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Fractional conformal Laplacians and

fractional Yamabe problems

Maŕıa del Mar González ∗

Univ. Politècnica de Catalunya

Jie Qing †

Univ. of California, Santa Cruz

Abstract

Based on the relations between scattering operators of asymptotically hyperbolic metrics
and Dirichlet-to-Neumann operators of uniformly degenerate elliptic boundary value problems
observed by Chang and González, we formulate fractional Yamabe problems that include the
boundary Yamabe problem studied by Escobar. We observe an interesting Hopf type maximum
principle together with interplays between analysis of weighted trace Sobolev inequalities and
conformal structure of the underlying manifolds, which extend the phenomena displayed in
the classic Yamabe problem and boundary Yamabe problem.

1 Introduction

In this paper, based on the relations between scattering operators of asymptotically hyperbolic
metrics and Dirichlet-to-Neumann operators of uniformly degenerate elliptic boundary value
problems observed in [11], we formulated and solved fractional order Yamabe problems that
include the boundary Yamabe problem studied by Escobar in [16].

Suppose that Xn+1 is a smooth manifold with smooth boundaryMn for n ≥ 3. A function
ρ is a defining function of the boundary Mn in Xn+1 if

ρ > 0 in Xn+1, ρ = 0 on Mn, dρ 6= 0 on Mn.

We say that g+ is conformally compact if, for some defining function ρ, the metric ḡ =
ρ2g+ extends to X̄n+1 so that (X̄n+1, ḡ) is a compact Riemannian manifold. This induces a

conformal class of metrics ĥ = ḡ|TMn on Mn when defining functions vary. The conformal

manifold (Mn, [ĥ]) is called the conformal infinity of (Xn+1, g+). A metric g+ is said to be
asymptotically hyperbolic if it is conformally compact and the sectional curvature approaches
−1 at infinity.

In the recent work [27], Graham and Zworski introduced the meromorphic family of scatter-
ing operators S(s), which is a family of pseudo-differential operators, for a given asymptotically

hyperbolic manifold (Xn+1, g+) and a choice of the representative ĥ of the conformal infinity

(Mn, [ĥ]). Often one instead considers the normalized scattering operators

Pγ [g
+, ĥ] = 22γ

Γ(γ)

Γ(−γ)S
(n
2
+ γ
)
.

The normalized scattering operators Pγ [g
+, ĥ] are conformally covariant,

Pγ [g
+, w

4
n−2γ ĥ]φ = w− n+2γ

n−2γ Pγ [g
+, ĥ](wφ),
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with principal symbol
σ(Pγ [g

+, ĥ]) = σ((−∆ĥ)
γ).

Hence they may be considered to be conformal fractional Laplacians for γ ∈ (0, 1) for a given
asymptotically hyperbolic metric g+. As proven in [27], [19], when g+ is Poincaré-Einstein,
P1 is the conformal Laplacian, P2 is the Paneitz operator, and in general Pk for k ∈ N are the
conformal powers of the Laplacian discovered in [26].

When g+ is a fixed asymptotically hyperbolic metric we may simply denote

P ĥγ := Pγ [g
+, ĥ].

We will consider the associated “fractional order curvature”

Qĥγ = P ĥγ (1),

and the normalized total curvature

Iγ [ĥ] =

∫
Mn Q

ĥ
γdvĥ

(∫
Mn dvĥ

)n−2γ
n

.

When a background metric ĥ is fixed, we may write

Iγ [w, ĥ] = Iγ [w
4

n−2γ ĥ] =

∫
Mn wP

ĥ
γ wdvĥ

(∫
Mn w

2n
n−2γ dvĥ

)n−2γ
n

.

This functional Iγ [ĥ] is clearly an analogue to the Yamabe functional. Hence one may ask

if there is a metric which is the minimizer of Iγ among metrics in the class [ĥ] and whose
curvature Qγ is a constant. We will refer to that problem as a fractional Yamabe problem
when γ ∈ (0, 1). For the original Yamabe problem readers are refereed to [30], [40]. A similar
question was studied in [39] for γ > 1 and g+ being a Poincaré-Einstein metric. Because of
the lack of a maximum principle these generalized Yamabe problems in general are difficult to
solve. Yet this new window to the analytic aspects of conformal geometry remains fascinating.
For example, it was proven in [28] that the location of the first scattering pole is dictated

by the sign of the Yamabe constant and the Green’s function of P ĥγ is positive for γ ∈ (0, 1)
when the Yamabe constant is positive, at least in the case where g+ is conformally compact
Einstein.

It turns out that one may use the relations of scattering operators and the Dirichlet-
to-Neumann operators to reformulate the above fractional Yamabe problems as degenerate
elliptic boundary value problems. The correspondence between pseudo-differential equations
and degenerate elliptic boundary value problems is inspired by the works in [10]. Interestingly,
the corresponding degenerate elliptic boundary value problem is a natural extension of the
boundary Yamabe problem raised and studied in [16].

Recall from [11] that, given an asymptotically hyperbolic manifold (Xn+1, g+) and a

representative ĥ of the conformal infinity (Mn, [ĥ]), one can find a geodesic defining function
ρ such that the compactified metric can be written as

ḡ := ρ2g+ = dρ2 + hρ = dρ2 + ĥ+ h(1)ρ+ h(2)ρ2 + o(ρ2)

near infinity. One may consider the degenerate elliptic boundary value problem of ḡ as follows:
{
−div (ρa∇U) + E(ρ)U = 0 in (Xn+1, ḡ),

U |ρ=0 = f on Mn,
(1.1)

where
E(ρ) = ρ−1−s

(
−∆g+ − s(n− s)

)
ρn−s,

s = n
2 + γ, and a = 1− 2γ.



Lemma 1.1 (Chang and Gonzalez [11]). Let (Xn+1, g+) be an asymptotically hyperbolic
manifold. Suppose that U is the solution to the boundary value problem (1.1). Then

1. For γ ∈ (0, 12 ) and −n2

4 + γ2 not an L2-eigenvalue for the Laplacian of g+,

Pγ [g
+, ĥ]f = −d∗γ lim

ρ→0
ρa∂ρU, (1.2)

where

d∗γ = −22γ−1Γ(γ)

γΓ(−γ) . (1.3)

2. For γ = 1
2 ,

P 1
2
[g+, ĥ]f = − lim

ρ→0
∂ρU + n−1

2 Hf,

where H := 1
2nTrĥ(h

(1)) is the mean curvature of M .

3. For γ ∈
(
1
2 , 1
)
, (1.2) still holds if H = 0.

In light of Lemma 1.1, consider, for γ ∈ (0, 1),

I∗γ [U, ḡ] =
d∗γ
∫
Xn+1(ρ

a|∇U |2 + E(ρ)U2)dvḡ∫
Mn U

2n
n−2γ dvĥ

.

It is then a very natural variational problem for I∗γ . For instance, right away one sees that a
minimizer of I∗γ is automatically nonnegative, which was a huge issue for the functional Iγ .

One key ingredient in our work here is the following Hopf type maximum principle. We drew
inspiration from some version of Hopf’s lemma for the Euclidean half space case (Proposition
4.11 in [9]).

Proposition 1.2. Let γ ∈ (0, 1). Suppose that U is a nonnegative solution to (1.1) in Xn+1.
Let p0 ∈Mn = ∂Xn+1 and Br be a geodesic ball of radius r centered at p0 in Mn. Then, for
sufficiently small r0, if U(q0) = 0 for q0 ∈ Br0 \B 1

2
r0 and U > 0 on ∂B 1

2
r0 , then

ya∂yU |q0 > 0. (1.4)

It seems weaker than the original one, but it suffices for our purposes. A nice and immediate
consequence of the above maximum principle is that the first eigenfunction of the fractional

conformal Laplacian P ĥγ is always positive, which has been a rather challenging question in

general for the pseudo-differential operators P ĥγ (cf. [28]). Hence one can produce a metric

in the class [ĥ] that has positive, negative, or zero Qγ curvature when the first eigenvalue is
positive, negative, or zero respectively.

