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Abstract 

Using six San Diego solar resource stations, clear-sky indices at 1-sec resolution were computed for 

one site and for the average of six sites separated by less than 3 km to estimate the smoothing of 

aggregated power output due to geographic dispersion in a distribution feeder. Ramp rate (RR) analysis 

was conducted on the 1-sec timeseries, including moving averages to simulate a large PV plant with 

energy storage. Annual maximum RRs of up to 60% per second were observed, and the largest 1-sec 

ramp rates were enhanced over 40% by cloud reflection. However, 5% per second ramps never occurred 

for a simulated 10 MW power plant. Applying a wavelet transform to both the clear-sky index at one site 

and the average of six sites showed a strong reduction in variability at timescales shorter than 5-min, with 

a lesser decrease at longer timescales. Comparing these variability reductions to the Hoff and Perez 

(2010) model, good agreement was observed at high dispersion factors (short timescales), but our analysis 

shows larger reductions in variability than the model at smaller dispersion factors (long timescales).   

1. Introduction 

 

The variable nature of solar radiation is a concern in realizing high penetrations of solar photovoltaics 

(PV) into an electric grid. High frequency fluctuations of irradiance caused by fast moving clouds can 

lead to unpredictable variations in power output on short timescales. Short-term irradiance fluctuations 

can cause voltage flicker and voltage fluctuations that can trigger automated line equipment (e.g. tap 

changers) on distribution feeders leading to larger maintenance costs for utilities. Given constant load, 

counteracting such fluctuations would require dynamic inverter VAR control or a secondary power source 

(e.g. energy storage) that could ramp up or down at high frequencies to provide load following services. 

Such ancillary services are costly to operate, so reducing short-term variation is essential. Longer scale 

variations caused by cloud groups or weather fronts are also problematic as they lead to a large reduction 

in power generation over a large area. These long-term fluctuations are easier to forecast and can be 

mitigated by slower ramping (but larger) supplementary power sources, but the ramping and scheduling 

of power plants also adds costs to the operation of the electric grid. Grid operators are often concerned 

with worst-case scenarios, and it is important to understand the behavior of PV power output fluctuations 

over various timescales. 

Many previous studies have shown the benefit of high-frequency irradiance data. Suehrcke and 

McCormick (1989) and Gansler et al. (1995) found 1-min data to have different statistics from lower-

frequency data, including a much more bi-modal distribution than 1-hour or 1-day data. Gansler et al. 

(1995) mention that while using 1-hour data may be acceptable for space and water heating systems, 

where the thermal capacitance effects dampen out short-term variations, the time response of PV systems 

is much faster and using 1-hour data will likely lead to errors.   

Understanding that high-frequency fluctuations are important, further studies have looked to 

characterize these fluctuations, often by comparing fluctuations at one site to fluctuations at the average 

of multiple sites. Otani et al. (1997) use a fluctuation factor defined as the root mean squared (RMS) 

value of a high-pass filtered 1-min time series of solar irradiance to demonstrate a 2-5 times reduction in 
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variability when considering 9 sites located within a 4 km by 4 km grid. Curtright and Apt (2008) and 

Lave and Kleissl (2010) used 1-min timeseries to show reductions in the mean, maximum, and standard 

deviation of ramp rates (RRs) when considering the average of three or four sites versus only one site. 

Power spectral densities (PSDs) presented in Otani et al. (1997), Curtright and Apt (2008), and Lave and 

Kleissl (2010) all show strong reductions in power content of fluctuations of the average of multiple sites 

versus the power content of fluctuations at one site. Lave and Kleissl (2010) also present coherence 

spectra which show that the sites in Colorado which were 60 km or more apart were uncorrelated on 

timescales shorter than 12-hours. Two sites that were only 19 km apart were uncorrelated on timescales 

shorter than 3-hours. 

Wiemken et al. (2001) used 5-min normalized output from 100 PV sites spread throughout Germany. 

They found the standard deviation of the average of 100 sites to be 0.61 that of 1 site for the month of 

June, and that 5-min fluctuations of ±5% of power output at nameplate capacity are virtually nonexistent 

in the average, yet single sites have fluctuations larger than ±50%. Also included in that paper is a figure 

from Beyer et al. (1991), which shows exponential decay of cross-correlation as a function of distance for 

hourly irradiance data from six sites in Germany which can be used to estimate the reduction in standard 

deviation when averaging sites. Murata et al. (2009) analyzed 1-min data from 52 PV systems spread 

across Japan to determine the “smoothing effect” of aggregating multiple systems. The authors introduce 

a fluctuation index, which is the maximum difference in aggregated power output over a given time 

interval. They found that over 1-min, sites more than about 50-100 km apart were uncorrelated and thus 

that there was a limit reached whereby adding more PV sites had no effect on reducing variability, since 

the variability introduced by the diurnal cycle eventually becomes larger than the cloud-induced 

variability. For times greater than 10-min, however, they reject the hypothesis that sites within 1000 km 

are independent, though some of the dependence may be due to diurnal solar cycles and could be 

eliminated by using a normalized solar radiation.   

