
UCLA
UCLA Electronic Theses and Dissertations

Title
Non-linguistic Vocalization Recognition Based on Convolutional, Long Short-Term
Memory, Deep Neural Networks

Permalink
https://escholarship.org/uc/item/1pz29229

Author
Qiu, Liang

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pz29229
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Non-linguistic Vocalization Recognition Based on Convolutional, Long Short-Term

Memory, Deep Neural Networks

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Liang Qiu

2018

c© Copyright by

Liang Qiu

2018

ABSTRACT OF THE THESIS

Non-linguistic Vocalization Recognition Based on Convolutional, Long Short-Term

Memory, Deep Neural Networks

by

Liang Qiu

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lei He, Chair

Non-linguistic Vocalization Recognition refers to the detection and classification of non-

speech voice such as laughter, sneeze, cough, cry, screaming, etc. It could be seen as a

subtask of Acoustic Event Detection (AED). Great progress has been made by previous

research to increase the accuracy of AED. On the front end, multiple kinds of features

such as Mel-Frequency Cepstral Coefficients (MFCCs), Gammatone Cepstral Coefficients

(GTCCs) and many other hand-crafted features were explored. While on the back end,

models or methods such as Gaussian Mixture Models (GMMs), Hidden Markov Models

(HMMs), Bags-of-Audio-Words (BoAW), Support Vector Machine (SVM) and various types

of neural networks were experimented.

Recent researches on Automatic Speech Recognition (ASR) and Acoustic Scene Classifi-

cation (ASC) show the advantage of using Convolutional, Long Short-Term Memory, Deep

Neural Networks (CLDNNs) on audio processing tasks. In this thesis, I am building a non-

linguistic vocalization recognition system using CLDNNs. Log Mel-filterbank coefficients

are adopted as input features and data augmentation methods such as random shifting and

noise mixture are discussed. The built system is evaluated on a custom dataset collected

from several resources and tested for real time application. The performance of CLDNNs

for non-linguistic vocalization recognition is also compared with hybrid GMM-SVMs, Con-

volutional Neural Networks, Long Short-Term Memory and a fully connected Deep Neural

ii

Network trained on VGGish embeddings.

The results indicate that CLDNNs outperform the other models in classification precision

and recall. Visualization of CLDNNs are presented to help understand the framework. The

model is proved accurate and fast enough for real time applications.

iii

The thesis of Liang Qiu is approved.

Abeer A H Alwan

Song-Chun Zhu

Lei He, Committee Chair

University of California, Los Angeles

2018

iv

To my parents, teachers and friends

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview and Motivation . 1

1.2 Previous Work . 2

1.3 Datasets . 4

1.3.1 AudioSet . 5

1.3.2 Freesound Datasets . 5

1.3.3 TUT Database . 5

1.3.4 RWCP Sound Scene Database . 6

1.3.5 SSPNet Vocalization Corpus . 6

1.3.6 Custom Dataset . 6

1.4 Thesis Outline . 7

2 System Workflow and Implementation . 8

2.1 Acoustic Features . 8

2.2 Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Net-

works . 10

2.2.1 Input Layer . 11

2.2.2 Convolutional Layer . 12

2.2.3 Long Short-Term Memory . 15

2.2.4 Fully Connected Layer . 15

2.3 Data Preparation and CLDNN Training . 16

2.3.1 Data Augmentation . 16

2.3.2 Noise Robustness . 17

vi

2.3.3 Training Design . 17

2.4 Application in Real Time System . 18

2.5 Conclusion . 20

3 Performance Analysis and Comparison . 21

3.1 Hybrid Gaussian Mixture Models-Support Vector Machine 21

3.2 Single Type Neural Networks . 22

3.2.1 Convolutional Neural Network . 23

3.2.2 Long Short-Term Memory Network 24

3.3 VGGish . 26

3.4 Conclusion . 30

4 Summary and Future Work . 31

4.1 Conclusions . 31

4.2 Future work . 32

References . 33

vii

LIST OF FIGURES

2.1 Example log Mel-spectrograms . 10

2.2 The implemented CLDNN framework . 11

2.3 The input layer of CLDNN . 12

2.4 Magnitude spectrogram of laughter . 12

2.5 Log Mel-spectrogram of laughter . 12

2.6 MFCCs of laughter . 12

2.7 The convolutional layers of CLDNN . 13

2.8 The visualization of the first convolutional layer 14

2.9 The visualization of the second convolutional layer 14

2.10 The LSTM layers of CLDNN . 15

2.11 The fully connected layer of CLDNN . 16

2.12 Training and validation accuracy tracks of CLDNN 18

2.13 Training and validation cross entropy tracks of CLDNN 18

2.14 Histograms of some learned weights of CLDNNs 19

3.1 Training and validation accuracy tracks of CNN. 23

3.2 Training and validation cross entropy tracks of CNN. 23

3.3 Training and validation accuracy tracks of LSTM. 25

3.4 Training and validation cross entropy tracks of LSTM. 25

3.5 The VGGish-DNN framework. 28

viii

LIST OF TABLES

2.1 Number of samples of each class in three sets 17

2.2 Noise data type and duration . 17

2.3 Final testing confusion matrix of CLDNN. Note that rows are true classes and

columns are predicted classes. 19

2.4 Final testing precision, recall and F1 score of CLDNN. 19

3.1 Final testing confusion matrix of GMM-SVM. Note that rows are true classes

and columns are predicted classes. 22

3.2 Final testing precision, recall and F1 scores of GMM-SVM. 22

3.3 Final testing confusion matrix of CNN. Note that rows are true classes and

columns are predicted classes. 24

3.4 Final testing precision, recall and F1 scores of CNN. 24

3.5 Final testing confusion matrix of LSTM. Note that rows are true classes and

columns are predicted classes. 25

3.6 Final testing precision, recall and F1 scores of LSTM. 26

3.7 Final testing confusion matrix of VGGish. Note that rows are true classes

and columns are predicted classes. 29

3.8 Final testing precision, recall and F1 of VGGish. 29

ix

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Lei He for his support and guidance throughout

this research. This thesis would not have been possible without the efforts he put on me. I

also want to express my appreciation to Prof. Abeer Alwan and students in UCLA Speech

Processing and Auditory Perception Laboratory. They provided very valuable suggestions

when I was doing this research. I want to thank Prof. Song-Chun Zhu for his significant

suggestions on applying this research on practical applications. I want to thank my friends

Wanyi Zhang, Sahil Jayaram, Nelson Solano, Ning Zhang, Nishant Shukla, Rui Fang. Last

but not the least, I want to thank my family for their support.

x

CHAPTER 1

Introduction

1.1 Overview and Motivation

Non-linguistic Vocalization Recognition (NVR) is defined as the detection and analysis of

non-speech human voice such as laughter, sneeze, yawn, etc, based on acoustic features.

