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Abstract

Topological types of Algebraic stacks

by

Chang-Yeon Cho

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin Olsson, Chair

In developing homotopy theory in algebraic geometry, Michael Artin and Barry Mazur
studied the étale homotopy types of schemes. Later, Eric Friedlander generalized them to the
étale topological types of simplicial schemes. The aim of this paper is to extend further these
theories to algebraic stacks. To achieve this goal, we exploit the derived functor approach
of étale homotopy types by Ilan Barnea and Tomer Schlank, and use Daniel Isaksen’s model
category structure on pro-simplicial sets.
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Chapter 1

Introduction

1.1 Motivation
1.1.1. The étale homotopy theory was invented by Michael Artin and Barry Mazur [1] in
1969. Associated to a scheme is their étale homotopy type which is a pro-object in the
homotopy category of simplicial sets. This object not only recovers the étale cohomology
and Grothendieck’s étale fundamental group of the scheme, but also enables one to define
homotopical invariants, like higher homotopy groups, of the scheme.

Artin-Mazur’s étale homotopy theory has many important applications. They include
étale K-theory and the proofs of Adam’s conjecture by Quillen-Friedlander and by Sullivan.
More recently, people including Kęstutis Česnavičius, Yonatan Harpaz, Ambrus Pal, Tomer
M. Schlank, Alexei N. Sokorobogatov use the étale homotopy theory to study rational points
of algebraic varieties.

1.1.2. The main goal of this paper is to modify and extend Artin-Mazur’s étale homotopy
theory. In fact, their theory has two drawbacks. One is that it can be only applied to
schemes and more generally to Deligne-Mumford stacks. This is due to the use of the
small étale topology, which is not suitable for algebraic stacks. In 1982, Eric Friedlander [10]
extended the theory to simplicial schemes, not just schemes. Moreover, his work lifts the étale
homotopy types, pro-objects in the homotopy category of simplicial sets, to étale topological
types, pro-objects in the category of simplicial sets. However, his theory still cannot not be
applied to algebraic stacks (sometimes called Artin stacks). The main issue is again the use
of the small étale topology. In this paper, we show that the big étale topology can replace
the small étale topology in order to recover Artin-Mazur’s and Friedlander’s theories. In
fact, the big étale topology behaves better and enables us to develop a homotopy theory
of algebraic stacks. For instance, we can discuss the étale homotopy type of the classifying
stack BGm where Gm is the multiplicative group scheme over the complex numbers C.

Of course, one can define a homotopy type of an algebraic stack to be the étale topological
type of any hypercover which is a simplicial algebraic space. In this way, one can discuss
the homotopy type of algebraic stacks. However, we seek for an own definition of homotopy
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types of algebraic stacks, not depending on hypercovers. As a result, this new approach
provides a general frame work for a homotopy theory of algebraic stacks. Furthermore, this
general frame work puts the homotopy theory of schemes, algebraic spaces, and algebraic
stacks altogether in one place.

1.1.3. On the other hand, the subtlety in the notion of weak equivalence of étale homotopy
types results in another drawback of Artin-Mazur’s theory. Indeed, étale homotopy types
are objects of the pro-category associated to the homotopy category of simplicial sets, rather
than the homotopy category associated to the pro-category of simplicial sets, which is more
natural. In order to remedy this issue, we put Daniel Isaksen’s model category structure [14]
on the category of pro-simplicial sets.

1.1.4. In order to develop homotopy theory of algebraic stacks, we use the recent machinery
developed by Ilan Barnea and Tomer Schlank [2]. LetXét be the small étale topos of a scheme
X. Consider the category X∆op

ét of simplicial objects in the topos, and then the pro-category
pro−X∆op

ét associated to it. They defined model category structures to the pro-category and
to the category of pro-simplicial sets so that the connected component functor induces a left
Quillen functor:

Π : pro−X∆op

ét → pro− SSet

They proved that one can recover Artin-Mazur’s étale homotopy type of X by deriving a
final object in Xét along the left Quillen functor.

Using Barnea-Schlank machinery, we extend the scope of étale homotopy theory from
schemes or simplicial schemes to algebraic stacks. The main strength of our approach is that
one can systematically deal with étale homotopy types of algebraic stacks thanks to the use
of model category theory.

1.1.5. After setting up fundamentals, we provide two main applications of our theory. One is
the generalization of Artin-Mazur’s comparison theorem. The classical comparison theorem
[1, 12.9] says that for a connected finite type scheme X over C, its étale topological type
is isomorphic to the underlying complex topological space X(C) of its analytification, after
profinite completion. For example, for the multiplicative group scheme Gm over C, its étale
homotopy type is the profinite completion of the unit circle S1. The comparison theorem is
useful because in general étale homotopy types are hard to compute. We generalize t the
comparison theorem to the case of algebraic stacks (see 5.2.17 and 5.2.23). For instance, the
étale homotopy type of BGm is the profinite completion of K(Z, 2) (see 5.2.18).

Another main application of our work is the study of étale homotopy types with respect
to group actions. David Cox [6, 6.1] showed that for a variety X over R, its étale homotopy
type is the homotopy orbit space of the étale homotopy type of X̄ := X ×SpecR SpecC with
respect to the Galois action Gal(C/R). This theorem is useful at it provides a cohomological
criterion for the existence of R-points of X; The set of R-points is non-empty if and only
if H i

ét(X,Z/2) is non-zero for some i > 2n where n = dimX. Later Gereon Quick [31, 5.3]
generalized the theorem to an arbitrary base field but with some subtle issue on the Galois
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action. That is, for a variety X over a field k, it is not clear whether the étale homotopy
type of X admits a continuous action from the profinite group Gal(ksep/k) where ksep is a
separable closure of k. Later he showed that for a geometrically connected quasi-projective
variety X over k, one can use Friedlander’s rigid Čech étale topological types ([9, 3.1]) to
avoid the continuity issue ([34, p.13]). In this paper, we take an alternative approach which
can be applied to every scheme over k. For this, we first recover Quick’s result at the level
of pro-simplicial sets and then show that it generalizes the theorems by Cox and Quick (see
5.1.26).

1.2 Statement of the main results
1.2.1. Fix a locally noetherian base scheme S. Define a site LFÉ(S) to be the full subcat-
egory of the category of schemes over S, whose objects are locally of finite type morphisms
to S with coverings induced by coverings in the big étale topology on S. Note from 3.2.5
that its associated topos LFÉ(S)∼ is locally connected in a sense that the left adjoint Γ∗ of
the global section functor admits a left adjoint denoted by ΠS. By the work of Ilan Barnea
and Tomer Schlank [2], the category of simplicial objects in the topos LFÉ(S)∼ has a weak
fibration category structure [2, 7.11] and thus induces a model category structure on its
pro-category [2, 4.8]. Moreover, there is a Quillen adjunction [2, 8.1] (see also 2.3.5)

(ΠS,Γ
∗) : pro− SSet→ pro− (LFÉ(S)∼)∆op

where pro− (LFÉ(S)∼)∆op is endowed with Barnea-Schlank’s model category structure and
the category of pro-simplicial sets, pro − SSet, is equipped with Isaksen’s model category
structure [14, 6.4]. Now consider the left derived functor

LΠS : Ho(pro− (LFÉ(S)∼)∆op

)→ Ho(pro− SSet)

between the homotopy categories. We define topological types of simplicial algebraic spaces
as follows:

Definition 1.2.2 (Definition 3.4.2). The topological type of a simplicial algebraic space X•
over S is the pro-simplicial set

h(X•/S) := LΠS(X•)

Remark 1.2.3. Our definition is compatible with that of Artin-Mazur for schemes (see [2,
8.3] and 3.3.5) and of Friedlander for simplicial schemes (see 3.3.7).

1.2.4. Let X be an algebraic stacks. Note that one cannot use the topos LFÉ(S)∼ because
algebraic stacks cannot be viewed as sheaves. Nonetheless, we can still apply the same ma-
chinery to the big étale topos on X . More precisely, we apply the Barnea-Schlank machinery
to the topos associated to the site LFÉ(X ) which is the full subcategory of the big étale site
of the algebraic stack X with the induced topology (see 3.5.2 for more detail).
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Definition 1.2.5 (Definition 3.5.5). The topological type of an algebraic stack X over S is
the pro-simplicial set

h(X/S) := LΠX (∗LFÉ(X )∼)

where ΠX : LFÉ(X )∼ → Set is the connected component functor.

1.2.6. We can compute the topological types of algebraic stacks via smooth coverings by
schemes:

Theorem 1.2.7 (Definition 3.5.9). Let X/S be an algebraic stack. For any smooth surjection
X → X with X a scheme, there is an isomorphism

h(cosk0(X/X ))∼ // h(X )

between pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore,
these pro-simplicial sets are strictly weakly equivalent.

1.2.8. After building basics on topological types in our own language, we provide a compu-
tational tool for topological types. That is, we generalize Artin-Mazur’s comparison theorem
[1, 12.9] from schemes to algebraic stacks.

Theorem 1.2.9. (Simplicial Comparison)[Theorem 5.2.17] Let X• be a pointed finite type
simplicial scheme over C. Then the map

X̂•(C)→ ĥ(X•)

of the profinite completions of topological types is a weak equivalence of profinite spaces.

Theorem 1.2.10. (Stacky Comparison)[Theorem 5.2.23] Let X be a finite type algebraic
stack over C. Then the map

ĥ(X top)→ ĥ(X )

of the profinite completions of topological types is a weak equivalence of profinite spaces.

1.2.11. For example, we can compute the topological type of the classifying stack BGm where
Gm is the multiplicative group scheme over C. After profinite completion, the topological
type h(BGm) is weakly equivalent to the classifying space BS1 of the unit circle, which is in
turn weakly equivalent to CP∞ which is well-known as K(Z, 2).

1.2.12. One of main contents of this paper is the study of topological types with respect
to group actions. Recall the notion of relative topological types by Barnea-Schlank [2, 8.5],
which encodes the action of Galois group G = Gal(ksep/k) where ksep is a separable closure
of the field k. The following shows the relationship between the relative topological type and
the usual topological type:
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Proposition 1.2.13 (Proposition 4.1.6). The pro-simplicial set hk(X)/G which is the rela-
tive topological type of X over k taken quotient by G, and the topological type h(X/k) of X
are strictly weakly equivalent (see 2.3.16).

1.2.14. Note that the underlying pro-simplicial set of the relative topological type is the
usual topological type of the base change Xsep = X ×k ksep (see 4.1.10). So the above
proposition leads to a generalization, at the level of pro-simplicial sets, of Gereon Quick’s
result [31, 5.3] which in turn generalizes David Cox’s result [6, 1.1] :

Theorem 1.2.15 (Theorem 5.1.26). Let X be a scheme over a field k. Then the completion
ĥ(X) of the topological type h(X) of X is weakly equivalent to the Borel construction

ĥk(X)G ×G EG

of the G-equivariant completion (5.1.12) of the relative topological type hk(X) with respect
to the Galois group G = Gal(ksep/k).

1.3 Connection to earlier works
1.3.1. As mentioned earlier, we develop a homotopy theory of algebraic stacks by using
Barnea-Schlank’s derived functor definition of étale topological types. They defined topo-
logical realizations for topoi [2, 8.2] which we refer to topological types in this paper. We
exploit their approach by studying relationship among various topoi. Especially, localized
topoi play a pivotal role.

While we develop a theory of homotopy types, we use topoi rather than sites. Sites are
more restricted than topoi which enjoy various categorical properties like the existence of
limits and colimits. On top of that, we can deal with more objects like algebraic spaces when
working with topoi.

1.3.2. Fix a topos T . For simplicity, assume it has enough points. Remark that a local weak
equivalence (resp. a local fibration) between simplicial objects in T is a weak equivalence
(resp. a Kan fibration) at stalks. The category T∆op of simplicial objects in T forms a
model category structure whose class of weak equivalences (resp. cofibrations) is the class
of local weak equivalences (resp. monomorphisms). The class of fibrations is automatically
determined by lifting property and is called global fibrations. This model category structure
is due to Joyal [27], and later generalized to the category of simplicial presheaves by Jardine.
One problem lying in the Joyal-Jardine’s model category is that the class of fibrations is
not equal to that of local fibrations. In fact, a global fibration is a local fibration, but not
vice versa (see 2.1.14). However, it is a morphism which is simultaneously a local fibration
and a local weak equivalence that generalizes Artin-Mazur’s notion of hypercovers [1, 8.4].
Indeed, a morphism X• → Y• of simplicial sheaves is both a local fibration and a local weak
equivalence if and only if the following morphisms are epimorphisms (see 2.1.10):
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(i) X0 → Y0

(ii) Xn+1 → (coskn sknX•)n+1 ×(coskn skn Y•)n+1 Yn+1 for each n ≥ 0.

Consequently it will become much easier to deal with hypercovers if we have all local
fibrations in the class of fibrations in a model category. Unfortunately, this is impossible in
most cases (see 2.2.12). However, Barnea-Schlank showed [2, p.55] that one can remedy this
issue after enlarging the category to the associated pro-category. Indeed, they proved that
there is a model category structure on the pro-category of simplicial objects in T where a
local weak equivalence (resp. a local fibration) of simplicial sheaves is a weak equivalence
(resp. a fibration) as a morphism in the pro-category.

1.3.3. The key feature of Barnea-Schlank’s model category structure is that one can under-
stand Artin-Mazur’s étale homotopy types as derived objects. To be more concrete, recall
their definition of topological realization [2, 8.2]. Assume the topos T is locally connected.
i.e., the pull-back of the 2-categorical unique morphism Γ : T → Set admits a left ad-
joint. Denote it by Π and call it the connected component functor. In geometric situations,
this functor plays the role of the connected component functor. Barnea-Schlank proved [2,
p.59] that the adjoint pair (Π,Γ∗) induces a Quillen adjunction with respect to their model
category structures. Note that the Barnea-Schlank model category structure in the case of
pro-simplicial sets is simply the strict model category structure [17, 4.15] on the pro-category
induced by the classical model category on SSet (see 2.3.1). We refer to weak equivalences in
the strict model category structure as strict weak equivalences. However, what we want is a
model category on pro-simplicial sets whose weak equivalences are equivalent to those which
induce isomorphisms on all homotopy groups. Since there are not enough weak equivalences
in the strict model category structure, we should enlarge the class of weak equivalences. This
is accomplished by Isaksen [14, 6.4]. Hence we make a variant of Barnea-Schlank’s topological
realization by adopting Isaksen’s model category structure on pro-simplicial sets. This does
no harm in using Barnea-Schlank’s method and gives us a notion of topological type of the
topos T :

Definition 1.3.4 (Definition 2.3.9). A topological type h(T ) of a topos T is the pro-simplicial
set

LLΓ∗(∗)

where ∗ is a final object of T∆op and LLΓ∗ : Ho(pro − T∆op
) → Ho(pro − SSet) is the

left derived functor of LΓ∗ between the homotopy categories associated to model categories.
More generally, a topological type h(F•) (or hT (F•) if we wish to make the reference to T
explicit) of a simplicial object F• in T is the pro-simplicial set

LLΓ∗(∗)(F•)

Remark 1.3.5. The main improvement compared to Barnea-Schlank’s original definition is
the definition of the topological types of simplicial objects in T , which comes from the weak
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equivalence between the topological type h(F ) of F in T and the topological type h(T/F )
of the localized topos T/F (see 2.3.30).

1.3.6. Isaksen [16] also showed that one can take the derived functor approach for étale
topological types. Let S be a noetherian scheme. Consider the category Sm/S of schemes
of finite type over S. By endowing the étale local or the Nisnevich local projective model
category structure to the category of simplicial presheaves on Sm/S (see [16, §2] for de-
tails), he proved [16, 2.2] that there is a left Quillen functor from the category of simplicial
presheaves on Sm/S to the category of pro-simplicial sets

Ét : (Ŝm/S)∆op → pro− SSet

where the category of pro-simplicial sets is equipped with Isaksen’s model category structure
[14, 6.4]. Furthermore, for any scheme X ∈ Sm/S, the pro-simplicial set LÉt(X) is the
usual topological type of X in the sense of Friedlander ([16, 2.4]).

Since the class of weak equivalence in the local model category coincides with the class of
local weak equivalences, it follows immediately that Isaksen’s approach is compatible with
ours. Indeed, there is a factorization

Ho(pro− L̃FÉ(S)
∆op

) LΠ //Ho(pro− SSet)

Ho((Ŝm/S)∆op
)

LÉt

55OO

Therefore, our topological type functor can be viewed as a generalization of Isaksen.

1.4 Outline of the paper
1.4.1. In Chapter 2 we develop a basic theory of topological types. We first review a variety
of homotopy theoretical ingredients for pro-simplicial sheaves. Then define topological types
in a general context of topoi and provide elementary properties of them. Especially, we
obtain a series of descent results (see 2.3.41, 2.3.51, and 2.3.53). In the last section, we
discuss a connection to cohomology theory.

1.4.2. In Chapter 3 we apply the general construction to algebro-geometric objects like
schemes, algebraic spaces, and algebraic stacks. Also, we prove the compatibility with the
classical theories by Artin-Mazur and by Friedlander.

1.4.3. In Chapter 4 we study topological types with respect to group actions. For this we
revisit Barnea-Schlank’s notion of relative topological types [2, 8.5] and see its behavior with
respect to our topological types 4.1.10.
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1.4.4. In Chapter 5 we have concrete computations on topological types of algebraic stacks
over C via their associated topological stacks. For this we establish a relationship between
topological types and profinite completion introduced by Gereon Quick [30]. Finally we prove
that our theorem that relates topological types to relative topological types (see 4.1.10) is a
generalization of earlier results by David Cox and by Gereon Quick (see 5.1.26).

1.5 Convention
1.5.1. In this paper, an algebraic space X over a scheme S is a functor X : (Sch/S)op → Set
such that the following holds:

(i) X is a sheaf with respect to the big étale topology.

(ii) The diagonal
∆ : X → X ×S X

is representable by schemes.

(iii) There exists a S-scheme U and an étale surjection U → X.

1.5.2. An algebraic stack X over a scheme S is a stack in groupoids over the big étale site
(Sch/S)ét of S-schemes such that the following holds:

(i) The diagonal
∆ : X → X ×S X

is representable by algebraic spaces.

(ii) There exists a S-scheme X and a smooth surjection π : X → X .

Remark 1.5.3. These two definitions only assume minimum conditions compared to those
in the literature. For example, we do not assume quasi-compactness of the diagonal.

1.5.4. In what follows, for schemes, algebraic spaces, and algebraic stacks, we work over
a fixed base scheme S unless stated otherwise. Moreover, we assume that S is locally
noetherian throughout the paper.

1.5.5. Most interesting model categories are equipped with a functorial cofibrant replace-
ment functor [13, 8.1.15]. In this paper, however, we work with those model categories not
necessarily admitting functorial cofibrant replacement. So when we say a cofibrant replace-
ment of X, it only means a chosen trivial fibration C(X) → X with H cofibrant. On the
other hand, a cofibrant approximation [13, 8.1.2] of X is any weak equivalence C → X with
C cofibrant.
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1.5.6. Ilan Barnea pointed out a set-theoretical issue on the site LFÉ(S) (cf. 3.2.1). For
example, the Barnea-Schlank model category structure 2.2.17 is applied to small sites. When-
ever this issue arises, we invoke [26, Tag 020M] so that we can assume the smallness on the
site LFÉ(S).

1.5.7. Throughout this paper T is a topos and, if necessary, C is a site whose associated
topos is T unless otherwise specified. Also, we assume that C is small.

http://stacks.math.columbia.edu/tag/020M


10

Chapter 2

Topological types

In this chapter we develop a general theory of topological types of topoi.

2.1 Review on simplicial (pre)sheaves
In their paper, Barnea-Schlank defined weak fibration categories [2, 1.2] and used it to con-
struct étale homotopy types as derived functors in the sense of Quillen. In this section, we
recall basic model categories that are necessary to define topological types of topoi. The
main references are [2], [23], and [25].

2.1.1. Recall that for n ≥ 1 and 0 ≤ k ≤ n, the k th horn Λk
n of the standard n-simplex

∆[n] is the sub-simplicial set generated by the image of the face maps di : ∆[n− 1]→ ∆[n]
where 0 ≤ i ≤ n and i 6= k.

2.1.2. (The classical model category structure on SSet [35, II.§3]) There is a model category
structure on the category SSet of simplicial sets; if f : X• → Y• is a morphism of simplicial
sets,

(i) f is a weak equivalence if the induced map on geometric realizations

|f | : |X•| → |Y•|

is a weak equivalence of topological spaces,

(ii) f is a cofibration if it is a monomorphism, and

(iii) f is a fibration if it has the right lifting property with respect to all horn inclusions;
for all k th horn Λk

n → ∆[n] for n ≥ 1, 0 ≤ k ≤ n and for every commutative diagram

Λk
n

//

��

X•

��
∆[n]

==

// Y•
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there exists a dotted arrow that fills in the diagram. These fibrations are called Kan
fibrations.

2.1.3. For a simplicial set X•, we can consider homotopy groups with all base points at once:

πn(X•) :=
∐
x∈X0

πn(|X•|, x)

Note that a map X• → Y• of simplicial sets is a weak equivalence if and only if the following
holds:

(i) π0(X•)→ π0(Y•) is a bijection,

(ii) For each n ≥ 1, the commutative diagram

πn(X•) //

��

πn(Y•)

��
X0

// Y0

is cartesian.

2.1.4. This re-interpretation of weak equivalences of simplicial sets enables us to generalize
the notion of weak equivalences from simplicial sets to simplicial presheaves. Indeed, let X•
be a simplicial presheaf on C, or equivalently, a functor Cop → SSet. For each n ≥ 0, one
can associate a presheaf

π̂n(X•) : Cop → Set : U 7→ πn(X•(U))

Definition 2.1.5. ([24, p.64]) A morphism f : X• → Y• of simplicial (pre)sheaves is a local
weak equivalence if the following holds:

(i) The morphism π̂0X• → π̂0Y• induces an isomorphism of associated sheaves,

(ii) For each n ≥ 1, the commutative diagram

π̂nX•

��

// π̂nY•

��
X0

// Y0

induces a cartesian diagram of associated sheaves.

Definition 2.1.6. A morphism f : X• → Y• of simplicial (pre)sheaves is a global fibration
if it has the right lifting property with respect to morphisms which are both local weak
equivalence and monomorphism.
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Definition 2.1.7. A morphism f : X• → Y• of simplicial (pre)sheaves is a local fibration if
it has the local right lifting property with respect to all horn inclusions; for all k th horn
Λk
n → ∆[n] for n ≥ 1, 0 ≤ k ≤ n and for every commutative diagram

Λk
n

//

��

X•(U)

��
∆[n] // Y•(U)

with U ∈ C, there exists a covering {Ui → U} such that for each i there exists a dotted
arrow that fills in the diagram below:

Λk
n

//

��

X•(U) // X•(Ui)

��
∆[n]

55

// Y•(U) // Y•(Ui)

Remark 2.1.8. If T has enough points, then local weak equivalences (resp. local fibrations)
can be checked at stalks.