Our approach to solve the γ-Yamabe problem is very similar to the one taken in [16], where
one of the crucial steps is the understanding of a trace inequality. In our case, the relevant
sharp weighted trace Sobolev inequality appeared in the works [31], [13], [37]:

Proposition 1.3. Let γ ∈ (0, 1) and a = 1− 2γ. Suppose that U ∈W 1,2(Rn+1
+ , ya) with trace

TU = w. Then, for some constant S̄(n, γ),

‖w‖2L2∗ (Rn) ≤ S̄(n, γ)

∫

R
n+1

+

ya|∇U |2 dxdy, (1.5)

where 2∗ = 2n
n−2γ . Moreover the equality holds if and only if

w(x) = c

(
µ

|x− x0|2 + µ2

)n−2γ
2

, x ∈ R
n,

for c ∈ R, µ > 0 and x0 ∈ R
n fixed, and U is its Poisson extension of w as given in (2.13).



As in the case of original Yamabe problem, one can define the γ-Yamabe constant

Λγ(M
n, [ĥ]) = inf

h∈[ĥ]
Iγ [h].

It is then easily seen that

Λγ(S
n, [gc]) =

d∗γ
S̄(n, γ)

where [gc] is the canonical conformal class of metrics on the sphere Sn. Analogous to the cases
of the original Yamabe problem we obtain

Theorem 1.4. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. Suppose,
in addition, that H = 0 when γ ∈ (12 , 1). Then, if

−∞ < Λγ(M, [ĥ]) < Λγ(S
n, [gc]), (1.6)

then the γ-Yamabe problem is solvable for γ ∈ (0, 1).

Remark. It is easily seen that Λγ(M, [ĥ]) > −∞ in the light of (1.4) in Theorem 1.1 and
Theorem 1.2 in [29] when γ ∈ (0, 12 ] or if some additional assumptions in Theorem 1.2 in [29]
hold.

Based on computations similar to ones in [16], we have

Theorem 1.5. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that

ρ−2
(
R[g+]−Ric[g+](ρ∂ρ) + n2

)
→ 0 as ρ→ 0. (1.7)

If Xn+1 has a non-umbilic point on ∂Xn+1 and

− n+ a− 3

1− a
22γ+1 Γ(γ)

Γ(−γ) +
n− 1 + a

a+ 1
< 0, (1.8)

then
Λγ(M, [ĥ]) < Λγ(S

n, [gc])

and hence the γ-Yamabe problem is solvable for γ ∈ (0, 1).

We remark now that the 1
2 -Yamabe problem introduced in here reduces back to the bound-

ary Yamabe problem consider in [16] in this way. Notice that, in this case, we have

I∗1
2

[U, φ
4

n−1 ḡ] = I∗1
2

[Uφ, ḡ] (1.9)

for any positive function φ on X̄n+1 and therefore (1.7) is no longer needed. Also notice that
the condition (1.8) becomes n > 5 when γ = 1

2 , which agrees with the conclusion in [16].

Suppose we start with a compact Riemannian manifold (Xn+1, ḡ) and its boundary

(Mn, ĥ). Then one can construct an asymptotically hyperbolic manifold (Xn+1, g+) which
is conformal to (Xn+1, ḡ). For example, as observed in [11], one may require according to the
works in [33], [2] that

R[g+] = −n(n+ 1). (1.10)

Then the induced degenerate equation becomes

− div (ρa∇U) + n−1+a
4n R[ḡ]ρaU = 0 in (Xn+1, ḡ) (1.11)

whose associated variational functional becomes

F [U ] =

∫

X

ρa|∇U |2ḡ dvḡ + n−1+a
4n

∫

X

R[ḡ]ρa|U |2 dvḡ. (1.12)



In section 2 we recall the work from [11] to make possible the passage from pseudo-
differential equations to second order elliptic boundary value problems as in [10]. In Section
3 we study regularity (L∞ and Schauder estimates) for degenerate elliptic boundary value
problems. And more importantly we establish the Hopf type maximum principle. In Section 4
we formulate the fractional Yamabe problem and obtain some properties for the fractional case
that are analogous to the original Yamabe problem with the help of the Hopf-type maximum
principle. In Section 5 we analyze sharp weighted Sobolev trace inequalities. We define, on
any conformal manifold, the fractional Yamabe constant associated with an asymptotically
hyperbolic metric and show that the one of the standard round spheres associated to the stan-
dard hyperbolic metric is the largest. In Section 6 we take a subcritical approximation and
prove our Theorem 1.4. In the last section we adopt the calculation from [16] and prove our
Theorem 1.5 by choosing a suitable test function.

We finally mention the two related works [4, 41] on nonlinearities with critical exponents
for the fractional Laplacian.

2 Conformal fractional Laplacians

In this section we introduce the recent works in [11] to relate two equivalent definitions of
conformal fractional Laplacians. Conformal fractional Laplacians are defined via scattering
theory on asymptotically hyperbolic manifolds in [27], [19]. We also have seen fractional
Laplacians defined as Dirichlet-to-Neumann operators for degenerate equations on compact
manifolds with boundary in [10]. It turns out in some way these two fractional Laplacians are
the same.

Let Xn+1 be a smooth manifold of dimension n+1 with compact boundary ∂X =Mn. A
function ρ is a defining function of ∂X in X if

ρ > 0 in X, ρ = 0 on ∂X, dρ 6= 0 on ∂X.

We say that g+ is conformally compact if the metric ḡ = ρ2g+ extends to X̄n+1 for a defining
function ρ so that (X̄n+1, ḡ) is a compact Riemannian manifold. This induces a conformal

class of metrics ĥ = ḡ|TMn on Mn when the defining function varies, which is called the
conformal infinity of (Xn+1, g+). A metric g+ is said to be asymptotically hyperbolic if it is
conformally compact and the sectional curvature approaches to −1 at infinity.

Given an asymptotically hyperbolic manifold (Xn+1, g+) and a representative ĥ of the

conformal infinity (Mn, [ĥ]), there is a uniquely geodesic defining function ρ such that, on a
neighborhood M × (0, δ) in X , g+ has the normal form

g+ = ρ−2(dρ2 + hρ) (2.1)

where hρ is a one parameter family of metrics on M such that

hρ = ĥ+ h(1)ρ+O(ρ2). (2.2)

From [34], [27] it follows that, given f ∈ C∞(M), Re(s) > n
2 and s(n − s) is not a L2-

eigenvalue for −∆g+ , the generalized eigenvalue problem

−∆g+u− s(n− s)u = 0, in X (2.3)

has a solution of the form

u = Fρn−s +Gρs, F,G ∈ C∞(X̄), F |ρ=0 = f. (2.4)

The scattering operator on M is then defined as

S(s)f = G|M .