It can be seen as a subtask of Acoustic Event Detection (AED), which is defined as the

recognition of any general individual sound events in audio, requiring estimation of onset

and offset for distinct sound event instances and identification of the sound [MHV16].

Non-linguistic Vocalization Recognition have shown their application on multiple tasks

such as emotion detection, audio segmentation, multimedia content retrieval, and acoustic

surveillance [TGP16]. While speech is arguably one of the most important types, non-

linguistic vocalization provides important information as well. For instance, screaming usu-

ally signifies scare and the emotion state can be labeled as negative. A response like ”It’s

okay.” might be made by a dialog manager. Laughter, on the other hand, can be labeled

as positive. Response like ”What’s so funny?” might be appropriate. Additionally, cough-

ing may indicate a negative status, and the temperature should be adjusted in a smart

home environment [LL09]. Besides the emotion detection, NVR is also a necessary part of

a hierarchical audio classification and recognition system. Such a system firstly classifies

audio data into speech, non-speech, and environment sounds and NVR will further classify

the non-speech signals into different categories. Under this scheme, the users of any Auto-

matic Speech Recognition (ASR) services can reduce unnecessary data transmission by only

streaming the speech audio data to the service providers, thus save them a lot of money each

year. What’s more, because NVR model doesn’t need a lexicon model and a language model

1

for decoding, it’s usually much smaller compared to a normal ASR system so that it could

be deployed on device, working as a pre-filter for the downstream sound processing modules.

However, compared to the great progress researchers have made on speech recognition in

the past sixty years, less work has been done on non-linguistic vocalization analysis. In light

of the emerging deep neural networks powered by faster GPUs, modern ASR systems such

as Google Assistant, Apple Siri or Amazon Alexa have very decent recognition accuracies

especially in less noisy environment, but still none of them have the functionality to recognize

non-speech vocalization right now. Part of the reasons is the lack of large, publicly available

datasets. It prevents researchers from trying deep neural networks on this problem and the

emergence of a more active community. Furthermore, distinguishing non-speech sound often

requires analyzing an extended time period due to the lack of a clear sub-word unit [TGP16].

Unlike in spoken language, sound events are more random, both periodic and aperiodic, with

less well defined occurrence patterns. These factors make the task of sound event detection

and recognition inherently more difficult than ASR [Zha16]. So even though some features

or ideas could be borrowed from normal speech recognition, this problem still needs further

analysis and exploration. This thesis is aimed to: (1) start the process of building a large-

scaled, fully-verified database of non-linguistic sounds, (2) introduce the implementation

details and analysis of a NVR system based on Convolutional, Long Short-Term Memory,

fully connected Neural Networks (CLDNNs).

1.2 Previous Work

In this section, I will introduce some previous work on non-linguistic vocalization recognition.

Some of them are actually about acoustic event detection. I include them because NVR

and AED almost share the same approaches. These previous researches vary wildly on the

selection of acoustic features, the methods to aggregate frame-by-frame features and the

classification models.

Traditional methods for NVR borrow techniques from normal ASR directly. For example,

Mel-Frequency Cepstral Coefficients (MFCCs) were modeled with Gaussian Mixture Models

2

(GMMs) or Support Vector Machines or a fusion of both [Jan13] [TN06] [SID12]. There is

also research trying to integrate such NVR into a large vocabulary ASR system by divid-

ing non-speech voice into sub-word units [STB12]. But directly applying ASR methods to

NVR task ignored the difference between speech and non-speech voice, thus led to inferior

performance.

Researchers then turned to find more discriminative and robust features which are suit-

able for NVR task. Most of them were hand-crafted and derived from low-level descriptors

such as MFCCs, filter banks or time-frequency descriptors. For instance, [VA12] found that,

with a similar computational cost, the GTCCs are more effective than MFCCs in represent-

ing the spectral characteristics of non-speech signals, especially at low frequencies. [UBC12]

proposed a new 2 dimensional feature set that can achieve a higher accuracy rate together

with MFCCs than using MFCCs alone.

Before choosing an appropriate classification model, another big issue is how to aggregate

these frame-by-frame descriptors to have a representation of the entire acoustic events that

usually last for seconds. One way is to use Gaussian Mixture Models as I mentioned above.

Another common method is the Bag of Audio Words (BoAW) approach [PA12], which is

a mimic to the well established techniques for classifying text documents (bag-of-words)

and image documents (bag-of-visual-words). During the training process of BoAW, all the

training feature vectors are clustered (a common choice of the clustering algorithm is k-

means) and the centroids of the resulting clusters are taken as the ”words” to create a

codebook. Then each feature vector can be replaced by a single index representing the

nearest codeword to this vector (vector quantization). Then a Bag of Audio words is simply

the histogram of all the codewords in a given file. These two aggregation methods, however,

both discard the temporal order of the frame level features, causing considerable information

loss [TGP16].

Within the past few years, inspired by the success of being applied to normal speech pro-

cessing tasks, deep neural networks have also been introduced to this task and provide a new

path to solve this problem. It seems when trained with sufficient data, we can rely on this

powerful model to infer discriminative relationships from less refined but higher dimension-

3

ality input features. And plenty of work has achieved state-of-the-art robust performance

when using higher dimensionality representations such as auditory images, spectrogram im-

age features and spectrogram-derived sub-band power distribution along with deep neural

networks. Also, using spectrogram image features makes it easy to directly borrow ideas

from image processing area. For instance, [Zha16] used spectrogram image feature (SIF)

and Concolutional Neural Networks (CNN). But considering most people don’t have access

to a large amount of data to train a neural network based on raw spectrogram image fea-

tures, many neural network models are still based on MFCCs, which have become the de

facto standard for audio parameterization.

