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Targeting the RhoGTPase/ROCK pathway for the treatment of VHL/HIF

pathway-driven cancers

Jordan M. Thompson?, Jaime Landman®, and Olga V. Razorenova®

Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, CA, USA; PUrology Department, School of Medicine,

University of California Irvine, Irvine, CA, USA

ABSTRACT

The loss of the von Hippel-Lindau (VHL) tumor-suppressor is a major driver of Clear Cell Renal Cell
Carcinoma (CC-RCC) resulting in the stabilization and overactivation of hypoxia inducible factors
(HIFs). ROCKT1 is a well-known protein serine/threonine kinase which is recognized as having a role
in cancer including alterations in cell motility, metastasis and angiogenesis. We recently
investigated and identified a synthetic lethal interaction between VHL loss and ROCK1 inhibition in
CC-RCC that is dependent on HIF overactivation. Increased expression and activity of both HIFs and
ROCK1 occurs in many types of cancer supporting the potential therapeutic role of ROCK inhibitors
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beyond CC-RCC. We also discuss future research required to establish prognostic markers to predict

tumor response to ROCK inhibitors.

Metastatic Clear Cell Renal Cell Carcinoma (CC-RCC) is
a devastating disease with a 5-year survival 3 of 20%.'
While surgical resection of the tumor is often curative for
early stage disease, approximately one third of patients
present with regional or metastatic CC-RCC.> Despite sig-
nificant increases in Tla (< 4 cm) CC-RCC detection
over the past few decades, with significant increases in
surgical treatment, there has been no reduction in the
number of patients presenting with more aggressive dis-
ease (regional or metastatic disease at time of diagnosis).
As such, CC-RCC remains a major clinical challenge with
great need for novel treatment strategies.

There are 2 types of FDA-approved therapies that are
currently available for treating advanced-stage CC-RCC:
immunotherapies (cytokines: interleukin-2 [IL2], inter-
feron o [I[FN«]; and programmed death-1 inhibitor [PD-
li]) and targeted therapies (receptor tyrosine kinase
inhibitors [RTKis] and mammalian target of rapamycin
inhibitors [mTORIis]).

The first FDA-approved therapy for CC-RCC was
IL2-based immunotherapy that has been shown to pro-
long overall patient survival to 17.5 months.” IL2 immu-
notherapy is both of limited efficacy and is associated
with significant morbidity and some mortality. Since
then, the first line RTKis — Sorafenib, Sunitinib, and
Pazopanib — have been approved and prolong overall
survival to 19.3 months,* 29.3, and 28.4 months

respectively.” Second line RTKi Axitinib has been shown
to prolong overall survival to 13.6 months in Sorafenib-
refractory patients and to 29.9 months in cytokine-
refractory patients.® While immunotherapy and RTKis
are used to treat advanced stage CC-RCC, mTORis are
used to specifically treat metastatic CC-RCC. First line
mTORi Temsirolimus is approved for poor-prognosis
metastatic CC-RCC patients and prolongs overall sur-
vival to 10.9 months as compared with cytokine-based
immunotherapy, which prolongs overall survival to
7.3 months.” Second line mTORi Everolimus increases
overall survival of RTKi-refractory metastatic CC-RCC
patients by 14.8 months.® While patients initially
respond to FDA-approved therapies, the majority of
patients develop drug resistance.”

Recently, multiple next generation therapies, includ-
ing 2 RTKis, Lenvatinib and Cabozantinib, and one
immunotherapeutic, PD-1i Nivolumab, have been
approved for CC-RCC. Along with inhibiting VEGF,
both Lenvatinib and Cabozantinib also target additional
RTKs that have been linked to RTKi drug resistance.
Accordingly, upregulation of fibroblast growth factor
receptor (FGFR) signaling has been shown to contribute
to resistance to VEGFR inhibitors,'” and Lenvatinib
inhibits PDGFR, VEGFR, and FGFR. In RTKi refractory
patients, Lenvatinib prolonged overall patient survival to
18.4 months in comparison to 17.5 months for
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Everolimus-treated patients. Combination treatment
with both Lenvatinib and Everolimus was able to prolong
overall patient survival to 25.5 months.'" Overactivation
of the hepatocyte growth factor receptor (HGFR, or
MET) pathway has been also implicated in VEGFR
inhibitor resistance,'>'*> and Cabozantinib inhibits both
VEGFR and MET. Treatment with Cabozantinib pro-
longed overall survival to 21.4 months in RTKi refractory
patients over Everolimus treatment, which only pro-
longed survival to 16.5 months. The approval of both
Lenvatinib and Cabozantinib offers new options to over-
come resistance to current RTKi, and further clinical tri-
als are underway. Importantly, the therapeutic benefits
of RTKis have been attributed to targeting of endothelial
cells, and not direct targeting of cancer cells,”'* thus
making the therapies, which directly target cancer cells,
excellent candidates for combination treatment.