2.1.9. The following proposition shows the meaning of having local trivial fibrations rather
than global fibrations in a model category structure on simplicial sheaves. Indeed, the
equivalent conditions in the statement is a generalization of the classical notion of hypercovers
(see [1, 8.4]).

Proposition 2.1.10. A morphism X• → Y• of simplicial sheaves is both a local weak equiva-
lence and a local fibration if and only if the following morphisms of sheaves are epimorphisms;

(i) X0 → Y0

(ii) Xn+1 → (coskn sknX•)n+1 ×(coskn skn Y•)n+1 Yn+1 for each n ≥ 0.

Proof. The morphisms above are epimorphisms if and only if the local lifting property of
X• → Y• with respect to the n-boundary inclusion ∂∆[n] → ∆[n] for all n ≥ 0 holds. See
[24, 4.32] for further details.

2.1.11. The following model category structure on the category of simplicial sheaves is due
to Joyal from his letter to Alexander Grothendieck, and to Jardine in the case of presheaves.

2.1.12. (The Joyal-Jardine’s model category structure on the category of simplicial (pre)sheaves
[27], [25, 2.3]) There is a model category structure on the category Ĉ∆op of simplicial
presheaves on C; if f : X• → Y• is a morphism of simplicial presheaves,

(i) f is a weak equivalence if it is a local weak equivalence,

(ii) f is a cofibration if it is a monomorphism, and
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(iii) f is a fibration if it is a global fibration.

Remark 2.1.13. The classical model category structure SSet is a simplicial model category
[13, 9.1.6]. In particular, it is equipped with these notions; a tensoring S• ⊗ (−) with a
simplicial set S• which is a product of simplicial sets, and for two simplicial sets X• and Y•,
a simplicial mapping space Map(X•, Y•) which is a simplicial set whose degree n is given by
MorSSet(X• ×∆[n], Y•). There is an adjunction

Map(S• ⊗X•, Y•) = Map(S•,Map(X•, Y•))

This simplicial model category structure naturally induces a simplicial model category struc-
ture on Joyal-Jadine’s model category structure on the category of simplicial (pre)sheaves.
Indeed, a tensoring S• ⊗ X• of a simplicial presheaf X• with a simplicial set S• is defined
by section-wise tensoring: (U ∈ C) 7→ X•(U) ⊗ S•. A mapping space Map(X•, Y•) between
two simplicial presheaves is the simplicial set defined by MorĈ∆op (∆[n] ⊗ X•, Y•) in degree
n. There is an induced adjunction

MorĈ∆op (S• ⊗X•, Y•) = MorSSet(S•,Map(X•, Y•))

Proposition 2.1.14. A global fibration X• → Y• of simplicial (pre)sheaves on a site C is a
section-wise fibration of simplicial sets (i.e., X•(U)→ Y•(U) is a fibration of simplicial sets
for all U ∈ C) and thus is a local fibration.

Proof. That a section-wise fibration is a local fibration follows from the definitions of Kan
fibrations and local fibrations. To prove the first assertion, we may assume X• and Y• are
simplicial presheaves because the same argument with sheafification does the job. So consider
a lifting problem

Λk
n

//

��

X•(U)

��
∆[n] //

;;

Y•(U)

for U ∈ C. By 2.1.13, for a simplicial set S• we have an adjunction

MorĈ∆op (S• ⊗ hU , X•) = MorSSet(S•,Map(hU , X•))

Note also that there is a bijection of simplicial sets

Map(hU , X•)→ X•(U)

So the lifting problem is equivalent to the lifting problem

Λk
n ⊗ hU //

��

X•

��
∆[n]⊗ hU //

::

Y•

The left vertical arrow is a section-wise weak equivalence of simplicial sets and thus is a weak
equivalence of simplicial presheaves. Moreover, it is a monomorphism. Therefore, the lift
exists by the definition of global fibrations.
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2.2 Review on pro-simplicial (pre)sheaves
In this section we recall basic background materials about pro-categories and model category
structures on them. Then review two different model category structures on the pro-category
of simplicial (pre)sheaves: Edwards-Hastings and Barnea-Schlank. We compare these two
model category structures and discuss why Barnea-Schlank’s model category structure is
more suitable when it comes to topological types 2.3.9.

Definition 2.2.1. ([1, A.§1]) A category I is cofiltered if it satisfies the following conditions:

(i) For every two objects i and j, there exists an object k and two morphisms k → i and
k → j,

(ii) For every two morphisms a, b : i //// j , there exists an object k and a morphism
c : k → i such that a ◦ c = b ◦ c.

More generally, a functor φ : I → J between categories is cofinal if the following conditions
hold:

(i) For every two objects j1, j2 ∈ J , there exists an object i ∈ I and two morphisms
Φ(i)→ j1 and φ(i)→ j2,

(ii) For every two morphisms a, b : φ(i) // // j , there exists an object i′ ∈ I and a mor-
phism c : i′ → i in I such that a ◦ φ(c) = b ◦ φ(c).

Definition 2.2.2. ([1, A.§2]) Let C be a category. A pro-object in C is a functor

I → C

from a cofiltered category I to C. The pro-category associated to C, denoted by pro − C, is
the category whose objects are pro-objects in C and whose morphisms are defined by

Morpro−C(X, Y ) = lim
j∈J

colim
i∈I

MorC(Xi, Yj)

2.2.3. Let F and G be pro-object in C indexed by the same category I. If there is a
morphism of functors α : F → G, then there is an induced morphism of pro-objects. A level
presentation of morphisms in pro− C replaces a morphism of pro-objects by a morphism of
pro-objects induced by a morphism between functors:

Definition 2.2.4. A level presentation of a morphism X → Y in pro − C is a cofiltered
category K, pro-objects X̃ and Ỹ indexed by K, a morphism X̃ → Ỹ of functors, and
isomorphisms X → X̃ and Y → Ỹ such that the diagram

X //

��

Y

��

X̃ // Ỹ

commutes.
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Lemma 2.2.5 ([1, A.3.2]). Every morphism in pro− C admits a level presentation.

Definition 2.2.6. ([17, p.4]) A directed set (I,≤) is cofinite if for every t in I, the set

{s ∈ I : s ≤ t}

is finite. Note that a direct set can be regarded as a cofiltered category.

Lemma 2.2.7 ([38, Expose I.8.1.6]). Let I be a cofiltered category. Then there exists a
cofinite directed set J and a cofinal functor J → I. In particular, every morphism in a pro-
category has a cofinite directed level representation in a sense that it has a level representation
with the index category cofinite directed.

Definition 2.2.8 ([17, 2.3]). Let f : X → Y be a cofinite directed, indexed by I, level
representation of a morphism in the pro-category of simplicial (pre)sheaves. For each t ∈ I,
the relative matching map Mtf is the canonical map

Xt → lim←−
s<t

Xs ×lim←−
s<t

Yt Ys

Definition 2.2.9. A morphism f : X → Y of pro-simplicial (pre)sheaves is a special global
fibration (resp. special local fibration) if it has a cofinite directed level representation for
which every relative matching map is a global fibration (resp. local fibration).

2.2.10. (Edwards-Hastings’ model category structure on the pro-category of simplicial (pre)sheaves
[8, §3.5], [23, 14]) There is a model category structure on the pro-category of simplicial
(pre)sheaves on C; if f : X → Y is a morphism of pro-simplicial (pre)sheaves,

(i) f is a weak equivalence if it is isomorphic to a level-wise weak equivalence,

(ii) f is a cofibration if it is a monomorphism, and

(iii) f is a fibration if it is a retract of a special global fibration.

Denote this model category structure by proE-H − Ĉ∆op (resp. proE-H − T∆op).

Remark 2.2.11.

(i) As pointed out in [23, 20], Edwards-Hastings’ model category structure is the strict
model category structure [17, 4.15] on the pro-category of simplicial (pre)sheaves in-
duced by Joyal-Jardine’s model category structure on the category of simplicial (pre)sheaves.

(ii) Originally, Edwards-Hastings constructed [8, §3.5] a model category on the category
of pro-simplicial sets. After then Jardine generalized [23, 14] it to the category of
pro-simplicial sheaves. He also introduced the terminology Edwards-Hastings’ model
category structure, which we follow in this paper.
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2.2.12. Barnea-Schlank noticed that local weak equivalences and local fibrations are enough
to define a model category structure on the pro-category of simplicial sheaves [2, p.55].
They define weak fibration categories [2, 1.2] which is roughly a category with classes of
weak equivalences and fibrations that are enough to define model category structure on the
associated pro-category:

Definition 2.2.13. (Barnea-Schlank’s weak fibration category [2, 1.2]) A weak fibration
category is a category C equipped with two subcategories F ,W satisfying the following
conditions:

(i) F and W contain all isomorphisms,

(ii) C has all finite limits,

(iii) F has the 2-out-of-3 property,

(iv) The subcategories F and F ∩W are closed under base change,

(v) Every morphism A → B in C can be factored as A
f // C

g // B , where f is in W
and g is in F .

The morphisms in F (resp. W) are called fibrations (resp. weak equivalences).

2.2.14. The main example of weak fibration category is:

Definition 2.2.15. (Barnea-Schlank’s weak fibration category structure on the category of
simplicial (pre)sheaves [2, 7.7], [2, 7.11]) There is a weak fibration category structure [2, 1.2]
on the category of simplicial (pre)sheaves on C; if f : X → Y is a morphism of pro-simplicial
presheaves,

(i) f is a weak equivalence if it is a local weak equivalence, and

(ii) f is a fibration if it is a local fibration.

2.2.16. Here is a justification for introducing weak fibration categories and passing to pro-
categories. Beginning with local fibrations and local weak equivalences to endow a model
category structure on simplicial (pre)sheaves does not work in general. Assume for conve-
nience that T has enough points. If there is a model category structure on the category of
simplicial sheaves with local fibrations and local weak equivalences, the class of cofibrations
ought to be the class of monomorphisms. Indeed, as every morphism of simplicial sheaves
is factored by a cofibration followed by a trivial fibration, by looking at stalks, cofibration
at each point must be a monomorphism of sets. However, such a model category struc-
ture is precisely Joyal-Jardine’s one 2.1.12 in which fibrations are global fibrations, but not
local fibrations. (see 2.3.20). Nevertheless, the classes of local fibrations and local weak
equivalences still define a model category structure on the associated pro-category:
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Definition 2.2.17. (Barnea-Schlank’s model category structure on the pro-category of sim-
plicial (pre)sheaves [2, p.55]) There is a model category structure on the pro-category of
simplicial (pre)sheaves on C; if f : X → Y is a morphism of pro-simplicial presheaves,

(i) f is a weak equivalence if it is isomorphic to a level-wise weak equivalence,

(ii) f is a fibration if it is a retract of a special local fibration, and

(iii) f is a cofibration if it has the left lifting property with respect to all trivial fibrations.

Denote this model category structure by pro− Ĉ∆op (resp. pro− T∆op).

2.2.18. At this point, we have two different model category structures on the pro-category
of simplicial (pre)sheaves. Note that they have the same class of weak equivalences, but not
for fibrations and cofibrations.

Remark 2.2.19.

(i) In what follows, we use Barnea-Schlank’s model category structure on the category
of pro-simplicial (pre)sheaves unless otherwise stated. Barnea-Schlank called it the
projective model category structure since every local fibration of simplicial sheaves is a
fibration as a morphism of pro-simplicial sheaves.

(ii) Joyal-Jardine’s model category structure on simplicial (pre)sheaves induces Edwards-
Hastings’ model category structure on the pro-category of simplicial (pre)sheaves.
Barnea-Schlank called it the injective model category structure since every cofibration
of simplicial sheaves is a cofibration as a morphism of pro-simplicial sheaves.

(iii) We do not follow Barnea-Schlank’s terminologies to avoid any confusions. There is a
definition of the projective model category structure for a given indexed category. The
case of pro-simplicial (pre)sheaves is different from this because there is no uniform
index category.

2.2.20. Of course, two model category structures on the pro-category of simplicial (pre)sheaves
are closely related to each other:

Proposition 2.2.21 ([2, §7.4]). The adjunction

(id, id) : proE-H − T∆op → pro− T∆op

between the Edwards-Hastings’ and Barnea-Schlank’s model category structures is a Quillen
equivalence.

Proof. Every fibration in Edwards-Hastings’ model category structure is a fibration in the
Barnea-Schlank model category structure because every global fibration is a local fibration
of simplicial (pre)sheaves 2.1.14. Since those two model category structures share the same
class of weak equivalences, the adjunction induces a Quillen adjunction. This turns out to
be a Quillen equivalence as the adjunction is given by the identities.
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2.3 Definition and Properties of Topological types
2.3.1. In case of the punctual topos, the model category structure on pro-simplicial sets
induced by Barnea-Schlank is nothing but the strict model category structure [17, 4.15] in-
duced by the classical model category structure on simplicial sets. In the strict model cate-
gory structure, weak equivalences (resp. cofibrations) are those isomorphic to level-wise weak
equivalences (resp. monomorphisms) of simplicial sets. In particular, this structure coincides
with Edwards-Hastings’ model structure 2.2.11. Consequently, the three model category
structures-Edwards-Hastings’, Barnea-Schlank’s, and the strict model category structure-on
the pro-category of simplicial sets all coincide.

However, these equivalent ones are not adequate for developing a theory of topological
types. For a morphism between connected pointed pro-simplicial sets, we hope it to be a
weak equivalence if and only if it induces an isomorphism of homotopy groups in every degree.
Although every weak equivalence in the strict model category structure on pro-simplicial sets
induces an isomorphism of homotopy groups, but not vice versa. In other words, the class of
weak equivalence is not big enough, which is why Artin-Mazur introduced \-isomorphisms [1,
§4]. The desired model category structure was achieved by Isaksen [14]. The class of weak
equivalence is a bit involved and it does have the property that a map of connected pointed
pro-spaces is a weak equivalence if and only if it induces an isomorphism of all homotopy
pro-groups [14, 7.5].

2.3.2. (Isaksen’s model category structure on pro-simplicial sets [14, 6.4]) There is a model
category structure on the pro-category of simplicial sets; if f : X → Y is a morphism of
pro-simplicial sets,

(i) f is a weak equivalence if π0f is an isomorphism of pro-sets and ΠnX → f ∗ΠnY is an
isomorphism in pro− LS(X) for all n ≥ 1 (see [14, 6.1] for details),

(ii) f is a cofibration if it is isomorphic to a level-wise cofibration, and

(iii) f is a fibration if it has the right lifting property with respect to all trivial cofibrations.

Denote this model category structure by pro− SSet and the strict one by prostr − SSet

Remark 2.3.3.

(i) Both the strict and Isaksen’s model category structures have the same class of cofibra-
tions which are exactly the class of monomorphisms.

(ii) A weak equivalence in the strict model category structure, called a strict weak equiva-
lence, is also a weak equivalence in Isaksen.

2.3.4. In what follows, the model category structure on pro-simplicial sets is always that of
Isaksen unless otherwise specified.



CHAPTER 2. TOPOLOGICAL TYPES 19

2.3.5. Consider the (2-categorical) unique morphism of topoi:

Γ = (Γ∗,Γ∗) : T → Set

According to Barnea-Schlank [2, 8.2], the pull-back functor Γ∗ admits a left adjoint LΓ∗ for
the associated pro-categories, and moreover there is a Quillen adjunction

(LΓ∗ ,Γ
∗) : prostr − SSet→ pro− T∆op

where the pro-category of simplicial sets is endowed with the strict model category structure.
In particular, LΓ∗ preserves cofibrations and trivial cofibrations. It then follows from 2.3.3
that there is still a Quillen adjunction

(LΓ∗ ,Γ
∗) : pro− SSet→ pro− T∆op

Remark 2.3.6. If T is locally connected in a sense that Γ∗ admits a left adjoint, denote the
left adjoint by Π and call the connected component functor. In this case, LΓ∗ is simply the
connected functor induced on the pro-categories.

2.3.7. The locally connectedness condition is a topos-theoretic generalization of the con-
nected components of a topological space. For instance, the small étale topos Xét of a
locally noetherian scheme X is locally connected. If Y is étale over X, then Π applied to
the sheaf represented by Y over X is the set of connected components of the underlying
topological space of the scheme Y .

2.3.8. In what follows, we do not assume the locally connectedness condition on T . Even if
the condition is necessary for the comparison with Artin-Mazur’s étale homotopy types (see
3.3.5), we can still develop a general theory of topological types without it:

Definition 2.3.9. A topological type h(T ) of a topos T is the pro-simplicial set

LLΓ∗(∗)

where ∗ is a final object of T∆op and LLΓ∗ : Ho(pro− T∆op
) → Ho(pro− SSet) is the left

derived functor of LΓ∗ . More generally, a topological type h(F•) (or hT (F•) if we wish to
make the reference to T explicit) of a simplicial object F• in T is the pro-simplicial set

LLΓ∗(F•)

The topological type h(T ) of T is the topological type h(∗) of a final object in T∆op .

Remark 2.3.10.

(i) Though we use Isaksen’s model category structure on pro-simplicial sets, most weak
equivalences of topological types in this paper are strict weak equivalences. Indeed,
most weak equivalence are induced by weak equivalences in pro − T∆op and so they
are strict weak equivalences of pro-simplicial sets(see 2.3.5). In particular, a choice of
cofibrant approximation makes a difference only up to strict weak equivalence.



CHAPTER 2. TOPOLOGICAL TYPES 20

(ii) We could have developed the theory of topological types with the strict model category
structure on pro-simplicial sets. However, we allow more weak equivalences to compare
our definition with Friedlander’s étale topological types 3.3.7.

2.3.11. The main goal of this paper is to build a theory of topological types for algebraic
stacks. Since stacks cannot be thought as sheaves, extra cares are needed.

Definition 2.3.12. Let X be a stack over C. A site C/X is defined as following. An object
is a pair (U, u), where u : U → X is a morphism of fibered categories over C. A morphism
(V, v)→ (U, u) is a pair (h, hb) where f : V → U is a morphism in C and hb : v → u ◦ f is a
2-morphism of functors. A collection of maps

{(hi, hbi) : (Ui, ui)→ (U, u)}

is a covering if the underlying collection {hi : Ui → U} of morphisms in C is a covering of
U . Denote by T/X the associated topos.

Remark 2.3.13. For a fibered category in groupoids p : F → C, there is an inherited
topology on F from C. Namely, a family {xi → x} of morphisms in F with fixed target
is defined to be the covering if the family {p(xi) → p(x)} is a covering in C (see [26, Tag
06NU] for details). Under the 2-Yoneda lemma, the site applied to the fibered category X/C
is equivalent to the site C/X defined above.

Definition 2.3.14. A topological type of a stack X over C is the pro-simplicial set

h(X ) := LLΓ∗
T/X

(∗T/X )

where Γ∗T/X : Set → T/X is the constant sheaf functor and ∗T/X is a final object in the
topos T/X .

2.3.15. After developing a general theory of topological types of simplicial sheaves, we will
related the topological types of stacks to the topological types of simplicial schemes/algebraic
spaces. Before that, we provide a couple of examples of topological types of topoi.

Definition 2.3.16.

(i) Two objects in a model category are weakly equivalent if there is a zig-zag of weak
equivalences between them [13, 7.9.2].

(ii) Two pro-simplicial sets are strictly weakly equivalent if there is a zig-zag of strict weak
equivalences between them.

Example 2.3.17. Let BG be the classifying topos of a discrete group G. Recall that it is
the category of presheaves on the category C with one object ∗ and

Hom(∗, ∗) = G

http://stacks.math.columbia.edu/tag/06NU
http://stacks.math.columbia.edu/tag/06NU
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Let us endow C the trivial topology so that BG is also the category of sheaves on C. Note
that BG is locally connected with its connected component functor the colimit functor. In
fact, BG is equivalent to the category of G-sets.

To compute the topological type of BG, we follow the same argument in Barnea-Schlank
[2, Example 6]. Their argument works verbatim despite the different choice of model category
structures on pro-simplicial sets. Let us work in general. For any given category C, endowed
the trivial topology on it. Denote by T the associated category of sheaves, or equivalently,
presheaves. It is locally connected with the colimit functor as the connected component
functor. In the weak fibration category structure on the category of simplicial sheaves, weak
equivalences (resp. fibrations) are exactly section-wise weak equivalences (resp. section-wise
Kan fibrations) of simplicial sets. Notice that these two classes are exactly those classes in
the model category structure on simplicial sheaves viewed as the the category SSetC

op

of Cop-
diagrams of simplicial sets, induced by the model category structure on simplicial sets [13,
11.6.1]. So in this case, Barnea-Schlank’s model category structure on pro−T∆op is nothing
but the strict model category structure [17, 10.4] induced by the model category structure
on SSetC

op

. This enables us to compute the topological type because cofibrations in the
strict model category structure are exactly morphisms isomorphic to level-wise cofibrations
of simplicial sheaves. Now consider the Cop-diagram of simplicial sets

N(−/C) : Cop → SSet : U 7→ N(U/C)

where N(U/C) is the nerve of the undercategory U/C. It follows from [13, 14.8.9] that

N(−/C)→ ∗

is a cofibrant approximation of a final object ∗ in T∆op , which then becomes a cofibrant
approximation in pro− T∆op . Therefore, we have a strict weak equivalence

colimCop N(−/C) = Π(N(−/C))→ h(T )

of pro-simplicial sets. Again, it follows from [13, 14.7.5] that colimCop N(−/C) is isomor-
phic to the nerve NC of the category C. To sum up, the topological type h(T ) is strictly
weakly equivalent to the simplicial set NC viewed as a pro-simplicial set. In particular, the
topological type of BG is the classifying space K(G, 1).

2.3.18. Let us take a close look at the projective model category structure on (BG)∆op which
is the category of simplicial G-sets. A morphism of simplicial G-sets is a weak equivalence
(resp. fibration) if and only if its underlying morphism of simplicial sets is a weak equivalence
(resp. fibration). On the other hand, it follows from [12, 5.2.10] that a simplicial G-set X• is
cofibrant if and only if Xn is a free G-set for each n. Also, the map G→ ∗ is an epimorphism
in BG and hence cosk0(G)→ ∗ is a trivial fibration. Now let X• be a simplicial G-set. Then
there is an induced trivial fibration

cosk0(G)×X• → X•
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in (BG)∆op . Moreover, cosk0(G) × X• is a cofibrant object in (BG)∆op as G-action on
cosk0(G) is free. Recall from the previous example that the Barnea-Schlank model category
structure on pro − (BG)∆op is the strict model category structure induced by the model
category structure on (BG)∆op . Therefore, cosk0(G)×X• → X• is a cofibrant approximation
of X• in pro− (BG)∆op as well. Consequently, there is a strict weak equivalence

(cosk0(G)×X•)/G = Π(cosk0(G)×X•)→ h(X•)

As a result,
LΠ : pro− (BG)∆op → pro− SSet

can be understood as a generalization of the Borel construction. Finally, note that cosk0(G)/G
is the classifying spaceK(G, 1) of the discrete group G and hence we can recover the previous
result that h(BG) is K(G, 1).

