
Method

Comparative
Methods

Find associations
between traits,
controlling for
evolution on
phylogeny

Is 16S Ribo-
somal RNA
(rRNA) gene
copy number
associated with
growth rates in
vivo?

yi − g(Y ) + ε

where
Conv [ε] = f (P)

Phylogenetic
Generalized
Least Squares
(PGLS)[10]
Paired
t-test[11]

Ancestral
State
Recon-
struction

Impute trait val-
ues for historical
lineages in the
phylogeny and use
ancestral traits to
impute trait values
for contemporary
species

What is the
best estimate of
16S rRNA gene
copy number of
an Operational
Taxonomic Unit
(OTU) based on
the 16S rRNA
copy numbers of
its relatives?

Infer features
of P|y Impute
yi, j|y j

PICRUSt[12]

Phylogenetic
Variables

Use the phy-
logeny to construct
variables that
are biologically
interpretable
(for example,
a clade’s abun-
dance) and sim-
plify/summarize
features in the
community

Which interior
edges in P
separate taxa
with different
habitat associ-
ations? How
does Faith’s
phylogenetic
diversity change
with pH?

Define variables:
vi = fi(x,P)
Analyse, in-
terpret and
combine vi

Diversity
analyses Taxo-
nomic analyses
Phylofactor-
ization [13]
EdgePCA[14]
PhIsometric
Log-ratio
(ILR)[15]

Phylogeny-
Aware
Distances

Use the phylogeny
to construct dis-
tances between
samples, which
can then be used to
modify statistical
tools for classifi-
cation, regularized
regression and
more

How differ-
ent are two
microbial
communities?

Define dis-
tance d[xi,x j] =
K(xi,x j,P)
Analyse and use
to modify var-
ious statistical
methods

UniFrac[16,
17, 18, 19]
Inner product
methods[20],
[21]
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Chapter 2

Uncovering the horseshoe effect in

microbial analyses
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The horseshoe effect is a phenomenon that has long intrigued ecologists. Commonly

thought to be an artifact of dimensionality reduction, multiple techniques were developed to

unravel this phenomenon and simplify interpretation. Here, we provide evidence that horseshoes

arise as a consequence of distance metrics that saturate - a familiar concept in other fields but new

to microbial ecology. This saturation property loses information about community dissimilarity,

simply because it cannot discriminate between samples that do not share any common features.

The phenomenon illuminates niche differentiation in microbial communities and indicates species

turnover along environmental gradients. Here we propose a rationale to the observed horseshoe

effect from multiple dimensionality reduction techniques applied to simulations, soil samples,

and samples from postmortem mice. An intuitive-depth understanding of this phenomenon allows

for the targeting of niche differentiation patterns from high-level ordination plots.

2.1 Introduction

Ecological datasets, particularly those observed in microbiome studies, are typically sparse

and high-dimensional, frustrating most conventional statistical techniques. Many numerical

ecology software packages make use of distance-based statistics by calculating the distance

between ecological communities, to compare various ecosystems to each other over space and

time. One of the most common exploratory analysis techniques is ordination, where the distances

between the communities are embedded into a Euclidean space, and then visualized via Principal

Components Analysis (Principal Component Analysis (PCA)) [68]. A widely used extension of

this technique, where the distance metric can be varied, is called Principal Coordinates Analysis

(Principal Coordinates Analysis (PCoA)) [68].

One phenomenon that commonly occurs in datasets containing ecological gradients is

the horseshoe effect or Guttman effect [69]. This phenomenon is typified by a linear gradient

that appears as a curve in ordination space. The horseshoe effect, or its relative the arch effect
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[70] (where the ends of the gradient do not attract each other along the first principal coordinate

as they do in the horseshoe effect), is observed using multiple types of ordinations, including

Principal Components Analysis, Principal Coordinates Analysis, Non-Metric Multidimensional

Scaling, Correspondence Analysis, and many others [68]. In 1982, the prevailing view of the

horseshoe effect arose, when it was described by Gauch as a mathematical artifact that obscures

the underlying ecological gradient. Soon thereafter, Detrending Correspondence Analysis [70]

was invented to unbend the horseshoe using reciprocal averaging. Since then, detrending has

become a commonly applied practice to ordinations in ecological datasets. Although these

detrending techniques appear to provide a more intuitive visualization, they have been criticized

as providing a distorted perspective of the underlying data, relying on many parameter settings

that cannot be chosen in a principled way, and obscuring true underlying patterns in the data [71].
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Figure 2.1: An explanation of the horseshoe effect arising from distance saturation. (a) A band
table where the y axis encodes for individual Operational Taxonomic Unit (OTU)s and the x
axis encodes for samples. Blocks that are colored black have a value of 1/10 while blocks that
are colored white have a value of 0. (b) The first 2 components from a PCA of the band table,
yielding the typical horseshoe shape. (c) The Euclidean distance from the point 0 to all of the
other points. (d) An illustration of distance saturation property.

In previous studies, it was shown that horseshoes can arise from band tables [72, 73].

These tables consist of highly dense, non-zero values along the diagonal of the table, and sparse

values everywhere else. This pattern can be apparent when the rows and columns are sorted in

the proper order. Although the idea that band tables lead to horseshoes is not a new idea, it is

commonly misunderstood how this concept applies to microbial analyses. Here we provide some

intuition behind the mathematical structure of horseshoes.
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In Figure 2.1a, we show a simulated band table, where each vertical band is represented

by a sample, and contains 10 non-zero values. In typical microbiome datasets, these values

could reflect OTU or species counts; for simplicity, here we will to refer to them as species

counts, although this concept can also be generalized to multiple data types, such as gene counts,

metabolite abundances. Each sample in the table is shifted by 1 row, creating the band effect.

When PCA is applied directly to this table, the first 2 eigenvectors yield a horseshoe pattern

(Figure 2.1b). Here, the band table is parameterized with a band size of 10, since each sample has

exactly 10 non-zero values.

For close local points, the Euclidean distance grows linearly along the gradient (Figure

2.1c). However, after a certain point, the distance completely saturates. This property has been

previously noted with Euclidean distance [70]. The overlap between the first sample in the band

table, and sample 10 and beyond disappears, and the distance between these samples is maximized.

This can yield unintuitive properties, sample 10 could be less dissimilar than sample 1 compared

to sample 20. For instance, sample 10 could represent a medium pH environment, sample 1

could represent an acidic low pH environment and sample 20 could represent a high pHbasic

environment. Sample 1 is expected to be a substantially more different microbial community to

Sample 20 than Sample 10. The acidophiles found in Sample 1 are typically not found in basic

environments. Sample 20 is expected to be more different to sample 1 than sample 10, since it

contains very different microbes that thrive in high pH environments. But as far as Euclidean

distance is concerned, sample 10 is just as dissimilar to sample 1 as sample 20, just because there

are no common bacteria shared between these samples. It is apparent that the saturation property

of Euclidean distance does not capture all of the information about community dissimilarity along

a gradient, simply because it cannot discriminate between samples that do not share any common

features. Once the distance is saturated, all samples that do not overlap lie within a ball of radius

B where B is the band size lying within a ball of radius where B is the band size and the first

point is the center of the ball as shown in Figure 2.1d.
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This saturation property has been suggested to give rise to horseshoes in previous studies in

other fields [72], and is an unintuitive property that can confound ecological interpretations if not

understood properly. This property also restricts the possible trajectories of samples in the feature

space, and gradients cannot be represented by linear trajectories in the real space (Supplemental

proof 1 in Appendix B). This means that communities in the original high dimensional space

do not arrange into linear trajectories in the first place, and when projected to lower dimensions

do not fall into linear trajectories. These trajectories are what we refer to as horseshoes. The

horseshoe phenomenon is analogous to the familiar concept of saturation in molecular evolution,

where two randomly evolving sequences saturate at 75% DNA sequence identity (assuming equal

nucleotide frequencies), even if infinite time has elapsed [74]. Consequently, distances that reflect

a higher degree of molecular change need to be corrected for multiple substitutions in order to

recover the molecular clock-like behavior obtained when comparing more similar sequences.

This is why corrections according to models such as Jukes-Cantor or the Kimura 2-parameter

model are required to obtain distances for reconstructing better phylogenetic trees. Analogous

distance corrections are needed in microbial ecology for reconstructing better relationships among

microbial communities [75].

It is important to note that horseshoes do not only arise from PCA, but also arise in PCoA

with a variety of distance metrics. Arch effects have plagued every multidimensional reduction

technique we have applied to a wide range of microbial ecology datasets [76]. In the following

case studies, we’ll show that these distance metrics also have the saturation property. In addition,

if a distance doesn’t have this saturation property, there won’t be an observed horseshoe artifact

(Figure S1).
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Case Study 1 - 88 Soils

In this study, 88 soil samples were obtained from multiple locations across the United

States having varying levels of pH [77]. The V4 region of the 16S rRNA gene (16S) within each

organism was amplified and sequenced using 454 pyrosequencing to obtain relative abundances

of microbial taxa. A matrix representing abundance values for each taxonomic unit per soil

sample was used as input in correspondence analysis (Correspondence Analysis (PCA)) [78].

The resulting ordination showed clear separation of the communities based on pH (Figure 2.2a),

which led to the same conclusion that pH is a major driving factor in soil biogeography, i.e. pH

has major impacts on the distribution of bacterial taxonomic units in soil [77]. The PCA analysis

in Figure 2.2a also shows the classic horseshoe shape. Here we revisited this study, to better

understand the horseshoe shape behind this dataset.

To test the effect of another commonly used distance metric on the sample distribution, we

analyzed the same soil dataset applying Chi Squared distance (Figure 2.2b). Similar to what was

observed with Euclidean distance, which was applied in the simulation, the Chi Squared distance

increased sharply at pH 3 and 4, but began to saturate at pH of 5. Also the band table similar to

what we have observed in Figure 2.2a can be obtained when sorting. Also, when the the OTU

table was sorted by sample pH and the mean pH of the samples that the OTUs were observed in

mean pH of the OTUs (Equation 12), the same band table pattern appeared as we show in Figure

2.2a. While the diagonal isn’t completely dense, there are more non-zero values compared to

the corners of the heatmap. In line with the findings from the original study, this pattern is likely

representative of niche differentiation of OTUs with respect to pH. The organisms that thrive in

low pH environments tend not to exist in high pH environments and vice versa. Low pH and high

pH samples are shown in Figure 2.2c to have few overlapping species, a pattern not observed in

the original study as membership was evaluated at coarser levels of taxonomic resolution[77].

29



a b c

d
e f

Figure 2.2: Two case studies show casing how horseshoes can appear in the context of soil
microbial communities and post-mortem microbial communities. (a) Correspondence analysis
of 88 soils. (b) Distance saturation of chi-squared metric, plotting the chi squared distance of
the first sample versus all of the other samples. (c) Heatmap of log transformed OTU counts
from the 88 soils with the samples sorted by pH and the OTUs sorted by mean pH. (d) Principal
Coordinates Analysis of unweighted UniFrac distance. (e) UniFrac distance of a samples from
the last time point versus all of the samples. (f) Heatmap of centred log ratio transformed
(Equation 2) OTU counts sorted by harvest days.

Case Study 2 - Post Mortem Mice Study

In this study, 120 mice were sacrificed and allowed to decompose on soil. Mice were

destructively sampled over approximately 8 weeks[79]. 16S sequencing libraries were generated

from total DNA extracted from swabs of the skin on the head, and relative abundance values
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were calculated for each bacterial OTU. A relative abundance matrix was generated for each

library and used as input in PCA. This analysis generated a clear horseshoe (Figure 2.2d) using

unweighted UniFrac distance [77], with a gradient with respect to the time since death, possibly

reflecting a changing skin microbiome during decomposition of the mouse carcass. When the

samples were sorted by time since death using a similar strategy as noted above, a band table

emerges (Figure 2.2f). Also, the unweighted UniFrac distance analysis appears to have the same

saturation property as observed previously with Euclidean distance and Chi-squared distance.

It is important to note that highest possible UniFrac distance is 1, suggesting that this distance

metric can also be saturated. In Figure 2.2e, while the distance hasn’t completely saturated, these

distances are quickly approaching the theoretical maximal UniFrac distance.

