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Abstract. This paper presents a learning based method for automatic
extraction of the major cortical sulci from MRI volumes or extracted sur-
faces. Instead of using a few pre-defined rules such as the mean curvature
properties, to detect the major sulci, the algorithm learns a discrimina-
tive model by selecting and combining features from a large pool of can-
didates. We used the Probabilistic Boosting Tree algorithm [16] to learn
the model, which implicitly discovers and combines rules based on man-
ually annotated sulci traced by neuroanatomists. The algorithm almost
has no parameters to tune and is fast because of the adoption of integral
volume and 3D Haar filters. For a given approximately registered MRI
volume, the algorithm computes the probability of how likely it is that
each voxel lies on a major sulcus curve. Dynamic programming is then
applied to extract the curve based on the probability map and a shape
prior. Because the algorithm can be applied to MRI volumes directly,
there is no need to perform preprocessing such as tissue segmentation or
mapping to a canonical space. The learning aspect makes the approach
flexible and it also works on extracted cortical surfaces.

1 Introduction

Cortical sulci are important structures of the brain. Reliably extracting major
cortical sulci from MR images helps us to better understand the functionalities of
the brain [7], facilitates many neuro studies for comparing different subjects[12],
and assists other brain mapping tasks such as registration [5]. Fig. 1 shows several
major cortical sulci: the Central Sulcus, the Postcentral Sulcus, the Superior
Temporal Sulcus, the Intraparietal Sulcus, the Middle Frontal Sulcus and the
Intraparietal Sulcus.

Cortical sulci lie on the valleys of cortical folds, and can be characterized
by mathematical measures such as the mean curvatures [6, 1]. However, major
cortical sulci have complicated geometric and photometric patterns and one
often needs to use many protocols and high-level knowledge [9] to guide the
manually labelling process. In general, automatic extraction of cortical sulci is
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a challenging task [12] due to their large intra-class variation and inter-class
similarity across different subjects.

Most existing approaches for automatic cortical sulci detection work on the
extracted cortical surfaces, which require a pre-processing stage to segment the
tissue. Tao et al. [14] used global and local shape priors of sulcus curves on
a canonical unit sphere to guide the extraction of the curves, but the method
involved mapping the cortical surface to the unit sphere. Khaneja [6] used a
dynamic programming approach to find the curves by minimizing an energy
function, but this algorithm was not fully automatic since it required the starting
and ending points of the sulci to be specified by hand. In [11], the patterns
of different local folds are learned and they form a random graph using neural
networks. The work by Rettmann [10] extracted sulcal regions using a watershed
transformation method applied to cortical surfaces.

Central 
Sulcus

Superior 
Temporal 
Sulcus Main 
Body 

Postcentra
l Sulcus

Middle Frontal 
Sulcus

Intraparietal
Sulcus

Precentral
Sulcus

(a) (b)

Fig. 1. Examples of cortical sulci: (a) shows an MRI volume overlayed with several
major cortical sulci, such as the Central Sulcus and the Postcentral Sulcus; (b) illus-
trates a corresponding extracted cortical surface with the same set of manually labelled
sulcus curves

Our method is different from the above methods and it can be directly ap-
plied to either MRI volumes or extracted cortical surfaces. Instead of using a
number of pre-defined rules/features, we learn/compute the likelihood of each
voxel being on a sulcus curve based on a sub-volume (15 × 15 × 15) centered at
this voxel. The probabilistic boosting tree (PBT) algorithm [16] is employed to
select and combine hundreds of features from a large set of candidates to make
an overall decision using a hierarchical structure. The candidate pool consists of
around 5,000 features at three scales including intensity, gradients, curvatures,
shape indices, locations, and 3D Haar filters etc.. A data-dependent prior is used
to put geometric constraints on the curve. Similar to [6], we use a dynamic pro-
gramming approach to combine the likelihood and shape prior. The algorithm is
fully automatic, very general, and has almost no parameter to tune for different
major sulcus curves. Moreover, it can be applied in other curve/object detection
tasks in medical imaging.