Example 2.3.19. Let us extend the result to profinite groups. So let G = {Gi}i∈I be an
inverse system of finite groups with surjective transition maps. Denote by Ki the kernel of
lim←−i∈I Gi → Gi. Consider the classifying topos BG which is the category of discrete G-sets.
As in the discrete case, BG is locally connected. Remark that for each i ≤ j, there is a
commutative diagram of topoi

BGj
// BGi

BG

pj

bb

pi

<<

To compute the topological type h(BG), we use its compatibility with Artin-Mazur. Consider
a cofibrant replacement H → ∗ of ∗ in pro− (BG)∆op . Say

H : A→ (BG)∆op

It then follows from [2, 8.3] that there is a commutative diagram

A
H //

$$

HR(BG) Π //

��

SSet

��
πHR(BG) //Ho(SSet)

where πHR(BG) is the simplicial homotopy category [2, 6.15] of the category HR(BG) of
objects X• with X• → ∗ a trivial fibration in (BG)∆op . Since πHR(BG) is cofiltered and the
composition A→ πHR(BG)→ Ho(SSet) is cofinal [2, §6.2],

πHR(BG)→ Ho(SSet)

computes h(BG) as an object in pro−Ho(SSet). Further, we can restrict the index category
to the full subcategory πHRrepn(BG) consisting of representable objects by using a similar
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argument as in 3.2.8. Note that BG is equivalent to the topos associated to the discrete
finite G-sets. So X• being representable means that each Xn is a finite discrete G-set. Fix
a non-negative integer n. A morphism between cofiltered categories

I → πHRrepn(BG) : i 7→ p∗iEGi

induces a morphism of nth homotopy pro-groups. We claim that it is an isomorphism. We
need to prove that for any given representable simplicial discrete G-set X•, there exists some
i ∈ I such that one can choose a morphism from p∗iEGi to X•. Since we are looking at nth
homotopy groups, we may assume X• is isomorphic to coskn+1 skn+1X•. Consider the finite
intersection of open stabilizers: ⋂

x∈
⋃n+1
m=0 Xm

Gx

Since {Ki}i∈I forms a fundamental system of neighborhood of the identity, Ki is a subgroup
of the finite intersection for some i. This implies that pi∗X• = XKi

• is equal to X• itself
and thus p∗i applied to a trivial fibration X• → ∗ in (BG)∆op is still a trivial fibration in
(BGi)

∆op . Then via adjunction we can solve the lifting problem

∅ //

��

X•

��
p∗iEGi

//

;;

∗

in (BGi)
∆op where the lift exists because EGi is cofibrant. Therefore, there is a \-isomorphism

between I → SSet : i 7→ Π(p∗iEGi) = BGi and h(BG) in pro −Ho(SSet). Consequently,
h(BG) is K(G, 1) which is the inverse system {K(Gi, 1)}i∈I of classifying spaces.

Remark 2.3.20. There is no model category structure on (BG)∆op with local weak equiv-
alences as weak equivalences and local fibrations as fibrations. Recall from 2.1.8 that local
weak equivalences and local fibrations can be checked at stalks. The topos BG has enough
points; the point Set→ BG whose pull-back assigning underlying sets does the job. There-
fore, a morphism of simplicial discrete G-sets is a local weak equivalence (resp. a local
fibration) if and only if the underlying map of simplicial sets is a weak equivalence (resp. a
Kan fibration). For the sake of contradiction, assume there is such a model category struc-
ture. We claim that there is no cofibrant object. If X• is cofibrant, we can find a dotted
arrow in the following diagram for each i:

∅ //

��

p∗iEGi

��
X• //

;;

∗

This is because the right vertical morphism is a trivial fibration as the pull-back of the trivial
fibration EGi → ∗ in (BGi)

∆op . Having a dotted arrow implies that the stabilizer Gx is a
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subgroup of Ki for each n and each x ∈ Xn. Since this is true for every i, each Xn has a free
G-action. However a discrete G-set cannot have a free G-action unless G is discrete.

2.3.21. For the rest of the section, we study basic properties of topological types.

2.3.22. The notion of topological types is functorial up to strictly weakly equivalent ob-
ject. This slight annoyance will be resolved when defining topological types of schemes. A
morphism f : T ′ → T between topoi induces a morphism of pro-simplicial sets:

h(T ′) = LLΓ′∗(∗′)→ LLΓ∗(∗) = h(T )

Indeed, consider a cofibrant replacement H ′ → ∗′ of ∗′ in pro − T ′∆op and choose a factor-
ization

Lf∗(H
′) d //

��

K

��
Lf∗(∗′) // ∗

of the composition Lf∗(H
′) → Lf∗(∗′) → ∗ as a cofibration followed by a trivial fibration.

Here Lf∗ is a left adjoint of f ∗ : pro−T∆op → pro−T ′∆op which is a right Quillen functor [2,
8.1]. Since Lf∗ preserves cofibrations, K → ∗ is a cofibrant approximation of ∗. Then there
is a weak equivalence K → H over ∗ where H → ∗ is a cofibrant replacement of ∗. Since
LΓ∗ preserves weak equivalence between cofibrant objects, we get a morphism

h(T ′) = LΓ′∗(H
′) = LΓ∗(Lf∗(H

′)) d // LΓ∗(K)→ LΓ∗(H) = LLΓ∗(∗) = h(T )

where the map LΓ∗(K)→ LΓ∗(H) is a strict weak equivalence. So the map h(T ′)→ h(T ) is
obtained by applying LΓ∗ to the composition Lf∗H ′ → K → H and thus can be regarded as
a morphism in the category of pro-simplicial sets rather than in its homotopy category.

2.3.23. If T is locally connected, then every object is isomorphic to a disjoint union of
connected objects. The behavior of topological types with respect to coproduct is simple:

Proposition 2.3.24. Let {Fα}α∈A be a collection of objects in T∆op. Then there is a strict
weak equivalence ∐

α

h(Fα)→ h(
∐
α

Fα)

Proof. For each α, choose a cofibrant replacement Cα → Fα of Fα in pro−T∆op . Since
∐
Cα

is cofibrant, the morphism
∐

αCα →
∐

α Fα is a cofibrant approximation by the lemma
below. The statement follows from the fact that LΓ∗ commutes with coproducts.

Lemma 2.3.25. Let {Xα → Y α}α∈A be a collection of weak equivalences in pro − T∆op.
Then the induced morphism ∐

α

Xα →
∐
α

Y α

is also a weak equivalence.
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Proof. Say Xα is indexed by Iα. Note that the coproduct
∐

αX
α is simply∐

α

Iα → T∆op

: (iα) 7→
∐
α

Xα
iα

By replacing morphisms by their level presentations 2.2.5, it suffices to prove the statement
for morphisms in T∆op where the result follows from [24, 4.42]. In case T has enough points,
the statement is reduced further to the case of simplicial sets where the result is also well-
known.

2.3.26. Different topoi can induce the same topological type up to strict weak equivalences.
The following is an important case which plays a crucial role in replacing étale homotopy
types by smooth topological types.

Proposition 2.3.27. Let f : C ′ → C be a cocontinuous functor between sites with the
associated morphism of topoi f : T ′ → T . Assume that the functor is continuous and
commutes with finite limits. For a simplicial object F ′• in T ′, the morphism

hT ′(F
′
•)→ hT (f!(F

′
•))

between topological types is a strict weak equivalence of simplicial sets where f! is a left adjoint
to f ∗. In particular, the morphism

h(T ′)→ h(T )

between topological types is a strict weak equivalence of pro-simplicial sets.

Proof. By the assumption on continuity, there is also a morphism of topoi

(f!, f
∗) : T → T ′

whose push-forward is the pull-back of f . Consider a cofibrant replacement H ′ → F ′• (resp.
H → f!(F

′
•)) of F ′• (resp. f!(F

′
•)) in pro− T ′∆op (resp. pro− T∆op). As a left Quillen adjoint

of f ∗, cofibrations are preserved under f! . Whereas f!, as a pull-back of T → T ′, preserves
trivial fibrations. Therefore we can fill in the dotted arrow in the diagram below:

∅ //

��

H

��
f!(H

′)

d

::

// f!(F
′
•)

The dotted arrow is a weak equivalence by the 2-out-of-3 property of weak equivalences.
Finally, LΓ∗ sends a weak equivalence between cofibrant objects to a strict weak equivalence:

hT ′(F
′
•) = LΓ′∗(H

′) = LΓ∗(f!(H
′)) d // LΓ∗(H) = hT (f!(F

′
•))

The last statement on topological types on topoi immediately follows from the fact that f!

preserves a final object.
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2.3.28. One of the key aspects of topological types of topoi is their behavior with respect
to localizations:

Lemma 2.3.29. Let F be an object in T and j : T/F → T be the localization morphism of
topoi. Then the functor

j! : (T/F )∆op → T∆op

: X•/F 7→ X•

preserves weak equivalences.

Proof. For a simplicial object X•/F in the localized topos T/F , the presheaf π̂n(X•/F ) is
simply the presheaf π̂nX• over F . Since both the sheafification and j! commute with fiber
products, j! preserves weak equivalences.

Proposition 2.3.30. Let G• → F be a morphism of simplicial objects in T where F is a
constant object. Then there is a strict weak equivalence

hT/F (G•/F )→ hT (G•)

of pro-simplicial sets. In particular, for any object F in T there is a strict weak equivalence

h(T/F )→ hT (F )

of pro-simplicial sets.

Proof. Denote by j : T/F → T the localization morphism of topoi. The pull-back functor
j∗ admits a left adjoint j! that forgets the structure morphisms to F . Consider a cofibrant
replacement

H ′ → G•/F

of G•/F in pro− (T/F )∆op . Apply j! to get

j!H
′ → j!(G•/F ) = G•

As a left Quillen adjoint, j! preserves cofibration and so j!H is cofibrant. Now by 2.3.29,
j! preserves weak equivalences and thus j!H

′ → G• is a cofibrant approximation of G• in
pro− T∆op .

Remark 2.3.31. The last statement in 2.3.30 tells us that we could have defined the topo-
logical type of F as the topological type of the localized topos T/F .

2.3.32. Topological types behave well with respect to morphisms of topoi. Let f : T ′ → T
be a morphism of topoi. For an object F in T , there is a map of topological types

h(f ∗F )→ h(F )

This follows from the definition of topological types. Or one can apply 2.3.30 to the mor-
phisms of localized topoi T ′/f ∗F → T/F .
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2.3.33. Next goal is to understand the topological types of simplicial objects via the topo-
logical types of objects in each degree. We first recall basic notions related to the realization
and the homotopy colimit functors.

2.3.34. (The Reedy model category structure) For a model category M , there is a model
category structure on the category M∆op of simplicial objects in M ; if f : X• → Y• is a
morphism of simplicial objects,

(i) f is a Reedy weak equivalence if Xn → Yn is a weak equivalence in M for each n,

(ii) f is a Reedy cofibration if the relative latching map

Xn

∐
LnX•

Yn → Yn

is a cofibration in M for each n where the latching object LnX• of X• at [n] is defined
by

LnX• := lim−→
[m]∈∂(∆op/[n])

Xm

where the latching category ∂(∆op/[n]) of ∆op at [n] is the full subcategory of the
comma category ∆op/[n] containing all objects except the the identity morphism on
[n].

(iii) f is a Reedy fibration if the relative matching map

Xn → Yn ×MnY• MnX•

is a fibration in M for each n.

We omit the details for Reedy fibrations (see [13, 15.3.3]).

Remark 2.3.35. Throughout this paper, whenever we consider the category of simplicial
objects in a model category, we endow the Reedy model category structure on it.

2.3.36. A Reedy cofibration X• → Y• induces a cofibration Xn → Yn for each n, but
not vice versa. In particular, a level-wise cofibrant object X• is not necessarily Reedy
cofibrant. However, most model categories we study in this paper have the property that
every simplicial object is Reedy cofibrant. These include:

(i) SSet in 2.1.2

(ii) prostr − SSet with the strict model category structure in 2.3.1

(iii) pro− SSet with Isaksen’s model category structure in 2.3.2

(iv) Ĉ∆op with Jardine’s model category structure in 2.1.12
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(v) T∆op with Joyal’s model category structure in 2.1.12

(vi) proE-H − T∆op with Edwards-Hastings’ model category structure in 2.2.10

(vii) ŜSet with Quick’s model category structure in 5.1.5

2.3.37. Let M be a simplicial model category. The realization functor

| − | : M∆op →M

is defined as following. For a simplicial object X• ∈M∆op , its realization |X•| is the coequal-
izer of the diagram ∐

([n]→[m])∈∆

Xm ⊗∆[n] ////
∐

[n]∈∆

Xn ⊗∆[n]

The realization functor admits a right adjoint that sends X to ([n] 7→ X∆[n]) and they are
Quillen adjoint.

2.3.38. A homotopy colimit, hocolim∆op Xn, of a simplicial pro-simplicial set X• is defined
by the coequalizer of the diagram∐

([n]→[m])∈∆

Xm ⊗N([n]/∆op)op ////
∐

[n]∈∆

Xn ⊗N([n]/∆op)op

where N : Cat→ SSet is the nerve functor. As a consequence of 2.3.36, for any simplicial
pro-simplicial sets X•, the Bousfield-Kan map

hocolim
[n]∈∆op

Xn → |[n] 7→ Xn|

is a weak equivalence of pro-simplicial sets in the strict model category structure. Particu-
larly, it is a weak equivalence in the sense of Isaksen.

2.3.39. For a simplicial object F• in T , one can associate a simplicial object in T∆op :

∆op → T∆op

: [n] 7→ Fn

where Fn is viewed as a constant simplicial object. In turn, this gives rise to a simplicial
object in pro− T∆op by embedding T∆op into the associated pro-category:

∆op → pro− T∆op

: [n] 7→ Fn

This will be used in the proof of 2.3.41 and in 2.3.43).

Remark 2.3.40. Eventually we would like to consider a simplicial object

[n] 7→ h(Fn)
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in the category of pro-simplicial sets. However, we should be careful because the cofibrant
replacement in pro − T∆op is not functorial and thus we may have trouble in getting the
simplicial object. This caveat can be resolved once we choose a cofibrant replacement of

[n] 7→ Fn

in (pro − T∆op
)∆op . Of course, up to weak equivalence, this process is independent of the

choice of cofibrant replacements.

Theorem 2.3.41. (Simplicial descent) Let F• be a simplicial object in T . There is an
isomorphism

hocolim
[n]∈∆op

h(Fn)∼ // h(F•)

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. Recall from 2.3.38 that there is a strict weak equivalence

hocolim
[n]∈∆op

h(Fn)→ |[n] 7→ h(Fn)|

So we can replace the hocolim by the realization. Since LΓ∗ commutes with colimits and
tensoring with simplicial sets, we have a (2-categorical) commutative diagram

Ho((pro− T∆op
)∆op

)
LLΓ∗ //

L|−|
pro−T∆op

��

Ho((pro− SSet)∆op
)

L|−|
��

Ho(pro− T∆op
)

LLΓ∗ //Ho(pro− SSet)

By applying the simplicial object [n] 7→ Fn in pro−T∆op (see 2.3.39) to the diagram, we obtain
a zig-zag strict weak equivalence between LLΓ∗(L|[n] 7→ Fn|pro−T∆op ) and L|LLΓ∗([n] 7→ Fn)|.
Consider a cofibrant replacement H• → ([n] 7→ Fn) of ([n] 7→ Fn) in (pro − T∆op

)∆op .
By 2.3.42, the former is strictly weakly equivalent to LLΓ∗(|[n] 7→ Fn|proE-H−T∆op ) which is
isomorphic to LLΓ∗(F•) = h(F•) by 2.3.43.

On the other hand, we have a strict weak equivalence

L|LLΓ∗([n] 7→ Fn)| → |LΓ∗(H•)|

So far, we have shown that LLΓ∗(F•) and |LΓ∗(H•)| are strictly weakly equivalent.
Say K• → ([n] 7→ Fn) is the cofibrant replacement which is used to get the functoriality

of ([n] 7→ h(Fn)). Then we can find a dotted arrow d in the diagram

H•
d //

%%

K•

yy
([n] 7→ Fn)
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Since K• and H• are Reedy cofibrant, Hn → Kn is a weak equivalence between cofibrant
object and hence

LΓ∗Hn → LΓ∗Kn

is a weak equivalence. Finally, every object in (pro− SSet)∆op is Reedy cofibrant and thus

|LΓ∗(H•)| = |[n] 7→ LΓ∗(Hn)| → |[n] 7→ LΓ∗(Kn)| = |[n] 7→ h(Fn)|

is a weak equivalence.

Lemma 2.3.42. Let F• be a simplicial pro-object in T∆op and H• → F• be a cofibrant
replacement of F• in (pro− T∆op

)∆op. Then two objects |H•|pro−T∆op and |F•|proE-H−T∆op are
weakly equivalent in pro− T∆op.

Proof. Recall from 2.2.21 that we have a Quillen equivalence

id : proE-H − T∆op → pro− T∆op

Since the identity functor commutes with colimits, we have a (2-categorical) commutative
diagram

Ho((pro− T∆op
)∆op

) Lid //

L|−|
pro−T∆op

��

Ho((proE-H − T∆op
)∆op

)

L|−|
proE-H−T∆op

��
Ho(pro− T∆op

) Lid //Ho(proE-H − T∆op
)

So we have a zig-zag weak equivalence between Lid(L|F•|pro−T∆op ) and L|Lid(F•)|proE-H−T∆op .
For the former, since the classes of weak equivalences are the same for both pro− T∆op and
proE-H − T∆op , there is a weak equivalence

Lid(L|F•|pro−T∆op )→ |H•|pro−T∆op

On the other hand, by definition,

L|Lid(F•)|proE-H−T∆op = L|H•|proE-H−T∆op

Also, there is a weak equivalence

L|H•|proE-H−T∆op → |H•|proE-H−T∆op

because every object in proE-H − T∆op is Reedy cofibrant. Furthermore, there is a weak
equivalence

|H•|proE-H−T∆op → |F•|proE-H−T∆op

because H• → F• can be viewed as a Reedy weak equivalence between Reedy cofibrant
objects in (proE-H − T∆op

)∆op . All things considered, we have proved the statement with
respect to proE-H − T∆op . The same result holds in pro − T∆op because proE-H − T∆op and
pro− T∆op have the same class of weak equivalences.
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Lemma 2.3.43. Let F• be a simplicial object in T . Then F• viewed as a pro-object in T∆op

and |[n] 7→ Fn|proE-H−T∆op are isomorphic pro-objects of T∆op.

Proof. Let C be a site whose associated topos is T . In the category of simplicial presheaves on
C, the realization |[n] 7→ Fn|Ĉ∆op is isomorphic to F•. That is, there is a natural isomorphism∐

([n]→[m])∈∆

Fm ⊗∆[n] ////
∐

[n]∈∆

Fn ⊗∆[n]

''

// |[n] 7→ Fn|

d

��
F•

where the top row is a coequalizer diagram. After sheafification, this induces an isomorphism

|[n] 7→ Fn|T∆op // F•

of simplicial sheaves on C because the realization taken as simplicial sheaves is isomorphic
to the sheafification of the realization taken as simplicial presheaves.

The inclusion functor
i : T∆op → proE-H − T∆op

commutes with colimits and thus we have a commutative diagram

(T∆op
)∆op i //

|−|
T∆op

��

(proE-H − T∆op
)∆op

|−|
proE-H−T∆op

��
T∆op i // proE-H − T∆op

Then the result follows immediately from diagram chasing.

2.3.44. Let P be a class of morphism in T that is stable under base change and composi-
tion, and that contains all isomorphisms. Assume further that every morphism in P is an
epimorphism.

Definition 2.3.45. A simplicial object G• over an object F in T is a P-hypercover of F if
the unique morphism G•/F → ∗T/F to a final object ∗T/F in the localized topos T/F satisfies
the following conditions:

(i) G0/F → ∗T/F ,

(ii) Gn+1/F → (coskn sknG•/F )n+1 for each n ≥ 0

are in P .

Lemma 2.3.46. Let G• be a P-hypercover of F in T . Then the structure morphism G• → F
is a trivial fibration in the weak fibration structure (see 2.2.15) on T∆op. In particular, it
can be viewed as a trivial fibration in pro− T∆op.
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Proof. For n ≥ 1, the functor j! : T/F → T commutes with the coskeleton functors. For
n = 0, (coskF0 skF0 G•/F )1 is nothing but G0 ×F G0 over F . As we have

G0 ×F G0 = (cosk0 sk0G•)1 ×(cosk0 sk0 F )1 F

the statement follows from that every morphism in P is an epimorphism and 2.1.10.

2.3.47. For a simplicial object [n] 7→ F n
• in the category of simplicial objects in a category

C, we view it as a bi-simplicial object F•• in C sending ([n], [m]) to F n
m. When we say a

bi-simplilcial object G•• over a simplicial object F•, the simplicial object sends (n,m) into
Fn. So for each n, we have a simplicial object Gn• over a constant simplicial object Fn.

Definition 2.3.48. A bi-simplicial object G•• over a simplicial object F• in T is a P-
hypercover of F• if

Gn• → Fn

is a P-hypercover for each n.

2.3.49. Thanks to our approach to the topological types, we easily obtain the hypercover
descent theorems 2.3.51 and 2.3.53. The following proposition is due to Misamore [28, 2.1].

Proposition 2.3.50. If a morphism G•• → F•• of simplicial objects in T∆op is a degree-wise
trivial fibration in a sense that Gn• → Fn• is a trivial fibration of the weak fibration structure
on T∆op for each n, then its diagonal ∆G•• → ∆F•• is a weak equivalence in T∆op.

Proof. Fix a Boolean localization p : S → T . Then a morphism in T∆op is weak equivalence
(resp. trivial fibration) if and only if its pull-back in S∆op is a weak equivalence (resp.
section-wise trivial fibration). So we may assume that Gn• → Fn• is a section-wise trivial
fibration. From the corresponding result for simplicial sets, we then have a section-wise weak
equivalence of simplicial sets, which implies local weak equivalence.

Theorem 2.3.51. (Hypercover descent) Let G•• → F• be a P-hypercover of F• in T . Then
it induces a strict weak equivalence

h(∆G••)→ h(F•)

of topological types.

Proof. By the definition of P-hypercovers and 2.3.46, G•• → F• is a degree-wise trivial
fibration in T∆op . So the result follows from 2.3.50.

