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Gouin-Bonenfant, Émilien. “Productivity Dispersion, Between-Firm Competition, and the Labor

Share”. The dissertation author was the sole investigator and author of this material.

Chapter 2, in full, is currently being prepared for submission for publication of the material.
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ABSTRACT OF THE DISSERTATION

Essays on Labor Markets and Inequality

by

Émilien Gouin-Bonenfant

Doctor of Philosophy in Economics

University of California San Diego, 2019

Professor James D. Hamilton, Chair

In the first chapter, I propose a tractable model of the labor share that emphasizes the

interaction between labor market imperfections and productivity dispersion. I bring the model to

the data using an administrative dataset covering the universe of firms in Canada. As in the data,

most firms have a high labor share, yet the aggregate labor share is low due to the disproportionate

effect of a small fraction of large, extremely productive “superstar firms”. I find that a rise in the

dispersion of productivity across firms leads to a decline of the aggregate labor share in favor of

firm profit. The mechanism is that productivity dispersion effectively shields high-productivity

firms from wage competition. Reduced-form evidence from cross-country and cross-industry

data supports both the prediction and the mechanism. Through the lens of the model, rising

xiv



productivity dispersion has caused the U.S. labor share to decline starting around 1990.

In the second chapter, we propose a new, systematic approach for analyzing and solving

heterogeneous-agent models with fat-tailed wealth distributions. Our approach exploits the

asymptotic linearity of policy functions and the analytical characterization of the Pareto exponent

to make the solution algorithm more transparent, efficient, and accurate with zero additional

computational cost. As an application, we solve a heterogeneous-agent model that features

persistent earnings and investment risk, borrowing constraint, portfolio decision, and endogenous

Pareto-tailed wealth distribution. We find that a wealth tax is a ”lose-lose” policy: the introduction

of a 1% wealth tax (with extra tax revenue used as consumption rebate) decreases wage by 6.5%,

welfare (in consumption equivalent) by 7.7%, and total tax revenue by 0.72%.

In the third chapter, I propose a model of earnings dynamics and inequality within the

firm. The model combines a production hierarchy with a “rank order tournament” promotion

scheme. I motivate the theory by documenting three sets of facts using proprietary personnel

data. First, most of inequality within the firm is between hierarchy levels rather than within.

Second, there is on average very little upward mobility within the firm. Third, there is important

heterogeneity in earnings trajectories. The model provides a positive theory of these facts and

sheds light on the determinants of inequality within the firm.
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Chapter 1

Productivity Dispersion, Between-Firm

Competition, and the Labor Share

1.1 Introduction

For most of the twentieth century, worker compensation in the U.S. grew one-for-one with

labor productivity. This observation has been enshrined as one of the stylized facts of economic

growth (Kaldor (1961)). However, starting around 1990 worker compensation has stagnated

relative to labor productivity, leading to a decline of the aggregate labor share (Elsby, Hobijn,

and Şahin (2013), Karabarbounis and Neiman (2014)). Over that same period, there has been a

dramatic rise in the dispersion of firm productivity (Barth et al. (2016), Andrews, Criscuolo, and

Gal (2016), Berlingieri, Blanchenay, and Criscuolo (2017)). In other words, recent productivity

gains have been extremely concentrated among some firms rather than being broad-based.

In this paper, I argue that the rise in productivity dispersion is in fact a core part of why

the aggregate labor share has declined. In a nutshell, my argument is that since recent productivity

gains have been concentrated, firms experiencing high productivity growth have been shielded

from wage competition by firms whose productivity has lagged. As a result, the increase in
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productivity dispersion has caused the aggregate labor share to decline in favor of firm profits.

To formalize this argument, I build a tractable model of the labor share that aggregates up

from the firm level. To guide my modelling choices, I begin by summarizing the distribution of

labor shares across firms. I draw on a new dataset covering the universe of firms in Canada and

focus on three features of the data. First, within narrow industries, there are large and persistent

differences in labor shares across firms. This suggests that it is not simply technology that

determines a firm’s labor share. Second, in any given year, a large fraction of firms have a labor

share above one. This is not just a handful of firms, but close to 20 percent of firms, which is far

too large a group to write off as simple measurement error. Third, labor shares at the firm are

strongly decreasing in firm output. This means that firms who contribute the most to GDP have

the lowest labor shares. These facts are not only a feature of the Canadian economy, they have

all been previously documented in some form using U.S. data (Autor et al. (2017), Kehrig and

Vincent (2017)). I will argue that any quantitative theory of the labor share aggregating from the

firm level must be confronted with these empirical regularities.

My model builds on two ideas. First, there are search frictions in the labor market and

firms set wages (as in Burdett and Mortensen (1998)). Labor market imperfections will generate

firm-specific gaps between wages and labor productivity, thus implying differences in labor

shares between firms operating the same technology. Second, firms face persistent productivity

shocks and grow over time by accumulating workers (as in Hopenhayn and Rogerson (1993)).

Introducing firm dynamics and an endogenous exit decision to the model will generate time-series

variation in firm-level labor shares and rationalize the existence of negative profits (i.e. labor

shares above one).

In the model, firms choose how much capital to rent, what wages to offer, and when

to exit. In equilibirum, high productivity firms offer high wages in order to poach workers

from lower paying firms and therefore grow faster. The labor share of high-productivity firms

is low, reflecting the fact that they are able to recruit and retain workers despite paying them
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wages below their marginal productivity. In other words, these firms exert significant monopsony

power in the labor market. In contrast, low-productivity firms offer low wages, grow slower, and

have a high labor share. Firm-level productivity is persistent but not permanent, so the model

endogenously generates “superstar firms”, who emerge by experiencing extended periods of fast

growth. The model thus explains the rise and fall of large firms and, in a stationary equilibrium,

generates an extremely skewed firm size distribution that obeys Zipf’s law. While there is no

one-to-one relationship between employment and productivity, larger firms are on average more

productive. Hence, the aggregate labor share disproportionately reflects the low labor share of

large, highly-productive firms.

I then bring the model to the data using a unique firm-level, panel dataset containing

employment and tax records for the universe of firms in Canada over the 2000-2015 period. The

dataset is ideal as it allows me to measure value-added and worker compensation at the firm-level

using the same methodology as in the National Accounts. Despite being very parsimonious, the

model matches a number of features of the data that were not targeted. For example, the model

generates a large interdecile range of labor shares of 1.06 (0.88 in the data) even though all firms

operate the same Cobb-Douglas technology. The aggregate labor share is 0.66 (0.65 in data) while

the average (unweighted) firm labor share is 0.97 (0.88 in data). The reason why the average

labor share is so high is that 36 percent of firms have labor share above one (17 percent in data).

The difference between the average and aggregate labor share is equal to the covariance between

labor share and output share of -0.32 (-0.22 in data). Finally, the model predicts that value-added

is concentrated within high-productivity, low-labor-share firms: the top decile of firms ranked by

labor productivity account for 53 percent of output (42 percent in data) and have a labor share of

0.54 (0.44 in data).

Equipped with the calibrated model, I quantify the effect of an increase in the dispersion

of productivity across firms. I feed in an increase in the variance of (log) labor productivity of 0.3,

consistent with the measurements from Barth et al. (2016) over the 1977-2007 period. In response
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to the rise in productivity dispersion, the model predicts a large labor share decline of 2.3%,

which is roughly 2/3 of the corporate labor share decline over the 1977-2007 period (3.5%). The

mechanism is that productivity dispersion effectively weakens labor market competition. High

productivity firms become increasingly shielded from wage competition as their competitors

move further away on the productivity spectrum. As a result, the gap between the wage they pay

and their productivity increases, so their profit margins increase. In contrast, the labor share of

firms at the bottom of the productivity distribution increases. The reason is that the marginal

exiting firm is now willing to absorb larger losses as she expects higher profit margins in the

future when productivity reverts. Hence, the high productivity dispersion economy exhibits a

higher concentration of value-added and a more polarized distribution of firm labor shares (i.e., a

“winner takes most” environment).

The micro predictions of the model are almost exactly what has been documented by

Autor et al. (2017) and Kehrig and Vincent (2017) using U.S. firm-level data. In particular, the

model predicts that in response to a productivity dispersion shock (1) the aggregate labor share

decreases, (2) the decline is driven by a reallocation of value-added towards firms with a low

and declining labor share, (3) output concentration increases, and (4) employment concentration

remains unchanged.

Finally, I test the prediction of the model that an increase in productivity dispersion is

associated with a decline of the aggregate labor share. I use cross-country data from 7 OECD

countries over the 2001-2011 period as well as cross-industry data from 69 Canadian industries

(3-digit NAICS) over the 2000-2015 period. In both cases, I measure productivity dispersion

as the interdecile range of labor productivity (value-added per worker) in the cross-section of

firms. I estimate cross-sectional and fixed effects regressions models. In all cases, the estimated

coefficients range from -0.05 to -0.20 and are statistically significant. Using the Canadian cross-

industry data, I also test the mechanism. I estimate the effect of productivity dispersion on the

labor share and output share of firms ranked according to their productivity. As predicted by the
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model, a productivity dispersion shock is associated with a polarization of firm labor shares as

well as a reallocation of output shares from low to high productivity firms.

Related literature. Many studies document a large decline of the labor share across many

of countries starting around 1980 (Blanchard, Nordhaus, and Phelps (1997), Elsby, Hobijn,

and Şahin (2013), Karabarbounis and Neiman (2014), Dao et al. (2017)). The explanation I

proposerising productivity dispersiondoes not explain all of the decline but is consistent with both

microeconomic evidence and aggregate data. To the best of my knowledge, my paper is the first

to link the rise in productivity dispersion to the decline of the labor share.

While it is well-known that there is a large dispersion in firm productivity (Syverson

(2011)), a less appreciated fact is that productivity dispersion has increased dramatically over

time. Kehrig (2015) shows that the (cross-sectional) standard deviation of TFP nearly doubled

in the U.S. manufacturing sector from the 1970s to the 2000s. Barth et al. (2016) documents a

similar trend, where the variance of log revenue per worker has increased within all industries

(SIC 1-digit) over 1977-2007. The increase in productivity dispersion is broad-based within the

US economy and holds within both young and mature firms as well as within high-tech and

non-tech sectors (see Decker et al. (2018)). It also seems to be a global phenomenon. Andrews,

Criscuolo, and Gal (2016) use Orbis data covering 24 OECD countries over the period 1997-2014

period and document a strong divergence in productivity growth between firms at the “frontier

firms” (defined as the top 5% of firms in terms of productivity) and non-frontier firms. They show

that labor productivity grew faster at frontier firms and that the gap reflects divergence in TFP,

not capital deepening. Similarly, Berlingieri, Blanchenay, and Criscuolo (2017) use harmonized

business register data covering a subset of OECD countries and document a broad-based increase

of productivity dispersion, which holds for both labor productivity and TFP.

Existing explanations for the decline of the labor share include a rise of outsourcing along

with changes in labor market institutions (Elsby, Hobijn, and Şahin (2013)) as well as capital-labor
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substitution caused by a decline in the relative price of capital equipment (Karabarbounis and

Neiman (2014)). A more recent set of papers argue that product market power has increased,

leading to a rising importance of profits in aggregate income. Barkai (2016) uses U.S. National

Accounts data to impute aggregate payments to capital equipment and finds that the decline of the

labor share was not compensated by a rise of the capital share, but rather a rise of the profit share.

Eggertsson, Robbins, and Wold (2018) interpret historical data through the lens of DSGE model

and argue that increased markups are needed to account for a set of secular trends in the U.S.

economy, including the decline of the labor share. De Loecker and Eeckhout (2017) estimate

firm-level price markups using Compustat data and find that markups have increased substantially

starting around 1980.

Kehrig and Vincent (2017) and Autor et al. (2017) present firm-level evidence that puts

restrictions on the set of explanations for the decline of the labor share that are consistent with the

data. Kehrig and Vincent (2017) focus on the manufacturing sector over the 1967-2012 period.

They find that the aggregate labor share decline was driven by a reallocation of value-added

towards firms with a low (and declining) labor share, but that there was limited reallocation of

inputs (labor and capital). They also show that low-labor-shares firms are mostly firms with high

TFP, not firms with high capital intensity. Autor et al. (2017) use data covering most sectors

over the 1982-2012 period. They find that the labor share decline was driven by reallocation of

market shares, as opposed to a broad-based decline of firm-level labor shares. They also show

that industries that saw the largest increases in sales concentration also saw the largest declines in

their labor shares.

Finally, Hartman-Glaser, Lustig, and Zhang (2018) study the link between the volatility

of sales and the aggregate capital share in a firm dynamics model where firms (risk neutral)

insure workers (risk averse). They find that an increase in firm-level risk generates an increase in

the aggregate capital share. My paper differs in that I study the effect of a rise in productivity

dispersion (a cross-sectional moment) while they study the effect of a rise in volatility (a time-
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series moment). Moreover, the feature that generates a link between productivity dispersion

and aggregate labor share in my model is the presence of search frictions—which grants firms

monopsony power—as opposed to risk aversion.

My paper also relates to the literature on labor market monopsony. The theoretical

underpinning of the new monopsony literature is the equilibrium search model developed in

Burdett and Mortensen (1998) (henceforth BM).1 Recent applications of the BM model to study

the wage-setting behavior of firms include: Meghir, Narita, and Robin (2015), who study the

role of informal labor markets; Engbom and Moser (2017), who study the effect of the large

increase of the minimum wage in Brazil, and Heise and Porzio (2018), who study the role of firms

and location preferences in shaping spatial wage gaps. My model differs in that it incorporates

firm dynamics (endogenous entry, exit, firm growth and productivity shocks). There is a limited

amount of work on firm dynamics models with search frictions in the labor market. Notable

exceptions include Elsby and Michaels (2013), Kaas and Kircher (2015), Gavazza, Mongey, and

Violante (2018) and Coles and Mortensen (2016). The main difference with the models in the

first three papers is that they do not model job-to-job flows (no on-the-job search). On-the-job

search is central element of my model: it is the worker’s threat of quitting to a higher paying firm

that forces firms to offer wages above the value of nonemployment.

Coles and Mortensen (2016) (henceforth CM) allow for job-to-job flows, but they do not

model endogenous firm entry and exit. They assume that the lower bound of firm productivity is

high enough that every firm makes positive profits in every date and state, so firms never wish to

exit. In contrast, I do not restrict the firm productivity process and model firm exit explicitly (i.e.

firms solve an optimal stopping time problem). Hence, my model generates negative firm profits

in equilibrium, which is a pervasive feature of the data. Moreover, CM model the hiring process

as costly but unrelated to the wage-setting decision. Instead, I model the matching process exactly

as in BM (random matching with exogenous meeting rates), which implies that high-wage firms

1see Ashenfelter, Farber, and Ransom (2010) and Manning (2011) for literature reviews
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grow faster due to higher poaching flows. The wage-setting decision of firms is tightly related to

this “poaching incentive”.

I leverage the insight from CM that the firm problem in the BM model is tractable out-of-

steady-state when the production technology exhibits constant-returns-to-scale (CRS). I build

on this result and show that, with exogenous meeting rates and a CRS matching technology, the

allocation of workers to firms in a stationary equilibrium can be characterized analytically. In

particular, I provide necessary conditions for the existence of a stationary equilibrium (Assump-

tion 3) and a closed-form solution for the employment-weighted productivity distribution and

unemployment rate (Proposition 3). These results are crucial for my application, as they allow

me to tractably aggregate the model and prove a number of results analytically. Finally, I leverage

theoretical results on power laws (Beare and Toda (2017a)) and a novel solution method for

heterogeneous-agent models with fat-tails (Gouin-Bonenfant and Toda (2018)) to numerically

solve the joint-distribution of productivity, employment and labor share.

1.2 Motivating facts

The aggregate labor share LS is the sum of firm-level labor shares LSi weighted by their

output share Yi/Y .

LS = ∑
i

(Yi/Y )︸ ︷︷ ︸
output share

× LSi︸︷︷︸
labor share

(1.1)

Recent evidence highlights the fact that the decline of the U.S. labor share was driven by a

reallocation of output shares toward firms with low labor shares, rather than a uniform decline of

firm labor shares (Kehrig and Vincent (2017), Autor et al. (2017)). Hence, to be able to interpret

movements of the aggregate labor share through the lens of a model, one needs to work with a

model that can speak to the firm-level heterogeneity in the data.

From Equation 1.1, we can see that, to be consistent with both firm-level and aggregate
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data, a model needs to match (1) the distribution of labor shares, (2) the distribution of output

shares, and (3) the dependence between labor shares and output shares. It is well known that

output shares are distributed according to Zipf’s law (Axtell (2001a)), but little is know regarding

the distribution of firm labor shares, especially outside of the manufacturing sector. In this

section, I focus on three facts that summarize the distribution of firm-level labor shares and their

dependence with output shares.

I use microdata data from the National Accounts Longitudinal Microdata File (NALMF),

which is produced by Statistics Canada by merging administrative data from different sources.

The NALMF contains de-identified data covering the universe of private sector employers in

Canada over the 2000-2015 period. The unit of observation is an enterprise, which is an entity

larger than an establishment but smaller than a (consolidated) corporation.2 I restrict the main

sample to the private corporate sector excluding: Agriculture, Mining, Utilities, Education,

and Health (NAICS 11, 21, 22, 61, and 62). Agriculture and Mining are excluded due to data

limitations while Utilities, Education, and Health are excluded due to the fact that these sectors

are dominated by public entities in Canada. Finally, I restrict the sample to firm-year observations

with more than 5 employees. The labor share of firm i in year t is defined as

LSi,t =
worker compensationi,t

worker compensationi,t +gross profitsi,t

In Appendix A.2.1, I describe in detail how I construct the variables and then validate against

aggregate data. The final sample contains 3,084,182 firm-year observations, so I do not report

standard errors when presenting cross-sectional averages.

2The full definition from Statistics Canada’s website is “Enterprise refers to the highest level of the Business
Register statistical hierarchy and is associated with a complete set of financial statements. The enterprise, as a
statistical unit, is defined as the organizational unit of a business that directs and controls the allocation of resources
relating to its domestic operations, and for which consolidated financial and balance sheet accounts are maintained
from which international transactions, an international investment position and a consolidated financial position for
the unit can be derived. It corresponds to the institutional unit as defined for the System of National Accounts.”
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Figure 1.1: Distribution of firm labor shares.

1.2.1 Fact #1: There are large and persistent differences in labor shares

across firms

Figure 1.1 presents the distribution of firm labor shares for the year 2015. A striking fact

is that behind the aggregate labor share lies a lot of heterogeneity. The vertical red line represents

the aggregate labor share of 0.67. Those large labor share differentials also hold within industry.

To emphasize this point, Figure 1.2 presents the average labor share of firms by labor share

deciles. I construct the deciles by sorting firms within 2-digit NAICS industry and year bin, and

then pooling all industries and years together. The dispersion in firm labor shares within industry

is large. For instance, firms in the second decile have a labor share of 0.6 on average while those

in the ninth decile have a labor share of almost one. The fact that these difference hold within

an industry suggests that there are factors other than technology that generate dispersion in firm

labor shares.

These labor share differentials are also quite persistent. Figure 1.3 plots the empirical

transition probability matrix for labor share deciles. For example, the (1,2) entry contains the

empirical frequency at which a firm in the first labor share decile moves to the second decile
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from one year to the next. If differences in labor shares were only due to noise, all entries would

be equal to 0.1. I find that the persistence in the data is high, which is exemplified by the fact

that values along the diagonal are dark. The probability that a firm’s labor share remains within

the same or an adjacent decile from one year to the next is between 0.6 and 0.8 depending on

the initial decile. For example, the probability that a firm in the fifth decile moves to either the

fourth, fifth, or sixth decile in the following year is 0.63. Kehrig and Vincent (2017) have also

documented large and persistent labor share differentials in the U.S. manufacturing sector.

1 2 3 4 5 6 7 8 9 10

Labor share decile (t+1)

1

2

3

4

5

6

7

8

9

10

L
a
b
o
r 

s
h
a
re

 d
e
c
ile

 (
t)

0.15

0.04

0.02

0.01

0.01

0.01

0.01

0.01

0.02

0.19

0.18

0.07

0.04

0.02

0.01

0.01

0.01

0.02

0.05

0.22

0.32

0.18

0.08

0.04

0.03

0.02

0.02

0.02

0.03

0.09

0.21

0.28

0.17

0.09

0.05

0.03

0.02

0.03

0.02

0.04

0.1

0.2

0.26

0.17

0.09

0.05

0.04

0.04

0.01

0.02

0.05

0.1

0.2

0.26

0.17

0.09

0.05

0.05

0.01

0.02

0.03

0.06

0.1

0.19

0.28

0.18

0.09

0.06

0.01

0.01

0.02

0.03

0.06

0.1

0.2

0.33

0.19

0.08

0.01

0.01

0.02

0.03

0.04

0.06

0.1

0.2

0.17

0.02

0.02

0.02

0.03

0.04

0.05

0.06

0.09

0.17

0.66

0.42

0.4

0.52

Figure 1.2: Transition matrix.

1.2.2 Fact #2: In any given year, a large fraction of firms have a labor

share above one

Notice from Figure 1.1 that the distribution of labor shares has a long upper tail. In fact,

17% of firms have a labor share larger than one. A labor share above one means that worker

compensation exceeds value-added, and thus implies that gross profits are negative. While the

aggregate labor share is always below one, in any given year many firms will make losses. This
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Figure 1.3: Labor share by decile.

finding is not only true for the year 2015, Figure 1.2) shows that the average labor share for

the top two deciles of firms are around 1 and 1.6 respectively. So labor shares above one are a

pervasive feature of the data, not just the result measurement errors or a feature of the Canadian

data.3 Truncating the labor share distribution at one would imply throwing away nearly one out

of five observation and would bias the aggregate labor share downwards.

1.2.3 Fact #3: There is a strong negative relationship between firm labor

share and firm output

Figure 1.4 contains a scatterplot of firm-level output (in millions of Canadian dollars) and

labor share for the year 2015. The data is smoothed (locally weighted scatterplot smoothing with

bandwidth of 0.8) in order to maintain confidentiality. A clear relationship emerges where firms

with high output tend to have a lower labor share. To formalize this point, consider the following

decomposition of the aggregate labor share in the spirit of Olley and Pakes (1996), which follows

3For instance, Figure 1 in Kehrig and Vincent (2017) shows that the distribution of firm labor shares in the U.S.
manufacturing sector has significant mass above one.
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Figure 1.4: Smoothed scatter plot of firm-level labor share and value-added.

directly from Equation 1.1.

LS︸︷︷︸
aggregate

labor share

= L̄S︸︷︷︸
average

labor share

+ cov
(
LSi , Yi/Y

)
.︸ ︷︷ ︸

covariance between
labor share and output share

(1.2)

The aggregate labor share can thus be expressed as the sum of the average (unweighted) firm

labor share across and the covariance between labor share and output share. Table 1.1 presents the

results of the decomposition. To account for differences across industries and years, I compute

each of the three components in Equation 1.2 separately within industry-year bin (NAICS 2-digit).

I then average industries within a year using industry value-added weights and then average over

all years. The aggregate labor share is 0.65 yet the average (unweighted) firm labor share is much

higher at 0.88. The reason why the gap between average and aggregate labor share is so large is

that firms with higher output tend to have a lower labor share. The covariance between firm-level

output share and labor share is -0.23. The negative association between firm-level labor share

and output share had previously been documented in the case of the U.S. manufacturing sector

(Kehrig and Vincent (2017)), the Taiwanese manufacturing sector (Edmond, Midrigan, and Xu
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(2015)), and most other sectors of the U.S. economy (Autor et al. (2017)).

Table 1.1: Aggregate labor share decomposition.

Component Value

Aggregate labor share 0.65
Average (unweighted) labor share 0.88
Covariance between labor share and output share -0.23

Notes. The three components are defined in Equation 1.2. Each component is computed within
each 2-digit NAICS industry and then averaged using value-added weights. The results are
2000-2015 averages.

1.3 Model

1.3.1 Preferences and production

Time is continuous and an interval [t, t +1) represents a year. The economy is populated

by an endogenous measure F of heterogeneous firms and a unit measure of identical, infinitely-

lived workers. Firms and workers are risk neutral and discount the future at rate r > 0. Firms

compete for workers by posting wage contracts w and rent capital in a perfectly competitive

market at user cost R ≡ r + δ, where δ is the depreciation rate of capital. Firms can change

the wage policy at any time and do not precommit to future wages. For simplicity, I assume

that firms are required to pay all of their workers the same wage w. Workers can be either

employed or unemployed and are available to receive job offers in both states. The flow value of

unemployment is exogenous and given by b > 0. Firms produce an homogeneous good and differ

only in their total factor productivity (TFP) level z≥ 0. The production function is Cobb-Douglas

with constant-returns-to-scale zKαN1−α, where N ≥ 0 denotes the measure of workers a firm

employs and K ≥ 0 denotes its stock of capital.
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1.3.2 Matching technology

At exogenous rate µ≥ 0, an unemployed worker meets an entrepreneur (a potential firm).

The entrepreneur then draws a productivity level z from the distribution Γ0 and decides whether

or not to enter. There is free entry, so entrepreneurs enter whenever expected discounted profits

are positive. Without loss of generality, entry will follow a threshold rule where the entrepreneur

enters if and only if z≥ zl . The threshold zl is an equilibrium object which I will characterize

later. I now make the following assumption regarding the source distribution (CDF) Γ0.

Assumption 1. The cumulative distribution function Γ0 : [0,+∞)→ [0,1] is differentiable and

satisfies

Γ
′
0(z)> 0,

∫
∞

0
zΓ
′
0(z)dz = 1,

∫
∞

0
z

1
1−α Γ

′
0(z)dz < ∞.

The first condition ensures that there is positive mass everywhere on [0,∞), the second

condition is merely a normalization, and the third condition ensures that aggregate output is finite.

Firm productivity changes over time. At rate χ, continuing firms draw a new productivity

level from Γ0. This particular process implies that firm productivity z remains constant for a

stochastic duration, and then jumps to a new level that is independent from the previous one. The

optimal behavior of firms will be characterized later, but the decision rule will be to exit whenever

z falls below an endogenous threshold zl . Notice that I am using the same notation zl for the entry

and exit thresholds. I will later show (Lemma 2) that those two objects are equal in equilibrium.

Firms decide when to exit. When they exit, their workers are sent into unemployment. To simplify

notation, define the distribution Γ0 truncated at zl by Γ(z), the rate at which an unemployed

workers meets an entering firm χe, the firm exit rate by χx, and the arrival rate of productivity

shocks χs by

Γ(z)≡ Γ0(z)−Γ0(zl)

1−Γ0(zl)
, χe ≡ µ(1−Γ0(zl)

)
, χx ≡ χΓ0(zl), χs ≡ χ

(
1−Γ0(zl)

)
. (1.3)
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The law of motion for the measure of active firms F is thus given by

Ḟ = χeu︸︷︷︸
firm entry

− χxF︸︷︷︸
firm exit

. (1.4)

I now describe how continuing firms meet new workers and grow. A firm with a measure

N of workers meets a new worker at rate λN, where λ > 0 is a technological parameter. I assume

random matching, meaning that the identity of the workers a firm meets is randomly drawn

from the population, independently of their current status (employed or unemployed).4 Of those

workers, a fraction u will be unemployed while the remainder 1−u will be employed. The rate at

which workers (employed or unemployed) receive a job offer from a continuing firm is given by

λ(1−u). This is because each continuing firm meets λN workers at every instant, so the measure

of meetings is given by λ times aggregate employment 1−u. When workers meet firms, I assume

that they do not observe the firm’s productivity z.

Assumption 2. The wage paid by a firm is public information but its productivity z is private.

The solution that I study is a Pure Strategy Bayesian Equilibrium. The equilibrium is

Bayesian given that workers need to form expectations about the future path of wages at different

firms in order to compute continuation values. The pure strategy part prevents agents from

randomizing their actions. I will focus on size-invariant equilibria in which wages are increasing

in firm productivity (as in Coles and Mortensen (2016)). The focus on size-invariant equilibria

means that a firm with productivity z and size N offers a wage w(z) that does not depend on its

size N. This is not very restrictive since both the production technology and matching technology

exhibit constant-returns-to-scale. The only reason why firms would offer size-dependent wages

would be if workers’ beliefs induced them to behave in that manner. The focus on equilibria in

4To give some context, in Burdett and Mortensen (1998) a firm meets a worker at a constant rate λ. Since the
meeting rate does not grow with a firm’s size N, it means that the matching technology exhibits decreasing-returns-
to-scale. The only departure from BM in the labor market module of my model is that I assume that the matching
technology exhibits constant-returns-to-scale.
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which wages are increasing in firm productivity means that the equilibrium policy function of the

firm satisfies w(z′) > w(z) whenever z′ > z. This is not restrictive, since the case w(z′) ≤ w(z)

would not be consistent with an equilibrium.

To simplify the construction of the equilibrium, I will impose from now on that the

workers’ beliefs are consistent with a size-invariant equilibrium in which wages are increasing in

firm productivity. I Denote the belief function, which maps productivity to wages, by ŵ(z). The

interpretation is that a workers believe that firms with productivity z will pay ŵ(z) with probability

one. Given the focus on equilibria where w(z) is monotone, the equilibrium belief function must

satisfy z′ > z =⇒ ŵ(z′)> ŵ(z).

1.3.3 Worker and firm problems

The only decision made by workers is whether or not to accept a job offer. To do so,

workers need to compute the present value of accepting and rejecting a job offer paying. The

value of unemployment U and the value of working at a firm paying W (w) are the solutions to

the following system of equations.

rU = b+χe

∫
max

{
W (ŵ(z))−U,0

}
dΓ(z)︸ ︷︷ ︸

job offer from entrant

+λ(1−u)
∫

max
{

W (w′)−U,0
}

dP̃(w′)︸ ︷︷ ︸
job offer from continuing firm

(1.5)

rW (w) = w+χs

∫ (
W (ŵ(z))−W (w)

)
dΓ(z)︸ ︷︷ ︸

wage change due to productivity shock

(1.6)

+λ(1−u)
∫

max
{

W (w′)−W (w),0
}

dP̃(w′)︸ ︷︷ ︸
job offer from continuing firm

+χx

(
U−W (w)

)
︸ ︷︷ ︸

job destruction

W (w)≥U (1.7)
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Given that workers can quit to unemployment, the value of being employed W (w) must weakly

exceed the value of unemployment U (Equation 1.7). The distribution P̃ represents the distri-

bution of wages in the population of workers. Since firms meet workers proportionally to their

employment, the distribution of wage offers coming from continuing firms is precisely P̃. The

optimal job acceptance rule is characterized in the following lemma.

Proposition 1. Employed workers accept any wage-increasing job offer. Unemployed workers

accept any job offer above a an endogenously-determined reservation wage wr given by

wr = b+(µ−χ)
∫

∞

zl

max
{

W (ŵ(z))−U,0
}

Γ
′
0(z)dz (1.8)

Proof. See Appendix A.1.1

By definition, active firms pay wages above wr, otherwise all their workers would have

quit to unemployment. Therefore, the law of motion for the unemployment rate can be expressed

as

u̇ = (1−u)χx︸ ︷︷ ︸
Unemployment

inflows

−u
(

χe +λ(1−u)
)

︸ ︷︷ ︸
Unemployment

outflows

. (1.9)

Firm growth. Equipped with the worker’s optimal job offer acceptance rule, I now charac-

terize the link between firm-level wage and employment growth. The instantaneous change in

employment at a firm of size N paying w≥ b is given by

Ṅ = g̃(w)N, (1.10)

where the employment growth function g̃(w) is an endogenous object which depends on the wage

distribution P̃(w). Notice that g̃ depends on the current wage policy w but not on size N. This

result is due to the fact that meeting rates are linear in size and that the worker’s acceptance rule

depends only on the current wage (Proposition 1). A simple expression can be obtained for the
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employment growth function g̃ conditional on survival

g̃(w)≡ λu+λ(1−u)P̃(w)︸ ︷︷ ︸
hiring rate

−λ(1−u)
(
1− P̃(w)

)︸ ︷︷ ︸
separation rate

∀w≥ wr (1.11)

Since meeting rates are exogenous, the hiring rate depends only on the fraction of job

offers that are accepted. As a result of the random matching assumption, a fraction u of meetings

are with unemployed workers and a fraction 1− u are with employed workers. Unemployed

workers accept all job offers above wr, while employed workers require a wage increase to quit

(Proposition 1). The measure of employed workers at firms paying less than w is equal to P̃(w),

so the hiring rate from employment is simply given by λ(1−u)P̃(w). Firms paying higher wages

thus have a higher hiring rate from employment as they are able to poach workers higher up in

the wage distribution.

Separations occur only due to quits. At rate λ(1−u), a worker receives a competing job

offer. Since firms meet workers proportionally to their size, the distribution of offered wages

is equal to the distribution of wages in the population P̃(w). The rate at which a firm paying w

loses its workers to competitors is thus given by λ(1−u)(1− P̃(w)). Hence, high-wage firms

face a lower separation rate due to the fact that a smaller fraction of their workers get poached by

competing firms. The following Lemma characterizes the employment growth function.

Lemma 1. The growth rate function g̃(w) is weakly increasing and bounded from above by λ.

Proof. The results are obtained directly from Equation 1.11, using the fact that P̃(w)→ 1

The firm problem is to choose a sequence of wage rates and levels of capital to rent

{ws,Ks}T
s=0 as well as an “exit time” T to maximize the expected flow of discounted profits.5 Let

5The notation can be confusing but the exit time T is not chosen at time zero, but rather is a function of the full
history of the idiosyncratic shocks.
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v(z,N) denote the value of a firm with productivity z and employment N.

v(z,N) = max
{ws,Ks}T

s=0, T≥0
E0

∫ T

0
e−rs

(
zsKα

s N1−α
s −wsNs−RKs

)
ds (1.12)

N0 = N, z0 = z (initial condition)

ws ≥ wr (participation constraint)

dNs = g̃(ws)Nsds (law of motion for labor)

dzs = dJs(z′s− zs) (productivity process)

{Js}∞
s=0 denotes a Poisson process with intensity χ and {z′s}∞

s=0 is a sequence of independent draws

from Γ0. Due to the exit decision, the value function does not obey a standard Hamilton-Jacobi-

Bellman (HJB) equation. It is obtained as the solution to the following variational inequality of

the obstacle type.6

min

{
rv(z,N)−max

w≥b
K≥0

{
zKαN1−α−wN−RK +

∂

∂N
v(z,N)g̃(w)N

}
(1.13)

−χ

(∫
v(z′,N)Γ0(dz′)− v(z,N)

)
, v(z,N)

}
= 0.

Basically, Equation 1.13 says that either the value function obeys a regular HJB equation or it

is equal to zero. Before going further, I make a parametric assumption to ensure that the value

function is well-defined.

Assumption 3. The meeting rate λ and rate of productivity resets χ satisfy the following inequal-

ity.

0 < λ < χ

The requirement that λ > 0 ensures that at least some firms grow over time (see Lemma 1),

6For a discussion on variational inequalities in economics, and in particular to solve optimal stopping time
problems in firm dynamics models, I refer the reader to Achdou et al. (2014).
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while λ < χ ensures that firms do not grow too fast. The case λ≥ χ would imply that the most

productive firm would “take over” the whole economy.

Lemma 2. The value function homogeneous of degree one in N, which means that v(z,N) =

v(z,1)N. Firm entry and exit follows a threshold rule, so that firms exit whenever z < zl and

entrepreneurs enter whenever z≥ zl .