There are so many tricks that we can play with when dealing with neural networks:

topological structures, learning algorithms, data augmentation strategies, etc. Any of these

factors can lead to a different behavior of neural networks and it still leaves an open problem

how to find the optimal neural network for a specific problem. Here I introduce three

representative works that I have found. [TGP16] introduced a Convolution Neural Network

(CNN) with a large input field. They used a novel data augmentation method to introduce

data variation and outperformed BoAW and classical CNNs. [Zha16], opposing to deep CNN

architectures with multiple convolutional and pooling layers topped up with multiple fully

connected layers, proposed a network consisting of only three layers: convolutional, pooling,

and softmax layer. The varying-size convolutional filters at the convolution layer and 1-

max pooling scheme at the pooling layer distinguishes it from other previous work. And

[PHV16] used log Mel frequency bands as features and presented an approach to polyphonic

sound event detection in real life recordings based on Bidirectional Long Short-Term Memory

(BLSTM) Recurrent Neural Networks (RNNs) and achieved state-of-the-art performance in

2016.

1.3 Datasets

In this section, I will introduce some useful datasets for the NVR task. I will also talk about

the custom dataset I collected from part of these public datasets and audios that I recorded.

4

1.3.1 AudioSet

AudioSet [GEF17] consists of an expanding ontology of 632 audio event classes and a col-

lection of 2,084,320 human-labeled 10-second sound clips drawn from YouTube videos. The

ontology is specified as a hierarchical graph of event categories, covering a wide range of

human and animal sounds, musical instruments and genres, and common everyday environ-

mental sounds. AudioSet provides a common, realistic-scale evaluation task for audio event

detection. 128 dimensional embedding vectors of each clip trained by VGGish model was

also included when AudioSet was released. But the shortcoming of this dataset is that many

of the audios are not pure and clean. The annotators only verified the presence of sounds

they heard within YouTube segments and there is usually other kinds of noise or sounds

overlapped on the labeled sound, which makes it hard to use.

1.3.2 Freesound Datasets

Freesound Database (FSD) [FPF17] includes a variety of everyday sounds, from human and

animal sounds to music and sounds made by things, all under Creative Commons licenses.

It’s also organized following the AudioSet Ontology, but what makes it a better choice than

AudioSet is that most of the audio data is clean and contains single events.

1.3.3 TUT Database

TUT Sound Events 2016 [MHV16] contains annotations for individual sound events, specially

created for Sound Event Detection. High quality binaural audio was recorded, with an

average duration of 3-5 minutes per recording, considering this is the most likely length that

someone would record in everyday life. The equipment used for recording this specific dataset

consists of binaural Soundman OKM II Klassik/studio A3 electret in-ear microphones and

Roland Edirol R09 wave recorder using 44.1 kHz sampling rate and 24 bit resolution. Nouns

were used to characterize each sound source, and verbs to characterize the sound production

mechanism, whenever this was possible. Because of the overlapping sounds, each recording

was listened multiple times to verify.

5

TUT Sound Events 2016 dataset consists of two common everyday environments: one

outdoor situation (residential area) and one indoor situation (home). In residential area,

classes include (object) banging, bird singing, car passing by, children shouting, people

speaking, people walking, wind blowing; In home situation, classes include (object) rustling,

(object) snapping, cupboard, cutlery, dishes, drawer, glass jingling, object impact, people

walking, washing dishes, water tap running.

1.3.4 RWCP Sound Scene Database

The RWCP Sound Scene Database [NHA00] includes non-speech sounds recorded in an

anechoic room, reconstructed signals in various rooms, impulse responses for a microphone

array, speech data recorded with the same array, and recordings of background noises. It

is intended for use when simulating sound scenes. It was developed by the Real Acoustic

Environments Working Group of the Real World Computing Partnership (RWCP). The data

was recorded from 1998 to 2000.

1.3.5 SSPNet Vocalization Corpus

The SSPNet Vocalization Corpus [SSB13] includes 2763 audio clips (11 seconds each) con-

taining at least one laughter or filler instance. Overall, the corpus involves 120 subjects (63

females and 57 males). The clips are extracted from phone calls where two fully unacquainted

speakers try to solve the Winter Survival Task.

1.3.6 Custom Dataset

Considering the lack of a large, open, fully-verified database for Non-linguistic Vocalization

Recognition and Acoustic Event Detection, we started to build our own dataset containing a

number of sound classes organized by AudioSet Ontology. The data is stored in a MongoDB

database and a web based interface was created to view and manage the database content.

Starting from human voice in household situation, we collect data from online resources

mentioned above and also record some ourselves. For now, we have 1,000 clips (1 second

6

each) for three classes: laughter, sneeze and speech. Most of them are from AudioSet and

Freesound Datasets. Each clip has been listened and verified the presence of the labeled class.

We made sure two classes of sounds wouldn’t appear in a single clip. I also collected some

noise data under different conditions such as doing the dishes, cart miaow, biking, water tap

running, pink noise and white noise. During training, the noise data will be randomly mixed

with the clean data to make the NVR system more robust in practice.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 describes the workflow and implementation details of the Non-linguistic Vo-

calization System based on CLDNNs.

Chapter 3 presents the comparison of CLDNNs and other popular models for NVR tasks

such as GMM-SVMs, CNN, LSTM and a DNN model trained on VGGish embeddings.

Chapter 4 summarizes the key results and provide directions for future work.

7

CHAPTER 2

System Workflow and Implementation

2.1 Acoustic Features

Feature extraction relying on signal processing techniques plays an important role in speech/non-

speech related systems. The feature selection usually depends on the targeted tasks and

appropriate features will significantly simplify the training process of downstream classifiers

and improve the final performance. Mel-Frequency Cepstral Coefficients (MFCCs) were de

facto standard features for a long time. But more recently, in light of the emergence of deep

neural networks, filter banks are becoming increasingly popular. Computing filter banks and

MFCCs involve almost the same procedure. I will illustrate this procedure step by step while

including some of my implementation details.