Lemma 2.3.52. Let G• → F (resp. H• → F ) be a P-hypercover of F . Then two topological
types h(G•/S) and h(H•/S) are strictly weakly equivalent.
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Proof. Define a bi-simplicial objectK•• byKmn = Gm×FHn. Then the projectionK•• → G•
(resp. K•• → H•) is a P-hypercover of G• (resp. H•). Apply the bi-simplicial hypercover
descent 2.3.51 to obtain strict weak equivalences

h(∆K••/S)→ h(G•/S)

and
h(∆K••/S)→ h(H•/S)

Theorem 2.3.53. (Simplicial hypercover descent) Let G• be a P-hypercover of F in T .
Then there is an isomorphism

hocolim
[n]∈∆op

h(Gn)∼ // h(F )

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. This is a combination of the simplicial descent 2.3.41 and the bi-simplicial hypercover
descent 2.3.51.

2.3.54. We now study topological types of stacks and its relationship to topological types
of simplicial sheaves.

Definition 2.3.55.

(i) A fibered category in groupoid X over C is representable by sheaves if there exists a
sheaf F on C and that X is equivalent to the fibered category associated to the sheaf
F in the 2-category of fibered categories over C.

(ii) A morphism X → Y of fibered categories is representable by sheaves if for every sheaf
Y on C and every morphism Y → Y , the base change X ×Y Y is representable by
sheaves.

2.3.56. Whenever we discuss topological types of stacks, we assume that the site C has a
subcanonical topology. Moreover, for the topological type of a stack X , we assume further
that the site C/X is subcanonical, too. Note that these conditions are satisfied by algebraic
stacks.

Theorem 2.3.57. Let X/C be a stack. Assume there exists an object X ∈ C and a morphism
X → X such that X → X is representable by sheaves and the morphism

hX→X → ∗T/X
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of sheaves on C/X is an epimorphism. Then there is an isomorphism

h(cosk0(X/X ))∼ // h(X )

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. Note that cosk0(X/X ) is a simplicial sheaves since X → X is representable by
sheaves. By applying 2.3.51 to the morphism hX→X → ∗T/X , there is a strict weak equiva-
lence

h(cosk0(hX→X/∗T/X ))→ h(∗T/X ) = h(X )

Consider the following commutative diagram

hocolim
[n]∈∆op

h((cosk0(hX→X/∗T/X ))n) //

��

h(cosk0(hX→X/∗T/X ))

��
hocolim

[n]∈∆op
h((cosk0(X/X ))n) // h(cosk0(X/X ))

By 2.3.41, the two horizontal arrows are isomorphisms in Ho(pro − SSet). On the other
hand, there is a strict weak equivalence

h((cosk0(X/X ))n)→ h((cosk0(hX→X/∗T/X ))n)

for each n because both topological types are the topological type of the topos T/(cosk0(hX→X/∗T/X ))n
by 2.3.30. Thus the left vertical arrow is an isomorphism in the homotopy category of pro-
simplicial sets. From the commutative diagram above, the right vertical map is also an
isomorphism. Since all these isomorphisms are induced by strictly weakly equivalences, so
is the right vertical isomorphism.

2.4 Connected components, Fundamental groups, and
Cohomology of Topological types

2.4.1. Let X• be a simplicial set. Recall that the set of connected component π0(X•) of X•
is the coequalizer

X1
// // X0

// π0(X•)

For a pro-simplicial set X : I → SSet : i 7→ Xi, its connected component π0(X) is the pro-set

I → Set : i 7→ π0(Xi)

Proposition 2.4.2. Let F• be a simplicial object in T . There is a canonical bijection of
pro-sets

π0(h(F•))
∼ // π0(LΓ∗(F•))
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Proof. It suffices to show that for any given set S, the canonical map

Morpro-sets(π0(LΓ∗(F•)), S)→ Morpro-sets(π0(h(F•)), S)

is a bijection. Consider a cofibrant replacement H → F• of F• in pro− T∆op . Say H : I →
T∆op with I the cofiltered index category.

Morpro−Set(π0(LΓ∗(F•)), S) = Morpro−SSet(LΓ∗(F•), S) (2.4.2.1)
= Morpro−T∆op (F•, S) (2.4.2.2)
= MorT∆op (F•, S) (2.4.2.3)
= MorT (π0(F•), S) (2.4.2.4)
= Morpro−T (π0(F•), S) (2.4.2.5)
= Morpro−T (π0(H), S) (2.4.2.6)
= Morpro−Set(π0(h(F•)), S) (2.4.2.7)

where S = Γ∗(S). Note that (2.4.2.6) follows from that H → F• is a weak equivalence.

Remark 2.4.3. In a geometric situation, say for schemes, the proposition above will mean
that the number of connected components of a scheme X is equal to the number of connected
components of its topological type.

2.4.4. Let G be a discrete group. For a simplicial set X• and a point x ∈ X0, its fundamental
group classifies G-torsors in a sense that there is a bijection

MorGps(π1(X•, x), G) = H1(X•, G)

where H1(X•, G) is the set of isomorphism classes of G-torsors. We state and prove the cor-
responding result for topological types. We begin with a homotopy theoretic reinterpretation
of the result.

2.4.5. Let G be a group object in T . The non-abelian cohomology group H1(T,G) is defined
to be the set of isomorphism classes of G-torsors. Then it has been known from [20] that
there is an identification

H1(T,G) = HoT∆op (∗, BG)

This behaves well with respect to the localization:

Lemma 2.4.6. Let F be an object in T . For a group object G in T , there is a canonical
bijection

H1(T,G) ∼ // H1(T/F, j∗G)

where j∗ : T → T/F is the pull-back.
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Proof. From [20] or [24, 9.8], the statement is equivalent to

HoT∆op (F,BG) = Ho(T/F )∆op (∗T/F , B(j∗G))

which is a consequence of the Quillen adjunction

(j!, j
∗) : T∆op → (T/F )∆op

with respect to Joyal-Jardine’s model category structures 2.1.12. Indeed, j! preserves local
weak equivalences by 2.3.29 and cofibrations which are exactly monomorphisms.

Lemma 2.4.7. Let F• be a simplicial object in T and G be a discrete group. Then for each
n ≥ 0 there is a canonical bijection

HoT∆op (F•, K(G, n)) ∼ //Hopro−SSet(h(F•), K(G, n))

Proof.

HoT∆op (F•, K(G, n)) = HoproE-H−T∆op (F•, K(G, n)) (2.4.7.1)
= Hopro−T∆op (F•, K(G, n)) (2.4.7.2)

= Hopro−T∆op (F•,RStrΓ∗K(G, n)) (2.4.7.3)

= HoproStr−SSet(LStrLΓ∗(F•), K(G, n)) (2.4.7.4)
= HoproStr−SSet(h(F•), K(G, n)) (2.4.7.5)
= Hopro−SSet(h(F•), K(G, n)) (2.4.7.6)

That (2.4.7.1) is a consequence of the Quillen adjunction

(i : lim←−) : proE-H − T∆op → T∆op

Similarly, (2.4.7.2) is a consequence of the Quillen adjunction

(id, id) : proE-H − T∆op → pro− T∆op

For (2.4.7.3), K(G, n) is a not just a simplicial set but also a simplicial group. So it is fibrant
simplicial set and thus a fibrant object in prostr − SSet. Hence there is a weak equivalence
between RstrΓ∗K(G, n) and Γ∗K(G, n) = K(G, n). Also, (2.4.7.4) follows from the Quillen
adjunction

(LΓ∗ ,Γ
∗) : prostr − SSet→ pro− T∆op

Finally, (2.4.7.6) follows from [14, 10.9].

Theorem 2.4.8. Let F be an object in T . Fix a point x ∈ h(F ). For every discrete group
G, there is a bijection

Morpro-Gps(π1(h(F ), x), G)∼ // H1(F,G)

where G is the constant sheaf of groups associated to G.
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Proof. Consider a cofibrant replacement H → F in pro − T∆op . Say H : I → T∆op with I
cofiltered index category.

Morpro-Gps(π1(h(F )), G) = lim−→
i∈Iop

MorGps(π1(LΓ∗(Hi)), G) (2.4.8.1)

= lim−→
i∈Iop

HoSSet(LΓ∗(Hi), BG) (2.4.8.2)

= Hopro−SSet(LΓ∗(H), BG) (2.4.8.3)
= HoT∆op (F,BG) (2.4.8.4)
= H1(F,G) (2.4.8.5)

where (2.4.8.3) follows from [14, 8.1] and (2.4.8.4) from 2.4.7.

2.4.9. Fix an abelian group Λ throughout the rest of the section.

Definition 2.4.10. For the topological type h(F•) of a simplicial object F• in T , the coho-
mology, homology, and homotopy groups are those of h(F•) as a pro-simplicial set.

2.4.11. In more detail, consider a cofibrant replacement H → F• of F• in pro−T∆op so that
h(F•) = LΓ∗(H). Say H : I → T∆op with I cofiltered. Then nth cohomology group with
coefficient Λ is

Hn(h(F•),Λ) := lim−→
i∈Iop

Hn(LΓ∗(H(i)),Λ)

which is the filtered colimit of nth cohomology groups of simplicial sets with coefficient Λ.
Unlike cohomology groups, homology and homotopy groups are pro-groups. The nth

homology group with coefficient Λ is a pro-group

Hn(h(F•),Λ) := {Hn(LΓ∗(H(i)),Λ)}i∈I = I
LΓ∗◦H// SSet Hn //Group

which is obtained by degree-wise application of the homotopy groups to simplicial sets. The
nth homotopy groups are defined in a similar way.

All those groups are independent of choice of cofibrant approximations, up to isomor-
phism. To see, let G→ F• be a cofibrant approximation of F• in pro− T∆op . We can find a
dotted arrow filling in the diagram

G
d //

  

H

~~
F•

The dotted arrow d is a weak equivalence by the 2-out-of-3 property of weak equivalences.
Since both G and H are cofibrant, the morphism d induces a weak equivalence LΓ∗(G) →
LΓ∗(H) in pro− SSet. Not only that, it is a strict weak equivalence. Now we may assume
d : LΓ∗(G) → LΓ∗(H) is a level-wise weak equivalence of simplicial sets because every
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morphism of pro-objects has a level presentation. It then follows from the fact that weak
equivalences of simplicial sets induce isomorphisms of homology and cohomology groups with
any abelian coefficient, and homotopy groups when they are pointed.

Remark 2.4.12. The strictly weakly equivalent pro-simplicial sets induce isomorphic coho-
mology, homology, and homotopy groups. Therefore, the nth cohomology groupHn(h(F ),Λ)
could have defined by the nth cohomology group Hn(h(T/F ),Λ) of the topological type
h(T/F ) by 2.3.30.

2.4.13. There is a notion of cohomology of T . On the other hand, we have defined co-
homology groups of the topological type h(T ) (see 2.4.10) as cohomology groups of the
pro-simplicial sets. Of course, these two coincide:

Proposition 2.4.14. There is a canonical isomorphism

Hn(T,Λ) ∼ // Hn(h(T ),Λ)

of cohomology groups for each n ≥ 0.

Proof. Consider a cofibrant replacement H → ∗ in pro− T∆op .

Hn(T,Λ) = HoT∆op (∗, K(Λ, n)) (2.4.14.1)
= Hopro−SSet(LΓ∗(H), K(Λ, n)) (2.4.14.2)
= lim−→

i∈Iop

HoSSet(LΓ∗(H(i)), K(Λ, n)) (2.4.14.3)

= lim−→
i∈Iop

Hn(LΓ∗(H(i)),Λ) (2.4.14.4)

= Hn(h(T ),Λ) (2.4.14.5)

That (2.4.14.2) is from 2.4.7. Also, (2.4.14.3) follows from [14, 8.1] as in (2.4.8.3).

2.4.15. A simplicial object F• in T induces a simplicial topos [n] 7→ T/Fn. The cohomology
of the total topos T/F• associated to the simplicial topos agrees with the cohomology the
topological type h(F•):

Proposition 2.4.16. Let F• be a simplicial object in T . Then there is an isomorphism

Hn(T/F•,Λ) ∼ // Hn(h(F•),Λ)

of cohomology groups for each n ≥ 0.

Proof. Once we know that Hn(T/F•,Λ) can be identified with HoT∆op (F•, K(Λ, n)), we can
apply the proof of 2.4.14. Yet such an identification follows from [24, 8.34].
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2.4.17. Recall the set-up in 2.3.27 where the pull-back f ∗ of morphism of topoi f : T ′ → T
admits a left adjoint f! that commutes with finite limits. We have from 2.3.27 a strict weak
equivalence between hT ′(F

′
•) and hT (f!(F

′
•)). So they have isomorphic cohomology groups

by 2.4.12. We give an alternative proof of this result with more general coefficient groups:

Lemma 2.4.18. Let f : C ′ → C be a cocontinuous functor between sites with the associated
morphism of topoi

f : T ′ → T

Assume that the functor is continuous and commutes with finite limits. For a sheaf of abelian
groups G in T and for each n ≥ 0, there is a canonical isomorphism

Hn(f!(F
′
•), G) ∼ // Hn(F ′•, f

∗G)

of cohomology groups.

Proof. Denote by K(G, n) the simplicial abelian sheaf in T that corresponds to the chain
complex G[−n] under the Dold-Kan correspondence.

Hn(f!(F
′
•), G) = HoT∆op (f!(F

′
•), K(G, n)) (2.4.18.1)

= HoT∆op (f!(F
′
•),R lim←−(K(G, n))) (2.4.18.2)

= HoproE-H−T∆op (Li(f!(F
′
•)), K(G, n)) (2.4.18.3)

= HoproE-H−T∆op (f!(F
′
•), K(G, n)) (2.4.18.4)

= Hopro−T∆op (f!(F
′
•), K(G, n)) (2.4.18.5)

= Hopro−T∆op (Lf!((F
′
•)), K(G, n)) (2.4.18.6)

= Hopro−T ′∆op (F ′•,Rf
∗(K(G, n))) (2.4.18.7)

= Hopro−T ′∆op (F ′•, f
∗(K(G, n))) (2.4.18.8)

= HoT ′∆op (F ′•, f
∗(K(G, n))) (2.4.18.9)

= Hn(F ′•, f
∗G) (2.4.18.10)

Consider the Quillen adjunction

(i, lim←−) : proE-H − T∆op → T∆op

Choose a fibrant replacement K(G, n) → FK(G,n) of K(G, n) in T ′∆
op . It then becomes a

fibrant approximation ofK(G, n) in proE-H−T∆op and so (2.4.18.2) follows. (2.4.18.4) follows
because every object in T∆op is cofibrant. That (2.4.18.5) follows from the Quillen equivalence
between Barnea-Schlank’s and Edwards-Hastings’ model categories. For (2.4.18.6), by the
assumption on f!, it can be regarded as a pull-back of morphism of topoi and thus preserves
trivial fibrations. So we have a weak equivalence Lf!(F

′
•) → F ′• , which shows (2.4.18.6).

That (2.4.18.8) follows from the fact that f ∗ preserves weak equivalences. Also, (2.4.18.9) is
the application of the same argument from (2.4.18.2) to (2.4.18.5).



CHAPTER 2. TOPOLOGICAL TYPES 40

2.4.19. In fact, this is a generalization of Jardine’s lemma [19, 3.6]. In his proof, he applied
Brown’s adjoint functor lemma [4, p.426] to a category of fibrant objects for a homotopy theory
[4, p.420]. A category of fibrant objects is similar to a model category without cofibrations
just like Barnea-Schlank’s weak fibration category, and is a sufficient structure for developing
a homotopy theory. It is equipped with two classes of morphisms that are called weak
equivalences and fibrations. In the proof, the category of sheaves on the big étale site on
Spec k for an algebraically closed field k is equipped with local weak equivalences and local
fibrations. By the time Jardine proved the lemma, it was before having the model category
structure on the category of sheaves with local weak equivalences as weak equivalences and
local fibrations as fibrations, which does not always exist. However, we now have such
a model category by enlarging the category to its pro-category, thanks to Barnea-Schlank.
Therefore, our proof of the lemma above can be understood as a reinterpretation of Jardine’s
proof by replacing the category of fibrant objects and Brown’s adjoint functor lemma by the
Barnea-Schlank model category and Quillen adjoint functors respectively. As a byproduct,
we can remove the fibrant assumption on Jardine’s lemma.
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Chapter 3

Topological types of algebraic stacks

In this chapter we apply the general discussion about topological types of topoi to algebro-
geometric objects. We replace the small étale topology used by all previous theories by the
big étale topology in order to define topological types of algebraic stacks.

3.1 Motivation
3.1.1. Let us take a look at Artin-Mazur’s étale homotopy type and see what can be improved
on it. Let X be a locally noetherian scheme. The homotopy category HR(X) of hypercovers
of X is cofiltered and gives rise to a pro-object, Artin-Mazur’s étale homotopy type of X, in
the homotopy category of simplicial sets by applying the connected component functor Π:

HR(X)→ Ho(SSet) : U• 7→ Π(U•)

Observe that this is only a pro-object in the homotopy category of simplicial sets, which
does not fit into the model category theory. It would be better if this is an object in some
homotopy category of pro-simplicial sets so as to utilize model category theory. This goal was
partially accomplished by Friedlander with the introduction of rigid hypercovers. Indeed,
his étale topological type of the scheme X is a pro-simplicial set. However, the use of model
category theory was not a part of his theory as there was no appropriate model category
structure on pro-simplicial sets at the time he developed the theory.

Another improvement was made by Barnea-Schlank. After introducing weak fibration
categories and eventually putting their model category structure on the pro-category of
simplicial sheaves, they applied the machinery to the small étale topos on X and recovered
Artin-Mazur’s étale homotopy type with the derived functor approach.

3.1.2. All these previous theories can be applied to Deligne-Mumford stacks as one can
still use the small étale topology. However, none of them can be directly applied to general
algebraic stacks as one cannot use the small étale topology. Recall that algebraic stacks only
admit smooth covers, not étale covers, from schemes or algebraic spaces. Nonetheless, one
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can define étale homotopy type of algebraic stacks by using simplicial hypercovers. Namely,
for an algebraic stack X , choose a smooth cover X → X with X a scheme. Take the 0th
coskeleton cosk0(X/X ) which is a simplicial algebraic space. One defines the homotopy
type of X to be the étale topological type of the simplicial algebraic space in the sense of
Friedlander, and then verify that this definition is independent of choice of smooth covers.

The main aim of this paper is to give its own definition of topological types of algebraic
stacks, not depending on smooth covers. We then prove that this definition coincides with
the previous definition using smooth covers. This new approach provides a general frame
work for a homotopy theory of algebraic stacks. We exploit Barnea-Schlank’s model cate-
gorical approach for étale homotopy types of schemes and generalize their approach to define
topological types of algebraic stacks. On the way to it, we actually modify their approach for
schemes, which paves the way for developing a homotopy theory of algebraic stacks. That
is, we use the big étale topology unlike the small étale topology used in all the previous
theories including Barnea-Schlank. As a result, we can define topological types of algebraic
stacks. Our theory of topological types of algebro-geometric objects is established under
model category theory so that we can utilize the power of model category theory. Conse-
quently, compared to the previous theories, we can provide more systematic approach for
topological types of algebro-geometric objects.

View toward algebraic stacks, we may apply the big smooth topology or the big étale
topology to the theory of Friedlander. Unfortunately, it would not work as the use of small
étale topology is crucial. Namely, in Friedlander’s definition of étale topological type, having
the small étale topology guarantees that there is at most one morphism between two rigid
hypercovers [10, 4.1] and thus one can obtain étale topological types as pro-objects in the
category of simplicial sets, not in its homotopy category. We resolve this issue by taking the
topos-theoretical approach. In particular, it does not matter which big topology, étale or
smooth, we work as they induce equivalent topoi.

3.2 A setup for topological types of schemes
In this section we explore various properties of the big étale topology that are necessary for
developing our theory of topological types.

Definition 3.2.1. LetX be a scheme. A site LFÉ(X) (resp. LFS(X)) is the full subcategory
of the category of schemes over X, whose objects are locally of finite type morphisms to X
with coverings induced by coverings in the big étale (resp. smooth) topology on X.

3.2.2. The following lemma enables us to replace the small étale topology by the big étale
topology:

Lemma 3.2.3. Let X be a scheme. Then the inclusion functors

j : Ét(X)→ LFÉ(X)
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and
i : LFÉ(X)→ LFS(X)

are cocontinuous, continuous, and commute with finite limits.

Proof. It follows immediately that the inclusion functor j has all the properties and i is con-
tinuous that commutes with finite limits. So it only remains to show that i is cocontinuous.
Given a locally of finite type morphism Y → X and any smooth covering {Yi → Y } of Y
over X, the smooth surjection ∐

Yi → Y

étale locally admits a section. So there exists an étale surjection Z → Y

Z

}} ��∐
Yi // Y

Let Zi be the fiber product Yi ×∐
Yi Z. Then {Zi → Y } is an étale covering of Y over X

that refines {Yi → Y } over X.

3.2.4. In order to compare our topological types with Artin-Mazur, we study locally con-
nectedness of topoi. We show that LFS(X)∼ is locally connected provided that X is locally
noetherian. In particular, two topoi Xét and LFÉ(X)∼ are locally connected by 3.2.3.

Lemma 3.2.5. Let X be a locally noetherian scheme. Then the topos LFÉ(X)∼ is locally
connected.

Proof. The proof is identical to [37, 3.7].

3.2.6. LetX be a locally noetherian scheme. For a locally of finite type morphism of schemes
Y → X with Y connected. Then the representable sheaf hY→X is a connected object in the
topos LFÉ(X)∼.

3.2.7. One of the importance of 3.2.3 is that one can use the big smooth or étale topology
to study étale homotopy theory. Contrary to our topos-theoretical approach, we give a
direct site-theoretical approach that recovers Artin-Mazur’s étale homotopy type with the
big smooth topology. The following proof is a slight modification of Jardine’s argument [21,
2.2].

Theorem 3.2.8. Let U• → X be a smooth hypercover of a scheme X. Then there exists an
étale hypercover V• → X that factors through U•.

Proof. Since every smooth morphism étale locally admits a section, there exists an étale
surjection V0 → X which lifts U0 → X. For n ≥ 0, assume we have a n-truncated simplicial
scheme

V• : ∆op
≤n → Sch/X

satisfying the following conditions:
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(i) V• → X factors through Ét(X)

(ii) V• splits,

(iii) there is a commutative diagram

skn U•

��
V•

;;

// X

such that the bottom morphism is a hypercover.

