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Estimating snow water equivalent from GPS vertical site-position
observations in the western United States

Karli J. Ouellette,' Caroline de Linage,' and James S. Famiglietti'-?
Received 1 August 2012; revised 12 February 2013 ; accepted 27 February 2013 ; published 28 May 2013.

[1] Accurate estimation of the characteristics of the winter snowpack is crucial for
prediction of available water supply, flooding, and climate feedbacks. Remote sensing of
snow has been most successful for quantifying the spatial extent of the snowpack, although
satellite estimation of snow water equivalent (SWE), fractional snow covered area, and
snow depth is improving. Here we show that GPS observations of vertical land surface
loading reveal seasonal responses of the land surface to the total weight of snow, providing
information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit
and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six
locations in the western United States is driven by elastic loading of the crust by the
snowpack. GPS observations of land surface deformation are then used to predict the water
load as a function of time at each location of interest and compared for validation to nearby

Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the
analysis and result in considerable improvement in the prediction of SWE.
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1. Introduction and Background

[2] Snowpack characteristics of primary importance to
hydrologists and water managers include snow depth, den-
sity, snow water equivalent (SWE), and areal extent. Of
these, the combination of SWE with areal extent provides
critical information about the volume of water stored as
snow in a particular region. Snow depth and density may
be best measured using traditional, ground-based methods
at present, and areal extent can be well monitored from
space because of the high reflectivity of snow [Dozier,
1989; Kelly et al., 2003; Painter et al., 2003]. Remote
sensing of SWE remains an important challenge, owing to
the need to characterize both snow depth and density, or
the mass of water stored within the snowpack [Alsdorf
et al., 2007]. The Gravity Recovery and Climate Experi-
ment (GRACE) [Tapley et al., 2004] mission has proven
skillful at monitoring water mass changes [e.g., Swenson
and Wahr, 2006; Rodell et al., 2009; Famiglietti et al.,
2011], including those dominated by snow [e.g., Frappart
et al., 2006], ice sheets, and glaciers [e.g., Tamisiea et al.,
2007; Velicogna and Wahr, 2006a, 2006b; Velicogna,
2009; Jacob et al., 2012], yet the low spatiotemporal reso-
lution of GRACE (monthly, >200,000 km?) limits its util-
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ity for smaller-scale, subregional applications as well as for
submonthly mass changes.

[3] Beyond GRACE, other space geodetic measure-
ments, such as altimetry, have proven fruitful when applied
to hydrology. For example, altimetric measurements of
snow depth [Papa et al., 2002; Deems et al., 2006; Hop-
kinson et al., 2004; Hall and Riggs, 2007], of inland sur-
face water bodies [Calmant et al., 2008] and of river
discharge [Smith, 1997] all show great promise [Durand
et al., 2010]. Observations of vertical land surface displace-
ment from interferometric synthetic aperture radar have
been related to poroelastic responses to water storage
changes within aquifer systems [Galloway et al., 1998;
Amelung et al., 1999]. While GPS has enabled an ability to
constrain the elastic parameters of the solid Earth [Bevis et
al., 2005; Steckler et al., 2010], the potential for GPS to
invert the hydrological load and constrain some important
hydrological parameters remains largely untapped, even
though many studies show a clear correlation at various
spatial scales between GPS vertical and horizontal position
solutions and water storage changes or their predicted de-
formation [Davis et al., 2004; Tregoning et al., 2009; Ji
and Herring, 2012]. Very few studies have been devoted to
snow-load-induced deformation at GPS stations [Heki,
2001; Grapenthin et al., 2006]. Recently, Larson et al.
[2008, 2009], Gutmann et al. [2011], and Larson et al.
[2012] demonstrated the capabilities for monitoring soil
moisture and snowpack using GPS multipaths, while Bevis
et al. [1992] and several others have shown its utility for
monitoring atmospheric water vapor. Meertens et al.
[2008] began to explore the hydrologic contributions to
land surface displacement observed by GPS.

[4] In this study, we explore the utility of GPS for quan-
tifying SWE. We first demonstrate that observed vertical
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displacements at several GPS stations in the western
United States are dominated by elastic loading induced by
the snowpack and soil moisture. We then use independent
data to determine appropriate parameters for the analytical,
2-D response of the elastic half-space model of Tsai
[2011]. We use this model to predict water storage varia-
tions at six locations in the western United States with
good results. Our findings suggest that the portion of the
global GPS network located in snow-prone climates has
good potential for measuring SWE.

