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HEAVY ION INERTIAL FUSION*)

D. Keefe and A.M. Sessler

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

ABSTRACT
Inertial fusion has not yet been as well explored as magnetic fusion but
can offer certain advantages as an alternative source of electric energy
for the future. Present experiments use high-power beams from lasers and
light-ion diodes to compress the deuterium-tritium (D-T) pellets but
these will probably be unsuitable for a power plant. A more promising
method is to use intense heavy-ion beams from accelerator systems similar
to those used for nuclear and high-energy physics; the present paper
addresses itself to this alternative. As will be demonstrated the very
high beam power needed poses new design questions, from the ion source
through the accelerating system, the beam transport system, to the final
focus. These problems will require extensive study, both theoretically
and experimentally, over the next several years before an optimum design
for an inertial fusion driver can be arrived at.

1. Introduction:

For thermonuclear fusion to work as a practical source of electricity, physics

requires that two conditions be achieved simultaneously for a deuterium-tritium mixture:

the hot plasma must be adequately confined; that is, the

product of number-density times the confinement time (= nT)

should lie close to 10 15 sec. cm-3 (Lawson Criterion);

the temperature should be in the region of 20 keV.

An interesting milestone along the road to useful energy is "scientific-breakeven"

wherein the burning fuel liberates energy in an amount equal to that provided directly to

the plasma. (This is still a long way from "engineering-breakeven" in which the released

energy equals the total energy needed for the whole system and, of course, still farther

from useful net energy production). Scientific breakeven can be achieved for an (nT)

product an order of magnitude less and a temperature a factor of two less than the values

above. For tokamaks each of these goals has been met in separate devices, the first in

Alcator at MIT and the second in the Princeton Large Torus. Both are expected to occur
simultaneously and provide break-even in the Tokamak Fusion Test Reactor which will be
completed in 1982 at Princeton; this is to have a confinement time of the order of one
second and a repetition rate somewhat less than one per hour.

Financial support for inertial fusion has hitherto been substantially less than for
magnetic fusion and progress to date correspondingly less. If, indeed, the concept of

compressing and heating small pellets of O-T to achieve high gain (ratio of energy

released to energy delivered to pellet) is found to be successful then the promise of

useful energy from inertial fusion relative to magnetic fusion could be enhanced. This

is chiefly for two reasons. First, the containment vessel -- which in either case must

handle the high wall loading and the neutron flux -- allows of much more flexibility in
design, scale and shape, and choice of materials, than does that in a tokamak where it
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must be embedded in the nested toroidal and vertical field-coils and operate in a high

magnetic field. The second reason is the appreciation following the initial

suggestion by Maschke and by Martin and Arnold in 1974 that not alone would an intense

beam of heavy ions provide a particularly suitable way of imploding pellets, but that we

could capitalize on the several decades of ideas and developments in the accelerator

field and so by-pass the many hard years of engineering development that were perceived

to lie between "scientific-breakeven" and a working power-plant. How true this is

depends on the extent of the extrapolation from present practice.

2. Inertial Confinement Fusion

100 200
Beam penetration - mg/cm 2

(a)

(b)

While for inertial fusion to work the two conditions given earlier need to be met,

the scale of some of the individual parameters are dramatically different than those

common in either magnetic fusion or accelerator physics. Typical pellet sizes needed

will be on the order of a milligram in mass (one milligram of D-T with 100 percent fusion

releases 350 MJ) and on the order of a millimeter in radius. If one were simply to heat

such a pellet suddenly to 20 keY it would remain inertially contained for a time of

l-nsec (pellet dimension/ion thermal speed = 2 x 106 m/sec) before it disassembled.