The first step is to let the signal go through a pre-emphasis filter to amplify the high

frequencies, which usually have smaller magnitudes compared to lower frequencies. The

pre-emphasis filter can be a first-order filter described by the following equation:

y(t) = x(t)− αx(t− 1)

where a typical value for α is 0.97.

Then, we frame the signal into short-time signals. We do this based on the assumption

that frequencies in a signal are stationary over a very short period of time. In my system,

I chose a frame size of 25 ms and a stride of 10 ms which are typical choices in many ASR

systems. Afterwards, a Hamming window function is applied to each frame in order to reduce

spectral leakage. A hamming window has the following form:

w[n] = 0.54− 0.46cos(
2πn

N − 1
)

8

where, 0 ≤ n ≤ N − 1, N is the window length.

Subsequently, we do an N-point Short-Time Fourier Transform (STFT) on each frame

to get the magnitude spectrogram of the original signal. I selected an N of 512 to meet

the requirement that N should not be smaller than the frame size (400 samples when the

sampling rate is 16 kHz) to avoid time aliasing. The power spectrum can also be computed

using the following equation:

P =
|STFT (xi)|2

N

where, xi is the ith frame of signal x. We can either use a magnitude spectrogram or a power

spectrogram; each has its pros and cons. In my case, I used magnitude spectrograms.

Finally, we can compute the filter banks by applying triangular filters on the Mel-scale

magnitude spectrogram. The Mel-scale is a common re-weighting of the frequency dimen-

sion. It results in a lower dimensional and more perceptually-relevant representation of the

audio by being more discriminative at lower frequencies and less discriminative at higher

frequencies. Conversion from Hertz (f) to Mel (m) can use the following equations:

m = 2595log10(1 +
f

700
)

It’s also a common practice to compress the Mel-filterbank coefficients using logarithm, to

balance the importance of detail in low and high energy regions.

It turns out that the log-Mel filterbank coefficients are usually highly correlated, which

prevented it from being directly used by some machine learning algorithms. One solution

is applying Discrete Cosine Transform (DCT) to decorrelate the coefficients and that leads

to the Mel-Frequency Cepstral Coefficients (MFCCs). MFCCs, along with Gaussian Mix-

ture Models-Hidden Markov Models became the standard method for many speech tasks for

years. However, DCT seems an unnecessary operation for two reasons. First, it’s a linear

transformation, which would discard some information in highly non-linear speech signals.

Second, applying DCT is only motivated by the limitation of some machine learning algo-

rithms, while all the steps to calculate the log Mel-filterbank coefficients are motivated by the

nature of speech signal or human perception characteristics. So when deep neural networks

9

become more and more mature recently, its robustness to highly correlated input allow us

to use the log Mel-filterbank coefficients directly.

Somebody may even question whether the Fourier Transform is necessary. Since we

assume the signal to be stationary within a very short time window, the Fourier transform

would not discard too much information. Also, training classifiers on raw signals in the time

domain usually requires more data to achieve a desired better performance. Considering my

training data is limited, I chose 64 log Mel-filterbank coefficients as the acoustic features for

CLDNNs and compared with a hybrid GMM-SVM classifier using 13 dimensional MFCCs.

Example log Mel-spectrograms of laughter, sneeze and speech are shown in Figure 2.1.

(a) Laughter (b) Sneeze (c) Speech

Figure 2.1: Example log Mel-spectrograms

2.2 Convolutional, Long Short-Term Memory, Fully Connected

Deep Neural Networks

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) and Deep Neu-

ral Networks (DNNs) are complementary in their modeling capabilities, as CNNs are good

at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are

appropriate for mapping features to a more separable space [SVS15]. Some previous works

have shown the superiority of CLDNNs on Acoustic Scene Classification [GXL17]. In this

project, I apply CLDNNs to Non-linguistic Vocalization Recognition and compare its per-

formance with other popular models. The overall architecture of the CLDNN I implemented

10

is shown at Figure 2.2.

Figure 2.2: The implemented CLDNN framework

2.2.1 Input Layer

To utilize the contextual information around short time analysis frames and generate 2-D

feature maps for CNN layers, I put 32 frames together into an input mesh every 8 frames.

Notice that this input mesh is different from the short time analysis frame (25 ms with 10

ms stride) used to calculate the STFT. Each input mesh is composed out of a 64 dimensional

log Mel-filterbank coefficient vector of frame i concatenated with its 31 contextual vectors.

Therefore for each 1 second segment (sampled at 16 kHz), we will have (1000−25)/10+1 = 98

11

frames, (98 − 32)/8 + 1 = 9 input meshes and totally generate 9 64 ∗ 32 2-D feature maps,

which will be input into the network. The input layer is illustrated by Figure 2.3.

Figure 2.3: The input layer of CLDNN

And the magnitude spectrogram, log Mel-spectrogram and MFCCs of an example laugh-

ter waveform are presented at Figure 2.4, 2.5, 2.6, respectively.

Figure 2.4: Magnitude spec-

trogram of laughter

Figure 2.5: Log Mel-

spectrogram of laughter

Figure 2.6: MFCCs of laugh-

ter

2.2.2 Convolutional Layer

To remove speaker variation and increase robustness, state-of-the-art systems usually adopt

speaker adaptation techniques such as vocal tract length normalization (VTLN) or feature-

12

space maximum likelihood linear regression (fMLLR). In this project, we use a 2 layer con-

volutional neural network to do the similar work. Convolution neural networks, which could

remove variation in the input feature mesh, are supposed to learn speaker adapted trained

features. The mathematical expression of CNN is as follow: suppose we use an m×m filter

ω, the output of the convolutional layer would be:

ylij = ReLU(xlij)

xlij =
m−1∑
a=0

m−1∑
b=0

ωaby
l−1
(i+a)(j+b)

where, l is the index of the layer.

Figure 2.7: The convolutional layers of CLDNN

As shown in Figure 2.7, the first convolutional layer uses 64 filters of size 5*5, followed

by a max pooling layer of size 2*2 and stride 2*2. The second layer uses 64 filters of size 3*3.