The striking changes in microbial communities during decomposition are associated

with dramatic environmental biochemical changes, including increased pH, ammonia, and total

nitrogen, all measured in soil beneath the mouse carcasses. Correspondingly, microbial com-

munities are predicted to increase in gene abundance of important nitrogen cycling pathways

such as amino acid degradation (e.g. glutamate dehydrogenase, lysine decarboxylase, ornithine

decarboxylase) and nitrate reduction (e.g. nitrate and nitrite reductase). Bacterial taxa in the

families Chromatiaceae (OTU 46026, 4482362) and Rhizobiaceae (OTU 4301099) are involved

in nitrogen metabolism and become abundant as mouse bodies progress through the stages of

decomposition (e.g. Fresh, Active Decay, Advanced Decay). As shown in Figure S1, all of these

OTUs peak at specific timepoints. The two Chromatiaceae OTUs peak during Active Decay

(bloating and purge of fluids) at 15 days of decomposition. The Rhizobiaceae OTU peaks during

Advanced Decay (sinking and sagging flesh) at 30 days of decomposition and when pH, ammonia,

and total nitrogen were measured at their highest levels [79].

To further validate if saturation leads to horseshoes, a new distance metric Earth Mover

Band Aware Distance) (EMBAD) (Earth Mover Band Aware Distance) was engineered to be

non-saturating as a proof of concept (Supplemental Methods Appendix B). This distance metric
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uses prior knowledge about the ordering of the band table, and is determined by calculating the

flow between two samples. As shown in Figure S1a, sample 1 and sample 2 each have 4 species

proportions. To calculate the distance between sample 1 and sample 2, the probability mass of

species 1 and species 2 needs to be shuffled over to species 3 and species 4. This concept is

analogous to computing maximum flow along a pipe, and can be calculated using Earth Mover’s

distance [80, 81, 16].

For the 88 soils (Figure S1b), the EMBAD was applied to the pH sorted table. Therefore,

even if two samples are not overlapping, samples closer together will have a smaller distance than

samples farther apart in the gradient. This is because the distance is defined to be not saturating

and explicitly accounts for the pH gradient. The same strategy was employed for the postmortem

interval mice (Figure S1c), sorting the table by decomposition days. The PCoA plots resulting

from these applications of EMBAD suggest that a non-saturating distance metric could remove

the horseshoe effect from lower dimensional projections of these abundances. This provides

further evidence that this saturation property could explain the the horseshoe phenomenon.

For the 88 soils study a Permutational Multivariate Analysis of Variance (PERMANOVA)

test investigating the difference between soils with a pH less than 3, and soils with a pH greater

than 8. With the EMBAD distance metric the PERMANOVA gave a pseudo F-statistic of 650.5

and a p-value of 0.0003, which has a much larger effect size compared to the original Chi-squared

distance metric with a pseudo F-statistic of 3.8 and a p-value of 0.0004 with 9999 permutations.

A similar trend was observed in the post mortem interval mice study when testing the first

decomposition day to the last decomposition day using PERMANOVA. The EMBAD distance

metric had a pseudo F-statistic of 439.8 and a p-value of 0.0001 with 9999 permutations, which

has a larger effect size than the Unifrac distance metric, which had a pseudo F-statistic of 25.5 and

a p-value of 0.0001. This method is relieved from misinterpretations of data due to horseshoes

and arches and facilitates the interpretation of taxonomic units along biologically significant

gradients that reflect the selective pressure of these factors on the distribution of microbes.
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In light of the benefits of engineering a non-saturating distance metric, the EMBAD

distance metric requires the gradient to be known a priori. Generalizing this approach in the

absence of known gradients is a difficult problem would require an exhaustive using known

algorithms. Specifically, this problem falls under the category of NP-hard problems (Supplemental

Proof 2 in Appendix B). In the 88 soils study and the post mortem mice study, we were fortunate

to be able to infer the underlying band table with known metadata.

The band patterns we observe here are probably very common in ecology studies inves-

tigating species distribution patterns across spatial or temporal gradients. The pattern confirms

microbial ecological fundamentals, i.e. bacteria have acquired unique adaptations to the environ-

ment and occupy either a broad range or very specific niches. In our case studies of the 88 soils

- and the postmortem mice we confirmed that by using a band table pattern analysis approach,

bacterial species show different adaptations to pH and bacterial diversity changes over time

during decomposition of mice carcasses. The band pattern approach we apply here represents an

additional method to visualize differences between microbial communities.

On the basis of our observations described here, the horseshoe effect appears in dimen-

sionality reduction techniques due to the saturation property of distance metrics. While we

have tested only a few distance metrics, it is suspected that a vast majority of these distance

metrics exhibit the same property, which would also explain why horseshoes are encountered

so frequently across many different fields. The saturation property has also been observed in

multiple other fields, and other studies from different disciplines have led to similar conclusions

[72]. In spite of the saturation property of distance metrics, identifying horseshoes is still highly

useful for identifying patterns concerning niche differentiation. These insights can ultimately

guide additional statistical analyses, such as network analyses and indicator taxon analyses, to

facilitate the targeted characterization of microbial niches.
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2.2 Materials and Methods

All analyses can be found below on github

https://github.com/knightlab-analyses/horseshoe-analyses. The mean gradient used

for the 2 case studies was calculated as follows.

gx =
N

∑
i=1

gi
xi

∑
D
j=1 x j

(2.1)

Where xi is the proportion of OTU x in sample i , gx is the mean gradient of OTU x, and gi

is the sample gradient at sample i. This calculation can be found in the gneiss package under

the function mean niche estimator. The function used to sort the tables in Figure B.1c used

niche sort. In the 88 soils study, the table was sorted by sample pH and the mean pH of the

samples that the organisms were observed in. In the post mortem mice study, the table was

sorted by the days of decomposition and the mean day of the samples of that the organisms were

observed in.

The heatmap in Figure B.2f and the abundances in Figure S2 were normalized using the

center log ratio Center Log-ratio (clr) transformation given by the following equation.

clr(x) =
[

log
x1

g(x)
, ..., log

xD

g(x)

]
= logx− logx (2.2)

Where g(x) = n
√

∏
n
i=0 xi is the geometric mean and logx = logg(x) = 1

n ∑
n
i=0 logx is the average

of the log transformed values. A pseudocount of 1 is added to all of the counts to prevent

logarithms of zero occurring.

Analyses were performed using Scipy, Numpy, Matplotlib, Seaborn, Scikit-bio and

Gneiss.
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Chapter 3

Balance trees reveal microbial niche

differentiation
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Advances in sequencing technologies have enabled novel insights into microbial niche

differentiation, from analyzing environmental samples, to understanding human diseases and

informing dietary studies. However, identifying the microbial taxa that differentiate these samples

can be challenging. These issues stem from the compositional nature of 16S Ribosomal RNA

(rRNA) gene data (or, more generally, taxon or functional gene data), which changes in the relative

abundance of one taxon influence the apparent abundance of the others. Here we acknowledge

that inferring properties of individual bacteria is a difficult problem, and instead introduce the

concept of balances to infer meaningful properties of sub-communities, rather than properties of

individual species. We show that balances can yield insights about niche differentiation across

multiple microbial environments including soil environments and lung sputum. These techniques

have the potential to reshape how we carry out future ecological analyses aimed at revealing

differences in relative taxonomic abundance across different samples.

3.1 Introduction

The ultimate goal for many microbial ecologists is to fully characterize niches of microbial

organisms and understand interactions among taxa. An understanding of how microbial commu-

nities are affected by environmental conditions could yield insights into microbial interactions

and their role in macro-ecological processes, such as nitrogen fixation [82] and acidification

[83]. But despite the extraordinary increase in available data brought about by advances in DNA

sequencing, characterizing niche differentiation in microbes remains an outstanding problem,

partly due to the difficulty of correctly interpreting compositional data. Broadly speaking, a

compositional dataset is represented by relative abundances, or proportions that individually carry

no meaning on the absolute abundance of a specific feature (i.e. 20% of 100 and 20% of 10,000

are very different absolute abundances). The constraints associated with compositional data

are well known, but unfortunately often neglected in microbial ecology, leading to conflicting
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interpretations and irreproducible analyses [84, 85] .

Figure 3.1: An explanation of balances and how to interpret them. (a, b) A hypothetical scenario
where 2 samples of 2 proportions could explain two different scenarios in the environment. The
balance between these 2 proportions is consistent for both scenarios. (c) The balance of Red and
Blue species abundances. (d) balances of Red and Blue individuals across an environmental
variable. (e, f) The comparison of proportions and balances of two environments in the scenario
where the Purple population (i.e. the most right bin) triples. The balances were calculated using
the groupings specified by the tree.

We illustrate an example of this problem in Figure 3.1. In this scenario, there are two

species, “Red” and “Blue”. At the first time point, there are 100 Red individuals and 100 Blue

individuals (Figure 3.1a). At the next time point, the number of Red individuals doubles, yielding

200 Red individuals, and the proportion of Red and Blue individuals becomes 2/3 and 1/3,

respectively (Figure 3.1b). Suppose that we do not know the true total number of individuals in

the given environment, and can only make inferences about the observed proportions – a common
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scenario in microbial ecology, where absolute quantification is rarely performed. In Figure 3.1b,

the community has the exact same proportions at Time 1 and Time 2 as Figure 3.1a; however,

instead of the Red individuals doubling at the second time point, the number of Blue individuals

is halved (Figure 3.1c).

This is the problem with compositionality – based on proportions alone, it is impossible

to determine whether the growth or decline of any individual species has truly occurred [86],

and the inherent feature of one change in abundance driving abundance changes in another

species violates assumptions of independence. Analyses that rely on such assumptions, as many

statistical approaches do, are thus prone to misinterpretation. For example, traditional correlation

metrics such as Pearson and Spearman can be misleading when estimating microbe-microbe

correlations [87, 88, 89, 90]. As a result, it becomes a major challenge to specify types of

interactions between microbes, such as parasitism, competition, predation or mutualism, as

shown in correlations studies in oral, fecal and vaginal samples from the Human Microbiome

Project [91, 87]. Even more advanced correlation-detection techniques such as SparCC [87] and

SPIEC-EASI [89], struggle with this, and typically require additional assumptions such as sparse

Operational Taxonomic Unit (OTU) correlations (i.e. few OTUs are actually correlated with each

other). Furthermore, interpreting the resulting network is a major challenge, making it difficult to

differentiate between true ecological relationships and random processes [91].

The compositionality problem is also problematic for statistically detecting differentially

abundant microbes across environments or between groups — consequently, it is a major barrier

to reliably drawing conclusions about realized microbial niches using community sequencing data.

Conventional statistical tools such as t-test and Mann-Whitney can incorrectly identify nearly

100% of the taxa present in samples to be significantly different across environments (Figure

S1), and univariate tests such as t-tests and ZIG [92] have been shown to mislabel microbes as

significantly different across sample groups up to 60% of the time [93]. More advanced tools for

differential abundance detection such as (Analysis of Composition of Microbiomes (ANCOM))
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[93], are typically designed to control for false-positives and reliably detect differentially abun-

dant species, but require multiple assumptions (i.e. the number of changing microbes across

environments is small) and may require complex parameter tuning. To help overcome these issues

of compositionality, we explore using the concept of balances, by moving away from inferring

changes of individual species to instead inferring changes of microbial sub-communities to study

niche differentiation of microbial communities.

3.2 Concept

Balances were first introduced as an exploratory technique in geology [94, 95]. Funda-

mentally, they overcome the problem of inferring changes in abundance from compositional data

by sidestepping it, and instead inferring changes in the balance between particular subsets of

the community. To understand the concept, let us revisit the scenario in Figure 3.1a and 3.1b.

Instead of examining proportion changes, we can investigate the balance between Red and Blue

individuals by taking the log ratio of Red and Blue counts (Figure 3.1c). By looking at the balance

of these two species, we avoid incorrectly attempting to infer absolute increases or decreases

in their abundances. Instead, we can focus on the balance of the Red and Blue individuals, and

directly infer the transition of dominance between these species.

These balances can also be useful for understanding species distributions across different

covariates — a key proximate goal of microbial ecology, and one that is both crucial to the larger

goal of niche characterization and heavily impacted by problems inherent in compositionality.