We have a dataset of 40 volumes with several major cortical sulci manually
labelled. We split them randomly into 15 training volumes and 25 testing vol-
umes. Training is done both on the MRI volume and extracted cortical surfaces,
and we compare the results on the testing images.
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2 Problem Formulation

In this section, we give the problem formulation for 3D curve detection. For the
rest of this paper, we use V to represent a 3D MRI volume. When a surface
has been extracted, the algorithm works almost the same except for some minor
modifications in computing gradients and curvature features.

For an input volume, V, the task of cortical sulcus curve detection is to extract
the 3D curve C:

C = {ri, i = 0, · · · , L}
where L is the length of the curve, and ri is the coordinates of the ith point on
the curve.

We define variable B as the background, i.e. the part of the volume not on the
curve C. Clearly, C ∩ B = ∅ and Λ = C ∪ B is the domain of the whole volume.
We define a label y for each voxel r, so that y = +1 if the voxel is on the curve C
and y = −1 if it is on the background B. We then define a discriminative model
p̂(C|V) to be of form:

− log p̂(C|V) = E1(C) + E2(C) + E3

where E3 is a constant which does not depend on C (corresponding to the
normalization constant for the distribution p̂(C|V)). From the Bayesian point
of view, the optimal curve C∗ is the one maximizes p̂(C|V).

The term E1 is given by:

E1(C) = −
∑

r∈B

log p(V(r), y = −1|V(N(r)/r)) −
∑

r∈C

log p(V(r), y = +1|V(N(r)/r))

= −
∑

r∈Λ

log p(V(r), y = −1|V(N(r)/r)) −
∑

r∈C

log
p(y = +1|V(N(r)))
p(y = −1|V(N(r)))

.

where N(r) is the sub-volume centered at voxel r; V(·) is the intensity value(s)
at the given voxel(s); N(r)/r includes all the voxels in the sub-volume except r;
p(V(r), y|V(N(r)/r)) is a conditional joint probability like pseudo-likelihood [2]
in spirit. The first term in the above equation does not depend on C, therefore
can be ignored. The probabilities p(y = +1|V(N(r))) and p(y = −1|V(N(r)))
will be learned by PBT from manually labelled data.

The term E2 is defined as:

E2(C) = −αL + β

L−1∑

i=0

‖∇V(ri+1) − ∇V(ri)‖

where α and β are positive parameters to balance the importance of the corre-
sponding terms. The motivation of introducing the first term is the observation
that the sulcus curves are not very smooth, while the first term favors long
curves, therefore, it discourages a curve being too straight. The second term of
E2 accumulates data dependent cues, i.e., we prefer that the intensity along the
detected curve does not change too much.
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In summary, maximizing the probability p̂(C|V) is equivalent to minimizing
the energy function:

E(C) = −
∑

r∈C

log
p(y = +1|V(N(r)))
p(y = −1|V(N(r)))

+ E2(C) (1)

Here, the models capturing the appearances of foreground and background are
combined in the discriminative probability ratio. Note that p(y = +1|V(N(r)))
is the posterior probability of a voxel r belonging to the foreground (sulcus
curve) given the sub-volume centered at r. The second column in Fig. 3 shows
such probability maps. The optimal curve C∗ is the one that minimizes the above
energy function E(C).

We use dynamic programming (DP) to minimize E(C) given by equation (1).
DP is guaranteed to find the global minimum of E(C), but requires starting
and ending points (we refer to both as end points). We propose an adaptive
method for selecting the end points, instead of choosing the end points by hand
[6]. Our method uses the training data to measure the mean and covariance of
the positions of the end points and then constrains the end points to lie within
boxes centered on the means and with sides equal to twice the variance. We
further localize the end points by requiring that p(y = +1|V(N(r)) > T where
T is a learned threshold. Of these remaining points, we select the one that has
the smallest value of p(y = +1|V(N(r)).