All the strides for the convolutional layers are set to 1 and a dropout rate of 0.5 is used to

prevent overfitting. The output of the second layer is then flattened and passed into a fully

connected layer with 256 nodes, which could be seen as the embedding representation of the

input mesh learned by CNN. The output of the first and second CNN layer are visualized in

Figure 2.8 and Figure 2.9.

13

Figure 2.8: The visualization of the first convolutional layer

Figure 2.9: The visualization of the second convolutional layer

14

2.2.3 Long Short-Term Memory

After the frequency modeling is done by the CNN, the output of it is then passed to Long

Short-Term Memory layers, which have good capability for temporal modeling. The math-

ematical expression of LSTM is as follow:

fk = σ(Wf · [hk−1, xk] + bf)

ik = σ(Wi · [hk−1, xk] + bi)

ok = σ(Wo · [hk−1, xk] + bo)

C̃k = tanh(Wc · [hk−1, xk] + bc)

Ck = fk ∗ Ck−1 + ik ∗ C̃k

hk = ok ∗ tanh(Ck)

where, Ck is the cell state, fk is the forget gate that controls which information we are going

to throw away from the last cell state, ik is the input gate that decides which information

we are going to store in the cell state, ok is the output gate that decides what we are going

to output.

For this project, I use 2 LSTM layers, where each layer has 256 hidden nodes, and they

are illustrated by Figure 2.10.

Figure 2.10: The LSTM layers of CLDNN

2.2.4 Fully Connected Layer

Finally, the output of the LSTM layers is passed to a fully connected layer, which transforms

the tensors into a more separable space. In my project, I use one fully connected layer to

15

map the output of the LSTM layers to the non-linguistic vocalization classes. A softmax

layer is also applied to calculate the probability distribution.

yli = softmax(xli)

xli =
∑
j

ωjiy
l−1
j

where, l is the index of the layer and i is the index of the non-linguistic vocalization class.

Figure 2.11: The fully connected layer of CLDNN

2.3 Data Preparation and CLDNN Training

2.3.1 Data Augmentation

To estimate how accurately the trained model will perform in practice, the collected dataset

is divided into three sets: training set (80%), validation set (10%) and testing set (10%).

Each audio segment is put into either of these three sets according to the hash value of its file

name. This makes it less likely that validation or testing samples will be reused in training

during the long run. I tried to put samples recorded under the same condition or from the

same person into the same set so that the model would not learn from the environment or

speaker information. Each set contains roughly the same proportions of class labels except

silence and the details are reported in Table 2.1.

Also, in real situation, an acoustic event could occur at any point within the 1 second

segment. So during training, I randomly shift the audio segment with a time range of 100

milliseconds and pad the shifted segment with zeros.

16

Laughter Sneeze Speech Silence Total

Training 834 815 860 251 2760

Validation 98 115 91 31 335

Testing 111 113 93 33 350

Table 2.1: Number of samples of each class in three sets

2.3.2 Noise Robustness

To increase the noise robustness of the system, I also collected noise data under multiple

conditions and mix them with clean training data with a random SNR from infinity to 3 dB.

The statistics of the noise data are reported in Table 2.2.

Type Length(s)

Doing the dishes 95

Cat miaowing 61

Biking 61

Running tap 60

Pink noise 61

White noise 60

Table 2.2: Noise data type and duration

2.3.3 Training Design

The project is implemented using Tensorflow framework. An Adam optimizer is used for the

back propagation. The learning rate is set to 0.001 for the first 2000 steps and 0.0001 for

the later 1000 steps. Every 400 steps, the model will be validated on the validation dataset

and the learned weights are saved every 100 steps. The batch size is set to 50. I trained

the model on a Dell XPS 8920 Desktop with Intel Core i7-7700 CPU and NVIDIA GeForce

GTX 1080 GPU. The training and validation accuracy and cross entropy tracks are shown in

17

Figure 2.8 and Figure 2.9, where orange represents training and blue represents validation.

From the figures, we can tell that with an Adam optimizer, the weights learning process

converges quickly.

Figure 2.12: Training and validation accuracy tracks of CLDNN

Figure 2.13: Training and validation cross entropy tracks of CLDNN

The histograms of some of the learned weights are shown in Figure 2.10. The final testing

confusion matrix, precision, recall and F1 score are reported in Table 2.3 and Table 2.4.

2.4 Application in Real Time System

I also wrote a Remote Procedure Call (RPC) server with Apache Thrift, which is a set of code

generation tools that allows developers to build RPC clients and servers that communicate

seamlessly across programming languages. So I can run the trained model as a service and

18

Figure 2.14: Histograms of some learned weights of CLDNNs

Laughter Sneeze Speech Silence

Laughter 99 11 1 0

Sneeze 1 111 1 0

Speech 0 3 90 0

Silence 0 0 0 33

Table 2.3: Final testing confusion matrix of CLDNN. Note that rows are true classes and

columns are predicted classes.

Precision Recall F1

Laughter 0.99 0.89 0.94

Sneeze 0.89 0.98 0.93

Speech 0.98 0.97 0.97

Silence 1 1 1

Average 0.97 0.96 0.96

Table 2.4: Final testing precision, recall and F1 score of CLDNN.

do inference in real time. I used an Android App to stream audio data to the server and

estimate the inference latency. On the same Dell XPS 8920 Desktop, it takes approximately

8 milliseconds to classify a one-second clip. So we can conclude the latency is tolerable for

a real time system in practical use.

19

2.5 Conclusion

In this chapter, I talked about the reason I chose log Mel-filterbank coefficients as the input

acoustic features. With neural networks which are less susceptible to highly correlated

features, the DCT operation seems an unnecessary step. I also introduced the concept and

implementation details of the CLDNN framework. Model architecture and visualization

are presented to help understand the framework. During the development, I found data

augmentation, noise robustness and training design are of great significance. So I did a

number of experiments with different settings and hyper-parameters, and proved the model’s

practicability in a real time system.