While only 12.5% of CC-RCC patients enter partial
remission with cytokine-based immunotherapy,'” second
line Nivolumab-based immunotherapy increases overall
survival of RTKi-refractory metastatic CC-RCC patients
by 25 months, as compared with Everolimus, which
increases overall survival of RTKi-refractory metastatic
CC-RCC patients by 19.6 months.'® This represents a
significant advance for immunotherapy, but there
remains the need for novel targeted therapies to treat
CC-RCC patients belonging to the group of poor-
responders to immunotherapy.

The genetics of sporadic CC-RCC has been exten-
sively studied and loss of function of the von Hippel-
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Lindau (VHL) tumor-suppressor occurs in up to 90% of
CC-RCC patients."”"” In addition, the VHL gene is
affected by mutations/deletions in familial VHL disease,
a syndrome, predisposing affected individuals to heman-
gioblastoma, pheochromocytoma, and CC-RCC.*° This
genetic alteration sets the stage for a synthetic lethality
screen to find novel therapeutics specifically targeting
VHL-deficient cancer cells and sparing VHL-expressing
normal tissue. The principle underlying synthetic lethal-
ity screens is that cancer cells with a specific genetic
alteration (e.g. VHL deficiency) will be more sensitive to
targeted inhibition of a certain pathway than normal
cells, where genetic alterations of tumor-suppressor
genes are rare.”’ Thus, the resulting synthetic lethality
compounds represent excellent candidates for therapies
that target mutation-bearing cancer cells, but spare
surrounding normal tissues.

We recently reported on a chemical library screen that
revealed a synthetic lethal interaction of VHL deficiency
with the Rho-associated protein kinase (ROCK) inhibi-
tors — Y-27632, RKI 1447, and GSK 429286 - confirmed
in several CC-RCC genetic backgrounds (see Fig. 1 for
VHL and ROCK pathway overview).> siRNA-mediated
knockdown of ROCKI, but not ROCK?2, replicated the
synthetic lethality effect, suggesting that inhibition of
ROCK1 by ROCK inhibitors is critical for targeting
VHL-deficient CC-RCC. Importantly, we have shown
that the hypoxia-inducible factor (HIF) pathway, which
gets over-activated as a result of VHL loss, is critical for
sensitivity to ROCK inhibitors. Based on these findings
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Figure 1. Overview of VHL/HIF and Rho/ROCK signaling pathways. VHL, left, is a part of an E3 ubiquitin ligase complex that targets HIF-
1o and HIF-2« for degradation. The loss of VHL stabilizes HIFs, leading to elevated expression of a multitude of HIF-target genes,
involved in angiogenesis, migration, invasion, glycolysis, etc. ROCK signaling, right, is dependent on activation by RhoGTPases that bind
to ROCK1 and ROCK2. ROCK family kinases are major regulators of actin organization within the cell controlling actin filament stabiliza-
tion, actomyosin contraction, actin cytoskeleton rearrangements, microtubule stabilization, etc. The combination of VHL loss leading to
HIF overactivation and Rho/ROCK pathway inhibition triggers synthetic lethality.
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we expect that ROCK inhibitors would represent poten-
tial therapeutics not only for VHL-deficient CC-RCC,
but also for CC-RCC with certain VHL mutations. In
addition, ROCK inhibitors should target hemangioblas-
toma and pheochromocytoma with VHL deficiencies
and certain mutations, as well as cancer types with over-
activation of HIF pathway arising independent of VHL
loss of function.