It is shown in [27] that, by a meromorphic continuation, S(s) is a meromorphic family of
pseudo-differential operators in the whole complex plane. Instead, it is often useful to consider
the normalized scattering operators Pγ [g

+, ĥ] defined as:

Pγ [g
+, ĥ] := dγS

(n
2
+ γ
)
, dγ = 22γ

Γ(γ)

Γ(−γ) . (2.5)

Note that s = n
2 + γ. With this regularization the principal symbol of Pγ [g

∗, ĥ] is exactly the
principal symbol of the fractional Laplacian (−∆ĥ)

γ . Hence we will call (assuming implicitly
the dependence on the extension metric g+)

P ĥγ := Pγ [g
+, ĥ]

a conformal fractional Laplacian for each γ ∈ (0, 1) which is not a pole of the scattering

operator, i.e. n2

4 − γ2 is not a L2-eigenvalue for −∆g+ . It is a conformally covariant operator,
in the sense that it behaves like

P ĥw
γ ϕ = w− n+2γ

n−2γ P ĥγ (wϕ) (2.6)

for a conformal change of metric ĥw = w
4

n−2γ ĥ. We will call

Qĥγ = P ĥγ (1)

the fractional scalar curvature associated to the conformal fractional Laplacian P ĥγ . From the
above (2.6) we have

P ĥγ (w) = Qĥw
γ w

n+2γ
n−2γ . (2.7)

The familiar case is γ = 1, where

P ĥ1 = −∆ĥ +
n− 2

4(n− 1)
R[ĥ]

becomes the conformal Laplacian and the associated curvature is the scalar curvature Qĥ1 =
n−2

4(n−1)R[ĥ] of the metric ĥ which undergoes the change

P ĥ1 w =
n− 2

4(n− 1)
R[ĥw]w

n+2

n−2

when taking conformal change of metrics, provided that (Xn+1, g+) is a Poincaré-Einstein as
established in [27], [19]. The conformal fractional Laplacians and fractional scalar curvatures
should also be compared to the higher order generalization of the conformal Laplacian and

scalar curvature: the Paneitz operator P ĥ2 and its associated Q-curvature (see [38], [6], [39]).

It was observed by Chang and González in [11] that the generalized eigenvalue problem (2.3)
on a non-compact manifold (Xn+1, g+) is equivalent to a linear degenerate elliptic problem
on the compact manifold (X̄n+1, ḡ), for ḡ = ρ2g+. Hence Chang and González reconciled the
definition of the fractional Laplacians given in the above as normalized scattering operators and
the one given in the spirit of the Dirichlet-to-Neumann operators by Caffarelli and Silvestre in
[10]. This observation in [11] plays a fundamental role in this paper and provides an alternative
way to study the fractional partial differential equation (2.7). First, we know by the conformal
covariance that

P g
+

1 u = ρ
n+3

2 P ḡ1 (ρ
−n−1

2 u).

Let a = 1 − 2γ ∈ (−1, 1), s = n
2 + γ, and U = ρs−nu. Then we may write the equation (2.3)

as
−div(ρa∇ḡU) + E(ρ)U = 0, in (Xn+1, ḡ),



where
E(ρ) := ρ

a
2P ḡ1 ρ

a
2 −

(
s(n− s) + n−1

4n R[g
+]
)
ρa−2, (2.8)

or writing everything back in the metric g+,

E(ρ) = ρ−1−s
(
−∆g+ − s(n− s)

)
ρn−s. (2.9)

Notice that, in a neighborhood M × (0, δ) where the metric g+ is in the normal form,

E(ρ) = n−1+a
4n

[
R[ḡ]− (n(n+ 1) +R[g+])ρ−2

]
ρa in M × (0, δ). (2.10)

Proposition 2.1 (Chang and González [11]). Let (Xn+1, g+) be an asymptotically hyperbolic
manifold. Then, given f ∈ C∞(M), the generalized eigenvalue problem (2.3)-(2.4) is equivalent
to {

−div (ρa∇U) + E(ρ)U = 0 in (X, ḡ),

U |ρ=0 = f on M,
(2.11)

where U = ρn−su and U is the unique minimizer of the energy

F [V ] =

∫

X

ρa|∇V |2ḡ dvḡ +
∫

X

E(ρ)|V |2 dvḡ

among all the functions V ∈W 1,2(X, ρa) with fixed trace V |ρ=0 = f . Moreover,

1. For γ ∈ (0, 12 ),

P ĥγ f = −d∗γ lim
ρ→0

ρa∂ρU, (2.12)

where the constant d∗γ is given in (1.3).

2. For γ = 1
2 , we have an extra term

P ĥ1
2

f = − lim
ρ→0

∂ρU + n−1
2 Hf,

where H := 1
2nTrĥ(h

(1)) is the mean curvature of M .

3. For γ ∈
(
1
2 , 1
)
, (2.12) still holds if and only if H = 0.

Remark. It should be noted here that there are many asymptotically hyperbolic manifolds
(Xn+1, g+) whose conformal infinity is prescribed as (Mn, [ĥ]). If one insists (Xn+1, g+) to

be Poincaré-Einstein, then the normalized scattering operators P ĥγ are a bit more intrinsic, at
least at positive integers as observed in [27], [19]. It should also be noted that one can simply

start with a compact Riemannian manifold (X̄n+1, ḡ) with boundary (Mn, ĥ) and easily

build an asymptotically hyperbolic manifold whose conformal infinity is given by (Mn, [ĥ]).
Please see the details of this observation in [11].

The simplest example of a conformally compact Einstein manifold is the hyperbolic space
(Hn+1, gH). It can be characterized as the upper half-space (with coordinates x ∈ R

n, y ∈ R+),
endowed with the metric:

g+ =
dy2 + |dx|2

y2
.

Then (2.11) with Dirichlet condition w reduces to

{
−div (ya∇U) = 0 in R

n+1
+ ,

U |y=0 = w on R
n,

and the fractional Laplacian at the boundary R
n is just

P |dx|2

γ w = (−∆|dx|2)
γw = −d∗γ lim

y→0
(ya∂yU) .



This is precisely the Caffarelli-Silvestre extension [10]. Note that this extension U can be
written in terms of the Poisson kernel Kγ as follows:

U(x, y) = Kγ ∗x w = Cn,γ

∫

Rn

y1−a

(|x− ξ|2 + |y|2)n+1−a
2

w(ξ) dξ, (2.13)

for some constant Cn,γ . Moreover, given w ∈ Hγ(Rn), U is the minimizer of the functional:

F [V ] =

∫

R
n+1

+

ya|∇V |2 dxdy

among all the possible extensions in the set

{
V : Rn+1

+ → R :

∫

R
n+1

+

ya|∇V |2 dxdy <∞, V (·, 0) = w

}
.

Based on (2.9) it is observed in [11] that one may use

ρ∗ = v
1

n−s

as a defining function, where v solves

−∆g+v − s(n− s)v = 0

and ρs−nv = 1 on M , to eliminate E(ρ∗) from equation (2.11). It suffices to show that v is
strictly positive in the interior. But this is true because, away from the boundary, it is the
solution of an uniformly elliptic equation in divergence form, thus it cannot have a non-positive
minimum. Hence we arrive at an improvement of Proposition 2.1 as follows:

Proposition 2.2. The function ρ∗ is a defining function of M in X such that E(ρ∗) ≡ 0.
Hence U = (ρ∗)s−nu solves

{
−div ((ρ∗)a∇U) = 0 in (X, ḡ∗),

U = w on M,
(2.14)

with respect to the metric ḡ∗ = (ρ∗)2g+ and U is the unique minimizer of the energy

F [V ] =

∫

X

(ρ∗)a|∇V |2ḡ∗ dvḡ∗ (2.15)

among all the extensions V ∈W 1,2(X, (ρ∗)a) satisfying V |M = w. Moreover,

ρ∗(ρ) = ρ

[
1 +

Qĥγ
(n− s)dγ

ρ2γ +O(ρ2)

]

near the infinity and

P ĥγ w = −d∗γ lim
ρ∗→0

(ρ∗)a∂ρ∗U + wQĥγ , (2.16)

provided that H = 0 when γ ∈ (12 , 1).

We will sometimes use the defining function ρ∗, denoted by y unless explicitly stated oth-
erwise, because it allows us to work with a pure divergence equation with no lower order terms.

We end this section by discussing the assumption that H = 0 for an asymptotically hyper-
bolic metric g+. It turns out that this indeed is an intrinsic condition.