Remark that even if the left adjoint in! of the skeleton functor skn does not exist in general,
we do have in!V• thanks to the splitting assumption. So the last condition is equivalent to
the commutativity of the diagram

U•

��
in!V•

<<

// X

Consider a fibered diagram

NVn+1

��ww
Yn+1

//

��

(coskn V•)n+1

��
Un+1

// (coskn skn U•)n+1

Since the bottom morphism is a smooth covering, we can pick an étale surjection NVn+1 →
(coskn V•)n+1 which lifts Yn+1 → (coskn V•)n+1. Since each Vi is étale over X, so is their limit
(coskn V•)n+1. In particular, NVn+1 is étale over X via the coskeleton. Now the morphism

NVn+1 → (coskn V•)n+1

extends the n-truncated simplicial scheme V• to a (n+ 1)-truncated simplicial scheme W• in
a way that Wi = Vi for 0 ≤ i ≤ n and

Wn+1 = (in!V•)n+1

∐
NVn+1

From the splitting condition, each NVi → Vi is an open immersion and so NVi is étale over
X. Hence,

(in!V•)n+1 =
∐

[n+1]→[i],i≤n

NVi
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is étale over X, which implies Wn+1 is étale over X. It follows then that W• is a hypercover.
Indeed, we only need to check at degree n+ 1 because W• extends V•, which is a hypercover
over X. For the degree n+ 1, the étale morphism

(in!V•)n+1

∐
NVn+1 → (coskn V•)n+1

is a surjection becauseNVn+1 → (coskn V•)n+1 is so. Finally, we have a commutative diagram

in!V• //

$$

��

U•

��

in+1!W•

��

;;

X

where the morphisms in+1!W• to U• (resp. to X) is induced by NVn+1 → Yn+1 → Un+1 (resp.
NVn+1 → X). By taking inductive limits, we are done.

Corollary 3.2.9. Let X be a scheme. Then the functor

HR(Ét(X))→ HR(LFS(X))

between two cofiltered categories is cofinal.

3.3 Topological types of Schemes
3.3.1. Given a S-scheme X, the representable functor hX→S : (Sch/S)op → Set is a sheaf
on the big fppf site on S. The representable functor is restricted to a sheaf on LFÉ(S),
although it is not representable unless the structure morphism is locally of finite type. We
abusively denote by X the restricted sheaf. Moreover, we view X as a constant simplicial
sheaf on LFÉ(S), in turn, as a pro-simplicial sheaf on the site.

Definition 3.3.2. A topological type of a scheme X over S is the pro-simplicial set

h(X/S) := LΠS(X)

where ΠS : LFÉ(S)∼ → Set is the connected component functor. A topological type of a
simplicial scheme X• over S is the pro-simplicial set

h(X•/S) := LΠS(X•)

Remark 3.3.3.
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(i) One can compute the topological types over any base scheme due to the globalization
lemma 2.3.30. Indeed, if X• is a scheme over S and S → T is a locally finite type
morphism of schemes with T locally noetherian, then there is a strict weak equivalence
h(X•/S) → h(X•/T ). So theoretically speaking, one can compute every topological
type over SpecZ. In particular, assuming the structure morphism X → S is locally of
finite type, there is a strict weak equivalence

LΠX(∗X)→ h(X/S)

of pro-simplicial sets. So we could have defined the topological type of X to be the
topological type of the topos associated to the site LFÉ(X).

(ii) Thanks to 3.2.3, we could have used the topoi associated to the sites LFS(S) or Ét(S)
to define the topological type h(X/S).

Example 3.3.4. As an immediate application of 2.3.19, we calculate the topological type
of Spec k with k a field. Fix a separable closure ksep of k. We work with the small étale site
on Spec k whose associated topos is equivalent to the classifying topos BG of the absolute
Galois group G = Gal(ksep/k). Therefore, h(Spec k) is K(G, 1).

3.3.5. Let X be a locally noetherian scheme. Consider the topological type LΠX(∗X) of the
small étale topos on X. Up to strict weak equivalence, this is nothing but the topological
type h(X) := h(X/ SpecZ) of X over SpecZ. Barnea-Schlank have proved that [2, 8.3] if
one applies the natural functor

pro− SSet→ pro−Ho(SSet)

to the topological type, one obtains an isomorphism

LΠX(∗X)→ hAM(X)

in pro −Ho(SSet) where hAM(X) is the étale homotopy type of X in the sense of Artin-
Mazur [1, §9]. Since a strict weak equivalence of pro-simplicial sets induces an isomorphism
in pro − Ho(SSet), it also follows that the topological type h(X) is isomorphic to Artin-
Mazur’s homotopy type as pro-objects in the homotopy category of simplicial sets.

3.3.6. The upshot of the globalization lemma 2.3.30 lies in the definition of topological types
of simplicial schemes. Indeed, we regard a simplicial schemes as a single object in the pro-
category of simplicial sheaves on LFÉ(S) and derive the object to obtain its topological type.
On the other hand, Friedlander defined the étale topological types of simplicial schemes by
introducing rigid hypercovers. These two approaches are compatible:

Proposition 3.3.7. Let X• be a locally noetherian simplicial scheme. Then the étale topo-
logical type hF(X•) defined by Friedlander [10, 4.4] is isomorphic to the topological type
h(X•) := h(X•/ SpecZ) as pro-objects in the homotopy category of simplicial sets.
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Proof. Recall that the natural functor

pro− SSet→ pro−Ho(SSet)

factors through the homotopy category of pro-simplicial sets:

pro− SSet //

((

Ho(pro− SSet)

��
pro−Ho(SSet)

On one hand, 2.3.41 gives an isomorphism

hocolim
[n]∈∆op

h(Xn)→ h(X•)

in pro−Ho(SSet). On the other hand, there is an isomorphism

hocolim
[n]∈∆op

hF(Xn)→ hF(X•)

in pro−Ho(SSet) due to Isaksen [16, 3.3]. For schemes, both Friedlander’sétale topological
types and our topological types agree with Artin-Mazur’s étale homotopy type. So the result
follows from the lemma below.

Lemma 3.3.8. Let X• and Y• be simplicial pro-simplicial sets. Assume that for each n there
is an isomorphism Xn → Yn in pro−Ho(SSet). Then there is a canonical isomorphism

hocolim
[n]∈∆op

Xn
∼ // hocolim

[n]∈∆op
Yn

in pro−Ho(SSet).

Proof. Note that hocolim[n]∈∆op Xn is isomorphic to the realization |[n] 7→ Xn| in pro −
Ho(SSet). Recall that the realization is the coequalizer of the diagram∐

([n]→[m])∈∆

Xm ⊗∆[n] ////
∐

[n]∈∆

Xn ⊗∆[n]

The isomorphism Xn → Yn in pro−Ho(SSet) induces an isomorphism

Xn ⊗ h[m] → Yn ⊗ h[m]

in pro−Ho(SSet) because every pro-simplicial set is cofibrant and so the derived functor of
(−)⊗h[m] extends to the homotopy category. Following Isaksen [15, 9.1], we understand the
coequalizer as a colimit indexed by a cofinite directed set. Then it follows from [15, 9.6] that
the natural functor pro − SSet → pro −Ho(SSet) preserves the colimit, which completes
the proof.
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3.4 Topological types of Algebraic spaces
3.4.1. Recall that an algebraic space X over S is a sheaf on the big étale site on S. This
is restricted to the sheaf on LFÉ(S). As in the case of schemes, we view X as a constant
simplicial sheaf on LFÉ(X), in turn, as a pro-simplicial sheaf on the site. We extend the
definition of topological types of (simplicial) schemes to (simplicial) algebraic spaces.

Definition 3.4.2. A topological type of an algebraic space X over S is the pro-simplicial set

h(X/S) := LΠS(X)

where ΠS : LFÉ(S)∼ → Set is the connected component functor. A topological type of a
simplicial algebraic space X• over S is the pro-simplicial set

h(X•/S) := LΠS(X•)

Theorem 3.4.3. (Simplicial descent) Let X• be a simplicial algebraic spaces over S. There
is an isomorphism

hocolim
[n]∈∆op

h(Xn/S) ∼ // h(X•/S)

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. Follows from the definition of topological types and the simplicial descent 2.3.41.

3.4.4. Since an algebraic space admits an étale surjection from a scheme, one can try to
understand the topological type of algebraic space via the topological type of the scheme.
The notion of hypercovers connects these two topological types. Remark that the category
of algebraic spaces has all finite limits and thus coskeleton functor coskn is representable for
every n ≥ 0.

3.4.5. Throughout the rest of the section we will apply the general theory of P-hypercovers
2.3.45 to the topos associated to the site LFÉ(S) with P smooth surjections of algebraic
spaces.

3.4.6. Recall that smooth surjections of algebraic spaces are stable under base change,
composition, and contains all isomorphisms. Furthermore, the following lemma shows that
they are epimorphisms:

Lemma 3.4.7. Let X → Y be a smooth surjection of algebraic spaces over S. Then it is an
epimorphism of sheaves on LFÉ(S).

Proof. This is an immediate consequence of the definition of smooth surjections of algebraic
spaces.

Definition 3.4.8. A smooth hypercover is a P-hypercover in the setup 3.4.5.
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Theorem 3.4.9. (Hypercover descent) Let U•• → X• be a smooth hypercover of a simplicial
algebraic spaces X• over S. Then it induces a strict weak equivalence

h(∆U••/S)→ h(X•/S)

of topological types.

Proof. An immediate consequence of 2.3.51.

3.4.10. As a consequence of the hypercover descent 3.4.9, we can compute the topological
type of an algebraic space X via the topological type of any simplicial algebraic space U• with
U• → X a smooth hypercover. A theoretical aspect of this consequence gives an extrinsic
definition of topological types of algebraic spaces. That is, by the definition of algebraic
spaces, one can choose an étale surjection U → X with X a scheme. Then its 0-coskeleton
cosk0(U/X ) gives a smooth hypercover

cosk0(U/X)→ X,

which shows the existence of a smooth hypercover by a simplicial scheme. Therefore, one
could have defined the topological type of an algebraic space by choosing any smooth hy-
percover that is a simplicial scheme and define the topological type of the algebraic space to
be the topological type of the simplicial scheme. That the independence of choice of smooth
hypercovers by simplicial algebraic schemes follows from the intrinsic definition of topologi-
cal types of algebraic spaces. Indeed, no matter how one chooses a smooth hypercover by a
simplicial algebraic scheme, there is a strict weak equivalence between the topological type
of the simplicial algebraic scheme and the topological type of the algebraic space.

However, the extrinsic definition itself is good enough to define the topological types of
algebraic spaces because one can prove the independence of choice of hypercovers without
using the intrinsic definition for algebraic spaces:

Lemma 3.4.11. Let U• → X (resp. V• → X) be a smooth hypercover of an algebraic space
X over S by a simplicial algebraic space U• (resp. V•). Then two topological types h(U•/S)
and h(V•/S) are strictly weakly equivalent.

Proof. An immediate consequence of 2.3.52.

Theorem 3.4.12. (Simplicial hypercover descent) Let U• → X be a smooth hypercover of
an algebraic space X over S by a simplicial algebraic space U•. There is an isomorphism

hocolim
[n]∈∆op

h(Un/S) ∼ // h(X/S)

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these two
pro-simplicial sets are strictly weakly equivalent.

Proof. An immediate consequence of 2.3.53.
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3.5 Topological types of Algebraic stacks.
3.5.1. The theory of topological types of algebraic spaces does not work verbatim for alge-
braic stacks because algebraic stacks cannot be regarded as sheaves. Nevertheless, we can
still define topological type of algebraic stacks by using hypercovers.

Definition 3.5.2. Let X/S be an algebraic stack. A site LFÉ(X ) is defined as following.
An object is a pair (Y, y), where y : Y → X is a locally of finite type morphism over S with
Y an algebraic space. A morphism

(Y, y)→ (Z, z)

is a pair (h, hb) where h : Y → Z is a morphism of algebraic spaces and hb : y → z ◦ h is a
2-morphism of functors. A collection of maps

{(hi, hbi) : (Yi, yi)→ (Y, y)}

is a covering if the underlying collection of morphisms of algebraic spaces {yi : Yi → Y } is
an étale covering. That is, each yi is étale and

∐
Yi → Y is surjective.

Lemma 3.5.3. The topos LFÉ(X ) is locally connected.

Proof. The forgetful functor

LFÉ(X )→ LFÉ(S) : (Y → X ) 7→ Y

is continuous and cocontinuous. So the pull-back functor of the morphism of topoi

LFÉ(X )∼ → LFÉ(S)∼

admits a left adjoint. Then the statement follows from 3.2.5 that LFÉ(S)∼ is locally con-
nected.

Remark 3.5.4. One may define LFS(X ) for an algebraic stack X whose objects are smooth
X -morphism of algebraic stacks. This could be used to develop the theory of topological
types for algebraic stacks. Also, the small site Ét(X ) can be used for Deligne-Mumford
stacks.

Definition 3.5.5. A topological type of an algebraic stack X over S is the pro-simplicial set

h(X/S) := LΠX (∗LFÉ(X )∼)

where ΠX : LFÉ(X )∼ → Set is the connected component functor.

Remark 3.5.6. Thanks to the definition, we can consider topological types of classifying
stacks BG with G a smooth, not necessarily étale, group scheme. For example, the multi-
plicative group scheme Gm.
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3.5.7. As promised at the beginning, we can think of topological types of algebraic stacks
via hypercovers. We need a lemma:

Lemma 3.5.8. Let X → X be a smooth surjection from a scheme X to an algebraic stack
X . Then the morphism

hX→X → ∗LFÉ(X )∼

of sheaves on LFÉ(X ) is an epimorphism.

Proof. This is an immediate consequence of the definition of the smooth surjection X →
X .

Theorem 3.5.9. Let X/S be an algebraic stack. For any smooth surjection X → X with
X a scheme, there is an isomorphism

h(cosk0(X/X ))∼ // h(X )

of pro-simplicial sets in the homotopy category of pro-simplicial sets. Furthermore, these
pro-simplicial sets are strictly weakly equivalent.

Proof. An immediate consequence of 2.3.57 from 3.5.8.

Corollary 3.5.10. Let X be an algebraic stack with a smooth surjection U → X with U an
algebraic space. Then the topological type h(X ) is strictly weakly equivalent to the topological
type h(cosk0(U/X )) of the simplicial algebraic space cosk0(U/X ). In particular, if X is an
algebraic space over S and G/S is a smooth group scheme which acts on X over S, then the
topological type h([X/G]) of the quotient stack [X/G] is strictly weakly equivalent to the topo-
logical type h(B(G,X, S)) of the simplicial algebraic space B(G,X, S) := cosk0(X/[X/G]).

3.5.11. One can use any smooth hypercover of algebraic stacks to compute topological types:

Theorem 3.5.12. Let U• → X be a smooth hypercover of an algebraic stack X/S. Then
the canonical map of topological types

h(U•)→ h(X )

is a strict weak equivalence.

Proof. An immediate consequence of 2.3.51.

3.5.13. Let us consider the algebraic stacks counterpart of 3.4.10. We only have the half of
the result due to the way we defined the topological types of algebraic stacks.

We have defined the topological types of algebraic stacks in a way that not depending
on any hypercovers. This can be linked to the hypercovers by 3.5.12. Since every algebraic
stack admits a smooth surjection from a scheme, one could have defined the topological type
of an algebraic stack X by choosing any smooth hypercover that is a simplicial algebraic
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spaces and define the topological type of the algebraic stack X to be the topological type of
the simplicial algebraic space. Again, the intrinsic definition shows the the independence of
choice of smooth hypercovers by simplicial algebraic spaces.

However, if we define topological types of algebraic stacks by choosing hypercovers, then
it is hard to prove the independence of choice of hypercovers without using the intrinsic
definition we have. This is due to the lack of the stacky counterpart for 2.3.51 and 2.3.52.

3.6 Cohomology of topological types
3.6.1. For a pointed connected algebraic stack X , Behrang Noohi [29, §4] associated the Ga-
lois category of locally constant sheaves to define the fundamental group πN

1 of the algebraic
stack X . We compare it to the fundamental group of the topological type h(X ):

Proposition 3.6.2. For a pointed connected algebraic stack X , the profinite completion h(X )̂
of the fundamental group of the topological type h(X ) is isomorphic to Noohi’s fundamental
group πN

1 (X ).

Proof. This follows from 2.4.8 as both classify finite torsors.

3.6.3. Fix an abelian group Λ throughout this section.

3.6.4. For a scheme (resp. an algebraic space) X locally of finite type over S, we have from
3.2.3 combined with 2.4.14 that the following cohomology

H∗(Xét,Λ), H∗(LFÉ(X)∼,Λ), H∗(LFS(X)∼,Λ)

are all isomorphic to the cohomology

H∗(h(X/S),Λ)

of the topological type h(X/S).

3.6.5. Similarly, for a simplicial scheme (resp. a simplicial algebraic space) X• that is locally
of finite type over S, we have from 3.2.3 combined with 2.4.16 that the following cohomology

H∗(Sét/X•,Λ), H∗(LFÉ(S)∼/X•,Λ), H∗(LFS(S)∼/X•,Λ)

are all isomorphic to the cohomology

H∗(h(X•/S),Λ)

of the topological type h(X•/S).
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3.6.6. A similar result holds for Deligne-Mumford stacks. However, we should be careful for
algebraic stacks. The small étale topology for algebraic stacks are not the right topology to
work with (see 3.5.4). Other than that, we still have that for an algebraic stack X locally of
finite type over S, the following cohomology

H∗(LFÉ(X )∼,Λ), H∗(LFS(X )∼,Λ)

are all isomorphic to the cohomology

H∗(h(X/S),Λ)

of the topological type h(X/S).

3.6.7. For an algebraic stack X/S, consider the full subcategories

LFSsp(X ) (resp. LFSsch/(X )) ⊂ LFS(X )

consisting of paris (X, x) where X is an algebraic space (resp. a scheme). With the in-
duced topologies, they all induce equivalent topoi. So we can use these topoi to compute
cohomology.
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Chapter 4

Topological types with group actions

Throughout this chapter X is a scheme over a field k with the structure morphism f :
X → Spec k unless stated otherwise. Such a scheme X has an action of the Galois group
G := Gal(ksep/k). We study the topological type h(X) of X with respect to the Galois
action.

4.1 Relative topological types
4.1.1. In order to study the Galois action, we use the relative homotopy introduced by
Barnea-Schlank [2, §8.1]. Note that the structure morphism f : X → Spec k induces a
morphism of topoi

f = (f ∗, f∗) : Xét → (Spec k)ét

With respect to Barnea-Schlank’s model category structures 2.2.17, the functor

Lf∗ : pro−X∆op

ét → pro− (Spec k)∆op

ét ,

a left adjoint to the pull-back functor f ∗ on the pro-categories, is left Quillen.

Definition 4.1.2. The relative topological type hk(X) of a scheme X over k is the pro-
simplicial set

hk(X) := LLf∗(∗)

where ∗ is a final object in X∆op

ét .

4.1.3. The small étale topos (Spec k)ét is equivalent to the category G − Set of discrete
G-sets. So the relative topological type hk(X) naturally encodes the Galois action as it is a
pro-object in the category of simplicial discrete G-sets.

4.1.4. Recall from 2.3.19 that there is an adjoint triple

(ΠG,Γ
∗,Γ∗) : pro− (G− SSet)→ pro− SSet



CHAPTER 4. TOPOLOGICAL TYPES WITH GROUP ACTIONS 55

which is induced by the morphism of topoi

G− Set→ Set

whose pull-back Γ∗ admits a left adjoint ΠG that sends a discrete G-set into its quotient.

4.1.5. The relationship between the usual topological type h(X/k) of X over k and the
relative topological type is simple:

Proposition 4.1.6. The pro-simplicial set hk(X)/G which is the relative topological type
of X over k taken quotient by G, and the topological type h(X/k) of X are strictly weakly
equivalent.

Proof. Consider the commutative diagram

Xét //

%%

(Spec k)ét

��
Set

of topoi, which induces a zig-zag strict weak equivalence between derived objects LΠ(∗) and
(LΠG ◦ LLf∗)(∗) = LΠG(hk(X)) = hk(X)/G. As LΠ(∗) can be identified with h(X/k) by
2.3.30, the statement follows.

4.1.7. Given a variety X over R, David Cox showed [6, 1.1] that the étale homotopy type
of X is the homotopy orbit space of the étale homotopy type of X̄ := X ×SpecR SpecC with
respect to the Galois action of Gal(C/R). This result was generalized by Gereon Quick [31,
5.3] to an arbitrary base field. We will see our proposition above 4.1.6 is a generalization of
Quick’s result (see 5.1.26).

4.1.8. Denote by Xsep the base change X ×Spec k Spec ksep of X to ksep. The following
lemma is used to study the relationship between the relative topological type hk(X) and the
topological type of h(Xsep/ksep).

Lemma 4.1.9. For the commutative diagram of schemes

Xsep pX //

f sep

��

X

f

��
Spec ksep

p
// Spec k

there is a canonical isomorphism of functors

f ∗ ◦ p∗ ∼ // (pX)∗ ◦ (f sep)∗

on the small étale sheaves.



CHAPTER 4. TOPOLOGICAL TYPES WITH GROUP ACTIONS 56

Proof. This is a consequence of the analysis of sheaves on a projective limit of schemes, and
cohomology and base change of proper morphisms. Indeed, the scheme Spec ksep is the limit
of the projective system {Spec L : k ⊂ L ⊂ ksep is a finite separable extension }. Then one
can reduce the statement to the case for the finite morphism Spec L → Spec k where the
result is well-known.

Proposition 4.1.10. There is a strict weak equivalence

h(Xsep/ksep)→ p∗(hk(X))

of pro-simplicial sets.

Proof. Consider a cofibrant replacement H → ∗ of ∗ in pro−X∆op

ét . It pulls back to a trivial
fibration (pX)∗(H)→ ∗. To begin with, we claim that (pX)∗(H) is cofibrant. So consider a
lifting problem

∅ //

��

A

��
(psep)∗(H) //

::

B

in pro− (Xsep)∆op

ét . Since trivial local fibrations of simplicial sheaves on Xsep form generating
trivial fibrations for pro − (Xsep)∆op

ét (see [2, 4.1]), we may assume A → B is both a local
weak equivalence and a local fibration of simplicial sheaves. Then by adjunction, it suffices
to show that (pX)∗ preserves a morphism that is both a local weak equivalence and a local
fibration. Recall from 2.1.10 that those morphisms are described in terms of finite limits
and epimorphisms. Since (pX)∗ is a right adjoint, it only remains to prove that it preserves
epimorphisms. This follows from [26, Tag 04C2] because p : Spec ksep → Spec k is integral.

Now consider a cofibrant replacement Hsep → ∗ of ∗ in pro − (Xsep)∆op

ét . Then we can
choose a lift d : Hsep → (pX)∗(H). Since L(f sep)∗ preserves a weak equivalence between
cofibrant objects, we obtain a strict weak equivalence

L(f sep)∗(H
sep)→ L(f sep)∗((pX)∗(H))

Note that upon the identification of étale topos of ksep with the category of sets, by 2.3.30,
we can identify the object L(f sep)∗(H

sep) on the left with the topological type h(Xsep/ksep)
of Xsep. Furthermore, by 4.1.9, there is an isomorphism

(L(f sep)∗ ◦ (pX)∗)(H)→ (p∗ ◦ Lf∗)(H) = p∗hk(X)

Therefore, we obtain the strict weak equivalence in the statement.

Remark 4.1.11.