Since the number density of solid D-T is 5 x 1022 cm-3 the n1 product would be 5 x

1013 and fail to meet the Lawson criterion for fusion power. In addition, at this

number-density the pellet is transparent to the a-particles produced as reaction products
so that they escape. A radial compression, prior to heating, by a factor of ten

dramatically alters matters; the time is shortened by a factor of one-tenth (radius

ratio) but the number density increases by a factor of one thousand; thus (n1) goes up

one hundred times and the Lawson criterion is comfortably reached. Furthermore, as a
result of the reaction D + T ~ a + n + 17.6 MeV, the a-particle range, which is inversely

proportional to ~, is short enough that the

a-particle stops in the fuel and the energy deposited

leads to the so-called "ignition" condition. Most of

the neutrons, however, will still escape and convey
their energy to the reactor walls.

To arrange for a volume compression ratio of
103 the fuel is surrounded by concentric shells of

chosen materials and energy from the driver is

supplied rapidly to the outermost surface. If laser

light is used, a common design employs the ablative
or "rocket" action; the light heats the outer surface

which becomes a plasma and the recoil momentum from
the outward-flying ions drives the interior shells

inwards. For ion-beams such targets can work but
alternatives such as a "cannon" scheme are possible.

If the surface layer is a thin shell, made of lead,

the ions can penetrate it and deposit most of their

energy in a low-density underlying shell. Expansion

of the low-density plasma is inhibited on the outside

by the inertia of the heavy shell which acts as a
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tamper and so the interior fuel is imploded. More

complicated geometries are possible, for example, a

double-shell design in which an outer shell is driven

steadily inwards to collide with and transfer its

momentum to a second shell which thus is rapidly
imploded. There are more uncertainties in the

performance of double-shell targets because of

susceptibility to hydrodynamical instabilities but

they do offer the prospect of reaching very high

gains, perhaps 1000. The sketch shows the expected

gain as a function of input energy for single and

double shell targets; also shown is a "conservative"

band which might correspond to the real situation if

several of the experimental uncertainties were to combine in an unfavorable way. Thus,

for example, to achieve a gain of 100 it would be prudent to assume that an input energy

between 2 and 8 MJ would be needed.

3. Drivers

Three systems under consideration for supplying the needed energy are lasers,

light-ion accelerators and heavy-ion accelerators. It is important to distinguish

between the use of any system for research on the physics of the pellet behavior and its

ultimate promise for a realistic power-plant application. (See Table 1). For instance,

the largest laser system operating today is the 20 kJ SHIVA neodymium-glass laser at

Livermore which has already achieved fuel compression to some 50 times liquid density.
(It will be replaced a few years from now by the NOVA system with about an order of

magnitude increase in energy). Because of its extremely low repetition rate and low

efficiency a glass laser is not a candidate for a power plant driver. Both these

features can be circumvented to some degree with gas lasers but the unfavorable

laser-plasma interactions of long wave-length (10 ~m) light make the CO2 laser seem
unsuitable and the preferred short wavelength (0.25 ~m) KrF laser is still only in an

early state of development. Also the maximum wall-plug efficiency for the KrF laser is

projected to be about 6 percent.

TABLE 1: Driver Requirements for Power Production

Energy - 1 to 10 MJ
Power - 100 to 600 TW
Pulse shape - Control needed

Efficiency x gain> 10
Focusing - to a few mm at 5 to 10 m

Reliability - > 80% on time

Lifetime - 30 year

Rep rate - 1 to 10/sec
Cost - (a few) x 108 ~/GW of electrical output

The importance of efficiency is easy to see.

with efficiency, n, requires an input energy Q/n.

To produce a pulse energy, Q, a driver

The burning of a pellet with gain, G,
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leads to an output electrical energy,

efficiency has been taken to be 1/3.

consumed by the driver (which is only

have

QG/3, where the thermo-electric conversion

If we specify that the recirculated power fraction

one part of the power plant) be small then we must

0.01 1
Energy -GeV

nG » 3, or, say, nG > 10.

If the pellet physics turns out to limit one to G ~ 100 then a driver is an interesting

candidate only if its efficiency exceeds 10 percent.