Lemma 2.3. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that ρ

and ρ̃ are the geodesic defining functions of M in X associated with representatives ĥ and h̃
of the conformal infinity (Mn, [ĥ]) respectively. Hence

g+ = ρ−2(dρ2 + hρ) = ρ̃−2(dρ̃2 + h̃ρ̃)

where
hρ = ĥ+ ρh(1) +O(ρ2)

and
h̃ρ̃ = h̃+ ρ̃h̃(1) +O(ρ̃2)

near the infinity. Then
h̃(1) = h(1) on M.

In particular

H =
ρ̃

ρ

∣∣∣∣
ρ=0

H̃ on M.

Proof. This simply follows from the equations that define the geodesic defining functions. Let

ρ̃ = ewρ

near the infinity. Then

1 = |d(ewρ)|2e2wρ2g+ = |dρ|2ρ2g+ + 2ρ〈dw, dρ〉ρ2g+ + ρ2|dw|2ρ2g+ ,

which implies

2
∂w

∂ρ
+ ρ

[(
∂w

∂ρ

)2

+ |∇w|2hρ

]
= 0.

Hence it is rather obvious that ∂w
∂ρ = 0 at ρ = 0. Therefore the proof is complete in the light

of the fact that
g̃ = ρ̃2g+ = e2wρ2g+ = e2w ḡ.

3 Uniformly degenerate elliptic equations

Considering the fractional powers of the Laplacian as Dirichlet-to-Neumann operators in
Proposition 2.2 allows to relate the properties of non-local operators to those of uniformly
degenerate elliptic equations in one more dimension. The same strategy has been used, for
instance, in the recent work of Cabré-Sire [9].

Fix γ ∈ (0, 1). Let y = ρ∗ be the special defining function given in Proposition 2.2 and set
ḡ∗ = y2g+. We are concerned with the uniformly degenerate elliptic equation

{
−div (ya∇U) = 0 in (X, ḡ∗),

U = w on M.
(3.1)

For our purpose we will concentrate on the local behaviors of the solutions to (3.1) near the
boundary. First, we write our equation in local coordinates near a fixed boundary point (p0, 0).
More precisely, for some R > 0, we set

B+
R = {(x, y) ∈ R

n+1 : y > 0, |(x, y)| < R},
Γ0
R = {(x, 0) ∈ ∂Rn+1

+ : |x| < R},
Γ+
R = {(x, y) ∈ R

n+1 : y ≥ 0, |(x, y)| = R}.



In local coordinates on Γ0
R the metric ĥ is of the form |dx|2 (1 + O(|x|2)), where x(p0) = 0.

Consider the matrix
A(x, y) =

√
|det ḡ∗|ya(ḡ∗)−1.

Then the equation (3.1) is equivalent to

n+1∑

i,j=1

∂i (Aij∂jU) = 0. (3.2)

Moreover we know that
1

c
yaI ≤ A ≤ cyaI. (3.3)

This shows that (3.2) is a uniformly degenerate elliptic equation. For instance, the weight
ψ(y) = ya is an A2 weight in the sense of [36]. Equation (3.2) has been well understood in a
series of papers by Fabes, Jerison, Kenig, Serapioni ([18], [17]). Let us state a regularity result
that is relevant to us. We will concentrate on problems of the form

{
Div(A(DU)) = 0 in B+

R ,

−ya∂yU = F, on Γ0
R,

(3.4)

where, for the rest of the section, A satisfies the ellipticity condition (3.3) for a ∈ (−1, 1), the
derivatives are Euclidean, that is, D := (∂x1

, . . . , ∂xn , y), and

Div(A(DU)) :=
n+1∑

i,j=1

∂i (Aij∂jU) .

Definition 3.1. Given R > 0 and a function F ∈ L1(Γ0
R), we call U a weak solution of (3.4)

if U satisfies
(DU)tA(DU) ∈ L1(B+

R )

and ∫

B+

R

(Dφ)tA(DU) dxdy −
∫

Γ0
R

Fφdx = 0

for all φ ∈ C1(B+
R ) such that φ ≡ 0 on Γ+

R and (Dξ)tA(Dφ) ∈ L1(B+
R ).

Hölder regularity for weak solutions was shown in [18], Lemma 2.3.12, for any A satisfying
(3.3). Using this main result, regularity of weak solutions up to the boundary was carefully
shown in [9], Lemma 4.3, at least when A = yaI. However, their proof only depends on the
divergence structure of the equation and the behavior of the weight. Hence we have

Proposition 3.2. Let γ ∈ (0, 1), γ = 1−a
2 and β ∈ (0,min{1, 1 − a}). Let R > 0 and

U ∈ L∞(B2R+) ∩W 1,2(B+
2R, y

a) be a weak solution of

{
Div(A(DU)) = 0 in B+

2R,

−ya∂yU = F (U) on Γ0
2R,

(3.5)

for A satisfying (3.3). If F ∈ C1,β, then U ∈ C0,β̃(B+
R ) and ∂xiU ∈ C0,β̃(B+

R ), i = 1, . . . , n, for

some β̃ ∈ (0, 1).

Particularly, when F (x, t) = α(x)t + β(x)t
n+2γ
n−2γ , to get smoothness it is necessary to know

the local boundedness of weak solutions U on B+
R . To get this local boundedness for weak

solutions we employ the usual Moser’s iteration scheme adapted to boundary valued problems
(see Theorem 3.4 below). However, a new idea is required: we will perform two coupled
iterations, one in the interior and one at the boundary, that need to be handled simultaneously.
Note that in the linear case when F ≡ 0, local boundedness was shown in [18, Corollary 2.3.4],
using the weighted Sobolev embeddings in the interior described in Proposition 3.3. However,



when a non-linearity F (U) is present at the boundary term, instead we need to use weighted
trace Sobolev embeddings.

First, we recall a weighted Sobolev embedding theorem in the interior (c.f. [18, Theorem
1.3], see also [12]):

Proposition 3.3. Let Ω be an open bounded set in R
n+1. Take 1 < p < ∞. There exist

positive constants CΩ and δ such that for all u ∈ C∞
0 (Ω) and all k satisfying 1 ≤ k ≤ n+1

n + δ,

‖u‖Lkp(Ω,ya) ≤ CΩ ‖∇u‖Lp(Ω,ya) .

CΩ maybe taken to depend only on n, p, a and the diameter of Ω.

Now we can state the theorem. Note that we actually prove it in the flat case but it is
straightforward to generalize it to the manifold setting:

Theorem 3.4. Let U be a weak solution of the problem
{
div(ya∇U) = 0 in B+

2R,

−ya∂yU = F (U) on Γ0
2R,

(3.6)

where F (z) satisfies

F (z) = O
(
|z|β−1

)
, when |z| → ∞, for some 2 < β < 2∗.

Assume, in addition, that
∫
Γ0
2r0

|U |2∗ dx =: V < ∞. Then for each p̄ > 1, there exists a

constant Cp̄ = C(p̄, V ) > 0 such that

sup
B+

R

|U |+ sup
Γ0
R

|U | ≤ Cp̄

[(
1

Rn+1+a

)1/p̄

‖U‖Lp̄(B2R,ya)
+

(
1

Rn

)1/p̄

‖U‖Lp̄(Γ0
2R)

]
.

Proof. Let p ∈ ∂X . Note that we can work with normal coordinates x1, . . . , xn ∈ R
n, y > 0

near p. Without loss of generality, assume that R = 1. Then the general case is obtained
by rescaling. Let η = η(r), r = (|x|2 + y2)1/2, be a smooth cutoff function such that η = 1
if r < 1, η = 0 if r ≥ 2, 0 ≤ η ≤ 1 if r ∈ (1, 2). Next, by working with U+ := max{U, 0},
U− := max{−U, 0} separately, we can assume that U is positive.