Hoff and Perez (2010, hereafter HP10) present a framework to estimate the decrease in standard 

deviation of irradiance achieved by aggregating PV sites. The reduction in standard deviation is a function 

of the number of PV sites and a dispersion factor,  , defined as the number of time intervals it takes for a 

cloud to pass over all PV sites across the region being considered. The dispersion factor is useful in 

determining when the transition from PV sites being uncorrelated to correlated occurs. They predict a 

factor of √  reduction in standard deviation of the average of N sites compared to the standard deviation 

of one site for the “spacious region,” where the number of sites is much less than the dispersion factor, 

    . This corresponds to the sites being fully independent of one another, and is a known result from 

statistics on independent random variables. At an “optimal point” where the number of sites equals the 

dispersion factor,    , they derive a factor of   reduction in standard deviation. At this point, sites 

would be perfectly correlated when shifted by an appropriate timestep (the dispersion factor divided by 

the number of sites), and the standard deviation of the average of all sites will be reduced more than 

would be expected if the sites were entirely independent. HP10 also define a “limited region,” between 

the “spacious region” and the “optimal point,”    . In the “crowded region” where the number of sites 

is larger than the dispersion factor,    , they propose that the standard deviation will be reduced by a 

factor of  , since the sites are at least partially dependent, and adding additional sites will not reduce the 

standard deviation of the average since the reduction is only a function of the dispersion factor, and not 

the number of sites. HP10 perform a limited model validation by simulating a fleet of PV systems based 

on measured irradiance at only one site. In the simulated system, the irradiance at the non-measured sites 

was found by shifting the timestamp but otherwise maintaining the measured data, thus simulating an 

equally spaced system in which frozen clouds move at a constant speed along a line containing all sites.  

Woyte et al. (2007) present a unique study in that they use very high frequency data (1-sec, 5-sec, or 

1-min depending on the site) collected for up to 2-years, instantaneous clearness index, and a wavelet 

transform to analyze fluctuations of all scales in time, from very short to very long. The Haar wavelet was 

applied to each clearness index dataset to detect fluctuations over various timescales.  They introduce a 

fluctuation power index, which is the sum of the square of the wavelet mode at each timescale, and is 
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used to quantify the amplitude and frequency of occurrence of fluctuations on a specific timescale. In 

other wavelet studies, Kawasaki et. al (2006) applied the Daubechies 4 wavelet to 1-min irradiance 2-year 

timeseries from nine sites in a 4x4 km grid, and Perpinan and Lorenzo (2010) applied the MODWT 

wavelet to 1-sec solar irradiance timeseries from a few days in October, 2009.   

This paper builds on these previous works by using 1-sec clear-sky index (Kc) data from 6 sites on a 

microgrid similar to urban distribution feeders (Section 2) to quantify extreme ramp rates (RRs). Methods 

are described in Section 3. RRs were analyzed by computing statistics at different time steps and by using 

varying moving average intervals to represent large PV plants or storage (Section 4.1). Coherence spectra 

are employed in Section 4.2 to analyze the correlation between six sites at different time scales. We apply 

a wavelet to detect variability over various timescales relevant to the operation of a power grid (Section 

4.3). Wavelet analysis allowed for a localized study of the power content of variations over various 

timescales. The power content of variations at one site was compared to the power content of variations at 

the average of six sites in close proximity to study the reduction in variability over various timescales 

achieved by using multiple site locations (Section 4.4) and to test the model of HP10 (Section 4.5). 

Conclusions are presented in Section 5. 

 

2. Data 

 

Global Horizontal Irradiance (GHI) was recorded once per second at sites throughout the University 

of California, San Diego (UCSD) campus as part of the UCSD Decision Making using Real-time 

Observations for Environmental Sustainability (DEMROES) network of sensors (Kleissl et al., 2010, Fig. 

1). All sites employ a LICOR Li-200SZ silicon pyranometer sampling at 1Hz. The collection of 1-sec 

data proved to be a challenge of both data storage on the datalogger and sensor reliability, and so data 

availability is inconsistent. While there are 8 sites maintained as part of the DEMROES network, at any 

given time a maximum of 6 sites recorded 1-sec data.  