In Figure 3.1d, the Red individuals tend to exist in the low pH end of the spectrum, while the

Blue individuals tend to exist in the high pH end of the spectrum. A single balance can capture

information about the transition from a high relative abundance of Red individuals in low pH

environments to a high relative abundance of Blue individuals in high pH environments. In low

pH environments, the balance is positive, since there are proportionally more Red individuals than
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Blue individuals. When the Red and Blue individuals are present in roughly equal proportions,

the balance is roughly zero, representing a turning point, transitioning from a Red dominated com-

munity to a Blue dominated community. As the pH increases, the balances become increasingly

negative, since there are more Blue individuals than Red individuals. This balance effectively

encodes for the niche separation of Red and Blue individuals across the pH gradient.

This idea of balances can be extended to multiple dimensions — and more than two

taxa — using bifurcating trees. A bifurcating tree can be built relating microbial taxa to each

other using any criterion, and balances can be calculated on the internal nodes of the tree from

the geometric means of the corresponding sub-trees. The appropriate criterion to build a tree

depends on the question at hand. A phylogenetic tree could be used to investigate evolutionary

relationships of microbes [96, 13], or hierarchical clustering of environmental variables could be

used to explore environmental niches of microbes. To gain more intuition about this, consider

Figure 3.1e, in which there are five species and 11 individuals. The four balances (internal nodes

in the tree) are calculated by taking the log ratio of geometric means of sub-trees, also known

as the isometric log ratio (Isometric Log-ratio (ILR)) transform. The full equation to calculate

balances for a single sample is as follows,

bi =

√
|iL| |iR|
|iL|+ |iR|

log
g(iL)
g(iR)

(3.1)

where bi is the balance of the at internal node i , iL, is the set of all species proportions contained

in the left sub-tree at internal node i, iR, is the set of all species proportions contained in the right

subtree at the internal node i, g(x), is the geometric mean of all of the proportions contained in

vector x, |iR|, is the number of species contained in iR , and |iL| is the number of species contained

in iL (see Materials and Materials for more details). Following this equation, in Figure 3.1f b1

is calculated by taking the log ratio of the Yellow species and the geometric mean of the Red,

Green, Blue, and Purple species.
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It’s also important to note that the some of the balances don’t impact each other. For

instance, the changes in b4 do not impact the changes in b3, just because these balances don’t

share any common tips. This is crucial, because this property allows us to ignore some of the

variance of the balances towards the tips of the tree, and focus on the balances closer to the root of

the tree. These balances toward the root of tree capture the most information, since they contain

a significant proportion of tree tips. As a result, these high level balances have the potential to

explain large shifts in these microbial communities. The choice of the tree can allow for analysts

to embed prior knowledge into the structure of the tree to test for these large community shifts.

Here, we will discuss two studies from which novel insights were gained from this

application. While there are many compositionally aware tools available that are designed to

identify microbial interactions and abundance fluctuations, we will refrain from benchmarking

balances against these tools, as balances answer a conceptually different question. These analyses

are not restricted to analyzing ratios of individual OTUs and can be easily extended to analyze

ratios of subcommunities.

3.3 Results

3.3.1 Case Study #1 – Balances of pH-driven subcommunities in soils

In this study [77], 88 soil samples were collected from North and South America, along

with many edaphic measurements. The study reported that there was a strong correlation between

pH and species richness, suggesting that pH was a strong driver behind fluctuations in soil

microbial communities. Acidobacteria were found to be negatively correlated with pH and

Actinobacteria and Bacteroidetes to be positively correlated with pH, while alpha-, beta- and

gammaproteobacteria were not correlated with pH at all. These correlation analyses are a little

misleading, since the pH was correlated with each of the phyla independently. The problem with

this approach is that it does not account for all of the other phyla: similar to the argument made
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in Figure 3.1b, the change in a single phylum could also be explained by correlated changes

in all of the other phyla. Here, the negative correlation between Acidobacteria and pH could

also be caused by the positive correlation between Bacteroidetes and pH. Additionally, we

cannot determine whether the alpha-, beta- and gammaproteobacteria are correlated with pH or

not. Another possibility is that these three phyla could be positively correlated with pH, while

Acidobacteria is not correlated with pH. However, Bacteroidetes may be so strongly correlated

with pH that Acidobacteria appears to be negatively correlated with pH, and the other three phyla

not correlated with pH at all. This scenario is one of the infinite possible underlying relationships

that can explain these observed correlations.
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Figure 3.2: The application of balances on a soil microbial dataset to identify microbial
partitioning with respect to pH.(a) Hierarchical clustering of closed ref OTUs based on mean
pH. (b) The balance of low pH associated organisms (3.8 < mean pH < 6.7) and high pH
associated organisms (6.8 < mean pH < 8.2). (c) Observed OTU counts sorted by pH. (d)
Predicted OTU proportions from ordinary least squares linear regression on balances sorted
by pH. The coefficient of determination was 35%, showing that 35% of the variation in the
microbial community abundance data can be predicted by pH alone.

At a first glance, uncovering the true correlations correctly appears to be a hopeless cause.

This is where balances become useful. Rather than attempting to correlate individual phyla

against pH, we will group OTUs together according to their difference in mean pH (Figure 3.2a),

and investigate how these balances of groups changes with respect to pH (See Materials and

Methods on hierarchical clustering). This circumvents the dependence issue noted previously.

We do not need to worry about subgroups within the left and right subtrees of a balance to be

influencing each other, due to the independence property shown in Figure 3.1ef.

The balance concept proves to be a very powerful technique for investigating how these
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groups of organisms change relative to each other as pH increases. Recall the cartoon example in

Figure 3.1d. If there are two distinct unimodal species distributions, the balance pivots from being

weighted by Red in low pH, to being weighted by Blue in high pH. The exact same phenomenon

is occurring here, except there are multiple species on the left end of the balance, and multiple

species on the right end of the balance.

As shown in Figure 3.2b, there is a well defined trend of low pH OTUs (3.8 < mean pH

< 6.6) gradually being overtaken by high pH OTUs (6.7 < mean pH < 8.2) as the pH increases,

forming a nice linear trend defined by the top balance in the tree shown in Figure 3.2a. If we

were to sort the samples by their mean pH, and the OTUs by their mean pH (Equation 3), a well

defined band pattern appears. Here, it is clear that OTUs with a mean pH less than 3 rarely have

nonzero counts above 8. Likewise, OTUs that have a mean pH more than 8 rarely have nonzero

counts below 3. If we were to tie in this band pattern in Figure 3.2c together with the balance vs

pH trends shown in Figure 3.2b, we would obtain a very different interpretation from the original

study. OTUs tend to be observed in very specific pH ranges, but not commonly observed outside

of these ranges. This ties together with some concepts in niche theory - OTUs are more suited to

live within a designated range of pHs. And if they are placed outside of this pH range, they are

outcompeted by other organisms who are more suited to live within the given pH range.

These patterns were completely missed when only looking at the phylum level in the

original study. In fact, based on the calculated mean pH values for each OTUs, it is observed that

OTUs from all of the phyla mentioned in the study are widely distributed across the pH gradient.

As an extreme example, OTUs from the family Bradyrhizobiaceae were observed to be present in

both ends of the spectrum, some present at pH values as low as 5.36, while others present at a pH

as high as 6.75. These are astronomical differences, considering that 95% of the OTUs have a

mean pH that falls between this range. This provides additional justification for building a tree

based on mean pH, rather than bacterial phylogeny.

Finally, these balances can be used to build predictive models. Using ordinary least
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squares on the calculated balances, the entire microbial community profile can be predicted using

pH alone with an R2 of 0.35. This means that pH alone explains over 35% of the total variation

in entire soil microbial communities across North and South America. The resulting fit can

be transformed back to proportions to yield the predicted proportions (Figure 3.2d). From this

heatmap, the key patterns are still retained, such as the band pattern apparent in Figure 3.2c. There

are many regression techniques published that attempt to use microbial abundances to predict

covariates, such as the post-mortem interval [79] or body mass index [97]. This approach is the

first of its kind to attempt to address the reverse problem to predict entire microbial community

distributions based on environmental variables. These predictions were enabled by the powerful

fundamental properties of balances.

3.3.2 Case Study #2 – Balances of pH-driven subcommunities in a lung

sputum culture microcosm

In this study, lung sputum samples were collected from 16 cystic fibrosis (Cystic Fibrosis

(CF)) patients. These sputum samples were then grown in a capillary tube culture system

(Winogradsky Cystic Fibrosis system) that mimics the conditions of a lung bronchiole [98]. These

samples were placed into separate tubes and the pH of the media was adjusted from 5 to 8.5 at

intervals of 0.5 to determine how the microbial community changed with respect to pH. After

growth in the capillary tubes, the communities were assessed using 16S rRNA gene amplicon

sequencing.

One of the difficulties in this study was characterizing pathogenic bacteria. Early on

in this case study, the only significant finding discovered was that patients had different lung

sputum microbiomes (Figure 3.3a). It was hypothesized that there was a subcommunity of low pH

organisms and a subcommunity of high pH organisms that periodically appeared and disappeared

in CF lung sputum. However, these changes could not be detected using available statistics,

likely due to the compositionality problem. Since the different CF patients had idiosyncratic lung
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communities, they ended up having different OTUs responding across the laboratory pH gradient,

yielding insufficient statistical power to detect changes in any given OTU. As a result, when these

lung sputum communities were placed into different media and studied, it was not clear exactly

what organisms were a part of this low pH or high pH subcommunity.

Balances are a natural solution to this problem. In addition to probing for similar patterns

to those observed in the previous study, balances are well adapted as a transformation for standard

statistical analyses. Since Euclidean operations directly translate into perturbation and powering

operations on proportions [99, 100], many publicly available statistical tools can be applied to

directly to balances. For this study, we opted to use Linear Mixed Effects models to test for pH

differences while simultaneously accounting for all of the differences between lung microbiomes

across CF patients. Based on prior analyses with pH in soils, the tree was built using the exact

same strategy (See Methods and Materials). Significant balances testing for pH were determined

with a p-value cutoff at 0.05 after Bonferroni correction.
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Figure 3.3: The application of balances on a cystic fibrosis dataset to identify microbial
partitioning with respect to pH.(a) A bifurcating tree generated from hierarchical clustering of
OTUs based on mean pH. The size of the internal nodes is inversely proportional to the p-value
of the linear mixed effects model test on pH for that given balance. A heatmap of all of the
OTU abundances sorted by patient. OTUs were log transformed and centered across rows and
columns. These abundances are aligned with the tips of the tree. (c) The progression of the top
balance over the pH for all of the patients. (d) The progression of the second top balance over
pH for all of the patients.

A heatmap relating pH to OTU abundances across these samples does not yield clear

trends (Fig 3a). But even though we don’t see a clear pattern in the heatmap, with the balance

approach, we can still observe niche differentiation across the pH gradient. In Figure 3.3b, y0

represents the log ratio of all of the high pH OTUs (7.6 < mean pH < 8.12) over all of the low pH

OTUs (5.4 < mean pH < 7.4). As the pH of the samples increases, the balance increases, likely

because the low pH OTUs are becoming increasingly less abundant compared to the high pH

OTUs (p-value=7.5×10−46). The same pattern is even more apparent in y1 (Figure 3.3c). The
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low pH OTUs (5.4 < mean pH < 6.4) become increasingly less abundant than high pH OTUs

(6.5 < mean pH < 7.4) as the sample pH increases (p-value=2.25×10−67). When Bonferroni

multiple hypothesis correction was applied to these tests, the p-values were rounded down to

zero. While these patterns were not obvious when looking at the raw proportions, the balance

tree approach shows very well defined trends among groups of OTUs. This can be done because

even though individual OTUs may be sporadically distributed across the original samples, OTUs

that thrive in similar pH niches grouped together on the environmental balance tree. It is clear

from Figure 3.3b and c that there is a transition from low pH organisms to high pH organisms

along the pH gradient. Even though the CF patients don’t have the same lung microbiomes, they

contain OTUs that behave the same with respect to pH. This pattern would not have been nearly

as apparent without clustering the OTUs by mean pH and accounting for the patient effects in the

linear mixed models.