[s] Permanent GPS stations were originally installed
throughout the western United States to observe tectonic
plate motion and seismic activity, as well as to support sur-
veyors and local government agencies. As significant sea-
sonal variations in the site-position time series became
apparent [vanDam and Herring, 1994; vanDam et al.,
1994 ; Blewitt et al., 2001 ; MacMillan and Ma, 2000; van-
Dam et al., 2001 ; Mangialotti et al., 2001], efforts were
made to model the various nonseismic contributions to the
seasonal variations and remove them from the GPS time se-
ries. Potential contributions from pole tide effects, ocean
tide loading, atmospheric loading, nontidal ocean mass,
and groundwater loading were evaluated and modeled by
Dong et al. [2002] for several GPS stations globally. The
results indicate that significant seasonal variations are
expected, particularly in response to pole tide variations.
The importance of each contribution depends on the station
location, with ocean loading increasing toward the coasts
and atmospheric loading being larger at high latitudes.

[6] In addition to the seasonal elastic loading contribu-
tions addressed by Dong et al. [2002], Prawirodirdjo et al.
[2006] investigated potential seasonal thermoelastic strain
contributions to GPS time series in the Los Angeles Basin.
Thermoelastic strain was modeled using the thermoelastic
strain model of Ben-Zion and Leary [1986]. Results showed
that the phase of the seasonal variations in GPS observa-
tions was well represented by the thermoelastic model.
Expected site-position displacements were calculated by
integrating thermoelastic strain in a follow-up study by
Tsai [2011]. While the phase of the observed seasonal var-
iations correlated with modeled displacements, the ampli-
tude of modeled displacement was able to account for no
more than 25% of the observed amplitude in the Los
Angeles (LA) Basin.

[7] Tsai[2011] also analyzed the potential contribution of
water storage changes to land surface position. Compaction
and expansion of aquifers resulting from poroelastic strain
caused by groundwater fluctuations has been observed with
GPS site-position time series [Bawden et al., 2001 ; Ji and
Herring, 2011]. In addition to poroelastic strain, the weight
of groundwater and surface water also exert pressure on the
land surface resulting in direct elastic strain. Following the
methods from Ben-Zion and Leary [1986] and Berger
[1975], poroelastic strain and direct elastic loading were
modeled for the Los Angeles Basin. Tsai [2011] found that
these hydrologic effects were able to explain the full ampli-
tude of the seasonal changes observed by GPS in one loca-
tion and concluded that poroelastic and elastic loading from
water storage changes are the dominant contributors to the
seasonality of the GPS signal in the basin.

[8] This study investigates the contribution of the sea-
sonal snowpack to the observed land surface deformation

through direct elastic loading. This work builds on that of
Tsai [2011] by applying it to the inversion of SWE varia-
tions from GPS observed land surface deformation at six
stations across the western United States. The expected
contributions of thermoelastic and hydrologic loading to
land surface displacement are calculated using the equa-
tions for an elastic half-space presented by Tsai [2011]. By
characterizing the hydrologic load contribution, the poten-
tial for using GPS observations of seasonal land surface de-
formation for snowpack monitoring will be evaluated.
Predictions of SWE are inverted from GPS observations
and compared to Snowpack Telemetry (SNOTEL) observa-
tions [Crook, 1977]. The predictions are then improved by
accounting for soil moisture variations observed by
SNOTEL.

2. GPS and SNOTEL Observations

[9] GPS observations were obtained from the network of
1100 GPS stations by Scripps Orbit and Permanent Array
Center (SOPAC). GPS vertical time series and uncertainty
estimates from the Plate Boundary Observatory (PBO) net-
work, the geodetic component of EarthScope [Rundle et
al., 2002], were processed using a SOPAC refined model
with input derived from GAMIT and GLOBK software cal-
culations [Dongchen et al., 2005 ; Nikolaidis, 2002]. Oscil-
lations from well understood sources such as pole tide
variation have been removed by the SOPAC refined model.
The annual harmonic oscillation was estimated simultane-
ously with the trend using the least squares method. GPS
vertical land surface position time series were chosen from
six stations in the western United States. Stations were
selected for proximity to available snow pack and soil
moisture data with available time series of at least 2 years.
Areas of significant documented aquifer poroelastic
responses to groundwater depletion were avoided. Selected
stations include p360 in eastern Idaho, p358 in central
Idaho, p150 in eastern California, p452 in central Washing-
ton, p119 in northern Utah, and p715 in western Wyoming
and are shown in Figure 1 and Table 1. Raw and low-pass
filtered (discussed in section 3.3) time series of the GPS
vertical position time series are shown in Figure 2. At every
station we observe a strong annual variation, with the maxi-
mum subsidence (uplift) occurring in late winter (summer),
respectively.