A good reference for Moser iteration arguments in divergence structure equations is [22,
chapter 8]. We generalize this method, considering a double iteration: one at the boundary,
using Sobolev trace inequalities to handle the non-linear term F (U), the other in the interior
domain.

The first step is to use that U is a weak solution of (3.6) by finding a good test function.
Formally we can write the following: multiply equation (3.6) by η2Uα and integrate by parts:

0 = 2

∫

B+

2

yaηUα∇η∇U dxdy + α

∫

B+

2

yaη2Uα−1|∇U |2 dxdy +
∫

Γ0
2

η2UαF (U) dx. (3.7)

This implies, using Hölder estimates to handle the crossed term,
∫

B+

2

yaη2Uα−1|∇U |2 dxdy ≤ 2

α

∫

Γ0
2

η2UαF (U) dx+
4

α2

∫

B+

2

ya|∇η|2Uα+1 dxdy. (3.8)

On the other hand, again using Hölder inequality, we have
∫

B+

2

ya|∇(ηU δ)|2 dxdy ≤ 2δ2
∫

B+

2

yaη2U2(δ−1)|∇U |2 dxdy + 2

∫

B+

2

yaU2δ |∇η|2 dxdy.

If we insert formula (3.8) into the inequality above, for the choice α = 2δ − 1, we obtain

J :=

∫

B+

2

ya|∇(ηU δ)|2 dxdy

≤ 2
(
1 +

(
α+1
α

)2)∫

B+

2

ya|∇η|2U2δ dxdy +
(α+ 1)2

α

∫

Γ0
2

η2UαF (U) dx

=: I1 + I2.

(3.9)



For the left hand side above, recall the trace Sobolev embedding (Corollary 5.3):

J =

∫

B+

2

ya|∇(ηU δ)|2 dxdy &

(∫

Γ0
2

(ηU δ)2
∗

dx

) 2

2∗

, (3.10)

and the standard weighted Sobolev embedding from Proposition 3.3.

J =

∫

B+

2

ya|∇(ηU δ)|2 dxdy &

(∫

B+

2

ya(ηU δ)k

) 2
k

(3.11)

for some 1 < k < 2n+1
n .

Next, we estimate from above the terms I1, I2 in (3.9). I1 can be easily handled since
|∇η| ≤ C:

I1 =

∫

B+

2

ya|∇η|2U2δ dxdy .

∫

B+

2

yaU2δ dxdy. (3.12)

Now we consider the second term. To estimate I2, if we write U
2δ−2+β = Uβ−2U2δ, then using

Hölder inequality with p = 2∗

β−2 ,
1
p + 1

q = 1, we obtain

∫

Γ0
2

η2U2δ−1F (U) dx ≤
[∫

Γ0
2

U2∗ dx

] 1
p
[∫

Γ0
2

η2qU2δq dx

] 1
q

≤ V
1
p

[∫

Γ0
2

η2qU2δq dx

] 1
q

. (3.13)

This last integral can be handled as follows. Call χ = 2∗

2 , for simplicity. Because our hypothesis
on β, we know that q ∈ (1, χ). Then, there exists λ ∈ (0, 1) such that q = λ + (1 − λ)χ, and
an interpolation inequality gives:

[∫
f q
] 1

q

≤
[∫

f

]λ
q
[∫

fχ
] 1−λ

q

=

[∫
fχ
] 1

χ

([∫
f

] [∫
fχ
]− 1

χ

)λ
q

. (3.14)

Since λ
q < 1, Young’s inequality reads

z
λ
q ≤ Cǫz + ǫ,

for ǫ small. If we substitute z =
[∫
f
] [∫

fχ
]− 1

χ above, together with (3.14), we arrive at

[∫
f q
] 1

q

≤ ǫ

[∫
fχ
] 1

χ

+ Cǫ

∫
f.

Then from (3.13) it follows that

I2 ≤ V
1
p



ǫ
(∫

Γ0
2

(ηU δ)2
∗

dx

) 2

2∗

+ Cǫ

∫

Γ0
2

η2U2δ dx



 , (3.15)

where ǫ will be chosen later and will depend on the value of α, δ.
We go back now to the main iteration formula (3.9). It is clear from (3.10), that the first

integral of the right hand side of the formula for I2 (3.15) can be absorbed into the left hand
side of (3.9), and using (3.11) and (3.10) we get that

(∫

Γ0
1

U δ2
∗

dx

) 2

2∗

+

(∫

B+

1

U2kδ dxdy

) 1
k

≤ C(δ)

[∫

Γ0
2

U2δ dx+

∫

B+

2

U2δ dxdy

]
,

for some suitable choice of ǫ. Or switching notation from 2δ to δ,

(∫

Γ0
1

U δχ dx

) 1
χ

+

(∫

B0
1

Ukδ dxdy

) 1
k

≤ C(δ)

[∫

Γ0
2

U δ dx+

∫

B0
2

U δ dxdy

]
. (3.16)



Next, because we will always have δ > 1, we can use that

C1(a
1
δ + b

1
δ ) ≤ (a+ b)

1
δ ≤ C2(a

1
δ + b

1
δ ),

so from (3.16) we get that

‖U‖Lχδ(Γ0
1
) + ‖U‖Lkδ(B+

1
,ya) ≤ ‖U‖Lδ(Γ0

2
) + ‖U‖Lδ(B+

2
,ya) .

For simplicity, we set
θ := min{χ, k} > 1,

and

Φ(δ, R) :=

(
1

Rn

) 1
δ

‖U‖Lδ(Γ0
1
) +

(
1

Rn+1+a

) 1
δ

‖U‖Lδ(B+

1
,ya) .

Then, after explicitly writing all the constants involved, formula (3.16) simply reduces to

Φ(θδ, 1) ≤ [C(1 + δ)σ]
2
δ Φ(δ, 2),

for some positive number σ. It is clear that the same proof works if we replace B1, B2 by BR1
,

BR2
. The only difference is in (3.12), where we need to estimate |∇η| ≤ C(R2 −R1)

−1. Thus
we would obtain

Φ(θδ,R1) ≤
[
C(1 + δ)σ

R2 −R1

] 2
δ

Φ(δ, R2). (3.17)

Now we iterate equation (3.17): set Rm = 1 + 1
2m and θm = θmp̄. Then

Φ(θm, 1) ≤ Φ(θm, Rm) ≤ (c1θ)
c2

∑m−1

i=0
i

θi Φ(p̄, 2) ≤ CΦ(p̄, 2), (3.18)

for some constant C because the series
∑∞

i=0
i
θi is convergent.

Finally, note that

sup
Γ0
1

U = lim
δ→∞

‖U‖Lδ(Γ0
1
) , sup

B+

1

U = lim
δ→∞

‖U‖Lδ(B+

1
,ya) ,

so that (3.18) is telling us that

sup
B+

1

U + sup
Γ0
1

U ≤ C
[
‖U‖Lp̄(B2,ya)

+ ‖U‖Lp̄(Γ0
2
)

]
.

Rescaling to a ball of radius R concludes the proof of the theorem.

The next main ingredient is the proof of the positivity of a solution to (3.5). We observed
that a Hopf lemma, some version of which was known for the Euclidean half space case
(Proposition 4.10 in [9]), can be obtained for the uniformly degenerate elliptic equation (3.1).
This nice Hopf’s lemma turns out to be one of the keys for us in this paper. It is interesting
to observe a different behavior between the cases γ ∈ (0, 1/2) and γ ∈ [1/2, 1) in our proof -
this dichotomy does not seem to appear in the flat case in [9].

We continue to use the setting as in Proposition 2.2. Let p0 ∈ ∂X and (x, y) be the local
coordinate at p0 for X̄ with x(p0) = 0, where x is the normal coordinate at p0 with respect to

the metric ĥ on the boundary Mn.