(i) The pull-back p∗ : G−Set→ Set sends a discrete G-set into its underlying set. So the
proposition above says that the topological type h(Xsep/ksep) of Xsep is strictly weakly
equivalent to the underlying pro-simplicial set of the relative topological type hk(X) of
X over k. This result seems already known to Barnea-Schlank.

http://stacks.math.columbia.edu/tag/04C2


CHAPTER 4. TOPOLOGICAL TYPES WITH GROUP ACTIONS 57

(ii) Although the Galois group G acts on h(Xsep), it is not clear whether the action is
continuous or not. However, the Galois action on the relative type hk(X) is continuous
by definition. Therefore, the relative typological type hk(X) can be thought of the
replacement of the topological type h(Xsep).

Remark 4.1.12. One can generalize 4.1.9 and 4.1.10 as following. Let p : S ′ → S be an
integral morphism of schemes. For a S-scheme X, consider a fibered diagram

X ′
p′ //

f ′

��

X

f

��
S ′

p // S

Then the canonical morphism of functors

f ∗ ◦ p∗ → (p′)∗ ◦ (f ′)∗

is still an isomorphism ([11, 5.9.7]). The argument in 4.1.10 works verbatim to establish a
strict weak equivalence

hS′(X
′)→ p∗(hS(X))

4.1.13. As an immediate consequence of the remark above, one obtains the invariance of
topological types for a separably closed field with respect to its algebraic closure:

Proposition 4.1.14. Let X be a scheme over a separably closed field k. For an algebraic
closure k̄ of k and X̄ := X ×Spec k Spec k̄, there is a strict weak equivalence

h(X̄)→ h(X)

of the topological types.

Proof. Note that the small étale topoi for Spec k and Spec k̄ are both identified with the
category of sets. So in this case, the relative topological types hk̄(X̄) and hk(X) are the
usual topological types h(X̄) and h(X) respectively. So the result follows from 4.1.12.

4.1.15. For an algebraic space X/S, there is an equivalence of categories between the small
étale topos on X and the category of data ({FU}, ρf ) where FU is a small étale sheaf on a
scheme U for each étale morphism U → X and for each morphism of schemes f : V → U over
X, ρf is an isomorphism f−1FU → FV . This date is subject to the condition g−1ρf ◦ρg = ρg◦f
for any morphism g : W → V and f : V → U of schemes over X. Consequently, the
statements 4.1.9, 4.1.10, and 4.1.12 for algebraic spaces can be reduced to the case of schemes,
and hence are still valid. We obtain the following generalization of 4.1.14:

Corollary 4.1.16. Let X be an algebraic space over a separably closed field k. For an
algebraic closure k̄ of k and X̄ := X ×Spec k Spec k̄, there is a strict weak equivalence

h(X̄)→ h(X)

of the topological types.
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4.2 A scheme with an abstract group action
In this section we prove a similar result to 4.1.6 when X admits an abstract group action.

4.2.1. Let X be a scheme over a base scheme S. If an abstract group G acts on the scheme,
then there is an induced quotient stack [X/G]. We then study the G-action on the topological
type h([X/G]) of the quotient stack in the relative setting. There is a morphism of topoi

f : [X/G]ét → G− Set

where the pull-back maps a G-set S into the quotient stack [X × S/G] over [X/G], and the
push-forward sends an étale sheaf F on [X/G] into the G-set F (X).

4.2.2. Just like the scheme case 4.1.6, we take the group action into account:

Definition 4.2.3. The topological type with G-action hG([X/G]) is the pro-object LLf∗(∗)
in the category of simplicial G-sets where ∗ is a final object of the small étale topos [X/G]ét.

Remark 4.2.4. The small étale topos computes the usual topological type of the quotient
stack [X/G] as it is Deligne-Mumford.

Proposition 4.2.5. Two pro-simplicial sets hG([X/G])/G and h([X/G]) are strictly weakly
equivalent.

Proof. The same argument as in 4.1.6 applied to the following commutative diagram of topoi
works:

[X/G]ét //

&&

G− Set

��
Set
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Chapter 5

Completion of topological types

In this chapter we study profinite completion of topological types. On the first half, we
show that 4.1.6 recovers Quick’s result [31, 5.3] after profinitely completion. For the second
half, we generalize Artin-Mazur’s comparison theorem [1, 12.9] to simplicial schemes and to
algebraic stacks.

5.1 Completions
We follow Quick for the profinite completion of (pro-)simplicial sets [30] and for the equiv-
ariant completion of simplicial sets with group actions [32].

5.1.1. Let Ê be the category of compact, Hausdorff, and totally disconnected topological
spaces. The category is equivalent to the pro-category of finite sets. The forgetful functor

Ê → Set

admits a left adjoint which is denote by (̂·) and called the profinite completion of sets.

5.1.2. The category of simplicial objects in Ê is denoted by ŜSet and we call its objects
profinite spaces. The forgetful functor

ŜSet→ SSet

admits a left adjoint
(̂·) : SSet→ ŜSet,

which is called profinite completion of simplicial sets.

Remark 5.1.3. The completion of (pro)-simplicial sets was first considered by Artin-Mazur
in their work of étale homotopy types. The comparison with their work is given in 5.2.13.

Definition 5.1.4. ([30, 2.6]) A morphism f : X → Y of profinite spaces is a weak equivalence
if the following holds:
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(i) π0(X)→ π0(Y ) is an isomorphisms of profinite sets,

(ii) π1(X, x)→ π1(Y, f(x)) is an isomorphism of profinite groups for each x ∈ X0, and

(iii) For each n ≥ 0, Hn(Y ;M)→ Hn(X; f ∗M) is an isomorphism for every local coefficient
systemM of finite abelian groups on Y (see [30, §2.2] for more details).

5.1.5. (Quick’s model category structure on the category of profinite spaces [30, 2.12]) There
is a model category structure on the category ŜSet of profinite spaces; if f : X → Y is a
morphism of profinite spaces,

(i) f is a weak equivalence of profinite spaces,

(ii) f is a cofibration if it is a monomorphism, and

(iii) f is a fibration if it has the right lifting property with respect to all trivial cofibrations.

Lemma 5.1.6. ([30, 2.28]) The adjunction

((̂·), | − |) : SSet→ ŜSet

is a Quillen adjunction.

Remark 5.1.7. A weak equivalence of profinite spaces is completely characterized by ho-
motopy groups in the following sense:

Lemma 5.1.8. Let f : X → Y be a morphism of profinite spaces. Then it is a weak
equivalence if and only if it induces an isomorphism

πn(X, x) ∼ // πn(Y, f(x))

of profinite homotopy groups (profinite sets for n = 0) for every n ≥ 0 and every x ∈ X0.

Proof. Considering the functorial fibrant replacements of X and Y , we may assume that
X and Y are fibrant by the 2-out-of-3 property of weak equivalences. Then f is a weak
equivalence if and only if the map |f | : |X| → |Y | of underlying simplicial sets is a weak
equivalence if and only if πn(|X|) → πn(|Y |) is an isomorphism for n ≥ 0. Recall from [33,
2.9] that the profinite homotopy groups of a pointed fibrant profinite space is isomorphic
to the usual homotopy group of its underlying simplicial set. Therefore, all the equivalent
conditions are also equivalent to that πn(X)→ πn(Y ) is an isomorphism for n ≥ 0.

5.1.9. We study profinite completion of topological types which are pro-simplicial sets:

Definition 5.1.10. ([30, §2.7]) Let X : I → SSet : i 7→ Xi be a pro-simplicial set. The
profinite completion X̂ of X is the profinite space

X̂ = lim←−
i∈I

X̂i

That is, take a level-wise completion of simplicial sets, and then pass to the limit in ŜSet.
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5.1.11. As we study profinitely completed relative topological types (4.1.2) with respect to
the Galois action, it is necessarily to build a model category on the category of profinite
spaces with group action. We follow Quick [31, 2.17].

5.1.12. Fix a profinite group G. A profinite G-space is a profinite space equipped with a
level-wise compatible continuous G-action. That is, a profinite set X with continuous G-
action on each Xn such that the map Xn → Xm is G-equivariant for each d : [m] → [n].
Denote by G− ŜSet the category of profinite G-spaces with G-equivariant morphisms.

One can consider profinite completion with respect to G-action. Indeed, the forgetful
functor

| − | : G− ŜSet→ |G| − SSet

that maps a profinite G-space into its underlying simplicial |G|-set admits a left adjoint

(̂·)G : |G| − SSet→ G− ŜSet

This functor is called G-equivariant profinite completion ([32, §4.1]). Here |G| is the under-
lying group of the profinite group G.

Lemma 5.1.13. The adjunction

((̂·)G, | − |) : |G| − SSet→ G− ŜSet

is a Quillen adjunction.

Proof. The forgetful functor preserves fibrations and trivial fibrations. Indeed, a morphism
f : X → Y of profinite G-spaces is a fibration (resp. a trivial fibration) if and only if its
underlying morphism of profinite spaces is a fibration (resp. a trivial fibration). Then from
5.1.6 the underlying morphism of simplicial sets is a fibration (resp. a trivial fibration),
which is equivalent to that the underlying morphism of simplicial |G|-sets of f is a fibration
(resp. a trivial fibration).

Remark 5.1.14. |G| − SSet is the category of simplicial |G|-sets whereas G− SSet is the
category of simplicial discrete G-sets.

Definition 5.1.15. Let X : I → G − SSet : i 7→ Xi be a pro-object in the category of
simplicial discrete G-sets. The G-equivariant profinite completion X̂G of X is the profinite
space

X̂G := lim←−
i∈I

X̂iG

That is, apply the forgetful functor G−SSet→ |G| −SSet, take a level-wise G-equivariant
completion of simplicial |G|-sets, and then pass to the limit in G− ŜSet.

5.1.16. (Quick’s model category structure on the category of profinite G-spaces [31, 2.17])
There is a model category structure on the category G − ŜSet of profinite spaces with
continuous G-action; if f : X → Y is a morphism of profinite G-spaces,
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(i) f is a weak equivalence if its underlying morphism of profinite spaces is a weak equiv-
alence,

(ii) f is a fibration if its underlying morphism of profinite spaces is a fibration, and

(iii) f is a cofibration if it has the right lifting property with respect to all trivial fibrations.

5.1.17. As pointed out earlier in 4.1.7, Quick generalized Cox’s result. Concretely, for a
geometrically connected variety over a field k and the Galois group G, he proved [31, 3.5]
that the canonical map

cÉ̂tXsep ×G EG→ É̂tX

is a weak equivalence of profinite spaces where É̂tX is the profinite completion of the étale
topological type of X defined in the sense of Friedlander, and the left-most object cÉ̂tXsep

is defined to be
lim←−
L

É̂tXL

where L runs over all finite Galois extension of k in ksep. Remark from [31, 3.3] that the
canonical map

É̂tXsep → lim←−
L

É̂tXL

is a weak equivalence of profinite spaces. The reason why he had to replace É̂tXsep by
cÉ̂tXsep is that in general one does not know whether the canonical G-action on É̂tXsep is
continuous or not. Namely, we do not know in general whether É̂tXsep is a profinite G-space
or not. Whereas the G-action on lim←−L É̂tXL is continuous because the action on É̂tXL factors
through the action by Gal(L/k).

Remark 5.1.18. We will prove that our theorem 4.1.6 is, at the level of pro-simplicial
sets, a generalization of Quick’s result. In particular, we recover his result after profinite
completion. Also, observe that the relative topological type carries continuous Galois action
and so one does not need to replace it by the limit over finite Galois extensions.

5.1.19. Throughout the rest of the section we fix a scheme X a field k. The Galois group
Gal(ksep/k) is denoted by G.

5.1.20. Recall from 4.1.4 that there is the adjoint triple

(Π,Γ∗,Γ∗) : pro− (G− SSet)→ pro− SSet

The profinite version is the adjoint triple

(Π,Γ∗,Γ∗) : G− ŜSet→ ŜSet
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Just like the case when G is a discrete group 2.3.18, for a profinite G-space X, there is a
weak equivalence of profinite spaces

X ×G EG := (X × EG)/G = Π(X × EG)→ LΠ(X)

because EG → ∗ is a trivial fibration ([31, 2.17]) and X × EG is cofibrant ([31, 2.18]) in
G− ŜSet. Therefore,

LΠ : G− ŜSet→ ŜSet

can be understood as the profinite version of the Borel construction.

5.1.21. To prove the compatibility with Quick’s result, we state and prove two lemmas:

Lemma 5.1.22. There is a commutative diagram

G− SSet Π //

��

SSet

��

|G| − SSet

��

G− ŜSet Π // ŜSet

of categories where the left vertical arrow is a forgetful functor followed by the G-equivariant
completion, the right vertical arrow is the completion, and two horizontal arrows are quotients
by G.

Proof. Let X be a simplicial discrete G-set. Along the bottom-left corner (resp. top-right
corner) of the diagram, one gets X̂G/G (resp. X̂/G ). For a profinite space Y ,

MorŜSet(X̂G/G, Y ) = Mor
G−ŜSet(X̂G, Y )

= Mor|G|−SSet(X, |Y |)
= MorSSet(X/G, |Y |)

= MorŜSet(X̂/G, Y )

Whenever necessary, the underlying simplicial set |Y | of Y (resp. Y itself) is endowed with
the trivial |G|-action (resp. the trivial G-action). The statement follows from the Yoneda
lemma.

Lemma 5.1.23. There is a commutative diagram

pro− (G− ŜSet) //

��

pro− ŜSet

��

G− ŜSet // ŜSet
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of categories where the vertical arrows are limit functors and the horizontal arrows are quo-
tient by G.

Proof. Let X = (Xi) be a pro-object in G− ŜSet. The assertion is an isomorphism

lim←−(Xi/G) = (lim←−Xi)/G

where the limit on the left is of profinite spaces and on the right is of profinite G-spaces. If
we endow Xi/G the trivial G-action, then the limit of profinite G-spaces Xi/G in G− ŜSet
is isomorphic to lim←−(Xi/G) which is the limit of profinite spaces in ŜSet. Therefore, it
suffices to prove the assertion in the category of profinite G-spaces. This follows from that a
cofiltered limit commutes with finite colimits in the category of profinite G-spaces, which can
be checked level-wise. Hence it is enough to prove that a cofiltered limit commutes with finite
colimits in the category of profinite sets with continuous G-action. However, the category is
isomorphic to the pro-category of finite sets with G-action where the result follows from [15,
6.1].

Remark 5.1.24. Isaksen [15, 6.1] showed that a cofiltered limit commutes with finite colim-
its for a pro-category associated to a category C. The statement is true under the assumption
that the category C is complete and cocomplete. Actually, his proof shows that the theorem
is still true for the category C that has finite limits and finite colimits, which we used in the
previous lemma.

Proposition 5.1.25. There is a commutative diagram

pro− (G− SSet) //

��

pro− SSet

��

G− ŜSet // ŜSet

of categories where the left vertical arrow is the G-equivariant completion, the right vertical
arrow is the completion, and the horizontal arrows are quotient by G.

Proof. The diagram in the assertion is a composition of two diagrams:

pro− (G− SSet) //

��

pro− SSet

��

pro− (G− ŜSet) //

��

pro− ŜSet

��

G− ŜSet // ŜSet

The top diagram commutes by 5.1.22 and the bottom one by 5.1.23.
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Theorem 5.1.26. Let X be a scheme over a field k. Then the completion ĥ(X) of the
topological type h(X) of X is weakly equivalent to the Borel construction

ĥk(X)G ×G EG

of the G-equivariant completion (5.1.12) of the relative topological type hk(X) with respect
to the Galois group G = Gal(ksep/k).

Proof. We apply left derived functor to the top-right and the left-bottom arrows of the
diagram in 5.1.25. Furthermore, we decompose each one as a composition of two left derived
functors. For this, we prove that the left derived functors are well-defined for each side of
the diagram. The well-definedness of the top and bottom arrows follows from 5.1.20. For the
right arrow, note that the profinite completion of simplicial sets 5.1.6 and the cofiltered limit
functor of profinite spaces preserve weak equivalences [30, 2.14]. Therefore, the profinite
completion of pro-simplicial sets preserves weak equivalences and so the left derived functor
is well-defined. Lastly, for the left arrow, we prove that it sends a trivial cofibration between
cofibrant objects in pro − (G − SSet) into a weak equivalence in (G − ŜSet). Recall that
the left arrow is the compositions of three arrows

pro− (G− SSet)→ pro− (|G| − SSet)→ pro− (G− ŜSet)→ (G− ŜSet)

A trivial cofibration between cofibrant objects in pro− (G−SSet) maps into a weak equiv-
alence between cofibrant objects in pro − (|G| − SSet) because a weak equivalence of sim-
plicial discrete G-sets induces a weak equivalence of simplicial |G|-sets and every object in
pro− (|G| − SSet) is cofibrant. Then from the Quillen adjunction 5.1.13

(̂·)G : |G| − SSet→ G− ŜSet

it maps into a weak equivalence. Therefore, it suffices to show that a cofiltered limit functor of
profinite G-spaces preserves a weak equivalence. However, this follows from [30, 2.14] because
the underlying profinite space of the limit of profinite G-spaces is the limit of underlying
profinite spaces.

So far, we have shown that each side of the square diagram defines the left derived functor.
Consider the relative topological type hk(X). Along the derived top arrow, one gets, up to
strict weak equivalences, hk(X)/G because hk(X) is cofibrant. From 4.1.6, hk(X)/G and
h(X/k) are strictly weakly equivalent. Then along the derived right vertical arrow, we get
ĥ(X), up to weakly equivalent objects. On the other hand, the derived left vertical arrow
gives the G-equivariant completion ĥk(X)G of hk(X) 5.1.15, up to weak equivalence. Then
the derived bottom arrow sends ĥk(X)G into its Borel construction ĥk(X)G×GEG (5.1.20),
up to weakly equivalent objects.

Remark 5.1.27.
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(i) This theorem is in the same spirit as Quick’s result [31, 3.1]. He applied the Borel
construction to h(Xsep), up to the continuity issue. This is similar to what we did
because 4.1.9 says that the underlying pro-simplicial set of the relative topological type
hk(X) is the topological type h(Xsep).

(ii) In the statement of the theorem, the continuity issue that Quick had disappeared due
to the use of the relative topological type which is an object in pro− (G−SSet) where
the continuity issue is already taken care of.

(iii) In another paper by Quick [34], he avoided the continuity issue in a different way. For
a geometrically connected variety X over a field k, assume further that it is quasi-
projective. He used Friedlander’s rigid Čech étale topological type (X/k)rét (see [9, 3.1]
for more details) to consider Ét(X) as a pro-simplicial set over BG. Then the profinite
model of (X/k)rét over (Spec k/k)rét = BG has the homotopy type of the G-homotopy
orbits of (Xsep/k)rét (see [34, p.13] for more details). In particular, the continuity issue
is resolved. Also, his approach is at the level of pro-simplicial sets, and hence it sits
between 5.1.26 and 4.1.6. Note also that 5.1.26 works for every scheme over k.

5.2 Comparison theorems
In this section we prove that for a complex variety, one can compute its topological type via
the underlying topological space of its analytification, after profinite completion. We then
extend this classical result of Artin-Mazur into the case of simplicial schemes and algebraic
stacks.

Definition 5.2.1. (cf. 3.2.1) The big étale site An is the category of complex analytic
spaces. A collection of morphisms {Yi → Y } is a covering of Y if each morphism Yi → Y is
étale and the map ∐

i∈I

Yi → Y

is surjective.
For an analytic space X, the small étale site An(X) is the category of analytic spaces

étale over X. A collection of morphisms {Yi → Y } is a covering of Y if the map∐
i∈I

Yi → Y

is surjective. Denote by Xét the associated topos.

5.2.2. Let X be a locally of finite type scheme over C. There is an associated complex
analytic space Xan. This construction is functorial and in fact the functor

LFÉ/C→ An : X 7→ Xan



CHAPTER 5. COMPLETION OF TOPOLOGICAL TYPES 67

is continuous and commutes with finite limits. Therefore it induces a morphism of topoi

An∼ → (LFÉ/C)∼

By 2.3.32, this morphism in turn induces a map of topological types

h(Xan)→ h(X)

Definition 5.2.3. Let X be a complex analytic space. The site Ét(|X|) is defined as
following. An object is a local homeomorphism from a topological space Y to the underlying
topological space |X| of X, and morphisms are continuous maps over |X|. A collection of
maps {Yi → Y } is a covering of Y if the map∐

i∈I

Yi → Y

is surjective.

Remark 5.2.4. The small étale site Ét(X) is isomorphic to the site Ét(|X|). Moreover,
the topos associated to the site Ét(|X|) is equivalent to the topos associated to the usual
topology on |X|. So, one concludes that the small étale topos Xét is equivalent to the usual
topos associated to the topological space |X|.

5.2.5. For a locally of finite type scheme X over C, we abusively denote by X(C) both for
the underlying topological space of its associated analytic space Xan and the usual topos
associated to it.

5.2.6. As an immediate consequence of the previous remark, for a locally of finite type
scheme X over C, there is an equivalence of topoi

(Xan)ét ' X(C)

between the small étale topos (5.2.1) of the analytic spaceXan and the usual topos associated
to the underlying topological space X(C) of Xan.

5.2.7. Like the case of schemes, replacing the small site by the big site for analytic spaces
is a key toward topological types of simplicial analytic spaces. By the same argument as in
the étale topology of schemes, the following lemma follows immediately:

Lemma 5.2.8. (cf. 3.2.3) Let X be an analytic space X. Then the inclusion functor

j : An(X)→ An/X

from the small étale site of X to the big étale site localized by X is cocontinuous, continuous
and commutes with finite limits.
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5.2.9. Let X be a locally of finite type scheme over C. Denote by X(C) the topological type
h(Xan) of Xan as an object in the topos An∼.

Remark 5.2.10. For a locally paracompact topological space, the topological type of the
usual topos of the topological space is just the space itself ([1, 12.1]). So we use the same
notation for a topological space, its associated topos, and its topological type. From this
point of view, the notation X(C) means any of the underlying topological space of Xan, its
associated topos, and its topological type. Recall from 5.2.6 that the last one is isomorphic
to the topological type of the topos (Xan)ét. However, the topological type of the small étale
topos (Xan)ét is the topological type h(Xan) of Xan, up to strict weak equivalence by 5.2.8

5.2.11. Let X be a locally of finite type scheme over C. Denote by h(X )̂ (resp. h(X )̂) the
profinite completion (5.1.10) of the pro-simplicial set h(X) which is the topological type of
X (resp. of the topological space X(C)).

5.2.12. Recall from [1, 11.1] thatHo(SSet)fin is the full subcategory ofHo(SSet) consisting
of simplicial sets whose homotopy groups are all finite. The Artin-Mazur completion theorem
[1, 3.4] says that the inclusion functor

pro−Ho(SSet)fin → pro−Ho(SSet)

admits a left adjoint. Denote by X̂AM the Artin-Mazur completion of a pro-simplicial set X.
On the other hand, for a profinite space X, one can associate a pro-object in Ho(SSet)fin

(see [30, p.604] for details), which is denoted by XAM.
So for a pro-simplicial set X, one can consider two different pro-objects in Ho(SSet)fin.