VHL loss of function due to deletions, mutations, and
promoter hypermethylation occurs in over 90% of spo-
radic CC-RCC cases.”” The frequency of VHL mutations
in CC-RCC tumors ranges from about 46% to 82%
depending on the study,'”** and loss of heterozygosity
occurs in up to 98% of cases.”” In addition, VHL pro-
moter hypermethylation occurs in about 10 to 20% of
CC-RCC tumors."”***” Accordingly, VHL loss of func-
tion occurs by multiple mechanisms and is a hallmark of
sporadic CC-RCC tumors, which has been shown to be a
major driver of the disease.

Besides sporadic cases, CC-RCC frequently occurs in
people affected by familial VHL disease. VHL disease is a
heritable autosomal-dominant neoplastic syndrome with
an incidence of 1 in 36,000°® that is associated with the
development of renal cysts (60 to 70% of patients), with
some cysts progressing to CC-RCC (40% of patients),
spinal cord (60 to 80% of patients) and retinal (60% of
patients) hemangioblastomas (tumors originating from
the vasculature), and pheochromocytoma (adrenal gland
tumors) (5% of patients).”*° Patients with VHL disease
are born lacking one functional copy of the VHL gene,
and during their lifetime lose a second functional copy
due to mutation, deletion, or promoter hypermethylation
in certain tissues, triggering cancer development. The
disease is divided into distinct subtypes based on VHL
status.”’ Type 1 VHL disease is associated with deletions
and mutations in VHL that completely disrupt its func-
tion and are associated with high risk of CC-RCC and
hemangioblastoma formation. Type 2 VHL disease is
further split into 3 additional subsets, 2A-C, and is asso-
ciated with VHL missense mutations.”> Type 2A is asso-
ciated with hemangioblastoma, pheochromocytoma, and
a low risk for CC-RCC; type 2B is associated with
hemangioblastoma, pheochromocytoma, and CC-RCC;
whereas type 2C is associated with pheochromocytoma
only.”*' Since our data indicate that VHL loss causing
HIF stabilization sensitizes CC-RCC to ROCK inhibitors,
we expect that tumors harboring VHL mutations which
either completely disrupt VHL function (like those
occurring in type 1 VHL disease, e.g., C162F""), or spe-
cifically disrupt VHL’s ability to regulate HIF activity
(like those occurring in type 2A disease, e.g., Y98H,
Y112H, A149T, T1571, and 2B disease, e.g., Y98N,
Y112N****) will be sensitive to ROCK inhibitors. The

resulting overactivation of HIFs in these tumors will
make them candidates for ROCK inhibitor-based thera-
pies. Since VHL regulates many targets besides HIFc,
including activated epidermal growth factor receptor,
RNA Pol II subunits, protein kinase C, and others>’
further investigation is needed to establish if, in addition
to disruption of HIF regulation, disruption of any of
these VHL functions by certain missense mutations is
important for ROCK inhibitor sensitivity.

Overactivation of HIFs is a frequent event in cancer.
Both HIFla and HIF2« have been shown to be overex-
pressed in tumor samples compared with matched nor-
mal tissues in multiple cancer types besides CC-RCC
including bladder, brain, breast, colon, ovarian, gastric,
lung, melanoma, pancreatic, and prostate cancers.>®?7
While HIF activation often occurs in perinecrotic regions
of solid tumors that lack adequate vasculature and oxy-
gen supply,”® there are multiple mechanisms by which
HIFs are activated under normoxic conditions apart
from VHL loss. For instance, the loss of p53 tumor sup-
pressor leads to disruption of human homolog of mouse
double minute 2 (HDM2)-mediated degradation of
HIFa subunits resulting in HIF overactivation.” Simi-
larly, the loss of phosphatase and tensin homolog
(PTEN) leads to deregulation of phosphoinositide
3-kinase (PI3K) and protein kinase B (Akt) activity
resulting in HIF overactivation.”” Furthermore, disrup-
tion of prolyl hydroxylases (PHDs) by mutations blocks
hydroxylation of the HIFx subunits and inhibits VHL-
mediated HIFa degradation.*’ Multiple oncogenes that
are commonly activated by mutations or overexpressed
in cancer have also been shown to result in HIF overacti-
vation, including Ha-ras** (via PI3K signaling), v-Src,*
and c-Myc.** Although these findings suggest that HIF
overactivation occurs frequently in multiple cancers, it is
important to keep in mind that the magnitude of HIF
activity is often less than in the case of VHL loss or hyp-
oxic exposure, which are the main players of pathway
controlling HIF activity.”” Thus, additional experiments
establishing the sensitivity of cancer cell lines with the
genetic alterations listed above to ROCK inhibitors in
normoxia and hypoxia are required to drive the conclu-
sions on their sensitivity and utility of ROCK inhibitors
for their targeting.