Theorem 3.5. Suppose that U is a nonnegative solution to (3.1) in Xn+1. Then, for suffi-

ciently small r0, if U(q0) = 0 for q0 ∈ Γ0
r0 \ Γ0

1
2
r0

and U > 0 on ∂Γ0
1
2
r0

on the boundary Mn,

then
ya∂yU |q0 > 0. (3.19)



Proof. First we assume that γ ∈ [1/2, 1), i.e., a ∈ (−1, 0]. We consider a positive function

W = y−a(y +Ay2)(e−B|x| − e−Br0). (3.20)

To calculate div(ya∇W ) in the metric ḡ∗ we first calculate from Proposition 2.2 that

ḡ∗ = (1 + α1y) dy
2 + (1 + α2y) ĥ+ o(y)

for some constants α1, α2 and

det ḡ∗ = det ĥ (1 + α3y) + o(y),

for some constant α3. Then

div(ya∇W ) = I1 + I2 + I3 + I4,

where

I1 =
1√

det ḡ∗
∂y

(√
det ḡ∗(ḡ∗)yy((1 − a) + (2 − a)yA)(e−B|x| − e−Br0)

)

= (α4 + (2− a)A+ o(1)) (e−B|x| − e−Br0),

I2 =
1√

det ḡ∗
∂xk

(√
det ḡ∗(ḡ∗)ky((1− a) + (2− a)yA)(e−B|x| − e−Br0)

)

= o(1)(e−B|x| − e−Br0) + o(y)Be−Br,

for some constant α4,

I3 =
1√

det ḡ∗
∂y

(√
det ḡ∗(ḡ∗)yk(y + y2A)∂xk(e−B|x| − e−Br0)

)
= o(y)Be−Br,

and

I4 =
y + y2A√
det ḡ∗

∂xk

(√
det ḡ∗(ḡ∗)kj∂xj (e−B|x| − e−Br0)

)

=
y + y2A√
det ḡ∗

∂xk

(√
det ḡ∗(ḡ∗)kj

(
−xj
r
Be−Br

))

= yB2e−Br + o(y)B2e−Br + yB2o(r2)e−Br + o(y)Be−Br.

.

Thus
div(ya∇W ) = (α4 + (2− a)A+ o(1)) (e−B|x| − e−Br0)

+ (B2 + o(1)B)ye−Br.

We remark here that all constants α’s can be explicit, but it would not be any more use. Take
r0 sufficiently small and A and B sufficiently large so that

div(ya∇W ) ≥ 0

provided that a ≤ 0. Now we know

div (ya∇(U − ǫW )) ≤ 0

in
(
Γ0
r0 \ Γ0

1
2
r0

)
× (0, r0) for all ǫ > 0, and moreover

U − ǫW ≥ 0

on ∂
{(

Γ0
r0 \ Γ0

1
2
r0

)
× (0, r0)

}
, provided we choose ǫ appropriately small. Therefore, due to

the maximum principle we know that

U − ǫW > 0



in
(
Γ0
r0 \ Γ0

1
2
r0

)
× (0, r0). Thus, when U(x(q0), 0) = 0, we have

ya∂y(U − ǫW )|(x(q0),0) ≥ 0,

which implies

ya∂yU |(x(q0),0) ≥ ǫya∂yW |(x(q0),0) = ǫ(1− a)(e−B|x(q0)| − e−Br0) > 0,

as desired.
When a ∈ (0, 1), or equivalently, γ ∈ (0, 12 ), we instead use the function

W = y−a(y +Ay2−a)(e−B|x| − e−Br0).

Then a similar calculation will prove that the conclusion still holds.

Positivity of solutions for (3.1) is now clear:

Corollary 3.6. Suppose that U ∈ C2(X) ∩ C(X̄) is a nonnegative solution to the equation

{
div(ya∇U) = 0 in (X, ḡ∗),

ya∂yU = F (U) on M,

where F (0) = 0. Then U > 0 on X̄ unless U ≡ 0.

Proof. First, U > 0 in X , and U is not identically zero on the boundary if it is not identically
zero on X̄. Then, on the boundary, the set where U is positive is nonempty and open. Hence,
if the set where U vanishes is not empty, then, for any small number r0, there always exist
points p0 and q0 as given in the assumptions of Theorem 3.5. Thus we would arrive at the
contradiction from Theorem 3.5.

4 The γ-Yamabe problem

Now we are ready to set up the fractional Yamabe problem for γ ∈ (0, 1). On the conformal

infinity (Mn, [ĥ]) of an asymptotically hyperbolic manifold (Xn+1, g+), we consider a scale-

free functional on metrics in the class [ĥ] given by

Iγ [ĥ] =

∫
M
Qĥγ dvĥ

(
∫
M dvĥ)

n−2γ
n

. (4.1)

Or, if we set a base metric ĥ and write a conformal metric

ĥw = w
4

n−2γ ĥ,

then

Iγ [w, ĥ] =

∫
M
wP ĥγ (w) dvĥ(∫

M
w2∗ dvĥ

) 2

2∗

(4.2)

where 2∗ = 2n
n−2γ . We will call Iγ the γ-Yamabe functional.

The γ-Yamabe problem is to find a metric in the conformal class [ĥ] that minimizes the

γ-Yamabe functional Iγ . It is clear that a metric ĥw, where w is a minimizer of Iγ [w, ĥ], has

a constant fractional scalar curvature Qĥw
γ , that is,

P ĥγ (w) = cw
n+2γ
n−2γ , w > 0, (4.3)

for some constant c on M .



This suggests that we define the γ-Yamabe constant

Λγ(M, [ĥ]) = inf
{
Iγ [h] : h ∈ [ĥ]

}
. (4.4)

It is then apparent that Λγ(M, [ĥ]) is an invariant on the conformal class [ĥ] when g+ is fixed.

In the mean time, based on Proposition 2.1, we set

I∗γ [U, ḡ] =
d∗γ
∫
X
ρa |∇U |2ḡ dvḡ +

∫
X
E(ρ)|U |2 dvḡ

(∫
M

|U |2∗ dvĥ
) 2

2∗

, (4.5)

or similarly, using Proposition 2.2, we may set

I∗γ [U, ḡ
∗] =

d∗γ
∫
X y

a |∇U |2ḡ∗ dvḡ∗ +
∫
M Qĥγ |U |2 dvĥ(∫

M
|U |2∗ dvĥ

) 2

2∗

. (4.6)

It is obvious that it is equivalent to solve the minimizing problems for Iγ and I∗γ . But a very
pleasant surprising is that this immediately tells us that

Λγ(X, [ĥ]) = inf
{
I∗γ [U, ḡ] : U ∈ W 1,2(X, ya)

}
(4.7)

(please see the definitions and discussions of the weighted Sobolev spaces in Section 5). Note
that one has that I∗γ [|U |] ≤ I∗γ [U ], to handle positivity issues. Therefore we have

Lemma 4.1. Suppose that U is a minimizer of the functional I∗γ [·, ḡ] in the weighted Sobolev

space W 1,2(X, ya) with
∫
M |TU |2∗ dvĥ = 1. Then its trace w = TU ∈ Hγ(M) solves the

equation

P ĥγ (w) = Λγ(X, [ĥ])w
n+2γ
n−2γ .

To resolve the γ-Yamabe problem is to verify Iγ has a minimizer w, which is positive and
smooth. But before launching our resolution to the γ-Yamabe problem we are first due to
discuss the sign of the γ-Yamabe constant. These statements are familiar and easy ones for
the Yamabe problem but not so easy at all for the γ-Yamabe problem, where the conformal
fractional Laplacians are just pseudo-differential operators. One knows that eigenvalues and
eigenfunctions of the conformal fractional Laplacians are even more difficult to study than the
differential operators. There are some affirmative results analogous to the conformal Laplacian
proven in [28] when the Yamabe constant of the conformal infinity is assumed to be positive.
Here we will take the advantage of our Hopf’s Lemma and the interpretation of the conformal
fractional Laplacians through extensions provided in Proposition 2.2.