3 The Discriminative Models

Now the task is to learn and compute the discriminative probability p(y|V(N(r)))
for each voxel r. We adopt a new learning framework, probabilistic boosting tree
[16], to learn complex discriminative models based on boosting algorithms [4].

For learning, we design a pool of around 5,000 features at three scales,
including intensity, gradients, curvatures, shape indices, locations, and 3D Haar
filters etc.. We used integral volume to compute the response of 3D Haar

boosting

boosting

Fig. 2. Illustration of a boosting tree on a training volume: The left branch shows the
probability of each voxel is not on the sulcus curve and the right branch shows the
probability that each voxel is on the sulcus curve
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filters. At each location (x1, y1, z1), the integral volume is computed as∫ x1

0

∫ y1

0

∫ z1

0 V (x, y, z)dxdydz. Thus the computational cost for computing the
response of 3D Haar filters is reduced significantly since every time we only need
to sum up the values at the corners of the 3D Haar filter in the integral volume.

The tree is trained recursively: At the current node, the empirical distribution
q̂(y) of the data is calculated, if the node is not pure (i.e., q̂(y) is not close to
0 or 1), a strong classifier is trained on the data. Each sample is then passed
to the left and right subtree, weighted by q(−1|V(N(r))) and q(+1|V(N(r))),
respectively, where q(+1|V(N(r))) is the probability that V(N(r)) is a positive
sample, according to the strong classifier. Thus, the strong classifier at each node
is not used to return the class of the sample but rather to assign the sample to
the left or right subtree. Training proceeds recursively(see [16] for information
about the basic algorithm). Fig. 2 shows the first two levels of a tree. PBT does
training and testing in a divide-and-conquer manner and outputs the overall
discriminative probability as:

p̃(y|V(N(r))) =
∑

l1

p̃(y|l1,V(N(r)))q(l1|V(N(r)))

=
∑

l1,l2

p̃(y|l2, l1,V(N(r)))q(l2|l1,V(N(r)))q(l1|V(N(r)))

=
∑

l1,··· ,ln

p̃(y|ln, · · · , l1, V(N(r))), · · · , q(l2|l1, V(N(r)))q(l1|V(N(r)))

where li ∈ {+1, −1} is augmented hidden variable as shown in Fig. 2, indicating
which branch is for this node: li = −1 and li = +1 point to the left and right
branch, respectively. q(li|li−1, · · · , l1,V(N(r))) is the discriminative probability
computed according to the boosting strong classifier learned at each node, and
q̂(y|ln, · · · , l1,V(N(r))) is the empirical distribution at the leaf node.

4 Experiments

We have tested the proposed approach for extracting the Central and the Middle
Frontal Sulci. In both cases, we used ground truth estimates of the Sulci location
to train and test the algorithm. We also compared the performance for extracting
the Central Sulcus when the cortical surface is available. The MR images, cortical
surfaces and manually labelled landmark data are exactly the same as those in [13].

Learning the PBT took approximately eight hours (it is a function of the size
of the training dataset); computing the posterior probability by PBT took about
one minute per image; running the dynamic programming took around twenty
seconds per image. The computer used has 2.4 GHz CPU and 1.0GB memory.
Standard code optimization techniques can reduce these times significantly.

We have a dataset of 40 volumes of which we use 15 for training and the
remained 25 for testing. In these volumes, the length of the sulci varies from 60-
70 voxels. The PBT is learned on the 15 training volumes and the majority of
features it selected to use were 3D Haar filters, though some curvature features
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were also selected. Fig. 3 shows the results on some of the testing volumes for
detecting the Central Sulcus and the Middle Frontal Sulcus on MRI volumes. The
first column shows the input with manual labels superimposed and the second
column shows the posterior probability of the sulci output by the PBT. Note
that the probability maps have large responses around the correct position, but
the maps are blurred, sometimes disconnected, and therefore are not sufficient to
localize the sulcus directly. We then applied dynamic programming to minimize

Fig. 3. Detection results on some of the testing images for the Central Sulcus on MRI,
the Middle Frontal Sulcus on MRI, and the Central Sulcus on the cortical surfaces. The
ground truth (left), the PBT posterior p(y = +1|V(N(r))) (middle), and the result of
DP superimposed on the image (right).
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the full energy function, equation (1). This resulted in a very clear estimate of
the sulcus location, which are compared to the ground truth in Fig. 3.