20

CHAPTER 3

Performance Analysis and Comparison

In the previous chapter, I talked about the implementation and training process of a CLDNN

system for Non-linguistic Vocalization Recognition. To compare the performance of CLDNNs

with other popular models and show its superiority, I also constructed hybrid Gaussian

Mixture Models-Support Vector Machine (GMM-SVM), single type neural networks such

as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) and Deep

Neural Network with pre-trained VGGish embeddings. I will introduce them one by one and

compare their performance with CLDNNs.

3.1 Hybrid Gaussian Mixture Models-Support Vector Machine

I first implemented a hybrid Gaussian Mixture models-Support Vector Machine [Jan13].

13 dimensional MFCCs are first calculated using magnitudes of the Short-Time Fourier

Transform with a window size of 25 milliseconds, a window stride of 10 milliseconds and a

periodic Hamming window. So for each one second sample, we will have a 13*98 dimensional

feature map. Each dimension of the MFCCs is then modeled using a Gaussian Mixture

Model with N components. A supervector is thus constructed by stacking the mean and

covariance values of the Gaussians. So with 13 dimensional MFCCs and if 6 Gaussians are

used, 13*6*2=156-elements long supervectors will be created and the SVMs are supposed

to operate in 156-dimensional space. I did a grid search of the component number, kernel

type (linear, polynomial, radial basis function and sigmoid) and regularization parameter

using scikit learn SVM package. In Table 3.1 and Table 3.2, I report the best training result

with a component number of 6, using linear SVM kernel and a regularization (C) of 0.1.

21

Laughter Sneeze Speech Silence

Laughter 54 10 31 16

Sneeze 3 43 26 41

Speech 0 3 90 0

Silence 0 0 0 33

Table 3.1: Final testing confusion matrix of GMM-SVM. Note that rows are true classes and

columns are predicted classes.

Precision Recall F1

Laughter 0.95 0.49 0.64

Sneeze 0.77 0.38 0.51

Speech 0.61 0.97 0.75

Silence 0.37 1 0.54

Average 0.67 0.71 0.61

Table 3.2: Final testing precision, recall and F1 scores of GMM-SVM.

From the result, we can find that it’s very likely for GMM-SVM to get confused between

sneeze and silence. It’s understandable since most part of the sneeze samples are silence and

GMM-SVM doesn’t have the capability to model the temporal information.

3.2 Single Type Neural Networks

As I talked in the last chapter, CNNs have good frequency variation modeling capability

while LSTMs provide good temporal modeling. To prove their complementarity, I also im-

plemented two single-type neural networks, Convolutional Neural Network and Long Short-

Term Memory for the NVR task respectively. The inputs to the CNN and the LSTM are

both the 64*98 dimensional log Mel-spectrograms.

22

3.2.1 Convolutional Neural Network

In light of the success of CNN in image processing, many researchers have tried to prove

its efficiency in Acoustic Event Detection [ZMS15] [TGP16]. The constructed CNN has two

convolutional layers. The first layer has 32 filters with size of 5*5 and stride 1*1, followed

by a max pooling layer of size 2*2 and stride 2*2. The second layer has 64 filters with size

of 3*3 and stride 1*1 as well.

Figure 3.1: Training and validation accuracy tracks of CNN.

Figure 3.2: Training and validation cross entropy tracks of CNN.

A dropout rate of 0.5 is used to prevent overfitting and the activation function is ReLU.

The final fully connected layer has 256 hidden nodes. The training and validation accuracy

and cross validation tracks are shown as Figure 3.1 and Figure 3.2 respectively, where orange

represents training and blue represents validation.

23

From the tracking logs, we can see CNN seems getting overfitting on the training set but

can’t achieve the same accuracy on the validation set. The final testing confusion matrix

and the precision/recall/F1 scores are reported in Table 3.3 and Table 3.4. We can see that

though CNN is better than GMM-SVM, it’s still wore than CLDNN.

Laughter Sneeze Speech Silence

Laughter 37 52 22 0

Sneeze 0 110 3 0

Speech 0 11 82 0

Silence 0 0 0 33

Table 3.3: Final testing confusion matrix of CNN. Note that rows are true classes and

columns are predicted classes.

Precision Recall F1

Laughter 1 0.33 0.5

Sneeze 0.64 0.97 0.77

Speech 0.77 0.88 0.82

Silence 1 1 1

Average 0.85 0.80 0.77

Table 3.4: Final testing precision, recall and F1 scores of CNN.

3.2.2 Long Short-Term Memory Network

Recurrent Neural Networks (RNNs) are good at modeling the temporal information that is

naturally present in audio. Long Short-Term Memory, one variant of RNN, are capable to

handle the ”long-term dependencies” problem of normal RNNs. In this experiment, 3 layer

Long Short-Term Memory with 64 nodes each are constructed. A dropout rate of 0.5 is used

to prevent overfitting. And the last step output of the LSTM is mapped directly to the

non-linguistic vocalization classes using a fully connected layer. The training and validation

24

accuracy and cross validation tracks are shown as Figure 3.3 and Figure 3.4 respectively.

Figure 3.3: Training and validation accuracy tracks of LSTM.

Figure 3.4: Training and validation cross entropy tracks of LSTM.

Laughter Sneeze Speech Silence

Laughter 89 15 0 7

Sneeze 0 110 3 0

Speech 0 2 91 0

Silence 0 0 0 33

Table 3.5: Final testing confusion matrix of LSTM. Note that rows are true classes and

columns are predicted classes.

25

Precision Recall F1

Laughter 1 0.80 0.89

Sneeze 0.87 0.97 0.92

Speech 0.97 0.98 0.97

Silence 0.83 1 0.90

Average 0.91 0.94 0.92

Table 3.6: Final testing precision, recall and F1 scores of LSTM.

The testing confusion matrix and the precision/recall/F1 scores are reported in Table 3.5

and Table 3.6. We can find that though it’s still worse than CLDNN, LSTM can actually

achieve the closest performance than other models being compared.