3.4 Discussion

In this study, we have demonstrated the benefits of applying balances to infer niche

differentiation in microbes. In the first case study, we have outlined the challenge of performing

correlations of OTUs versus environmental variables, and showed how balances can capture

information about species turnover across the pH gradient, which allowed us to build a model

to predict microbial proportions based on pH alone. In the second case study, we identified

the challenges of studying individual OTUs due to similar niches being occupied by drastically

different OTUs across different patients. Balances coupled with linear mixed models allowed us

to obtain more statistically robust results, which were also more informative with respect to the

differences in distribution of microbes across environmental niches.

There are numerous additional benefits of analyzing species balances instead of individual

species counts. First, balances are known to be scale-invariant, so balance trees naturally correct
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for differences in sequencing depth without requiring rarefaction (Equation S1 in Appendix C)

and avoid many of the limitations associated with this procedure [101]. Second, balances are

sub-compositionally coherent, which means that changes in non-overlapping sub-communities

do not impact each other. For instance, in Figures 1e and 1f, the Purple population triples and

balances change because they explicitly contain the Purple species. In contrast, the balance red

and green log ratio does not change between these two scenarios because it does not relate to

the Purple species (in fact, it only accounts for the Red and Green species). This is not the case

when observing the raw proportions, from which it appears as though everything is changing,

even though the Purple species is the only changing species. This phenomenon has previously

been noted [93] and can lead to extremely high false positive rates with some standard statistical

techniques such as Pearson correlations or t-tests on proportions. More discussion about this issue

can be found in Figure S1 (in Appendix C). Third, arithmetic operations on balances directly

translate into perturbation and powering operations on proportions [99, 100], which can capture

information about relative growth and decay of species. This ultimately opens the door for

applying standard statistical techniques, such as multiple linear regression [102] and linear mixed

effects models nested design statistics directly to balances, providing additional justification for

the analyses performed in the case studies. We have shown this in the two case studies. Finally,

balances are permutation invariant. Species can be sorted in any order deemed appropriate. Along

the same lines, these species can be rearranged into any arbitrary grouping represented as a

bifurcating tree. These trees can be built to address the questions at hand, whether it be studying

species turnover across pH gradients, or even uncovering the relationships between phylogenetic

clades. In fact, balances can be thought as being utilized as an ordination technique, since every

bifurcating tree forms an orthonormal basis in the Aitchison Simplex [94].

Although the concept of balances does not address questions about properties of individual

bacteria, it does answer higher-level questions concerning interactions among groups of organisms,

which are arguably much more interesting from an ecological point of view. These questions
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can be based either on the phylogenetic tree of the bacterial community, or on environmental

clustering. There is still room for improvement on utilizing balances. For example, the issue of

zeroes still remains, because the logarithm of zero is undefined. Currently, the common approach

is to add a pseudo-count [103]. However, an appropriate tree choice can mitigate this issue,

because the zeroes can be explicitly aggregated in some scenarios (Figure S2 and Figure S3 in

Appendix C). Along the same lines, issues can arise from low-coverage samples. If sampling is

not saturated, many OTUs have low read counts, and the balances towards the tips of the trees can

be highly volatile. This is because the absolute change between one or two reads may be small

for low abundance OTUs, but this will lead to large changes in log ratios, which lead to spurious

signals at the tips of the tree. As a rule of thumb, balances towards the root of the tree are more

trustworthy than those at the tips of the tree.

The balances approach will be key for analyzing functional roles of OTUs. It is known that

in environments like the human gut, people share very few OTUs with each other, but have roughly

the same proportions of functional genes [77]. This suggests that there is substantial functional

redundancy across OTUs, which has been observed previously in time series studies in the context

of infection [104] — in other words, in these microbial communities many players might be

sporadically distributed across similar niches. This phenomenon could explain the sparse nature of

16S relative abundance data, and why similar environments such as human guts share few common

OTUs. Such distributions pose tremendous challenge to analyses based around identifying the

niche occupancy of individual OTUs. By instead permitting the statistical comparisons to be

performed across nested groups of OTUs with similar distributions, it becomes possible to robustly

identify patterns of niche differentiation without requiring sufficient information be present in the

abundances of each individual taxon. Identifying common functional roles of potentially diverse

organisms, and analyzing the balances between these groups could significantly simplify analyses

in future amplicon studies. The ability to construct such trees would enable rapid characterizations

of environmental niches, and the corresponding functional roles of the microbes occupying in
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these niches.

All in all, balance trees are an extremely powerful tool for analyzing relative abundances

and uncovering patterns associated with niche differentiation, while avoiding the issues associated

with compositionality and enabling the application of conventional statistical tools. This will

ultimately open the doors for extensive mining of ecologically relevant patterns.

3.5 Methods and Materials

All analyses can be found in the attached IPython notebooks. The core functions required

to perform the balance basis calculations, tree visualization tools, and statistical analyses can be

found in https://github.com/biocore/gneiss. The IPython notebooks used to carry out all

of the analyses can be found in the gneiss repository. All code has been extensively unit-tested

and documented.

The core compositional statistics and tree data structures were are part of scikit-bio 0.4.1

and beyond. The hierarchical clustering was performed using Scipy. Pandas and Biological

Observation Matrix (BIOM) [105] were used to store and manipulate the OTU tables and the

metadata files. Seaborn, matplotlib and ETE [106] were used for the visualizations.

The isometric log ratio transform is an isomorphism (i.e. a function) that can map

proportions to balances one to one [99]. These balances can be calculated as shown in Equation 1.

Alternatively, they can be calculated using a linear transformation with an orthonormal basis e.

This orthonormal basis can be calculated as follows

el =C

exp( 0, ...0︸ ︷︷ ︸
k

,a, ...a︸ ︷︷ ︸
r

,b, ...b︸ ︷︷ ︸
s

,0, ...0︸ ︷︷ ︸
t

)

 (3.2)

a =

√
s√

r(r+ s)
and b =

−
√

r√
s(r+ s)
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where el refers to the balance axis aligned with the internal node l. C[x] denotes the normalization

operation to normalize all of the OTU abundances to proportions that add up to 1. r refers to the

number of tips in the left subtree, s refers to the number of tips in the right subtree, k refers to

number of tips to the left of the left subtree and t refers to the number of tips to the right of the

right subtree. Since e forms an orthonormal basis, it must have unit norm and every pair of axes

in e must be orthogonal. The square root term in Equation 1 is a normalization factor which was

required for unit norm in Equation 2 (12). Since it is not possible to take a logarithm of zero, a

pseudocount of 1 was added to all of the abundance. While this is a problem being addressed by

the field, this technique is one of the more commonly used techniques [103].

The mean pH used for the 2 case studies was calculated as follows.

gx =
N

∑
i=1

gi
xi

∑
D
j=1 x j

(3.3)

Where xi is the proportion of OTU x in sample i , gx is the mean pH of OTU x, and gi is the

sample pH at sample i. This calculation can be found in the gneiss package under the function

mean niche estimator. The function used to sort the tables in Figure 3.2c used niche sort. The

resulting tree was built using UPGMA [107] is shown in Figure 3.2a and Figure 3.3a, and can be

generated using the scipy linkage function.

This regression model is implemented in gneiss under the ols function. The analysis can be

found in the IPython notebooks on the gneiss repository under the ipynb folder in 88soils.ipynb.

To focus on the highest abundant organisms, only OTUs that had more than 100 reads in the entire

study were considered.

The linear mixed effects model is implemented in gneiss under the mixed functions, and

the analyses can also be found in the IPython notebooks in the ipynb folder in cfstudy.ipynb In

case study 2, only OTUs that had more than 500 reads were considered.

The WinCF system was used according to the methods in [98], except only the pH dye
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media variable was used. The media was buffered at 0.5 units of pH from 5 to 8.5 using calculated

proportions of phosphate buffer and NaOH or HCl. Sputum samples were collected from CF

patients after expectoration or induced expectoration of sputum according to the UCSD IRB

approved project #081500, and were inoculated in triplicate into capillary tubes containing the

eight different pH buffered media. These eight sets of tubes in triplicate from 18 patients was

then incubated at 37oC for 48 hours. The media was then removed, bacterial DNA extracted,

and variable region 4 of the 16S rRNA gene was amplified and sequenced on the Illumina

MiSeq platform using Earth Microbiome Project benchmarked protocols [108, 109]. Data were

processed using QIITA and OTUs were calculated using closed reference clustering at the 97%

identity cutoff for both the 88 soils and the CF study.

3.6 Data availability

Data for case study 1 was retrieved from Qiita (study ID 103). Data from case study 2

was retrieved from Qiita (study ID 10511).
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Chapter 4

Establishing microbial measurement

standards with reference frames
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Differential abundance analysis is controversial throughout microbiome research. Current

gold standard approaches require laborious measurements of total biomass to accurately determine

taxonomic shifts among samples. Therefore, most studies rely on making conclusions based

off changes in relative abundance. We highlight commonly made pitfalls in comparing relative

abundance across samples and identify two solutions that reveal microbial changes without the

need to estimate total biomass. We define the notion of “reference frames”, which provide deep

intuition about the compositional nature of microbiome data. In an oral time series experiment,

reference frames alleviate false positives and produce consistent results on both raw and cell

count normalized data. Furthermore, reference frames identify consistent, differentially abundant

microbes previously undetected in two independent published datasets from subjects with atopic

dermatitis. These methods allow re-assessment of published relative abundance data to reveal

reproducible microbial changes from standard sequencing output without the need for new

molecular assays.

Introduction

Next-generation sequencing data used to study the microbiome is inherently composi-

tional and routinely provides information in the form of relative abundances, independent of the

total biomass of the original sample. Numerous analytical approaches including rarefaction[110],

median[111], and quantile normalization[111, 112] have been proposed for comparing composi-

tional samples. However, these analytical solutions cannot control false discovery rates[113, 114],

and their application contributes to lack of reproducibility among microbiome studies[115]. Here

we illustrate mathematical challenges in analyzing compositional microbiome data from DNA

sequence reads, and define the concept of “reference frames” for inferring changes in abundance.
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4.0.1 Why using relative abundance data to evaluate changes in abun-

dance can be misleading

To illustrate the pitfalls of inferring changes in abundance among samples using relative

abundance data, consider the following example (Fig 1). Samples from a population containing

only two taxa (orange and blue) are collected pre- and post-treatment. Before treatment, the two

taxa occur in equal proportions. After treatment, the orange taxon is twice as abundant as the

blue taxon. Did orange increase and blue decrease?

Many different scenarios could actually lead to the same observation. For example, the

orange taxon could quadruple and the blue taxon only double. The orange taxon could remain

constant, and the blue taxon halved. Or the orange taxon could of halved, but the blue taxon could

decrease four-fold. Because we only observe relative abundance data, we cannot differentiate

among these outcomes, which have markedly different biological significance. An infinite number

of different outcomes produce the same 2:1 ratio of orange to blue, greatly complicating the

generation of a meaningful null hypothesis and therefore yielding misleading p-values when the

incorrect null hypothesis is chosen.

4.0.2 Microbiome measurement data is inherently compositional

Multiple processing steps are required to generate microbiome sequencing data. Samples

are collected from a much larger population (e.g. fecal material from the gut, or water sample

from the ocean). From these samples, a subsample is used for DNA extraction (e.g. a swab from

a fecal sample, or an aliquot of a water sample). Another subsample of the extracted DNA is then

used as input for PCR, a subset of the resulting amplicon is pooled into a library, and a subset of

the library is sequenced.

By the time quality-filtered sequencing data is obtained, the sequences reflect only a

small subset of the population and are not an accurate representation of the microbial load in
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Figure 4.1: Illustration demonstrating statistical limitations inherent in compositional datasets.
(a) Two different biological scenarios can yield the exact same proportions of taxa in samples
from a population pre- and post-treatment. (b) Simulated datasets plotting the true differential
obtained using absolute abundance data on the x-axis, versus the inferred differential obtained
using relative abundance data on the y-axis. Each dot represents a taxon in the dataset, and
the colors represent datasets with various ratios of total microbial load (‘K’) between before
and after samples. The red line represents the optimal scenario where the samples have equal
microbial load. This illustrates the prevalence of either false positives (False Positive (FP))
or false negatives (False Negative (FN)) when performing differential abundance analysis on
samples with unequal total microbial load. The presence of either (FP)s or (FN)s is dictated by a
nonlinear function of the true differential (see online methods). (c) An illustration of differential
proportions of bacterial species before and after treatment. (d) Same data as (b) but plotting the
rank of the differentials, demonstrating that ranks are equivalent regardless of differences in
microbial load.
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the original sample[116]. Analyzing purely compositional data (e.g. DNA sequencing data)

with conventional statistical tools has led to false discovery rates approaching 100%[117, 118].