Proof. See Appendix A.1.2

From now on, I denote the value of a firm with productivity z and a unit measure of worker

by v(z)≡ v(z,1) and the stock of capital per worker by k≡ K/N. Over the range z≥ zl , the value

function v(z) obeys the following HJB equation

rv(z) = max
w≥b
k≥0

{
zkα−w−Rk︸ ︷︷ ︸

profits

+v(z)g̃(w)︸ ︷︷ ︸
growth

}
+χ

(∫
v(z′)Γ0(dz′)− v(z)

)
︸ ︷︷ ︸

productivity shocks

. (1.14)

Over the range z < zl , we have that v(z) = 0.7 From Equation 1.14, we can see that the annuity

value of a firm rv(z) depends not only on current profits zkα−w−Rk but also on future growth

prospects and accounts for the risk of productivity shocks. A corollary of the homogeneity result

(Lemma 2) is that the wage function w(z) and the optimal the stock of capital per worker k(z) are

7More generally, the value function can be characterized as the solution to a Linear Complementary Problem.

v(z)
(

rv(z)−max
{

zkα−w−Rk+ v(z)g̃(w)
}
−χ

(∫
v(z′)Γ0(dz′)− v(z)

)
= 0 (1.15)

rv(z)−max
{

zkα−w−Rk+ v(z)g̃(w)
}
−χ

(∫
v(z′)Γ0(dz′)− v(z)

)
≥ 0 (1.16)

v(z)≥ 0 (1.17)

The exit region is characterized by a set X = {z : v(z) = 0}. I use this representation of the problem for the numerical
solution (see Appendix A.1.9).
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also size-independent. From the first-order conditions, we have

zαk(z)α−1︸ ︷︷ ︸
marginal product

of capital

= R︸︷︷︸
User cost
of capital

(1.18)

1︸︷︷︸
marginal increase

in wage bill

= v(z)g̃′
(
w(z)

)
.︸ ︷︷ ︸

marginal increase in
value of the firm

(1.19)

The first-order condition for capital is standard and implies that firms rent capital up to the point

where the marginal product of capital is equal to its user cost. The first-order condition for wages

captures the core trade-off faced by a wage-setting firm in a dynamic environment. When a firm

offers a high wage, it makes lower per-employee profit but grows faster, which increases the

future value of the firm. I denote the equilibrium growth rate of employment by g(z)≡ g̃(w(z)).

The following proposition provides closed-form expressions for the policy functions.

Proposition 2. Capital intensity k(z), labor productivity LP(z) and the wage schedule w(z) are

increasing in z and are given by

k(z) =
(
α/R

) 1
1−α z

1
1−α (1.20)

LP(z) =
(
α/R

) α

1−α z
1

1−α (1.21)

w(z) = wr +
∫ z

zl

v(ζ)g′(ζ)dζ. (1.22)

Proof. The expressions for k(z) and LP(z) are obtained directly from the first-order condition

1.18. For the derivation of w(z), see Appendix A.1.3.

Given that employment is predetermined while capital per worker is flexible, high z firms

rent more capital per worker (see Equation 1.20). Equation 1.22 highlights the fact that workers

earn a wage above their reservations wage and that the premium w(z)−wr is higher at more
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productive firms. Finally, the firm-level labor share LS(z) is given by

LS(z)≡ w(z)
LP(z)

=
wr +

∫ z
zl

v(ζ)g′(ζ)dζ

(α/R)
α

1−α z
1

1−α

. (1.23)

1.3.4 Equilibrium and characterizations

The analysis thus far is in partial equilibrium since the employment growth function g̃

depends on the endogenously-determined wage distribution P̃ through Equation 1.11. The wage

distribution is central to my analysis. It fully summarizes the amount of wage competition that

firms face. Instead of deriving a law of motion of the wage distribution, I focus on the employment-

weighted productivity distribution P(z)≡ P̃(w(z)), as it will be easier to characterize. The law of

motion for P(z) is given by

Ṗ(z) = (1−u)λP(z)(P(z)−1)︸ ︷︷ ︸
Job-to-job flows

+
u

1−u
χeΓ(z)+uλP(z)︸ ︷︷ ︸

Employment inflows

− χxP(z)︸ ︷︷ ︸
Employment

outflows

+χs(Γ(z)−P(z))︸ ︷︷ ︸
Productivity shocks

. (1.24)

In Appendix A.1.4, I provide a derivation of the law of motion. Conditional on P(z), the

equilibrium employment growth function g(z) can be computed using the definition of g̃(w)

(Equation 1.11).

g(z) = λu+λ(1−u)P(z)−λ(1−u)(1−P(z)) (1.25)

I now define the equilibrium concept.

A Stationary Bayesian Equilibrium consists of a productivity distribution Γ(z), rates

(χe, χs, χx), a value function v(z), a productivity threshold zl , policy functions w(z), k(z), g(z),

a reservation wage wr, an unemployment rate u, and an employment-weighted productivity

distribution P(z) that satisfy the following conditions:

1. The truncated productivity distribution Γ(z) and rates χe, χs, χx are determined by the

optimal entry and exit of firms (Equation 1.3);
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2. The value function v(z) and productivity threshold zl solve the optimal stopping time

problem of the firm (Equations 1.14);

3. The policy functions k(z), w(z), and g(z) solve the firm problem (Equations 1.20, 1.22, and

1.25);

4. The reservation wage solve the worker problem (Equation 1.8);

5. The unemployment rate and employment-weighted productivity distribution P(z) are sta-

tionary solutions to their respective laws of motion (Equations 1.9 and 1.24);

6. Workers beliefs are correct, meaning that ŵ(z) = w(z).

In a stationary equilibrium the measure of active firms is F = χe
χx

u (follows from Equation 1.4).

Notice that F does not appear in the equilibrium definition. The reason is that, due to constant-

returns-to-scale, large firms are merely scaled replicas of small firms. Hence, the measure of

firms is irrelevant. What matters is the allocation of workers to firms. The following proposition

provides closed-form expressions for the equilibrium unemployment rate u and the employment-

weighted productivity distribution P(z).

Proposition 3. Conditional on the productivity threshold zl , there exists a unique pair of unem-

ployment rate u and employment-weighted distribution P(z) that are stationary solutions to their

respective laws of motion (Equations 1.9 and 1.24). They are given by

u =
λ+χe +χx−

√
(λ+χe +χx)2−4λχx

2λ
(1.26)

P(z) =
λ(1−u)+χ−λu−

√(
λ(1−u)+χ−λu

)2−4λ(1−u)(χ−λu)Γ(z)

2(1−u)λ
(1.27)

Proof. See Appendix A.1.4. The existence of a solution is guaranteed by Assumption 3.
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A corollary of Proposition 3 is that the distribution of workers across firm productivity

ranks is invariant to the underlying productivity distribution Γ. For example, the measure of

workers employed at firms below the median productivity level Γ−1(1/2) is given by P(Γ−1(1/2)).

Notice from Equation 1.27 that P(Γ−1(1/2)) depends only on search frictions (χ,λ,u), and in

particular does not depend on the productivity distribution Γ. Before taking the model to the data,

I discuss the theoretical mechanisms that shape the equilibrium relationship between firm-level

productivity z, size N, and wages w.

1.3.5 Pass-through of productivity to wages

How do wages offered relate to firm productivity? Recall that the only incentive for firms

to offer wages above the reservation wage wr is to increase the growth rate of employment. This

incentive is captured by the first-order condition for wages evaluated along the equilibrium path

(Equation 1.19)

w′(z) = v(z)g′(z). (1.28)

Equation 1.28 states that the pass-through of firm productivity to wages is equal to the increase

in the growth rate g′(z) multiplied by the present value of rents accruing to the firm v(z). The

interpretation of w′(z) as a pass-through comes from the fact that if the productivity of a firm

increases from z to z+∆, its wage will increase from w(z) to approximately w(z)+w′(z)∆. I now

use the expression for g(z) (Equation 1.25) to unpack the growth effect g′(z).

w′(z) = v(z)︸︷︷︸
value effect

× 2λ(1−u)︸ ︷︷ ︸
search frictions

× P′(z)︸︷︷︸
local competition

(1.29)

Equation 1.29 highlights the importance of wage competition in shaping the pass-through of

productivity to wages. The “local competition” term P′(z) represents the density of employment

at z. If the density of employment at z is high, a firm faces strong incentives to increase its
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wage so that it can poach workers from firms with similar productivity. If, on the other hand,

a firm operates at a productivity level where the density of employment is low, it faces weak

incentives to increase its wage. Optimal wage-setting behavior in the model is thus intimately tied

to between-firm competition for workers. Notice that the pass-through of productivity to wages is

stronger when search frictions are less severe (λ is high) and when the labor market is tight (u is

low). Using this characterization of w′(z), I now establish two properties of the pass-through of

labor productivity LP(z) to wages.

Proposition 4. The pass-through of labor productivity to wages dw
dLP(z) satisfies two properties:

1. It is non-negative
dw

dLP
(z)≥ 0 ∀z≥ 0

2. It converges to zero

lim
z→∞

dw
dLP

(z) = 0

Proof. See Appendix A.1.5

The main takeaway from Proposition 4 is that very productive firms face weak incentives

to pass productivity gains to their workers in the form of higher wages—a prediction shared by

standard wage posting models as Burdett and Mortensen (1998). The reason is that they face

very few competitors with similar levels of productivity. Increasing wages does not increase

employment growth much as they already are the highest paying firms, so they face no incentive

to do so. In the language of monopsony theory, high-wage firms face a (locally) inelastic labor

supply curve, so their wage mark-down (i.e. gap between wage and marginal productivity) is

high.

Figure 1.5 illustrates the relationship between labor productivity and wages in the cali-

brated model (see Section 1.4.1 for a description of the calibration strategy). We can see that

wages increase with labor productivity, but the relationship becomes very weak in the upper range.

26



0 1 2 3 4 5 6

Labor productivity

0

1

2

3

4

5

6

W
a
g
e

1-  degree line

Wage

Figure 1.5: Equilibrium wage schedule in the calibrated model.

The dashed line represents a share 1−α of labor productivity, which would be the wage in a

frictionless, competitive model.8 Figure 1.6 contains the resulting relationship between labor

share and labor productivity. Notice that some firms have a higher labor share than than 1−α,

which means that after payments to capital are taken into account, they make negative profits. In

contrast, high-productivity firms have a labor share below 1−α.

In the calibrated model, the labor share is everywhere decreasing. This is not always the

case, yet I can prove the following result.

Proposition 5. There exists a productivity threshold z̃ such that the labor share becomes decreas-

ing in firm productivity.

∃ z̃ : ∀z > z̃,
d
dz

LS(z)< 0

Proof. See Appendix A.1.5.
8With perfect competition, wages are equal to the marginal product of labor w = (1−α)LP, which implies that

the labor should be 1−α at every firm.
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Figure 1.6: Equilibrium labor share schedule in the calibrated model.

1.3.6 Joint-distribution of productivity and employment

In the model, firm decisions are size-invariant. Yet, in a stationary equilibrium firm

productivity and employment size are dependent random variables. While there is no one-to-one

relationship between productivity z and size N, I prove that on average, more productive firms

are larger.

Proposition 6. The expected value of firm employment N conditional on productivity z is an

increasing function of z. It is given by

E(N|z) = 1−u
u

χx

χe

χ−λu√(
λ(1−u)+χ−λu

)2−4λ(1−u)(χ−λu)Γ(z)
.

Proof. See Appendix A.1.6

The reason why productivity and size are contemporaneously correlated is that more

productive firms pay higher wages and thus grow faster, and thus tend to be larger. The dependence

between size and productivity in a stationary equilibrium is fully summarized by the joint density
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ϕ(z,N), which can be obtained as the solution to the following Kolmogorov Forward Equation

0= χs

(
∂

∂z
Γ(z)

∫
∞

zl

ϕ(z′,N)dz′−ϕ(z,N)
)

︸ ︷︷ ︸
productivity shocks

−g(z)
∂

∂N

(
ϕ(z,N)N

)
︸ ︷︷ ︸

firm growth

+χx

(
∂

∂z
Γ(z)ψ(N−1)−ϕ(z,N)

)
︸ ︷︷ ︸

firm turnover

,

(1.30)

where ψ(N) denotes the Dirac Delta function. The following proposition characterizes the upper

tail of the firm size distribution.

Proposition 7. The firm size distribution has a Pareto upper tail, meaning that there exists a

unique ζ such that

lim
n→∞

1
n

logP(N > n) =−ζ,

Moreover, the Pareto exponent satisfies η > 1.

Proof. The equilibrium firm growth process falls into the class of models covered by Theorem

3.1 in Beare and Toda (2017a). The result that ζ > 1 follows from Assumption 3.

The stationary density ϕ(z,N) does not admit a closed-form solution, so I use the “Pareto

Extrapolation” method developed in Gouin-Bonenfant and Toda (2018) to numerically solve ϕ

over a finite grid and extrapolate the tails off the grid using the analytical characterization of

the Pareto exponent ζ (see Appendix A.1.9). One well-known empirical regularity regarding

the firm size distribution is Zipf’s law, which states that the size distribution of firms obeys a

power law with Pareto exponent close to (but above) one (see Gabaix (1999) and Axtell (2001a)).

Proposition 7 states that the stationary firm size distribution has a Pareto upper tail with exponent

above one. Whether or not the model delivers Zipf’s law is ultimately a quantitative question.
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Aggregating the model. The aggregate labor share is obtained by integrating firm-level labor

shares weighted by their output share against the stationary distribution.

LS =
∫ ∫

ω(z,N)︸ ︷︷ ︸
output share

× LS(z)︸ ︷︷ ︸
labor share

× ϕ(dz,dN)︸ ︷︷ ︸
stationary distribution

(1.31)

I denote by ω(z,N) the output share of a firm with employment N and productivity z

ω(z,N) =
N×LP(z)

Y
,

where Y is aggregate output.9 Equation 1.31 highlights the fact that the aggregate labor share

is shaped by rich interactions between firms in the labor market. In general, changes in the

distribution of TFP draws Γ0 will affect the aggregate labor share LS by changing the relative

productivity differentials of firms throughout the productivity distribution, and therefore their

incentives.

Proposition 8. If TFP increases by a factor π > 0 for all firms and the value of unemployment b

increases by a factor π
1

1−α , then the aggregate labor share LS remains unchanged.

Proof. See Appendix A.1.7

1.3.7 Interpreting differences in firm-level TFP

Before I go to the data, I want to emphasize the fact that I am being agnostic about

the reasons why firms differ in their TFP. In the data, I can not observe prices separately from

quantities, so the measure of labor productivity that I will construct is revenue-based. Hence,

9Using the employment-weighted productivity distribution P(z), the labor share can be expressed as

LS =
∫

ω(z,1)×LS(z)×P(dz)

.
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differences in labor productivity can be due to differences in prices and/or differences in physical

productivity.

I now give an example of a micro foundation of TFP in the model that arises purely

from differences in prices. So far, I have assumed that firms produce an homogeneous good

whose price is normalized to one. I now relax this assumption. Suppose that firms all have the

same productivity z = 1 but produce differentiated goods. Let firms be indexed by ω ∈ [0,F ]. A

representative consumer derives utility from a bundle of goods according to the following utility

function

U(c) =
∫ F

0
β(ω)c(ω)dω,

where c and β are infinite-dimensional non-negative vectors that represent respectively the amount

of each variety that is being consumed and the preference weights.

Suppose that the price of each variety p(ω) is determined in a centralized market and

that the representative consumer maximizes utility. For the market to clear, it must be the case

that p(ω) = β(ω) for all ω ∈ [0,F ]. The revenue production function of firm ω is thus given

by zKαN1−α, where z = β(ω). Hence, we can reinterpret TFP differences in the model—both

between firms and within firm over time—as arising purely from changing consumer preferences

rather than from physical productivity. The ultimate question remains the same: when does firm

(revenue) productivity translates into wages?

1.4 Quantifying the model

1.4.1 Calibration strategy

First, I model the distribution of TFP draws Γ0 as a Gamma distribution with mean

normalized to one. The distribution is thus characterized by a single shape parameter η > 0 which

determines the thickness of the upper tail of distribution. The resulting PDF is defined over [0,∞)
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and given by

Γ
′
0(z) =

ηη

G(η)
zη−1e−zη, (1.32)

where G(η) is the Gamma function. Lower values of η > 0 are thus associated with both

higher variance and skewness. Second, I set the rate at which an unemployed worker meets an

entrepreneur to µ = χ. Since the measure of active firms F is irrelevant for the labor share, the

difference µ and χ only affects the reservations wage and the unemployment rate. By setting

µ = χ, the reservation wage wr becomes equal to the value of unemployment b (see Equation 1.8).

I will therefore identify b directly. The model has seven parameters. I assign values to the first

three (r,δ,α) and jointly calibrate the last four (λ,χ,η,b).

I set the net interest rate r to 3%, which is the difference between the effective business

borrowing rate in Canada over the 2000-2008 period of as measured by the Bank of Canada10

(5.3%) and the average realized CPI inflation over that same period (2.3%). I obtain the de-

preciation rate δ by using industry-level data from Statistics Canada. For the set of industries

covered in the main sample, the average depreciation rate over the 2000-2015 is 17.6% (Table

031-0006). The Cobb-Douglas exponent α is set to 0.185 as to imply, conditional on R≡ r+δ, a

capital-to-output ratio of 1.10 as measured in the main sample. I find a similar capital-output ratio

of 1.02 using public data from Canadian National Accounts for the covered industries (Statistics

Canada Tables 031-0006 and 383-0063). Table 1.2 summarizes these choices.

The remaining parameters θ≡
(
λ,χ,η,b

)′ are jointly calibrated. I target moments from

the data and choose the set of parameters that minimizes the distance between the model-implied

moments and the data.11 To ensure that Assumption 3 is satisfied, I restrict the parameters space

10“The effective interest rate for businesses is a weighted-average borrowing rate for new lending to non-financial
businesses, estimated as a function of bank and market interest rates. The weights are derived from business credit
data. The business effective rate is a function of: short-term commercial paper and bankers acceptance rates, with
terms of one and three months; the bank prime business lending rate, which is adjusted for movements in bank
funding costs, so as to estimate the effective bank prime lending rate faced by new borrowers; and longer term
borrowing rates, approximated using Merrill Lynch bond indices, which include both investment and non-investment
grade companies (non-financial).”

11See Gourieroux, Monfort, and Renault (1993) for a theoretical treatment of the indirect inference method
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Table 1.2: Assigned parameters.

Parameter Symbol Value Target Source

Discount factor r 0.030 Real interest rate of 3% Bank of Canada
Depreciation rate δ 0.176 Depreciation rate of 17.6% Statistics Canada
Capital share α 0.227 Capital output ratio of 1.10 Statistics Canada

to Θ, which is defined by

Θ = R4
+∩
{

θ | 0 < λ < χ

}
. (1.33)

I choose 4 moments (statistics to be precise): the job reallocation rate, the autocorrelation of labor

productivity, the interdecile range of labor productivity, and the unemployment rate. While there

is no one-to-one mapping between the parameters and the moments, I now provide an informal

mapping. The meeting rate λ determines the pace at which firms meet new workers, and therefore

directly affects the job reallocation rate. The rate of productivity resets χ directly affects the

autocorrelation of labor productivity at the firm. The shape parameter η, which determines the

variance and skewness of the distribution of TFP draws, will determine the interdecile range of

labor productivity. Finally, the flow value of nonemployment b will determine the productivity

threshold zl , and therefore the firm exit rate χx. Since all unemployment inflows comes from firm

exit, b will determine the unemployment rate. Table 1.3 summarizes these relationships.

Table 1.3: Informal mapping between calibrated parameters and moments.

Parameter Symbol Moment

Meeting rate λ Job reallocation rate
Rate of productivity resets χ Autocorrelation of labor productivity
Shape parameter of TFP distribution η Interdecile range of labor productivity
Flow value of nonemployment b Unemployment rate

I take the annual unemployment rate and job reallocation rate directly from Canadian

public data and are average them over the 2000-2015 period (Tables 282-0087 and 527-0001).

Job reallocation is defined as the average of the job creation rate and the job destruction rate.
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The autocorrelation of labor productivity is obtained by estimating ρ in the following regression

model using the Canadian microdata

logLPi,t = c+µt + γ j +ρ logLPi,t−1 +ηi,t , Ei,tηi,t = 0, (1.34)

where LPi,t represent the labor productivity (value-added per worker) at firm i in period t and

µt ,γ j are year and 3-digit NAICS industry fixed-effects. I obtain a coefficient of 0.816.

The interdecile range of labor productivity is also computed using the microdata. First, I

remove year and industry (2-digit NAICS) fixed effects to firm-level log labor productivity. I then

compute the difference the 90th and 10th percentiles of the (residualized) log labor productivity

in the pooled 2000-2015 sample.

Denote the vector of statistics in the data by Λ̂ and the vector of the statistics in the model

evaluated at θ by Λ(θ). For each value of θ ∈ Θ, I solve the model numerically (see Appendix

A.1.9 for a description of the solution method) and compute the model-implied statistics Λ(θ). I

then minimize the following quadratic form

min
θ∈Θ̄

(
Λ(θ)− Λ̂

)′(
Λ(θ)− Λ̂

)
. (1.35)

Since Θ is not compact, I implement the numerical optimization problem by using its closure

Θ̄≡Θ∪
{

θ | 0≤ λ≤ χ

}
. I then verify that the minimizer θ∗ is in Θ. I obtain the parameter esti-

mate
(
λ,χ,η,b

)′
=
(
0.2095,0.2295,2.9518,0.7806

)′. Even though the parameter b is identified

mainly through the unemployment rate, which arguably is not very informative about the value

of nonemployment, its estimated value is fairly close to standard values in the literature. The

average wage in the economy is 1.2186, which means that b is equal to 64% of the average wage

which is close (but higher) than the widely used value of 0.4 in the labor search literature.12

Table 1.4 contains the targeted statistics in the model and in the data. One thing to notice

12Note that Hagedorn and Manovskii (2008) propose an calibration strategy that yields a value of b = 0.955.
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is that, even though there are as many parameters as moments, the fit is not perfect. This can be

explained by the fact that the equations mapping the structural parameters to the statistics are

non-linear, so that an exact solution β(θ∗) = β̂ need not exist. Nevertheless, the only statistic that

the model does not match satisfactorily is the job reallocation, and the value in the model is 7.5%

which is not too far from the 10.5% found in the data.13

Table 1.4: Targeted moments.

Statistic Data Model BM

Job reallocation rate 0.105 0.075 0
Autocorrelation of labor productivity 0.816 0.807 1
Interdecile range of labor productivity 1.544 1.551 1.551
Unemployment rate 0.071 0.086 0.086

Notes. The “Model” column present the model-implied statistics while the “BM” column
presents the model-implied statistics in a Burdett and Mortensen (1998) model.

To contrast the predictions of my model with those of the classic model of Burdett and

Mortensen (1998) (BM), I calibrate a plain-vanilla BM model augmented with a capital as a

factor of production. Since the model is well-known, I relegate the derivation to the Appendix

(See Appendix A.1.8). For the calibration, I use the two free parameters of the model to exactly

match the unemployment rate and interdecile range of labor productivity in the full model. From

Table 1.4, we can see that the static nature of the BM model restricts the productivity process to

be fully persistent (firm productivity does not change through time) and job reallocation to be

zero (firms do not grow or shrink over time).

1.4.2 Non-targeted moments

I now assess the ability of the calibrated model to match the data along several non-targeted

dimensions, paying particular attention to the facts documented in Section 1.2.

13In Appendix A.2.3, I provide a detailed decomposition of the job flows in the model and in the data (job creation,
destruction; by entrants, continuers, exiters). The model generates too low job reallocation amongst continuing firms.
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Consider the decomposition of the aggregate labor share LS described in Equation 1.2.

LS︸︷︷︸
aggregate

labor share

= L̄S︸︷︷︸
average

labor share

+ cov
(
LSi , Yi/Y

)
.︸ ︷︷ ︸

covariance between
labor share and output share

Table 1.5: Aggregate labor share decomposition (medvel versus data).

Component Data Model BM

Aggregate labor share 0.653 0.655 0.538
Average (unweighted) labor share 0.884 0.970 0.542
Covariance between labor share and output share -0.231 -0.315 -0.004

Notes. The “Data” columns is taken from Table 1.1; the “Model” column present the model-
implied statistics using the calibrated model; the “BM” column presents the model-implied
statistics in the calibrated Burdett and Mortensen (1998) model.

I now reproduce Table 1.1 and include model-implied moments (see Table 1.5). The

model generates an aggregate labor share of 0.66, which is nearly identical to the one in the data.

The average (unweighted) firm-level labor share in the model is 0.97, which is close but higher

than in the data (0.88). The resulting covariance between labor share and output share is negative

(fact #3), and stands at -0.32 in the model (-0.23 in the data). Overall, the fit is very good, which

is surprising given that the calibration procedure did not use data on the labor share. In contrasts,

the BM model generates a counterfactually low aggregate labor share (0.54) and a near zero

correlation between firm-level labor share and output share.

Both in the model and in the data, the average firm has a high labor share, yet the most

important firms—those with high output shares—tend to have a lower labor share. I now provide

a non parametric decomposition of the aggregate labor share. Denote by LSd and ωd the labor

share and output share within labor productivity decile d. The aggregate labor share can be

expressed as

LS =
10

∑
d=1

ωdLSd. (1.36)
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Figures 1.7 and 1.8 and plots the labor share and output shares within each labor productivity

decile, both in the model and in the data.14 To provide a benchmark, I include an horizontal

line at 1−α in Figure 1.7, which represents the labor share that would prevail in a frictionless,

competitive model.
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Figure 1.7: Labor shares.

First, notice that there are large differences in labor shares across firms (fact #1). In the

model, the difference between the labor share at the 10th decile and the 1st decile is 1.28 (1.14 in

the data). A large fraction of firms have a labor share above above one (fact #2). In the model, the

bottom 4 deciles of firms have a labor share above one (bottom 2 deciles in the data) while the

bottom 5 deciles have a labor share above 1−α (bottom 5 deciles in the data). In contrast, the

top decile of firms have a low labor share of roughly 54% (44% in the data).

The reason why the aggregate labor share is disproportionately determined by the low

labor share of top firms can be understood from Figure 1.8. Both in the model and in the data,

14To construct the productivity deciles in the data, I first sort firm-year observations by labor productivity within
industry-year bins (2-digit NAICS) and then group them into 10 deciles. I then compute the measure of interest
(labor share, output share, etc.) within each decile and average over industries and years (see Appendix A.2.4 for
details). The advantage of doing things in this manner is that (1) each productivity decile contains the same industry
mix as the overall economy and (2) the aggregate labor share LS has an exact decomposition, both in the model and
in the data.
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Figure 1.8: Output shares.

value-added is extremely concentrated within high-productivity firms. In the model, the top decile

of firms account for 53% of of value-added (43% in the data), while the bottom 5 deciles accounts

for a mere 12% (18% in the data). The negative covariance between labor share and output share

documented earlier can thus explained by the fact that, in a stationary equilibrium, labor shares

are decreasing in firm productivity while output shares are increasing in firm productivity. Firms

in the top deciles achieve achieve high output shares through a combination of employing more

workers (Proposition 6) and being more productive.

Table 1.5 highlights the fact that the BM model—which is essentially a static version

of my model—generates predictions that are not in line with the data. Most importantly, the

aggregate labor share is too low (0.54 versus 0.65 in the data) due to the fact that firm profits are

too high. In both model, the share of value-added going to payments to capital is α, which implies

that the share of firm profits is 11% in my model and 23% in the BM model. For comparison,

Eggertsson, Robbins, and Wold (2018) and Barkai (2016) estimate a profit share of roughly 0.12

in the U.S. over the 2000-2015 period.

Figures 1.9 and 1.10 reproduce the previous analysis in the context of the BM model.
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Figure 1.9: Labor shares
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Figure 1.10: Output shares

Notice that firm-level labor shares are uniformly below 1−α. This is because firms that select

into entry only if they make positive profits. In my model, flow profits can be either positive or

negative. The reason is that firm productivity changes over time and some firms may choose to

continue operating despite being temporarily unprofitable in order to maintain they scale. Hence,

the selection margin accounts for the fact that the BM model predicts such a low labor share.
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Another counterfactual prediction of the BM model is that value-added is too concentrated (see

Figure 1.10). The top decile of firms account for 74% of aggregate value-added (43% in the

model). This is because firm productivity does not change over time, so high productivity firms

end up hiring most workers.
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Figure 1.11: Complementary CDF of normalized firm size (firm employment over average firm
employment)

In the data, it is well-known that the firm size distribution is well approximated by Zipf’s

law (i.e. a Pareto distribution with exponent slightly above one). Figure 1.11 contains the

complementary CDF of normalized firm size (firm employment over average firm employment)

in the model and in the data. Despite being a non targeted moment, the fit is exceptional. The

reason is that the model generates a Pareto upper tail (Proposition 7) and in the calibrated model

the Pareto exponent is 1.08 (see Appendix A.1.9 for details), which is close to the value of

1.06 estimated by Dixon and Rollin (2012) using Canadian data, and Axtell (2001a) using U.S.

data. The fact that the model endogenously generate a Pareto exponent close to one is consistent

with the findings in Toda (2016), who shows that Zipf’s law robustly arises in models with a

constant-returns-to-scale technology and a fixed supply of labor.
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An advantage of working with a constant-returns-to-scale firm dynamics model is that it

can easily replicate the extreme concentration of employment and value-added in the data without

having to compromise on the fit of the productivity distribution. In fact, the firm-size distribution

is invariant to the productivity distribution (see remark after Proposition 3), so the model would

generate Zipf’s law for any value of η. The model endogenously generates “superstar firms”,

who emerge by experiencing extended periods of fast growth. Since firm-level productivity is

persistent but not permanent, the model provides a natural explanation for the rise and fall of

large firms.

1.4.3 Model validation

In the model, the reason why high-output-share firms tend to have a lower labor share is

entirely due to the fact that they tend to be more productive and pay wages significantly below

labor productivity. I now test this prediction. First, I estimate the relationship between firm-level

labor share and output in a regression framework. I estimate the following model

logLSi,t = µt + γ j +βY logYi,t + εi,t ,

where µt and γ j are year and industry (3-digit NAICS) fixed effects. The estimated coefficient

β̂Y = −0.112 is negative and highly statistically significant (column 1 of Table 1.6). Is the

covariance between output share and labor share driven by the fact that the capital share RK
Y is

higher at larger firms? Recall that in the model, the capital share is equal to α at every firm,

so cross-sectional differences in the capital-output ratio play no role in driving the relationship

between firm-level output and the labor share. This needs not be true in the data, so I add the

capital-output ratio as a separate regressor in the regression

logLSi,t = µt + γ j +βY logYi,t +βK/Y log(K/Y )i,t + εi,t .
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Column 2 of Table 1.6 reports the estimated coefficients. The estimated relationship between labor

share and output barely changes after controlling for K/Y (−0.113 versus −0.112). Hence, high-

output firms tend to have a lower labor share, irrespective of their capital-output ratio. Consistently

with economic theory, the coefficient on the capital-output ratio is negative (β̂K/Y = −0.018),

meaning that more capital-intensive firms tend to have a lower labor share. But notice that adding

the capital-output ratio as a regressor barely improves the fraction of variance explained by the

model; the R2 increases from 0.120 to 0.125.

I now decompose the effect of output Y on the labor share. Notice that the logarithm of

firm output is the sum of number of the logarithms of employment N and labor productivity LP. I

now include (log) employment and labor productivity separately

logLSi,t = µt + γ j +βLP logLPi,t +βN logNi,t + εi,t .

Column 3 of Table 1.6 reports the results. In the model, the labor share is size-invariant conditional

on firm productivity (Proposition 2). Consistently with this prediction, the estimated coefficient

on labor productivity is large significant (β̂LP =−0.314) but the coefficient on size is very small

(β̂N = 0.009). The interpretation is that high-productivity firms tend to have a lower labor share,

but after controlling for labor productivity, size is mostly irrelevant and if anything predicts a

higher labor share.

The market imperfection that allows firms in the model to earn profits is the presence of

search frictions. It is well known that a wage-setting firm will exert monopsony power in the labor

market when there are search frictions (Bontemps, Robin, and Berg (2000)). The key difference

between competitive and monopsonistic labor market models relates to the elasticity of the labor

supply curve faced by a firm. In a competitive environment, firms face a perfectly elastic labor

supply curve, which means that they can hire any amount of labor at the going wage rate. In

contrast, monopsonists face an upward-sloping labor supply curve, which means that they must

42



Table 1.6: Labor share and output at the firm-level.

Labor share (logLSi,t) (1) (2) (3)

Value-added (logYi,t) -0.112*** -0.113***
(0.001) (0.001)

Capital-output ratio (log(K/Y )i,t) -0.018***
(0.000)

Size (logNi,t) 0.009***
(0.001)

Labor productivity (logLPi,t) -0.313***
(0.002)

Industry fixed effects X X X
Year fixed effects X X X

Sample size 3,084,182 3,084,182 3,084,182
R2 0.120 0.125 0.273

Notes. Standard errors in parentheses clustered at the firm-level ( *** p < 0.01, ** p < 0.05, *
p < 0.1 ).

increase wages in order to recruit additional workers. In my model, the relationship is captured

by Equation 1.9, which implies that firm-level employment growth over a time period [t, t +1) is

related to the offered wage through

logNt+1− logNt =
∫ t+1

t
g̃(ws)ds,

where the employment growth function g̃(w) is increasing in w (Lemma 1). I now test this

prediction in the data by estimating the following equation

logNi,t+1− logNi,t = µt + γi +θ logwi,t + εi,t ,

where Ni,t and wi,t denote the employment and average wage of firm i in year t and the terms
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µt and γi are year and firm fixed effects. I estimate a slope of θ̂ = 0.213 (see Table 1.7). In the

calibrated model, the population regression coefficient is θ = 0.368 which is larger but of the

same order of magnitude.15 The interpretation is that when a firm increases its wage by 10%, its

annual growth rate of employment increase by 2.1 percentage points (3.7 in the model).

Table 1.7: Employment growth and wage at the firm-level.

Employment growth (logNi,t+1− logNi,t)

Logarithm of average wage (logwi,t) 0.212***
(0.001)

Firm fixed effects X

Year fixed effects X

Sample size 1,167,691
R2 0.275

Notes. Standard errors in parentheses ( *** p < 0.01, ** p < 0.05, * p < 0.1 ). The sample,
which contains annual data, is restricted to observations for which there is no missing values at
time t +1 up to t +5.

To further validate the model, I estimate the “firm size wage premium”—in the tradition

of Brown and Medoff (1989)—by estimating the following cross-sectional regression

logwi,t = µt + γ j +βN logNi,t + εi,t ,

where wi,t and Ni,t denote the average wage and employment at firm i in year t. The terms µt

and γ j are year and industry (3-digit NAICS) fixed effects. The point I want to make is that,

despite the fact that the wage schedule is size-invariant, the model still generates a cross-sectional

relationship between wage and size. I estimate a firm size wage premium β̂ of 0.030 (see Table

15I compute the model-implied regression coefficient as θ = cov(g(z),logw(z))
var(log(w(z)) , where z∼ Γ.
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1.8), which is close to the model-implied regression coefficient of 0.042.16 The interpretation

is that a 10% increase in a firm’s size is associated with a 0.3% (0.42% in the model) increase

in the average wage. The positive relationship between size and wage in the model is explained

by the fact that high productivity firms tend to be larger (Proposition 6) and pay higher wages

(Proposition 4).

Table 1.8: Firm size wage premium.

Logarithm of average wage (logwt)

Logarithm of firm size (logNt) 0.030***
(0.001)

Year fixed effects X
Industry fixed effects X

Sample size 3,084,182
R2 0.390

Notes. Standard errors clustered at the firm level in parentheses ( *** p < 0.01, ** p < 0.054, *
p < 0.1 )

1.5 Productivity dispersion and the labor share

1.5.1 Quantifying the effect of productivity dispersion

I now quantify the effect of an exogenous and permanent increase in productivity dis-

persion using the calibrated model. To do so, I feed in an exogenous increase in productivity

dispersion of the same magnitude as the U.S. economy experienced over the 1977-2007 period.

I use the measure of productivity dispersion constructed by Barth et al. (2016) (their Table 3).

They use data from the Census Bureaus Economic Census files and compute the variance of log

16I compute the model-implied regression coefficient as βN = cov(logN,logw(z))
var(logN) , where (z,N)∼ ϕ.
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revenue per worker in the cross-section of establishments.17 The data is based on quinquennial

censuses of establishments, so they report values for the years 1977, 1982, 1987, 1992, 1997,

2002, and 2007. They find an increase of 0.311 over the full sample, almost all of which occurs in

the post 2000 period. While the measure does not account for industry differences, they provide

measures for 8 broad industries, and the average increase with in industries is nearly identical an

stands at 0.297.