The main site used in this paper was the Engineering Building II (EBU2, 32.8813⁰N, 117.2329⁰W), 

for which data was available for all of 2009 except for May 23 through June 4. We do not expect for the 

13 days of missing data to lead to a strong seasonal or other bias, and therefore will refer to this as 1-year 

of data. Five other sites also recorded data from July 31 to August 25, 2009, and are used to study the 

benefits of aggregating sites. These five sites ranged from Hubbs Hall (HUBB, 32.8670⁰N, -117.2533⁰W) 

which is 0.1 km from the Pacific Ocean to Moores Cancer Center (MOCC, 32.8782⁰N,-117.2229⁰W) 

3km to the east. The Biomedical Science Building (BMSB, 32.8758⁰N, 117.2362⁰W), RIMAC Arena 

(RIMC, 32.8852⁰N, 117.2402⁰W), and Tioga Residence Hall (TIOG, 32.8790⁰N 117.2434⁰W) are more 

centrally located (Fig. 1). Since these data covers nearly the entire month of August, we will refer to this 

as a 1-month dataset.  

After applying the factory calibration, clear days were used (assuming identical atmospheric 

composition) to create linear fits against RIMC, and each site was cross-calibrated by this linear fit. In 

addition, careful quality control was carried out by visually examining each site for shading and other 

errors. We noticed 5 occurrences at EBU2 and 15 at RIMC of greater than 400 W m
-2

 decreases lasting 

less than 3-sec during otherwise clear periods. We suspect that these were due to birds or airplanes 

instantaneously shading our sensors, and not cloud effects which were the focus of this study. Therefore, 

such dips were removed from the data using a linear interpolation plus characteristic variance to maintain 

statistics, which should be appropriate over such a short time. It is possible that such events also occurred 

during cloudy conditions, but is not clear how to detect such events then without possibly removing real 

variability.  

To eliminate the deterministic effect of diurnal cycles, GHI measurements (in W m
-2

) were converted 

into a dimensionless clear-sky index by dividing the measured GHI by the clear-sky irradiance. We used 

the Sunny Days model (Gonzales and Wilcox, 2004) based on Long and Ackerman (2000), which uses 

input GHI and diffuse horizontal irradiance (DHI, measured by a Dynamax SPN1 pyranometer at EBU2) 

to calculate clear-sky irradiance. Since Sunny Days is locally calibrated day-by-day it was found to be 

more accurate than the Ineichen and Perez (2002) climatological clear-sky model especially for mornings 
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and evenings. Times when the solar altitude angle was less than 10° were removed to eliminate both 

nighttime values when the clearness index is expected to always be zero and early morning and late 

evening periods when the pyranometer is subject to errors in cosine response. 

 

Figure 1: Map of the UCSD solar resource sites, showing proximity to the Pacific Ocean (left), and Interstate 5 (center). From 

EBU2, distances and headings are: BMSB(0.69km, 205⁰), HUBB (2.47km, 230⁰), MOCC (0.95km, 105⁰), RIMC (0.80km, 

300⁰), and TIOG (1.00km, 255⁰). Map © 2010 Google – Image © 2010 TerraMetrics. 

 

3. Methods 

 

3.1 1-year analysis at one site: Ramp Rate analysis 

 

The frequency of occurrence and magnitude of RRs of solar PV are of critical interest to power 

system operators. From the 1-sec clear-sky indices, we can extract two different averages which have 

different practical relevance.  

First, block averages were taken on time intervals varying from 1-sec to 1-hour, which shows the 

difference in statistics over various data averaging intervals. Typically irradiance or power output data are 

averaged over longer periods and our analysis allows comparison to such data. The block average method 

produces fewer data points as the block size increases.  

Second, moving averages over intervals of        sec (          corresponding to   
          sec) were computed at time steps of 1-sec such that the average at any given time, t, is the 

average of values        seconds before and    seconds after t.  Intervals of    seconds were chosen to 

be consistent with wavelet analysis presented later. No moving average was computed when        
  or                 , where TOD is the time of day, such that the moving average would not be 

complete. Since this clipping removes more data at the beginning and end of the day for larger   reducing 

the available data, no analysis was performed for timescales larger than 4096-sec. Moving averages at 

different   are representative of power sampled every second, but averaged spatially over the dimensions 

of a solar power plant or by using energy storage. 