Therefore, in addition to compositional data from sequencing, quantitative information about

total microbial load is necessary to determine which microbes are changing.

4.0.3 Challenges to microbial load quantification

Multiple approaches at each level of sample processing have been proposed to quantify the

total microbial load from environmental samples. Adding a known amount of reference DNA as

an internal standard has been used to extrapolate the amount of starting nucleic material[119, 120].

Normalization by this method is complicated due to the calibration challenges of choosing the

proper amount of internal standard[120, 119]. At the extraction level, quantitative PCR (qPCR)

of genomic DNA with ‘universal’ primers against the 16S rRNA gene has be deployed to estimate

total microbial load[121]. However, it is impossible to prevent primer bias, resulting in uneven

amplification of rRNA genes across species. Further, quantification by both spike-in and qPCR

is performed on multiple subsets of the original sample. Quantifying microbial load by flow

cytometry is performed on the original sample, and is agnostic to nucleotide sequences. One recent

study reported that adding quantitative information obtained by flow cytometry dramatically

improved interpretation of 16S rRNA gene amplicon sequencing data[116]. However, flow

cytometry requires expensive equipment, experienced users, and limits throughput.

The total microbial load of an environmental sample is only one dimension of measure-

ment among the hundreds to thousands of dimensions measured by microbial relative abundances.

If the abundance of a single taxon and the relative abundance of all taxa is known, it is feasible to

compute the absolute abundance of all taxa. As such, considerable information rests in relative

abundances, and important insights can be gleaned without costly microbial quantification meth-

ods. Below we describe two methods to evaluate relative differential abundance independent of

microbial load information.
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4.0.4 Using ratios circumvents bias without microbial load quantification

Computing changes in abundance from compositional data introduces a bias due to the

lack of total microbial load (Fi 1. approach#1). Simulated data in Fig 1b shows how different

biases (i.e. ratios between total microbial loads) can cause either false positives or false negatives.

By simply comparing the ratio of taxa between samples, the bias constant introduced by unknown

microbial load cancels out. For instance, if an observed taxon X changes from 10% to 20% in

relative abundance, that observation can be irreproducible across studies or samples because of

fluctuations in abundance of other taxa. Changes in the abundance of taxon X relative to taxon

Y should be consistent. Taking the logarithm of this ratio (log-ratio) enforces symmetry around

zero, giving equal weight to relative increases and relative decreases.

4.0.5 A novel approach to rank differential abundance

Comparing ratios of taxa can circumvent the bias introduced by unknown microbial

loads. However, choosing taxa for comparison from the thousands in a given sample set can

be challenging. By ranking the log-ratio abundance changes of each taxon (what we refer to

as “differentials”), an accurate depiction of compositional change in a dataset can be obtained

and taxa can be prioritized (Fig 1c). As shown in Fig 1d, the rank of each taxon’s differential

is independent of the changes in the absolute microbial load, yielding an identical ranking of

microbial differences between the relative and absolute abundances. However, because of the

unknown bias described above, we cannot infer based on rank alone if a microbe has changed,

and therefore a coefficient of zero does not imply that the microbe has not changed abundance.

Differentials can be estimated directly by using explicit count-based regression models

(see online methods). For example, multiple studies have shown that multinomial linear models

can infer differentials without adding pseudocounts to handle sampling zeros[96, 122, 123, 124].

The coefficients from multinomial regression analysis can be interpreted as feature importances
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or rankings commonly employed by machine learning methods, and can be ranked to determine

which taxa are changing the most between samples. We refer to this ranking procedure as

differential ranking (DR).

4.0.6 Reference frames enable reproducible compositional data compar-

isons

We argue that analyzing compositional data requires a choice of “reference frames” for

inferring changes in abundance. By “reference frame”, we draw on the concept from physics

where velocity is measured “relative to” another moving object. As microbial populations change,

we can constrain our inferences to how microbial populations change relative to reference frames

given by other microbial populations. The choice of numerator and denominator in a log-ratio

determines the reference frame for inferring changes. In DR, the differential abundances of each

taxon serve as a reference to each other when they are ranked numerically. To demonstrate these

principles, we confirm the robustness of these two methods of employing reference frames in real

life datasets.

4.0.7 Value of reference frames in the analysis of microbes in unstimulated

saliva

We demonstrate the utility of DR in a sample set with dramatic differences in total

microbial load. Unstimulated saliva samples were collected from 8 individuals before and after

brushing their teeth (morning and night, n=32), and processed in parallel for microbial load

quantification with flow cytometry and 16S rRNA gene amplicon sequencing. Importantly,

participants were asked to provide unstimulated saliva for exactly 5 minutes, so in addition to

estimating microbial concentration, we could obtain a proxy for the total microbial load taking

into account salivary flow rate. As expected, the total microbial load significantly decreased after
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brushing teeth (Fig. 2a).

For both relative and cell count-normalized data, we performed paired t-tests to evaluate

the change in abundance of each taxon before and after brushing teeth (Fig. 2b). Applying t-tests

to the relative data had a high false-positive rate, as seen by the disagreements between the cell

count-normalized and relative t-statistics (Spearman r=0.53). Further, there was absolutely no

correlation in p-value distribution between the relative and cell count-normalized data (Spearman

r=0.09), highlighting the fallacy in calculating a p-value without a valid null hypothesis.

Alternatively, evaluating the ratio between Actinomyces and the remaining taxa produced

identical t-statistics and p-values between the relative and cell count-normalized data (Spearman

r=1.0). Ratio-based analyses are unaffected by microbial load (see Methods, equation 3) and

result in identical interpretations as one obtains from costly and rate-limiting flow-cytometry

measurements.

From the DR analysis (Fig. 2c), we can identify which taxa are changing the most

(highest and lowest log-fold change). Here, we highlight Actinomyces and Haemophilus species,

which have very different ranks: Actinomyces have low ranks and Haemophilus have high ranks.

The difference in ranks between these taxa correctly suggests that Haemophilus taxa are more

prevalent relative to other taxa before brushing, and Actinomyces taxa are more prevalent relative

to other taxa after brushing. When inspecting t-test results on individual taxon in the relative data,

it appears that Actinomyces significantly increased (t-statistic=2.89, p-value=0.013) after brushing

teeth and that Haemophilus significantly decreased (t-statistic=−2.593, p-value=0.023). However,

cell count data revealed that only Haemophilus significantly decreased (t-statistic=−2.477, p-

value=0.029) (Fig. 2d).

The log-ratio of Actinomyces and Haemophilus between the relative and the cell count-

normalized data is identical. While we cannot observe the decrease of Haemophilus or the

consistency of Actinomyces abundance, with the log-ratio of their relative abundance, we can

observe the interaction between these two taxa and the increase of Actinomyces relative to
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Figure 4.2: Analysis of salivary microbiota before and after brushing teeth. (a) Flow cytometry-
quantified microbial load in unstimulated saliva collected for 5 minutes normalized to before
brushing teeth. Each line corresponds to a different volunteer. (b) A comparison of t-statistics
(left) and p-values (right) on individual taxa (top) and ratio between each taxa to Actinomyces
(bottom) between relative abundance data (x-axis) and cell count-normalized data (y-axis). (c)
Microbial ranks estimated from multinomial regression applied to oral time series dataset with
Actinomyces and Haemophilus highlighted. The y-axis represents the log-fold change that is
known up to some bias constant K, and the x-axis numerically orders the ranks of each taxa in
the analysis (d) A comparison of relative abundance vs cell counts of Actinomyces, Haemophilus
and log(Actinomyces:Haemophilus) before and after brushing teeth. Only the differences since
the before time point are visualized.

64



Haemophilus after brushing teeth (t-statistic=2.833, p-value=0.015) These results are consistent

with our knowledge about oral biogeography. Haemophilus is typically found on the periphery

of oral biofilms and was likely removed from the biofilm during the brushing process, whereas

Actinomyces is generally found on the surface of the tooth and acts as an anchor for biofilm

attachment[125]. Importantly, this experiment demonstrates the potential fallibility of relying

on relative abundance; It is illogical to conclude that Actinomyces increases after tooth brushing

despite the increase in relative abundance. As demonstrated by flow cytometry, total microbial

load decreases, and while both Haemophilus and Actinomyces decrease, Haemophilus decreases

more.

Next, we demonstrate the utility of log-ratios and DR to identify consistent microbial

changes across previously published datasets where quantification of microbial load is unavailable.

4.0.8 Discovery of interkingdom relationships in atopic dermatitis using

reference frames

The tooth brushing example provides ground truth for using log-ratios and DR, but many

clinically relevant microbiome questions involve less obvious differences. Using data from

patients with atopic dermatitis (AD), an important skin disease, we demonstrate how viewing

relative abundances alone can produce false negatives.

AD has a complex etiology. Many microbiome studies performed using next-generation

sequencing have focused on bacterial changes associated with AD, especially the pathogen

Staphylococcus aureus. The yeast genus Malassezia has also been implicated in AD, although

conflicting results have been published as to which Malassezia species are involved and whether

they are more or less prevalent in AD[126]. A recent shotgun metagenomic study examined the

skin microbiome over time during an AD flare and recovery. The authors observed a decrease in

Staphylococcus aureus relative abundance in the healthy, recovered skin (non-lesioned) compared

to AD flare (lesion), but no significant changes in the relative abundance of Malassezia species
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over time in these AD patients[127].

Applying compositionally coherent methods to this dataset revealed new insights. Ob-

serving the DR results (Fig. 3a), it is apparent that, compared to lesioned skin, S. aureus is

one of the taxa to decrease the most relative to all other microbes in the non-lesioned sites,

followed by S. epidermidis, and M. globosa. Consistent with the analysis of relative abundance

in Fig. 3b, the ratio of S. aureus : P. acnes was significantly increased in flare (t-statistic=2.973,

p-value=7.811×10−3) and correlated with SCORAD score, a clinical assessment of AD severity

(Pearson=0.747, p-value=3.516× 10−6). Contrary to previous findings, both S. epidermidis

: P. acnes and M. globosa : P. acnes were also significantly increased in lesioned skin (t-

statistic=3.197, p-value=4.748×10−3, and t-statistic=4.030, p-value=7.16×10−4, respectively)

and correlated with SCORAD score (Pearson r=0.464, p-value=6.975× 10−4, and Pearson

r=0.668, p-value=1.125×10−7, respectively) (Fig. 3c).

To validate this observation, we analyzed shotgun data from an independent AD dataset[128].

In this dataset, the relative abundance of M. globosa significantly increased between lesioned

and non-lesioned skin (Fig. 3e, t-statistic=4.135, p-value=0.0001). But the ratio of M. glo-

bosa : P. acnes increased even more dramatically in lesioned skin (Fig. 3d, t-statistic=5.79,

p-value=8.6×10−7) (Fig. 3d). These results are congruent with a previous report that M. globosa

was cultivated more successfully from lesioned versus non-lesioned sites in AD[129]. Thus, DR

analysis can identify novel, clinically significant microbial changes which can be validated across

cohorts by choosing insightful reference frames.

Discussion

Adding information about absolute microbial load between samples can highlight issues

inherent in compositional data analysis. However, there are multiple practical and technical

challenges in quantifying microbial load. For example, skin swabs are often difficult to use in flow
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Figure 4.3: Comparison of lesioned (L) versus non-lesioned (NL) skin in two atopic dermatitis
studies; Byrd et al.[127], (a-c) and Leung et al.[128], (d-e). (a) Microbial ranks estimated from
multinomial regression applied to shotgun metagenomics from Byrd et al[127] with key genera
highlighted. The y-axis represents the log-fold change that is known up to some bias constant
K. (b) Proportions of S. aureus, S. epidermidis, M. globosa, and P. acnes in lesioned (blue)
and non-lesioned (orange) skin (left) and correlation of relative abundance with Scoring Atopic
Dermatitis (SCORAD) score (right) (c) Log-ratios of S. aureus : P. acnes , S. epidermidis : P.
acnes , and M. globosa : P. acnes (left) and correlation of ratio with SCORAD score. (d) Change
in log ratio of M. globosa : P. acnes. (e) Change in relative abundance of M. globosa between
lesioned and non-lesioned skin from (Leung et al.[128]).
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cytometry due to very low biomass and difficulty in transferring intact cells from swabs into liquid

solution. Furthermore, skin samples are notoriously sensitive to 16S rRNA gene primer choice

making qPCR quantification challenging[130]. Similarly, for historically collected samples that

exist only as DNA in a freezer or as sequences in a database, flow cytometry approaches to

determine absolute microbial load are not feasible.