Another important factor that needs to be taken into
consideration for the prediction of sensitivity to ROCK
inhibitors is expression of the drug target, ROCK1, in
cancers other than CC-RCC. In this respect, elevated
ROCKI1 expression was reported in breast*> and pros-
tate™® cancers at the protein level and lung cancer at the
mRNA level.”” Activating ROCK1 somatic mutations
have been also reported in breast and lung cancers,*®
affecting the autoinhibitory region of ROCK1, resulting



in increased activity even though protein levels remain
unchanged. Interestingly, ROCK1 has been reported to
be a HIF-target gene in breast cancer,*’ although the reg-
ulation likely involves cell-type-specific components
since we found ROCK1 expression to be similar in VHL-
deficient CC-RCC and CC-RCC with re-introduced
VHL.> In addition, overexpression at the mRNA and
protein levels of upstream regulators of ROCK - Rho
GTPases RhoA and RhoC>® - occurs in breast, prostate,
lung, bladder, colon, ovarian, gastric, melanoma, and
pancreatic cancers.”’ While somatic mutations resulting
in increased Rho activity are rare,”* regulators of Rho,
guanine-nucleotide exchange factors (GEFs), GTPase-
activating proteins (GAPs) and guanine-nucleotide dis-
sociation inhibitors (GDIs), have been shown to be
deregulated in cancer’' contributing to the activity of the
Rho/ROCK pathway. Currently, a specific Rho GTPase
inhibitor, Cethrin, was developed for the management of
spinal cord injuries compatible with intrathecal deliv-
ery,” but feasibility of its systemic delivery needs evalua-
tion. RhoGTPases can also be targeted indirectly, e.g., by
statins (HMG-CoA Reductase inhibitors), which inhibit
Rho GTPase isoprenylation and translocation to the
plasma membrane,” although statins are far from being
specific toward Rho, and also inhibit Ras and Rac
GTPases dependent on isoprenylation.”* Together, these
data suggest that the Rho/ROCK pathway is active and
can be targeted in multiple cancer types.

Overall, ROCK and HIF co-activation frequently
occurs in several cancer types, suggesting that ROCK
inhibitors should be effective for targeting those cancers.
Accordingly, ROCK inhibitors have shown an anti-
cancer effect in breast,” prostate,*® ovarian,”® and mela-
noma®’ cancers both in vitro and in vivo in mouse mod-
els. Recently, ATI13148, a multi-kinase inhibitor
targeting ROCK, has shown an anti-cancer effect in
mouse models of breast,® prostate,58 lung,58 uterine,”®
gastric,”” and melanoma® types of cancer. Currently,
there is an ongoing phase I clinical trial (NCT01585701)
of AT13148 administered to breast, prostate, and ovarian
cancer patients, which will be evaluated for normal tissue
toxicity and possible anti-tumor response. It is likely that
the synthetic lethal interaction between ROCK inhibition
and HIF overactivation contributes to sensitivity of these
forms of cancer to ROCK inhibitors. Additional studies
are required to develop reliable markers for prediction of
ROCK inhibitor anti-tumor response.

In conclusion, the synthetic lethal interaction between
ROCK inhibition and HIF overactivation is important
since it justifies ROCK inhibitors as candidate therapeu-
tics for multiple forms of cancer. While ROCK inhibitors
represent good candidates for targeting hypoxic regions
of solid tumors, where HIFs are stabilized due to the lack
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of adequate vasculature and oxygen supply, ROCK
inhibitors are also expected to target cancers where HIFs
are overactivated by mutations in their upstream regula-
tors. It is also worth investigating which VHL mutations
can confer sensitivity to ROCK inhibitors to a degree
similar to VHL loss in CC-RCC, hemangioblastoma, and
pheochromocytoma. Since ROCKI1 is expressed in multi-
ple cancers, it represents a druggable molecule. Further
research is needed to evaluate the impact of the discov-
ered synthetic lethal interaction on sensitivity of other
forms of cancer besides CC-RCC to ROCK inhibitors;
and develop the plan for patient stratification into
ROCK inhibitor-sensitive and -insensitive groups.
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