[10] SWE records were obtained from nearby SNOTEL
sites [Crook, 1977, available at http://www.wcc.nrcs.usda.-
gov/snow]. SNOTEL records are obtained from in situ
observations of a variety of climatic and hydrologic varia-
bles by the extensive, automated system run by the Natural
Resources Conservation Service. In situ observations of
SWE were converted to load pressure by multiplying the
annual amplitude extracted from the observations by grav-
ity and the density of water at standard temperature and
pressure. Records of soil moisture were also obtained from
SNOTEL. Soil water data are available as pore water con-
tent detected via automated Hydraprobe sensors installed at
2", 8", and 20" depth. Total soil moisture water content
was calculated as a sum of three layers of soil, 2", 6”, and
126" in thickness, each represented by a single Hydraprobe
sensor. The observed pore water content at each measure-
ment depth was used to calculate the soil moisture water
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GPS and SNOTEL Station Locations

% 822 p452
A
546
p358 822
s2f*  p360 Ag o715
p119
Q.
p150

Figure 1. Six GPS stations from the SOPAC network and
the nearest SNOTEL observation stations were selected in
the western United States. The locations of each GPS sta-
tion used in this study are marked in red. SNOTEL stations
are marked in blue. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

equivalent for each soil layer using an assumed effective
porosity of 0.3. The weighted average of these layers was
then applied to an assumed total soil profile 3.43 = 1 m in
depth, following the Community Land Model [Oleson et
al., 2010]. Daily SNOTEL records of SWE and soil mois-
ture are shown in Figure 3. The annual amplitude of soil
moisture variations as a percentage of the annual amplitude
of SWE is highly variable between stations, ranging from
14% in California to 70% in Washington.

tion expresses the 2-D response of an elastic half-space to a
sinusoidal (both in time and in space) surface forcing. By
representing the thermal and hydrologic signal as an annual
sinusoidal function based on the observed annual harmonic,
the annual harmonic response of the land surface can be
predicted. Finally, the relationship between land surface
deformation and SWE can be determined and applied to
GPS observations to predict SWE for each location.

3.1.

[12] The contributions of thermoelastic strain and sea-
sonal water storage changes to land surface position were
modeled following the solutions found by 7sai [2011] for
an elastic half-space. Vertical thermoelastic strain e;};"““" is
expressed by Tsai [2011] as

Model Equations

Ethermo (x7y7 l‘) — _A(t)sin (kx)efky [21/ — kyL (€9

yy
with

(I+v)

A =11y

ko, To \/g A os [w(t — A1), (2)

where & is the horizontal wave number representing the
spatial distribution of the thermal load (1-D along direction
x), v is Poisson’s ratio, ay, is the coefficient of linear ther-
mal expansion, 7| is half of the peak-to-peak amplitude in
temperature variation at frequency w,  is the thermal diffu-
sivity, and At is the time delay between the strain and the
load. Integrating the thermoelastic strain over the depth y
of the half-space gives the expression for surface vertical
displacement:

thermo 4 thermo 3./ ~_ A(t) : —ky
u, M (x,y, 1) = 5 eppody ~ —Fsm(kx)e YT —2v + Kyl
3)

[13] Similarly, the expression for elastic strain from T'sai
[2011, equation (9)] was used and integrated to model the
effects of hydrologic loading on vertical land surface posi-
tion such that

e (x,3,1)

= —A,()sin(kx)e [l =20+ ky], (4

y
hydro _ hydro 4 /
3. Methods % (x,,1) /OO yy & )
[11] The contribution of the snow load at each station in o Aesin (kx) PR - v) + k)
. . . )
Figure 1 to land surface displacement was determined k
using the equations described by Tsai [2011]. Each equa-
Table 1. Location of GPS Stations and Distance and Elevation Change Between Each Station and the Selected SNOTEL Site
Estimated Distance  Elevation Change
SNOTEL to SNOTEL to SNOTEL
Location Elevation (m) SNOTEL Site Location Site (km) Site (m)
Idaho p360 44.32°N, 111.45°W 1858 Crab Creek 424 44.43°N, 112°W 9(*5) 71
Idaho p358 44 4°N, —113.24°W 2420 Hilts Creek524 44.02°N, —113.47°W 55(£5) 6
California p150 39.29°N, 120.03°W 2619 Tahoe City Cross 809 39.17°N, 120.15°W 22 (*£5) —167
Utah p119 40.73°N, —111.26°W 2046 Beaver Divide 330 40.62°N, —111.1°W 22 (*5) 146
Washington p452  47.4°N, —119.49°W 323 Trough 832 47.23°N, 120.3°W 93 (£5) 411
Wyoming p715 43.5°N, 109.69°W 2988 Togwotee Pass 822 43.75N, —110.05°W 46 (*5) —21
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Figure 2. Raw GPS time series from SOPAC are shown in yellow. Low-pass filtered, detrended GPS

data are shown in black.