Light- and heavy-ion drivers can comfortably meet this condition. Also the

volumetric nature of their energy deposition rather than the surface deposition of laser

light is viewed as a distinct advantage. It can be easily seen how ion-drivers can

supply megajoules of beam energy but the short-pulse length (~ 20 nsec) implied by the

needed high power (c.f. Table 1) poses special problems. For lasers the situation is the

opposite -- they are poor in energy but rich in power.

A typical set of parameters appropriate for a heavy-ion driver is given in Table 2.

(While uranium is frequently used as an example for deriving numbers it should not be

considered the best choice of nuclear species but only as a surrogate for high-mass ions

with A > 200.) A driver with these properties would need to operate at a repetition rate

of 10 Hz if the electrical power output were to be in the 1 GWe range.

Since the pellet-designers specify the ion

range to be 0.2 gm/cm2 (or less) a quick

comparison with the needs for a light-ion

(usually proton) driver can be seen by

reference to the range-energy curves. Instead

of the 10 GeV needed for heavy ions the proton

energy should be about 7 MeV, which corresponds

to a final proton beam current needed of a

formidable 20 megamperes. It is known how to

achieve such a total current by an array of

several dozen pulse-power ion diodes and,

indeed, experiments are expected to begin next year at Sandia Albuquerque with the PBFA

which will have 15 MA, 2 MV protons, 1.2 MJ and 30 TW. Three major questions arise,
however, about the conceivable utility of this approach for future power plant

application. First, pulse-power devices of this kind are strictly for one-shot operation

and progress towards reasonable repetition rate will probably require a major re-vamping

of the technology, probably towards more distributed systems of much smaller energy
packages such as, for example, are used in induction-linac technology. Second, strong

plasma effects -- such as channels produced by exploding wires strung between the diodes

and the target -- must be relied on to transport the large currents; how well these will

work is not known. Finally, the distance between the diodes and target may have to be

short, in which case a large energy release from the pellet would seriously damage the

driver in a single shot. A credible reactor scenario, therefore, is hard to conceive of

at this time.

4
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Table 2: TYPICAL PARAMETERS FOR A "URANIUM"-BEAM
POWER PLANT DRIVER

Beam energy =
Ion kinetic energy

Ion Range in hot plasma

Beam charge

Number of ions

Pulse length needed at pellet

Power at pellet

Beam current at pellet

Beam spot radius at pellet

Specific energy deposition in pellet

Energy released (for G = 100)

3 MJ/pulse

10 GeV

0.2 gm/cm2

300 particle \lC

2.x 1015

20 nsec

150 TW

15 kA

2.5 mm

40 MJ/gm

300 MJ (or about 1 mg

of fuel consumed)/pulse

Nonetheless, these light-ion devices offer an extremely interesting experimental tool

to learn about the pellet physics at a cost per joule significantly less than that from

either a laser or a heavy-ion accelerator. Such experiments have a particular interest

for advocates of heavy ions since they will provide valuable information about intense

energy deposition by ions in hot plasma and, further, will be pushing to explore

alternative pellet designs that might need much lower beam-power.

4. Constraints imposed by Reactor on the Heavy-Ion Beam

Wall-loading considerations require the reactor vessel to be about 5 to 10 meters in

radius. Dry-wall designs (e.g. pyrolithic graphite) may have a lifetime shorter than the

plant life of 30 years and would need to be replaced several times. A number of wet wall

concepts (e.g. liquid lithium waterfalls or jets or, alternatively, a lithium-lead

eutectic) would provide blast and neutron protection and additionally allow in situ

breeding of tritium from the neutron-lithium reaction. The heavy ions enter the reactor

as two bundles of beamlets from opposite sides, each bundle containing some 5 - 10

beamlets. An acceptable engineering solution is to arrange for the background pressure

to be in the 10-4 - 10-3 Torr range or less. In that case the ion beams propagate

ballistically as in high vacuum. It is still uncertain whether the reactor can also be

operated with a poor vacuum (- 1 Torr) and still allow the ion-beams to propagate across
the chamber without disruptive plasma effects.