For each γ ∈ (0, 1) we know that each conformal fractional Laplacian is self-adjoint (cf.
[27], [20]). Hence we may look for the first eigenvalue λ1 by minimizing the quotient

∫
M wP ĥγ w dvĥ∫
M w2 dvĥ

. (4.8)

Moreover, again in the light of Proposition 2.2, it is equivalent to minimizing

d∗γ
∫
X y

a |∇U |2ḡ∗ dvḡ∗ +
∫
M Qĥγ |U |2 dvĥ∫

M
|U |2 dvĥ

. (4.9)

We arrive at the eigenvalue equation:

P ĥγ w = λ1w, on M.

Or, equivalently, 



div (ya∇U) = 0 in (X, ḡ∗),

−d∗γ lim
y→0

ya∂yU +QĥγU = λ1U on M,
(4.10)

As a consequence of Proposition 2.2 and Theorem 3.5 we have:



Theorem 4.2. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. For each

γ ∈ (0, 1) there is a smooth, positive first eigenfunction for P ĥγ and the first eigenspace is of

dimension one, provided H = 0 when γ ∈ (12 , 1).

Proof. We use the variational characterization (4.9) of the first eigenvalue. We first observe
that one may always assume there is a nonnegative minimizer for (4.9). Then regularity
and the maximum principle in Section 3 insure that such a first eigenfunction is smooth and
positive. To show that the first eigenspace is of dimension 1, we suppose that φ and ψ are

positive first eigenfunctions for P ĥγ . Then

P
ĥφ
γ
ψ

φ
= φ−

n+2γ
n−2γ P ĥγ ψ = λ1φ

− n+2γ
n−2γψ

= (φ−
n+2γ
n−2γ P ĥγ φ)

ψ

φ

= Q
ĥφ
γ
ψ

φ
,

where ĥφ = φ
4

n−2γ ĥ. That is, there is a function U satisfying





div(yaφ∇U) = 0 in (X, ḡ∗φ),

lim
yφ→0

yaφ
∂U

∂yφ
U = 0 on M,

and U = ψ
φ on M , where yφ and ḡ∗φ are associated with ĥφ as y and ḡ∗ are associated with ĥ

in Proposition 2.2 respectively. Replace U by U − Um for Um = minX̄ U and apply Theorem
3.5 and Corollary 3.6 to conclude that U has to be a constant.

Consequently, we get the following.

Corollary 4.3. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. Assume
that γ ∈ (0, 1) and that H = 0 when γ ∈ (12 , 1). Then there are three mutually exclusive

possibilities for the conformal infinity (Mn, [ĥ]):

1. The first eigenvalue of P ĥγ is positive, the γ-Yamabe constant is positive, and M admits

a metric in [ĥ] that has pointwise positive fractional scalar curvature.

2. The first eigenvalue of P ĥγ is negative, the γ-Yamabe constant is negative, and M admits

a metric in [ĥ] that has pointwise negative fractional scalar curvature.

3. The first eigenvalue of P ĥγ is zero, the γ-Yamabe constant is zero, and M admits a metric

in [ĥ] that has vanishing fractional scalar curvature.

Proof. First of all it is obvious that the sign of the first eigenvalue of the conformal fractional

Laplacian P ĥγ does not change within the conformal class due to the conformal covariance
property of the conformal fractional Laplacian. The three possibilities are distinguished by

the sign of the first eigenvalue λ1 of the conformal fractional Laplacian P ĥγ . Because, if φ is

the positive first eigenfunction of P ĥγ , then

Q
ĥφ
γ = λĥ1φ

− 4γ
n−2γ

where ĥφ = φ
4

n−2γ ĥ.



5 Weighted Sobolev trace inequalities

Let us continue in the setting provided by Proposition 2.2. On the compact manifold Mn, for
γ ∈ (0, 1), we recall the fractional order Sobolev space Hγ(M), with its usual norm

‖w‖2Hγ (M) := ‖w‖2L2(M) +

∫

M

w(−∆ĥ)
γw dvĥ.

An equivalent norm on this space is

‖w‖2Hγ (M) := A ‖w‖2L2(M) +

∫

M

wP ĥγ w dvĥ,

for some appropriately large number A, since P ĥγ is an elliptic pseudo-differential operator of
order 2γ with its principal symbol being the same as that of (−∆ĥ)

γ .
Note that in R

n, this Sobolev norm can be easily written in terms of the Fourier transform
as

‖w‖2Hγ (Rn) =

∫

Rn

(1 + |ξ|2)γŵ2(ξ) dξ. (5.1)

We would also like to recall the definition of the weighted Sobolev spaces. For γ ∈ (0, 1)
and a = 1− 2γ, consider the norm

‖U‖2W 1,2(X,ya) =

∫

X

ya|∇U |2ḡ∗ dvḡ∗ +

∫

X

yaU2 dvḡ∗ .

The following is then known.

Lemma 5.1. There exists a unique linear bounded operator

T :W 1,2(X, ya) → Hγ(M)

such that TU = U |M for all U ∈ C∞(X̄), which is called the trace operator.

Lemma 5.1 was explored by Nekvinda [37] in the case when X is a subset of Rn+1 and
Mn a piece of its boundary; see also [32]. It then takes some standard argument to derive the
Lemma 5.1 from, for instance, [37].

The classical Sobolev trace inequality on Euclidean space is well known (see, for instance,
Escobar [15]), and reads:

(∫

Rn

|Tu|
2n

n−1 dx

)n−1

2n

≤ C(n)

(∫

R
n+1

+

|∇u|2 dxdy
) 1

2

(5.2)

where the constant C(n) is sharp and the equality case is completely characterized. This
corresponds to a = 0 for our cases. The same result is true for any other real a ∈ (−1, 1).
Indeed there are general Weighted Sobolev trace inequalities. Let us first recall the well known
fractional Sobolev inequalities. They were considered first in the remarkable paper by Lieb
[31] (see also the more recent [21], [13], or the survey [14]):

Lemma 5.2. Let 0 < γ < n/2, 2∗ = 2n
n−2γ . Then, for all w ∈ Hγ(Rn) we have

‖w‖2L2∗(Rn) ≤ S(n, γ)‖(−∆)
γ
2w‖2Hγ (Rn) = S(n, γ)

∫

Rn

w(−∆)γw dx, (5.3)

where

S(n, γ) = 2−2γπ−γ Γ
(
n−2γ

2

)

Γ
(
n+2γ

2

)
[
Γ(n)

Γ
(
n
2

)
] 2γ

n

=
Γ
(
n−2γ

2

)

Γ
(
n+2γ

2

) |vol(Sn)|− 2γ
n .

We have equality in (5.3) if and only if

w(x) = c

(
µ

|x− x0|2 + µ2

)n−2γ
2

, x ∈ R
n,

for c ∈ R, µ > 0 and x0 ∈ R
n fixed.



Note that we may interpret the above inequality as a calculation of the best γ-Yamabe
constant on the standard sphere as the conformal infinity of the Hyperbolic space. Namely, if
gc is the standard round metric on the unit sphere,

‖w‖2L2∗(Sn) ≤ S(n, γ)

∫

Sn

wP gcγ w dvgc . (5.4)

Such an inequality for the sphere case was also considered independently by Beckner [5],
Branson [6], and Morpurgo [35], in the setting of interwining operators. Indeed, we have the
following explicit expression for PS

n

γ :

PS
n

γ =
Γ
(
B + γ + 1

2

)

Γ
(
B − γ + 1

2

) , where B :=

√
−∆Sn +

(
n−1
2

)2
.