Ae

(I4+v) %cos (wi), (6)

where «¥ is the vertical displacement taken positive
downward, £ is Young’s modulus, and L is the ampli-
tude of the total water storage load pressure at fre-
quency w.

[14] Equations (3) and (5) are applied to the observed an-
nual temperature and total water storage observations,
respectively, to calculate the expected annual land surface
response to each forcing. The calculated land surface

p360 Eastern Idaho

p358 Central Idaho

response is then compared to observed GPS records to
determine the relative annual contribution of each forcing
to the final observed displacement.

3.2. Choice of Parameters

[15] To apply the 2-D elastic equations at a variety of
locations, parameters which are appropriate to each station
must be determined. Where possible, observed and mod-
eled data were used to determine local parameters specific
to each location. An annual frequency (2 x 1077 s™") was
chosen for this study. Values for thermal diffusivity (10~°

p150 California

0.8
4 16
0.8 : n
n i
06 i A i H
0.6 71 [T I 1.2
oA e A
0.4 { r‘l. . 1 ] T
0.4 i h H ] i ! {l 08
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3L
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Figure 3. SNOTEL observations of soil moisture (red) and SWE (blue), and their sum (dashed black)

for each location shown in Figure 1.
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m?/s), and linear thermal expansion (107> °C~') are not
expected to vary considerably and are taken from Tsai
[2011] for consistency. The horizontal wave number £, rep-
resenting the spatial distribution of the load, was calculated
for each location from 2 x 2 degree maps of 1 km resolu-
tion SWE blended model-observation product, the Snow
Data Assimilation System (SNODAS) model [National
Operational Hydrologic Remote Sensing Center, 2004].
Spatial variograms of the SNODAS data were calculated
for each of the six locations to determine the characteristic
wave length A in the north-south, east-west, northwest—
southeast, and southwest-northeast directions of the snow
load (Figure 4) during the winter snow months as described
by Clark [1979]. The wave number is then determined as
27/A. An average wave number was determined in each
direction from several winter variograms, and the direction
with the minimum wavelength was selected. The error is
estimated as the standard deviation of winter variograms in
the selected direction (Table 2). When variograms were not
readable in all directions, the average of all readable vario-
grams was used. The corresponding wave number was used
for both thermoelastic and elastic strain calculations, fol-

(a)

1.5

-113 -112 -111
(b)

0.03[

Isotropic Variogram

0.02 +
=
)
0.01]
0 0 20 40 60 8 100 120 140 160 180
h
Figure 4. (a) Idaho SNODAS SWE data shown in meters

and (b) spatial variogram calculated for SNODAS SWE
data. The wavelength / is inferred from the distance at
which the variogram levels off.

Table 2. Estimated Crustal and Load Parameters From
CRUST2.0 and SNODAS for Each GPS Station
Young’s Poisson’s Spatial
Modulus and Ratio and Wavelength and
Corresponding ~ Corresponding Corresponding
Error (GPa) Error Error (km)
Idaho p360 100.3 (£13.6)  0.262 (*+0.03) 104 (=8)
Idaho p358 98.3 (*13.6) 0.262 (+0.03) 95 (£8)
California p150 83.8 (+19.3) 0.257 (+0.03) 110 (=7)
Utah p119 86.6 (*£13.6) 0.263 (+0.03) 60 (*9)
Washington p452 85.3(x17.8) 0.252 (+0.03) 51 (%13)
Wyoming p715 774 (+14.4) 0.266 (+0.03) 57 (£7)

lowing Tsai [2011]. The estimated spatial wavelengths
shown in Table 2 are similar in scale to the spatial resolu-
tion of CRUST?2.0 so that the spatial dimension of both the
load and the model parameters are consistent.

[16] Values for Poisson’s ratio and Young’s modulus
were estimated from an exponentially weighted average of
CRUST?2.0 model parameters [Bassin et al., 2000, available
at http://igppweb.ucsd.edu/~gabi/crust2.html]—decreasing
in weight with depth up to a maximum depth equal to the
load characteristic wavelength for their respective loca-
tions. Crustal properties for the 2 x 2 degree grid which
corresponds to each GPS station location were extracted
from the model to estimate a unique parameter for each
location using the equations described later.