To generate a “productivity dispersion shock” in the model, I decrease the parameter η,

which determines the shape of the distribution of TFP draws Γ0. Recall that the distribution was

parametrized in a way to ensure that the mean is equal to one (Equation 1.32), so the change in

η represents a mean-preserving spread (see Figure 1.15). I choose η = 1.6176, which implies

a 0.3 increase in the cross-sectional variance of (log) revenue. I also increase the flow value

of unemployment to b = 0.8304 in order to keep the firm exit rate constant before and after

the shock. If we thinks of b as an unemployment benefit, then increasing b is consistent with

unemployment benefits increasing with GDP.

The model experiment consists in comparing the stationary equilibrium of the model

before and after the shock. Table 1.9 contains the response of several variables to the productivity

dispersion shock. First, the aggregate labor share declines by 2.26 percentage point, from 0.655

to 0.632. Interestingly, the average (unweighted) labor share moves in the opposite direction,

increasing from 0.970 to 1.265. The employment share of the top decile of firms does not change.

This is not surprising in light of the corollary of Proposition 3, which states that the allocation of

workers to firm productivity ranks is invariant to the underlying distribution Γ. Given that the

productivity gap between the bottom and top decile of firms increases and the employment shares

remain unchanged, the output share of the top decile of firms increases by 6.3 percentage points

17The authors caution that “The Economic Census expanded in scope over the 19772002 period, but the Business
Register and LBD covered all industries throughout. As a check, we calculated the variance of revenues per worker
restricted to industries where in each year total industry employment in the economic census is greater or equal to
90% of total industry employment in the LBD. The variance trend is very similar for 1977, the variance is 0.945; for
1982, it is 0.965; for 1987, it is 0.991; for 1992, it is 1.036; and for 1997, it is 1.111”
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Figure 1.12: Distribution of productivity dispersion Γ0 before and after the shock.

from 0.540 to 0.597.

Table 1.9: Model response to the productivity dispersion shock.

Variable Before After Change (%)

Aggregate labor share 0.655 0.632 −2.26
Average (unweighted) labor share 0.970 1.265 +29.59
Output share of the top decile 0.540 0.597 +3.10
Employment share of the top decile 0.285 0.285 0

Notes. The employment/output shares of the top decile are defined as the share of employ-
ment/output of the top 10% of firms ranked by productivity.

To highlight the forces at play, I now study the impact of the productivity dispersion

shock amongst different segments of firms. Figures 1.13 and 1.14 plots the response of labor

shares and output shares in the model for all productivity deciles. The positive response of the

average (unweighted) labor share can be explained by the fact that, for all but the top two deciles,

firm labor shares increase. The adjustment of firm labor shares is more pronounced for low

productivity firms, which leads to an increase in the dispersion of firm labor shares. Turning to
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Figure 1.13: Adjustment of labor shares.

2 4 6 8 10

Labor productivity decile

-0.02

0

0.02

0.04

0.06

0.08

O
u
tp

u
t 
s
h
a
re

 c
h
a
n
g
e

Figure 1.14: Reallocation of output shares.

Figure 1.14, we see that the bottom 9 deciles of firms lose output shares at the expense of the top

decile. Having established that high productivity firms have lower labor shares, the reallocation

of output shares towards low-labor-share firms mechanically decreases the aggregate labor share.

To quantify the relative importance of the “adjustment” and “reallocation” components

of the decline of the aggregate labor share implied by the productivity dispersion shock, I use a
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traditional shift-share decomposition as in Baily, Hulten, and Campbell (1992).18 Denote by xd

the value of a variable within productivity decile d. Using the exact decomposition from Equation

1.36, the change in the aggregate labor share can be expressed as

∆LS = ∑ωd∆LSd︸ ︷︷ ︸
adjustment

+∑∆ωdLSd︸ ︷︷ ︸
reallocation

+ ∑∆ωd∆LSd.︸ ︷︷ ︸
directed reallocation

(1.37)

The adjustment measures the effect of changing the labor shares LSd while keeping the labor

shares ωd constant. The reallocation component measures the effect of changing the output shares

ωd while keeping the labor shares LSd constant. The third term, which I interpret as “directed

reallocation”, accounts for the comovements between changes in labor shares and output shares.

For example, if there is reallocation of output shares towards firms with a declining labor share,

then the directed reallocation term will be negative. Table 1.10 decomposes the model-implied

aggregate labor share change into the contribution of three components Equation 1.37. The

contribution of the “reallocation” and “directed reallocation” components are the largest at -1.15

and -0.26 percentage points respectively. The adjustment component works in the opposite

direction and accounts for a positive contribution of 0.52 percentage points.

Table 1.10: Shift-share decomposition of the aggregate labor share response in the model.

Component Contribution (%)

Adjustment +2.91
Reallocation −2.93
Directed reallocation −2.25

Total −2.26

Notes. The three components are defined in Equation 1.37.

The model predicts that, in response to a productivity dispersion of the same magnitude

18Baily, Hulten, and Campbell (1992) decompose the data at the establishment-level while I decompose it at the
productivity decile level. Since the ranking of firms in terms of productivity remains unchanged after the productivity
dispersion shock, these two approaches are equivalent.
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as what has been estimated in the U.S. over 1977-2007, the aggregate labor share declines by

2.26 percentage points. To compare this number with the data, I first compute the U.S. corporate

sector labor share as the ratio of “compensation of employees” to “gross value-added” using BEA

Table 1.14. The labor share exhibits cyclicality (Nekarda and Ramey (2013)), so I also estimate a

cubic trend over the full sample (1929-2017). Over 1977-2007, the trend labor share decline has

been 3.62 percentage points. Hence, through the lens of the model, rising productivity dispersion

explains 2.26/3.62≈ 63% of the labor share decline, making it a primary contributor.

Figure 1.5.1 contains the time series of productivity dispersion and the labor share. As we

can see, in the first half of the sample (1977-1992), the increase in productivity dispersion—the

variance of (log) revenue per worker—has been limited (+0.07) and the trend labor decline has

been only 0.4 percentage point. Over the second half of the sample (1992-2007), the increase in

productivity dispersion has been large (+0.24) and the labor share declined by 3.2 percentage

points.

1980 1990 2000 2010

0.9

1

1.1

1.2

1.3

1.4

P
ro

d
u
c
ti
v
it
y
 d

is
p
e
rs

io
n

0.56

0.58

0.6

0.62

0.64

0.66

L
a
b
o
r 

s
h
a
re

productivity dispersion (left)

labor share (right)

Figure 1.15: U.S. corporate sector labor share and productivity dispersion.

In addition to a decline of the aggregate labor share, the model generates micro-level

predictions that can be confronted with the data. First, the decline of the labor share in the model

is overwhelmingly driven by the reallocation of output shares towards firms with a low (and
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declining) labor share, and is partially offset by an increase in the labor share of most firms (Table

1.10). This is precisely what Kehrig and Vincent (2017) document in the U.S. manufacturing

sector. They show that over the 1967-2012 period, the aggregate labor share declined by 4.5

percentage point per decade, while the median labor share increased by 0.7 percentage point per

decade. They reconcile this divergence by showing that low-labor-share firms have gained output

shares over time. Autor et al. (2017) document a similar pattern within most industries.

Second, the model predicts that, in response to a productivity dispersion shock, the

concentration of output increases but employment concentration remains constant (Table 1.9).

Consistent with this prediction, Kehrig and Vincent (2017) find that there has been a massive

reallocation of output towards low-labor-share firms, but that there was limited reallocation of

employment. At the aggregate level, there has been a secular increase in sales concentration in

the U.S. over the past two decades (Grullon, Larkin, and Michaely (2017)), which coincided with

the decline of the labor share. The negative comovement between labor share and concentration

is often interpreted as evidence in favor of rising monopoly power (Barkai (2016)), but my in

my model the two series move in opposite direction as the result of an increase in productivity

dispersion.

1.5.2 Empirical evidence

I now leverage cross-country and cross-industry data to test the prediction that there is a

negative relationship between productivity dispersion and the labor share. The model predicts

that the level of productivity dispersion should be negatively correlated with the level labor share.

But it also predicts that changes in productivity dispersion should translate in changes in the

labor share. I will use different data sources—which I will describe shortly—and estimate the
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following regressions models.

LS j,t = µt +βOLS PD j,t + ε j,t (1.38)

LS j,t = µt + γ j +βFE PD j,t + ε j,t (1.39)

∆
kLS j,t = µt + γ j +βLD ∆

kPD j,t + ε j,t+k, (1.40)

PD denotes the interdecile range of labor productivity across firms, LS is the labor share, µt

are year fixed-effects, and γ j is an industry and/or country fixed effects. The first specification

(Equation 1.38), which I call “OLS”, uses cross-sectional variation in the levels for identification.

The second specification (Equation 1.39), from now on fixed-effects or “FE”, uses variation in the

level of LS and PD within a unit j over time for identification. For the last specification (Equation

1.40), from now on long differences or “LD”, I use non-overlapping k-year periods to calculate

the changes ∆, so the identification comes from the low frequency comovement of LS and PD for

identification.

The OECD has developed a project called MultiProd that seeks to provide harmonized

cross-country data on productivity and wage dispersion. The data they collect is obtained by

running a standardized routine on individual country’s production surveys and business registers.

The variables that I will use (productivity dispersion) is taken directly from the replication material

of Berlingieri et al. [2017]. As I did with the Canadian microdata, they measure productivity

dispersion as the logarithm of the interdecile range of labor productivity in the cross-section

of firms. The measures are computed at the NACE two-digit industry level and then averaged

with employment weights to provide, for each country-year, a measure for the manufacturing

sector and for non-financial services sectors. I merge the productivity dispersion data with

publicly-available data on the labor share.19 I obtain a balanced panel of 7 countries (Denmark,

19The data on the labor share by sector is obtained from EUKLEMS project (Denmark, Finland, France and
Italy), WORLDKLEMS (Japan), and directly from national statistics institutes (Norway and New Zealand). For a
description of the methodology underlying the EUKLEMS and WORLDKLEMS data, see respectively O’Mahony
and Timmer (2009) and Jorgenson (2012).
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Finland, France, Italy, Japan, Norway and New Zealand) and two industry groups (manufacturing

and services) for the 2001-2011 period. One year of data was missing for France and Japan, so I

imputed values using linear interpolation.

Figure 1.16 plots the cross-sectional relationship between productivity dispersion and the

labor share at the beginning of the sample in 2001. There is a clear negative relationship, where

country-industry observations with higher productivity dispersion tend to have a lower labor

share. Figure 1.17 plots the same variables, but in 10 year differences from 2001 to 2011. Again,

the relationship is negative. In Table 1.11, present the results in regression form for specifications

1.38 through 1.40. Given the small cross-section (N = 14), I conduct hypothesis (β = 0) by doing

a permutation tests. Usual methods such as cluster-robust standard errors would not be valid. For

specifications OLS and FE, the data is “block permuted” at the country-industry level to account

for the autocorrelation of errors within a country-industry over time. In all specification, I obtain

negative slope coefficients ranging from −0.077 (OLS) to −0.203 (10-year differences). The

results are statistically significant at the 5% and 10% level for the FE and 10-year differences

specifications respectively.
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Figure 1.16: Relationship in level (2001)

I now aggregate the Canadian microdata to construct a panel dataset covering most 3-
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Figure 1.17: Relationship in changes (2001-2011)

Table 1.11: Productivity dispersion and the labor share: cross-country regressions.

(1) (2) (3) (4)
OLS FE 5y diff. 10y diff.

Productivity dispersion -0.077 -0.199* -0.120 -0.203**
(p = 0.360) (p = 0.096) (p = 0.130) (p = 0.029)

Year FE X X
Industry FE X X X X
Country FE X

N 154 154 28 14
R2 0.250 0.860 0.136 0.498

Notes. The p-values are obtained by permutation test ( *** p < 0.01, ** p < 0.05, * p < 0.1
). For specifications (1) and (2), the data is permuted at the country-industry. Each column
contains an estimated coefficient from a separate regression of the labor share LS on productivity
dispersion. Productivity dispersion is defined as the logarithm of the interdecile range of labor
productivity in the cross-section of firms. The four specifications used are described in Equations
1.38, 1.39 and 1.40.

digit NAICS industries over the 2000-2015 period (see Appendix A.2.5 for details regarding

the construction of the dataset) and repeat the previous exercise. Figures 1.18 and 1.19 plot
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the relationship between productivity dispersion and the labor share for the year 2001 and the

period 2001-2011 respectively. Again, there is a clear negative relationship, where industries with

higher (increasing) productivity dispersion tend to have a lower (decreasing) labor share. Table

1.12 presents the regressions results. For the OLS and FE specification, I use standard errors

clustered at the industry level to account for possible time-series dependence of the errors within

an industry. In all specification, I obtain negative slope coefficients ranging from −0.063 (5-year

differences) to −0.208 (10-year differences). The results are statistically significant at the 5%

level for all specifications except for the 5-year differences. The results are remarkably similar to

the cross-country exercise despite the fact that completely different datasets are used.
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Figure 1.18: Relationship in level (2001)

So far, I have established that the labor share comoves negatively with the interdecile

range (90/10 percentile ratio) of the firm productivity dispersion. I now use the cross-industry

data to quantify the relative importance of right-tail dispersion (90/50 percentile ratio) and left-tail

dispersion (50/10 percentile ratio). To do so, I estimate Equations 1.38, 1.39 and 1.40 but this time

adding both left-tail and right-tail dispersion as two separate regressors (the results are reported in

Table 1.13). A clear pattern emerges, where right-tail dispersion is associated with a lower labor

share, but left-tail dispersion seems unrelated with the labor share. These findings are consistent
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Figure 1.19: Relationship in changes (2001-2011)

Table 1.12: Productivity dispersion and the aggregate labor share: cross-industry regressions.

(1) (2) (3) (4)
OLS FE 5y diff. 10y diff.

Productivity dispersion -0.112*** -0.118** -0.063* -0.208**
(0.029) (0.047) (0.034) (0.079)

Year FE X X
Industry FE X X

N 1104 1104 207 69
R2 0.154 0.736 0.228 0.092

Notes. Standard errors for specification (1) and (2) are clustered at the industry level ( ***
p < 0.01, ** p < 0.05, * p < 0.1 ). Each column contains an estimated coefficient from a
separate regression of the labor share LS on productivity dispersion. Productivity dispersion is
defined as the logarithm of the interdecile range of labor productivity in the cross-section of
firms. The four specifications used are described in Equations 1.38, 1.39 and 1.40.

with my narrative, which says that it is the existence of extremely high-productivity firms that

weakens labor market competition, not the existence of extremely low-productivity firms.

In the model, a rise in productivity dispersion leads to a decline of the aggregate labor share

that operates through a reallocation of value-added towards high-productivity firms, as opposed
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Table 1.13: Right/left-tail productivity dispersion and the aggregate labor share: cross-industry
regressions.

(1) (2) (3) (4)
OLS FE 5y diff. 10y diff.

Right-tail productivity dispersion -0.445*** -0.290*** -0.203** -0.316***
(0.081) (0.100) (0.083) (0.107)

Left-tail productivity dispersion 0.201** -0.031 0.006 -0.103
(0.087) (0.078) (0.051) (0.105)

Year FE X X
Industry FE X

N 1104 1104 207 69
R2 0.308 0.743 0.247 0.122

Notes. For specifications (1) and (2), the standard errors in parentheses are clustered at the
industry level ( *** p < 0.01, ** p < 0.05, * p < 0.1 ). Each column contains an estimated
coefficient from a separate regression of the aggregate labor share LS on left-tail and right-tail
productivity dispersion. Right-tail (left-tail) productivity dispersion is measured as the logarithm
of the 90/50 (50/10) percentile ratio of labor productivity in the cross-section of firms. The four
specifications used are described in Equations 1.38, 1.39 and 1.40.

to a broad-based decline of firm labor shares. In contrast, the model predicts an increase the

average (unweighted) firm labor share (Table 1.9). I now test this prediction using the Canadian

cross-industry data. First, table 1.14 presents the estimated relationship between productivity

dispersion and the average firm labor share. In all specification, I obtain positive slope coefficients

ranging from 0.044 (5-year differences) to 0.168 (FE). The results are statistically significant at

the 5% level for all specifications except for the 5-year differences.

These results are consistent with the model experiment, in which the labor share of the

bottom 80% of firms (in terms of productivity) increased while the labor share of the top 20%

of firms decreased. In addition, the top 10% of firms gained output shares at the expense of the

bottom 90% (see Figure 1.14). A more stringent test of the model mechanism is to estimate the

response of labor shares and output shares along the productivity distribution. Specifically, for
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Table 1.14: Productivity dispersion and the average labor share: cross-industry regressions.

(1) (2) (3) (4)
OLS FE 5y diff. 10y diff.

Productivity dispersion 0.094*** 0.168*** 0.044* 0.140**
(0.031) (0.027) (0.024) (0.058)

Year FE X X
Industry FE X

N 1104 1104 207 69
R2 0.177 0.826 0.136 0.077

Notes. For specifications (1) and (2), the standard errors in parentheses are clustered at the
industry level ( *** p < 0.01, ** p < 0.05, * p < 0.1 ). Each column contains an estimated
coefficient from a separate regression of the average (unweighted) firm labor share L̄S on
productivity dispersion. Productivity dispersion is measured as the logarithm of the 90/10
percentile ratio of labor productivity in the cross-section of firms. The four specifications used
are described in Equations 1.38, 1.39 and 1.40.

each productivity quintile q ∈ {1, . . . ,5}, I estimate the following fixed-effects regression

Yq, j,t = µt + γ j +βqPD j,t + εq, j,t , (1.41)

where µt is a year fixed-effect and γ j is a 3-digit NAICS industry fixed effect. Yq, j,t represents

the variable of interest (labor share or output share) in productivity quintile q, industry j, and

year t. PD j,t represents the interdecile range of labor productivity within industry j in year t. I

use clustered standard errors at the industry-level. The productivity quintiles are constructed by

sorting firms within industry-years. Figures 1.20 and 1.21 plot the estimated coefficients with

their 95% confidence intervals. As predicted by the model, the labor share of low-productivity

firms increases with productivity dispersion while the opposite is true for high-productivity firms

(Figure 1.20). The coefficients are imprecisely estimated, but for the two top quintiles they are

negative and significant at the 5% level. Turning to the coefficients for output shares, we have
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that the coefficient for the top quintile of firms is positive while it is negative or near-zero for all

the other quintiles. Only the top quintile is significant at the 5% level. Taken as a whole, these

findings are remarkably consistent with the transmission mechanism of productivity dispersion to

aggregate labor share in the model (see Figure 1.13 and 1.14 for comparison)

Figure 1.20: Labor shares.

Figure 1.21: output shares.
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1.6 Concluding Remarks

I present a new theory of the labor share that emphasizes the role of firm competition for

workers. In my model, heterogeneous firms grow by accumulating workers and compete through

wages in a frictional labor market. In equilibrium, there are firm-specific gaps between wage

and productivity: low-productivity firms pay wages above productivity while high-productivity

firms pay wages below productivity. The interaction between firm dynamics and labor market

imperfections gives rise to an empirically relevant labor market “microstucture”. In particular,

value-added is concentrated within large firms who tend to be highly-productive and have a low

labor share.

The main insight is that the distribution of firm productivity is a central determinant of

the aggregate labor share. I find that productivity dispersion effectively weakens the intensity of

wage competition in the labor market.

The model predicts that broad-based productivity growth translate into higher wages

one-for-one. But when productivity gains are concentrated at the top of the firm productivity

distribution, wages lag behind labor productivity and the labor share declines.

I find that rising productivity dispersion was in fact an important driving force behind the

labor share decline in the US over the 1977-2007 period, explaining nearly 2/3 of the decline.

In my analysis, I take the rise in productivity dispersion as given. Little is known regarding

the evolution of productivity dispersion over time and my paper falls short of explaining the

trend increase. Future work should seek to understand the determinants of rising productivity

dispersion.
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Chapter 2

Pareto Extrapolation: Bridging

Theoretical and Quantitative Models of

Wealth Inequality

2.1 Introduction

Macroeconomic models increasingly incorporate heterogeneity. Doing so allows re-

searchers to identify who gains and who loses from new policies, but also to assess how the

effectiveness of policies depend on the nature of heterogeneity. Since the first generation of

heterogeneous-agent models such as Huggett (1993) and Aiyagari (1994), one challenge has been

to generate a realistic wealth distribution. Empirically, it is well known since Pareto (1895, 1896,

1897)’s seminal work that the wealth distribution obeys the power law: the fraction of agents

with wealth w or larger decays like a power function w−ζ, where ζ is called the Pareto exponent.

Hence, “micro-consistent” models of wealth inequality should endogenously generate fat-tailed

wealth distributions.

We are now much closer to understanding the economic forces that determine wealth

inequality, and many models have been proposed that can account for the extreme concentration
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of wealth we observe in the data. Two parallel literatures have emerged. The first studies relatively

simple models and provides theoretical characterizations of the power law behavior of the wealth

distribution, often relying on analytical solutions. The second studies rich general equilibrium

models and conducts quantitative analysis and experiments that rely heavily on numerical methods.

However, there has always been the trade-off between analytical tractability and the richness of

models. The former requires strong (and oftentimes unrealistic) assumptions. The latter relies

on numerical methods, which are in general not well-suited for studying the tail behavior of the

wealth distribution because models are commonly solved on a finite grid and hence misses the top

tail by definition. What is lacking in the current literature is a systematic approach for analyzing

and solving heterogeneous-agent models that (potentially) generate fat-tailed wealth distributions

but do not admit closed-form solutions.

In this paper, we propose a simple, systematic approach for tackling heterogeneous-agent

models with fat-tailed wealth distributions numerically. Our approach builds on the conventional

solution algorithm but extends it with two additional steps: (i) the “asymptotic analysis” of the

individual optimization problem to approximate the behavior of “wealthy” agents and compute

the Pareto exponent of the wealth distribution and (ii) the “Pareto extrapolation” of the wealth

distribution off the grid to compute the equilibrium and wealth distribution accurately. Our

approach enables researchers to easily and accurately analyze rich heterogeneous-agent models

that feature persistent earnings and investment risk, borrowing constraint, portfolio choices,

recursive utility, and endogenous Pareto wealth distributions, etc.

In the “asymptotic analysis” step we solve a simplified, or “asymptotic” individual

optimization problem semi-analytically. Roughly speaking, this problem ignores all additive

elements and focuses on proportional elements. For example, consider the income fluctuation

problem, which is a building block of models. The asymptotic problem in this case is one with no

labor income (for wealthy agents labor income is negligible compared to capital income) which

can be solved analytically as in Merton (1969) and Samuelson (1969). The benefit of studying
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the asymptotic problem is threefold. First, its solution determines the behavior of wealthy agents,

which governs the tail property of the wealth distribution. This enables researchers to determine

whether the model generates a fat-tailed wealth distribution, and if so, to compute the theoretical

Pareto exponent explicitly. Second, the analysis of the asymptotic problem places parametric

restrictions on the equilibrium object through equilibrium considerations such as the existence of a

solution to the individual optimization problem and a wealth distribution with a finite mean. This

enables researchers to narrow down the set of equilibrium object and search for the equilibrium

more efficiently. Third, the solution to the asymptotic problem can be used as an initial guess

for solving the actual individual optimization problem, making the algorithm more efficient and

stable.

In the “Pareto extrapolation” step, we extrapolate the wealth distribution off the grid

using the theoretical Pareto exponent computed from the asymptotic analysis to correct for the

truncation error when constructing the transition probability matrix governing the state variables

and computing aggregate quantities. The benefit of Pareto extrapolation is twofold. First, it

makes the solution more accurate at no additional computational cost. This is because we provide

closed-form expressions for the correction terms, which depend only on the theoretical Pareto

exponent and asymptotic policy functions computed in the “asymptotic analysis step”. Second,

and more importantly, Pareto extrapolation enables researchers to avoid making mistakes. While

it is true that we can solve models to any accuracy if we use sufficiently large and fine grids and

sufficiently strong computing power, with existing methods one can never be sure whether the

truncation error is small enough. As an illustration, suppose some researcher says “I truncate the

grid so that there is less than (say) 10−4 of the probability mass at the top grid point”. This is

not a good idea because (i) the mass at the largest grid point is severely biased downwards with

existing methods, and (ii) even with mass 10−4 at the largest grid point, there can be substantial

amount of wealth held by those agents.

In summary, our approach makes the solution and analysis of heterogeneous-agent models
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with fat-tailed wealth distributions (i) more transparent (because it exploits economic theory to

characterize the behavior and wealth distribution of wealthy agents), (ii) more efficient (because

it narrows down the equilibrium object and uses good initial guesses), and (iii) more accurate

(because it corrects for truncation errors). Furthermore, we achieve all of that with zero additional

computational cost because the asymptotic analysis is semi-analytical and the correction terms

are provided in closed-form. Hence, our method bridges theoretical and quantitative models of

wealth inequality.

To illustrate the usefulness of our approach, we present two exercises. First, using a

simple heterogeneous-agent model that admits a closed-form solution (and a Pareto wealth

distribution) as a laboratory, we show that the error with existing methods can be substantial,

while it is minimal with our approach. Specifically, we find that the error with our method (with

an exponentially-spaced grid with 100 points) ranges from 0.13 to 0.42% depending on the choice

of the largest grid point, whereas it is 2.4–26% with the usual (“Truncation”) method that does

not introduce correction terms. Simulation-based methods with 10,000 agents also have about

11% of error. The errors in the existing methods are especially severe when the Pareto exponent

is smaller than 2, which is typical for wealth (1.5) and firm size (close to 1, Zipf’s law).

Second, we develop a “Merton-Bewley-Aiyagari” model that features persistent earnings

and investment risk, borrowing constraint, portfolio decision, and endogenous Pareto-tailed wealth

distribution. We provide a step-by-step implementation of the Pareto extrapolation algorithm for

solving the calibrated model and describe the rich general-equilibrium effects that determine the

wealth shares and Pareto exponent. Using the model as a laboratory, we conduct a counterfactual

experiment. We find that a wealth tax is a “lose-lose” policy: the introduction of a 1% wealth tax

(with extra tax revenue used as consumption rebate) decreases wage and output by 6.5%, welfare

(in consumption equivalent) by 7.7%, and total tax revenue by 0.72%. The welfare loss is uneven

across the wealth distribution, the poorest households losing 7% and the richest 3%.
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2.1.1 Related literature

Our paper is related to a large literature that spans across many disciplines, including quan-

titative macroeconomics, economic theory on consumption and portfolio choices, mathematical

and statistical results on Pareto tails, and numerical analysis.

It is well known in the quantitative macroeconomics literature that idiosyncratic unem-

ployment risk and incomplete financial markets alone are insufficient to generate a sufficiently

dispersed wealth distribution (Krueger, Mitman, and Perri 2016). Recently, Stachurski and Toda

(2019) have theoretically proved that in canonical models in which agents are infinitely-lived, have

constant discount factors, and can invest only in a risk-free asset, the wealth distribution necessar-

ily inherits the tail property of the income distribution. Therefore canonical heterogeneous-agent

models cannot explain the wealth distribution. They also argue that introducing other ingredients

such as random discount factors (Krusell and Smith 1998), idiosyncratic investment risk (Quadrini

2000; Cagetti and De Nardi 2006), and random birth/death (Carroll, Slacalek, Tokuoka, and White

2017; McKay 2017) can generate fat tails. However, because these papers are all numerical, it is

not clear how to build and solve general heterogeneous-agent models that feature fat-tailed wealth

distributions. Our paper contributes to the quantitative macroeconomics literature by showing the

usefulness of the theoretical analysis of the asymptotic problem and providing a general solution

algorithm for such models.

As mentioned in the introduction, since numerical methods are in general not well-

suited for studying the tail behavior of the wealth distribution, most papers that study the power

law behavior in the wealth distribution use analytical solutions. Nirei and Souma (2007) and

Benhabib, Bisin, and Zhu (2011) solve growth models with idiosyncratic investment risk and use

the properties of Kesten (1973) processes to obtain a Pareto wealth distribution. Moll (2014), Toda

(2014), Arkolakis (2016), Benhabib, Bisin, and Zhu (2016), and Nirei and Aoki (2016) consider

stochastic birth/death and obtain the double Pareto wealth distribution based on the mechanism
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of Reed (2001).1 For reviews of generative mechanisms of Pareto tails used in these papers, see

Gabaix (2009). Our paper bridges this literature on power law in economics and quantitative

macroeconomics by showing that the theoretical insight carries over to rich quantitative models.

Toda (2019) pointed out the usefulness of the asymptotic problem for computing the

Pareto exponent in general models that admit no closed-form solutions.2 However, he does not

consider the solution algorithm for general equilibrium models with fat-tailed wealth distributions.

The asymptotic linearity of consumption policies has been known for a long time since at least

Huggett (1993) and Krusell and Smith (1998), among others. Benhabib, Bisin, and Zhu (2015)

show the asymptotic linearity when earnings and investment risk are mutually independent and

jointly i.i.d. over time and obtain a Pareto lower bound for the wealth distribution. In Appendix

B.1, we argue that similar results should hold in richer models. To analytically characterize the

Pareto exponent of the wealth distribution in a general Markovian environment, we apply the

recent results from Beare and Toda (2017b).

Our paper is also related to the literature on solution methods for heterogeneous-agent

models such as Krusell and Smith (2006), Algan, Allais, and Den Haan (2008), Reiter (2009,

2010), Den Haan (2010b, 2010a), and Algan et al. (2014), among others. In particular, we use

the insight from Algan, Allais, and Den Haan (2008) and Winberry (2018), who approximate

cross-sectional distributions using finite-dimensional parametric families. In our case, because

economic theory suggests that the upper tail of the wealth distribution is Pareto and it is possible

to compute the Pareto exponent from the solution to the asymptotic problem, we use this Pareto

distribution to approximate the upper tail. Although we do not take a stance on how to deal with

the rest of the distribution, we use Young (2010)’s non-stochastic simulation to compute the

wealth distribution from the transition probability matrix implied by the law of motion.

1Other recent applications include firm dynamics (Acemoglu and Cao 2015), asset pricing (Toda and Walsh 2015;
Toda and Walsh 2017), dynamics of inequality (Gabaix, Lasry, Lions, and Moll 2016; Aoki and Nirei 2017; Cao and
Luo 2017; Kasa and Lei 2018), entrepreneurship (Jones and Kim 2018), and bequests (Zhu 2018).

2The asymptotic problem is related to the “method of moderation” in Carroll, Tokuoka, and Wu (2012), who
bound the consumption policy functions from above and below by closed-form solutions to improve accuracy and
stability.
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The closest paper to ours in spirit is Achdou et al. (2017). They recast the model in

continuous-time, which allows them to obtain a number of novel characterizations and results,

including closed-form expressions for the stationary wealth distribution (in a special case) and

the marginal propensity to consume of agents close to the borrowing constraint. They apply

finite-difference methods and propose a fast solution algorithm that can be applied to general

heterogeneous-agent models in continuous time. While our paper is different—we focus on the

complications arising from fat-tailed wealth distributions—we share the same goal of bridging

the gap between theoretical and quantitative work in macroeconomics.

2.2 Issues with existing algorithms

Suppose that we want to solve a Bewley (1977, 1983)-Huggett (1993)-Aiyagari (1994)

model numerically when the wealth distribution could be fat-tailed. The conventional solution

algorithm for heterogeneous-agent models (which we refer to as the “Truncation” method through-

out the paper) combines dynamic programming over a finite grid (Blackwell 1965; Coleman

1990) with non-stochastic simulation (Young 2010). The algorithm would be roughly as follows.

1. The researcher sets up a finite grid for wealth denoted by WN = {wn}N
n=1, where N is

the number of grid points and w1 < · · · < wN . Suppose there are also other exogenous

state variables (e.g., income, return on wealth, etc.), which can take S possible values

indexed by s = 1, . . . ,S. Given the guess of the equilibrium object (e.g., interest rate, wage,

etc.), we can solve the individual optimization problem on the S×N grid using dynamic

programming.

2. Having solved the individual optimization problem and obtained the law of motion for

individual wealth, the researcher constructs the SN×SN joint transition probability matrix

Q of exogenous state and wealth. The stationary distribution π ∈SN
+ is obtained by solving

Q′π = π (so π is an eigenvector of Q′ corresponding to the eigenvalue 1).
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3. Finally, the researcher imposes the market clearing condition by integrating the individual

decision rules (capital, labor, etc.) over the grid using the stationary distribution π to find

the equilibrium objects (interest rate, wage, etc.).

There are two potential issues with this truncation method when the stationary wealth

distribution is fat-tailed, both of which are related. First, consider the largest grid point wN . This

grid point in principle does not represent just the point w = wN , but the entire interval w∈ [wN ,∞).

Therefore when we construct the transition probability from wN to other grid points, instead of

assuming that the current wealth state w is concentrated at wN , we need to take into account that

w is really distributed over the interval [wN ,∞) according to the (true) stationary distribution.

Since the interval [wN ,∞) contains substantial probability mass when the wealth distribution is

fat-tailed, failing to account for this will overestimate the transition probability to lower wealth

states, and hence underestimate the top tail probability.

Second, suppose that we use the stationary distribution π = (πsn) to compute aggregate

quantities used in market clearing conditions. For concreteness, consider the aggregate wealth

W =
S

∑
s=1

N

∑
n=1

πsnwn. (2.1)

The right-hand side of (2.1) essentially supposes that the top tail is concentrated on the grid point

wN , whereas in fact it is distributed over the interval [wN ,∞). Thus failing to account for this will

underestimate the aggregate wealth, which affects the computation of equilibrium through market

clearing conditions.

Of course, one may choose a very large truncation point wN (say, one million times the

aggregate wealth) to reduce the truncation error, but that is computationally inefficient because it

will either increase the number of grid points (making the solution algorithm slower) or decrease

the grid density (making the solution less accurate). One may also argue that the above two

issues are specific to the particular algorithm that involves truncation, and other methods such as
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simulation (Aiyagari 1994; Krusell and Smith 1998) may not be subject to those issues. As we

see below, however, the situation is equally problematic. Simulation-based methods essentially

use the law of large numbers to evaluate the market clearing condition. Suppose we simulate I

agents and compute the sample mean of wealth 1
I ∑

I
i=1 wi. The question is how fast the sample

mean converges to the population mean. If the Pareto exponent ζ exceeds 2, then wealth has finite

variance and we can apply the Central Limit Theorem. In this case the sample mean converges at

rate I1/2. If ζ < 2 on the other hand, it is well known that the rate of convergence to the stable law

is only I1−1/ζ.3 Therefore solving a model accurately may require an impractically large number

of agents.

As an illustration, Table 2.1 shows the order of error Imax{−1/2,1/ζ−1} in the sample mean

for various sample size I and Pareto exponent ζ.4 If ζ≥ 2 and we use 10,000 agents (the number

used in Aiyagari (1994)), then the order of the error in the sample mean is 10000−1/2 = 1/100 =

1%. However, the error order is much larger if the Pareto exponent is smaller. With ζ = 1.5 (a

typical number for the wealth distribution according to Pareto (1897), Klass et al. (2006), and

Vermeulen (2018)), the error order with 10,000 agents is 4.6%, which is substantial. If the Pareto

exponent is 1.1 (a typical number for the firm size distribution, which obeys Zipf’s law (Axtell

2001b)), then even with ten billion agents (I = 1010), which is about the same order of magnitude

as the world population, the error order is still 12.3%. To drive the error down to 1%, quite a

modest number, the required sample size for ζ = 1.1 is I = 100
ζ

ζ−1 = 1022 (ten sextillion), which

is about the same order of magnitude as the number of stars in the universe or sand grains on

earth.5 Therefore we cannot expect to solve such models accurately using simulation.

3See, for example, Durrett (2010, Theorem 3.7.2) for an accessible proof. Based on this insight, Gabaix (2011)
argues that a substantial fraction of aggregate fluctuations is due to idiosyncratic shocks to large firms.