From either the block average or the moving average, RRs were computed as the difference between 

successive clear-sky indices. Cumulative distribution functions (cdf) of RRs show the statistical 

distributions and extreme values. Additionally, we computed the averages of 1-sec ramps with magnitude 

greater than 0.25 to show the typical behavior before large positive or negative ramps. RRs of clear sky 

indices give the percent change (as a fraction of clear-sky irradiance) over one timestep, regardless of the 
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TOD when that change occurred. The clear sky index provides the best measure to compare cloud 

induced solar variability analyses between different sites. If the occurrence of clouds is independent of 

TOD, it also provides the most relevant measure to characterize solar energy variability at a site, 

especially for 2D tracking power plants (whose output fluctuates less over a clear day). However, if 

clouds occur preferentially over certain TODs and a fixed-tilt plant is considered, then clear sky index 

variability does not translate directly to power output variability of a PV plant.  

 

3.2 Geographic smoothing at six sites over one month 

 

3.2.1 Coherence spectrum 

As a measure of spatial correlation of the clear-sky index over various time scales, we calculated the 

coherence spectrum between EBU2 and the other 5 sites. The coherence spectrum provides normalized 

covariance at each frequency, allowing for visualization of correlation over various timescales. The 

coherence is expected to be large at long timescales as large weather systems will lead to similar clear-sky 

indices for all the sites. Note, however, that solar cycles have been removed by using the clear-sky index 

and thus the coherence will not be as large as if irradiances had been used. The timescale at which sites 

become weakly correlated is an indication of the longest timescale on which the sites are nearly 

independent and will dampen aggregate variability. Although negative correlation would reduce 

variability more than zero correlation, negative correlation is not expected physically. 

 

3.2.2 Wavelet analysis 

The stationary or dyadic wavelet transform, W, of a signal      is (Mallat, 2009): 

 
  
  ∫     
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)  
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where             is the time offset from the beginning of the day,   is the wave used to produced the 

wavelet transform, and   is the scaling factor. Since we used a real wavelet and a discrete transform, we 

required that j be a positive integer. Although Woyte et al. (2007) used the Haar wavelet to detect dips 

and compute power content at each timescale, we found the Haar wavelet to be lacking in that large 

wavelet coefficients exist only at sharp signal transitions. This means that changes from one state to 

another (e.g. a step from cloudy to clear) are detected by the Haar wavelet rather than the duration of an 

up or down fluctuation (a top hat). 

 We instead chose to employ the top hat wavelet as the basis function of our analysis of clear-sky 

index timeseries. The top hat wavelet is defined as 
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and is shown in Figure 2. Although typically in wavelet analysis s      is used in Eq. 1, we chose to 

define        instead, so Equation 1 becomes 
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This altered definition allows for the timescale,    seconds, to describe the duration of the clear or cloudy 

period of interest rather than the duration of the entire wavelet. Substituting the clear-sky index,       
      , into Eq. 3 will result in a separate timeseries       for each j value (mode), where       is 

defined such that 

       ∫      
 

√    
 (

   

    
)  

 

  

   (4) 

Just as for the moving averages, we chose to limit our analysis to      (corresponding to 1.1 hours 

or less), and only   values for which data were available over the entire interval of size      around   

were retained. As such, early morning and late evening periods are not resolved at the longer modes. It is 

common in wavelet transforms to extend the original timeseries using either a periodic extension or zero 

padding, but we feel that neither is appropriate in this situation as they will both introduce effects that 

were not present in the original timeseries.  

 
Figure 2: Top hat wavelet      (solid line) and the scaled and translated wavelet         (dashed line). This scaled wavelet 

would capture a clear period of duration    bordered by cloudy periods. 

 

The power content of each timeseries      , can be found by calculating the wavelet periodogram I. 

Following the definition of the Fourier periodogram, the wavelet periodogram is the square of the 

coefficients of the wavelet transform, normalized by the length over which the wavelet was applied, 

which in this case is 2
j+1

: 

      
 

    
|     |

 
 (5) 

3.2.3 Application of wavelet analysis to determine reduction in variability from averaging 6 sites 

 The wavelet periodograms are still timeseries, and are difficult to examine visually for periods 

longer than one day. Therefore, we use the ‘fluctuation power index,’ as described by Woyte et al. (2007) 

to quantify the power contained in fluctuations at each timescale. The fluctuation power index, fpi, is: 

       
 

  
∫        
  

 
, (6) 
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where Tj is the length of the timeseries      , which decreases as j increases due to unresolved periods of 

the higher modes. Using Tj instead of a constant value based on the length of the original Kc(t) timeseries 

means that fpi(j) is an average value, which allows for comparison of fpi at different j values. 

The fpi is essentially variance at each timescale (is variance if              ), so we used fpi to 

evaluate the reduction in variability achieved by averaging six sites versus the variability at EBU2 alone 

and to compare our results to the HP10 model. HP10 define a dispersion factor   
 

   
, where   is the 

length of the region with the PV sites,   is the cloud velocity, and   is the relevant timescale. Although   

and   remain constant for a given area and time, varying the timescale changes  . Since variability at 

multiple timescales was calculated through the fpi, we were able to test the HP10 model over various 

dispersion factors for the 1-month data. 