[17] Using observed P-wave velocities, S-wave veloc-
ities, and crustal density for each layer of the crust esti-
mated for each location from CRUST2.0, Poisson’s ratio
was calculated by

(v2v2) -2
(2r2/72) -2

Vv =

and Young’s modulus from

p(3V2 —4y2
E:((ngVg—l))' (8)

[18] Values for £ and v at each station are given in
Table 2.

[19] The errors for £ and v were determined from either
the difference between the values calculated for the six
locations and the model average value from CRUST2.0 for
continental crust, or the difference between the values cal-
culated using an arithmetical average of the full crust and
an exponentially decreasing average of crustal layers. The
larger of these two errors was selected for each location.
The resulting uncertainties are thus conservative estimates
and are large enough to account for errors due to the propa-
gation of uncertainties on & onto the averages and £ and v.

3.3.

[20] After examining the relative contribution of each
forcing to the annual land surface displacement, it is possi-
ble to determine a linear relationship based on the above
equations between hydrologic load and land surface

Water Storage Prediction
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deformation which can be used for predictive purposes. In
order to use GPS observations as a predictor of SWE, it is
necessary to invert the relationship between the observed
SWE and predicted land surface response, and apply this to
the observed land surface response to calculate SWE. As
shown later, the relationship determined for the annual fre-
quency may be applied to the full range of frequencies in
the GPS data which are caused by water storage variation.
Very high frequency variations in the GPS signal may be
attributed to noise and are not of interest to this study. In
order to remove high frequency noise in the GPS signal
unrelated to hydrologic effects, the GPS data were low-
pass filtered to remove all periods smaller than 23 days,
thus removing the intramonthly variability in the data. The
long-term trend in GPS may also be attributed to isostatic
or tectonic processes and is also removed. The raw GPS
time series and the low-pass filtered, detrended GPS data
are shown in Figure 2. Thermoelastic strain was assumed
to be negligible as shown in section 4. According to Tsai’s
model, the linear relationship between observed water stor-
age and the land surface displacement is expressed as a
rearrangement of equations (5) and (6):

_ Lcos (wr) Ek
C= e (1 +wv)sin (kx)e P [2(1 — v) + ky]’ )

where L cos(wf) is the total water storage at a given fre-
quency (e.g., annual), #, pyaro 1S the induced land surface
displacement at the same frequency. The expression for C
can be further simplified by our assumption that y =0, and
X = A/4 to represent the maximum of the sinusoid where x
is centered at the station and /4 is the wavelength. Thus,

Ek

C= SaEwi—v

(10)

[21] Assuming that the wave number & is not depend-
ent on frequency, C is an admittance, i.e., is frequency
independent and may be applied to the sum of all fre-
quencies of the load. The parameter C is therefore mul-
tiplied to the low-pass filtered observed land surface
displacement from GPS to arrive at predicted water
storage anomalies (WSA)

WSAP! = Cud™, (11)

where WSAP™ is the predicted SWE and u;’bs is the verti-
cal land surface deformation observed by GPS.

4. Results

4.1. Annual Component of Vertical Surface
Displacement

[22] The annual amplitude of vertical surface deforma-
tion estimated at the six stations (Figure 5) ranges from 4.7
(station p119) to 7.5 mm (station p150). The results of this
study (shown in Table 2 and Figure 5) reveal that the snow-
load-induced deformation is enough to explain the phase as
well as 32%—-103% of the amplitude of the GPS observed
annual land surface vertical displacement in all six loca-

tions. The deformation induced by the thermoelastic effect
has an annual amplitude much smaller (4%—7%) than that
of GPS observed annual deformation and lags the peak of
observed deformation by 3 months. Therefore, because
thermoelastic strain is not the primary cause for the
observed annual deformation observed by GPS, it is
excluded in our remaining analyses.

[23] The predicted annual variations in land surface
height from the snow load account for 92% of the observed
land surface variation at the eastern Idaho station, 94% at
the central Idaho station, 103% at the California station,
and 76% of the variation at the station in Wyoming. The
amplitude of land surface deformation is significantly
underpredicted in Utah, 62%, and Washington, 32%. Dif-
ferences in phase are also shown in Table 3. Large differen-
ces in phase may be attributable to elevation changes
between the GPS and SNOTEL stations, as well as contri-
butions of soil moisture to the surface load which are dis-
cussed in section 4.3. The discrepancies between modeled
and observed vertical displacements may also be due to
errors in load parameterization as well as parameter estima-
tion for v or E for those locations. Note that our focus was
on obtaining representative parameters from independent
data sources, and not site-specific parameter estimation,
which surely would improve the correspondence shown in
Figure 5.