One is the Artin-Mazur completion X̂AM and the other is (X̂)AM, resulting from the profinite
completion X̂ ofX. The following proposition by Quick shows that these two pro-objets have
the isomorphic homotopy groups after passing to the limit. Here we give a more detailed
proof due to the missing technical details.

Proposition 5.2.13. ([30, 2.33]) Let X be a pointed connected pro-simplicial set. Then after
passing to the limits, the pro-homotopy groups of (X̂)AM and X̂AM are isomorphic. That is,
there is an isomorphism

πn(X̂) ∼ // πn(X̂AM)

for n ≥ 1 where the right one taken the limit.

Proof. The pro-homotopy group of (X̂)AM, after passing to the limit, is isomorphic to the
profinite homotopy group of the profinite completion X̂ = lim←−i∈I X̂i where X = (Xi) (see
[32, p.436]). Then

πn(X̂) ' πn(lim←−
i∈I

X̂i) ' lim←−
i∈I

πn(X̂i)

The second isomorphism follows from the lemma below 5.2.14 that the profinite homotopy
group functor commutes with a cofiltered limit of profinite spaces. By the repeated applica-
tion of [32, p.436], πn(X̂i) is isomorphic to πn((X̂i)

AM) taken the limit.
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On the other hand, for each i, (X̂i)
AM is isomorphic to X̂i

AM
by the discussion in [30,

p.604]. So by passing to the limits,

πn((X̂i)
AM) ' πn(X̂i

AM
)

Now recall from [1, 3.9] that the Artin-Mazur completion of X is isomorphic to the
cofiltered limit in pro − Ho(SSet)fin of the Artin-Mazur completion of each Xi. So after
passing to the limit,

πn(X̂AM) ' lim←−
i∈I

πn(X̂i

AM
)

where πn(X̂i

AM
) is taken by the limit.

Lemma 5.2.14. Let X : I → ŜSet be a cofiltered diagram of profinite spaces. For each
n ≥ 0, the map between profinite groups (profinite sets for n = 0)

πn(lim←−
i∈I

Xi)→ lim←−
i∈I

πn(Xi)

is an isomorphism.

Proof. Apply the fibrant replacement functor F in ŜSet to X. We then have an induced
map of limits

lim←−
i∈I

Xi → lim←−
i∈I

FXi

This map is a weak equivalence of profinite spaces because it comes from a level-wise weak
equivalence of profinite spaces ([30, 2.14]). In particular, we have an induced isomorphism
of homotopy groups by 5.1.8. We also have the isomorphisms

πn(lim←−
i∈I

FXi) ' lim←−
i∈I

πn(FXi) ' lim←−
i∈I

πn(Xi)

The first follows as the homotopy group functor commutes with a cofiltered limit of fibrant
profinite spaces, and the second is an application of 5.1.8. So we obtain the desired isomor-
phism

πn(lim←−
i∈I

Xi)
∼−→ lim←−

i∈I
πn(Xi)

5.2.15. The following comparison theorem is a restatement of Artin-Mazur’s comparison
theorem ([1, 12.9]) in the language of topological types.

Theorem 5.2.16. (Comparison) Let X be a pointed finite type scheme over C. Then the
map

X̂(C)→ ĥ(X)

of profinite completions of topological types is a weak equivalence of profinite spaces.
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Proof. We may assume X is connected. Indeed, the topological type functor preserves
coproducts 2.3.24, the profinite completion functor commutes with finite colimits, and a
coproduct of weak equivalences between cofibrant objects is a weak equivalence [5, 1.2.5].

When taking Artin-Mazur’s completion, the statement follows from their comparison
theorem [1, 12.9]. In particular, they induce isomorphic pro-homotopy groups and hence
isomorphisms of those pro-groups after passing to the limit. By 5.2.13, the map in the
statement induces an isomorphism of profinite homotopy groups. The proof is completed by
characterization of weak equivalence 5.1.8.

Theorem 5.2.17. (Simplicial comparison) Let X• be a pointed finite type simplicial scheme
over C. Then the map

X̂•(C)→ ĥ(X•)

of the profinite completions of topological types is a weak equivalence of profinite spaces.

Proof. By the same reason in the proof of 5.2.16, we may assume X• cannot be written as
a disjoint union of non-empty simplicial finite type schemes over C. Then the map induces
isomorphic fundamental groups by the corresponding result from Friedlander [10, 8.4]. Note
that we use the compatibility between our topological type and Friedlander 3.3.7, and the
result on homotopy groups with respect to completions 5.2.13. It is a classical result that
there is an isomorphism of cohomology groups, which completes the proof (cf. 5.1.4).

Example 5.2.18.

(i) Consider the classifying stack BGm of the multiplicative group scheme Gm over C.
By the hypercover descent 3.5.9, the topological type h(BGm) of the classifying stack
is strictly weakly equivalent to the topological type h(BGm) of the simplicial scheme
BGm. After profinite completion, by 5.2.17, h(BGm)̂ is weakly equivalent to (BS1)̂
where BS1 is the classifying space of the unit circle. It is well-known that BS1 is CP∞
which is K(Z, 2). Therefore, h(BGm)̂ is weakly equivalent to K(Z, 2)̂.

(ii) More generally, for the classifying stack BGLn of the general linear group scheme GLn
over C for n ≥ 1, h(BGLn)̂ is weakly equivalent to BGLn(C)̂. Since BGLn(C) is
the Grassimannian G(n,C∞) of n-dimensional subspaces in C∞, h(BGLn)̂ is weakly
equivalent to G(n,C∞)̂. Remark that for a finite coefficient group, the cohomology
groups of a profinite completion of a pro-simplicial set coincide with the cohomology
groups of the pro-simplicial set. Therefore, our result recovers that

H∗(BGLn,Q`) = Q`[c1, c2, · · · , cn] = H∗(G(n,C∞),Q`)

where ci’s are the universal Chern classes of degree 2i. Each side is well-known to
algebraic geometers and topologists respectively.

5.2.19. The simplicial comparison theorem 5.2.17 leads to the comparison theorem for al-
gebraic stacks. We make it precise for the rest of the section.
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5.2.20. Let X be a topological space. Denote by op(X) the site induced by the usual
topology on X. We call it the small topological site. Also consider the big topological
site Top(X) whose objects are continuous maps over X and coverings are the usual open
coverings. It follows that the functor

Op(X)→ Top(X)

satisfies the assumptions in 2.3.27. So we can use either the small or the big site to compute
topological types of the associated topoi.

Now consider the site Top defined by Top(∗) where ∗ is a final object in the category of
topological spaces. Then by the 2.3.30, one can compute the topological types above in this
site as well.

Remark 5.2.21. For the topos associated to Top, we take epimorphisms as the class of P
for the theory of P-hypercovers (see 2.3.45).

5.2.22. Recall from [noohi2005foundation] that there is a functor from the category of
locally of finite type algebraic stacks over C to the category of stacks over Top. Denote by
X top the image of X under the functor.

Theorem 5.2.23. (Stacky Comparison) Let X be a finite type algebraic stack over C. Then
the map

ĥ(X top)→ ĥ(X )

of the profinite completions of topological types is a weak equivalence of profinite spaces.

Proof. There is an induced epimorphism Xtop → X top. Since the analytification com-
mutes with finite limits, the analytification of the simplicial scheme cosk0(X/X ) is simply
cosk0(Xtop/X top)) which is a P-hypercover. By the hypercover descent 2.3.51, there are
strict weak equivalences

h(cosk0(X/X ))→ h(X )

and
h(cosk0(Xtop/X top))→ h(X top)

The result follows from 5.2.17.

5.2.24. Concretely, for a group scheme G over C acting on a scheme X/C, there is a weak
equivalence

h([X(C)/G(C)])̂ → h([X/G])̂

of profinite completions of topological types of quotient stacks. In particular, we obtain a
weak equivalence

h(BG(C))̂ → h(BG)̂

for classifying stacks.
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5.3 Profiniteness of topological types

Definition 5.3.1. Let X : I → Set be a pro-set. Its profinite completion X̂ is the profinite
set

lim←−
i∈I

X̂i

where X̂i is the profinite completion of the set Xi as in 5.1.1 and the limit is taken in the
category of profinite sets.

Remark 5.3.2. This notion of profinite completion of pro-sets is compatible with the profi-
nite completion of sets 5.1.1, the profinite completion of simplicial sets 5.1.2, and the profinite
completion of pro-simplicial sets 5.1.10.

Lemma 5.3.3. Let X be a simplicial set. Then there is a canonical isomorphism of profinite
sets

π0(X )̂ Im s // π0(X̂)

Proof. The statement is immediate from that for any finite set S,

MorSet(π0(X), S) = MorSSet(X,S) = Mor
ŜSet

(X̂, S) = MorÊ(π0(X̂), S)

Corollary 5.3.4. Let X be a pro-simplicial set. Then there is a canonical isomorphism of
profinite sets

π0(X )̂ ∼ // π0(X̂)

Proof. Say X : I → SSet : i 7→ Xi. Then

π0(X )̂ = lim←−
i∈I

(π0(Xi))̂ ' lim←−
i∈I

π0(X̂i) ' π0(lim←−
i∈I

X̂i) = π0(X̂)

where the first isomorphism is by 5.3.3 and the second isomorphism from the property that
π0 commutes with cofiltered limits.

Proposition 5.3.5. Let F• be a simplicial object in a topos T . There is a canonical isomor-
phism of profinite sets

π0(h(F•)̂) ∼ // π0(LΓ∗(F•)̂)

Proof. Consider the commutative diagram of profinite sets:

π0(h(F•))̂ //

��

π0(h(F•)̂)

��
π0(LΓ∗(F•))̂ // π0(LΓ∗(F•)̂)
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The top (resp. bottom) horizontal map is an isomorphism by 5.3.4 (resp. 5.3.3). On the
other hand, the left vertical map is an isomorphism by 2.4.2. Therefore, the right vertical
map is also an isomorphism.

5.3.6. For a pointed simplicial set X, the canonical map

(π1(X))̂ → π1(X̂)

is an isomorphism of profinite groups ([30, 2.1]). We extend this result to pointed pro-
simplicial sets:

Proposition 5.3.7. Let X be a pointed pro-simplicial set X. Then there is a canonical
isomorphism of profinite groups

π1(X )̂ ∼ // π1(X̂)

Proof. Say X : I → SSet : i 7→ Xi. It is enough to show that for any finite group G, the
canonical map

MorProfinite(π1(X̂), G)→ MorProfinite(π1(X )̂, G)

is an isomorphism where Profinite denote the category of profinite groups.

MorProfinite(π1(X̂), G) = H1(X̂;G) (5.3.7.1)

= lim−→
i∈Iop

H1(X̂i;G) (5.3.7.2)

= lim−→
i∈Iop

H1(Xi;G) (5.3.7.3)

= lim−→
i∈Iop

HoSSet(Xi, K(G, 1)) (5.3.7.4)

= Hopro−SSet(X,K(G, 1)) (5.3.7.5)
= H1(X,G) (5.3.7.6)
= Morpro-Gps(π1(X), G) (5.3.7.7)

= MorProfinite(π1(X )̂, G) (5.3.7.8)

where (5.3.7.5) follows from [30, 2.9].

5.3.8. Recall from [38, 0.23.2.1] that a local ring A is unibranch if Ared is a domain and if the
integral closure of Ared is local. We say that A is geometrically unibranch if it is unibranch
and the residue field field of the integral closure of Ared is purely inseparable over the residue
field of A. A scheme X is geometrically unibranch if for every point x ∈ X the local ring
OX,x is geometrically unibranch.
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5.3.9. The implication of the geometrically unibranch condition is the profinite theorem of
Artin-Mazur [1, 11.1]: For a pointed, connected, geometrically unibranch, and noetherian
scheme X, the étale homotopy type is profinite. i.e., all homotopy pro-groups are pro-finite.
This profinite theorem was generalized to simplicial schemes by Friedlander [10, 7.3]: For a
pointed simplicial scheme X• such that each Xn is noetherian, connected, and geometrically
unibranch, the étale topological type is profinite. i.e., all homotopy pro-groups are pro-finite.

5.3.10. The property that a scheme is geometrically unibranch is local in the étale topology.
So we say that an algebraic space is geometrically unibranch if there is an étale surjection
U → X with U a geometrically unibranch scheme.

Proposition 5.3.11. Let X/S be a quasi-compact, quasi-separated, and geometrically uni-
branch algebraic space. Then its topological type h(X) is profinite. i.e., πn(X) is profinite
for each n ≥ 0.

Proof. Choose an étale cover U → X with U a scheme. By the hypercover descent 3.4.9
there is a strict weak equivalence

h(cosk0(U/X))→ h(X)

Therefore, the result follows from the case of simplicial schemes [10, 7.3].
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Chapter 6

Introduction: The Dold-Thom theorem

6.1 Motivation
6.1.1. Let X be a pointed connected CW-complex. There is a canonical action of the
symmetric group Sn of the n letters on the n-fold product Xn. The nth symmetric power
Symn(X) is defined as the quotient space Xn/Sn. The classical Dold-Thom theorem [7, 6.10]
states that for each i > 0 there is an isomorphism

Hi(X;Z) ' πi(Sym∞(X))

where Sym∞(X) is the colimit of Symn(X) as n varies.

6.1.2. Recently, Arnav Tripathy showed [39] that the Dold-Thom theorem is still valid in
the algebro-geometric world:

Theorem 6.1.3. ([39, Theorem 1]) Let X be a proper, normal, noetherian, geometrically
connected algebraic space over a separably closed field k. The natural map

Symn(hAM(X))→ hAM(SymnX)

of pro-objects in the homotopy category of simplicial sets is a weak equivalence. Here hAM(−)
denotes Artin-Mazur’s étale homotopy type functor.

6.1.4. Formally, the theorem above says that Artin-Mazur’s étale homotopy type functor
commutes with the symmetric power functor. This type of formality fits better into the
theory of topological types we have developed. Indeed, the topological types of algebraic
stacks are defined by using model categories and derived functors, which generalizes the
derived functor reformulation of étale homotopy type by Ilan Barnea and Tomer Schlank
[2]. From this point of view, we expect the Dold-Thom theorem for étale homotopy types to
follow formally from the machinery of our theory of topological types.
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6.2 Statement of the main results
6.2.1. The main goal of this paper is to provide an alternate proof for the Dold-Thom
theorem for étale homotopy types via the tools developed in our paper. We expect the
generality of the idea of the proof to be applied to the study of algebraic stacks and their
coarse moduli spaces.

6.2.2. As we use model category theory, we restate [39, Theorem 1] as following with the
removal of the connected assumption:

The Dold-Thom Theorem for Topological types. (Theorem 10.0.4) Let X be a geo-
metrically normal and proper algebraic space over a separably closed field k. Then there is a
canonical isomorphism

Symn(hét(X)) ∼ // hét(Symn(X)) (6.2.2.1)

in Ho(pro− SSet).

6.2.3. Firstly, we formally obtain the theorem by using the qfh topological types 7.2.7.
Then show that the usual étale topological type for the symmetric power of algebraic space
is nothing but the qfh topological type of the symmetric power. This comparison is mainly
due to the cohomological comparison by Vladimir Voevodsky [40, 3.4.4]. We also use the
computation on the fundamental group of the symmetric power by Indranil Biswas and Amit
Hogadi [3, 1.2].

6.2.4. This formal approach is different from the work of Tripathy. He concretely analyzed
the étale fundamental group of X, and used Deligne’s work on the cohomology of Symn(X).

6.2.5. Let us explain in more detail how this new strategy works. Let X be a geometrically
normal and proper algebraic space over a separably closed field k. The symmetric group Sn
acts on the n-fold fiber product (X/S)n of X over S. The nth symmetric power Symn(X)
exists as a GC quotient of the groupoid of algebraic spaces (see [36, 5.5] for details):

Sn × (X/S)n // // (X/S)n // Symn(X/S) (6.2.5.1)

Note that the Sn-action is not free and hence the GC quotient Symn(X) is not a sheaf
quotient. So the canonical map

(X/S)n → Symn(X/S)

is not an étale covering. Nonetheless, it is a covering with respect to the qfh topology [40,
3.1.2]. In particular, Symn(X) is a quotient sheaf with respect to the qfh topology. Namely,
for the morphism of topoi 7.2.4

i = (i∗, i∗) : LFQ(S)∼ → LFÉ(S)∼

the diagram (6.2.5.1) is pulled-back to a coequalizer in the category qfh sheaves 9.1.12. This
is the reason why we prefer working with the qfh topology to the étale topology.
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6.2.6. From that Symn(X) is a quotient qfh sheaf, one can formally obtain the Dold-Thom
theorem for qfh topological types. Fix a locally noetherian scheme S. Consider the big qfh
site LFQ(S) which is the full category of the category of schemes over S, whose objects
are locally of finite type morphisms to S with coverings induced by coverings in the qfh
topology on S ([40, 3.1.2]). Denote by LFQ(S)∼ the associated topos. For any simplicial
object F• in the big qfh topos LFQ(S)∼, the constant sheaf Sn associated to the symmetric
group canonically acts on the n-fold product F n

• of F•. We define the nth symmetric power
Symn(F•) to be the coequalizer of the following diagram in the category (LFQ(S)∼)∆op of
simplicial qfh sheaves:

Sn × F n
•

//// F n
•

where the two arrows are the Sn-action and the projection onto F n
• .

6.2.7. The importance of the qfh topology is that as an immediate consequence of the
definition, the symmetric power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

preserves local weak equivalences as one can check at stalks 9.2.10. Note that for simplicial
sets, we already know that the symmetric power functor preserves weak equivalences 9.1.5.
Consider the connected component functor Πqfh of the topos LFQ(S)∼, which is a left adjoint
of the constant sheaf functor. Then the following diagram commutes:

(LFQ(S)∼)∆op

Πqfh
��

Symn

// (LFQ(S)∼)∆op

Πqfh
��

SSet
Symn

// SSet

By applying the Quillen derived functors to the diagram with respect to Barnea-Schlank’s
model category structure on pro− (LFQ(S)∼)∆op and Isaksen’s model category structure on
pro− SSet, we see that the canonical map

Symn(hqfh(F•))→ hqfh(Symn(F•))

is an isomorphism in the homotopy category of pro-simplicial sets 9.2.11 where hqfh is the
topological type functor using the qfh topology 7.2.7. Therefore, the Dold-Thom for qfh
topological types is a formal consequence of our machinery of topological types.

6.2.8. Finally, we compare the qfh topological types to the usual étale topological types.
Consider a commutative diagram in Ho(pro− SSet):

Symn(hqfh(X))

��

// hqfh(Symn(X))

��
Symn(hét(X)) // hét(Symn(X))
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We already know that the top map is an isomorphism. By the classical Dold-Thom, the left
vertical map is an isomorphism because it can be reduced to the cohomological comparison
10.0.3. This comparison comes from the work of Voevodsky [40, 3.4.4] that the cohomology
groups of schemes for the étale and qfh topologies coincide. On the other hand, it is already
known by Biswas-Hogadi [3, 1.2] that the abelianization of the étale fundamental group of
X is isomorphic to the étale fundamental group of Symn(X). This combined again with
Voevodsky’s cohomological comparison shows that the right vertical map is an isomorphism
10.0.2. Therefore, the bottom map is a weak equivalence. Namely, we obtain the Dold-Thom
theorem for topological types.
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Chapter 7

Topological types via qfh topology

In this chapter we define the topological types via qfh topology, and compare them to the
usual étale topological types.

7.1 Qfh topology on schemes
The qfh topology of schemes was developed by Vladimir Voevodsky [40] to study the homol-
ogy of schemes. In this section we briefly review the qfh topology.

Definition 7.1.1.

(i) A continuous map f : X → Y of topological spaces is submersive if it is surjective and
Y has the quotient topology, i.e., a subset V ⊂ Y is open if and only if its preimage
f−1V is open in X.

(ii) A morphism f : X → Y algebraic spaces is submersive if its associated map |X| → |Y |
of topological spaces is submersive.

(iii) A morphism f : X → Y algebraic spaces is universally submersive if for every morphism
Z → Y of algebraic spaces, its base change X ×Y Z → Z is submersive.

Definition 7.1.2. ([40, 3.1.2]) LetX be a scheme. A collection {fi : Xi → X} of morphisms
of schemes is a h covering if it is a finite family of morphisms of finite type such that the
morphism

∐
fi :

∐
Xi → X is a universally submersive. If we furthermore require each fi

to be quasi-finite, then we call it a qfh covering.

Definition 7.1.3. Let S be a scheme. The qfh site on S, denoted by (Sch/S)qfh, is the
category of schemes over S with coverings induced by coverings in the qfh topology.
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7.2 Topoloigcal types via qfh topology and its
comparison to étale topology

In this section we define the topological types of algebraic spaces via qfh topology, and
compare it to the usual étale topological types (3.4.2).

7.2.1. In order to study the étale homotopy types of algebraic spaces, we follow the theory
of topological types developed in our paper where the homotopy theory of algebraic stacks
was developed by using the machinery of Ilan Barnea and Tomer Schlank [2]. It not only
extends the étale homotopy theory of schemes by Michael Artin and Barry Mazur [1], but
also the étale topological theory of simplicial schemes by Eric Friedlander [10]. The main
difference compared to these classical theories lies in the use of model category theory and
the generalization to algebraic stacks. Furthermore, the theory is developed for general topoi
so that it can be applied to different contexts including the qfh topoi which plays a key role
in this paper.

Definition 7.2.2. Let S be a locally noetherian scheme. A site LFQ(S) is the full category
of the category of schemes over S, whose objects are locally of finite type morphisms to S
with coverings induced by coverings in the qfh topology on S. Denoted by LFQ(S)∼ the
associated topos.

Remark 7.2.3. When replacing the qfh coverings by the étale coverings, we recover the
topos LFÉ(S)∼ defined in 3.2.1.

7.2.4. To compare the étale and qfh topologies, note that there is a continuous functor

i : LFÉ(S)→ LFQ(S)

which commutes with finite limits, which induces a morphism of topoi

i = (i∗, i∗) : LFQ(S)∼ → LFÉ(S)∼ (7.2.4.1)

7.2.5. An algebraic space X/S is a sheaf on the big étale site on S, and is restricted to
a sheaf on LFÉ(S). When pulled-back along the morphism i, we obtain a sheaf i∗X on
LFQ(S).

7.2.6. The qfh topos LFQ(S) is locally connected in a sense that the constant sheaf functor
admits a left adjoint, which is denoted by Πqfh and called by the connected component
functor. The proof for LFÉ(S) case works verbatim (see 3.2.5). So the functor LΓ∗qfh

in the
definition of the topological types can be identified with the connected component functor
Πqfh for the associated pro-categories.