However, absolute abundances of a community are only one dimension of measurement,

and robust, alternative techniques eliminate the need to estimate total biomass. We have demon-

strated the validity of using microbial ratios and differential rankings to determine significant

changes in microbiome studies by comparing compositional inferences with absolute abundance

inferences.

By using flow cytometry to quantify total microbial load, we validated these analytical

tools in 16S rRNA gene amplicon sequencing data from unstimulated saliva. We found evidence

of false positives when looking exclusively at changes in relative abundance before and after

brushing teeth. By evaluating the ratio of Actinomyces : Haemophilus, we reached an identical

conclusion to our cell-count normalized data without the need for microbial load quantification.

The consistency of our results rests in the use of ratios defining reference frames for inferring

compositional changes.

Furthermore, we highlighted an example of a false negative in previously generated

shotgun metagenomic data from the skin of individuals with AD. We were able to reproduce

the findings that S. aureus, and to a lesser extent S. epidermidis, are differentially abundant in

AD lesions. Additionally, using log-ratios and differential ranking, we were also able to show

a more subtle but statistically significant change in M. globosa abundance in AD lesions. This

same result was obtained in two independent metagenomic studies of AD patients and agrees

with previous cultivation-based work quantifying increased colony forming units of M. globosa

in AD lesions.

Consistency between inferences made based on relative and cell count-normalized data is
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crucial, because in many circumstances it is not possible or practical to estimate total microbial

load. The seeming contradiction between microbial load-corrected abundances and relative

abundances does not invalidate data from the existing 100,000+ experiments utilizing 16S

rRNA gene amplicon or metagenomic sequencing[131, 132]. Importantly, these techniques are

not limited to next generation microbiome sequencing, but can be applied to any experiments

involving compositional data (e.g. metabolomics, proteomics, etc.).

Multiple tools have already been developed that can facilitate analysis using log-ratios. For

instance, tools such as PhILR, Phylofactoriation and Gneiss provide different means to compute

reference frames for log-ratio analysis. However, these methods rely heavily on pseudocounts,

because the logarithm of zero is undefined. This can add a substantial amount of bias, especially

in sparse datasets. The Differential ranking (DR) procedure circumvents this problem through the

use of the multinomial regression.

While various methods of multinomial-based models have been developed[96, 122, 123,

124], the interpretation of the resulting model coefficients is usually incorrect. A zero valued

coefficient does not imply that the corresponding species abundance hasn’t changed, due to the

total biomass bias as discussed in Fig 1. DR provides a novel means to correctly interpret the

coefficients of these models. By ranking the coefficients we can determine which taxa have

changed the most relative to each other. This subtle distinction acknowledges the limits of

analysis of compositional data, and as demonstrated above can have dramatic impacts on data

interpretation.

While there are widespread misconceptions concerning how to interpret microbial abun-

dances, there is still much hope for resolving these outstanding controversies. Ongoing efforts

at the NIH and EMBL-EBI have already stored petabytes of multi-omics datasets ready to be

re-analyzed, and databases, such as Qiita and gcMeta, contain curated data and metadata from

hundreds of thousands of samples[132, 131]. There is much promise for resolving outstanding

controversies by re-analyzing these datasets using reference frames to make stable inferences of
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compositional change.

4.1 Methods

If we wanted to compute the change between two samples containing compositions (e.g.

relative abundance of microbes) AAA = (a1, ...,aD) and BBB = (b1, ...,bD) , it would look like

AAA
BBB
=
(a1

b1
, . . .

aD

bD

)
(4.1)

If we are only able to measure relative abundances, as is the case with next generation amplicon

sequencing, we can only estimate the proportion pai for species i in the sample A i.e. pai =
ai
Na

.

Estimating the true abundance can be done via a1 = Na pa1 , where Na is the total abundance of

sample A. To estimate the true change, the following can be done

AAA
BBB
=

Na× pa1

Nb× pb1

, . . .
NA× paD

NB× pbD

=
pppAAA

pppBBB
× NA

NB
(4.2)

To determine if species i abundance has changed between samples A and B, we test to see if

ai
bi
= 1. However as shown above, we cannot perform this test, since the results of this test would

be confounded by the total biomass bias NA
NB

.

In many cases, the total biomass cannot be estimated, so any techniques to identify

important species will need to alleviate this bias. One alternative is to use ratios. If we choose

species D to be the reference species, it is clear that the total biomass cancels as follows

a1/aD

b1/bD
=

pa1/paD

pb1/pbD

(4.3)

Another alternative is to use ranks. Since the bias is applied uniformly across the differential, it
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will not affect the ordering of the species. Hence, ranks are agnostic to the total biomass bias.

rank(
AAA
BBB
) = rank(

pppAAA

pppBBB
× NA

NB
) = rank(

pppAAA

pppBBB
) (4.4)

This differential is also commonly referred to as a perturbation in the context of the

compositional literature[100]. It is important to note that this does not justify using Spearman

correlation or other non-parameteric tests such as Kruskal-Wallis applied to relative abundance

data since these tests do not satisfy scale invariance[133, 86].

Both of the log-ratios and the differential ranking techniques satisfy scale invariance,

meaning that both of these techniques are agnostic to the total biomass. This concept is critical

when analyzing relative abundance data, since this is one step closer to maintaining consistent

conclusions between the original environment and the observed sequences.

Estimating log-fold differential expression from relative abundances can result in either

false positives (FP) or false negatives (FN) depending on the distribution of true differential

expression. Whether FNs or FPs are observed depends on a nonlinear relationship involving

the true (unobserved) differential expression. For a p-vector x let us define LSE(x) = log(ex1 +

. . .+ exp). If δδδ = (δ1, . . . ,δD) denotes the true differential expression of the D species between

two conditions, let ααα = LSE(δδδ). Further, let δ̂δδ = (δ̂1, . . . , δ̂D) represent the inferred differential

expression from proportional data and α̂αα = LSE(δ̂δδ). If LSE(δ) > LSE(δ̂) then FPs will be

observed. In contrast if LSE(δ)< LSE(δ̂) then FNs will be observed.

4.1.1 Multinomial regression

To perform the differential ranking (DR) analysis, we used multinomial regression. Multi-

nomial regression and related count regression models are commonly used in the context of

microbiome analysis. Here, we use the multinomial regression model since these models can

reliably estimate the means and can be easily reinterpreted in the context of compositional data
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analysis.

Counts from the multinomial regression can be formulated in the following generative

model

β jk ∼N (0,µβ)

ηηηiii = alr−1(XXX iiiβββ)

YYY iii ∼Multinomial(ηηηiii) ,

where βββ represents the coefficients of the model across all measured covariates k. XXX iii represents

the metadata covariates for sample i. YYY iii represents the measure microbial counts for sample i. A

normal prior centered around zero was placed on the covariates βββ to serve as regularization to

combat issues associated with high dimensionality.

The inverse alr function is a function commonly used in the context of compositional data,

give as follows

alr−1(x) =C[exp(0,x1, . . . ,xD−1)] C[x] =
[

x1
D
∑

i=1
xi

, . . . ,
xD
D
∑

i=1
xi

]
.

This is also referred to as a degenerate softmax function, which is commonly used in the

context of neural networks. This function is also isomorphic between RD−1 and S D (the space

of proportions), so this will ward against identifiability issues when estimating these model

parameters. The models were estimated using a maximum a posteriori priori (MAP) estimation

using stochastic gradient descent.

If we examine the model parameters βββkkk ∈ RD−1, we reinterpret the quantities given by

alr−1(βββk) as differentials as discussed in Fig 1.

It is also worthwhile to note the connection between βββkkk and balances. Since βββkkk is

expressed in alr coordinates, there is also a direct connection to ilr coordinates, meaning that βββkkk
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can also be transformed into balances. More explicitly, the ilr coordinates of these coefficients

can be computed as follows

βββ
(ilr)
kkk = ilrΨΨΨ(alr−1(βββkkk)) .

The resulting coefficients are represented as coordinates given by the orthonormal basis ΨΨΨ. An

example of such a basis can be dervied from bifurcating trees discussed in Morton et al[118],

Silverman et al[15] and Washburne et al[13]. This can allow for relative changes in abundances

as given by alr−1(βββkkk) to inform which balances are changing in ancestral states given by the tree

. The multinomial regression serves as an alternative means to compute regression coefficients

discussed in PhILR, Phylofactor and Gneiss, while avoiding issues with imputation and zeros.

The multinomial regression was implemented using Tensorflow[134] and can be found in

https://github.com/mortonjt/songbird.

4.1.2 Saliva sample collection

Eight volunteers provided unstimulated saliva so that salivary flow rate could be measured

according to a standardized protocol [135]. Briefly, individuals were asked to allow saliva to

flow for exactly five minutes through a disposable funnel (Simport, SIM F490-2)into a sterile,

15 mL conical tube preloaded with 2 mL sterile glycerol for bacterial preservation. Participants

were asked to provide samples before brushing and after brushing teeth in the morning and in the

evening. Samples inverted several times to mix with the glycerol and stored at -20◦C immediately

after collection. This study was approved by an Institutional Review Board (IRB# 150275) and

written informed consent was acquired before sample collection
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4.1.3 Flow cytometry

Unstimulated saliva samples were thawed on ice, and aliquots were diluted tenfold with

sterile, 1x PBS. To remove human cells and salivary debris, samples were filtered using a sterile

5 µm syringe filter (Sartorius Stedim Biotech GmbH). 5 µl 20x SYBR green (SYBRT M Green

I Nucleic Acid Gel Stain, Invitrogen) was added to 1 mL of the microbial suspension (0.1x

final concentration) and incubated in the dark for 15 minutes at 37◦C. Finally, 50 µl AccuCount

Fluorescent Particles (Spherotech, ACFP-70-10) were added for assessment of microbial load.

Samples were processed on a SH800 Cell Sorter (Sony Biotechnology) using a 100 µm chip with

the threshold set on FL1 at 0.06%, and gain settings as follows; FSC=4, BSC=25%, FL1=43%,

FL4=50%. The gating strategy was adapted from Vandeputte et al.,[116]. Briefly, fluorescent

microbial cells were gated from background on a FL1-Fl4 density plot, and remaining background

was removed by eliminating large events detected on a FSC-BSC density plot. Negative controls

(sterile PBS stained identically to samples) were run between each sample set to exclude cross-

contamination. Settings were identical among all samples.

4.1.4 Amplicon sequencing

DNA extraction and 16S rRNA amplicon sequencing were done using Earth Microbiome

Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-standards/16s).

500 µl of unstimulated saliva was used for gDNA extraction with MagAttract PowerSoil DNA Kit

(QIAGEN) as previously described [136]. Amplicon PCR was performed on the V4 region of the

16S rRNA gene using the primer pair 515f to 806r with Golay error-correcting barcodes on the

reverse primer. 240 ng of each amplicon was pooled and purified with the MO BIO UltraClean

PCR cleanup kit and sequenced on the Illumina MiSeq sequencing platform.

The sequences and biom tables [137] can be found on Qiita (http://qiita.microbio.me) un-

der study ID 11896. Demultiplexed fastq files were processed using QIIME2 (https://qiime2.org)[138].
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Deblur was used to denoise the sequences [139]. 16S taxonomy was assigned using RDP classifier

[100, 140]. Songbird was used to perform multinomial regression - repository can be found here:

https://github.com/mortonjt/songbird Paired t-tests were performed to evaluate the differences

before and after brushing teeth. All log-ratios that were evaluated to either positive or negative

infinity are dropped prior to statistical analysis. These numerical issues occur due to particular

microbes not observed, and we treat them as missing data respectfully.

4.1.5 Shotgun metagenome studies

We used supplementary data from Byrd et al [127] and Donald Leung[128]. The provided

relative abundances were compared to the log ratio of the raw count data. Paired t-tests were

performed to evaluate the differences between lesion and non-lesion skin samples. All log-ratios

that were evaluated to either positive or negative infinity are dropped prior to statistical analysis.