[24] A perfect fit is not expected to occur due to the gen-
erally small but significant distance and elevation change
between the GPS and SNOTEL stations shown in Table 1,
particularly at the Washington location where stations in
close proximity were not available. A difference in spatial-
scale sensitivity also affects each observation type. SNO-
TEL stations represent a singular point observation which
responds to highly localized water storage, while GPS
observations integrate the effect of a wider spatially distrib-
uted water storage load on the land surface.

[25] A range of values was considered for each model
parameter to produce the errors shown in Figures 6 and 7.
The range considered for £ and v, as described in section
3.3, is at least as large as the maximum difference between
the values calculated for each location and the model aver-
age for continental crust. This should account for possible
errors resulting from the spatial variability of crustal pa-
rameters not accounted for due to the spatial scale of the
load being similar in size to the grid size of CRUST2.0. An
error of 20% was also assumed for the SNODAS SWE, to
account for both measurement error and spatial variability
in the snowpack, though the spatial variability is unknown.
Likewise, the error for total water equivalent was assumed
to be 30% to account for the additional uncertainty in the
contribution of soil water content. It should be noted that
the results may represent an overestimation as we assumed
the maximum load at A/4 for our calculations. Overall, the
results here suggest that SWE loading is a dominant driver
of seasonal land surface deformation in these regions.

[26] The crustal response to water storage variations as
well as the water load at the six locations may have nonne-
gligible energy at frequencies other than the annual fre-
quency. The case for this is further developed when a wider
range of frequencies is used for comparison in the next sec-
tion of this paper.
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Figure 5. Annual harmonic in land surface displacement from modeled thermoelastic strain (blue),
modeled snow loading (green), modeled snow loading error (light green), GPS observations (black), and
GPS observation error (gray) in (a) Eastern Idaho, (b) Central Idaho, (c) California, (d) Utah, (e¢) Wash-

ington, and (f) Wyoming.

4.2. Using GPS Vertical Displacements to Predict
Snow Load Variations

[27] As described in section 3.3, according to Tsai’s
model, we determined the admittance between calculated
vertical land surface deformation and the hydrologic load
following equation (10). This relationship is then used to
predict SWE variations at each site using GPS observations
of land surface deformation.

[28] Since this relationship is not frequency dependent, it
may be applied to all frequencies contained in the observa-
tions, though periodic variations less than 23 days in the
GPS observations are likely to be dominated by nonhydro-
logic phenomena. For this reason, this method is useful for
monitoring the accumulation of snow throughout the winter
season but is not useful for observing short-term responses
to individual precipitation events. The predicted SWE vari-
ation is shown and compared to observed water storage
variation in Figure 6, with normalized root-mean-square
deviation (NRMSD) between the predicted and observed
water storage for each location displayed in Table 4. Errors
in the modeled SWE were propagated from the estimated
error in each model parameter.

[20] Variations in SWE at a range of frequencies appear
to correlate with variations in modeled SWE at all six loca-
tions. SWE is reasonably well predicted by GPS in eastern
Idaho (NRMSD of 42%), as well as the Wyoming location
(NRMSD of 34%). Problems with the GPS time series in
California correspond to the unusually deep snowpack in
2011, causing a significant perturbation of the GPS signal
presumably by burial when the SWE exceeds 1 m depth at
this site, as can be seen in Figures 2 and 3. Similar effects
of snow covering the pillar and/or the dome protecting the

antenna have been observed on the GPS signal by Jaldehag
et al. [1996] and modeled by Webb et al. [1995]. Because
those effects bias the height measurements, data from late
winter 2011 were excluded from the analysis at the Califor-
nia station. Taller GPS stations may be necessary for SWE
observation in deep snowpack regions. The SWE is signifi-
cantly overpredicted by GPS in Utah and Washington
(NRMSD of 72% and 147%, respectively), which sug-
gested that the spatial scale of the snow load to which GPS
measurements are sensitive is not local but regional, and
that other loading sources, such as soil moisture, are con-
tributing to the observed land surface motion. Likewise, all
six stations poorly represent the spring snowmelt.

[30] In California and Wyoming, there appear to be
semiannual variations in the GPS record which are unre-
lated to the hydrologic load, perhaps as a result of process-
ing errors [ Tregoning and Watson, 2009; Ray et al., 2008].