4In Table B.3 in Appendix B.3.3, we assess the accuracy of the Aiyagari model in Section 2.4 using simulation
and obtain similar results to Table 2.1.

5http://www.abc.net.au/science/articles/2015/08/19/4293562.htm
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Table 2.1: Order of error Imax{−1/2,1/ζ−1} in sample mean.

Sample size I Pareto exponent ζ

≥ 2 1.5 1.3 1.1

100 = 1 1.00000 1.00000 1.00000 1.00000
102 0.10000 0.21544 0.34551 0.65793
104 0.01000 0.04642 0.11938 0.43288
106 0.00100 0.01000 0.04125 0.28480
108 0.00010 0.00215 0.01425 0.18738
1010 0.00001 0.00046 0.00492 0.12328

2.3 The Pareto extrapolation algorithm

Our new solution algorithm, which we call the “Pareto extrapolation” method, builds on

the conventional solution algorithm described in Section 2.2 but differs at several steps, most

importantly when computing the stationary distribution and when aggregating individual behavior

to evaluate the market clearing condition. It can be applied to solve for the stationary equilibrium

of any heterogeneous-agent model, although the novel steps are needed only when the model

generates a Pareto-tailed wealth distribution. In general, the stationary wealth distribution has a

Pareto upper tail in models that combine homothetic preferences (e.g., additive CRRA, Epstein-

Zin, etc.) with either random discount factors, stochastic returns on wealth, and/or birth and death.

A byproduct of our algorithm is that it will tell whether the model generates a Pareto-tailed wealth

distribution, and if so, provides an analytical characterization of the Pareto exponent.

We now provide a step-by-step description of the Pareto extrapolation method. As a

leading example, we focus on a simplified version of the Krusell and Smith 1998 (henceforth KS)

model without aggregate shocks, which is known to generate a Pareto-tailed wealth distribution

as recently shown by Toda 2019. Since the KS model is well known, we only briefly describe the
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Bellman equation for the value function of the household:

vs(w) = max
c≥0
{ c1−γ

1− γ
+βs(1− p)E[vs′(w

′)|s]}, (2.2a)

w′ = R(w− c)+ ys′, (2.2b)

w′ ≥ w. (2.2c)

Here s = 1, . . . ,S denotes Markov states that evolve over time according to a transition probability

matrix P = (pss′), βs > 0 is the discount factor in state s, p ∈ [0,1) is the birth/death probability

(the infinitely-lived case corresponds to p= 0), γ> 0 is the relative risk aversion, c is consumption,

w is the beginning of period wealth including current labor income, ys is income in state s, R is

the gross interest rate, and w is the minimum wealth (borrowing limit). The Pareto extrapolation

algorithm can be described as follows.

1. Asymptotic analysis

(a) Compute solution to the “asymptotic” policy/value functions semi-analytically

(b) Compute the theoretical Pareto exponent ζ

2. Dynamic programming

(a) Construct a grid

(b) Initialize value/policy functions using a guess

(c) Update the value/policy functions using the Bellman/Euler equations

3. Stationary distribution

(a) Construct a (potentially different) grid

(b) Construct the joint transition probability matrix for exogenous state and wealth using

non-stochastic simulation
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(c) To account for transitions in and out of the grid, approximate (1) the behavior of agents

outside the grid using the asymptotic policy functions and (2) the wealth distribution

outside the grid using the Pareto exponent ζ

4. Aggregation

(a) Aggregate individual behavior of agents “on the grid”

(b) To account for the contribution of agents outside the grid, approximate (1) the behavior

of agents using the asymptotic policy functions and (2) the wealth distribution using a

Pareto distribution with exponent ζ

Below, we explain each step in more detail and pay particular attention to the “new” steps,

namely (1), (3c), and (4b).

2.3.1 Asymptotic analysis

The first step of the algorithm consists of characterizing the “asymptotic” properties of

the model. In a nutshell, we use two (related) features of models with homothetic preferences.

First, the control variables (consumption, investment, etc.) are approximately linear in wealth for

wealthy agents. Second, the endogenously-determined wealth distribution has a Pareto upper tail.

Given that labor income enters additively in the budget constraint, whereas capital income

is proportional to wealth, the former becomes negligible as the wealth of an agent tends to

infinity. To characterize the behavior wealthy agents, we can consider a simplified problem where

labor income is set to zero. Assuming that agents have homothetic preferences (e.g., additive

CRRA, Epstein-Zin, etc.), which is almost always the case in applications, this simplified problem

becomes a homogeneous problem in the sense that all control variables scale with wealth. We

refer to this problem as the “asymptotic” problem. Such problems can be solved semi-analytically

even in a Markovian (non-i.i.d.) environment as shown by Toda (2014, Theorem 5), and the

decision rules become linear in wealth. (Appendix B.1 formally defines the asymptotic problem
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and discusses the asymptotic linearity of policy functions in an abstract dynamic programming

setting.)

For concreteness, consider the KS model. In this case, income ys and the borrowing limit

w are negligible asymptotically, so we replace the budget constraint (2.2b) and the borrowing

constraint (2.2c) by

w′ = R(w− c), (2.3a)

w′ ≥ 0, (2.3b)

respectively. Note that the problem is now homogeneous because the utility function is homothetic:

an agent twice as rich will consume twice as much, state-by-state. We can maximize a homothetic

function subject to homogeneous constraints of the form (2.3) semi-analytically quite efficiently,

as explained in Toda (2014) in detail. In the case of the KS model, the asymptotic consumption

rule can be compute as follows. First, conjecture a solution of the form

cs(w) = c̄sw, (2.4)

where {c̄s}S
s=1 can be interpreted as the asymptotic marginal propensity to consume (MPC) out

of wealth in each patience state. Then, substitute the conjectured consumption rule into the Euler

equation to obtain

c̄−γ
s = (1− p)R1−γ

βs

S

∑
s′=1

pss′ [(1− c̄s)c̄s′]
−γ . (2.5)

The asymptotic consumption rules in the KS model can be solved semi-analytically as the solution

to the asymptotic Euler equation (2.5), which admits a (necessarily unique) solution if and only if

(1− p)R1−γ
ρ(BP)< 1, (2.6)

where B = (β1, . . . ,βS) is the diagonal matrix of discount factors and ρ(A) denotes the spectral
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radius (largest absolute value of all eigenvalues) of the matrix A.6

Equipped with the solution to the asymptotic problem, we can now compute the Pareto

exponent of the wealth distribution. Substituting the asymptotic consumption rule (2.4) into the

budget constraint (2.3a), notice that the law of motion for wealth in the KS model is asymptotically

linear:

w′ = R(1− c̄s)w. (2.7)

The key insight here is that, since the patience state s evolves randomly over time, the wealth

accumulation process of wealthy agents is a “random growth model”.

More generally, suppose that the law of motion of the asymptotic problem is

wt+1 = Gt+1wt ,

where Gt+1 > 0 is the gross growth rate of wealth between time t and t+1 and wt is wealth. Thus,

in the asymptotic problem, the law of motion for wealth necessarily satisfies Gibrat (1931)’s

law of proportional growth. Assuming that agents enter/exit the economy at constant probability

p > 0, Beare and Toda (2017b) show that under mild conditions the stationary wealth distribution

has a Pareto upper tail and characterize the Pareto exponent ζ, as follows. For z ∈, let

Mss′(z) = E(ez logGt+1|st = s,st+1 = s′) (2.8)

be the moment generating function of the log growth rate logGt+1 conditional on transitioning

from state s to s′, and

M(z) = (Mss′(z)) (2.9)

6See Appendix B.2.1 for a proof. If needed, the asymptotic value functions can be obtained by conjecturing that
vs(w) = v̄s

w1−γ

1−γ
and using the Bellman equation (2.2a) combined with the asymptotic MPCs {c̄s}S

s=1:

v̄s = c̄1−γ
s +(1− p)R1−γ

βs ∑
s′

pss′ v̄s′(1− c̄s)
1−γ.
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be the S×S matrix of conditional moment generating functions (2.8). Then under mild conditions

Beare and Toda (2017b) show that the equation

(1− p)ρ(P�M(z)) = 1 (2.10)

(here P�M(z) denotes the Hadamard (entry-wise) product of P and M(z)) has a unique positive

solution z = ζ > 0, and that the stationary wealth distribution has a Pareto upper tail with exponent

ζ. The following proposition gives a simple test for the solvability of (2.10).

Proposition 9. If Gt+1 ≤ 1 always, then (2.10) does not have a solution z > 0. If M(z) is finite

for all z > 0, P is irreducible, and pss Pr(Gt+1 > 1|st = st+1 = s)> 0 for some s, then (2.10) has

a unique solution z = ζ > 0.

For some parametrization, the model might generate a bounded wealth distribution.

Intuitively, Gt+1 ≤ 1 means that wealth shrinks (or stay the same), so there is no random growth.

In this case the wealth distribution does not have a Pareto tail, and the Pareto extrapolation

algorithm reduces to the conventional one. If P is irreducible, every state is visited eventually.

The condition pss Pr(Gt+1 > 1|st = st+1 = s)> 0 says that in state s, with positive probability the

agent’s wealth grows and the agent can remain in that state. Because there is random growth, the

wealth distribution has a Pareto tail.

Toda (2019) argues that if agents are infinitely lived but there exists a stationary distribution

due to other mechanisms than random entry/exit (e.g., borrowing constraint), then we can just set

p = 0 in (2.10) to compute the theoretical Pareto exponent.

We can summarize this step as follows.

1. Define the asymptotic problem (e.g., no labor income, no borrowing constraint).

2. Solve the asymptotic problem and collect the asymptotic policy functions.

3. Derive the asymptotic law of motion for wealth w′ = Gss′w.
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4. Define the matrix (2.9) of conditional moment generating functions.

5. Compute the theoretical Pareto exponent ζ > 0 as the solution to (2.10).

2.3.2 Dynamic programming

Dynamic programming methods such as value function iteration (Blackwell 1965) and

policy function iteration (Coleman 1990) consists of numerically solving the individual opti-

mization problem over a finite grid for wealth, which we define WN = {wn}N
n=1. Many different

algorithms exist, but they all share the same structure: the researcher starts with a guess for the

policy/value functions and uses optimality conditions such as the Euler/Bellman equations to

update those guesses until convergence. Given that dynamic programming methods are well

known, we do not provide a step-by-step procedure. From now on, we denote by xsn the numerical

approximation of an arbitrary policy function xs(w) evaluated at w = wn.

2.3.3 Stationary distribution

Equipped with the policy functions, their asymptotic counterpart, and the theoretical

Pareto exponent ζ > 0, the next step is to compute the stationary distribution of wealth. For that,

we need to construct the joint transition probability matrix for all state variables. Let w′ = gss′(w)

be the law of motion for wealth (conditional on transitioning from state s to s′) implied by the

policy functions obtained in the dynamic programming step and WN = {wn}N
n=1 be the grid for

wealth. Let

In = [wn,wn+1), n = 1, . . . ,N−1

be the half-open interval with endpoints wn and wn+1 and IN = [wN ,∞). For n = 1, . . . ,N, we

construct the transition probability as follows. For simplicity, we focus on the case when there is

no death (p = 0). The case p > 0 is similar and it is a matter of taking the weighted average of

transition probabilities conditional on survival and death, weighting by 1− p and p.
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For the case where n < N, take the lower grid point of In, which is wn. If gss′(wn) ∈ Ik for

some k < N, then we can take θ ∈ [0,1) such that

gss′(wn) = (1−θ)wk +θwk+1 ⇐⇒ θ = θnk =
gss′(wn)−wk

wk+1−wk
. (2.11)

We can then assign probabilities 1− θ,θ to the grid points wk,wk+1 (, states k and k + 1),

respectively. If gss′(wn) < w1 or gss′(wn) ≥ wN , then just assign probability 1 to state 1 or

N. (Assigning probabilities to neighboring grid points to match the law of motion this way is

essentially the same as what Young (2010) calls “non-stochastic simulation”.)

More formally, let Q = (qsn,s′n′) be the SN× SN joint transition probability matrix of

exogenous state s and wealth {wn}N
n=1. Then for n < N we define

qsn,s′n′ = pss′×



1, if gss′(wn)< w1 and n′ = 1

1−θnk, if gss′(wn) ∈ Ik and n′ = k

θnk, if gss′(wn) ∈ Ik and n′ = k+1

1, if gss′(wn)≥ wN and n′ = N

0, otherwise

(2.12)

where θnk is defined by (2.11).

For the case where n = N, suppose for the moment that there is an untruncated grid

W∞ = {wn}∞
n=1, and for n≥ N we know the probability of w = wn conditional on w ∈ IN ∩W∞.

Let this probability be denoted by rn. By definition, we have ∑
∞
n=N rn = 1. Now for each n≥ N,

we can do precisely as in the previous case, and add probabilities (1−θnk)rn and θnkrn (where

θnk is defined by (2.11)) to the grid points wk,wk+1 whenever w′ = gss′(wn) ∈ Ik for k < N. If

gss′(wn)< w1 or gss′(wn)≥ wN , then just add probability rn to the transition to state 1 or N. The

nice thing is that for large enough n, the next period’s state w′ = gss′(wn) is likely large (contained

in IN), so we only need to compute θnk for finitely many n (say n = N, . . . ,N′). For the probability
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rn, because the theoretical density is Pareto with exponent ζ, we can simply set rn ∝ n−ζ−1 if the

grid spacing wn+1−wn is constant for n≥ N.

More formally, we do as follows. First, choose the grid spacing h > 0 of the hypothetical

grid points {wn}∞
n=N+1. Define the untruncated grid W∞ = {wn}∞

n=1 by wn = wN +(n−N)h for

n > N. Compute the number of relevant grid points N′ ≥ N such that gss′(wN′)> wN for all s,s′:

N′ = min{n≥ N|∀s,s′,gss′(wN +(n−N)h)> wN}. (2.13)

To evaluate the law of motion outside the grid, we can simply linearly extrapolate the law of

motion for w≥ wN as

gss′(w) = gss′(wN)+Gss′(w−wN), (2.14)

where Gss′ > 0 is the theoretical slope obtained in the asymptotic analysis step. Combining (2.13)

and (2.14), after some algebra we obtain

N′ = N +max
s,s′

max{wN−gss′(wN)

Gss′h
,0}, (2.15)

where x denotes the smallest integer exceeding x.

To compute the conditional probability rn, because theoretically the stationary distribution

has a Pareto upper tail with exponent ζ > 1,7 using the density (conditional on w≥ wN) f (x) =

ζwζ

Nx−ζ−1, we set

rn ≈ ζwζ

N(wN +(n−N)h)−ζ−1h = ζ
h

wN

(
1+(n−N)

h
wN

)−ζ−1

for n≥ N. Since for n≥ N′ the next state will always be N (w′ = gss′(wn) ∈ IN), there is no need

7If ζ≤ 1, then the mean is infinite, which is impossible in equilibrium.
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to compute rn individually. Using the theoretical Pareto density, we obtain

∞

∑
n=N′

rn ≈
∫

∞

wN′
ζwζ

Nx−ζ−1x = (wN′/wN)
−ζ =

(
1+(N′−N)

h
wN

)−ζ

.

Imposing the condition ∑
∞
n=N rn = 1, we obtain

rn =Cζ
h

wN

(
1+(n−N) h

wN

)−ζ−1
, (N ≤ n < N′)

∑
∞

n=N′ rn =C
(

1+(N′−N) h
wN

)−ζ

,

(2.16)

where the constant of proportionality C is given by

1
C

=

(
1+(N′−N)

h
wN

)−ζ

+
N′−1

∑
n=N

ζ
h

wN

(
1+(n−N)

h
wN

)−ζ−1

. (2.17)

Now for each s and extra grid point n = N, . . . ,N′, define the transition probability q̃sn,s′n′

exactly as in (2.12). The remaining elements of the joint transition probability matrix Q= (qsn,s′n′)

can be computed as

qsN,s′n′ =
N′

∑
n=N

rnq̃sn,s′n′, (2.18)

where rN′ := 1−∑
N′−1
n=1 rn =C

(
1+(N′−N) h

wN

)−ζ

.

Equipped with the SN× SN joint transition probability matrix Q, we can compute the

stationary distribution π = (πsn), where πsn is the probability of being in state (s,n), as the

(unique) eigenvector of Q′ corresponding to the eigenvalue 1.

We can summarize this step as follows. Let WN = {wn}N
n=1 be the grid, ζ > 1 be the

theoretical Pareto exponent from asymptotic analysis, and {gss′(w)}S
s,s′=1 be the law of motion

from dynamic programming.

1. Choose a spacing parameter h > 0 for hypothetical grid points.

2. Construct the SN×SN joint transition probability matrix Q of exogenous state and wealth.
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For n < N, use (2.12). For n = N, use (2.13)–(2.18).

3. Compute the stationary distribution π = (πsn) as the (unique) eigenvector of Q′ correspond-

ing to the eigenvalue 1.

A few remarks are in order. First, the algorithm for constructing Q has essentially zero

additional computational cost, despite its complicated appearance. The reason is that extrapolation

from the Pareto distribution is used only at the largest grid point wN . Thus, although we are

computing transition probabilities from SN points, which the conventional solution algorithm

needs to compute anyway, the Pareto extrapolation algorithm requires only S×1 = S additional

operations, which is negligible. In our numerical implementation in Section 2.4, we find that the

computing time of this step is trivial, and therefore we do not report it.

Second, the SN×SN transition probability matrix Q is sparse. To see this, let us evaluate

the number of nonzero elements of Q. For each s,s′ and n < N, there are at most two states the

next wealth can take. For n = N, in principle the next wealth state can be anything. Therefore the

number of nonzero elements of Q is at most

2S2(N−1)+S2N = S2(3N−2).

Thus the fraction of nonzero elements of Q is bounded above by

S2(3N−2)
(SN)2 =

3N−2
N2 → 0

as N → ∞, so Q is sparse.8 Therefore, computing the sationary distribution π is not an issue,

despite the fact that Q is in practice a very large matrix.

8Achdou et al. (2017) mention that “[c]ontinuous time imparts a number of computational advantages relative to
discrete time [. . . , which] relate to [. . . ] the fact that continuous-time problems with discretized state space are, by
construction, very sparse.” While it is true that continuous-time problems have some advantages over discrete-time
problems (e.g., partial differential equations versus nonlinear difference equations), discrete-time problems also do
possess sparsity if appropriately solved.
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Third, although we have implicitly assumed that N′ in (2.15) is larger than N, for particular

models it may be N′ ≤ N, which is true if and only if gss′(wN) ≤ wN for all s. In that case we

do not need to consider any extrapolation since the true distribution is not fat-tailed, and the

algorithm becomes identical to the truncation method.

Finally, constructing the transition probability matrix Q requires the spacing parameter

h > 0. Since the Pareto extrapolation algorithm uses a hypothetical evenly-spaced grid (with

grid spacing h) beyond the largest grid point wN , the most natural choice for h is wN−wN−1, the

distance between the two largest actual grid points. Conducting numerical experiments similar to

those in Section 2.4 and Appendix B.3, we have found that this choice is numerically optimal.

2.3.4 Aggregation

When computing the equilibrium of a heterogeneous-agent model, we need to impose

market clearing conditions in some way or another. To do so, we need to aggregate individual

behavior. Let us first focus on computing the aggregate capital supply in the KS model. Given

that the capital supply of an agent in state s with wealth w is w− cs(w), the aggregate capital

supply is Ks =
∫
(w− cs(w))Γ(w,s), where Γ(w,s) is the theoretical joint distribution of wealth

and exogenous state. The truncation method approximates Ks with

Ks
trunc =

S

∑
s=1

N

∑
n=1

πsn(wn− csn), (2.19)

where csn and πsn are consumption and unconditional (stationary) probability at state (s,n).

The only caveat is that for the wealth state N, the probability is not concentrated on the grid

point wN but in principle distributed over the entire interval w ∈ [wN ,∞). We can easily overcome

this problem by (i) extrapolating the policy functions outside the grid using the asymptotic policy

functions, and (ii) extrapolating the wealth distribution outside the grid using the theoretical

Pareto exponent ζ.
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First, notice that individual capital supply is asymptotically equivalent to (1− c̄s)w. We

can therefore approximate the capital supply of agents with w≥ wN by

w− cs(w)≈ wN− csN +(1− c̄s)(w−wN).

Second, notice that the density of wealth conditional on w≥ wN is approximately a Pareto distri-

bution with exponent ζ and minimum size wN , which has density f (x) = ζwζ

Nx−ζ−1. Therefore

E[w|w≥ wN ]≈
∫

∞

wN

ζwζ

Nx−ζx =
ζ

ζ−1
wN .

Combining both observations, we can approximate the capital supply of an agent in state (s,N)

by

E[w− cs(w)|w≥ wN ]≈ wN− csN +
1

ζ−1
(1− c̄s)wN .

Therefore, using Pareto extrapolation, the correct approximation of the aggregate capital supply

Ks is

Ks
PE =

S

∑
s=1

N

∑
n=1

πsn(wn− csn)+
1

ζ−1

S

∑
s=1

πsN(1− c̄s)wN . (2.20)

Comparing (2.19) to (2.20), we can see that the truncation method introduces an error because

the correction term 1
ζ−1 ∑

S
s=1 πsN(1− c̄s)wN is absent. If ζ is close to 1 (Zipf’s law), then failing

to account for this term will introduce significant error. The formula (2.20) highlights the fact that

choosing a large grid point wN (so that the fraction of agents at the largest grid point ∑
S
s=1 πsN

is small) does not necessarily solve the problem. The reason is that wN and ∑
S
s=1 πsN enter

multiplicatively in the correction term. For example, if ∑
S
s=1 πsN = 10−6 and wN = 106, then the

correction term is 1
ζ−1 ∑

S
s=1(1− c̄s), which can be substantial as a fraction of Ks.

The insight carries well beyond the KS model. In general, we can approximate the

integral of any policy function xs(w) that is asymptotically equivalent to x̄sw against the stationary
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distribution using

X ≈
S

∑
s=1

N

∑
n=1

πsnxsn +
1

ζ−1

S

∑
s=1

πsN x̄swN . (2.21)

A special case is the computation of aggregate wealth, which is simply

E[w]≈
S

∑
s=1

N

∑
n=1

πsnwn +
1

ζ−1

S

∑
s=1

πsNwN . (2.22)

Notice that computing the correction term is not computationally intensive. The reason is that

we provide a closed-form expression for the correction term whose inputs (asymptotic policy

functions and theoretical Pareto exponent) were already computed in the asymptotic analysis step.

2.3.5 Additional considerations

Dynamic programming is by far the most computationally intensive step when solving a

heterogeneous-agent model. Compared to the asymptotic problem, which reduces to solving for

an S×1 object, dynamic programming needs to solve for an S×N object. However, we can use

the solution to the asymptotic problem to construct a “good” initial guess, which helps speed up

the convergence. For example, when solving the KS model using policy function iteration, we

suggest using the initial guess

c(0)s (w) = c̄s(w− c), (2.23)

where c̄s is the asymptotic MPC and c < w1 is an arbitrary number that ensures that consumption

is positive. Intuitively, the reason why this guess speeds up the convergence is that the distance

between the true solution cs(w) and the guess c(0)s (w) is already small, especially at the upper

end of the grid.

The description of our algorithm above has implicitly assumed that the researcher has

already chosen the grid W = {wn}N
n=1 and, in particular, the truncation point wN . We discuss the

choice of the grid in Section 2.4 and Appendix B.3. Here we provide a practical guidance on how

to choose the truncation point wN .
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We suggest choosing a truncation point that implies a small difference between the

marginal propensity to consume (MPC) at the largest grid point, (csN − cs,N−1)/(wN −wN−1),

and the asymptotic MPC c̄s determined by solving (2.5). Therefore the researcher should choose

a truncation point wN that implies a small MPC relative error

1
c̄s

csN− cs,N−1

wN−wN−1
−1, (2.24)

where csn denotes the policy function in state s at the grid point wn and wN is the largest grid point

(truncation point). The idea is that, if the MPC at the largest grid point is close to its asymptotic

value, then the consumption function should already be approximately linear, making all of the

above approximations accurate.

So far, we have considered evaluating the market clearing condition for a guess of

equilibrium prices. To solve for equilibrium prices, we can apply the Pareto extrapolation method

for successive guesses of equilibrium prices and update the guesses using the excess supply

computed in the aggregation step. Here the asymptotic analysis step can be used to narrow down

the set of prices consistent with an equilibrium.

Notice that we can rule out any prices such that (i) there exists no solution to the asymptotic

individual problem or (ii) the theoretical Pareto exponent ζ is below or equal one. When ζ≤ 1,

aggregate wealth is infinite, which is inconsistent with market clearing. In the KS model,

narrowing down the set of equilibrium interest rates R consistent with an equilibrium amounts

to evaluating (2.6) and (2.10) for a range of values of R and computing a bound (R, R̄). Since

the asymptotic analysis step is not computationally intensive, we can make substantial efficiency

gains by avoiding the dynamic programming step as much as possible.

Suppose we want to compute the expectation of the power function wν for some power ν.

For example, ν = 1 corresponds to aggregate wealth, ν = 2 the variance of wealth, and ν = 1− γ

with γ > 0 appears in calculating the welfare for CRRA preferences with relative risk aversion

γ > 0. Assuming that the power ν is below the theoretical Pareto upper tail with exponent ζ, the
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conditional expectation of the upper tail is

E[wν|w≥ wN ] =
∫

∞

wN

ζwζ

Nxν−ζ−1x =
ζ

ζ−ν
wν

N .

Therefore the analog of (2.22) is

E[wν]≈
S

∑
s=1

N

∑
n=1

πsnwν
n +

ν

ζ−ν

S

∑
s=1

πsNwν
N . (2.25)

Similarly, noting that

E[wν logw|w≥ wN ] = E[
d

dν
wν|w≥ wN ] =

ζ

(ζ−ν)2 wν
N +

ζ

ζ−ν
wν

N logw,

setting ν = 0 we obtain

E[logw]≈
S

∑
s=1

N

∑
n=1

πsn logwn +
1
ζ

S

∑
s=1

πsN . (2.26)

In the KS model, the value function is asymptotically equivalent to v̄s
w1−γ

1−γ
(see Footnote

6). To approximate the welfare function W , which is defined as the integral of the value function

against the stationary distribution, we can apply (2.25) to ν = 1− γ and dividing by 1− γ. Hence

the welfare in consumption equivalent is

W ≈

(
S

∑
s=1

N

∑
n=1

πsnvsn +
1

ζ−1+ γ

S

∑
s=1

πsN v̄sw
1−γ

N

) 1
1−γ

. (2.27)

Oftentimes, the object of interest is the wealth distribution itself. One common way to

summarize the concentration of wealth (other than to report the Pareto exponent) is to compute

“top wealth shares” (, the share of wealth owned by the top fraction p∈ (0,1) agents). We compute

the top wealth shares as follows. For each grid point, we can compute the aggregate wealth held

by agents at least as rich as that grid point. Dividing that number by aggregate wealth gives the
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top wealth share at that grid point. By interpolating between points, we can define the top wealth

shares inside the grid. To compute the top wealth shares outside the grid, we suggest using the

theoretical Pareto exponent ζ to extrapolate the wealth share beyond the largest grid point. More

precisely, let πN = ∑
S
s=1 πsN be the probability mass on the largest grid point wN . The density for

x≥ wN is then f (x) = πNζwζ

Nx−ζ−1. Using this, the tail probability is

Pr(X ≥ x) =
∫

∞

x
πNζwζ

Nx−ζ−1x = πNwζ

Nx−ζ. (2.28)

On the other hand, the total wealth held by wealthy agents is

E[X |X ≥ x] =
∫

∞

x
πNζwζ

Nx−ζx =
ζ

ζ−1
πNwζ

Nx−ζ+1. (2.29)

Therefore letting W be the aggregate wealth, setting p = Pr(X ≥ x), and eliminating x, the wealth

share s(p) of the wealthiest fraction p ∈ (0,1) of agents is

s(p) =
ζ

ζ−1
π

1/ζ

N
wN

W
p1−1/ζ. (2.30)

2.4 Evaluating solution accuracy

As in any new numerical method, the first order of business is to evaluate the solution

accuracy. In this regard, Den Haan, Judd, and Juillard (2010) “find it troublesome that [. . . ]

the accuracy of numerical solutions obtains so little attention by so many authors these days.”

One reason why accuracy gets little attention may be due to the lack of benchmark closed-form

solutions for heterogeneous-agent models.9 For this purpose, we present a simple (minimal)

heterogeneous-agent model with idiosyncratic investment risk that admits a semi-analytical

solution, which we use as a benchmark for evaluating numerical solutions.

9In the context of representative-agent asset pricing models, several authors such as Collard and Juillard (2001),
Schmitt-Grohé and Uribe (2004), and Farmer and Toda (2017) use the closed-form solution of Burnside (1998) to
evaluate the solution accuracy.
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2.4.1 Model

We consider a standard Aiyagari (1994) model, except that the model features no id-

iosyncratic labor income risk (to make the model analytically tractable) but only investment

risk (to generate a fat-tailed wealth distribution). The production side is completely standard:

there is a representative firm with Cobb-Douglas production function F(K,L) = AKαL1−α, where

A > 0 is productivity and α ∈ (0,1) is the capital share. Capital depreciates at rate δ each period.

There are two types of agents, capitalists and workers, of whom there is a mass 1 continuum

each. Workers are identical, supply one unit of labor inelastically, and consume the entire wage

(hand-to-mouth).10

To obtain stationarity, we assume that capitalists are born and go bankrupt with probability

p each period (Yaari (1965)–Blanchard (1985) perpetual youth model). Newborn agents are

exogenously endowed with initial wealth w0 > 0, and capital is destroyed after bankruptcy.

Capitalists have constant relative risk aversion (CRRA) utility

E0

∞

∑
t=0

[β(1− p)]t
c1−γ

t

1− γ
(2.31)

and supply capital to the firm. Importantly, the gross return on capital is not risk-free as

R f = FK(K,1)+1−δ = AαKα−1 +1−δ, (2.32)

but rather zsR f , where s = 1, . . . ,S denotes the exogenous Markov state and zs > 0 is the gross

return on capital relative to the risk-free rate (essentially the excess return). Let P = (pss′) be the

transition probability matrix, which we assume to be irreducible. We assume that E[zs] = 1, so

capital income is just a zero-sum redistribution of aggregate capital income across capitalists. An

interpretation is that capitalists earn persistent heterogeneous returns (Fagereng, Guiso, Malacrino,

10The hand-to-mouth assumption is only for simplicity. Although we can also assume that workers behave
optimally, it is inessential for our purpose of discussing numerical algorithms and evaluating the solution accuracy.
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and Pistaferri 2016b; Cao and Luo 2017) because some are more skillful in using capital (or

just lucky) than others. The initial state of a newborn capitalist is drawn from the stationary

distribution π = (π1, . . . ,πS)
′ of the transition probability matrix P.

The timing is as follows. A capitalist enters period t with some resource (units of

consumption good) wt . He decides how much to consume ct , and the remaining amount kt+1 :=

wt− ct is installed as capital. At the beginning of period t +1, production takes place by pooling

all capital, and the capitalist receives the proceed wt+1 = zst R f kt+1, where R f is the gross risk-free

rate in (2.32) and zst is the predetermined gross excess return.11 Thus the budget constraint of a

capitalist is

w′ = zsR f (w− c). (2.33)

A stationary equilibrium consists of aggregate capital K, gross risk-free rate R f , optimal

consumption rule {cs(w)}S
s=1, and a stationary distribution Γ(w,s) such that (i) given R f , the

optimal consumption rule maximizes the utility (2.31) subject to the budget constraint (2.33), (ii)

firms maximize profits, so (2.32) holds, (iii) the capital market clears, so

K =
∫
(w− cs(w))Γ(w,s), (2.34)

and (iv) Γ(w,s) is the stationary distribution of the law of motion

(w,s) 7→


(zsR f (w− cs(w)),s′), with probability (1− p)pss′ ,

(w0,s′), with probability pπs′ .

By exploiting homotheticity, we can solve the model semi-analytically as discussed in

Appendix B.2.2. We also prove that a stationary equilibrium exists and the wealth distribution

has a Pareto upper tail.

We use a numerical example to evaluate the solution accuracy. We consider the parameter

11We can also allow for the possibility that the gross excess returns are risky by using zss′ instead of zs.
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values in Table 2.2. By solving the equilibrium conditions discussed in Appendix B.2.2, we

obtain the gross risk-free rate R f = 1.0972, aggregate capital K = 3.4231, and Pareto exponent

ζ = 1.2826.

Table 2.2: Parameter values of the Aiyagari model.

Parameter Symbol Value

Discount factor β 0.96
Relative risk aversion γ 2
Bankruptcy probability p 0.025
Gross excess return z (0.95,1.05)

Transition probability matrix P
[

0.8 0.2
0.2 0.8

]
Productivity A 1
Capital share α 0.38
Capital depreciation rate δ 0.08
Initial wealth w0 1

For the numerical solution, we consider both the conventional truncation method as well as

the proposed Pareto extrapolation method with various wealth grid, truncation point, and number

of grid points. For the Pareto extrapolation spacing parameter h, we always take h = wN−wN−1,

the distance between the two largest grid points.

2.4.2 Solution accuracy in partial equilibrium

We first evaluate the solution accuracy in partial equilibrium. To ensure that all the

differences of the numerical solutions from the analytical one are entirely due to the construction

of the transition probability matrix, instead of solving for the equilibrium numerically for each

method, we use the equilibrium risk-free rate and consumption policies from the semi-analytical

solution to compute the stationary distribution on the wealth grid, and then compute the implied

aggregate capital using (2.1) and (2.22) for the Truncation and Pareto extrapolation methods,

respectively. For this exercise, our primary interest is the relative error K̂/K−1, where K and K̂

are the aggregate capital from the semi-analytical and numerical solutions, respectively.
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To implement our algorithm, we first need to specify the wealth grid {wn}N
n=1. Two natural

candidates are the evenly- and exponentially-spaced grids, which we discuss in detail in Appen-

dices B.3.1 and B.3.2, respectively. These two grids have both advantages and disadvantages. An

ideal grid is one such that

1. the grid spacing wn−wn−1 is sufficiently small in the bulk of the wealth distribution so that

we can approximate the law of motion accurately, and

2. the largest point wN is sufficiently large so that the grid covers the (potentially) nonlinear

part of the policy functions.

The evenly-spaced grid achieves the first objective but fails the second, while the opposite is true

for the exponentially-spaced grid.

As a compromise, we suggest using the hybrid (affine-exponential) grid: construct the

exponentially-spaced grid as discussed in Appendix B.3.2, but replace the bottom by an evenly-

spaced grid. This way, we can choose a relatively large truncation point wN , while keeping the

grid spacing wn−wn−1 small for at least the bottom points, which contain the bulk of the wealth

distribution. In particular, we construct the grid as follows. First, we compute the aggregate

capital in a corresponding representative-agent model, which is

KRA = ((1/(β(1− p))−1+δ)/(Aα))
1

α−1 = 4.5577. (2.35)

KRA serves as the transition point between the evenly- and exponentially-spaced grids. Second,

we construct an N-point exponential grid on (0, w̄] such that the median grid point corresponds to

KRA, and we replace the points on (0,KRA] by an evenly-spaced grid. Table 2.3 shows the relative

error K̂/K−1 in the aggregate capital using this affine-exponential grid for various truncation

point w̄ and number of points N, both for the truncation and Pareto extrapolation methods.

We can make a few observations from Table 2.3. First, the conventional truncation method

is extremely poor at calculating the aggregate capital with a moderate truncation point w̄: the
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Table 2.3: Relative error (%) in aggregate capital for the truncation and Pareto extrapolation
methods with the affine-exponential grid.