These numerical issues occur due to particular microbes not observed, and we treat them as

missing data respectfully.
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A.0.1 Box 1: Glossary of terms

Ancestral state: The traits of the ancestral species, typically an estimate of the phenotype

and the genotype of the ancestral organism.

Ancestral state reconstruction: Imputing the ancestral states at various points in the phylogeny.

Bayesian inference: Given a prior set of beliefs about the ancestral states, and observed pheno-

types/genotypes of existing species, Bayesian methods will attempt to obtain a more informed

estimate of the ancestral states, along with confidences of the prediction.

Blomberg’s κ: A more common, modern measure of phylogenetic signal compared to Pagel’s λ

(see below), ranging from 0 to infinity, which indicates the extent of acceleration or deceleration

of evolution over time.

Bootstrapping (phylogenetics): Repeated, stochastic reconstruction of a phylogeny proposed

by Felsenstein [33], often used to assess the percentage of reconstructions in which each clade is

found.

Brownian motion: A continuous random walk where jumps are normally distributed random

variables. Commonly used in PCMs as a null model of continuous trait evolution from the

ancestral node towards the tips of the tree, where the random walk branches with those in the

phylogeny. Under a Brownian motion model of evolution, the covariances between species’

observed traits is proportional to the branch length of their shared ancestry.

Classification: Regression or other efforts to predict categorical dependent variables.

Clustering: Creation of classifiers (categorical variables) identifying groups of variables, such as

groups of species with high within-group similarity and low between-group similarity.
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DNA amplicons: DNA products of artificial amplification events, such as the resultant products

of polymerase chain reaction amplification of 16S rRNA genes that are later sequenced and

counted to assemble microbiome datasets. Amplicons may sometimes be used to construct

accurate phylogenies for microorganisms.

Edge: A structure in a phylogeny representing a hypothesized distinct, unbroken lineage during a

point in time.

Edge lengths: Edge lengths may represent either the time over which an historical lineage

persisted or the number of mutation events separating its ancestral from daughter nodes.

EdgePCA: A method which performs principal component analysis on a set of variables, v i ,

corresponding to differences of abundances along each edge, i.

Epistasis: When two or more genetic loci interact to determine a phenotypic trait.

Evenness: A general term for a variety of metrics indicating how close a community is to having

equal abundances across all species.

ILR: Isometric log-ratio. A standardized difference of arithmetic means of log-transformed data.

Often used in microbiological datasets that are more appropriately analysed on a log scale, but an

analogous difference for non-log-transformed data is the t-statistic for a two-sample t-test.

Maximum likelihood: Maximum likelihood methods treat ancestral states as unknown param-

eters. Given a probabilistic model of evolution, maximum likelihood methods will attempt to

optimize these parameters to try to find the most likely ancestral states that yield the traits that we

observe in known species in the present.

Maximum parsimony: Maximum parsimony attempts to reconstruct ancestral states by mini-
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mizing the number of trait changes between the ancestor and the present descendants.

Monophyletic: A set of species is called ‘monophyletic’ relative to a larger set of species if their

most recent common ancestor has no other descendants besides those within the set of species.

Node: A structure in a phylogeny representing a hypothesized timing of speciation, when one

lineage splits into two or more distinct lineages.

Pagel’s λ: A measure of phylogenetic signal, ranging between 0 and 1, which indicates the

relative extent to which a traits’ correlations among close relatives match a Brownian motion

model of trait evolution.

PhILR: Phylogenetic isometric log-ratio. A transform of the data requiring a fully resolved

phylogeny (that is, no polytomies). Instead of representing data with one variable for each

species, the PhILR transform represents the data with one variable for each node in the phylogeny.

Variables are constructed using the ILR transform to contrast sister clades descending from each

node.

Phylofactorization: A method of choosing variables by a generalized graph-partitioning algo-

rithm. Variables are constructed by first considering contrasts along edges, such as differences

or ILRs contrasting birds and non-birds, and then finding out which variable maximizes a re-

searcher’s objective function. The phylogeny is partitioned along that edge and the process is

repeated, limiting contrasts only to sub-phylogenies in which the edges are found (for exam-

ple, after partitioning birds/non-birds, the edge separating doves/non-doves instead separates

doves/non-dove-birds).

Phylogenetic comparative methods: Statistical methods which correct for correlations of trait

observations among close relatives, to be used whenever traits, broadly defined as heritable
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features at the tips of a phylogeny, are a dependent variable or when testing differences between

two traits. PCMs often use models of evolution to calculate correlations between observations of

close relatives expected under random evolution.

Phylogenetic distance: The sum of edge lengths along the path connecting two species in a

phylogeny.

Phylogenetic inference: The estimation of the evolutionary history of a set of genes.

Phylogenetic variables: Variables constructed with the aid of a phylogeny (including the star

phylogeny in which all species originate from the same polytomy). In contrast to phylogenetic

distances, variables indicate directions and curves along which variation has biological meaning.

Phylogeny: A diagrammatic hypothesis of the evolutionary history of a set of genes. The phy-

logeny can be rooted, implying knowledge of the most basal common ancestor of the set of genes,

or unrooted.

Polytomy: A node with more than two daughter lineages. Often, polytomies represent uncertainty

about the precise timing of historical speciation events.

Regression: A predictive mathematical model that will attempt to estimate relationships between

variables.

Shannon diversity: A particular measure of evenness, H, defined by a set of relative abundances,

pi, summing to 1: H = –∑
i
(pi log(pi)).
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A.0.2 Box 2: Challenges to phylogenetic analysis of microbiome data

Horizontal gene transfer: Horizontal Gene Transfer (HGT) disrupts the correlation

between evolutionary histories of genes and raises important questions about which gene trees

to use for phylogenetic analysis. While the 16S gene tree correlates to the bulk of genomic

content in microorganisms, important horizontally transmitted genes such as β-lactamases have

phylogenies that are different from the 16S. Analysing a β-lactamase gene tree will allow analysis

of β-lactamase traits—such trees may be appropriate for studying the composition of antibiotic

resistant genes in the environment. We discuss this further in the ‘Challenges of phylogenetic

analysis’ section of the text.

Phylogenetic inference: The 16S Ribosomal RNA (rRNA) gene tree is most commonly

used, but other genes, such as β-lactamase genes, can be used to make phylogenies. Regardless

of the gene, phylogenetic inference is an estimate of evolutionary history and the estimate is

most accurate with large and even taxon sampling [59]. Uneven taxon sampling can produce

erroneous phylogenies resulting in similar traits being misinterpreted as homologies. Phylogenetic

reconstruction using skin and skeletal structure of many species of lizards, one species of bird

and one species of bat may incorrectly estimate that birds and bats are sister taxa, whereas a

more complete sampling of taxa to include mammals may correctly group bats with mammals.

Building trees de novo within each study site, with the limited taxon sampling of each locale, risks

producing many erroneous trees that are difficult to compare across studies. Global consensus

trees built from commonly used genes, even taxon sampling and standardized methods for adding

new sequences to the existing tree can ensure that researchers make comparable inferences on the

same, reasonably accurate scaffold of microorganisms’ evolutionary history.

Ancestral state reconstruction: As with phylogenetic inference, sparse taxon sampling

can increase the error rate of ancestral state reconstruction. Methods such as PICRUSt, which

draw on genomes and traits of organisms from relatively well-sampled environments such as

the human microbiome, will probably have high error rates for organisms in less well-sampled
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environments.

Vast number of species: A recent study estimates there to be upwards of a trillion

microbial species [141]. While large datasets for macroscopic organisms exist, the regularity

of species-rich datasets in microbial ecology and the ease of collecting many samples warrant

special consideration of the computational costs, visualization and interpretation of methods often

developed for smaller datasets. Parallelization, emphasis on lineages of common knowledge

or importance, common knowledge of phylogenetics among microbiologists, and simplified

representations of phylogenies by collapsing clades may allow researchers to perform thorough

phylogenetic analysis of microbial big data.

Evolutionary model for microorganisms: There is no microbial fossil record. In

macroecology, fossil records are used to calibrate evolutionary rates necessary for phyloge-

netic inference and ancestral state reconstruction [142, 143]. While we know that different

genes within different species have different mutation rates [144, 145], the calibration and vali-

dation of evolutionary models for microorganisms is still an open area of research. The correct

evolutionary model can produce accurate effect sizes and measurements of uncertainty (signifi-

cance, confidence intervals, and so on), ensuring accuracy and reproducibility of inferences in

phylogenetically structured data analysis.
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Figure B.1: An illustration of a distance metric that is engineered not to saturate. (a) An
illustration of the Earth Mover Band Distance. (b) Demonstration of the EMBAD metric on the
88 soils dataset. (c) Demonstration of the EMBAD metric on the Post Mortem Interval Mice
dataset

The idea behind the EMBAD distance metric is as follows. Suppose that we have obtained

a scrambled matrix of OTU abundances but there exists an underlying band pattern when the

table is sorted. Specifically, this table can be reordered and sorted by a value, such as sample

pH. In addition, the species can also be sorted by the sample value ranges that they are observed

in. In the pH example from the 88 soils study, the microbes (OTUs) were ordered based on the

pH ranges they were found in. This ordering of species can be used to construct a pipe where

the lowest ordered species is placed on one end of the pipe, and the highest ordered species is

placed on the opposite end of the pipe. Once this pipe is constructed the species abundances from
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different samples can be imposed on the pipe, and the flow between samples can be computed

using the Earth Mover’s distance. Consider the example in Figure S1a. There are two samples

where sample 1 is dominated by species 4 and sample 2 is dominated by species 1. If the ordering

of species is already known, we can compute the proportions of individuals in sample 1 that

need to be shuttled along the pipe in order to transform sample 1 into sample 2. In this scenario,

about 0.3 of species 1, 0.1 of Species 3 need to be distributed across species 1 and 2. If we

can determine the ordering of species, we can effectively compute how dissimilar Sample 1 and

Sample 2 are from each other.

Furthermore, by imposing an ordering across all species, this distance metric is designed

to be non-saturating. If there are samples that do that overlap, the dissimilarity between these

samples is weighed by how far away they are in the pipe. Two samples that appear close together

in the pipe will have a smaller distance since there the proportions will travel a smaller distance

along the pipe.
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Figure B.2: Abundances of taxa across time in the post-mortem experiment. The center log
ratio (Equation 2) transformed abundances of Rhizobiaceae (OTU 4301099) and Chromatiaceae
(OTU 46026, 4482362) versus time. These demonstrate distinct relationships of different taxa
as a function of decomposition.

B.1 Distance saturation proof

Theorem:

Let (Si)1≤i≤N be a set of N different samples along a linear trajectory
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Let d = mini, j,i 6= j‖Si−S j‖2 be the minimum Euclidean distance between every pair of

samples in (Si)1≤i≤N and C = maxi, j‖Si− S j‖2 be the maximum Euclidean distance between

every pair of samples in (Si)1≤i≤N .

We have

N ≤
⌊

C
d

⌋
+1

Proof:

Since all our samples samples are on a linear trajectory, without loss of information we can

project the samples on this line. Now consider our samples as points in R the real number line.

Without loss of generality, we can suppose that our samples are ordered long the real line:

S1 < S2 < · · ·< SN

We have d > 0 because all samples are different.

Thanks to the structure of the real line, we have

C = max
i, j
‖Si−S j‖2 = Sn−S1

and all samples are part of the interval of length C : I = [S1,Sn]

We can include the interval I into the reunion of bC
d c+1 intervals of length d.

Since d = mini, j,i 6= j‖Si−S j‖2 two samples cannot be in the same sub-interval Ik.

Therefore by the pigeon-hole principle

N ≤
⌊

C
d

⌋
+1

Corollary:

When there is a distance-saturation, we have N ≤
⌊

C
d

⌋
+1, therefore N samples cannot be on a
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linear trajectory.

B.2 NP hardness of finding an optimal linear embedding

Suppose that we have a scrambled table and has an underlying band pattern.