Table 3. Values Are Given for the Percent of Observed Annual
Land Surface Deformation That Is Predicted by Thermoelastic
and Elastic Strain, as Well as the Difference in Phase Between the
Observed and Predicted Annual Land Surface Deformation

Thermal SWE SWE Contribution

Contribution Contribution Phase Difference
GPS Station (%) (%) (days)
Idaho p360 4 92 -35
Idaho p358 6 94 -21
California p150 4 103 24
Washington p452 5 32 -17
Utah p119 6 62 28
Wyoming p715 7 76 -29
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Figure 6. Snow water equivalent variations predicted by GPS observations (black) and model error
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Table 4. NRMSD Between Observed and Predicted SWE, and
SWE + Soil Moisture

NRMSD of Predicted
NRMSD of Predicted Total Water
GPS Station SWE (%) Storage
Idaho p360 42 13
Idaho p358 65 32
California p150 61 21
Washington p452 147 19
Utah p119 72 15
Wyoming p715 34 15

measurements of pore water content from the nearest avail-
able stations were converted to soil water equivalent, using
assumptions about the soil type and depth, described in sec-
tion 2. SNOTEL SWE and soil water equivalent were
summed to produce a time series of total water storage
equivalent (Figure 3). Since the soil depth is poorly charac-
terized, an error of =1 m of soil depth was assumed. The
total water storage equivalent was then compared to the
GPS predicted water storage load in Figure 7. The NRMSD
values between observed and modeled total water storage
are given in Table 4.

[32] When soil moisture is included in the analysis, signifi-
cant improvement in the prediction of the spring melt is
observed at every station, as shown by the decrease of the
NRMSD values at those stations (Table 4). This suggests that
melting snow in spring is absorbed by the thawing soil before
draining to lakes and rivers. A recovery of the land surface af-
ter winter loading by the snowpack does not occur until the
subsequent draining of water from the soil. This suggests that
GPS data are useful in observing not only the buildup of the
winter snowpack, but also the gradual release of snow water
in the spring. In Washington and Utah, significantly larger
variations in soil moisture are observed than at the other loca-
tions used in this study, leading to the strongest NRMSD
reductions. SWE may be accurately predicted in isolation
only in locations where soil deposits are thin or well drained,
as appears to be the case in Idaho and Wyoming.

[33] Deviation in the prediction of water storage variation
in Washington compared to the observed water storage may
also be a result of the greater spatial separation (93 km) and
elevation difference (1347 m) of the GPS and SNOTEL sta-
tions in this location which can be seen in Figure 1 and Table
1. The anomalous underprediction of water storage by GPS
compared to SNOTEL observations in 2010 may be the
result of a snowdrift or local snow accumulation which
affected the SNOTEL station, but does not translate to the
more spatially integrated GPS prediction. The results in
Idaho, Utah, and Wyoming suggest that the full range of fre-
quencies in recorded water storage variation results in a
response in the vertical land surface measurable by GPS
(NRMSD of 13%-32%). Overall, these results suggest that
GPS has the capability to predict water storage variations at
a spatial scale at least on the order of the distance between
GPS and SNOTEL stations at these locations (up to 46 km).

5. Discussion

[34] Networks of continuous GPS receiver stations are
expanding worldwide. The information regarding water

storage contained in the GPS vertical time series is valuable
for water storage assessment, including SWE in inaccessi-
ble regions. There are several advantages inherent to a GPS
observation technique. GPS may be installed and auto-
mated for remote access, providing high temporal resolu-
tion data while eliminating the need for extensive field
expeditions. Permanent GPS stations are likely to remain
more robust than automated snow pillow detection methods
and less vulnerable to errors caused by snow drifts. Due to
the integrative response of the Earth’s crust, the load
inferred from observations of surface vertical deformation
is integrated over a larger area less vulnerable to errors
caused by snow drifts. Since the land surface at a given
point is responding to a surface load over a larger area
related to the wave number described earlier, the predicted
water storage from GPS observations will take into account
the spatial distribution of the load, minimizing the effects
of highly localized anomalies. Our method provides re-
gional estimates of uniform snow cover over scales of 60—
120 km.

[35] The regional scale of the snow cover estimates
given by the present method is also an advantage over the
use of multipaths providing a local (approximately 1000
m” around a GPS receiver) estimate of the snow cover
[Larson et al., 2009; Larson and Nievinski, 2012]. On the
other hand, GPS offers a smaller-scale observation of water
mass changes than the GRACE mission, allowing for appli-
cations on regional scales.