 

4. Results 

 

4.1 Ramp Rate analysis 

The cdf of the absolute value of step sizes (SS) for Kc averaged over blocks of 1-sec, 10-sec, 1-min, 

10-min, and 1-hr simulating data averaged over and sampled at those intervals are shown in Figure 3. The 

probability of occurrence of SSs greater than 5%, 10%, and 25% are shown in Table 1. Both Fig. 3 and 

Table 1 show SS statistics vary significantly over all timescales, which is consistent with previous 

findings that 1-min and 1-hr data have different statistics (i.e., Suehrcke and McCormick, 1989 and 

Gansler et al., 1995). These variations in statistics of SSs down to 1-sec show the importance of sampling 

data as frequently as possible when studying irradiance fluctuations. Large step sizes have a much greater 

probability of occurring when using 1-hr averages than when using 1-sec averages. However, due to the 

nature of block averaging, at longer time intervals, the sample size is small and events with high 

probabilities of occurrence do not happen very often in a day (Table 1). Still, the cdf of SSs shows a trend 

toward SS magnitude decreasing as the averaging time decreases – short-time steps will not be as extreme 

as long-time steps.  

 

Figure 3: Cumulative distribution function of SSs for block averages over 1-sec to 1-h at EBU2 for 2009. The probability of 

occurrence of a certain SS (or larger SSs) can be determined by locating the SS on the x-axis and going up to intercept the line of 

the desired block averages. The y-value at that point provides the probability. For example, a 25% SS for 1-h block averages 

occurs 11% of the time or about once per day, on average. The 1-hr curve is based on a smaller sample (the number of 1-hr 

blocks contained in the 1-year of data) compared to the other curves. For example, the 10-min curve is based on a sample that is 

6x larger. This explains why the 1-hr curve is slightly different in shape and slightly more irregular than the other curves. 
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Table 1: Probabilities of SSs larger than 10%, 25% or 50% at each timescale of block averages along with approximate 

number of occurrences per day. Occurrences per day were found using an estimated annual average of 10-hours per day when 

solar altitude angle is greater than 10⁰. 

 
Block average 

interval 

abs(SS)>0.10 abs(SS)>0.25 abs(SS)>0.50 

P(abs(SS)>0.10) #/day P(abs(SS)>0.25) #/day P(abs(SS)>0.50) #/day 

1-sec 0.37% 132 0.02% 6.3 0.0002% 0.1 

10-sec 4.29% 155 1.07% 38.4 0.10% 3.5 

1-min 9.96% 59.8 3.48% 20.9 0.63% 3.8 

10-min 18.39% 11.0 5.26% 3.2 0.85% 0.5 

1-hr 35.22% 3.5 11.23% 1.1 0.91% 0.1 

While block averages represent sampling data at certain periods where the actual variability is 

unaffected, moving averages can be used to simulate the effects of fast-ramping energy storage (e.g. 

flywheels). If the length of the moving average is equal to the time over which energy storage has the 

capacity to eliminate fluctuations through charging or discharging, then a moving average timeseries will 

be representative of the PV + storage output timeseries. Moving averages are also relevant to simulating 

power output of a large PV array or a fleet of PV sites that all sit along the cloud motion vector and are 

spaced evenly, as used in HP10. In this case, a longer moving average interval will simulate the output of 

a larger PV plant, since large systems will ideally average over a timescale of           where      is the 

square root of the area of the array and   is the cloud velocity. Moving averages at various timescales are 

shown in Figure 4 for August 22, 2009.  

 

Figure 4: Moving averages of the clear-sky index,   , over various averaging intervals for EBU2 on August 22, 2009. 
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The cdf of RRs for various moving averages is shown in Figure 5, and specific values are shown in 

Table 2. For the moving averages, increasing the averaging time decreases the probability of a large ramp. 

For example, for a 4096-sec (about 1-hour) moving average, the probability of a ramp larger than 0.1% s
-1

 

is zero.  This is intuitive, since the change in the moving average is the change in the step size divided by 

the averaging interval. Since a 1-sec average under both the block and moving averages simply represents 

the original timeseries, the 1-sec cdf which appears in both Figures 3 and 5 and Tables 1 and 2 serves as a 

reference for comparison between the two averaging methods. To create the power plant size column 

Table 2, we assumed that the 1-sec data was representative of the fluctuations of a typical household PV 

installation of 2.5kW. Then, using the          relation mentioned earlier, we determined the relationship 

between moving average intervals and PV plant sizes. This assumed a frozen cloud field traveling at a 

constant speed,    over the entire PV plant. While this is unlikely physically, it givens an indication of the 

best-case scenario and allows for a comparison of fluctuations over various PV plant sizes.  