The optics of the final beam quadrupole lenses demands that the angular divergence of

each beamlet be kept less than about 20 mrad to avoid significant spherical aberration.

(This aberration could be corrected to some degree by octupoles and this requirement
eased someWhat.) Using s = 0.29 for the ions and a pellet radius of 2.5 mm, we conclude
that the normalized emittance per beamlet should be no larger than 1.7 w cm-mrad. Note

that if the beamlets are created by splitting in transverse phase-space the emittance in

the accelerated beam can, of course, be larger. Considerations of chromatic aberration

-- which in turn can be reduced by sextupoles -- during the final focussing lead to a

constraint that (dP/P)final < 1.5 percent. As the bunched beam strikes the pellet it
is only 2 meters in length Considerations of longitudinal phase space require that the
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momentum spread in the accelerator must be maintained at a very much smaller value since

the beam will be vastly longer during acceleration.

5. Accelerator Performance Criteria

So far we have discussed the beam needs set by the pellet and reactor designers. The

next questions are: What accelerator tools can do the job? and, Can the known design

constraints set by the accelerator physics permit us to arrive at an economic and
efficient solution? Parenthetically, it should be noted that the task has become harder

since the first large workshop on the subject was held at the Claremont Hotel, Berkeley,

in 1976. At that time it was believed that 1 MJ of 100 GeV ions would be suitable; since

then the energy requirement has moved up to 3 MJ and, more serious, the kinetic energy

has been reduced by an order of magnitude.

The central problem is achieving the high beam power which, as discovered by Maschke,

is limited by the transport system and scales as (y - 1)(By)5/3. Non-relativistically

this is a scaling slightly less than (kinetic energy)2 and relativistically almost as

(kinetic energy)3. While we have experience with multi-megajoule proton accelerators
at FNAL and CERN they are in the ultra-relativistic range and still only barely in the

TW class~ The decrease in desired ion-energy from 100 GeV to 10 GeV has thus

significantly aggravated the problem.

Nonetheless, there seem to be two solutions each with promise of success. One uses

an rf linac to accelerate about 100 rnA to full energy. The early part of the linac will

need parallel low-frequency low-beta linacs arranged in a funnel fashion (see Sect. 6)

and will involve frequency jumps with longitudinal phase-space matching to preserve the

longitudinal emittance. At full energy the beam is transferred to storage rings (10-20

in number) via an intermediate stacking ring to allow multi-turn stacking in both
vertical and horizontal phase planes. The current is increased further by strong

bunching and delivered in multiple beams to the pellet. The other scheme is a

single-pass induction linac in which current amplification takes place continuously

during acceleration (see Sec. 6). The injection current is several amperes (one hundred

times that in the rf linac) and the entire beam is accelerated in a single long

sausage-like bunch. Early on, the voltage pulses to the induction cores are ramped

slightly upwards with time thus differentially accelerating the tail of the bunch with

respect to the head. As the velocity is increased and the bunch length decreased the

beam current rises to about 2 kA at the end of acceleration. A strongly-ramped voltage
is applied to initiate a strong longitudinal compression which takes place in the

transport system to the target. As the current rises sharply the beam must be split by

transverse septa so that the current per transport line does not exceed some 1 kA, except
perhaps briefly.

We can briefly summarize as follows the current views on the accelerator systems

under study:

-- Ion sources for either rf (- 1/10 amp) or induction linacs (- 5 - 10 A) are not a

problem. High-current Xe+ l sources for an rf linac have now been operated

successfully at ANL, BNL, and LBL with satisfactory emittance in the range 30 - 60

6



mAo The ANL source was developed by Hughes Research Laboratories and derives from

designs for ion propulsion sources. The LBL mu1tiaperture source is directly scaled from

our neutral beam sources which deliver more than 50 amps of protons. Large-area contact

ionization sources for Cs+ l have been demonstrated to give 1 amp at LBL. Such sources

can give the several amperes needed for injection into an induction linac. We have also
+1 +1demonstrated suitably large pulsed currents of Cs and T1 from heated

aluminasi1icate sources.