[36] Discrepancies in the predicted and observed water
storage at all locations may also be a result of differences
in the local snowpack at the SNOTEL and GPS stations.
Though the nearest stations were chosen for comparison,
the distance between stations may allow for significant var-
iations in the water storage because snow pack can exhibit
high spatial variability. A shift in amplitude and phase may
be expected due to a change in elevation between stations
depending on the location of the thawing line. Both issues
of elevation change and spatial heterogeneity will affect
the comparison in Washington (refer to Table 1). Addition-
ally, SNOTEL observations from snow pillows respond to
a 1 m? area and may be affected by snow drifts or other
local anomalies, while GPS observations of the crustal de-
formation respond to a spatially integrated load over a
larger area [Molotch et al., 2005; Molotch and Bales,
2006; Meromy et al., 2012] . Other contributing factors
may be a poor estimate of soil porosity and other estimated
parameters, a simplified 1-D load geometry, as well as
model errors.

[37] Estimates of the horizontal wave number & in this
study are based on the correlation length of SNODAS mod-
els of SWE in a sampling of directions. Improved estimates
of k could be made by more thorough accounting for the 2-
D distribution of the snow load as well as assuming a dif-
ferent value of k& for the soil moisture component using
high quality observations of soil moisture, since both soil
moisture and snow act as surface loads on different spatial
scales. For the purposes of this study, a spatial correlation
between soil moisture and SWE is assumed. A dynamic
estimate of & which varies each year may improve the rep-
resentation of interannual variability in the snowpack.

[38] The comparison of water storage predicted by GPS
data to measured SNOTEL data is also limited by large
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uncertainty in the measured soil moisture. SNOTEL meas-
urements of pore water content are limited to the first 20”
of soil. Extrapolation of these measurements for deeper soil
is not possible given the very small number of measure-
ment points (three). The depth of the soil profile and the po-
rosity of the soil are also unknown, leading to a large
uncertainty in total soil moisture as can be seen in the
uncertainty in Figure 7. Error bars were estimated based on
3.43 £ 1 m of soil depth. Even with uncertainty, the predic-
tion is significantly improved when soil moisture is
included in the analysis at every station (Table 4). How-
ever, even with the uncertainty, the simulations fail to
reproduce the observations in spring 2009 for both the Cali-
fornia and Utah locations, meaning that an important con-
tribution is missing in the model. The proximity of Lake
Tahoe to GPS station p150 in California is a likely contrib-
utor to this error.

[39] Overall, the good agreement found between calcu-
lated and observed water equivalent indicates that the val-
ues chosen for the model parameters are reasonable. The
results show that the land surface responds to water storage
loading on seasonal, annual, and interannual timescales,
and the simple technique developed here can be used to
accurately estimate variations in water storage on these
timescales using GPS time series and modeled parameters.

[40] Further work is needed to determine an appropriate
density of GPS observations needed to accurately quantify
the water storage variation in a region of interest. The bur-
ial of GPS receivers under snow, as seen in the GPS obser-
vations from p150 in California, requires strategic planning
to minimize occurrences. Horizontal land surface motion
recorded by GPS may also be used to infer information
about the 2-D load distribution. Soil moisture detection by
GPS multipath techniques developed by Larson et al.
[2010] may be incorporated with this technique as a
method to separate soil moisture variations from SWE.
Finally, water storage estimations from GPS could be inte-
grated into existing data assimilation models such as the
SNODAS to improve current estimates of winter
snowpack.

6. Summary

[41] The results of this study indicate that the snowpack
and soil moisture load dominate the seasonal GPS vertical
displacement signal at mountain sites in the western United
States. Using the 2-D equations built by 7sai [2011] for a
half-space model subjected to a 1-D load, the CRUST2.0
model parameters, as well as load spatial extent from SNO-
DAS data, it was determined that hydrologic loading domi-
nates the seasonal land surface deformation observed by
GPS, while thermoelastic strain has a negligible effect. The
relationship between land surface deformation and SWE is
then used to predict SWE from GPS time series with rea-
sonable accuracy (13%-32% NRMSD). GPS thus has
potential as a hydrologic observation tool for monitoring of
SWE at regional, spatial scales in environments with mini-
mal soil moisture variation. In regions with significant soil
water storage variation, GPS can be used to observe the
sum of SWE and soil moisture, with separation of variables
possible with use of auxiliary techniques. This technique
serves to advance current capabilities for remote sensing of

SWE assessment with good temporal resolution (3 weeks)
and a spatial scale (60—120 km) suited to regional studies.
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