3.3 VGGish

VGGish is a variant of the VGG model released by Google’s Sound Understanding team

[HCE17]. The goal was to classify the soundtracks of a dataset of 70M training videos (5.24

million hours) with 30,871 video-level labels (YouTube-100M). Various CNN architectures

such as fully connected Deep Neural Networks (DNNs), AlexNet, VGG, Inception, and

ResNet were examined. They found that a model using embeddings from these classifiers

did much better than raw features on the AudioSet [GEF17] Acoustic Event Detection

classification task. So when releasing the initial AudioSet, they included 128-dimensional

embeddings of each AudioSet segment produced from a VGG-like audio classification model

called VGGish. Besides the VGGish definition, they also published supporting code to

extract input features for the model from audio waveforms and to post-process the model

embedding output into the same format as the released embedding features. For performance

comparison with CLDNNs, I utilized these pre-trained embeddings as training data and

input them into a DNN classifier for Non-linguistic Vocalization Recognition. The details of

VGGish and my implemented model are as follow.

The feature extraction part is almost the same as what I did in CLDNNs. Each audio is

26

10 second long and re-sampled to 16 kHz. A log Mel-spectrogram is then calculated using

magnitudes of the Short-Time Fourier Transform with a window size of 25 milliseconds,

a window stride of 10 milliseconds, a periodic Hanning window and 64 Mel bins covering

the range 125-7500 Hz. The log Mel-spectrogram of the 10 second audio waveform is then

framed into non-overlapping samples of 960 milliseconds, where each example covers 64*96

log Mel-filterbank coefficients. Each sample will inherit the labels from the 10-second parent

waveform. This causes the problem that many of the individual samples might not be

informative about the labels and I will talk about this later.

VGGish has four groups of convolutional layers and they are stacked together in order.

The first group and second group both have a single convolution layer with 64 filters and 128

filters, respectively. The third group has 2 convolutional layers with 256 filters each. The

forth group has 2 convolutional layers with 512 filters each. All these filters have a size of

2*2 and stride 1*1. Each group of convolutional layers is followed by a max pooling layer of

size 2*2 and stride 1*1. The output of the last max pooling layer is then input into two fully

connected layers with 4096 hidden nodes each. Subsequently, the tensors are mapped to 128-

dimensional embedding vectors. Finally, these embeddings are post-processed by applying

a Principle Component Analysis (PCA) transformation as well as quantization to 8 bits per

embedding element. For Non-linguistic Vocalization Recognition, I put the embeddings into

a fully connected layer and predict the sound classes. The overall architecture of the DNN

model using VGGish embeddings is illustrated by Figure 3.5.

The fully connected layer is then trained on the released pre-trained embeddings of Au-

dioSet segments. Notice that, in AudioSet, each audio is given multiple labels, which is

known as polyphonic event detection. To be consistent with the previous settings and also

simplify the problem, I randomly choose one of the labels for each segment. I use a batch

size of 70 and train the model for 30000 epochs using an Adam optimizer with a learning

rate of 0.001. During testing, for fair comparison, I use the released code to extract features

from the same testing set used for CLDNNs. The testing result is shown by Table 3.7 and

Table 3.8.

It’s not surprising that training using AudioSet VGGish embeddings doesn’t provide

27

Figure 3.5: The VGGish-DNN framework.

a good result. First, it turns into a transfer learning problem when we train the model on

AudioSet embeddings and test on my own dataset. Second, in AudioSet, audio waveforms are

labeled when that sound class is proved presence by the annotators. But it’s not guaranteed

28

Laughter Sneeze Speech Silence

Laughter 42 15 44 10

Sneeze 3 77 3 30

Speech 16 3 70 4

Silence 0 7 0 26

Table 3.7: Final testing confusion matrix of VGGish. Note that rows are true classes and

columns are predicted classes.

Precision Recall F1

Laughter 0.69 0.39 0.49

Sneeze 0.75 0.68 0.72

Speech 0.60 0.75 0.67

Silence 0.37 0.79 0.50

Average 0.60 0.65 0.59

Table 3.8: Final testing precision, recall and F1 of VGGish.

that each segment has only one class of sound and in most cases multiple kinds of sounds

overlap. As I mentioned above, each of the 10 second audio is divided into non-overlapping

960 ms frames and each frame inherits the label of its parent video. This obviously will result

in that many of the individual segments are actually uninformative about the labels. For

example, for a 10 second segment labeled as laughter, several of the 10 samples framed from

the segment might be silence, speech or any other sound classes. Even within the sample

when laughter actually occurs, background noise such as people chatting with each other or

cars passing by can appear and we have no control over it.

Of course, we can borrow the idea from the usage of GloVe word embeddings in Natural

Language Processing. VGGish weights will only be used for initialization and they can

be trained together with the downstream classifier on raw AudioSet data. However, that

limits our model must have the same topological structure as the VGGish at the bottom

29

and we need to meet the constraint that each sample should be 0.96 second long and the

embedding size should be 128. To customize or modify the model a little bit, we must

retrain it on YouTube-100M which could take weeks on several GPUs. Also for me, instead

of using a large scale but crude dataset like AudioSet, I prefer building a dataset from clean,

fully verified audio data and mix them with noise data when I want to increase the noise

robustness.

3.4 Conclusion

In this chapter, I compared the performance of CLDNN with other popular models and

proved the superiority of CLDNN on the NVR task. Among the models I constructed,

SVM-GMM takes shortest time to train but it requires all the training data be read into the

memory. While for neural networks, training data can be fed using mini batches. What’s

more, GMM-SVM only provides an average precision of 0.67 and an average recall of 0.71,

which is far from practical usage. Compared with single-type neural networks, LSTMs

achieve the closest performance as CLDNN. It makes sense because of LSTM’s capability

to model temporal information. The improvement of CLDNN over LSTMs also prove the

complementarity between CNNs and LSTMs. I also tried to train a DNN model on the

embeddings pre-trained using VGGish on a large scale dataset for soundtrack classification.

But the result was not good because of the existence of noise and multiple kinds of sounds

in the data samples.

30

CHAPTER 4

Summary and Future Work

4.1 Conclusions

This thesis extends the previous research on Non-linguistic Vocalization Recognition and

Acoustic Event Detection. CLDNN, a combination of three types of neural networks, was

constructed and evaluated on a dataset with samples from various resources.