Method: Truncation Pareto extrapolation

w̄/KRA N = 25 50 100 25 50 100

101 -31.240 -27.620 -26.250 -1.110 0.292 0.422
102 -21.500 -16.860 -14.480 -2.172 -0.642 0.128
103 -16.510 -11.210 -8.590 -2.303 -0.827 -0.141
104 -13.610 -7.950 -5.360 -2.234 -0.804 -0.205
105 -11.750 -5.930 -3.490 -2.125 -0.727 -0.200
106 -10.530 -4.610 -2.360 -2.029 -0.643 -0.174

Note: N: number of grid points; w̄: wealth truncation point.

relative error is about 26% with w̄ = 10KRA = 45.6 and N = 100, which is similar to the case

with an evenly-spaced grid with w̄ = 40 and N = 100 in Table B.1 (27%). On the other hand, the

Pareto extrapolation method is astonishingly more accurate, with relative errors ranging from

0.13% to 2.3% depending on the specification. Second, for the truncation method, choosing a

larger truncation point w̄ improves the accuracy because it misses less of the upper tail. However,

even with a huge truncation point such as w̄/KRA = 106, the errors exceed the largest errors

with Pareto extrapolation. Finally, the accuracy of the Pareto extrapolation method is almost

independent of w̄. This is probably because the upper tail is well-approximated by a Pareto

distribution and our method corrects for the truncation error using the theoretical Pareto exponent,

so the choice of w̄ is not so important for accuracy.

2.4.3 Solution accuracy in general equilibrium

So far we have evaluated the accuracy of each solution method by comparing the implied

aggregate capital to that from the semi-analytical solution. However, aggregate capital is usually

not a quantity of interest. Therefore we now evaluate the solution accuracy by solving for the

entire equilibrium.

We consider both the truncation and Pareto extrapolation methods with the affine-
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exponential grid, where the number of grid points is N = 100, the median grid point is KRA,

and the largest grid point w̄ = wN is such that w̄/KRA = 101,102,103,104,105,106 as before. To

ensure that all the differences of the numerical solutions from the analytical one are entirely due

to the construction of the transition probability matrix, for each guess of the equilibrium risk-free

rate, we use the semi-analytical solution to the optimal consumption-savings problem to compute

the law of motion for wealth. Table 2.4 shows the relative errors in equilibrium quantities (gross

risk-free rate R f , aggregate capital K, and Pareto exponent ζ).

Table 2.4: Relative errors (%) in equilibrium quantities.

Method: Truncation Pareto extrapolation

w̄/KRA R f K ζ R f K ζ

101 0.761 -7.159 -13.317 -0.005 0.051 0.100
102 0.287 -2.801 -5.399 -0.002 0.016 0.031
103 0.142 -1.402 -2.732 0.002 -0.017 -0.034
104 0.080 -0.793 -1.553 0.003 -0.025 -0.049
105 0.049 -0.486 -0.955 0.002 -0.024 -0.048
106 0.032 -0.316 -0.622 0.002 -0.021 -0.042

Note: w̄: wealth truncation point. The number of grid points is N = 100. The actual values are:
R f = 1.0972, K = 3.4231, ζ = 1.2826.

As opposed to partial equilibrium, in general equilibrium the truncation method with a

moderately large truncation point performs reasonably well. For example, the relative errors are

0.1–3% when w̄/KRA = 103. However, the relative errors for the Pareto extrapolation method are

0.002–0.03% with the same w̄, so it is 100 times more accurate. The reason why the truncation

method performs better in general equilibrium than in partial equilibrium is probably due to the

general equilibrium effect: because the truncation method underestimates the aggregate capital

(given the risk-free rate, as seen in Table 2.3), the equilibrium risk-free rate must rise to clear the

market. In fact, in Table 2.4, R f is upwardly biased for the truncation method. Since wealth (and

hence aggregate capital) rises with a higher risk-free rate, the downward bias in aggregate capital

with the truncation method gets mitigated in general equilibrium.
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Given that the truncation method with a moderately large truncation point w̄ is reasonably

accurate, one may wonder what is the point of improving it further. There are several reasons to

prefer the Pareto extrapolation method. First, we can obtain 10–100 times more accurate results

at no additional computational cost, so there is just no reason not to use it. Second, and more

importantly, the performance of the Pareto extrapolation method is robust across the choice of

the truncation point w̄, whereas it is sensitive for the truncation method. Thus, with the Pareto

extrapolation method, the researcher need not worry about the choice of the truncation point,

while extra care is needed with the truncation method. Finally, the interest rate, aggregate capital,

and Pareto exponent may not be the only quantities of interest. One may be interested in other

quantities, such as the top 1% wealth share.

To address the last point, we compute top wealth shares using the Pareto extrapolation

method as described in Section 2.3.5. For the truncation method, since it is not obvious how to

extrapolate the top wealth share beyond the largest grid point, we simply interpolate by a cubic

spline using the point (0,0) (by definition, the top 0% wealth share is 0) and all the grid points.

Table 2.5 shows some representative top wealth shares.12 Because top wealth shares need to be

computed only once after solving for the equilibrium, for both truncation and Pareto extrapolation

methods, we use a grid that is 10 times finer than the one used for solving the equilibrium.

According to Table 2.5, the truncation method vastly underestimates top wealth shares

when the truncation point w̄ is small, as expected. On the other hand, the Pareto extrapolation

method gives numbers that are accurate up to two or three significant digits.

12Technically, for the semi-analytical solution we cannot compute the exact top wealth shares because the
functional form of the wealth distribution is unknown (we only know the tail behavior characterized by the Pareto
exponent ζ). For this case, to compute the stationary distribution, we use the Pareto extrapolation method with a
highly accurate 2,000-point affine-exponential grid with truncation w̄ = 106×KRA, which we take as the truth.
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Table 2.5: Top wealth shares (%) in equilibrium.

Method: Truncation Pareto extrapolation

w̄/KRA Top 0.01% 0.1% 1% 10% Top 0.01% 0.1% 1% 10%

101 0.11 1.16 12.76 50.87 13.11 21.81 36.27 60.31
102 1.20 10.08 29.07 57.55 13.20 21.92 36.37 60.39
103 7.08 17.43 33.76 59.54 13.27 21.99 36.46 60.46
104 10.65 20.16 35.51 60.28 13.29 22.01 36.48 60.47
105 12.17 21.32 36.23 60.55 13.30 22.03 36.49 60.47
106 12.83 21.80 36.50 60.63 13.28 22.00 36.47 60.46

Analytical 13.21 21.92 36.39 60.40 13.21 21.92 36.39 60.40
Note: w̄: wealth truncation point; Top x%: wealth share (%) of the wealthiest x%. The number of
grid points is N = 100 for solving the equilibrium and 10N = 1,000 for computing top wealth shares.
“Truncation” and “Pareto extrapolation” refer to the truncation and Pareto extrapolation methods for
solving the equilibrium, and “Analytical” shows results from the semi-analytical solution. Top wealth
shares for “Analytical” are computed using the grid in Footnote 12.

2.4.4 Constructing the grid for wealth

What do we learn from these exercises? The good news is that the conventional truncation

method is able to solve models reasonably accurately, provided that we use an exponentially-

spaced grid with a large enough number of points and a large enough truncation point—say

a million times the typical scale. The bad news is that we do not a priori know how large is

large enough. There is a superior alternative: Pareto extrapolation is far more accurate, it has no

additional computational cost, and its performance is robust across the grid specification.

Based on the above observations as well as the results in Appendix B.3, we recommend

the following strategy for solving heterogeneous-agent models with fat-tailed wealth distribution.

[Constructing the grid for wealth]

1. Before solving the model, find out a typical scale for the state variable (wealth), perhaps by

solving a representative-agent model without any shock.

2. Solve the heterogeneous-agent model using the Pareto extrapolation method with the hybrid

affine-exponential grid. More concretely,
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(a) Construct the exponentially-spaced grid with a truncation point about 1,000 times the

typical scale for the state variable.

(b) Replace the bottom half grid points by an evenly-spaced grid.

3. After solving the model, if necessary, recompute the wealth distribution on a finer grid

from the already computed equilibrium law of motion.

Note that there are many other possibilities. In the value function iteration step, since we do not

need the wealth distribution, we can just use an exponentially-spaced grid with relatively few

points to increase the speed. When computing the market clearing condition, we can interpolate

the policy functions on a finer grid and then use Pareto extrapolation method for accuracy.

2.5 Merton-Bewley-Aiyagari model

Having now established that the solution method we propose is accurate, we apply it to

study wealth inequality in an incomplete market general equilibrium model in the spirit of 1994.

Agents face an income fluctuation problem as in 1977, 1983 and those who choose to invest

face uninsurable investment risk that leads to an investor’s problem similar to 1969 and 1969,

although in a Markovian setting as studied in 2006 and 2014. The model (which we refer to as

the Merton-Bewley-Aiyagari, or MBA model) generates a fat-tailed wealth distribution, where

the Pareto exponent is shaped by rich general equilibrium effects. We provide a step-by-step

approach to solving the model and analyzing its quantitative implications.

2.5.1 Model

Time is discrete and denoted by t = 0,1, . . . .

The economy is populated by a unit measure of infinitely-lived agents with Epstein-Zin
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preferences

Ut =

(
(1−β)c1−1/ε

t +βEt [U
1−γ

t+1 ]
1−1/ε

1−γ

) 1
1−1/ε

, (2.36)

where ct > 0 is consumption, Ut > 0 is continuation utility, β ∈ (0,1) is the discount factor,

γ > 0 is the coefficient of relative risk aversion, and ε > 0 is the elasticity of intertemporal

substitution.13 Agents differ in productivity/ability states denoted by s ∈ S = {1, . . . ,S}, which

evolve over time according to a Markov chain with irreducible transition probability matrix

P = (pss′). The idiosyncratic productivity states are independent and identically distributed across

agents and we assume the law of large numbers for the continuum as in 2006. Therefore if

π = (π1, . . . ,πS)
′ denotes the (unique) stationary distribution of the transition probability matrix

P, at any point in time exactly fraction πs > 0 of agents are in state s.

A type s agent has labor productivity hs ≥ 0 and earns pre-tax labor income ωhs, where

ω > 0 is the “piece-rate” wage determined in equilibrium. A type s agent has investment ability

zs > 0 and earns excess returns in the financial market, as described below. Without loss of

generality we assume that z1 ≤ ·· · ≤ zS, so the Markov state s indexes the agent’s investment

ability. There are two types of assets, risk-free and risky. Let R f be the gross risk-free rate

determined in equilibrium. We assume that the ex post pre-tax gross return on risky investment

for an investor in state s is

Rs j = zs jR f , (2.37)

where zs j is defined as the sum of the investment ability zs and a zero-mean i.i.d. random variable

ε j that can take J possible values ε1 < · · · < εJ . Let p j > 0 be the probability of state j. Thus

high-skilled investors earn higher returns on average (zs), but there is some element of luck (ε j).

We can interpret this as lack of diversification. We assume that z1+ε1 > 0, so agents have limited

liability even in the worst possible state. To prevent arbitrage, we also assume that zS + ε1 < 1, so

13By considering the limit γ→ 1, we interpret [U1−γ]
1

1−γ as E([logU ]) if γ = 1. Similarly, we interpret ((1−
β)c1−1/ε +βv1−1/ε)

1
1−1/ε as c1−βvβ if ε = 1.
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even the most skilled investor underperforms the risk-free asset with positive probability. From

the above assumptions, note that (i) zs j is increasing in both s and j, (ii) zs j > 0 for all s, j, and

(iii) zS1 < 1.

Technology is represented by a representative firm with a constant-returns-to-scale pro-

duction function F(K,L). Capital depreciates at rate δ ∈ [0,1]. Therefore the firm’s problem

is

max
K,L≥0

[
−K +

1
R f

(F(K,L)−ωL+(1−δ)K)

]
. (2.38)

That is, the firm buys capital K at the end of time t, hires labor to produce, and pays the profit and

depreciated capital to the shareholders (who discount using the risk-free rate since there is no

aggregate risk).

Letting w be the financial wealth at the beginning of the period, the budget constraint of

an agent is

w′ = (1− τw)
(
(1+(1− τk)(R f −1))(w+(1− τh)ωhs− I− c)+(1+(1− τk)(Rs j−1))I

)
≥ w,

where w is an exogenous minimum wealth constraint and I ≥ 0 is the investment in the risky asset.

We assume that there are proportional taxes on labor income (at rate τh), capital income (τk), and

wealth (τw). Notice that the capital income tax applies to the net return on the risk-free and risky

assets while the wealth tax applies to the beginning of the period wealth. We assume that the tax

proceeds are wasted. To simplify the notation, we denote by R̃ f , R̃s j the after-tax gross returns on

the risk-free and risky assets, respectively:

R̃ f = (1− τw)(1+(1− τk)(R f −1)), (2.39a)

R̃s j = (1− τw)(1+(1− τk)(Rs j−1)). (2.39b)
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The budget constraint thus simplifies to

w′ = R̃ f (w+(1− τh)ωhs− I− c)+ R̃s jI ≥ w. (2.40)

Our equilibrium concept is the stationary equilibrium defined as follows.

Definition 1 (Stationary equilibrium). A stationary equilibrium consists of a gross risk-free

rate R f , a piece-rate wage ω, aggregate capital K, aggregate labor L, optimal decision rules

{cs(w), Is(w)}S
s=1, value functions {vs(w)}S

s=1, and a stationary distribution Γ(w,s) such that

1. given R f and ω, aggregate capital K and aggregate labor L solves the profit maximization

problem (2.38),

2. given R f and ω, for each s the optimal decision rule (cs(w), Is(w)) maximizes the recursive

utility (2.36) subject to the budget and borrowing constraint (2.40), ,

vs(w) = max
c,I≥0

(
(1−β)c1−1/ε +βE[vs′(w

′)1−γ|s]
1−1/ε

1−γ

) 1
1−1/ε

, (2.41)

3. the capital market clears, so

K =
∫
(w+(1− τh)ωhs− Is(w)− cs(w))Γ(w,s)+

∫
zsIs(w)Γ(w,s), (2.42)

4. the labor market clears, so

L =
S

∑
s=1

πshs, (2.43)

5. Γ(w,s) is the stationary distribution of the law of motion for (w,s) ∈ [w,∞)×S defined by

(w,s) 7→
(

R̃ f (w+(1− τh)ωhs− I− c)+ R̃s jI,s′
)

(2.44)

with probability pss′ p j, where R̃ f and R̃s j are as in (2.39).

Note that an investor who invests I units of wealth supplies zsI units of capital to the
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firm (see the right-most term in (2.42)), so investors not only supply funds but also “expertise”.

This assumption (together with E[ε j] = 0) makes the (pre-tax) gross return to investment Rs j =

(zs + ε j)R f consistent with the aggregate resource constraint.

2.5.2 Asymptotic analysis

As discussed in Section 2.3, the solution to the asymptotic problem plays an important role

in the Pareto extrapolation algorithm (especially for computing the theoretical Pareto exponent).

In this section, we discuss the properties of the asymptotic problem of the MBA model and derive

parametric restrictions in general equilibrium.

Asymptotic problem

We first derive the asymptotic problem and convert it in a more convenient form. Since

there is no labor income in the asymptotic problem, the budget constraint (2.40) becomes

w′ = R̃ f (w− I− c)+ R̃s jI ≥ 0, (2.45)

where R̃ f , R̃s j are as in (2.39). Letting θ = I
w−c ≥ 0, (2.45) becomes

w′ =
(

R̃ f (1−θ)+ R̃s jθ
)
(w− c)≥ 0. (2.46)

The following proposition characterizes the solution to the asymptotic problem.

Proposition 10 (Asymptotic problem). Suppose γ 6= 1. For s = 1, . . . ,S, define

ρs = max
0≤θ≤θ̄s

E[
(

R̃ f (1−θ)+ R̃s jθ
)1−γ

|s]
1

1−γ , (2.47)

where the upper bound is θ̄s := R̃ f

R̃ f−R̃s1
> 0. Then ρs is well-defined and there exists a unique
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maximizer θ∗s . Letting D =
(

ρ
1−γ

1 , . . . ,ρ
1−γ

S

)
, the asymptotic problem has a solution if and only if

βρ(DP)
1−1/ε

1−γ < 1, (2.48)

where ρ(DP) is the spectral radius of DP. Under this condition, the value function of the

asymptotic problem is given by vs(w) = bsw, where b = (b1, . . . ,bS)� 0 is the unique positive

solution to the system of nonlinear equations

bs =


(
(1−β)ε +βε

(
ρsE[b

1−γ

s′ |s]
1

1−γ

)ε−1
) 1

ε−1

(ε 6= 1)

(1−β)1−βββ

(
ρsE[b

1−γ

s′ |s]
1

1−γ

)β

(ε = 1)

(2.49)

for s = 1, . . . ,S. The optimal consumption-investment rules of the asymptotic problem are

cs(w) = c̄sw := (1−β)εb1−ε
s w, (2.50a)

Is(w) = Īsw := θ
∗
s (1− (1−β)εb1−ε

s )w. (2.50b)

Parametric restrictions in general equilibrium

Since the diagonal matrix D =
(

ρ
1−γ

1 , . . . ,ρ
1−γ

S

)
depends on the equilibrium interest rate

R f , the spectral condition (2.48) puts a restriction on R f . The following lemma puts further

restrictions based on equilibrium considerations.

Lemma 3 (Finite aggregate wealth). Let everything be as in Proposition 10 and suppose that

(2.48) holds. Define

Gs := (1− (1−β)εb1−ε
s )(R̃ f (1−θ

∗
s )+E[R̃s j|s]θ∗s ) (2.51)

and G = (G1, . . . ,GS)
′. Then in equilibrium it must be

ρ(PG)< 1. (2.52)
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The intuition for Lemma 3 is as follows. Using the budget constraint and the optimal

consumption and portfolio rules for asymptotic agents established in Proposition 10, the expected

growth rate of wealth in state s becomes Gs in (2.51). The spectral condition (2.52) ensures that

the wealth of rich agents does not grow on average and makes the aggregate wealth finite, which

must be the case in stationary equilibrium.

Under the assumptions of Lemma 3, the following lemma provides an explicit algorithm

for computing the Pareto exponent ζ.

[Pareto exponent] Let everything be as in Lemma 3 and

Gs j = (1− (1−β)εb1−ε
s )(R̃ f (1−θ

∗
s )+ R̃s jθ

∗
s )> 0 (2.53)

be the ex post gross growth rate of wealth for asymptotic agents in state (s, j). Define the

conditional moment generating function of log growth rate by

Ms(z) = E[Gz
s j|s] =

J

∑
j=1

p jGz
s j (2.54)

and the diagonal matrix D(z) = (M1(z), . . . ,MS(z)). Suppose that pss > 0 for all s and GsJ > 1

for some s. Then there exists a unique solution z = ζ > 1 to

ρ(PD(z)) = 1. (2.55)

The Pareto exponent of the wealth distribution is ζ > 1. If GsJ ≤ 1 for all s, then the wealth

distribution does not have a Pareto tail.

The reason why the Pareto exponent formulas (2.10) and (2.55) are slightly different is

because the conditional moment generating function (2.54) depends only on the current state s.

If it depended on two consecutive states, we should use (2.10). It is straightforward to see that

(2.10) reduces to (2.55) when dependence is only on the current state.
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Finally, it is trivial to show that the equilibrium risk-free rate must satisfy

R f > 1−δ, (2.56)

otherwise the demand for capital would be infinite.

2.5.3 Calibration

A time period represents a year and we calibrate the model to the U.S. economy.

We assume a Cobb-Douglas production function F(K,L) = KαL1−α, where α ∈ (0,1)

represents the capital share. We set the technological and preference parameters (β,γ,α) to

standard values (see Table 2.6). For the elasticity of intertemporal substitution, most macro papers

assume that it is less than 1, while most finance papers assume that it is greater than 1. To be

neutral, we set ε = 1, which is also supported by studies using disaggregated data to estimate

the elasticity (Mankiw and Zeldes 1991; Attanasio and Weber 1993; Beaudry and Wincoop

1996; Vissing-Jørgensen 2002). We set the labor income, capital income, and wealth tax rate

respectively to τh = 0.224, τk = 0.25, τw = 0 as in 2018, who use estimates from 2007. Finally,

we set the borrowing limit to 1/4 of average annual labor income as in 2018. Our calibration

implies that average value of hs in a stationary equilibrium is 1, so w =−ω/4.

Table 2.6: Parameter values.

Parameter Symbol Value

Discount factor β 0.96
Relative risk aversion γ 2
Elasticity of intertemporal substitution ε 1
Capital share α 0.38
Labor income tax τh 0.224
Capital income tax τk 0.25
Wealth tax τw 0
Borrowing limit w −ω/4

We assume that labor productivity {hst}∞
t=0 and investment ability {zst}∞

t=0 depend con-
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temporaneously on two Markov state variables sπ and sτ, with associated transition probability

matrices Pπ and Pτ. We interpret the first state sπ as a “permanent component”, which affects both

labor productivity and investment ability and takes three states: low, high, and high-entrepreneur.

The second state sτ, which we call the “transitory component” affects only labor productivity and

takes three values: low, average, and high. The index s = sπ× sτ can thus take 9 states.

Labor productivity in state s is the product of a permanent component and a transitory

component:

hs = hπ
s hτ

s.

The permanent component hπ
s takes two values: 0.3980 (low) and 1.6020 (high and high-

entrepreneur). The high state workers (high and high-entrepreneur) thus earn a wage rate 4.03

times higher than low state workers, in line with the ratio of the mean annual income of the

top half to the bottom half of full-time workers in the U.S.14 We interpret agents as dynasties

with perfect altruism, and assume that the permanent component of labor productivity is very

persistent and changes on average every 40 years. Moreover, we choose transition probabilities

for the permanent component as to imply that, in a stationary equilibrium, 50% of the agents

are in the low state and 3.7% are in the high-entrepreneur state. We choose the value of 3.7%

to match the fraction of households that invest at least half of their net worth in a business (see

Footnote 15). The transition probability matrix Pπ is thus given by

Pπ =


0.9875 0.0116 0.0009

0.0125 0.9866 0.0009

0.0125 0.0116 0.9759

 . (2.57)

We model the process for the transitory component of labor productivity hτ as an AR(1) in

14We use data from the American Community Survey and restrict the sample to employed individuals aged
between 20 and 60. For every year, we truncate the sample at the 5th and 95th percentile and then compute the ratio
of the mean annual income in the bottom and top half of the sample. We then average the ratio over the 2000-2016
period and obtain an average ratio of 4.03.
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logarithm

loghτ
st
= ρ loghτ

st−1
+σηt , (2.58)

where ηt ∼ N(0,1). 2009a obtains values of ρ = 0.821 and σ = 0.170 by estimating a model

that allows for heterogeneous lifetime earnings profiles. We discretize the process (2.58) over a

three-point grid using the method proposed by 2017, while imposing that the unconditional mean

of hτ
s is equal to one. We obtain values for hτ

s of 0.6584 (low state), 0.9150 (average state), and

1.5115 (high state). The resulting transition probability matrix Pτ is given by

Pτ =


0.8290 0.1630 0.0080

0.0815 0.8370 0.0815

0.0080 0.1630 0.8290

 . (2.59)

Since hπ
s and hτ

s are independent and both have an unconditional mean of one, the average labor

productivity hs = hπ
s hτ

s is one in equilibrium.

We assume that investment ability z is fully determined by the permanent component sπ.

For the low and high states, we set z = 1, which implies that those agents do not earn an excess

return on their investments (, they earn the risk-free rate R f ). Since investment returns are risky,

those agents will never invest. For the high-entrepreneur state, we set z = 1.028, which implies

an annual excess return of 2.8%. This is roughly the difference between the average return on

financial assets of households at the 90th and 10th percentiles of the financial wealth distribution

in Norway as reported in Fagereng, Guiso, Malacrino, and Pistaferri (2016a, Figure 2).

To calibrate the distribution of idiosyncratic investment return shocks ε, we use microdata

from the Survey of Consumer Finances and construct a measure of the rate of return on business

investment (business income over the market value of the business) for each household.15 Using

15We use data from the Survey of Consumer Finances for the years 2001, 2004, 2007, 2010, 2013, and 2016
and keep only households who have at least 50% of their net worth invested in businesses. Business income
busseincfarm is defined as “Income from business, sole proprietorship, and farm” while the market value of the
businesses bus is defined as “Total value of business(es) in which the household has either an active or nonactive
interest”. We winsorize the rate of return at the 5% level.
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the nonparametric discretization method proposed by 2018 on the de-meaned data, we obtain

a discrete distribution for ε, which takes values (−0.0836,0.0761,0.3795) with probability

(0.6345,0.2822,0.0833).

Putting all the pieces together, we have S = 9 exogenous individual states and J = 3

idiosyncratic investment return shock states. The transition probability matrix for the exogenous

individual states is given by P = Pπ⊗Pτ, where⊗ is the Kronecker product and Pπ,Pτ are defined

in (2.57) and (2.59), respectively. Table 2.7 summarizes the dependence of labor productivity and

investment ability on the exogenous individual state s.

Table 2.7: Exogenous individual states.

State (s) Component Productivity/ability

Permanent Transitory Labor (hs) Investment (zs)

1 low low 0.2620 1.00
2 low average 0.3642 1.00
3 low high 0.6016 1.00
4 high low 1.0547 1.00
5 high average 1.4659 1.00
6 high high 2.4215 1.00
7 high-entrepreneur low 1.0547 1.028
8 high-entrepreneur average 1.4659 1.028
9 high-entrepreneur high 2.4215 1.028

2.5.4 Solving the model

To solve the calibrated model, we use the Pareto extrapolation algorithm. We construct

a 100-point affine-exponential grid (as described in Section 2.4.3) to approximate the optimal

decision rules cs(w) and Is(w) as well as the wealth distribution Γ(w,s) and use an error tolerance

of 10−6 in the dynamic programming step. Once the model is solved, we recompute the wealth

distribution over a finer grid with 1,000 points to compute top wealth shares. In both cases, we
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use a truncation point of w̄ = 103×KRA, where

KRA = ((1/β−1+δ)/(Aα))
1

α−1 = 6.2771 (2.60)

is the capital stock in the corresponding representative-agent model. Below, we adapt the Pareto

extrapolation algorithm in the context of the MBA model.

1. Given a guess of R f that satisfies the finite capital demand restriction (2.56), solve the

problem of the asymptotic agents (2.47), (2.49) and compute the Pareto exponent (2.55)

(asymptotic analysis step). If a solution to the asymptotic problem exists (which can be

checked using the spectral condition (2.48)), verify that aggregate capital supply is finite

using (2.52). If there is no solution to the asymptotic problem or if capital supply is infinite,

update R f .

2. Given R f , compute the capital demand Kd and wage ω implied by profit maximization.

Recall that aggregate labor supply is determined only by exogenous parameters and is

normalized to L = 1. Thus

Kd =

(
α

R f −1+δ

) 1
1−α

, ω = (1−α)

(
α

R f −1+δ

) α

1−α

.

3. Given R f and ω, solve the individual optimization problem using dynamic programming

(dynamic programming step, see Appendix B.4 for details), compute the stationary

distribution from the law of motion (2.44) (stationary distribution step), and compute the

aggregate capital supply Ks (2.42) (aggregation step).

4. If excess demand Kd−Ks is within error tolerance, stop. Otherwise, update R f .

Using a machine equipped with an Intel Xeon E3-1245 3.5GHz processor and 16GB

of memory, the computing time for a guess of R f is roughly 840 seconds and it takes 9 iterations

to find the equilibrium R f using Matlab’s fzero function with an error tolerance of 10−6.
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2.5.5 Quantitative results

We now discuss the quantitative implications of the calibrated model. Figure 2.1 shows

the aggregate capital supply and demand curves for a range of values of R f . The demand

curve is determined by profit maximization of the representative firm, while the supply curve is

obtained by aggregating net capital supply from households, either supplied directly to the firm or

intermediated by investors (see (2.42)). The intersection of the two curves pins down the risk-free

rate that clears the capital market. We obtain a value of 1.0245 (Table 2.8), or 2.45%.
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Figure 2.1: Capital demand and supply.

The equilibrium interest rate in turn determines the Pareto exponent ζ of the wealth

distribution (Figure 2.2). Higher interest rates R f are associated with lower Pareto exponents

ζ (higher inequality). Intuitively, the “pace” at which rich agents get richer is increasing in the

interest rate, so there is more concentration of wealth at the top of the distribution in economies

with higher interest rates. We obtain an equilibrium value of ζ = 1.69 (Table 2.8), which is close

to but higher than what is estimated for the U.S. (1.52 according to Table 8 of Vermeulen 2018).

While the wealth distribution exhibits a Pareto upper tail, the Pareto exponent ζ does not

fully summarize the wealth distribution. For example, the borrowing constraint is an important
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Figure 2.2: Determination of Pareto exponent.

Table 2.8: Equilibrium objects.

Object Symbol Value

Capital K 8.02
Labor L 1.00
Risk-free rate R f −1 2.45%
Wage rate ω 1.37
Pareto exponent ζ 1.69

determinant of the wealth share of the poorest 50% of agents, yet ζ depends only on the behavior

of rich agents, who are not affected by the borrowing constraint.16 Table 2.9 presents the wealth

shares in the model and in the data (Survey of Consumer Finances).17 The model qualitatively

replicates two important features of the data: the poorest 50% of households hold little wealth

(1.85% in the model, 1.79% in the data) while the top 1% accounts for a large share (39.91% in

the model, 34.95% in the data).

The last column of Table 2.9 presents the wealth shares associated with a “pure-Pareto”

16To be precise, the Pareto exponent ζ can be computed using only the solution to the asymptotic problem (see
Section 2.5.2, especially Lemma 2.5.2), which does not depend on the borrowing constraint.

17We compute the wealth shares in the data using the Survey of Consumer Finances and average over the survey
years 2001, 2004, 2007, 2010, 2013, and 2016.
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Table 2.9: Wealth shares (%).

Groups Model Data Pure Pareto

[0,50) 1.85 1.79 24.61
[50,90) 31.56 25.09 36.27
[90,99) 26.68 38.17 23.82
[99,100] 39.91 34.95 15.31

distribution with the same exponent ζ as in the model.18 The Pareto distribution generates a

bottom 50% wealth share more than ten times as high as in the model (24.61% versus 1.85%).

One drawback of analytical models that imply a “pure-Pareto” wealth distribution such as 2017 is

that they do not allow for negative wealth levels, and therefore cannot match the low wealth share

of the bottom 50% of agents. In contrast, our model naturally matches both the upper and lower

tails of the wealth distribution.
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Figure 2.3: Probability mass function.

Figure 2.3 presents the probability mass function (PMF) for wealth levels [w,30]. Visually,

it would appear that truncating the distribution at w̄ = 30 is a reasonable choice.19 While it is true
18The cumulative distribution function (CDF) of a Pareto distribution with exponent ζ and minimum size x > 0 is

F(x) = 1− (x/x)−ζ over [x,∞). Its top wealth shares are independent of x.
19The “typical scale” computed as in (2.60) is KRA = 6.28, so a truncation point of 30 represents roughly 5 times

the typical scale.
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Figure 2.4: Complementary CDF.

that 97.2% of households in the model have wealth levels in the range [w,30], the remaining 2.8%

of households account for 52% of aggregate wealth. Is our choice of w̄ = 103×KRA appropriate?

Table 2.10 reports the MPC relative error (in percentage points) defined by (2.24) for a range of

truncation points. With w̄/KRA = 103, the MPC relative error is at most 0.0223%, suggesting that

it is an appropriate choice.

Table 2.10: Relative error (%) in marginal propensities to consume.

State (s) Truncation point (w̄/KRA)

101 102 103 104 105 106

1 6.2566 0.6470 0.0212 0.0004 0 0
2 6.2487 0.6490 0.0213 0.0004 0 0
3 6.2173 0.6511 0.0213 0.0004 0 0
4 10.1042 0.7505 0.0222 0.0004 0 0
5 9.9959 0.7515 0.0222 0.0004 0 0
6 9.7282 0.7505 0.0223 0.0004 0 0
7 5.1534 0.4597 0.0166 0.0004 0 0
8 4.9042 0.4598 0.0167 0.0004 0 0
9 4.5197 0.4583 0.0168 0.0004 0 0

Note: the individual states s = 1, . . . ,9 are defined in Table 2.7.
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Figure 2.4 shows the complementary CDF of the wealth distribution in a log-log scale for

the range [100,106]. As predicted by theory, the upper tail of the distribution appears to converge

to the theoretical Pareto slope.

2.5.6 Taxing wealth? A bad idea

We now use the model to quantify the welfare effects of introducing a 1% wealth tax. To

do so, we solve the model again with τw = 0.01. We assume that any increase (decrease) in tax

revenue, which we denote ∆T , is rebated to the household in the form of a (potentially negative)

consumption subsidy τc. Noting that a typical agent’s net capital income is

(R f −1)(w+(1− τh)ωhs− cs(w))+R f (zs j−1)Is(w)

and zs j|s = zs + ε j|s = zs, the total tax revenue is

T =
∫ [

τhωhs︸ ︷︷ ︸
Labor income tax

+τk
(
(R f −1)(w+(1− τh)ωhs− cs(w))+R f (zs−1)Is(w)

)︸ ︷︷ ︸
Capital income tax

+ τw
(
(1+(1− τk)(R f −1))(w+(1− τh)ωhs− cs(w))+(1− τk)R f (zs−1)Is(w)

)︸ ︷︷ ︸
Wealth tax

]
Γ(w,s).

Due to homothetic preferences, we only need to solve the model without consumption subsidy

and then compute aggregate consumption C :=
∫

cs(w)Γ(w,s) as well as the change in tax revenue

∆T . We then compute the consumption tax as

τc =−
∆T
C

,

and the welfare function as

W = (1− τc)

(∫
vs(w)1−γ

Γ(w,s)
) 1

1−γ

, (2.61)
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which is the certainty equivalent of the value function in the stationary equilibrium. Note that is

in units of consumption because the Epstein-Zin utility (2.36) is also in units of consumption.20

Intuitively, the welfare measure (2.61) is the risk-adjusted utility (in units of consumption) of an

agent who is randomly thrown into the stationary equilibrium.
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Figure 2.5: Capital demand and supply.

The wealth tax reduces the after tax return on investment, which induces a shift to the left

of the capital supply curve (Figure 2.5). Capital demand remains unchanged, so the equilibrium

interest rate increases in order to clear the market. The Pareto exponent curve shifts to the right

(Figure 2.6), meaning that for a given interest rate, the equilibrium Pareto exponent is larger.

Yet, the increase of the interest rate (+1.2 p.p.) is so large that the equilibrium Pareto exponent

increases only slightly (from 1.69 to 1.76). Loosely speaking, general equilibrium effects undo

most of the effect of the wealth tax on inequality. Overall, we find that the introduction of a

wealth tax is a lose-lose policy: wealth inequality remains mostly unchanged, while tax revenue,

output, and welfare all decrease. Table 2.11 shows the percentage change in aggregate variables

in response to the introduction of the wealth tax. First, notice that capital decreases by 16.13%.

20To compute (2.61) numerically, we use the correction term from (2.25) with ν = 1− γ to extrapolate the term
vs(w)1−γ off the grid.
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Figure 2.6: Determination of Pareto exponent.

The decrease in the capital stock, combined with the fact that aggregate labor supply is inelastic,

leads to a decline in output and wages (−6.47%).

Table 2.11: Equilibrium objects.

Object Symbol No Wealth Tax 1% Wealth Tax Change (%)

Output Y 2.21 2.06 -6.47
Capital K 8.02 6.73 -16.13
Labor L 1.00 1.00 0.00
Risk-free rate R f −1 2.45% 3.65% 1.20
Wage rate ω 1.37 1.28 -6.47
Pareto exponent ζ 1.69 1.76 4.05
Welfare 0.75 0.69 -7.65

The decline in output alone need not imply a decrease in welfare. For instance, it could be

compensated by a reduction in consumption inequality driven by lower wealth concentration. We

find that this is not the case. Welfare decreases (in consumption equivalent) by 7.65%. Moreover,

wealth inequality remains mostly unchanged. Table 2.12 shows the change in wealth shares.

While it is true that the top 1% wealth share declines modestly (from 39.91% to 39.19%), the

bottom 50% also declines (from 1.85% to 1.54%).
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Table 2.12: Wealth shares (%).