In order to define an EMBAD distance to infer an underlying band pattern in the absence

of a known gradient, we need to (1) be able to determine the define the trajectory of points that

define the horseshoe and (2) determine the optimal ordering of OTUs based on (1). In order to

resolve (1), we need to obtain the shortest path through the horseshoe. Specifically we would need

to find the optimal ordering of points x1, . . . ,xN ∈ RD
+ such that the following objective function

is minimized.

min
n

∑
i=1
‖xi− xi−1‖2

If there exists an algorithm to find the shortest path through the horseshoe, then this

solution can be used to solve the Traveling Salesman problem. Therefore, defining an EMBAD

distance metric in the absence of a known gradient is NP-hard.

88



Appendix C

Supplemental material for Chapter 3

89



C.1 Scale invariance of balances

log
∏x j∈iL (x j)

1/|iL|

∏xk∈iR (x j)1/|iR|
= log

∏p j∈iL (np j)
1/|iL|

∏pk∈iR (np j)1/|iR|
= log

∏p j∈iL (p j)
1/|iL|

∏pk∈iR (p j)1/|iR|
(C.1)

n is the true sequencing count, x j is the true abundances of species j and p j is the proportion of

species j. iL is the set of all species proportions contained in the left sub-tree at internal node i,

iR is the set of all species proportions contained in the right sub-tree at the internal node i, and,

g(x) is the geometric mean of all of the proportions contained in x, |iR| is the number of species

contained iR and |iL| is the number of species contained iL. As shown above, the sequencing depth

constant gets effectively canceled out. Thus, log ratios are a natural normalization for sequencing

depth, especially if there are no zero abundances present and the samples have sufficient coverage.

C.2 Benchmark of compositional coherence

Supplemental Figure 1

The simulation consisted of a uniform population of 1000 individuals. A blooming was

simulated across 9 time points, where a single organism eventually grew 100,000x fold. At each

time point, 30 compositions were simulated using multinomial sampling with replacement. At

each time point, a statistical test was performed comparing the sample at that time point to the

original time point. Since we know beforehand that only 1 species is changing, any other tests

that don’t involve the first set of proportions that is determined to be significant with p-value <

0.05 is a false positive Figure S1a-b). In fact, if the bloom of a given species is high enough,

all of the other individuals can be detected to change. In Figure S1e, if 1 species has changed

by 100,000x, then all of the pvalues will be less than 10-10, giving a false positive rate close to

100%. The same procedure is performed using balances, any balance that does not contain x1 that
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is determined to be significant from a t-test is considered a false positive (Figure S1c). Note that

this is highly dependent on the choice of the tree. In this case, we used a tree where the blooming

species x1 was to the far right of the tree (Figure S1f). In this way, only the balance between x1,

and x2 through x1000 should be changing. But if we were to flip the tree, and place x1 to the

far right of the tree, every balance in the tree will contain x1 (Figure S1g). So as x1 blooms, the

number of significant balances will increase (Figure S1d).

Figure C.1: A benchmark of statistical tests on compositional data. Simulations illustration the
occurence of false positives in traditional statistical tests

While it may be deemed biologically irrelevant, blooms do happen frequently in microbial

studies, with individual species sometimes blooming 5 orders of magnitude within a short period

of time. And the 10,000x fold growth of a single species will have the exact same effect as the

1,000x fold growth change of 10 species. This suggests that there could be many subtle scenarios

where we could be misinterpreting biologically relevant signals by testing individual proportions

of microbes.
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Supplemental Figure 2

Figure C.2: An ecological intrepretation of balances. A simulation of 4 species, where each
species is normally distributed along some environmental gradient. Each species has a normal
distribution with a variance of 3 and a mean of 3, 6, 9 and 12 respectively as shown in Figure
S2a. The resulting balances can be calculated as follows.

abcd = log

√
ab√
cd

ab = log
√

a√
b

cd = log
√

c√
d

Note, it is not possible to take a logarithm of zero. A commonly used approach around this

problem is to add a pseudocount. Here we add a pseudocount of 1 after multiplying all of the

species probabilities by 10000. These species abundances are transformed into balances as shown

in Figure S2b. Because of the zero phenomenon, the balances yield something reminiscent to a

triangular wave when applied to a pair of unimodal distributions. Take balance ab for example. At

the far left around -5, neither a or b are present, so both of their abundances are zero. But since we

are adding pseudocounts, the resulting balance is given by log(1/1)=0 . When the gradient value

increases to 0, the abundance of a approaches the peak of the distribution, while the abundance of

b is still zero, causing the ab balance to increase. By the time the gradient value is around 4, the

abundances of b starts to appear, causing the ab to peak. When the gradient value is around 8, the

abundance of a starts disappearing while the abundance of b starts approaching the maximum

peak in Figure S2a. At a gradient value of 10, the abundance of b also begins to dwindle, and

the ab balance spirals towards zero. This same triangular wave pattern appears in all 3 of these
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balances, and portions of this also appear in the 88 soils study as shown in Figure S3.

It is also important to note that a balance of zero also indicates that the abundances

between the ratios are equal. So if a balance is zero, and a pseudocount scheme was used, either

the proportions between the numerator and denominator are truly equal, or both the numerator

and the denominator are zero.
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C.3 Analysis of balances in soils

Supplemental Figure 3

Figure C.3: Other balances from the 88 soils study. A perspective of different balances in the
88 soils study.

If there is truly a unimodal species distribution along pH, we’d expect to see the same

sort of triangular wave pattern as shown in Figure 2S. If this is the case, then the top balance

y0 is likely to be resulting from the midsection of the triangular wave between the minimum

and the maximum (Figure S3a). The peaks of the triangular wave are a bit more apparent in the

Figure S3b-d. In Figure S3b, the lower subtree in y1 is probably reaching a maximum in the true

abundance around a pH of 7. In Figure S3c, the upper subtree in y2 is also likely approaching a

maximum in the true abundance around a pH of 6. The same sort pattern could be happening

in Figure S3d with the lower subtree in y3. These glimpses of triangular waves in these graphs
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suggest that there could be unimodel distributions of OTUs across the pH gradient.

As daunting as the zeros problem is, the zeros present in data sets such as the 88 soils

follow predictable patterns. Even with a simple pseudo count strategy, we can still extract sensible

information about balances of microbes across different pH values.
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Appendix D

A brief overview of Aitchison Geometry
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Given that many of the techniques presented in the dissertation were based on the concepts

based on Aitchison geometry, we will provide a brief overview behind Aitchison geometry.

Aitchison geometry is a framework focused on the analysis of quantities including pro-

portions, percentages, probabilities and concentrations. These quantities are also referred to as

compositions. At the heart of the framework is the characterization of the Aitchison simplex,

where each element of the space is a composition. A composition can be thought of as a set of

proportions, or percentages.

Linear operations can be defined on compositions, known as “perturbation” and “powering

operations”. These operations are linear in the Aitchison simplex and can be transformed into

traditional addition and multiplication operations in Euclidean space through the use of log-ratio

transformations. Inner products can be defined in the Aitchison simplex, giving rise to the distance

metrics such as the Aitchison distance. It can also be shown that the Aitchison simplex forms a

finite Hilbert space [100].

D.1 Definition

The Aitchison simplex is formally defined for D species as follows

S D =

{
x = [x1,x2, . . . ,xD] ∈ RD

∣∣∣∣∣xi > 0, i = 1,2, . . . ,D;
D

∑
i=1

xi = λ

}
.

Where λ > 0 can be any positive real-valued constant. By definition, the compositions are the

quantities denoted by x.
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Figure D.1: An illustration of the Aitchison simplex. Here, there are 3 parts, x1,x2,x3 represent
values of different proportions. A, B, C, D and E are 5 different compositions within the simplex.
A, B and C are all equivalent and D and E are equivalent.

There are three core axioms that the Aitchison simplex, namely

D.1.1 Scale invariance

Whether data is represented as proportions, percentages or probabilities, in the context

of the Aitchison simplex all of these measurements are equivalent since they only differ by a

constant scaling factor.

D.1.2 Subcompositional coherence

Observations on shared species should be consistent. For example, supposed that there

are 2 biologists that visited the exact same rainforest to count insects. One biologist observed 3

species of spiders and 10 species of ants whereas the other biologist only observed 2 species of

98



spiders and 7 species of ants. If these biologists observed the same 2 spider species and the same

7 species of ants, their conclusions about those species should be the same. For instance, they

should notice that the ratio of those two spider species are consistent between their observations.

While the universal formal definition is still not clearly established, this concept can be formalized

to distance metrics as follows

d(xk,yk)≤ d(x,y) ∀x,y ∈ SD, xk,yk ∈ Sk, Sk ⊂ SD

D.1.3 Permutation invariance

The ordering of how the proportions or were measured or counted doesn’t matter. This is

analogous to how combinations are invariant to the order of selection.

D.2 Vector Space Structure

D.2.1 Properties

The Aitchison simplex has the following operators defined using the closure operation as

follows

Perturbation

x⊕ y = [
x1y1

∑
D
i=1 xiyi

,
x2

∑
D
i=1 xiyi

, . . . ,
xDyD

∑
D
i=1 xiyi

] =C[x1y1, ...,xDyD] ∀x,y ∈ SD
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Powering

α� x = [
xα

1

∑
D
i=1 xα

i
,

xα
2

∑
D
i=1 xα

i
, . . . ,

xα
D

∑
D
i=1 xα

i
] =C[x1y1, ...,xDyD] ∀x ∈ SD, α ∈ R

Inner product

〈x,y〉= 1
2D

D

∑
i=1

D

∑
j=1

log
xi

x j
log

yi

y j
∀x,y ∈ SD

Under these these operations alone, it is sufficient to show that the Aitchison simplex

forms a Euclidean vector space.

D.2.2 Orthonormal bases

Since the Aitchison simplex forms a finite Hilbert space, it is possible to construct

orthonormal bases in the simplex. Every composition can be decomposed as follows

x =
D⊕

i=1

xi� ei

Where e1, . . .eD−1 forms an orthonormal basis in the simplex [99].

D.3 Linear transformations

There are 3 well-characterized isomorphisms that transform from the Aitchison simplex

to real space. All of these transforms satisfy linearity and as given below
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D.3.1 Additive Log-ratio Transform

The additive log ratio (alr) transform is an where alr : SD→ RD−1. This is given by

alr(x) =
[

log
x1

xD
. . . log

xD−1

xD

]
The choice of denominator is arbituary, and could be any specified component. This

transform is commonly used in chemistry with measurements such as pH. In addition, this is the

transform most commonly used for Multinomial logistic regression. The alr transform is not an

isometry, meaning that distances on transformed values will not be equivalent to distances on the

original compositions in the simplex.

D.3.2 Center Log-ratio Transform

The center log ratio (clr) tranform is both an isomorphism and an isometry where

clr : SD→ U, U ⊂ RD

clr(x) =
[

log
x1

g(x)
. . . log

xD−1

g(x)

]
The inverse of this function is also known as the softmax function commonly used in

neural networks.

D.3.3 Isometric Log-ratio Transform

The isometric log ratio (ilr) tranform is both an isomorphism and an isometry where

ilr : SD→ RD−1

ilr(x) =
[
〈x,e1〉, . . .〈x,eD−1〉]

There are multiple ways to construct orthonormal bases, including using the Gram–Schmidt
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process Singular-value decomposition of clr transformed data. Another alternative is to construct

log contrasts from a bifurcating tree. If one is given a bifurcating tree, we can construct a basis

from the internal nodes in the tree.

Figure D.2: An illustration of the bifurcating trees as an orthonormal basis. A representation of
a tree in terms of its orthogonal components. l represents an internal node, an element of the
orthonormal basis. This is a precursor to using the tree as a scaffold for the ilr transform.

Each vector in the basis would be determined as follows

el =C[exp(0, ...0︸ ︷︷ ︸
k

,a, ...,a︸ ︷︷ ︸
r

,b, ...,b︸ ︷︷ ︸
s

,0, ...0)︸ ︷︷ ︸
t

]

The elements within each vector are given as follows

a =

√
s√

r(r+ s)
and b =

−
√

r√
s(r+ s)

where k,r,s, t are the respective number of tips in the corresponding subtrees shown in the

figure. It can be shown that the resulting basis is orthonormal [94].

Once the basis Ψ is built, the ilr transform can be calculated as follows
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ilr(x) =C[exp(clr(x)Ψ)]

where each element in the ilr transformed data is of the following form

bi =

√
rs

r+ s
log

g(xR)

g(xS)

where xR and xS are the set of values corresponding to the tips in the subtrees R and S.
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