 
Figure 5: Cumulative distribution function of 1-sec RRs and RRs of moving averages over various timescales (representing large 

PV plants or plants with energy storage) at EBU2 for 2009. The 1-sec value at        is 0.75 and not 1.0 due to the very small 
changes that can occur over 1-sec resulting in          . For all other timescales,            never occur. 

Table 2: Probabilities of RRs exceeding 0.1%, 1%, or 5% s-1 at moving average timescales along with approximate number of 

occurrences per day. Occurrences per day are based on a 10 sunlight-hour day.  

Moving 

average 

interval 

Power 

plant size 

RR>0.001 s-1 

 

RR>0.01 s-1 RR>0.05 s-1 

P(RR>0.001) #/day P(RR>0.01) #/day P(RR>0.05) #/day 

1-sec 2.5 kW 42.98% 15,472 6.55% 2,359 1.35% 486 

4-sec 40 kW 23.57% 8,486 5.90% 2,125 0.81% 292 

16-sec 640 kW 19.53% 7,031 42.98% 1,511 0.04% 15 

64-sec 10.2 MW 15.46% 5,564 1.03% 370 0% 0 

256-sec 164 MW 8.84% 3,181 0% 0 0% 0 
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In order to examine the typical behavior leading up to and after the largest 1-sec ramps, Figure 6 

displays the mean (or conditional average) of all 1-sec ramp events greater than 25%, separated into 

positive and negative ramps. An ‘ideal’ ramp would simply be a step function from a small Kc to a large 

Kc or vice versa. However, in practice Kc is variable before or after large ramps as the clear or cloudy 

period before or after the ramp is often shorter than one minute. For the negative (or clear to cloudy) 

ramp, there is successive enhancement in clear-sky index in the 1-min before the ramp. This is a 

manifestation of short clear periods but also of cloud edge enhancement; as a cloud nears the path 

between the sun and the sensor, some sunlight is reflected off the near edge of the cloud and down to the 

sensor, while the sun-sensor path is mostly unobstructed. Cloud enhancement leads to irradiances larger 

than the clear-sky model due to additional diffuse irradiance, resulting in a clear-sky index greater than 1 

(Fig. 6). A similar but opposite behavior is observed for the up-ramp. The change in mean clear-sky index 

from one minute before a large negative ramp to one minute after is about 10%, which indicates a change 

of state from clear to cloudy. For large positive ramps, this change is only about 3%, and so represents a 

much smaller change in average state of the sky.  

 

Figure 6: Means of all ramps at EBU2 in 2009 that were greater than 25% s-1, separated into positive and negative ramps. The red 

line shows the mean of 1006 timeseries starting 1-min before and ending 1-min after a ramp that was more than a 25% s-1 

decrease in clear-sky index. The black line shows the mean of 511 such timeseries that were centered around a greater than 25% 

s-1 increase in clear-sky index.  

Over the entire year, there were five 1-sec ramps up (probability of          s
-1

) and 17 1-sec 

ramps down (probability of           s
-1

) with magnitudes greater than 50%. The maximum up ramp 

was 58% s
-1

 and maximum down ramp was 59% s
-1

. Thus, as an absolute worst case scenario, a maximum 

change of 60% over 1-sec can be assumed. The worst irradiance fluctuations were 432 W m
-2

 for an up 

ramp (June 5, 14:01:42) and 516 W m
-2

 for a down ramp (April 15, 13:33:42), which corresponded to 

45% and 54% clear-sky index ramps, respectively. We emphasize, however, that this applies only for one 

point sensor, and when sites are averaged or PV arrays are considered, these maximum ramps are 

expected to be strongly reduced.  
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4.2 Coherence spectra 

The coherence spectra over 1-month showing the coherence between EBU2 and the other 5 sites are 

shown in Fig. 7. At long timescales, the coherence spectra all approach 1. This is expected since hourly 

and longer weather phenomena such as changes in synoptic cloudiness and atmospheric composition 

changes affect all sites. Since the coherence spectra were calculated using clear-sky indices, the spectra 

do not approach 1 as quickly as would be expected with irradiances since the daily cycle of the sun rising 

and setting is (mostly) removed. The sites are uncorrelated for time scales shorter than 10 min. BMSB, 

RIMC, and TIOG have the highest coherence values against EBU2 at long timescales. HUBB and MOCC 

have consistently lower coherence values for timescales longer than 10-min. While it is expected that 

HUBB will have lower coherence due to it being at the coast and more than twice as far away from EBU2 

than the other sites, it is somewhat surprising that MOCC also has such low coherence. MOCC (~1km 

ESE) and TIOG (~1km WSW) are almost the same distance away from EBU2, albeit in nearly opposite 

directions, and yet the coherence spectra for each is markedly different. This indicates different weather 

patterns to the west of EBU2 as to the east. Anecdotal sky observations have confirmed that clouds often 

evaporate as they move eastward which would result in a smaller coherence.  