Groups No Wealth Tax 1% Wealth Tax Change

[0,50) 1.85 1.54 -0.30
[50,90) 31.56 32.05 0.49
[90,99) 26.68 27.21 0.53
[99,100] 39.91 39.19 -0.72

A surprising result is that the decline in output and labor income is so large that total tax

revenue actually declines. Table 2.13 shows the change in tax revenue by components (labor

income tax, capital income tax, and wealth tax). The introduction of the wealth tax provides a

new tax revenue of 0.020 (5.51% of initial total tax revenue). Yet, the decline in labor income

tax (−6.47%) and capital income tax (−4.82%) dominate, leading to a 0.72% decline in total tax

revenue. As a result, the shortfall in tax revenue is compensated by a consumption tax of 0.21%

(τc = 0.0021), which further contributes to decreasing welfare.

Table 2.13: Tax revenue.

Tax No Wealth Tax 1% Wealth Tax Change (%)

Labor income tax 0.306 0.287 -6.47
Capital income tax 0.054 0.051 -4.82
Wealth tax 0 0.020 -

Total 0.360 0.358 -0.72

Figure 2.7 shows the welfare change conditional on wealth and the three persistent types

(low, high, high-entrepreneur).21 Notice that the welfare change is negative at all wealth levels

but is larger (in absolute value) for poor households. Given that households with low wealth

levels rely mostly on labor income, they are most affected by the decline in wages that operate

through general equilibrium effects, and less by the wealth tax. In fact, agents with zero wealth

see a welfare decrease of roughly 7% (see table 2.14) which is close to the wage decline of 6.47%.

On the other hand the welfare cost declines monotonically with wealth and asymptotes to roughly

21We average the value function for each type over the three transitory states using the certainty equivalent.
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3%. While the rich bear most of the wealth tax, it is the poor who see the largest welfare losses.22
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Figure 2.7: Welfare change along the wealth distribution.
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Figure 2.8: Welfare change along the wealth distribution.

The analysis thus far predicts a quantitatively large response of output and welfare to

the introduction of a wealth tax. Since we focus on the stationary equilibrium of the model,
22The reason why the aggregate welfare loss of 7.65% is larger than those in Figure 2.7 is because the overall

wealth distribution shifts to the left, as can be seen in the declining bottom 50% wealth share in Table 2.12.
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Table 2.14: Decomposition of welfare change.

Permanent type Welfare change (%)
w = 0 w→ ∞

Low -6.72 -3.09
High -6.86 -3.09
High-entrepreneur -7.03 -3.09

it is not clear how fast the economy would converge to its new steady state. One way to

approximate the speed of convergence is to compute the second largest eigenvalue of the transition

probability matrix for wealth Q in the benchmark economy (Rosenthal 1995, Section 4). We

find a value of 0.9799, which implies a relatively slow rate of convergence. (The half-life is

log0.5/ log0.9799 = 34.1 years.) Therefore, the adverse effects of the wealth tax, which operate

partially through general equilibrium effects, might take many decades to materialize. The

benefits, however, are immediate (higher tax revenue).

2.6 Concluding remarks

This paper proposes a simple, systematic approach—Pareto extrapolation—to analyze

and solve heterogeneous-agent models that endogenously generate fat-tailed wealth distributions.

The core insight that we take advantage of is due to Pareto, who noticed that wealth microdata

displayed a striking empirical regularity.

Nous sommes tout de suite frappé du fait que les points ainsi déterminés, ont une
tendance très marqué à se disposer en ligne droite.

(We are instantly struck by the fact that the points determined this way have a very
marked tendency to be disposed in straight line.)

—Pareto (1897, pp. 304–305)

We put Pareto’s insight to work to tackle models of wealth inequality. Our approach makes

the solution algorithm more transparent, efficient, and accurate with zero additional computational
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cost. We leave for future work the implementation of the Pareto extrapolation algorithm along

deterministic transition paths as well as in the context of heterogeneous-agent models with

aggregate shocks.
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Chapter 3

Earnings Dynamics and Inequality Within

the Firm

The topic of pay inequality within the firm has attracted a lot attention amongst academics

and policymakers.1 Empirical evidence points to large within-firm inequality (Mueller, Ouimet,

and Simintzi 2017b, Song et al. 2018, Bayer and Kuhn 2018) especially between executives

and the rest (Frydman and Saks 2010, Edmans, Gabaix, and Jenter 2017). In a context of rising

income inequality, is there a case to be made for limiting pay ratios between employees within

the same firm? What is the socially optimal level of inequality? To shed light on these questions,

this paper develops a model of earnings dynamics and inequality within the firm motivated by

novel evidence from personnel data.

Using a proprietary dataset containing personnel data for a sample of Canadian firms

over the 2013-2018 period, I provide new evidence on inequality and mobility within the firm.

For each firm and year, the dataset contains worker-level information on job title, base pay,

and performance bonus. While job titles differ across firms and industries, the dataset contains

1For example, on April 10, 2019, the CEOs of the largest seven financial institutions in the U.S. were invited
to testify before the House Financial Services Committee and part of the hearing focused on the pay ratio between
CEOs and the average employee. The transcript can be found at https://www.npr.org/templates/transcript/transcript.
php?storyId=711732570.
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14 harmonized “hierarchy levels” that summarize the ranking of job titles within the firm. To

motivate my modelling choices, I document three sets of facts. First, most of inequality within

the firm is between hierarchy levels rather than within. For example, a regression of log earnings

on 14 hierarchy levels yields an R2 of 0.78. Second, upward mobility within the firm is on

average low. In a given year, less than one out of eight employees are promoted to a higher rank.

Third, there is a lot of heterogeneity in earnings trajectories. Over a five year period, the median

employee experiences a 20% earnings growth, while those at the 95th percentile see their earnings

increase by 55%.

The model developed in this paper combines insights from two distinct literatures. First,

I model firms as production hierarchies. Workers are assigned to different hierarchy levels and

interact only with their direct superiors and subordinates. This view of the production process

finds its roots in early theoretical work (see Lucas 1978 and Rosen 1982) and more recently in the

“knowledge hierarchy” literature (Garicano 2000, Garicano and Rossi-Hansberg 2006, Caicedo,

Lucas Jr, and Rossi-Hansberg 2019). Second, I build on the idea that wage inequality within the

firm generates an incentive for workers to exert effort (in order to increase their likelihood of

being promoted). This idea can be traced to Lazear and Rosen 1981, who show that a “rank order

tournament” compensating scheme—i.e., where two workers compete for a single prize—leads

to an efficient level of effort.

The mechanics of the model are as follows. Firms offer labor contracts specifying

promotion rates as well as wages for each hierarchy level. Heterogeneous workers join the

workforce at the bottom of the job hierarchy and at each period they choose how much effort to

exert. Firms observe effort with noise and promote workers who they perceive to be the most

productive. As a result, workers face a stochastic process for earnings that is characterized by

infrequent but large and persistent jumps in earnings. The model provides a positive theory of

these facts and sheds light on the determinants of inequality within the firm.

This paper relates to the theoretical literature on “production hierarchies” (Lucas 1978,
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Rosen 1982, Garicano 2000, and Garicano and Rossi-Hansberg 2006). The labor contract that

firms offer is a “rank order tournament” scheme as in Lazear and Rosen 1981. Compared to their

model, I consider a dynamic environment instead of a one-shot game. Compared to the canonical

“job-ladder” model (Burdett and Mortensen 1998), the “job ladder” in my model is within firms

rather than between (i.e., workers climb the job ladder by being promoted to a higher ranked job

rather than by switching employer).

The paper is also related to the empirical literature that documents an important role of

firms in shaping trends in inequality (Song et al. 2018, Barth et al. 2014, Mueller, Ouimet, and

Simintzi 2017a). Existing evidence from personnel data on earnings and promotion dynamics

includes Gibbons and Waldman 1999 and Kahn and Lange 2014. Existing evidence from

administrative data on the relation between hierarchy level and wages include Caliendo, Monte,

and Rossi-Hansberg 2015 and Bayer and Kuhn 2018. Existing empirical evidence on heterogeneity

in earnings trajectories include Guvenen 2009b and Guvenen et al. 2015.

3.1 Empirical facts

3.1.1 Data

I use a proprietary dataset compiled by Normandin Beaudry, a Canadian a consulting

firm that provides actuarial services to pension and savings plans, asset management consulting,

group benefits, compensation and other consulting services. The dataset contains de-identified

firm-level data covering a sample of Canadian firms over the 2013-2018 period. For each firm

and year, I observe detailed compensation and job characteristics information for all of their

employees. Worker-level records contains information on job title, base pay, performance bonus,

and hours worked. While job titles differ across firms and industries, the dataset contains 14

harmonized “hierarchy levels” that describe the organizational structure of job titles within the

firm (see Table 3.1). Appendix C.1 contains a detailed description of the contribution of each
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hierarchy level to the production process of a typical firm.

Table 3.1: Organizational hierarchy and job titles.

Generic hierarchy level Detailed hierarchy level
# Observations

Code Title Code Title

1 Management

110 President 93
111 Vice-President 13,13
112 Director 9,602
113 Manager 14,026
114 Supervisor 7,184

2 Professional

211 Professional Expert 8,341
212 Professional III 35,463
213 Professional II 25,769
214 Professional I 11,646

3 Technical
311 Technical III 14,518
312 Technical II 21,124
313 Technical I 14,765

4 Support
411 Support II 14,948
412 Support I 15,042

Note: more information on hierarchy levels are available in Appendix C.1.

Restricting the sample to private sector firms with at least 20 employees I obtain an

employer-employee matched panel dataset containing 205 unique firms and 97,345 unique

employees (see Table 3.3). Longitudinal coverage is uneven and ranges from one to five years (see

Table 3.1). Compared to administrative employer-employee matched dataset, I can not observe

employees who switch employers, the reason being that the employee identifiers are firm-specific.

The main measure of earnings that I will consider is “annual base salary”. Note that when an

employee works only for part of the year, the base salary in the dataset is “annualized”.

Table 3.2: Number of observations by year.

Year 2013 2014 2015 2016 2017 2018 Total Unique IDs

Employees 24,962 26,120 30,957 34,501 34,423 42,871 193,834 97,345
Firms 77 73 73 85 95 122 525 205
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Table 3.3: Number of longitudinal links.

Horizon 1 year 2 years 3 years 4 years 5 years

Employees 18,545 10,921 6,587 5,218 4,995
Firms 39 17 16 14 32

To complement the analysis, I use microdata from the Canadian Labour Force Survey

(henceforth LFS) for the 2013-2018 period. The LFS is a large monthly survey that is representa-

tive of the Canadian population. For comparability, I restrict the sample to private sector full-time

workers at firms with at least 20 employees. I compute annual earnings by multiplying usual

hours worked by hourly earnings.

3.1.2 Variance decomposition

Figure 3.1 plots the distribution of earnings for the year 2018. The top 1% of employees

earn roughly 200 K$ (Canadian dollars) while the bottom 1% earn roughly 30K$. Notice that for

the top percentiles, the relationship between tail probability and earnings appears to be linear on a

logarithmic scale, which is consistent with the distribution of earnings having a Pareto upper tail.

I now summarize the distribution of log earnings. To make observations comparable

across years, I first remove year fixed effects. The first row of Table 3.4 contains two measures of

inequality: the variance and the Pareto exponent. The variance (0.16) measures the dispersion

of log earnings around the mean. The Pareto exponent measures the shape of the upper tail of

the earnings distribution. A low Pareto exponent implies a high level of “top earnings inequality”

(i.e., inequality between high earners). I estimate a Pareto exponent of 3.8 using the maximum

likelihood estimator on the top 25% of observations.2 In Appendix C.2, I compute the same

summary statistics using survey data and obtain very similar results, suggesting that the personnel

data is representative of the Canadian population in terms of earnings inequality.

2Let {yi}N
i=1 denote the top 25% of earnings observations. The maximum likelihood estimator is( 1

N ∑
N
i=1 logyi− logyP70

)−1
, where yP75 ≡min{yi}N

i=1 is the 75th percentile of y.
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Figure 3.1: Percentiles of the distribution of earnings against tail probability (2018).

Table 3.4: Variance decomposition of log earnings.

Fixed effects K R2 Properties of residuals
Variance Pareto exp.

None - - 0.16 3.8
Firm 205 0.31 0.11 4.1
Hierarchy level 14 0.78 0.04 9.3
Firm and hierarchy level 219 0.85 0.03 10.2

Notes: The sample size is N = 193,834. “K” is the number of fixed effects; “Pareto exponent” is the
maximum-likelihood estimator of the Pareto exponent using the largest 25% observations.

Firm fixed effects explain 31% of the variance of log earnings, meaning that 69% of the

variance of log earnings is within firm (see second row of Table 3.4). Song et al. 2018 obtain a

similar result using the universe of U.S. tax returns. For the year 2013, they find that 59% of the

variance of log earnings is within firm. Notice that while firm fixed effects explain a significant

fraction of the variance, the Pareto exponent estimated using residual earnings remains mostly

unchanged (4.1 versus 3.8). This result highlights the fact that top earnings inequality is not

driven by differences in average earnings between firms, but rather by differences in earnings

124



amongst workers within the same firm.
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Figure 3.2: Distribution of earnings net of firm and hierarchy level fixed effects (2018)

Notes: The distribution of earnings net of firm (hierarchy level) fixed effects is computed by (i) regressing
log earnings on firm (hierarchy level) fixed effects, (ii) exponentiating the sum of the residuals and the
unconditional mean of log earnings.

Using the 14 harmonized job categories defined in Table 3.1 (henceforth “hierarchy

levels”), I estimate a fixed effects regression. Hierarchy level fixed effects explain 78% of the

variance of log earnings (see third row of Table 3.4). This is a striking result. For comparison, I

estimate a “Mincer regression” using the LFS data (i.e., log earnings are regressed on education

and experience) and find that it explains merely 16% of the variation (see Appendix C.2). Adding

firm fixed effects in addition to hierarchy level fixed effects increase the R2 by only 0.07, from

0.78 to 0.85. Notice that the distribution of log earnings net of hierarchy level fixed effect has

Pareto exponent of 9.3, meaning that there is much less top earnings inequality within hierarchy

levels. Figure 3.2 plots the distribution of earnings net of firm and hierarchy level fixed effects.

Visually, the distribution of earnings net of hierarchy level fixed effects is much more compressed

than the distribution of earnings net of firm fixed effects, especially the upper tail. The fact that
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hierarchy level fixed effects explain so much of the variation of log earnings thus appears to be

that they can account for the thick upper tail of the earnings distribution.

3.1.3 Mobility within the earnings distribution

How much mobility is there within earnings distribution? If there is a lot of within-

firm mobility, then static measures of inequality will overstate the amount of “lifetime earnings

inequality”. For example, if employees join a firm at the bottom of the hierarchy and are then

deterministically promoted to higher ranks as their tenure increases, then inequality within the

firm can be quite benign. In contrast, if there is no mobility across hierarchy levels, then static

measures of inequality will capture persistent differences in earnings across employees.
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Figure 3.3: Growth of residual earnings by percentile.

Notes: residual earnings are obtained as the residuals of a regression of (log) earnings on firm and year
fixed effects.

Figure 3.3 contains a “binned scatterplot”3 of residual earnings growth (i.e., forward

3A binned scatter plot is a scatter plot where the variable on the x axis is binned into quantiles. Each point
therefore represent the average value of (x,y) conditional on x being in a particular quantile.
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difference) against level. Residual earnings are defined as the residual in the regression of log

earnings on firm and year fixed effects (as in the second row of Table 3.4). The residual earning

of an employee is therefore the “log difference” between her earnings and the average earning of

her colleagues. Notice that there is a negative relationship between residual earnings growth and

level. This implies that employees with below average earnings will tend to “move up” in the firm

earnings distribution faster than those with above average earnings. To quantify the relationship, I

estimate the following regression

yres
i,t+1− yres

i,t = µ+ρyres
i,t +ui,t , (3.1)

where yres
i,t is the residual earning of employee i in year t. I report the results in Table 3.5.

Table 3.5: Convergence of (within-firm) residual earnings.

Symbol Point estimate Standard error

Constant µ 0.012 0.0002
AR(1) coefficient ρ -0.035 0.0011
Half-life log(1/2)/ log(1+ρ) 19.49 0.65

Notes: Standard error are clustered at the employee-level and the Delta method is used for the half-life.

The coefficient µ̂ is positive, which means that the average worker (i.e., yres = 0) tends to

move up in the earnings distribution from one year to the next. The coefficient ρ̂ is negative, which

means that the average change in residual earnings is higher for lower paid employees. Equipped

with the estimate for ρ, I can compute the “half-life” of earnings differentials amongst continuing

workers. The thought experiment is the following. Imagine sampling two workers within a firm

and trying to predict how many years it will take until their earnings differential shrinks by half.

Using Equation 3.1 and the estimator of ρ, the answer is that it will take log(1/2)/ log(1− ρ̂)≈
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19.5 years.4 Given that a typical worker spends 30 to 40 years in the workforce, a half-life of

earnings differentials of almost 20 years indicates a very high persistence of earnings differentials.
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Figure 3.4: Growth of residual earnings by percentile and promotion status (no promotion,
p = 0.89).

Notes: residual earnings are obtained as the residuals of a regression of (log) earnings on firm and year
fixed effects.

In the previous section, I have established that earnings within the firm are mostly

determined by the job hierarchy. Therefore, we should expect earnings mobility to occur mostly

through promotions. In the sample, the annual promotion rate is p = 0.11.5 Figures 3.4 and 3.5

contain a binned scatterplot of residual earnings growth by initial level and promotion status.

Notice that promotions are associated with large increases in residual earnings, especially for

workers with low initial residual earnings. In contrast, residual earnings growth tends to be very

low and predictable for employees in years where they are are not promoted. Figures 3.6 and 3.7

4From Equation 3.1, we have that Ei, j,t(yres
i,t+h− yres

j,t+h) = (1+ρ)h(yres
i,t − yres

j,t ). Therefore

Ei, j,t(yres
i,t+h− yres

j,t+h)

(yres
i,t − yres

j,t )
=

1
2
⇐⇒ h =

log(1/2)
log(1+ρ)

.

5A promotion is defined as a move to a higher rank in the job hierarchy, where jobs are ranked as in Table 3.1.
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Figure 3.5: Growth of residual earnings by percentile and promotion status (promotion, p =
0.11).

Notes: residual earnings are obtained as the residuals of a regression of (log) earnings on firm and year
fixed effects.

presents the distribution of nominal earnings growth by promotion status. For employees who are

not promoted, more than half experience a nominal earnings growth of 2 or 3 percentage points.

In contrast, almost half of promoted employees obtain an increase of at least 10 percentage points.

Absent promotions, earnings growth tends to be barely more than inflation.6 Upward mobility

within the firm thus mostly operates through promotions.

3.1.4 Heterogeneity in earnings trajectories

While it is true that on average, there is little upward mobility within the firm, a small

fraction of employees experience fast earnings growth. Figure 3.8 plots percentiles of the

distribution of cumulative earnings growth over a five year horizon. The median of the one-

year-ahead earnings growth distribution is 3.2%, yet the 95th percentile is 14.9%. Over a five

6Over the 2013-2018 period, annual CPI inflation averaged 1.7% in Canada.
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Figure 3.6: Distribution of earnings change by promotion status (no promotion, p = 0.89).

Notes: residual earnings are obtained as the residuals of a regression of (log) earnings on firm and year
fixed effects.
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Figure 3.7: Distribution of earnings change by promotion status (promotion, p = 0.11).
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year horizon, the distribution of cumulative earnings growth is even more dispersed: the median

earnings growth is 19.5%, yet employees at the 95th percentile see their earnings increase by

54.5%.
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Figure 3.8: Distribution of earnings growth.

Notes: solid line represents the median; dashed lines represent the 5th and 95th percentiles.

Is the heterogeneity in cumulative earnings growth rates driven by the fact that employees

at the bottom of the hierarchy experience faster earnings growth? Perhaps surprisingly, I find that

this is not the case. Figure 3.9 through 3.12 plot percentiles of the earnings growth distribution by

initial hierarchy level (“Management”, “Professional”, “Technician”, “Support”) as defined in

Table 3.1. Within each group, the same pattern emerges: while the median employee experiences

little earnings growth, some “superstar” employees experience fast earnings growth.

The fact that the distribution of earnings growth “fans out” with the horizon suggests that

earnings shocks are very persistent. To estimate the dynamic earnings response to a promotion,

consider the following regression model

logwi,t+h = α
h
f + γ

h
j +µh

t +β
hPi,t +ρ

h logwi,t +uh
i,t , (3.2)
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Figure 3.9: Distribution of earnings growth (manager).

Notes: the solid line represents the median; the dashed lines represent the 5th and 95th percentiles;
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Figure 3.10: Distribution of earnings growth (professional).

Notes: the solid line represents the median; the dashed lines represent the 5th and 95th percentiles;
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Figure 3.11: Distribution of earnings growth (technician).

Notes: the solid line represents the median; the dashed lines represent the 5th and 95th percentiles;
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Figure 3.12: Distribution of earnings growth (support).

Notes: the solid line represents the median; the dashed lines represent the 5th and 95th percentiles;
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where αh
f , γh

j , and µh
t are respectively firm, hierarchy level and year fixed effects. The variable

wi,t denotes earnings and Pi,t is a promotion dummy for employee i in year t. The estimated

h-year ahead response of earnings (in log points) is therfore β̂h. Figure 3.13 plots the dynamic

response with 95% confidence intervals for h =−1,0, . . . ,5. The standard errors are clustered at

the employee level. A few remarks are in order. First, the effect of a promotion on earnings is

large on impact. Compared to a “control group” of employees within the same firm, in the same

year, and at the same hierarchy level, the earnings of promoted employees is roughly 8% higher

on impact. Second, the effect of a promotion on earnings appears to be permanent. Five years

after the promotion, promoted employees still earn roughly 8% more than their peers.
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Figure 3.13: Dynamic effect of a promotion on earnings.
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3.2 Model

3.2.1 Environment

The economy is populated by a unit measure of workers who differ in productivity

z ∈ {z1, . . . ,zS}, where φ̄s ≡ P(z = zs). Without loss of generality, assume that 0 < z1 < · · ·< zS.

Workers derive utility from a bundle of wage and effort (w,a) according to a twice continu-

ously differentiable utility function u(w,a). Time is continuous and the output of a worker of

productivity z exerting effort a≥ 0 is given by

y = za, (3.3)

Workers are assigned to different jobs labeled k ≥ 0 where a higher k denotes a job that is higher

in the hierarchy. The production function is

Y = F
(
{ys,k,Ns,k}

)
, (3.4)

where Ns,k and denotes the measure of workers of type s in job k and ys,k denotes the output of

workers of type s in job k. I assume that F exhibits constant returns to scale in employment

∀ λ > 0, F
(
{ys,k,λNs,k}

)
= λF

(
{ys,k,Ns,k}

)
. (3.5)

Firms offer labor contracts that determine job-specific wages {wk} and promotion rates

{qk}. The contract is implemented in the following manner. At every instant, the firm randomly

selects a measure qkNk of worker pairs in job k and, for each pair, promotes the worker with the

highest “observed” output to job k+1. I assume that firms observe the true level of output y with

a multiplicative error ε ∼ G. The rate at which a worker with output y obtains a promotion is

therefore

Qk(y)≡ 2×qk×P(εy > ε
′y′), (3.6)
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where (ε,ε′) are independent draws from G while y′ is drawn from the endogenously-determined

distribution of worker output in job k. Promoting employees leads to training costs governed by a

cost function C({qk,Nk}). I assume that C exhibits constant returns to scale in employment,

∀ λ > 0, C
(
{qk,λNk}

)
= λC

(
{qk,Nk}

)
. (3.7)

Workers exogenously retire at rate ψ≥ 0 and I normalize the continuation value of being

retired to zero. Retired workers are replaced by labor market entrants who start at k = 0. Denote

by vs,k the continuation value for a worker of type s in job k. The Bellman equation is given by

(r+ψ)vs,k = max
a≥0

{
u(wk,a)+Qk(zsa)(vs,k+1− vs,k)

}
, (3.8)

Interior solutions as,k for effort satisfy the following first-order condition

ua
(
wk,a

)
+Q′k

(
zsa
)
zs(vs,k+1− vs,k) = 0. (3.9)

From now on, denote the endogenously-determined promotion rate of a worker of type s in job k

by

qs,k ≡ Qk
(
zsas,k

)
. (3.10)

The law of motion for the measure of type s in job k, which I denote by Ns,k, is given by

Ṅs,0 = ψφ̄sN− (ψ+qs,0)Ns,0, (3.11)

Ṅs,k = qs,k−1Ns,k−1− (ψ+qs,k)Ns,k ∀k ≥ 1, (3.12)

where N ∈ [0,1] denotes the measure of labor market entrants that the firm hires (and incidentally

the long-run employment of the firm). Similarly, the law of motion for the measure of workers in
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job k, which I denote by Nk is

Ṅ0 = ψN− (ψ+q0N0), (3.13)

Ṅk = qk−1Nk−1− (ψ+qk)Nk ∀k ≥ 1. (3.14)

Both sets of equations merely account for the inflow and outflow of workers due to promotions

and retirements.

Lemma 4. The stationary distributions are given by

Ns,k =

(
k

∏
n=1

qs,k−1

ψ+qs,k

)
ψ

ψ+q0,s
φ̄sN (3.15)

Nk =

(
k

∏
n=1

qk−1

ψ+qk

)
ψ

ψ+q0
N (3.16)

Proof. Equations (3.15) and (3.16) are obtained by (i) solving for the initial condition initial

conditions in equations (3.11) and (3.13), (ii) iterating forward using equations (3.12) and

(3.14).

I assume that firms maximize long-run flow profits. The firm problem is thus given by

max
{wk,qk}k≥0

F
(
{ys,k,Ns,k}

)
−∑

k≥0

S

∑
s=1

wk ps,k−C({qk,Nk}) (3.17)

s.t.
S

∑
s=1

φ̄svs,0 ≥ V . (3.18)

I denote by V the minimal value that a firm must offer to its incoming workers in order to

be able to attract a positive measure of workers. Intuitively, to be able to attract workers, the firm

must offer a labor contract that is at least as good what the “most competitive” firm is offering.

I assume that workers choose which firm to join before observing their type s, so the expected

annuity value of joining a firm is ∑
S
s=1 φ̄svs,0.
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3.2.2 Equilibrium

Assumptions (3.5) and (3.7) imply that the firm problem is homogeneous in employment

N. This in turn implies that the equilibrium distribution of employment across firm is indeter-

minate. I therefore consider equilibria where a single firm employs all workers (henceforth the

“representative firm”). An equilibrium consists of a labor contract {wk,qk}, worker effort levels

{as,k}, a promotion rate function {qs,k}, employment shares {Ns,k} and {Nk}, and a value V such

that:

1. the effort function {ask} solves the worker problem;

2. the labor contract {wk, pk} solves the firm problem;

3. the promotion rates {qsk} satisfy (3.10);

4. the employment shares {Ns,k} and {Nk} are given by (3.15) and (3.16);

5. due to competition, the value V implies zero profits.

Notice that {Ns,k} and {Nk} have the interpretation of employment shares since N = 1.

3.2.3 Numerical example

Suppose that workers are ex-ante identical with z = 1, which implies that y = a. The

utility function is

u(w,a) = logw−βa, (3.19)

and the distribution (CDF) of the output measurement error is Pareto with exponent 1
σ
> 1

G(ε) = 1− ε
− 1

σ ∀ ε≥ 1. (3.20)
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Using the definition of the promotion rate (3.6), I obtain

Qk(a) = qk×a
1
σ ×E[(a′)−

1
σ ], (3.21)

which implies that the promotion rate is isoelastic in effort. Finally, the production function is

given by

F
(
{ak,Nk}k≥1

)
= ∑

k≥1
(akNk)

1−θ(ak−1Nk−1)
θ. (3.22)

The parameter θ ∈ (0,1) governs the diminishing return in managing and is reminiscent of the

“span of control” parameter in Lucas 1978. Labor productivity in job k is given by

(akNk)
1−θ(ak−1Nk−1)

θ

Nk
= ak

(
ak−1Nk−1

akNk

)θ

.

Therefore, labor productivity is increasing in effort ak and in the relative output between two

layers (i.e., the ratio of ak−1Nk−1 and akNk). I assume that the cost function has the form

C({qk,Nk}) = κ ∑
k≥0

Nkqk, (3.23)

which implies that each promotion incurs a cost κ.

The worker’s Bellman equation is

(r+ψ)vk = max
a
{logwk−βa+Qk(a)vk} (3.24)

and the optimal effort is

ak =
qkvk

σβ
, (3.25)

where Qk(ak) = qk in equilibrium since workers are identical. Substituting the optimal level

of effort in the Bellman equation and re-arranging, the value function can be expressed as the
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forward solution to

(
r+ψ+

σ−1
σ

qk

)
vk = logwk +

σ−1
σ

qkvk+1, (3.26)

which highlights the fact that the effort of a worker in layer k depends on the full sequence of

wages {wk,wk+1, . . .} and promotion rates {qk,qk+1, . . .}.

The firm problem is thus given by

max
{wk,Nk}k≥0

∑
k≥1

(akNk)
1−θ(ak−1Nk−1)

θ−∑
k≥0

wkNk−κ ∑
k≥0

Nkqk (3.27)

s.t. v0 ≥ V . (3.28)

I restrict the contract space to

C =
{
{wk,qk}k≥0

∣∣∣ ∀k ≥ 0, wk = w0eπk, π≥ 0, qk = q
}
, (3.29)

which considerably reduces the complexity of the problem.

Lemma 5. Whenever {wk,qk} ∈ C and q
q+ψ

eπ < 1, the following equations hold in equilibrium

Nk =
ψ

ψ+q

(
q

ψ+q

)k

, (3.30)

∑
k≥0

wkNk = w0
ψ

ψ−q(eπ−1)
, (3.31)

a =
qπ

(r+ψ)σβ
, (3.32)

∑
k≥1

(akNk)
1−θ(ak−1Nk−1)

θ = a
(

q
ψ+q

)1−θ

. (3.33)

Moreover, the constraint can be expressed as

w0 ≥ e(r+ψ)V−σ−1
σ

qπ

r+ψ . (3.34)
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Proof. See section C.3.1 of the Appendix.

Using results from Lemma 5, the firm problem can be written as

max
w0,π,q

qπ

(r+ψ)σβ
×
(

q
ψ+q

)1−θ

−w0×
ψ

ψ−q(eπ−1)
−κq (3.35)

s.t. w0 ≥ e(r+ψ)V−σ−1
σ

qπ

r+ψ . (3.36)

To compute the equilibrium, I first solve the solution to the firm problem (w0,π,q) for a guess of

V and then update V until equilibrium profits are zero.

As a first step, I set the retirement ψ to 0.025, which implies and average worklife of 40

years. I also set the discount rate to r = 0.02. As a proof of concept, I set the parameters (σ,κ) to

(1/3,5/4). The remaining parameters β (cost of effort) and θ (span of control) are chosen as to

imply a promotion rate of 11% and an earnings growth conditional on promotion of 8%.

Table 3.6: Calibrated parameters.

Parameter Symbol Value Target

Retirement rate ψ 0.025 average work-life of 40 years
Rate of time preference r 0.02 real interest rate of 2%

Figure 3.14 plots the equilibrium wage schedule {wk} for k = 0, . . . ,10. The wage

differential between successive layers is 8%, which is direct result of the calibration strategy.

Figure 3.15 plots the equilibrium employment shares {Nk} for k = 0, . . . ,10. Each hierarchy level

employs 81% as many workers as the previous one.

Figure 3.16 plots the wage distribution for the first 20 hierarchy levels. Notice that the

distribution appears to be fat-tailed. In fact, the wage distribution is a (discrete) Pareto distribution.

This is due to the combination of (i) wages are an exponential function of the hierarchy and (2)

the distribution of employment across hierarchy level is a geometric distribution. The equilibrium

Pareto exponent is log(1+ψ/q)/π≈ 1.9.

141



0 2 4 6 8 10

Hierarchy level

0.5

1

1.5

2

2.5

3

W
a

g
e

Figure 3.14: Wage schedule {wk} (model).
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Figure 3.15: Employment shares {Nk} (model).

3.3 Concluding remarks

In this paper, I propose a model of earnings dynamics and inequality within the firm

motivated by evidence from personnel data. In the model, firms compete for workers by offering

labor contracts specifying job-specific wages and promotion rates. On the one hand, large wage
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Figure 3.16: Wage distribution (model).

differentials between successive hierarchy levels induce workers to exert effort in order to increase

their probability of being promoted. On the other hand, wage inequality decreases welfare due

to diminishing marginal returns to consumption. The model clarifies how competition between

firms balances these two margins and shapes the equilibrium distribution of wages. Future work

should study optimal nonlinear labor income taxation in such a framework.
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Appendix A

Appendix of Chapter 1

A.1 Proofs

A.1.1 Proof of Proposition 1

First, I show that the value of unemployment W (w) is strictly increasing in the current

wage w. From Equation 1.6, we have that

rW ′(w) = 1−χsW ′(w)+λ(1−u)
∫

∂

∂w
max

{
W (w′)−W (w),0

}
dP̃(w′)−χxW ′(w).

I then bound the derivative from below

rW ′(w)≥ 1−χsW ′(w)−λ(1−u)W ′(w)−χxW ′(w).

Re-arranging, I obtain the desired result

W ′(w)≥ 1
r+χs +χx +λ(1−u)

> 0.

Second, I derive the expression for the reservation wage wr. Setting W (wr) = U in
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Equation 1.6, I obtain

rU = wr +χs

∫ (
W (ŵ(z))−U

)
dΓ(z)+λ(1−u)

∫
max

{
W (w′),U

}
dP̃(w′).

Using the the inequality W (w)≥U ,

rU = wr +χs

∫
max

{
W (ŵ(z))−U,0

}
dΓ(z)+λ(1−u)

∫
max

{
W (w′),U

}
dP̃(w′).

and combining with Equation 1.5, I obtain

wr = b+(χe−χs)
∫

max
{

W (ŵ(z))−U,0
}

dΓ(z).

Finally, using the definitions of χe and χs (Equation 1.3), I obtain the desired expression

wr = b+(µ−χ)(1−Γ0(zl))
∫

max
{

W (ŵ(z))−U,0
}

dΓ(z).

Since Γ(z) is the truncation of Γ0 at zl (Equation 1.3), then the expressions is equivalent to

wr = b+(µ−χ)
∫

∞

zl

max
{

W (ŵ(z))−U,0
}

dΓ0(z).

A.1.2 Proof of Lemma 2

First, I show that the value function is homogeneous. Dividing by N on both sides of

Equation 1.12 and defining ns ≡ Ns/N0 and ks ≡ Ks/Ns, we obtain

v(z,N)

N
= max

T,{ws,ks}T
s=0

E0

∫ T

0
e−rs

(
zskα

s −ws−Rks

)
nsds

n0 = 1, z0 = z

ws ≥ wr, dns = g̃(ws)nsds, dzs = dJs(z′s− zs)
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The expression for v(z,N)
N is equal to Equation 1.12 when N = 1, so we obtain the desired result

that v(z,N) = v(z,1)N. I now prove that the optimal stopping time is a threshold rule. Given that

z is the only state variable, we now only need to show that v′(z) ≥ 0. Using the homogeneity

result, Equation 1.13 reduces to

rv(z) = min
{

max
w,k

{
zkα−w−Rk+ v(z)g̃(w)

}
+χ

(∫
v(ζ)Γ0(dζ)− v(z)

)
,0
}
.

Using the Envelope theorem, we have

rv′(z) ∈
{

k(z)α + v′(z)g(z)−χv(z),0
}

=⇒ v′(z) ∈
{

k(z)α

r+χ−g(z)
,0
}
.

Assumption 3 combined with Lemma 1 implies that χ−g(z)> 0, so we obtain the desired

result that v′(z)≥ 0. The fact that the exit threshold zl coincides with the entry threshold follows

directly from homogeneity and free entry: v(z)N0 > 0 ⇐⇒ v(z)> 0 ⇐⇒ z > zl .