-- rf 1inacs for heavy ions exist for nuclear physics research (e.g. SuperHILAC,

Unilac). Extension of the design to much higher current and smaller charge/mass

ratio -- and lower velocity -- is in progress at ANL and BNL.

-- Induction 1inacs have been widely used for electron beams in the 1 kA current

range and manipulations such as controlled ramping of the beam energy demonstrated.

Extension to slow particles has not yet been achieved but should not present real

problems.

-- The synchrotron's advantage as a research tool to provide very high kinetic energy

for low capital cost is seriously undermined for this application. The very high

injection energy needed to achieve a high space charge limit and the very low peak

energy (10 GeV - 50 MeV/amu) are unfavorable. Also, the extra manipulations

introduced by adding a synchrotron (injection, extraction, de- and re-bunching) and

the need to cycle it rapidly to avoid beam loss from intra-beam charge exchange

reactions make it less attractive.

-- The storage rings needed for current amplification with the rf system have some

problems in common with those that will be needed for e-p colliding beams but must

deal with still higher currents. Stacking simultaneously in both transverse planes

is needed and the storage time must be short (a few milliseconds) to avoid

significant beam loss from ion-ion charge exchange.

-- Because of the high energy-density and short range of the ions, manipulations

involving septa, e.g. injection and extraction for storage rings, transverse

splitting for the induction 1inac, require special attention. A small amount of beam

loss on an injection septum in a storage ring can lead to vaporization and production
of a gas cloud that will impede suceeding portions of the beam. For septum splitting

of the induction linac beam the beam dimension needs to be increased by a factor of
five if one wishes to avoid spal1ing of the front edge of the septum magnet.

Both the rf linac/storage ring and induction 1inac schemes involve new techniques
of beam manipulation which, while mostly credible conceptually, have not been
achieved in practice. The number of manipulations is fewer in the single-pass

induction 1inac than in the storage ring scheme since in the latter the current

amplification ratio has to be greater by a factor of one hundred.

Next we briefly review the likely limiting phenomena which are all due to plasma

(self-field) effects. Transverse effects limit the current or lead to emittance

increase; longitudinal effects lead to an increase in ~p/p or to beam loss. It is
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believed that coupling between these degrees of freedom may play an important role

because of the high value of the beam plasma frequency compared with the betatron

frequency. Attempts are being made to address this coupling by means of a fluid model;

ultimately the need for 3-D simulation is foreseen. The limitations we do know

specifically and must design around are as follows:

(i) In the storage rings the Laslett tune-shift condition applies for transverse
stability, i.e., the number, N, of stored particles is constrained by

N <
2Tf /W

(M: ) (q~ )

2 (1)
b r

ENBy
p

where b bunching factor

r classical radius of proton = 1.5 x 10-16 cmp
q ionization state of stored ions

TfE N normalized transverse emittance

For quasi-steady storage conditions 6v has the value 0.25. In the final rapid

bunching needed just before extraction this value can be exceded for a transient

situation; a bunching experiment by Maschke at the A.G.S. demonstrated that by rapidly

passing through the resonances 6v ~ 2 could be attained. For a heavy ion driver B ~ 0.3,

y ~ 1 and the emittance EN must be kept small thus the requirements set by Eq. 1 demand

that some 10 to 20 storage rings are needed. Also, it is undesirable to use an ion with

a charge-state of much greater than unity.