 

Figure 7: Coherence spectra for EBU2 and each of the other 5 sites for July 31 through August 25, 2009. Each spectrum is 

smoothed by a moving average smoothing filter for clarity. The apparent vertical lines at the far right of the plot are fluctuations 

that were not dampened by the smoothing filter since they are too close to the boundary. Different time scales are marked through 

vertical lines. 

4.3 Wavelet decomposition 

Wavelet periodograms were computed from the clear-sky index for EBU2 as well as from the clear-

sky index for the average of 6 sites for each timescale       to 12 for the month when 6 sites were 

simultaneously available. The periodograms from August 22, 2009 over modes     (about 1-min) to 

     (about 1-hr) are shown in Fig. 8. August 22 was chosen because it has both cloudy and clear 

periods and because it has a distinct clear period followed by a distinct overcast period both lasting about 

30-min. This serves as a validation of our application of wavelets, as we expect this period to produce two 

peaks at the       mode (34-min). Indeed, the most distinct peaks in the wavelet periodogram shown in 

Fig. 8 are on the      mode, and occur at about 10:30 and 11:00. We can also see from the 

periodogram that the dominant timescale of fluctuations between 16:30 and 18:00 was 256-sec (   ). 
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This was not obvious by inspecting the original timeseries, but rather is a useful result found through 

wavelet decomposition. 

 

Figure 8: Clear-sky index (blue and green thin lines) and wavelet periodogram (black and red thick lines) of modes     through 

     for EBU2 and the average of all 6 sites on August 22, 2009.  

Inspection of the wavelet periodogram shows that the amplitude is only slightly reduced for the 

average versus EBU2 at high modes (    ), but the average amplitude is much smaller at modes 

corresponding to shorter timescales. Since the amplitude of the periodogram at each scale is the variance 

at that scale, this allows quantifying how averaging multiple sites will lead to a stronger reduction in 

variability at shorter timescales. 

 

4.4 Fluctuation power index 

The reduction in variability as a function of timescale due to averaging sites for the 1-month period is 

shown in Figure 9, by plotting the fpi for each timescale. Figure 9 also shows the ratio fpiEBU2/fpiAVG, 

which we will call the variability ratio (VR), for each timescale. The VR is a measure of the reduction in 

the power (or variance) of fluctuations. A higher VR means a larger reduction in fluctuations, while a 

variability ratio of 1 means no reduction in variability compared to a single site. For timescales shorter 

than 256s (about 4-min), VR was close to 6 for the average of the 6 sites. This is consistent with the factor 

of 6 reduction in variance that we would expect for 6 sites spread far enough apart such that their clear-

sky indices can be considered independent of one another (or uncorrelated). At timescales longer than 

128s, the fpi ratio decreased in an exponential fashion as the sites become more and more correlated. 
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Eventually, at 4096-sec, the VR was nearly one, indicating that on timescales longer than 1-hour, the 

clear-sky indices at these 6 sites are too correlated to cause significant reductions in variability. 

 

Figure 9: Fluctuation power index for EBU2 and the average of 6 (AVG) sites over 1-month. The numbers above the EBU2 

black line are the ratio of fpiEBU2/fpiAVG for each timescale. 

 

4.5 Comparison to Hoff and Perez (2010) model 

 The VR at each timescale was used to test the Hoff and Perez (2010, hereinafter HP10) 

theoretical model for the decrease in variability at various dispersion factors   for our six sites. To 

compute  , cloud speed   and the distance   that clouds must travel in the direction of cloud movement 

to pass over all sites are required. We estimated distance by assuming that clouds typically travel from 

west to east over our campus, which was consistent with sky imagery analysis. The east-west distance 

between HUBB and MOCC, the furthest west and the furthest east sites, respectively, is 2.75 km. We 

assumed a 5 m s
-1

 cloud velocity given analysis from total sky imagery (Chow et al. 2011), such that 

  
 

    
 

    

  
, with    = 2

j
. Since HP10 modeled the ratio of standard deviation at the average of all 

sites to the standard deviation at one site (“relative output variability,” ROV), for comparison we take the 

inverse of the square root of the VR (Fig. 10). In order to plot a single curve for the HP10 ROV, we 

assumed the lower bound (    
 

√ 
) for the reduction in variability in the “limited region.” At long 

timescales (in the “crowded region”, expected     
 

 
),   became less than 1 and would have led to an 

increase in variability at the average versus just one site. This does not make physical sense, and thus the 

ROV was capped at 1.  
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Figure 10: Relative output variability (ROV) for various dispersion factors calculated at each of the timescales used in the 

wavelet decomposition compared to the Hoff and Perez (2010) model. Hoff and Perez model values greater than 1 were set equal 

to 1, and the lower limit of   √  for the “limited region” was used. AVG is the average of 6 sites. 