Definition 7.2.7. LetX be a locally of finite type algebraic space over S. The qfh-topological
type hqfh(X) of X is the topological type of the qfh sheaf i∗X. Namely, it is the pro-simplicial
set

LΠqfh(i∗X)
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7.2.8. Recall from 3.4.2 that the topological type hét(X) of the algebraic space X is the pro-
simplicial set obtained by applying the previous definition to the topos LFÉ(S)∼. Therefore,
for any algebraic space X that is locally of finite type over S, it follows from the functoriality
of topological types 2.3.32 that there is a canonical map between topological types:

hqfh(X)→ hét(X)

7.2.9. The following theorem shows a partial relationship between the usual étale topological
type and the qfh topological type:

Theorem 7.2.10. ([40, 3.4.4], [24, Theorem 1]) Let X be an algebraic space that is locally
of finite type over S. Then the canonical map of topological types

hqfh(X)→ hét(X)

induces an isomorphism

Hn(hét(X),M) ∼ // Hn(hqfh(X),M)

for every n ≥ 0 and every local coefficient system M of abelian groups. In particular, there
is an isomorphism on the abelianization of fundamental groups

πab
1 (hqfh(X)) ∼ // πab

1 (hét(X))

Proof. The statement on cohomology is the result of Voevodsky [40, 3.4.4]. For the abelian-
ized fundamental groups, it suffices to show that for any abelian group G, the top horizontal
map in the following commutative diagram is an isomorphism:

Hompro-groups(π1(hqfh(X)), G) //

��

Hompro-groups(π1(hét(X)), G)

��
H1(hqfh(X), G) // H1(hqfh(X), G)

The two vertical maps are isomorphisms by 2.4.8 and the bottom map is an isomorphism
again by Voevodsky [40, 3.4.4]. Therefore, the top map is also an isomorphism.
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Chapter 8

Quotients by algebraic spaces

In this chapter we review the notion of geometric quotients of algebraic spaces. Then we
prove that for the case of interest these quotients can be viewed as coequalizers of qfh sheaves.

8.1 Geometric quotients
In this section we summarize some results on geometric quotients following David Rydh [36].

Definition 8.1.1. ([36, 2.2]) Let s, t : R // // X be a groupoid of algebraic spaces over S,
and q : X → Y be a morphism of algebraic spaces over S. A morphism q is equivariant if
q ◦ s = q ◦ t. If a property of q is stable under flat base change (resp. every base change)
Y ′ → Y , the property is uniform (resp. universal). For an equivariant q,

(i) q is a Zariski quotient if the diagram of associated topoloigcal spaces

|R| //// |X| // |Y |

is a coequalizer in the category of topological spaces.

(ii) q is a constructible quotient if the diagram of associated constructible topoloigcal spaces

|R|cons //// |X|cons // |Y |cons

is a coequalizer in the category of topological spaces.

(iii) q is a topological quotient if it is both a universal Zariski quotient and a universal
constructible quotient.

(iv) q is a strongly topological quotient if it is a topological quotient and jY = (s, t) : R →
X ×Y X is universally submersive.
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(v) q is a geometric quotient if it is a topological quotient and if

OY // q∗OX //// (q ◦ s)∗OR

is an equalizer in the category sheaves on (Sch/S)ét.

(vi) q is a strongly geometric quotient if it is both a geometric quotient and a strongly
topological quotient.

(vii) q is a GC quotient if it is a strongly geometric quotient that satisfies the descent
condition for separated étale morphisms uniformly (see [36, 3.6] for details).

Definition 8.1.2. Let s, t : R // // X be a groupoid of algebraic spaces over S.

(i) The groupoid is finite locally free if s, or equivalently t, is finitely locally free. That is,
if s is affine and s∗OR is a finite locally free OX-module.

(ii) The stabilizer is the base change of j = (s, t) : R→ X ×S X along the diagonal on X
over S:

j−1(∆(X)) //

��

X

∆

��
R

j // X ×S X

(iii) The stabilizer is finite if the structure morphism is a finite morphism.

8.1.3. For a property P of morphism of schemes, we say that a groupoid has P if s, or
equivalently t, has P .

Theorem 8.1.4. ([36, 5.3]) Let S be a locally noetherian scheme and let s, t : R // // X be
a finite locally free groupoid of algebraic spaces over S with finite stabilizer j−1(∆(X))→ X.
Assume X is locally of finite type and separated over S. Then there exists a GC quotient
q : X → X/R with the following properties:

(i) q is integral and surjective,

(ii) X/R is locally of finite type and separated over S, and

(iii) The diagonal jX/R = (s, t) : R→ X ×X/R X is proper and surjective.

Proof. The existence of GC quotient and that q is affine follow from [36, 5.3]. Since q is a
GC quotient, q and jX/R are, in particular, universally submersive and so they are surjective.
All the other properties follow from [36, 4.7].

Corollary 8.1.5. Under the assumption of 8.1.4, the morphism q : X → X/R is a qfh
covering. If we assume further that the groupoid s, t : R //// X is affine, then jX/R : R→
X ×X/R X is also a qfh covering.
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Proof. Since q is integral and locally of finite type, it is finite and thus is a qfh covering. If
s, or equivalently t, is affine, then so is jX/R because q is separated. In this case, jX/R is
proper and affine, and thus is finite. In particular, jX/R is a qfh covering.

8.2 Quotients as qfh sheaves
In this section we describe the GC quotient of our interest as coequalizer in the category of
qfh sheaves.

8.2.1. Recall from [36, 2.16] that for a flat and locally of finitely presented groupoid s, t : R //// X
of algebraic spaces over S with j : R→ X×SX a monomorphism, there is a universal strongly
geometric quotient q : X → X/R which is also the categorical quotient in the category of
algebraic spaces. In fact, the diagram of algebraic spaces

R
s //
t
// X

q // X/R

is a coequalizer in the category of étale sheaves on S. For example, if a group scheme G/S
that is flat and locally of finite presentation over S acts freely on an algebraic space X/S,
then the quotient q : X → X/G is a coequalizer in the category of étale sheaves. However,
if the action is not free, we cannot expect the quotient to be a coequalizer. Nonetheless, we
show that that this is the case when using the qfh topology:

Theorem 8.2.2. Under the assumption of 8.1.4, assume further that the groupoid s, t : R //// X
is affine. Then the diagram

i∗R // // i∗X // i∗(X/R)

is a coequalizer in the category of qfh sheaves on S.

Proof. By the lemma below, it suffices to show that the pull-backs of q and jX/R are epi-
morphisms in the category of qfh sheaves. Note from 8.1.5 that both q and jX/R are qfh
coverings. Hence, it is enough to show that the pull-back of a qfh covering of algebraic
spaces is an epimorphism. So let Y → Z be a qfh cover of algebraic spaces. Choose an étale
covering V → Y (resp. W → Z) with V (resp. W ) a scheme. Consider the diagram of étale
sheaves:

V ×Z W //

��

Y ×Z W //

��

W

��
V // Y // Z

SinceW → Z is already an epimorphism in the category of étale sheaves, its pull-back is also
an epimorphism. So it reduces to show that the composition V ×ZW → Y ×ZW → W is an
epimorphism when pulled-back to LFQ(S)∼. The composition is a qfh covering of schemes
and it follows immediately that it pulls back to an epimorphism of qfh sheaves.
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Lemma 8.2.3. Let C be a site with the associated topos T . Let

F1

a //

b
// F2

c // F3

be a diagram in T with c◦a = c◦ b. Assume that c and the morphism (a, b) : F1 → F2×F3 F2

are epimorphisms. Then the diagram is a coequalizer.

Proof. Given a morphism d : F2 → G with d ◦ a = d ◦ b, we need to prove that there exists
a unique dotted arrow filling in the diagram below:

F1

a //

b
// F2

d   

c // F3

��
G

The uniqueness follows from the assumption that c is an epimorphism. For the existence,
let us construct a morphism f : F3 → G. Consider a section x3 of F3(U) for U ∈ C. After
refinement, we can lift it to sections of F2. Then their images under d glue together to give
a section of G because of the assumption that F1 → F2 ×F3 F2 is an epimorphism. The
same assumption also shows that the section of G is independent of the choice of lifts of x3

to the sections of F2. Hence, given a covering {Ui → U}, there is a well-defined section of
G, which we defined to be f(x3). Once more, the assumption on F1 → F2 ×F3 F2 shows
that the section f(x3) does not depend on the choice of coverings of U . Therefore, there
is a well-defined morphism f : F3 → G. This finishes the proof because f ◦ c = d by the
construction of f .
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Chapter 9

Symmetric power

In this chapter we study symmetric powers in various contexts, and then prove the Dold-
Thom theorem for qfh topological types. We also analyze the fundamental group of sym-
metric power.

9.1 Symmetric power of algebraic spaces
9.1.1. Let X be a topological space. There is a canonical action of the symmetric group
Sn on the n-fold product space Xn. The nth symmetric power Symn(X) of X is defined
as the quotient space Xn/Sn. This quotient space behaves well for CW-complexes: For
a map of CW-complexes, the induced map on the symmetric powers preserves homotopy
weak equivalence. Since topological types are defined as pro-simplicial sets rather than
pro-topological spaces, we restate this property in terms of simplicial sets for convenience.

9.1.2. Let X• be a simplicial set. As a constant simplicial set, the symmetric group Sn
canonically acts on the n-fold product Xn

• of X•. So there is a groupoid of simplicial sets

Sn ×Xn
•

// // Xn
• (9.1.2.1)

where the two maps are the Sn-action and the projection onto Xn
• .

Definition 9.1.3. The nth symmetric power Symn(X•) of a simplicial set X• is the coequal-
izer of the diagram (9.1.2.1) in the category of simplicial sets.

9.1.4. Concretely, Symn(X•) can be described as following: For a set X, there is a Sn-action
on the n-fold product Xn of X. Then we can form the orbit space Xn/Sn. This construction
is functorial in X, and so can be applied to X• degree-wise. So we obtain a simplicial set
whose degree m is the orbit space of Xm by Sn. This is isomorphic to the nth symmetric
power Symn(X•) defined above.
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Lemma 9.1.5. For every n ≥ 0, the nth symmetric power functor

Symn : SSet→ SSet : X• 7→ Symn(X•)

preserves weak equivalences of simplicial sets.

Proof. Let X• be a simplicial set. Since the geometric realization functor preserves colimits
and finite limits, we can identify | Symn(X•)| with Symn(|X•|) where the latter is usual
symmetric power of the CW-complex. Then the statement follows from the well-known result
that the nth symmetric power preserves a homotopy equivalence between CW-complexes.

9.1.6. Now we discuss the nth symmetric power of algebraic spaces. In this case, a careful
approach is necessary. The situation is not as simple as the case of simplicial sets where we
take the categorical quotient. Even for schemes, it is not clear whether such a categorical
quotient is representable by schemes. The well-known case is when X is a quasi-projective
scheme over S. However, we deal with more general case where X is proper. In that
case, although the categorical quotient may not be representable by scheme, it could be
representable by algebraic spaces. So we begin with the symmetric powers of algebraic
spaces.

9.1.7. Let X/S be an algebraic space. The constant group scheme Sn associated to the
symmetric group Sn canonically acts on the n-fold product (X/S)n = X ×S X ×S · · · ×S X︸ ︷︷ ︸

n

of X over S. So there is a groupoid of algebraic spaces over S

Sn × (X/S)n //// (X/S)n (9.1.7.1)

where the two arrows are the Sn-action and the projection onto (X/S)n.

Definition 9.1.8. Let X/S be an algebraic space. Its nth symmetric power Symn(X/S) is
the GC quotient of the groupoid of algebraic spaces in (9.1.7.1), if exists.

9.1.9. In fact, the nth symmetric power of algebraic spaces exists under mild assumption:

Proposition 9.1.10. ([36, 5.5]) Let X be a separated algebraic space over S. Then the nth
symmetric power Symn(X/S) exists.

Proof. See [36, 5.5].

9.1.11. For a separated algebraic space X/S, there is a diagram of algebraic spaces

Sn × (X/S)n //// (X/S)n (9.1.11.1)

The following theorem is the reason why we want to work with the qfh topology instead of
the étale topology. Although (9.1.11.1) is not a coequalizer diagram of étale sheaves on S,
as indicated in 8.2.2, this is the case for when pulled-back to qfh sheaves provided that X is
locally of finite type over S:
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Theorem 9.1.12. Let X be an algebraic space that is locally of finite type and separated
over S. Then the pull-back diagram of (9.1.11.1)

Sn × (i∗X)n //// (i∗X)n // i∗(Symn(X/S))

is a coequalizer in the category LFQ(S)∼

Proof. Note that Symn(X/S) exists from 9.1.10. That X is locally of finite type over S
implies that every condition on 8.1.4 is satisfied. Furthermore, Sn → S is affine and thus
the groupoid in (9.1.7.1) is also affine. So the assumption of 8.1.5 is satisfied. Therefore, we
can apply 8.2.2 to conclude that the symmetric power is the coequalizer as a qfh sheaf.

9.2 Symmetric power and weak equivalence
In this section we provide a formal proof of the Dold-Thom theorem for qfh topological types.

9.2.1. Let F• be a simplicial object in the qfh topos LFQ(S)∼. The constant group scheme
Sn associated to the symmetric group Sn canonically acts on the n-fold product F n

• of F•.
By regarding Sn as a constant simplicial sheaf, there is a groupoid of simplicial sheaves on
LFQ(S):

Sn × F n
•

//// F n
• (9.2.1.1)

where the two arrows are the Sn-action and the projection onto F n
• .

Definition 9.2.2. The nth symmetric power Symn(F•) of a simplicial object F• in LFQ(S)∼

is the coequalizer of the diagram (9.2.1.1) in the category (LFQ(S)∼)∆op of simplicial qfh
sheaves on S.

9.2.3. This construction is purely categorical and so we can repeat the concrete construction
in the case of simplicial sets 9.1.4. That is, Symn(F•) can be described as following: For
a sheaf F , there is a Sn-action on the n-fold product F n of F . So there is a groupoid of
sheaves on LFQ(S):

Sn × F n //// F n

where the two arrows are the Sn-action and the projection onto F n
• . By taking the coequal-

izer, we get the quotient sheaf F n/Sn. This construction is functorial in F , and so can be
applied to F• degree-wise. So we obtain a simplicial sheaf whose degree m is the quotient
sheaf of Fm by Sn. This is isomorphic to the nth symmetric power Symn(F•) defined above.

9.2.4. The symmetric power construction is functorial in F• and so induces the symmetric
power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

: F• 7→ Symn(F•)
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9.2.5. For an algebraic space X/S, one can take its symmetric power as a GC quotient and
pull it back to a qfh sheaf. Or one can first pull it back to a qfh sheaf and take the symmetric
power in the sense of 9.2.2. These two approaches are equivalent:

Proposition 9.2.6. Let X be a locally of finite type and separated algebraic space over S.
Then there is a canonical isomorphism

Symn(i∗X) ∼ // i∗(Symn(X/S))

where i∗X is viewed as a constant simplicial qfh sheaf.

Proof. This is an immediate consequence of 9.1.12.

9.2.7. Let T be a topos with enough points. Recall that a morphism between simplicial
objects in T is a local weak equivalence if and only it induces weak equivalences of simplicial
sets at stalks (see [22, p.64] for details). The topos LFQ(S)∼ has enough points, and thus
we can check the local weak equivalence at stalks:

Lemma 9.2.8. The topos LFQ(S)∼ has enough points.

Proof. The site LFQ(S) has all finite limits and every covering is a finite covering. Then the
statement follows from Deligne [38, Proposition 9.0, Exposé VI].

9.2.9. As the symmetric power for qfh sheaves is defined to be the categorical quotient, we
expect it to behave like the symmetric power of simplicial sets 9.1.5:

Theorem 9.2.10. For each n ≥ 0, the symmetric power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

preserves local weak equivalences.

Proof. Let F• → G• be a local weak equivalence of simplicial qfh sheaves. We check at stalks
the local weak equivalence of Symn(F•) → Symn(G•). Consider the diagram of simplicial
sets:

Symn(x∗F•) //

��

Symn(x∗G•)

��
x∗(Symn(F•)) // x∗(Symn(G•))

For any point x : Set→ LFQ(S)∼, its pull-back preserves coequalizers and thus two vertical
maps are isomorphisms. Now since x∗F• → i∗G• is a weak equivalence of simplicial sets, it
follows from 9.1.5 that the top map is also a weak equivalence. Therefore, the bottom map
is a weak equivalence, which completes the proof.
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Corollary 9.2.11. (The Dold-Thom theorem for qfh topological types) Let F• be a simplicial
object in LFQ(S)∼. Then there is a canonical isomorphism

Symn(hqfh(F•))
∼ // hqfh(Symn(F•))

in Ho(pro−SSet). Furthermore, these two pro-simplicial sets are strictly weakly equivalent.

Proof. Recall from 9.2.2 that the symmetric power of simplicial qfh sheaves is defined by
coequalizers. Since the connected component functor

Πqfh : LFQ(S)∼ → Set

commutes with colimits and non-empty finite products, the following diagram commutes:

(LFQ(S)∼)∆op

Πqfh
��

Symn

// (LFQ(S)∼)∆op

Πqfh
��

SSet
Symn

// SSet

Since the top (resp. bottom) symmetric product functor preserves local weak equivalence
(resp. weak equivalences) by 9.2.10 (resp. by 9.1.5), the statement follows by taking the left
derived functors for the associated pro-categories.

9.3 Fundamental group of symmetric powers
In this section we study the fundamental group of both the qfh and the étale topological
types of symmetric powers.

9.3.1. For a topological space X, the map on fundamental groups

π1(X)→ π1(Symn(X))

factors through the abelianized fundamental group πab
1 (X). Moreover, the Dold-Thom the-

orem implies that π1(Symn(X)) is the first homology group H1(X;Z) of X with integer
coefficient. Since the first homology group is the abelianization of fundamental group, it
follows that there is an isomorphism

πab
1 (X) ∼ // π1(Symn(X)) (9.3.1.1)

9.3.2. As the symmetric power for qfh sheaves is defined to be categorical quotients, we
expect a similar result for qfh topological types:
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Corollary 9.3.3. Let F• be a simplicial object in LFQ(S)∼. Then the canonical map

π1(hqfh(F•))→ π1(hqfh(Symn(F•))

factors through the abelianization πab
1 (h(F•)). Furthermore, there is a canonical isomorphism

πab
1 (hqfh(F•))

∼ // π1(hqfh(Symn(F•))

Proof. This is an immediate consequence of 9.2.11. Indeed, as Symn(hqfh(F•)) is isomorphic
to hqfh(Symn(F•)), one can reduce to the case of simplicial sets where we already know the
result by the Dold-Thom theorem.

9.3.4. In fact, this result is still true for algebraic spaces by the work of Biswas-Hogadi [3,
1.2]: For an integral proper algebraic space over an algebraically closed field k, the canonical
map (9.3.1.1) for étale topological types is an isomorphism. In 10.0.2 we use this result in
the following form:

Theorem 9.3.5. ([3, 1.2]) Let X be a geometrically normal and proper algebraic space over
a separably closed field k. Then there is an canonical isomorphism

πab
1 (hét(X)) ∼ // π1(hét(Symn(X)))

Proof. Fix an algebraically closure k of k. Recall from 4.1.16 that there is a strict weak
equivalence

hét(X)→ hét(X)

Also, recall from [36, 2.10] that the strongly geometric quotient is stable under flat base
change. That is, the canonical map

Symn(X)→ Symn(X)⊗k k

is an isomorphism of algebraic spaces over k. Again by 4.1.16, there is a strict weak equiva-
lence

hét(Symn(X))→ hét(Symn(X))

Therefore, we may assume that k is algebraically closed. The n-fold product (X/S)n =
X ×S X ×S · · · ×S X is normal ([26, Tag 06DG]) and thus so is Symn(X). We know that
Symn(X) is locally of finite type and separated by 8.1.4. That X is quasi-compact implies
Symn(X) is also quasi-compact. So hét(Symn(X)) is profinite by 5.3.11. In particular,
π1(hét(Symn(X))) is profinite. This implies that the fundamental group of hét(Symn(X)) is
isomorphic to the fundamental group of Symn(X) in the sense of Noohi by 3.6.2. Similarly,
π1(hét(X)) is isomorphic to the fundamental group of X in the sense of Noohi. Then our
statement follows from [3, 1.2].

http://stacks.math.columbia.edu/tag/06DG
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Chapter 10

The proof of the Dold-Thom theorem for
topological types

In this chapter we compare the topological types of the symmetric power for the qfh and
étale topologies, and prove the the Dold-Thom theorem for étale topological types.

10.0.1. In general, it may not be true that for an algebraic space its étale topological type
is weakly equivalent to its qfh topological type. Nonetheless, this is the case when it comes
to the symmetric powers:

Proposition 10.0.2. Let X be a geometrically normal and proper algebraic space over a
separably closed field k. Then the canonical map of topological types

hqfh(Symn(X))→ hét(Symn(X))

is a strict weak equivalence of pro-simplicial sets.

Proof. It follows from 7.2.10 that the map induces isomorphisms on cohomology groups for
every local coefficient system of abelian groups. So it suffices to show that the map on
fundamental groups is an isomorphism. Consider a commutative diagram of pro-groups:

πab
1 (hqfh(X)) //

��

πab
1 (hét(X))

��
π1(hqfh(Symn(X))) // π1(hét(Symn(X)))

The left vertical map is an isomorphism by 9.3.3 and the top horizontal map is an isomor-
phism by 7.2.10. Also, it follows from 9.3.5 that the right vertical map is an isomorphism.
Therefore the bottom map is an isomorphism as desired.

Lemma 10.0.3. Let X → Y be a morphism of pro-simplicial sets. Assume that

Hn(Y ;M)→ Hn(X;M)
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is an isomorphism for all n ≥ 0 and all abelian groups M . Then the induced map on
symmetric powers

Symn(X)→ Symn(Y )

is a weak equivalence of pro-simplicial sets.

Proof. We prove that the map on symmetric powers induces isomorphisms on all homotopy
groups. Recall from [18, 5.5] that the isomorphisms on cohomology groups with abelian
coefficients imply that the map on homology pro-groups

Hn(X,Z)→ Hn(Y,Z)

is an isomorphism for all n ≥ 0. Then the statement follows from the classical Dold-Thom
theorem.

Theorem 10.0.4. Let X be a geometrically normal and proper algebraic space over a sepa-
rably closed field k. Then there is a canonical isomorphism

Symn(hét(X)) ∼ // hét(Symn(X))

in Ho(pro− SSet).

Proof. Consider the commutative diagram of pro-simplicial sets in Ho(pro− SSet):

Symn(hqfh(X))

��

// hqfh(Symn(X))

��
Symn(hét(X)) // hét(Symn(X))

The top arrow is an isomorphism in the homotopy category of pro-simplicial sets by 9.2.11.
Also, the right vertical map is a strict weak equivalence of pro-simplicial sets by 10.0.2. On
the other hand, the canonical map of topological types

hqfh(X)→ hét(X)

satisfies the assumption of 10.0.3 due to 7.2.10. Hence the left vertical map is a weak
equivalence of pro-simplicial sets. Therefore, the bottom map is an isomorphism in the
homotopy category.
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