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) and Deep

Neural Networks (DNNs) are shown complementary in their modeling capabilities. According

to my experiments, the CLDNN classifier got very high precision and recall on the collected

dataset after a few thousand steps’ training. Multiple data augmentation techniques were

applied to improve the model robustness. To test the model’s practical usage, it was also

run as part of a real time system. In general, the non-linguistic vocalization classifier based

on CLDNN is accurate and fast.

Comparison between CLDDN and other popular models showed the superiority of CLDNN.

GMM-SVM is easy to train but it easily get confused between sneeze and silence because

it has no capability to model temporal information. LSTM did fairly well and achieved the

closest performance as CLDNN. But with CNN, CLDNN can rely on it to learn speaker

adapted features, thus remove the feature variance. A DNN classifier using pretrained VG-

Gish embeddings of AudioSet was also tested but the result was not satisfying. It might be

a better choice to build a new, well organized and fully verified dataset for acoustic sounds.

31

4.2 Future work

Now we have only collected data for three classes: laughter, sneeze and speech. To prove

the model’s capability, we are collecting more classes of data including human voice such as

crying, sigh and non-human sounds such as dog barking, door bell or glass breaking. This

classifier can then be integrated into a large vocabulary automatic speech recognition system.

Also, by further integrating it with a backend dialog manager, it can make a chatting robot

more intelligent and human like.

The classifier is currently running on a desktop server. I am planning to deploy the

model on embedded devices such as a smart phone or a Raspberry Pi. By working offline,

it will eliminate the latency caused by the network transmission and the classifier can work

as a pre-filter prior to the speech recognition system to avoid unnecessary non-speech data

streaming.

32

REFERENCES

[FPF17] Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov,
Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra. “Freesound
Datasets: a platform for the creation of open audio datasets.” ISMIR, Interna-
tional Society for Music Information Retrieval Conference, pp. 486–493, 2017.

[GEF17] Jort F. Gemmeke, Daniel P.W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. “Audio Set:
an ontology and human-labeled dataset for audio events.” ICASSP, IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing - Proceedings, pp.
776–780, 2017.

[GXL17] Jinxi Guo, Ning Xu, Li Jia Li, and Abeer Alwan. “Attention based CLDNNs for
short-duration acoustic scene classification.” Proceedings of the Annual Confer-
ence of the International Speech Communication Association, INTERSPEECH,
pp. 469–473, 2017.

[HCE17] Shawn Hershey, Sourish Chaudhuri, Daniel P.W. Ellis, Jort F. Gemmeke, Aren
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. “CNN architectures
for large-scale audio classification.” ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, pp. 131–135, 2017.

[Jan13] Artur Janicki. “Non-linguistic vocalisation recognition based on hybrid GMM-
SVM approach.” Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pp. 153–157, 2013.

[LL09] Wen-Hung Liao and Yu-Kai Lin. “Classification of non-speech human sounds.”
Proceedings of the IEEE International Conference on Systems, Man, and Cyber-
netics, pp. 2695–2700, 2009.

[MHV16] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. “TUT Database for
acoustic scene classification and sound event detection.” 2016.

[NHA00] Satoshi Nakamura, Kazuo Hiyane, Futoshi Asano, Takanobu Nishiura, and Takeshi
Yamada. “Acoustical sound database in real environments for sound scene under-
standing and hands-free speech recognition.” 2000.

[PA12] Stephanie Pancoast and Murat Akbacak. “Bag-of-Audio-Words approach for mul-
timedia event classification.” Proceedings of the Annual Conference of the Inter-
national Speech Communication Association, INTERSPEECH, pp. 1–4, 2012.

[PHV16] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. “Recur-
rent neural networks for polyphonic sound event detection in real life recordings.”
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Process-
ing - Proceedings, pp. 6440–6444, 2016.

33

[SID12] M. A. Sehili, D. Istrate, B. Dorizzi, and J. Boudy. “Daily sound recognition
using a combination of GMM and SVM for home automation.” European Signal
Processing Conference, pp. 1673–1677, 2012.

[SSB13] Bjrn Schuller, Stefan Steidl, Anton Batliner, Alessandro Vinciarelli, Klaus Scherer,
Fabien Ringeval, Mohamed Chetouani, Felix Weninger, Florian Eyben, Erik
Marchi, Marcello Mortillaro, Hugues Salamin, Anna Polychroniou, Fabio Valente,
and Samuel Kim. “The INTERSPEECH 2013 computational paralinguistics chal-
lenge: social signals, conflict, emotion, autism.” Proceedings of the Annual Con-
ference of the International Speech Communication Association, INTERSPEECH,
pp. 148–152, 2013.

[STB12] G Sárosi, B Tarján, A Balog, T Mozsolics, P Mihajlik, and T Fegyó. “On mod-
eling non-word events in large vocabulary continuous speech recognition.” 3rd
IEEE International Conference on Cognitive Infocommunications (CogInfoCom),
pp. 649–653, 2012.

[SVS15] Tara Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak. “Convolutional,
Long Short-Term Memory, fully connected Deep Neural Networks.” ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Pro-
ceedings, pp. 4580–4584, 2015.

[TGP16] Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. “Deep con-
volutional neural networks and data augmentation for acoustic event detection.”
2016.

[TN06] Andrey Temko and Climent Nadeu. “Classification of acoustic events using SVM-
based clustering schemes.” Pattern Recognition, pp. 682–694, 2006.

[UBC12] Burak Uzkent, Buket D. Barkana, and Hakan Cevikalp. “Non-speech environ-
mental sound classification using SVMs with a new set of features.” International
Journal of Innovative Computing, Information and Control, pp. 3511–3524, 2012.

[VA12] Xavier Valero and Francesc Alias. “Gammatone cepstral coefficients: biologically
inspired features for non-speech audio classification.” IEEE Transactions on Mul-
timedia, pp. 1684–1689, 2012.

[Zha16] Peter G Zhang. “Robust audio event recognition with 1-Max pooling convolutional
neural networks.” Data Mining and Knowledge Discovery Handbook, pp. 487–516,
2016.

[ZMS15] Haomin Zhang, Ian McLoughlin, and Yan Song. “Robust sound event recognition
using convolutional neural networks.” pp. 559–563, 2015.

34