Our method can also be applied to cases where only the cortical surface is
available. This requires removing certain features from those considered in the
case of volume data (i.e. we keep the 3D Haar filters, but remove intensity).
We repeated the experiment on the Central Sulcus with the same training and
testing dataset as before, and the result is also shown in Fig. 3.

To quantitatively evaluate the performance of our approach, we measured
the distances between the estimated curves and the ground truth. We used the
following distance measures:

Hwor(C, G) = max
c∈C

min
g∈G

|c − g|, Hav(C, G) =
1

|C|
∑

c∈C

min
g∈G

|c − g|. (2)

Here C represents the curve found by DP and G is the ground truth. Hav(C, G)
gives the average distances from curve C to their closest points on curve G. By
contrast, Hwor(C, G) measures the worst case fit from curve C to curve G. For
symmetry, we also consider Hav(G, C).

Our evaluation results, as shown in table 1, show very good performance.
In the table, < · > denotes the average over the dataset, for example, <
Hav(C, G) >= (1/N)

∑N
i=1 Hav(Ci, Gi), where N is the number of examples

in the dataset. All the values of Hav are in the range of 3-5 voxels for both
training and testing datasets. Observe that although the worst case measures
are relatively big, the average distance is small, which suggests that some points
occasionally have big offset while the overall curves still can be detected fairly
accurately. The biggest errors occurred at the starting and ending points of the
sulci. The testing errors are only slightly bigger than the training errors, which
implies that our algorithm generalizes well.

Table 1. Error measures on 15 training and 25 testing images for the extracting of
the Central Sulcus on volume, the Middle Frontal Sulcus on volume, and the Central
Sulcus on surfaces. See text for notations. The unit of distance is the voxel.

Dataset < Hav(C,G) > < Hav(G, C) > < Hwor(C, G) >

Testing (Central on volume) 2.74 3.46 7.53
Central (Central on volume) 3.76 4.22 8.56

Testing (Middle Frontal on volume) 4.26 4.59 12.04
Training (Middle Frontal on volume) 4.09 4.46 8.99

Testing (Central on surface) 2.79 3.07 9.48
Training (Central on surface) 2.44 2.88 8.44

5 Conclusions and Future Work

We presented a method for extracting cortical sulci, which uses a discriminative
model including a discriminative term and a data dependent prior. The dis-
criminative term was learned in a supervised way by the probabilistic boosting



702 S. Zheng et al.

tree algorithm, and dynamic programming was used to find the optimal solution
by minimizing the discriminative energy function. A procedure was given for
adaptively selecting the end points for dynamic programming.

The method was applied to extracting the Central Sulcus and the Middle
Frontal Sulcus from raw MRI volume data. In both cases, the performance was
very good when evaluated on both the training and testing data. The method
was also applied to extracting the Central Sulcus when the cortical surface has
already been extracted and the results were similar to those obtained directly
from raw volume data. The biggest errors occurred at the end points of the sulci
and might be due to ambiguity in the precise positions of these points (i.e. errors
arising in the ground truth), or the procedure for estimating the starting and
ending points. This is a topic for future research.

In this work, we designed a feature pool consists of about 5,000 candidates,
most of which are 3D Haar filters. If effective features are used, we expect that
the algorithm will achieve similar performance with fewer features. Our next
step is to explore more sophisticated features for this particular medical image
task.
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