A.1.3 Proof of Proposition 2

From the first-order condition (Equation 1.19), we have that

1 = v(z)g̃′(w(z)).

Using the definition g(z) ≡ g̃(w(z)), it follows from the chain rule that g′(z) = g̃′(w(z))w′(z).

Plugging back in the first-order condition, I obtain

w′(z) = v(z)g′(z).

To solve for w(z), I need a a boundary condition. I now use the fact that the marginal exiting firm

is constrained by the worker’s reservation wage wr. Without the constraint w≥ wr, firms would

never exit as they would be able to achieve zero flow profit by setting w = 0 and k = 0. Using the
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fact that w(zl) = wr, I obtain the desired result

w(z) = wr +
∫ z

zl

v(ζ)g′(ζ)dζ.

I now verify that the second order condition v(z)g̃′′(w(z)) < 0 holds for interior solutions (i.e.

for all z > zl). Since z > zl =⇒ v(z) > 0, I only need to verify that g̃′′(w(z)) ≤ 0. From the

definition of g(z), we have that

g′(z) = g̃′(w(z))w′(z) =⇒ g′′(z) = g̃′′(w(z))(w′(z))2 + g̃′(w(z))w′′(z).

And from the first-order condition, we have that w′(z) = g′(z)v(z) =⇒ w′′(z) = g′′(z)v(z)+

g′(z)v′(z). Putting together,

g′′(z) = g̃′′(w(z))(w′(z))2 + g̃′(w(z))
(

g′′(z)v(z)+g′(z)v′(z)
)

=⇒ g′′(z)
(

1− g̃′(w(z))v(z)
)
= g̃′′(w(z))(w′(z))2 + g̃′(w(z))g′(z)v′(z)

But from the first-order condition, we have that 1− g̃′(w(z))v(z) = 0, so

g̃′′(w(z)) =− g̃′(w(z))g′(z)v′(z)
(w′(z))2 =−(g′(z))2v′(z)

w′(z)

The sign of g̃′′(w(z)) therefore depends on the sign of w′(z). Since I restrict the analysis to

equilibria where wages are increasing in productivity, we have that g̃′′(w(z))< 0.

A.1.4 Proof of Proposition 3

First, the steady-state unemployment can be solved independently of P(z). The law of

motion (Equation 1.9) is

u̇ = (1−u)χx−u
(

χe +λ(1−u)
)
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Setting u̇ = 0, we have a quadratic equation of the form au2 +bu+ c = 0 with constants given by

a = λ, b =−(λ+χe +χx), c = χx.

First, I verify that the discriminant (λ+χe +χx)
2−4λχx is non-negative.

(λ+χe +χx)
2−4λχx ≥ (λ+χx)

2−4λχx = (λ−χx)
2 ≥ 0

There are therefore two candidate solutions

u(1) =
λ+χe +χx−

√
(λ+χe +χx)2−4λχx

2λ
, u(2) =

λ+χe +χx +
√
(λ+χe +χx)2−4λχx

2λ

First, I show that u(2) is not a valid solution since it is greater than one.

u(2) > 1 ⇐⇒ χ−λ+
√
(λ+χe +χx)2−4λχx > 0

Under Assumption 3, the first term is positive which concludes the proof. Then, I show that u(1)

is a valid solution (i.e. it satisfies 0≤ u(1) ≤ 1). Using the fact that χx ≥ 0, we have that

u(1) ≥ λ+χe +χx− (λ+χe +χx)

2λ
= 0

Now, I show that u(1) ≤ 1.

u(1) ≤ 1 ⇐⇒ λ+χe +χx−
√

(λ+χe +χx)2−4λχx ≤ 2λ

⇐⇒ χe +χx−λ≤
√
(λ+χe +χx)2−4λχx

So, if χe +χx−λ < 0, the proof is done. Otherwise, I square on both sides.

(χe +χx−λ)2 ≤ (λ+χe +χx)
2−4λχx ⇐⇒ χe ≥ 0
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Which concludes the proof.

I now provide a derivation of each term of Kolmogorov Forward Equation for the

employment-weighted productivity distribution P(z).

Ṗ(z) = (1−u)λP(z)(P(z)−1)︸ ︷︷ ︸
Job-to-job flows

+
u

1−u
χeΓ(z)+uλP(z)︸ ︷︷ ︸

Employment inflows

− χxP(z)︸ ︷︷ ︸
Employment

outflows

+χs(Γ(z)−P(z))︸ ︷︷ ︸
Productivity shocks

.

At rate λ(1−u), an employed worker receives a competing job offer. The distribution of

productivity (CDF) of such workers, after they have made their decision whether or not to accept

the competing job offer, is P2. The reason is that the distribution of z in the population of workers

is precisely the employment-weighted productivity distribution P while the distribution of job

offers z′ is also P, since firms meet worker proporitonally to their size. The CDF of max{z,z′} is

therefore P2.1 Using the KFE formula for jump processes, the term that accounts for job-to-job

flows is therefore

λ(1−u)(P2(z)−P(z)) = λ(1−u)P(z)(P(z)−1).

At rate χe, an unemployed worker meets an entrepreneur and enters the workforce with

productivity distributed according to Γ(z). At rate λ(1− u), an unemployed worker meets a

firm and enters the workforce with productivity distributed according to P(z). Since the ratio of

unemployment to employment is u
1−u , the term that accounts for unemployment inflows is

u
1−u

(
χeΓ(z)+λ(1−u)P(z)

)
=

u
1−u

χeΓ(z)+uλP(z)

At rate χx, a worker with productivity distributed according to P(z) is sent to unemployment due

to firm exit so that the term which accounts for employment outflows is −χxP(z). At rate χs, an

employed worker’s productivity resets to a draw from Γ, so that the term which accounts for

productivity shocks is χs(Γ(z)−P(z)).

1If X and Y are two independent random variables with CDFs F,G, then P(max{X ,Y} ≤ z) = F(z)G(z).
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I now compute the stationary solution of the the law of motion for P(z). Setting Ṗ(z) = 0,

we obtain a quadratic equation in P(z) of the form aP2(z)+bP(z)+c = 0, with coefficients given

by

a = (1−u)λ, b =−
(
λ(1−2u)+χ

)
, c(z) =

( u
1−u

χe +χs
)
Γ(z),

I will now use the fact that, in steady-state, χeu = (1− u)χx−λ(1− u)u (Equation 1.9). The

expression for c(z) thus simplifies to c(z) = (χ−λu)Γ(z), so the discriminant is

∆(z)≡
(
λ(1−u)−χ−λu

)2−4λ(1−u)(χ−λu)Γ(z).

I will repeatedly use the fact that
√

∆(z) ≥ |χ−λ|. Under Assumption 3, the discriminant is

strictly positive, which implies that there are two real roots.

P(1)(z) =
λ(1−2u)+χ−

√
∆(z)

2(1−u)λ
, P(2)(z) =

λ(1−2u)+χ+
√

∆(z)
2(1−u)λ

.

First, I show that P(2)(z)> 1 for all z > zl , which implies that P(2) it is not a valid CDF.

Using the fact that
√

∆(z)≥ χ−λ, we have that

P(2)(z)≥ λ(1−2u)+χ−χ+λ

λ(1−u)
= 1

To conclude, I show that P(1) is a valid CDF, meaning that (1) P(1)′(z)≥ 0 and (2) P(1)(zl) = 0,

and (3) limz→∞ P(1)(z) = 1. First,

P(1)′(z) =
χ−λu√

∆(z)
Γ
′(z)≥ 0.

Second,

P(1)(zl) =
λ(1−2u)+χ−

(
λ(1−2u)+χ

)
2(1−u)λ

= 0.

161



Third,

lim
z→∞

P(1)(z) =
λ(1−2u)+χ− (χ−λ)

2λ(1−u)
= 1

Going from the second to last equation to the last one involves basic algebra as well.

A.1.5 Proof of Propositions 4 and 5

First, I will prove 3 lemmas.

Lemma 6. There exists constants v̄1, v̄2, ḡ′ < ∞ such that, for all z≥ zl

v(z)≤ v̄1 + v̄2z
1

1−α

g′(z)≤ ḡ′Γ0(z)

w(z)≤ w̄

Proof. From the Equation 1.14 and optimizing over k, we have

rv(z) = max
w≥wr

{
(1−α)(α/R)

α

1−α z
1

1−α −w− v(z)g̃(w)
}
+χ

(∫
v(z′)Γ0(dz′)− v(z)

)
Since w≥ wr and g̃(w)≤ λ, we have

rv(z)≤ (1−α)(α/R)
α

1−α z
1

1−α −wr− v(z)λ+χ

∫
v(z′)Γ0(dz′)−χv(z)

=⇒ v(z)≤ χ
∫

v(z′)Γ0(dz′)−wr

r+χ−λ︸ ︷︷ ︸
≡v̄1

+
(1−α)(α/R)

α

1−α

r+χ−λ︸ ︷︷ ︸
≡v̄1

z
1

1−α

From Equation 1.25, we have

g′(z) = 2λ(1−u)P′(z).

From Equation 1.24, we have

P′(z) = ∆(z)−
1
2 (χ−λu)(1−Γ(zl))Γ0(z),
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where ∆(z) =
(
λ(1−u)−χ−λu

)2−4λ(1−u)(χ−λu)Γ(z). Putting together and using the fact

that ∆(z)≥ χ−λ > 0

g′(z)≤ 2λ(1−u)(χ−λu)(1−Γ(zl))

χ−λ︸ ︷︷ ︸
≡ḡ′

Γ0(z)

Lemma 7. There exists a constant w̄ < ∞ such that, for all z≥ zl

w(z)≤ w̄

Proof. Since w′(z)> 0, then

w(z)≤ lim
z→∞

w(z) = wr +
∫

∞

0
g′(x)v(x)dx

Using the results from Lemma 6,

w(z)≤ wr +κ

∫
∞

0
z

1
1−α Γ

′
0(z)dz︸ ︷︷ ︸

≡w̄

< ∞.

The last inequality comes from Assumption 1.

Lemma 8. The expression w′(z)z converges to zero as z→ ∞

Proof. From Assumption 1, we have that that
∫

z
1

1−α Γ′0(z)<∞, which implies that z1+ 1
1−α Γ′0(z)→

0 Using the results from Lemma 6,

w′(z)z = g′(z)v(z)z≤ v̄0ḡ′zΓ
′
0(z)+ v̄1ḡ′z1+ 1

1−α Γ
′
0(z)→ 0
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I now prove Proposition 4 that dw
dLP(z)→ 0.

dw
dLP

(z) =
w′(z)

LP′(z)
=

w′(z)z

(1−α)(α/R)
α

1−α z
1

1−α

→ 0

The last step follows from w′(z)z→ 0 (Lemma 8) and z
1

1−α → ∞.

I now prove Proposition 5. I will show that there exists a z′ such that, for every z > z′,

dLS
dz (z)< 0, which is equivalent as showing that d logLS

dz (z)< 0. Notice that

logLS(z) = logw(z)− logLP(z) =⇒ d logLS
dz

(z) =
w′(z)
w(z)

− (1−α)
1
z

So, we have that
d logLS

dz
(z)< 0 ⇐⇒ w′(z)z

w(z)
< 1−α

The right-hand-side is positive for all α < 1, while the left hand side converges to zero, since

w′(z)z→ and w(z)→ w̄. By continuity, there exists a z′ such that, for every z > z′, w′(z)z
w(z) < 1−α.

A.1.6 Proof of Proposition 6

First, the average firm size is given by the measure of employed workers 1−u over the

measure of firm F . The law of motion for the measure of firms is given by

Ḟ = χeu−χxF,

which implies that, in a stationary equilibirum, F = uχe
χx

and the average firm size is thus given by

E(N) =
1−u

u
χx

χe

To compute the conditional expectation E(N|z), I will use the employment-weighted distribution

P. For a set S ∈ R+, the measure of employment at firms with z ∈ S is given by (1−u)
∫

S dP(ζ)
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while the measure of firms is given by F
∫

dΓ(ζ). It follows that the average firm size for firms

with z ∈ S is given by

E(N|z ∈ S) =
(1−u)

∫
S dP(ζ)

F
∫

S dΓ(ζ)

In the limit, when S = {z}, I obtain the following formula by using the expression

E(N|z) = 1−u
F

P′(z)
Γ′(z)

=
1−u

u
χx

χe

χ−λu√(
λ(1−u)+χ−λu

)2−4λ(1−u)(χ−λu)Γ(z)
,

which is increasing in z.

A.1.7 Proof of Proposition 8

Lemma 9. Let U∗,W ∗(w),w∗r the worker’s value functions and reservation wage after the broad-

based increase in productivity z→ πz and b→ π
1

1−α b.

π
− 1

1−αU∗ =U

W ∗(π−
1

1−α w) =W (w)

Lemma 10. Let v∗(z) and w∗(z) the firm’s value function and reservation wage after the broad-

based increase in productivity z→ πz and b→ π
1

1−α b.

π
− 1

1−α v∗(z) = v(z)

π
− 1

1−α w∗(z) = w(z)

A.1.8 Burdett and Mortensen 1998 with capital

I now present a derivation of Burdett and Mortensen 1998, the only extension being the

addition of capital as a factor of production. The laws of motion for the wage distribution P(w, t)2

2P(0, t) is, by convention, the unemployment rate (i.e. the measure of workers working at firms which pay w = 0).
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and firm-level employment N(w, t) are respectively given by

∂

∂t
N(w, t) = λP(w)︸ ︷︷ ︸

Hires

−δN(w, t)︸ ︷︷ ︸
Layoffs

−λF̄(w)N(w, t)︸ ︷︷ ︸
Quits

∂

∂t
P(w, t) = δ

(
H(w)−P(w, t)

)︸ ︷︷ ︸
Job destruction

+λ
(
F(w)P(w, t)−P(w, t)

)︸ ︷︷ ︸
Job creation + Churn

.

The stationary solution for employment is given by

N(w) =
λδ(

δ+λF̄(w)
)2 .

Firms chose the wage policy w≥ b and capital stock per worker k ≥ 0 as to maximize long-run

profits

max
w,k

zkαN(w)−RkN(w)−wN(w).

The optimal capital stock is k(z) =
( zα

R

) 1
1−α . Substituting it in the objective, I obtain

max
w

c(z)N(w)−wN(w),

where c(z)≡ (1−α)zk(z)α. The first-order condition given by

c(z)N′(w(z)) = N(w(z))+w(z)N′(w(z)).

Now define N(z)≡ N(w(z)) which means that N′(z) = N′(w(z))w′(z), which implies that

c(z)N′(z) = w′(z)N(z)+w(z)N′(z) =⇒
(

w(z)N(z)
)′

= c(z)N′(z).
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This is an ODE. Combined with the initial condition w(zl) = b—i.e. the worst operating firm is

constrained by the worker’s participation constraint—I obtain a unique solution.

w(z)N(z)−w(zl)N(zl) = N(z)c(z)−N(zl)c(zl)−
∫ z

zl

c′(ζ)N(ζ)dζ

w(z) = c(z)+
(
b− c(zl)

)N(zl)

N(z)
−

∫ z

zl

c′(ζ)
N(ζ)

N(z)
dζ

The entry threshold zl satisfies c(zl) = b. The formula simplifies to

w(z) = c(z)−
∫ z

zl

c′(ζ)
N(ζ)

N(z)
dζ

Using the fact that the wage schedule is increasing in z, we have that

N(z) =
λδ(

δ+λΓ̄(z)
)2 , P(z) =

δ

δ+λΓ̄(z)

where Γ is the distribution of productivity at active firms and Γ0 is the distribution of productivity

of potential entrants

Γ(z) =
Γ0(z)−Γ0(zl)

1−Γ0(zl)

The threshold zl is given by

zl =
b1−αRα

(1−α)1−ααα
.

Notice that the equilibrium functions N and P only depend on (λ,δ) through their ratio

ψ ≡ λ/δ. Since the wage schedule (and therefore the labor share) depend only on N, it also

only depends on ψ. Hence, I normalize δ = 1. The free parameters of the model are therefore

(α,R,λ,b,η). First, I calibrate (α,R,η) exactly as in Section 1.4.1. Then, I choose λ as to match

exactly the unemployment in the full model. Finally, b is chosen such that the entry threshold in

the BM model coincides with the entry threshold in the full model. This last step implies that the

distribution of productivity amongst active firms Γ coincides in both models.
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I now provide a characterization of the firm size distribution. Using the definition of N(z),

we have

P(N(z)≤ n) = P

(
Γ(z)≤ 1+

δ

λ
−
√

δ

λ
n−

1
2

)
= 1+

δ

λ
−
√

δ

λ
n−

1
2 .

the last equation uses the fact that Γ(z)∼U [0,1]. So that the firm size distribution obeys a power

law with Pareto exponent ζ = 1/2. But the distribution is bounded

λδ

(δ+λ)2 ≤ N(z)≤ λ

δ
,

So the firm size distribution is

P(N ≤ n) =


0 if n≤ λδ

(δ+λ)2
λ

δ

1+ δ

λ
−
√

δ

λ
n−

1
2 if λδ

(δ+λ)2 ≤ n≤ λ

δ

1 if n≥ λ

δ

I now provide a closed-form solution for the aggregate labor share in the special case where

there is no capital (α = 0) and the distribution of firm productivity is Pareto (Γ(z) = 1− (z/b)−η

over z≥ b). I require η > 1 to ensure that output is finite. The formula for the wage is

w(z) = z−
∫ z

b
N(x)dx

Aggregating, I obtain

∫
∞

b
w(x)N(x)dΓ(x)︸ ︷︷ ︸

wN

=
∫

∞

b
xN(x)dΓ(x)︸ ︷︷ ︸

Y

−
∫

∞

b

∫ z

b
N(y)dydΓ(x)︸ ︷︷ ︸

Π

where wN is worker compensation, Y is output, and Π is firm profits. I now focus on the last term

and will use the fact that (1−Γ(z)) = 1
η

zdΓ(z)
dz

∫
∞

b

∫ z

b
N(y)dydΓ(x) =

∫
∞

b
N(y)

(∫ ∞

b
1{y≤ x}dΓ(x)

)
dy =

∫
∞

b
N(y)(1−Γ(y))dy =

1
η

Y
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The labor share LS = wN/Y is therefore given by

LS = 1− 1
η

When productivity dispersion is high (η is low), then the labor share is low.

A.1.9 Solution method for µ = χ case

I now present a solution method for the case µ = χ that I use to solve for the firm value

function and threshold (v,zl) as well as the productivity and size distribution ϕ.

First, I combine the HJB (Equation 1.14) with the expressions for the wage schedule

w(z) as a function of v(·) (Equation 1.22), labor productivity LP(z) (Equation 1.21) and the

employment growth function g(z) (Equation 1.25). I obtain the following equations.

rv(z) = (1−α)LP(z)−b−
∫ z

zl

v(ζ)g′(ζ)dζ+ v(z)g(z)+χ

∫
v(ζ)Γ0(dζ)−χv(z) ∀z≥ zl

v(z) = 0 ∀z < zl

To simplify notation, I define the the linear operators A ,B,C respectively defined by the actions

A f (z) =
∫ z

zl

f (ζ)g′(ζ)dζ, B f (z) = f (z)g(z), C f (z) =
∫

v(ζ)Γ0(dζ), I f (z) = f (z)

The HJB for v(z) can rewritten as

rv(z) = (1−α)LP(z)−b−Av(z)+Bv(z)+χCv(z)−χI v(z) ∀z≥ zl

v(z) = 0 ∀z < zl.
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The system can be equivalently written as

v(z)
(

M v(z)+q(z)
)
= 0, M v(z)+q(z)≥ 0, v(z)≥ 0

where M ≡ (r+χ)I +A−B−χC and q(z)≡ b− (1−α)LP(z).

The threshold zl does not appear anywhere but can recovered from the solution v(z) as

zl ≡ inf
{

z : v(z) > 0
}

. I now consider a discrete approximation of the system of equations

over a grid Gz = {z1, . . . ,zNz}. Let v ≡ (v(z1), . . . ,v(zNz))
′ and LP ≡ (LP(z1), . . . ,LP(zNz))

′. I

approximate the operators A ,B,C ,I by the finite difference method and obtain Nz×Nz matrices

A,B,C, I and M. The resulting system of equations is given by

vT
(

Mv+q
)
= 0, Mv+q≥ 0, v≥ 0,

which is a plain-vanilla Linear Complementarity Problem (LCP) that can be solved with standard

routines! I recover the threshold as zl ≡mini{ i | vi > 0}

To solve for the equilibrium, I need to iterate over the LCP. The reason is that the firm

growth function g(z) depends on zl . First, I start with a guess for zl , compute g and solve the LCP.

I then use the new threshold z′l to compute g ans solve the LCP again. I stop when the difference

between the productivity threshold in between iterations satisfies |z′l− zl|< ε where ε > 0 is a

pre-set tolerance level.

To compute the joint-distribution of firm size N and productivity z, I use the Pareto

Extrapolation method developed in Gouin-Bonenfant and Toda 2018. Since the method applies to

discrete-time model, I “time discretize” the model over short time intervals of one week. The

first step of the Pareto extrapolation algorithm computes a value for the Pareto exponent of

the size distribution ζ. The second step computes a discrete approximation of the distribution

ϕ over a finite grid accounting for movements of particles in and out of the grid. In order to

compute moments, I use the truncated distribution ϕ and apply the correction terms provided in
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Gouin-Bonenfant and Toda 2018, which involve the Pareto exponent ζ.

A.2 Data

A.2.1 Variables construction

I now describe the methodology used to construct the main firm-level variables: value-

added, employment, wage and capital stock. First, I use four variables which are constructed

by summing line items from the corporate tax returns (T2 forms): gross profits, wages

and salaries, tangible capital assets, and intangible capital assets. The last

two variables (tangible capital assets and intangible capital assets) represent book

values of assets net of accumulated depreciation. First, I construct a measure of gross value added

at the firm which is consistent with the income approach in the System of National Accounts.

Denote by Yi,t the output of firm i in year t by

Yi,t ≡ gross profitsi,t

+wages and salariesi,t .

This approach is consistent with the income approach to measuring GDP which, in the corporate

sector, sums the income which accrues to firm owners (gross operating income) and the income

which accrues to workers (worker compensation). Note that the following accounting identity

gross profits≡ revenuei,t−cost of goods soldi,t

−operating expensei,t−wages and salariesi,t
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implies that the value-added approach to computing value-added also holds at the firm-level:

Yi,t ≡ revenuei,t−cost of goods soldi,t

−operating expensei,t

The labor share at the firm LS (i.e. wages, salaries and benefits as a share of output) is computed

as

LSi,t ≡ wages and salaries/Yi,t .

I winsorize the labor share at the 1% level in the upper tail. To be precise, I replace the values of

LSi,t above the 99th percentile by the value of the 99th percentile (approximately 20).

Finally, I remove from the main sample firm-year observations that either have (1)

negative value-added, and (3) missing values in employment, value-added, tangible capital assets,

intangible capital assets or industry code. The resulting extract (from now on the main sample)

covers roughly approximately 60% of employment and GDP amongst the industries covered and

40% of economy-wide employment and GDP over the 2000-2015 period.

Employment Ni,t is obtained by averaging the number of employees declared on the

monthly PD7 forms filed throughout the year. This procedure avoids attributing larger employment

levels to firms with high turnover. If for instance, we had summed the number workers who

worked at a firm throughout the year, we would be imputing a large workforce to firms with a

high labor turnover (i.e. a high share of employees who only during part of the year). The average

wage wi,t and labor productivity LPi,t are thus given by

wi,t = wages and salariesi,t/Ni,t , LPi,t = Yi,t/Ni,t .

The value of the stocks of tangible and intangible capital assets are directly measured at book

value net of accumulated depreciation on the firm’s balance sheet. The indicator variable foreign
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takes value one if the country of residence of the ultimate shareholder or group of shareholders

is not Canada and takes the value zero otherwise. The indicator variable subsidiary takes

the value one if and only if the firm is owned by another firm (i.e. the ownership threshold is

50%). Similarly, the indicator variable parent takes the value one if and only if the firm is the

highest legal operating entity in an ownership structure. In order to be “the highest legal operating

entity in an ownership structure”, a firm must (1) have at least one subsidiary and (2) not be the

subsidiary of another firm. Finally, the indicator variable fdi indicates the presence of inward or

outward direct investment flows. The threshold is 10% meaning that the variable fdi takes value

one if (1) the firm has at least 10% of the voting equity in a foreign firm or (2) the firm has 10%

of its voting equity owned by a foreign firm.

Table A.1: Summary statistics (Main sample, 2000-2015)

Variable Observations Mean Std. Dev.

revenue 3084182 1.01e+07 1.94e+08
cost of goods sold 3084182 5684233 1.38e+08
wages and salaries 3084182 1842980 3.16e+07
operating expenses 3084182 1562873 5.92e+07
intangible assets 3084182 600173.7 2.64e+07
tangible assets 3084182 2500054 9.15e+07
employment 3084182 38.63308 571.1065
wage 3084182 42845.83 59672.26
labor productivity 3084182 60014.69 215973.2
value-added 3084182 2809567 5.18e+07
R&D expenditures 3084182 53235.86 2778371
foreign 3084182 .0149553 .1213742
subsidiary 3084182 .0508939 .2197811
fdi 3084182 .0333246 .1794827
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A.2.2 Sample Validation

I compute the aggregate labor share, I use data from the National Accounts (Statistics

Canada table 380-0063) and apply the same methodology as Koh, Santaeulàlia-Llopis, and Zheng

2016, which assumes that components of income which are ambiguous (i.e. taxes net of subsidies

and net mixed income) have a labor share equal to the aggregate labor share. This methodology

implies the following formula:

LSNAC ≡
worker compensation

worker compensation+gross operating surplus
.
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Figure A.1: Aggregate labor share (Canada, 1961-2015)

Figures A.2 and A.2 plot the labor share in the National Accounts and in the main sample.

A few remarks are in order. First, the Canadian labor share in the National Accounts has sustained

a large decline over the course of the 1990s and early-2000s but has then somewhat recovered

over the course of the 2005-2015 period. Second, the aggregate labor share in the main sample

has a similar level and trend as the one in the National account over the period where both datasets

are available (2000-2015). Third, the labor share is a bit lower in the main main sample over

the 2000-2004 period. Overall, the level and dynamics of the labor share is consistent with the
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Figure A.2: Aggregate labor share (Canada, 2000-2015)

aggregate data.3
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Figure A.3: Coverage rate of GDP

Figure A.3 plots the coverage rate of the main sample in terms of gross value added,

benchmarked against aggregate data in the National Accounts. The “total” uses the aggregate data

for all industries while the “sample definition” line corresponds to the aggregate data obtained

3Unfortunately, Table 383-0033 does not allow for the computation of the labor share at the industry level.
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by excluding the some industries (Agriculture, Mining, Utilities, Education and Health - NAICS

11, 21, 22, 61, 62, 92), exactly as in the main sample. The “sample definition” is fairly high, at

around 60%. As expected, the “total” coverage is lower, at around 40%.

A.2.3 Detailed job flows

Table A.2: Detailed job flows.

Component Data Model

Job creation (continuers) 0.092 0.057
Job creation (entrants) 0.019 0.018
Job destruction (continuers) 0.082 0.039
Job destruction (exiters) 0.016 0.036

A.2.4 Averages by labor productivity deciles

Within each industry-year (where industries are defined as 2-digit NAICS sectors), I

sort firms by labor productivity (i.e. value-added per worker). I then compute 9 thresholds and

assign a “labor productivity decile” to each firm-year observation, so that each decile contains

10% of the firms. Within each decile, I compute the wage, labor productivity and capital per

worker by computing an employment-weighted average of firm-level wages, labor productivity

and capital per worker. Within each industry-year bin, I then normalize the average wage and

labor productivity by their value in the first decile. Finally, I average over all industries within a

year by applying employment weights and then compute a simple average of each variable over

2000-2015.

To compute the labor share and output share within each decile. I simply sum wages

and value-added within each industry-year-decile bin. The labor share is constructed as the ratio

of wages to value-added. The output share of a decile is compute as the share of a decile’s
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value-added within its industry-year bin. Finally, I average over all industries within a year by

applying value-added weights and compute a simple average of each variable over 2000-2015.

A.2.5 Industry-level dataset

To construct the industry-level dataset, I use the main sample which covers most industries

and most firms in Canada over the 2000-2015 and sort firms by labor productivity within industry-

year bins and assign to each firm a productivity quintile. For example, the 20% most productive

firms are in the 5th quintile while the bottom 20% least productive firms are in the 1st quintile.

An industry is defined according to 3-digit NAICS definitions. I then compute measures of wage,

labor productivity and output share within each decile exactly as in described in Appendix A.2.4.

Within each industry-year bin, I also compute the labor share LS, the average (unweighted) firm

labor share L̄S as well as the employment and output shares. I restrict the sample to industry-year

observations which have at least 100 firms in every year and censor the observations of L̄S. I am

left with a balanced panel dataset covering 69 industries over the period 2000-2015
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Appendix B

Appendix of Chapter 2

B.1 Asymptotic problem

In this appendix we describe how to derive the asymptotic homogeneous problem in an

abstract dynamic programming setting. For the notation, we follow Ma and Stachurski (2018).

Let

• X be a set called the state space;

• A be a set called the action space;

• Γ : X � A be a nonempty correspondence called the feasible correspondence;

• g : X×A→ X be a function called the law of motion;

• V be a subset of all functions from X to ∪−∞ called the set of candidate value functions;

• Q : X×A×V → R∪−∞ be a map called the state-action aggregator.

Then we say that the value function v ∈ V satisfies the Bellman equation if

v(x) = max
a∈Γ(x)

Q(x,a,v(g(x,a))) (B.1)
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for all x ∈ X .

Definition 2 (Asymptotic homogeneity). We say that the dynamic programming problem is

asymptotically homogeneous if has the following properties:

• X = X1×X2, where + ⊂ X1 ⊂;

• Γ(x) = Γ1(x1,x2)×Γ2(x2), where x = (x1,x2) ∈ X1×X2 and d
+ ⊂ Γ1(x1,x2)⊂d for some

d;

• g(x,a)= g1(x1,x2,a1,a2)×g2(x2,a2), where x=(x1,x2)∈X1×X2 and (a1,a2)∈Γ1(x1,x2)×

Γ2(x2);

• limλ→∞
1
λ

Γ1(λx1,x2) = Γ̃1(x1,x2) exists for (x1,x2) ∈ X1×X2;

• limλ→∞
1
λ

g1(λx1,x2,λa1,a2) = g̃1(x1,x2,a1,a2) exists for (x1,x2) ∈ X1×X2 and (a1,a2) ∈

Γ1(x1,x2)×Γ2(x2);

• limλ→∞
1
λ

Q(λx1,x2,λa1,a2,λv) = Q̃(x1,x2,a1,a2,v) exists.

Suppose that the dynamic programming problem is asymptotically homogeneous. Then

1. Γ̃1 is homogeneous of degree 1 in x1: for any λ > 0 we have

Γ̃1(λx1,x2) = λΓ̃1(x1,x2).

2. g̃1 is homogeneous of degree 1 in (x1,a1): for any λ > 0 we have

g̃1(λx1,x2,λa1,a2) = λg̃1(x1,x2,a1,a2).

3. Q̃ is homogeneous of degree 1 in (x1,a1,v): for any λ > 0 we have

Q̃(λx1,x2,λa1,a2,λv) = λQ̃(x1,x2,a1,a2,v).
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Proof. By the definition of Γ̃1, for any λ > 0 we have

Γ̃1(λx1,x2) = lim
λ′→∞

1
λ′

Γ1(λ
′
λx1,x2)

= λ lim
λ′→∞

1
λ′λ

Γ1(λ
′
λx1,x2) = λΓ̃1(x1,x2).

The proofs of the other claims are similar.

When the dynamic programming problem is asymptotically homogeneous, we define the

asymptotic problem as follows.

Definition 3. Suppose that the dynamic programming problem is asymptotically homogeneous.

Then the Bellman equation of the asymptotic problem corresponding to (B.1) is defined by

v(x1,x2) = max
(a1,a2)∈Γ̃1(x1,x2)×Γ2(x2)

Q̃(x1,x2,a1,a2,v(g̃1(x1,x2,a1,a2),g2(x2,a2))). (B.2)

The following lemma shows that we can reduce the dimension of the asymptotic problem

by 1.

Suppose that the dynamic programming problem is asymptotically homogeneous. Con-

sider the following “normalized” Bellman equation:

ṽ(x2) = max
(a1,a2)∈Γ̃1(1,x2)×Γ2(x2)

Q̃(1,x2,a1,a2, g̃1(1,x2,a1,a2)ṽ(g2(x2,a2))). (B.3)

If (B.3) has a solution ṽ(x2), then v(x1,x2) = x1ṽ(x2) is a solution to the asymptotic Bellman

equation (B.2). Furthermore, letting ã = (ã1, ã2) be the policy function of the normalized Bellman

equation (B.3), the policy function a = (a1,a2) of the asymptotic Bellman equation (B.2) is given

by a1(x1,x2) = x1ã1(x2) and a2(x1,x2) = ã2(x2).

Proof. Immediate by multiplying both sides of (B.3) by x1 > 0 and using the homogeneity of

Γ̃1, g̃1, Q̃ established in Lemma B.1.
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The following proposition shows that if a dynamic programming problem is asymptotically

homogeneous, then the value function and policy functions are asymptotically linear.

Proposition 11. Suppose that the dynamic programming problem is asymptotically homogeneous.

Suppose that the Bellman equation (B.1) has a solution v(x), and it can be computed by value

function iteration starting from v(x) ≡ 0. Then under some regularity conditions, the value

function and policy functions are asymptotically linear: we have

v(x1,x2) = x1ṽ(x2)+o(x1),

a1(x1,x2) = x1ã1(x2)+o(x1),

a2(x1,x2) = ã2(x2)+o(x1)

as x1→ ∞, where ṽ(x2), ã1(x2), and ã2(x2) are defined as in the normalized Bellman equation

(B.3).

Proof. Define the operator T : V → V by the right-hand side of (B.1). Let v(0) ≡ 0 and v(k) =

T v(k−1) = T k0. Let us show by induction that

lim
λ→∞

1
λ

v(k)(λx1,x2) = ṽ(k)(x1,x2)

exists. If k = 0, the claim is trivial since v(0) ≡ 0. Suppose the claim holds for some k−1. Then

by Lemma B.1, we obtain

1
λ

v(k)(λx1,x2) =
1
λ
(T v(k−1))(λx1,x2)

= max
(a1,a2)∈

1
λ

Γ1(λx1,x2)×Γ2(x2)

Q
(

λx1,x2,λa1,a2,v(k−1)
(

λ
1
λ

g1(λx1,x2,λa1,a2),g2(x2,a2)

))
.

Using the asymptotic homogeneity of Γ1, g1, Q established in Lemma B.1, the asymptotic

homogeneity of v(k−1), and assuming that we can interchange the limit and maximization (,

assuming enough conditions to apply the Maximum Theorem), it follows that v(k) is asymptotically

homogeneous. Since by assumption v(k)→ v as k→ ∞ point-wise, assuming that the limit of
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k→ ∞ and λ→ ∞ can be interchanged (which is the case if v(k) converges to v monotonically,

which is often the case in particular applications), then v is asymptotically homogeneous in the

sense that limλ→∞
1
λ

v(λx1,x2) exists.

Now that asymptotic homogeneity of v is established, from (B.1) we obtain

v(λx1,x2) = max
a∈Γ(λx1,x2)

Q(λx1,x2,a,v(g(λx1,x2,a))).

Dividing both sides by λ > 0 and letting λ→ ∞, using the asymptotic homogeneity of Γ1, g1, Q,

and v, we obtain the asymptotic Bellman equation (B.2). Thus if in particular (B.3) has a unique

solution ṽ(x2), by Lemma B.1 it must be

lim
λ→∞

1
λ

v(λx1,x2) = x1ṽ(x2).

Consequently, setting x1 = 1 and λ = x1, we obtain v(x1,x2) = x1ṽ(x2)+o(x1). The proof for the

policy functions is similar.