(ii) The longitudinal resistive limit for the storage rings is low enough that one

is always well above threshold since the momentum spread is too small to provide adequate

Landau damping. Thus successful operation requires that the growth time, T, be

adequately long, where

where n

1
f

= mode number

(2)

w revolution angular frequency

n (l/y~rans) - 1/y2
Zn Rn + iXn = structure impedance

Growth times can be of the order of a millisecond if the structure resistance can be kept

to a value of Rn/n < 2 ohms which is somewhat better than the values in the PS and ISR.

(iii) For linear beam transport systems the maximum current, and hence power, that
can be transported in a quadrupole lattice is limited by the maximum attainable

focussing, as first pointed out by Maschke. Extensive computational work by Laslett and

Smith who use a K-V distribution have verified this in detail. Their results are

confirmed by numerical simulation by Haber. The corresponding space-charge depression of

the phase-advance/period in a FOOO lattice is from 600 to 240
. The limiting power is

8



( )

4/3
P(watts) = (1.7 x 10

15
) M; t (y - 1) (3 )

where B = quadrupole "pole-tip" field averaged along transport line (teslas)

EN = normalized emittance (meter radians)

<,r __ '"

The subdivision of the final beam transport into 10-20 beamlets finally on target allows

this condition to be obeyed provided high-field superconducting quadrupoles are used.

A corresponding space charge limiting current can be derived from Eq. 3 by dividing

by the beam voltage, Mc 2 (y-l)/q, and this limit is of crucial importance to the

induction linac design. For a voltage increment, ~V, the energy supplied to the beam is

(I )~V, where (I ) is the beam charge. The higher I can be at that point the fewer

volt-seconds of core ( ~V) will be needed for the same energy increment and this would be

reflected in lower cost. For distribution functions more realistic than the K-V
distribution the numerical simulation results suggest that the coefficient in Eq. 3 is

too small but probably it is not wrong by as much as a factor of two.

(iv) The longitudinal resistive instability is not a problem for the r-f linac but

must be considered in detail for the induction linac where the current is typically

10,000 times greater. Since we are dealing with a single bunch the theory is

incomplete. Simple theory suggests that the fast plasma wave decays while the slow wave

grows as it travels to the back of the bunch but then is reflected into a forward-going

decaying wave. A one-dimensional numerical simulation code at LBL shows more complicated

behavior at the bunch end but the results are not yet comprehensive enough to be sure

that these are real effects or computer artifacts.

If we take Xn/n = Zo(l + 2 ln b/a)/ By2 then, for an infinitely long bunch, the

growth length, A, is given by

I

1 R
-=T
A 0

(4 )

where
I

R

b/a

Zo
N/L

real part of impedance/meter
pipe radius/beam radius ~ 1

free-space impedance = 377 ohms
line density of ions

I

For an induction linac R is small for high frequencies and very low frequency troubles
I

can be cured by feed-forward if need be. Using a worst case R - 100 ohm/meter,
A ~ 1 km. Numerical simulation shows growth times of this order although whether the

effects are self-healing or not in the bunched case is still unclear.

6. Conceptual Design of Drivers

The application of the above limiting considerations together with judgments from

experimental experience with other machines to the conceptual design of driver systems

has been quite well documented in the proceedings of the four annual workshops held on
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the subject (1976-79). Examples of so-called "Reference Designs" discussed at the 1978

workshop at ANL are shown in Figs. 1 and 2. The rf/storage ring design differs only in

detail from an earlier 10 MJ driver design described by Maschke.

Both designs are still conceptually current but need detailed up-dating to respond to

the recent changes in the target-designers wishes, i.e., a beam-energy increase from 1 MJ

to 3 MJ, and a kinetic energy decrease from 20 GeV to 10 GeV. In partial compensation,

however, the final pulse-length needed at the target has been relaxed by a factor of

three so that the beam power remains the same. At the most recent workshop (Claremont,

1979) a charge state as high as q = 8 was considered dangerously large because of

longitudinal limits in the rings, and the rf design will probably end up with q = 1 or

2. For other reasons, the induction linac will probably also use q = 1 or 2. (At least

for the induction linac, the cost has been show~ to be only weakly dependent on

charge-state). The major change expected because of the increased beam charge is

amplification of the low-B injector sections and in the details of the storing and/or

splitting of the final beaw. lines. In the induction linac it may be necessary to use

more than one pulsed injector or, better, to accelerate several discrete beams within the

same drift-tube structure along the lines proposed by Herrmannsfeldt and by Maschke.