At large   corresponding to short timescales, the sites are indeed independent, and our variability 

reductions fit the HP10 model. However, the agreement is worse at smaller   corresponding to longer 

timescales. Our data show no signs of an optimal point in the “limited region”. In calculating the optimum 

point, HP10 assumed that each pair of sites was perfectly correlated (with some timeshift), but we suspect 

that small lateral dimensions of clouds and cloud condensation / evaporation cause each site to experience 

a different cloud pattern. Even for two sites only 10 m apart (not shown in Figure 1), on a highly variable 

day (November 4, 2008) we calculated a maximum time-shifted correlation of only 0.94 (4-sec time 

shift). In the “crowded region” the ROV increases with increasing time scale, but the HP10 increase is 

much sharper than the increase found in our data, again presumably due to decorrelation in the cloud 

fields. Overall, our data indicate a model for the ROV that starts at 1 for very long timescales and then 

follows an exponential decay that asymptotically approaches    √  for very short timescales.  

 

5. Conclusion 

 

Clear-sky indices at 1-sec resolution from a solar resource station at UC San Diego were used to 

compute statistics over an entire year, showing the benefits of high-frequency data to obtain accurate 

irradiance statistics. Two types of averages were applied to the 1-year data: a block average representing 

different temporal resolutions of averaged solar radiation data, and a moving average. For the block 

averages, the probability of a large SS increases with increasing averaging time, but the number of 

occurrences per day decreases. This was consistent with Fig. 3 in Mills and Wiser (2010) where 10-min 

and 1-hour block averages had increasingly higher probabilities at any given ramp than the 1-min block 

average.  This same trend was also seen down to 1-sec resolution for one day in Fig. 4 in Mills et. al 

(2009). 

With moving averages, the probability and number of occurrences per day of large RRs both decrease 

with increasing averaging interval. Using storage with a certain capacity solely for RR reduction will 

result in a PV power output similar to the moving average over an interval equivalent to the storage-time 

capacity, and will therefore lead to a reduction in both magnitude and occurrence of extreme RRs. 

Likewise large solar systems will ideally average irradiance over a time scale of           where      is 

the square root of the area of the array (which is a proxy for array length in the direction of the cloud 
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velocity  ) and a frozen cloud field with infinite lateral dimension is assumed (similar as in HP10). This 

leads to RR reductions at short time scales.   

A new framework for quantifying geographic smoothing was presented through coherence spectra 

and wavelet analysis of 1-sec    data over one month at six sites within 3 km distance. Comparisons of 

clear-sky indices showed the reduction in variability when averaging 6 sites. Coherence spectra indicated 

strong correlations between sites up to timescales as short as 10-min and the correlation at longer 

timescales decreased with distance but not isotropically. A top hat wavelet transform was applied to both 

EBU2 and the average of the 6 sites. At timescales of 256-sec and shorter, there was approximately a 

factor of 6 reduction in variance for the average versus just the one site. This indicates that all 6 sites were 

independent at timescales shorter than about 5-min, reducing variability. At longer timescales, however, 

the reduction in variance became smaller, and there was almost no reduction in variance at 4096-sec. The 

variability reductions were compared to the theoretical model presented by HP10. While there was strong 

agreement between the model and our data at high dispersion factors (short timescales), there was good 

qualitative but poor quantitative agreement at smaller dispersion factors (long timescales). We suspect 

that the HP10 assumption that sites are perfectly correlated when time-shifted does not apply for real data. 

Instead, our data suggests an exponential decay of the relative output variability as a function of 

dispersion factor.  

As PV gains higher and higher penetration, it is important to understand the typical fluctuations on 

various timescales, as well as the potential for storage, PV array size, and geographic dispersion to 

dampen these fluctuations. The top hat wavelet transform is a novel approach to deconstruct clear-sky 

indices into separate timescale components, and was very useful in determining the benefits of storage 

and geographic averaging. However, cloud statistics depend on local meteorological conditions so more 

tests in different regions are required to ensure applicability of our results.  
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