B.2 Proofs

B.2.1 Proof of results in Section 2.3

First let us derive the asymptotic Euler equation (2.5). The Euler equation in the KS

model is

c−γ

t = βs(1− p)RE[c−γ

t+1|s].

Let wt = w. Then ct = c̄sw, and using the budget constraint, we obtain

w′ = wt+1 = R(wt− ct) = R(1− c̄s)w.

Noting that ct+1 = c̄s′w′ and combining the above equations, we obtain (2.5).

Next, let us show that the asymptotic Euler equation (2.5) has a (necessarily unique)
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solution if and only if the spectral condition (2.6) holds. Setting xs = c̄−γ
s , (2.5) can be rewritten

as

xs =

1+

(
(1− p)R1−γ

βs

S

∑
s′=1

pss′xs′

)1/γ
γ

.

Setting x = (x1, . . . ,xS)
′, we can express this equation as

x =
(

1+(Kx)1/γ

)γ

, (B.4)

where K = (1− p)R1−γBP and B = (β1, . . . ,βS). By the results in Borovička and Stachurski

(2019), (B.4) has a positive solution if and only if ρ(K)< 1, in which case the solution is unique.

Since ρ(K) = (1− p)R1−γρ(BP), a necessary and sufficient condition for the existence of a

solution is the spectral condition (2.6).

Proof of Proposition 9. If Gt+1 ≤ 1 always, then by (2.8) we have

Mss′(z) = E[Gz
t+1|st = s,st+1 = s′]≤ 1

for all z≥ 0. Therefore (1− p)ρ(P�M(z))≤ (1− p)ρ(P) = 1− p < 1, so (2.10) does not have

a solution z > 0.

Suppose that M(z) is finite for all z > 0 and P is irreducible. Define A(z) = P�M(z).

Define the S× S matrix B(z) by Bss(z) = pssMss(z) > 0 for the s satisfying the assumption

pss Pr(Gt+1 > 1|st = st+1 = s) > 0, and 0 for all other entries. Then clearly A(z) ≥ B(z) ≥ 0

entry-wise, so

∞ > ρ(P�M(z)) = ρ(A(z))≥ ρ(B(z)) = pssE[Gz
t+1|st = st+1 = s]→ ∞

as z→ ∞. Since (1− p)ρ(P�M(0)) = (1− p)ρ(P) = 1− p < 1, by the intermediate value

theorem there exists z = ζ > 0 such that (2.10) holds. Uniqueness is proved in Beare and Toda

(2017b).
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B.2.2 Proof of results in Section 2.4

We use the following notations. Let β̃ = β(1− p) be the effective discount factor. For a

vector v = (v1, . . . ,vS)
′, let v(α) = (vα

1 , . . . ,v
α
S )
′ be the vector of α-th powers and (v) the diagonal

matrix whose s-th diagonal element is vs.

The following proposition characterizes the solution to the capitalist’s optimal consumption-

savings problem.

Proposition 12. Let z = (z1, . . . ,zS)
′ be the vector of gross excess returns. A solution to the

optimal consumption-savings problem exists if and only if

β̃R1−γ

f ρ((z(1−γ))P)< 1. (B.5)

Under this condition, the value function and optimal consumption rule are

Vs(w) = bs
w1−γ

1− γ
, (B.6a)

cs(w) = b−1/γ
s w, (B.6b)

where b = (b1, . . . ,bS)
′� 0 is the smallest solution to the system of nonlinear equations

bs =
(

1+(β̃(zsR f )
1−γE[bs′|s])1/γ

)γ

, s = 1, . . . ,S. (B.7)

Proof. Immediate from Toda (2019, Proposition 1).

Let us simplify the equilibrium condition (2.34) by exploiting the linearity in Proposition

12. Using the budget constraint (2.33) and the optimal consumption rule (B.6b), the individual

wealth dynamics is

w′ = zsR f (1−b−1/γ
s )w =: Gsw.
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Letting Ws be the aggregate wealth held by agents in state s, by accounting we obtain

Ws′ = pπs′w0 +(1− p)
S

∑
s=1

pss′GsWs.

Letting π = (π1, . . . ,πS)
′, G = (G1, . . . ,GS)

′, and W = (W1, . . . ,WS)
′, in matrix form this becomes

W = pw0π+(1− p)P′(G)W ⇐⇒ W = pw0(I− (1− p)P′G)−1
π.

Let ms = b−1/γ
s ∈ (0,1) be the marginal propensity to consume out of wealth in state s and

m = (m1, . . . ,mS)
′. Then the vector of saving rates is given by 1−m, where 1 = (1, . . . ,1)′ is the

vector of ones. Using this, the aggregate capital supply is given by

K = (1−m)′W = pw0(1−m)′(I− (1− p)P′G)−1
π, (B.8)

assuming (1− p)ρ(P′G) < 1. (If this inequality is violated, we just set K = ∞.) On the other

hand, by (2.32) the aggregate capital demand is

K =

(
R f −1+δ

Aα

) 1
α−1

. (B.9)

Equating (B.8) and (B.9), the market clearing condition (2.34) becomes

0 = f (R f ) := pw0(1−m)′(I− (1− p)P′G)−1
π−

(
R f −1+δ

Aα

) 1
α−1

. (B.10)

The following theorem shows that a stationary equilibrium exists and that the stationary

wealth distribution has a Pareto upper tail.

Theorem 1. A stationary equilibrium exists if and only if there exists R > 1−δ such that

β̃R1−γ
ρ((z(1−γ))P)< 1 (B.11)
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and f (R) < 0, where f is given by (B.10). The equilibrium is unique if γ < 1. If in addition

pss > 0 for all s and Gs > 1 for some s, then the stationary wealth distribution has a Pareto upper

tail with exponent ζ > 1 that satisfies

(1− p)ρ(PG(ζ)) = 1. (B.12)

Proof. The existence of equilibrium follows from a continuity argument similar to Toda (2019,

Theorem 3), which we only sketch for space considerations. The condition (B.11) ensures that

(B.5) holds for R f > R sufficiently close to R. Then we can show that the individual optimization

problem has a solution and the aggregate wealth is finite for some range R f ∈ [R, R̄), and that

the aggregate wealth (as well as supply of capital) diverges to ∞ as R f ↑ R̄. Since f (R) < 0

by assumption and f (R̄) = ∞, by the intermediate value theorem there exists R f ∈ (R, R̄) that

satisfies the market clearing condition (B.10). Uniqueness of equilibrium when γ < 1 follows by

the exact same argument as in Toda (2019, Theorem 3).

The Pareto tail result follows from the general theorem in Beare and Toda (2017b) and a

similar argument to Toda (2019, Theorem 4).

Numerically solving for the equilibrium is straightforward. Given the guess of the interest

rate R f > R, solve for the fixed point b = (bs) using (B.7), and solve (B.10) to obtain the

equilibrium risk-free rate.

B.2.3 Proof of results in Section 2.5

Proof of Proposition 10. The maximization problem (2.47) is equivalent to

max
0≤θ≤θ̄s

1
1− γ

E[(R̃ f (1−θ)+ R̃s jθ)
1−γ|s].

Let f (θ) be the objective function of this problem. Since by assumption zS + ε1 < 1 and z1 <

· · ·< zS, we have zs + ε1 < 1 for all s. Therefore θ̄s =
R̃ f

R̃ f−R̃s1
> 0 and

f ′(θ) = E[(R̃ f (1−θ)+ R̃s jθ)
−γ(R̃s j− R̃ f )|s]→−∞
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as θ ↑ θ̄s. Furthermore,

f ′′(θ) =−[(R̃ f (1−θ)+ R̃s jθ)
−γ−1(R̃s j− R̃ f )

2|s]< 0

for θ ∈ (0, θ̄s), so f is strictly concave. Therefore there exists a unique θ∗s that maximizes (2.47),

and hence ρs is well-defined.

Assume ε 6= 1. By the discussion in the text, the Bellman equation of the asymptotic

problem is

vs(w) = max
0≤θ≤θ̄s
0≤c≤w

(
(1−β)c1−1/ε +βE[(vs′(R(θ)(w− c)))1−γ|s]

1−1/ε

1−γ

) 1
1−1/ε

,

where the upper bounds on c,θ ensure that w′ ≥ 0 and

R(θ) = (1− τw)(R̃ f (1−θ)+ R̃s jθ)

is the gross portfolio return. By homogeneity, the value function must be of the form vs(w) = bsw.

Substituting into the Bellman equation, we obtain

bsw = max
0≤θ≤θ̄s
0≤c≤w

(
(1−β)c1−1/ε +β(w− c)1−1/εE[(bs′R(θ))

1−γ|s]
1−1/ε

1−γ

) 1
1−1/ε

.

Noting that R(θ) does not depend on s′ and j is independent of s′, using the definition of ρs in

(2.47), we can rewrite this as

bsw = max
0≤c≤w

(
(1−β)c1−1/ε +βρ

1−1/ε
s (w− c)1−1/εE[b1−γ

s′ |s]
1−1/ε

1−γ

) 1
1−1/ε

.

For notational simplicity let κs = ρsE[b
1−γ

s′ |s]
1

1−γ . Then the above problem becomes equivalent to

max
c

1
1−1/ε

(
(1−β)c1−1/ε +βκ

1−1/ε
s (w− c)1−1/ε

)
.
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Clearly this is a strictly concave function in c. Taking the first-order condition and solving for c,

we obtain

c =
(1−β)ε

(1−β)ε +βεκ
ε−1
s

w.

Substituting into the Bellman equation, after some algebra we obtain

bs =
(
(1−β)ε +β

ε
ρ

ε−1
s E[b1−γ

s′ |s]
ε−1
1−γ

) 1
ε−1

,

which is (2.49). The optimal consumption rule then simplifies to c = (1−β)εb1−ε
s and we obtain

the optimal investment rule using θ = I
w−c .

To complete the proof it remains to show that the system of nonlinear equations (2.49)

has a solution. For this purpose let us write σ = 1−γ

ε−1 and xs = b1−γ
s . Then we can rewrite (2.49) as

xs =
(
(1−β)ε +(βεσ

ρ
1−γ
s e[xs′|s])1/σ

)σ

,

which is equivalent to

x = ((1−β)ε +(Kx)1/σ)σ

for x = (x1, . . . ,xS)
′ and K = βεσ

(
ρ

1−γ

1 , . . . ,ρ
1−γ

S

)
P. Since this equation is essentially identical

to Equation (24) in Borovička and Stachurski (2019), by their Theorem 3.1, a necessary and

sufficient condition for the existence of a unique fixed point is ρ(K)1/σ < 1, which is equivalent

to (2.48).

Finally we briefly comment on the case ε = 1. Although this case requires a separate

treatment, it turns out that the equations are valid by taking the limit ε→ 1. To show (2.49),

define g(ε) = log((1−β)ε +βεκε−1) for κ > 0. Then as ε→ 1 we obtain

log((1−β)ε +β
ε
κ

ε−1)
1

ε−1 =
g(ε)
ε−1

=
g(ε)−g(1)

ε−1
→ g′(1).

But since

g′(ε) =
(1−β)ε log(1−β)+βεκε−1 log(βκ)

(1−β)ε +βεκε−1 → (1−β) log(1−β)+β log(βκ)
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as ε→ 1, it follows that

((1−β)ε +β
ε
κ

ε−1)
1

ε−1 → (1−β)1−β(βκ)β,

which explains (2.49) for ε = 1. The existence and uniqueness of a positive solution can be proved

by taking the logarithm of (2.49) and applying a contraction mapping argument to x = logb.

Proof of Lemma 3. By Proposition 10 and the budget constraint of the asymptotic problem, we

obtain the the law of motion

w′ = (1− (1−β)εb1−ε
s )(R̃ f (1−θ

∗
s )+ R̃s jθ

∗
s )w.

Taking the expectation conditional on s and using the definition of Gs in (2.51), we obtain

E[w′|s] = Gsw. By the same derivation as (B.8), a necessary condition for aggregate wealth to be

finite is ρ(P′G)< 1. Since G is diagonal, we obtain

ρ(PG) = ρ((G)′P′) = ρ((G)P′) = ρ(P′G)< 1.

Proof of Lemma 2.5.2. Since by assumption GsJ > 1 for some s, we have Ms(z)→ ∞ as z→ ∞

for this s. Since by assumption pss > 0 for all s, it follows that ρ(PD(z))→ ∞ as z→ ∞. Since

D(1) = G, by (2.52) we obtain ρ(PD(1)) = ρ(PG) < 1. By the intermediate value theorem,

there exists ζ > 1 such that ρ(PD(ζ)) = 1. Uniqueness follows from the convexity of ρ(PD(z))

established in Beare and Toda (2017b). The Pareto tail result follows from (2.10) with p = 0.

B.3 Solution accuracy of Aiyagari model

In this appendix we evaluate the solution accuracy of the Aiyagari model in Section 2.4.1.

We consider the evenly- and exponentially-spaced grids as well as simulation.
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B.3.1 Evenly-spaced grid

We first consider an N-point evenly-spaced grid on (0, w̄], where we set the truncation

point to w̄ = 10,20,40 and the number of points to N = 100,200,400. Therefore the wealth grid

is ndN
n=1, where d = w̄/N is the distance between grid points.1 Table B.1 shows the relative error

K̂/K−1 in the aggregate capital.

Table B.1: Relative error (%) in aggregate capital for the truncation and Pareto extrapolation
methods with an evenly-spaced grid.

Method: Truncation Pareto extrapolation

w̄ N = 100 200 400 100 200 400

10 -40.00 -39.69 -39.62 0.214 0.105 0.052
20 -33.58 -32.88 -32.63 0.430 0.097 0.043
40 -26.99 -27.56 -27.03 3.588 0.331 0.046

Note: N: number of grid points; w̄: wealth truncation point.

We can make a few observations from Table B.1. First, the conventional truncation

method is extremely poor at calculating the aggregate capital: the relative error is about 27–

40% depending on the specification. On the other hand, the Pareto extrapolation method is

astonishingly more accurate. Second, for the truncation method, choosing a larger truncation

point w̄ somewhat improves the accuracy, probably because it misses less of the upper tail. On

the other hand, the accuracy in the Pareto extrapolation method is not necessarily monotonic in w̄.

There seems to be a trade-off between less truncation (larger w̄) and higher density of grid points

(smaller d = w̄/N).

Figure B.1 shows the stationary wealth distribution using w̄ = 10 and N = 100. The two

methods are indistinguishable except at the upper tail. To study the tail behavior, Figure B.2 plots

the tail probability in a log-log scale. As we can see, the graphs show a straight line pattern,

which is consistent with the theoretical Pareto distribution. However, the graph for the truncation

method becomes concave towards the upper tail, which implies that it underestimates the tail
1Note that we exclude 0 from the wealth grid because in equilibrium agents never hit 0 due to the Inada condition.
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probability. On the other hand, the Pareto extrapolation method shows a straight line pattern

including the very top tail.
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Figure B.1: Stationary wealth distribution.
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Figure B.2: Log-log plot of wealth distribution.

These seemingly small differences have an enormous impact on aggregate quantities, as

we have seen in Table B.1. To assess the robustness, Figure B.3 shows the aggregate capital for

the semi-analytical solution as well as the Pareto extrapolation and truncation solutions when we

191



change the initial wealth in the range w0 ∈ [0.2,5]. For all cases we set w̄ = 10 and N = 100. The

horizontal axis shows the corresponding equilibrium Pareto exponent. The graph for the Pareto

extrapolation method is indistinguishable from the semi-analytical solution except when the

Pareto exponent is very close to 1 (Zipf’s law), in which case the truncation method is especially

poor.
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Figure B.3: Aggregate capital.
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Figure B.4: Relative errors.
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Figure B.4 shows the relative error
∣∣∣K̂/K−1

∣∣∣ in a semi log scale. For this exercise,

we consider four solution methods that correspond to using/not using Pareto extrapolation

when constructing the transition probability matrix and/or calculating aggregate capital. For

example, “None” and “Both” in Figure B.4 correspond to the truncation and Pareto extrapolation

solutions, respectively. According to the figure, using Pareto extrapolation for only one step

(either constructing the transition probability matrix or calculating aggregate capital) improves the

accuracy only slightly, and correcting the aggregate capital matters more. However, combining

both increases the solution accuracy dramatically.

The intuition for this (surprising) result is as follows. According to (2.22), the two sources

of errors introduced by the truncation method (incorrect transition probability matrix and incorrect

aggregate wealth held by agents at the top grid point) interact with each other. With the truncation

method, the last term πsN
ζ

ζ−1wN in (2.22) becomes π̃sNwN , with typically π̃sN < πsN . Therefore,

errors in πsN are inflated by a factor ζ

ζ−1 , which is large if ζ > 1 is small.

B.3.2 Exponentially-spaced grid

One may argue that the poor performance of the truncation method in Table B.1 is due

to the fact that the truncation point w̄ = 10,20,40 is relatively small compared to the aggregate

capital K = 3.4231. What if we take w̄ much larger, say a million? Then we can no longer

use evenly-spaced grids because there will be too few points to cover the bottom of the wealth

distribution. Therefore we need to consider an exponentially-spaced grid.

In more general models, the state variable may become negative (, asset holdings), which

causes a problem for constructing an exponentially-spaced grid because we cannot take the

logarithm of a negative number. Suppose we would like to construct an N-point exponential grid

on a given interval (a,b). A natural idea to deal with such a case is as follows. [Constructing the

exponential grid]

1. Choose a shift parameter s >−a.
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2. Construct an N-point evenly-spaced grid on (log(a+ s), log(b+ s)).

3. Take the exponential.

4. Subtract s.

The remaining question is how to choose the shift parameter s. Suppose we would like to

specify the median grid point as c ∈ (a,b). Since the median of the evenly-spaced grid on

(log(a+ s), log(b+ s)) is 1
2(log(a+ s)+ log(b+ s)), we need to take s >−a such that

c = E
(

1
2
(log(a+ s)+ log(b+ s))

)
− s

⇐⇒ c+ s =
√
(a+ s)(b+ s)

⇐⇒ (c+ s)2 = (a+ s)(b+ s)

⇐⇒ c2 +2cs+ s2 = ab+(a+b)s+ s2

⇐⇒ s =
c2−ab

a+b−2c
.

Note that in this case

s+a =
c2−ab

a+b−2c
+a =

(c−a)2

a+b−2c
,

so s+ a is positive if and only if c < a+b
2 . Therefore, for any c ∈

(
a, a+b

2

)
, it is possible to

construct such a grid. The remaining question is how to choose c, but we can use information

from the problem we want to solve. Note that by construction, half the grid points will lie on the

interval (a,c). Therefore we should choose the number c such that c is a “typical” value for the

state variable (, initial capital, aggregate capital in a representative-agent model, etc.).

Returning to our particular Aiyagari model, we choose the shift parameter s such that the

median grid point corresponds to the capital in a representative-agent model, which in our case

is KRA = ((1/(β(1− p))− 1+ δ)/(Aα))
1

α−1 = 4.5577. Since an exponential grid allows us to

use far fewer points than an evenly-spaced grid, we consider N = 25,50,100. (We have checked
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that increasing N further also increases the accuracy.) For the truncation point, we consider

w̄ = 101,102,103,104,105,106. Table B.2 shows the results.

Table B.2: Relative error (%) in aggregate capital for the truncation and Pareto extrapolation
methods with an exponentially-spaced grid.

Method: Truncation Pareto extrapolation

w̄ N = 25 50 100 25 50 100

101 -41.90 -40.77 -39.92 2.643 0.528 0.276
102 -27.54 -23.36 -21.08 -1.697 -0.186 0.588
103 -20.85 -15.27 -12.32 -2.423 -0.785 -0.002
104 -17.12 -10.78 -7.62 -2.553 -0.905 -0.184
105 -14.93 -8.06 -4.93 -2.546 -0.879 -0.222
106 -13.19 -6.27 -3.32 -2.445 -0.807 -0.210

Note: N: number of grid points; w̄: wealth truncation point.

The accuracy of the truncation method somewhat improves by using the exponential grid

with a large truncation point w̄ and many points. However, even with a large truncation like a

million and N = 100 grid points, the error still exceeds 3%. (Increasing N further decreases the

error, but only slightly for the truncation method.) Again, the Pareto extrapolation method is

overwhelmingly more accurate.

B.3.3 Simulation

We conduct simulations by recursively computing the wealth of I agents over T periods

using the semi-analytical solution for the consumption policies and the risk-free rate. We initialize

the wealth distribution at t = 0 by setting w0 = 1 for all agents. For every simulation, we compute

the cross-sectional mean of the wealth distribution K̂ in the terminal period T , which corresponds

to the aggregate capital K in the model.2 Given that K̂ is a random variable, we compute the

relative error for B = 10,000 independent simulations and take the average to obtain the “mean

relative error” defined by 1
B ∑

B
b=1

∣∣∣K̂b/K−1
∣∣∣, where K is the true aggregate capital and K̂b is the

2Since there is a unit continuum of agents in the model, the average wealth is equal to the aggregate wealth.

195



numerical aggregate capital from simulation b. Finally, we compute a measure of the dispersion

of results across simulations defined by
∣∣∣K̂p95/K̂p5−1

∣∣∣, where K̂p5, K̂p95 denote the 5th and 95th

percentiles of K̂ across simulations. Table B.3 shows the results for different combinations of

sample size I and simulation length T .

Table B.3: Solution accuracy of the simulation method in the Aiyagari model.

T I Relative error (%) Dispersion (%) Time (sec)

1,000

103 21.93 92.97 0.07
104 10.97 47.99 0.38
105 6.70 27.53 3.13
106 6.69 16.33 41.23

10,000

103 23.76 96.68 0.39
104 20.42 50.07 3.76
105 9.69 27.47 31.43
106 6.64 16.07 414.30

Note: T : simulation length in model-years; I: number of simulated agents; Relative error:
1
B ∑

B
b=1

∣∣∣K̂b/K−1
∣∣∣, where K̂b is the aggregate capital in simulation b and K is the true value from

the analytical solution; Dispersion:
∣∣∣K̂p95/K̂p5−1

∣∣∣, where K̂p5, K̂p95 are the 5th and 95th percentiles of
aggregate capital across B = 10,000 simulations; Time: computing time of one simulation (one b) in
seconds.

A few remarks are in order. First, the simulation method performs poorly on average and

the results are very dispersed across simulations. Second, increasing the number of agents I helps

reduce both the mean relative error and the dispersion. The gains in accuracy associated with

increasing I by an order of magnitude tend to be small, consistent with the fact that the sample

mean of a fat-tailed distribution converges very slowly to the population mean. In fact, in our

model the Pareto exponent is ζ = 1.28, and the relative errors for sample sizes I = 104,106 in

Table B.3, which are about 11% and 7% respectively, are about the same order of magnitude

as the error order 11.9% and 4.1% in the column for ζ = 1.3 in Table 2.1. Third, increasing

the simulation length beyond T = 1,000 does not seem to improve accuracy, suggesting that the

simulated wealth distribution has already converged after 1,000 periods.
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The last column of Table B.3 reports the computing time (without parallelization) as-

sociated with producing a single simulation using a machine equipped with an Intel Xeon

E3-1245 3.5GHz processor and 16GB of memory. While increasing the sample size I by a factor

of ten is associated with small accuracy gains, it implies a tenfold increase in the computing time.

Given the inaccuracy and the large dispersion of results across simulations, we conclude that the

simulation method is not a viable option for solving models with fat-tailed wealth distributions.

B.4 Dynamic programming in the MBA model

B.4.1 Euler and asset pricing equations

First, we derive the Euler and asset pricing equations. Noting that R̃s j is strictly increasing

in j, the borrowing constraint (2.40) can bind only in state j = 1. Therefore the Bellman equation

(2.41) is equivalent to

1
1−1/ε

vs(w)1−1/ε = max
c,I≥0

1
1−1/ε

(
(1−β)c1−1/ε +[vs′(w

′)1−γ|s]
1−1/ε

1−γ

)
, (B.13)

where

w′ = R̃ f (w+(1− τh)ωhs− I− c)+ R̃s1I ≥ w.

Let Ls(c, I,w) be the Lagrangian and λs(w),µs(w) be the corresponding Lagrange multipliers for

the borrowing constraint and the nonnegativity constraint on investment:

Ls(c, I,w) =
1

1−1/ε

(
(1−β)c1−1/ε +[vs′(w

′)1−γ|s]
1−1/ε

1−γ

)
+λs(w)

(
R̃ f (w+(1− τh)ωhs− I− c)+ R̃s1I−w

)
+µs(w)I.
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The first-order condition for consumption is given by

(1−β)cs(w)−1/ε = βR̃ f E[vs′(w
′)1−γ|s]

γ−1/ε

1−γ E[vs′(w
′)−γv′s′(w

′)|s]+λs(w)R̃ f . (B.14)

Differentiating both sides of the Bellman equation (B.13) by w, it follows from the Envelope

Theorem that

vs(w)−1/εv′s(w) = βR̃ f E[vs′(w
′)1−γ|s]

γ−1/ε

1−γ E[vs′(w
′)−γv′s′(w

′)|s]+λs(w)R̃ f . (B.15)

By (B.14) and (B.15), we obtain the following expression for the derivative of the value function

v′s(w) = (1−β)

(
cs(w)
vs(w)

)−1/ε

. (B.16)

Substituting (B.16) into (B.14), we obtain the consumption Euler equation

cs(w)−1/ε = βR̃ f E[

(
vs′(w′)

vs′(w′)1−γ|s
1

1−γ

)1/ε−γ

cs′(w
′)−1/ε|s]+

λs(w)R̃ f

1−β
. (B.17)

The first-order condition for investment is given by

βE[vs′(w
′)1−γ|s]

γ−1/ε

1−γ E[vs′(w
′)−γv′s′(w

′)(R̃s j− R̃ f )|s]

+λs(w)(R̃s1− R̃ f )+µs(w) = 0. (B.18)

Using the expression for v′s(w) from (B.16) and rearranging, we obtain the following asset pricing

equation

E[

(
vs′(w′)

vs′(w′)1−γ|s
1

1−γ

)1/ε−γ

cs′(w
′)−1/ε(R̃s j− R̃ f )|s]

=−
λs(w)(R̃s1− R̃ f )+µs(w)

β(1−β)
. (B.19)
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B.4.2 Policy function and value function iteration

The strategy is to start with guesses for the value function vold
s (w) and policy functions

cold
s (w), Iold

s (w) and update by doing the following steps for each individual state (s,w). Equipped

with the asymptotic solution to the individual problem c̄s, Īs, v̄s
S
s=1, we choose the following initial

guesses

cs(w) = c̄s(w−w), Is(w) = Īs(w−w), vs(w) = Īs(w−w).

Then, we iterate over steps (1), (2), and (3) until convergence.

1. Consumption decision: First, use the old decision rules cold
s (w), Iold

s (w) to construct next

period’s wealth w′s j(w) and the upper bound on consumption cub
s (w):

w′s j(w) = R̃ f

(
w+(1− τh)ωhs− Iold

s (w)− cold
s (w)

)
+ R̃s jIold

s (w),

cub
s (w) = w+(1− τh)ωhs−w/R̃ f .

Then, update the consumption using the Euler equation (B.17) as if the borrowing constraint

was slack.

c∗s (w) =

βR̃ f E

 vold
s′ (w

′
s j(w))

E[vold
s′ (w

′
s j(w))1−γ|s]

1
1−γ

1/ε−γ

cold
s′ (w

′
s j(w))

−1/ε|s]


−ε

.

Finally, impose the upper bound on consumption so that cnew
s (w) = minc∗s (w),c

ub
s (w) and

compute the Lagrange multiplier

λ
new
s (w) =

1−β

R̃ f

(
cnew

s (w)−1/ε− c∗s (w)
−1/ε

)
.

2. Investment decision: This step applies only to types s such that E[R̃s j|s]> R̃ f , for other
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types set Is(w) = 0. Using cnew
s (w), construct the following function

Ψs(w, I) = E[

 vold
s′ (w

′
s j(w, I))

vold
s′ (w

′
s j(w, I))1−γ|s

1
1−γ

1/ε−γ

cnew
s′ (w′s j(w, I))

−1/ε(R̃s j− R̃ f )|s]

+
λnew

s (w)(R̃s1− R̃ f )

β(1−β)
,

where

w′s j(w, I) = R̃ f (w+(1− τh)ωhs− I− cnew
s (w))+ R̃s jI.

To solve for the optimal investment, compute the root I∗ that solves Ψs(w, I∗) = 0 and set

Is(w) = I∗. If a root does not exist and Ψs(w,0)< 0, set Is(w) = 0.

3. Value function: Construct next period’s wealth using the new policy functions

w′s j(w) = R̃ f (w+(1− τh)ωhs− Inew
s (w)− cnew

s (w))+ R̃s jInew
s (w)

and update the value function until convergence using the following formula

vnew
s (w) =


(
(1−β)cnew

s (w)1−1/ε +βE[vold
s′ (w

′
s j(w))

1−γ|s]
1−1/ε

1−γ

) 1
1−1/ε

, (ε 6= 1)

cnew
s (w)1−β

(
vold

s′ (w
′
s j(w))

1−γ|s
1

1−γ

)β

. (ε = 1)
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Appendix C

Appendix of Chapter 3

C.1 Definition of hierarchy levels
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Table C.1: Organizational hierarchy and job titles (management).

Code Job title Scope of contribution

110 President Is the head of the organization and is the highest employer
representative.

111 Vice-President Collaborates with the executive team to determine the strategic direction
of the organization and of her sector. Is primarily responsible for her
area of activity and makes recommendations concerning the
organizations direction. Ensures that recommendations are implemented
organization-wide or in her sector. Approves requests for human,
material and financial resources in accordance with her sectors needs.
Acts as a representative of the employer on matters related to her area of
activity.

112 Director Assumes a decision-making role so as to achieve the objectives for her
area of activity established by the executive team. Develops and issues
recommendations and contributes to her sectors short-term strategic
development. Ensures annual planning and the management of the
human, financial and material resources needed for her sectors
operations. Determines and prioritizes the use of resources. Is
accountable for establishing and adhering to the budget and for expected
results.

113 Manager Supervises the members of her team. Participates in establishing
budgets, action plans, objectives and strategies for her sector. Proposes
and ensures the implementation of guidelines issued by more senior
levels. Ensures that targets are met within established timelines and
using allocated resources. Intervenes and recommends appropriate
solutions when new and complex problems arise. In the absence of an
expert, could act as the reference person for her field of expertise.

114 Supervisor Coordinates and assigns tasks to the members of his or her team.
Ensures compliance with guidelines issued by senior levels. Ensures that
assigned objectives are achieved within the specified time frame and
with the allocated resources. Intervenes and recommends appropriate
solutions when new and complex issues arise.

C.2 Data
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Table C.2: Organizational hierarchy and job titles (professionals).

Code Job title Scope of contribution

211 Professional Expert Acts as the reference for the organization within her area of activity and
is responsible for innovative direction. Makes recommendations on the
development and completion of operationally complex and conceptually
important projects that require a detailed and comprehensive analysis
and understanding of the area of activity as well as the organization.
Generally provides functional leadership within her team.

212 Professional III As a senior level professional, proposes solutions for improving or
optimizing processes, programs and procedures. Helps resolve complex
problems requiring a comprehensive and detailed analysis and
understanding of all variables. Collaborates with various internal and
external stakeholders. Contributes to knowledge transfer by providing
functional guidance and coaching to the teams less experienced
employees.

213 Professional II Assumes a first line advisory role with internal and external stakeholders
on projects related to her field of expertise. Suggests ideas and uses her
analytical skills and in-depth knowledge of her field of expertise to help
solve problems. Develops tools, policies and practices linked to her area
of activity.

214 Professional I Provides support to more experienced professionals from her area of
activity. Conducts research and preliminary analyses and develops early
drafts of tools, policies and practices. Actively participates in
implementing tools linked to her field of expertise.

C.3 Proofs

C.3.1 Lemma 5

First, I obtain the expression for Nk (3.30) by substituting qk = q in (3.16). To obtain the

expression for the total payroll ∑k≥0 wkNk, I first substitute the expression for Nk (Equation 3.30)

and wk = w0eπk

∑
k≥0

wkNk = ∑
k≥0

wk
ψ

ψ+q

(
q

q+ψ

)k

eπk = w0
ψ

ψ+q ∑
k≥0

(
q

q+ψ
eπ

)k

.
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Table C.3: Organizational hierarchy and job titles (technical and support).

Code Job title Scope of contribution

311 Technical III Assumes a technical expert role and helps solve technically complex
problems. Influences practices, processes and procedures from a
technical perspective and helps develop them to optimize their quality
and efficiency. Collaborates with various internal and external
stakeholders. Contributes to knowledge transfer by providing functional
guidance and coaching to less experienced employees from her team.

312 Technical II Assumes a collaborator role in completing technical activities and helps
solve technical problems. Helps develop and improve work processes
and procedures. May contribute to knowledge transfer by providing
functional guidance and coaching to less experienced employees from
her team.

313 Technical I Provides general technical support, carrying out activities in accordance
with established policies and procedures. Assists more experienced
technicians from her area of activity.

411 Support II Performs administrative or operational activities linked to the
organizations strategic activities in a high performance context in terms
of quality. Collaborates with internal and external stakeholders. Could
act as a resource person for her team to help solve simple and common
problems or distribute tasks to other support team members.

412 Support I Performs administrative or operational activities in accordance with
specific directives and procedures. Resolves simple and common
problems and completes assigned tasks.

Table C.4: Variance decomposition of log annual earnings.

Fixed effects K R2 Properties of residuals
Variance Pareto exp.

None - - 0.21 3.7
Age and education 19 0.16 0.18 3.8
Occupation 47 0.31 0.15 4.1

Notes: Sample size is N = 1,790,823; “K” is the number of fixed effects; “Pareto exponent” is the
maximum-likelihood estimator of the Pareto exponent using the largest 10% observations.

Then, under that assumption that q
q+ψ

eπ < 1, we have that

∑
k≥0

(
q

q+ψ
eπ

)k

=
1

1− q
q+ψ

eπ
=

q+ψ

q+ψ−qeπ
.

204



Putting the pieces together, I obtain (3.31)

∑
k≥0

wkNk = w0
ψ

ψ+q
q+ψ

q+ψ−qeπ
= w0

ψ

ψ−q(eπ−1)

I now show that the optimal level of effort ak is given by (3.32) for all k ≥ 0. The first

step is to derive an expression for vk. I start by substituting qk = q and wk = w0eπk in (3.26).

(
r+ψ+

σ−1
σ

q
)

vk = w0 +πk+
σ−1

σ
qvk+1

Difference the equation (forward difference), I obtain

(
r+ψ+

σ−1
σ

q
)

vk = π+
σ−1

σ
qvk+1.

Notice that this is a deterministic difference equation with constant increments. By setting

vk+1 = vk = v, I obtain

v =
π

r+ψ
.

I then obtain the desired result by substituting vk = v and qk = q in (3.25)

ak =
qπ

(r+ψ)σβ

I now derive the expression for total output Y . I start by substituting the solution for a in

the definition of output and re-arranging.

Y = ∑
k≥1

(akNk)
1−θ(ak−1Nk−1)

θ = a ∑
k≥1

N1−θ

k Nθ

k−1 = a ∑
k≥1

Nk

(
Nk−1

Nk

)θ

Using (3.30), I obtain and using the fact that ∑k≥0 Nk = 1, I obtain the desired result.

Y = a
(

ψ+q
ψ

)θ

∑
k≥1

Nk = a
(

ψ+q
q

)θ

(1−N0) = a
(

ψ+q
q

)θ q
q+ψ

= a
(

q
ψ+q

)1−θ
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Finally, to obtain the expression for the constraint in terms of w0 (3.34), I first substitute

the expressions for v and a in the Bellman equation

(r+ψ)v0 = logw0 +
σ−1

σ

qπ

r+ψ

The constrain that v0 ≥ V is thus equivalent to

logw0 +
σ−1

σ

qπ

r+ψ

r+ψ
≥ V ⇐⇒ w0 ≥ e(r+ψ)V−σ−1

σ

qπ

r+ψ .
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