7. Present Experimental Programs

Relative to the scale of research and development that will be needed eventually to

construct a working heavy-ion driver, the experimental activities at Argonne, Berkeley

and Brookhaven can, at best, be described as extremely modest. Present activities center

about the questions of handling the high-current low-B end of both systems with special

attention to preservation of low emittance. Experimental studies on the question of

high-current stability in storage rings and long induction linacs must await the future.

+1At ANL, the Hughes source has been successfully operated at 40 rnA of Xe at 1 MV
supplied by a dynamitron. It is intended in the short term to test the funnel-loading

concept by accelerating through a 12.5 MHz Wideroe to 9 MeV, deflect transversely, go

through a longitudinal phase-space matching section, and resume acceleration in a 25 MHz

Wideroe. Understanding of emittance growth and beam loss in the first Wideroe and during

manipulations to transfer to the second Wideroe is a crucial goal. At this time the

buncher and the first of three independently-phased cavities have been operated with good

results; the first Wideroe is under construction (Fig. 3). Later it is planned to strip
to Xe+8 at the end of the second Wideroe, accelerate to 220 MeV and inject into a
large-aperture synchrotron which could provide about a kilojoule of Xe+8 ions at 10 GeV.

At BNL a duoplasmotron Xe+ l source has been operated with a Cockcroft-Walton and

beam accelerated through a 16 MHz multi-drift-tube Wideroe linac. Lately, however,
Maschke and coworkers have been investigating a method of transporting high currents at

low B by means of an array of small beamlets focussed by close-packed electrostatic

quadrupoles. Usually the beam current is limited not by the emission of the source but

by the transport system and the deep potential well within the beam. One can improve

matters by sub-dividing the beams into ribbons and use an einzel-lens method of focussing

(Herrmannsfeldt) or use parallel quadrupole channels (Maschke). From Eq. 3 we note that
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the total current transported in n beams each of emittance EN/In exceeds that

transportable in one beam by a factor n2/3. Tests have been made for Xe+ l with

n = 9; also a 50 MHz rf proton linac from 20 kV to 100 kV which uses four parallel

quadrupole systems in the drift tubes has been completed and will soon be extended to

750 kV.

At LBL, apart from an early demonstration of a 50 mA Xe+ l beam at 500 kV, suitable

for an rf linac, based on the CTR source design, experimental work has been devoted to

the induction linac technology. A cesium contact-ionization source is in routine

operation; it has delivered 1.2 A at 500 kV for 2 ~sec pulsed at a 1 Hz rate. A system

of three drift-tubes each of which will be pulsed (2 ~sec) to 500 keV is now operational

(Fig. 4). The system has just been tested at half-voltage and the beam-optics confirmed

to agree with the simulation calculations by Herrmannsfeldt's code. Experiments on

sub-dividing the beam into individually-focussed beamlets are planned for the future.

The features critical to the induction linac scenario include being able to inject a

long sausage-like bunch into an induction linac and show that the manipulations which

lead to current amplification can be handled in a controlled way without excessive
+

degradation of the 6-0 emittance. To this end a 10 MeV Cs "te~t-bed" (Fig. 5) has

been designed and we would expect to achieve a current amplification from 1 A to 3A in a

length of 80 m. A single-particle computer simulation has been used to derive the needed

voltage-pulse profiles and an engineering prototyping effort is underway to arrive at

realistic designs to achieve these shapes.
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