It is clear from (5.4) that

Λγ(S
n, [gc]) =

1

S(n, γ)
. (5.5)

Sobolev trace inequalities can be obtained by the composition of the trace theorem and
the Sobolev embedding theorem above. There have been some related works that deal with
these types of energy inequalities, for instance, Nekvinda [37], González [23], and Cabré-Cinti
[7]. In particular, in the light of the work of Caffarelli and Silvestre [10] and Lemma 5.2, we
easily see the more general form of (5.2) as follows:

Corollary 5.3. Let w ∈ Hγ(Rn), γ ∈ (0, 1), a = 1 − 2γ, and U ∈ W 1,2(Rn+1
+ , ya) with trace

TU = w. Then

‖w‖2L2∗ (Rn) ≤ S̄(n, γ)

∫

R
n+1

+

ya|∇U |2 dxdy, (5.6)

where
S̄(n, γ) := d∗γS(n, γ). (5.7)

Equality holds if and only if

w(x) = c

(
µ

|x− x0|2 + µ2

)n−2γ
2

, x ∈ R
n,

for c ∈ R, µ > 0 and x0 ∈ R
n fixed, and U is its Poisson extension of w as given in (2.13).

In the following lines we take a closer look at the extremal functions that attain the best
constant in the inequality above. On R

n we fix

wµ(x) :=

(
µ

|x|2 + µ2

)n−2γ
2

, (5.8)

these correspond to the conformal diffeomorphisms of the sphere. We set

Uµ = Kγ ∗x wµ (5.9)

as given in (2.13). Then we have the equality

‖wµ‖2L2∗ (Rn) = S̄(n, γ)

∫

R
n+1

+

ya|∇Uµ|2 dxdy.

It is clear that

wµ(x) =
1

µ
n−2γ

2

w1

(
x

µ

)
, and Uµ(x, y) =

1

µ
n−2γ

2

U1

(
x

µ
,
y

µ

)
. (5.10)



Moreover, Uµ is the (unique) solution of the problem





div(ya∇Uµ) = 0 in R
n+1
+ ,

− lim
y→0

ya∂yUµ = cn,γ(wµ)
n+2γ
n−2γ on R

n,
(5.11)

On the other hand, if we multiply equation (5.11) by Uµ and integrate by parts,

∫

R
n+1

+

ya|∇Uµ|2 dxdy = cn,γ

∫

Rn

(wµ)
2∗ dx. (5.12)

Now we compare (5.12) with (5.6). Using (5.5) we arrive at

Λ(Sn, [gc]) = cn,γd
∗
γ

[∫

Rn

(wµ)
2∗dx

] 2γ
n

. (5.13)

Before the end of this section we calculate the general upper bound of the γ-Yamabe
constants. Indeed there is a complete analogue to the case of the usual Yamabe problem (cf.
[3], [30]). Namely, the following.

Proposition 5.4. Let γ ∈ (0, 1). Then

Λγ(M, [ĥ]) ≤ Λγ(S
n, [gc]).

Proof. First of all we will instead use the functional (4.6) to estimate the γ-Yamabe constant
for a good reason. The approach is rather the standard method of gluing a “bubble” (5.8) to
the manifold M (see, for instance, [30], Lemma 3.4).

For any fixed ǫ > 0, let Bǫ be the ball of radius ǫ centered at the origin in R
n+1 and B+

ǫ

be the half ball of radius ǫ in R
n+1
+ . Choose a smooth radial cutoff function η, 0 ≤ η ≤ 1

supported on B2ǫ, and satisfying η ≡ 1 on Bǫ. Then, consider the function V = ηUµ with its
trace v = ηwµ on R

n. We have that

∫

R
n+1

+

ya|∇V |2 dxdy ≤ (1 + ǫ)

∫

R
n+1

+

ya|∇Uµ|2 dxdy + C(ǫ)

∫

B+

2ǫ\B
+
ǫ

U2
µ dxdy. (5.14)

Note that wµ = O(µ
n−2γ

2 |x|2γ−n) in the annulus ǫ ≤ |x| ≤ 2ǫ and Uµ is O(µ
n−2γ

2 ) in the
annulus B+

2ǫ\B+
ǫ . This allows to estimate the second term in right hand side of (5.14) by

O
(
µn−2γ

)
as µ→ 0, for ǫ fixed. For the first term in the right hand side of (5.14) we first use

the fact that wµ attains the best constant in the Sobolev inequality, so

S̄(n, γ)

∫

R
n+1

+

ya|∇Uµ|2 dxdy =

(∫

Rn

w2∗

µ dx

) 2
2∗

≤
(∫

Rn

v2
∗

dx

) 2
2∗

+O(µn). (5.15)

Now we need to transplant the function V to the manifold (X̄, ḡ∗). Fix a point on the
boundary M and use normal coordinates {x1, . . . , xn, y} around it, in a half ball B+

2ǫ where V
is supported. Two things must be modified: when ǫ→ 0,

|∇V |2ḡ∗ = |∇V |2(1 +O(ǫ)),

and
dvḡ∗ = (1 +O(ǫ))dxdy,

so that

Iǫ,µ := d∗γ

∫

B+

2ǫ

ya|∇V |2ḡ∗ dvḡ∗ +

∫

|x|≤2ǫ

Qĥγv
2 dvĥ

≤ (1 +O(ǫ))

(∫

B+

2ǫ

ya|∇V |2 dxdy + C

∫

|x|<2ǫ

v2 dx

)
.



It is easily seen that ∫

|x|<2ǫ

w2
µ dx = o(1).

This is a small computation that can be found in Lemma 3.5 of [30]. Then, from (5.15), fixing
ǫ small and then µ small, we can get that

Iǫ,µ ≤ (1 + Cǫ)

(
1

S(n, γ)
‖v‖2L2∗(M) + Cµ

)

which implies

Λγ(M, [ĥ]) ≤ 1

S(n, γ)
= Λγ(S

n, [gc]).

We end this section by remarking that, although most of the results mentioned here were
already known in different contexts, it is certainly very interesting to put all the analysis
and geometry together in the context of conformal fractional Laplacians and the associated
γ-Yamabe problems in a way that is analogous to what has been done on the subject of the
Yamabe problem, which becomes fundamental to the development of geometric analysis.

6 Subcritical approximations

In this section we take a well known subcritical approximation method to solve the γ-Yamabe
problem and prove Theorem 1.4. There does not seem to be any more difficulty than usual
after our discussions in previous sections. But, for the convenience of the readers, we present
a brief sketch of the proof. Similar to the case of the usual Yamabe problem we consider the
following subcritical approximations to the functionals Iγ and I∗γ respectively. Set

Iβ [w] =

∫
M wP ĥγ w dvĥ(∫
M wβ dvĥ

) 2
β

and

I∗β [U ] =
d∗γ
∫
X
ya |∇U |2ḡ∗ dvḡ +

∫
M
QĥγU

2 dvĥ
(∫
M Uβ dvĥ

) 2
β

.

for β ∈ [2, 2∗), where 2∗ = 2n
n−2γ and γ ∈ (0, 1). These are subcritical problems and can be

solved through standard variational methods. For clarity we state the following:

Proposition 6.1. For each 2 ≤ β < 2∗, there exists a smooth positive minimizer Uβ for I∗β [U ]

in W 1,2(X, ya), which satisfies the equations





div (ya∇Uβ) = 0 in (X, ḡ∗),

−d∗γ lim
y→0

yaUβ +QĥγUβ = cβU
β−1
β on M,

where the derivatives are taken with respect to the metric ḡ∗ in X and cβ = I∗β [Uβ] = min I∗β.
And the boundary value wβ of Uβ, which is a positive smooth minimizer for Iβ [w] in H

γ(M),
satisfies

P ĥγ wβ = cβw
β−1
β .

Using a similar argument as in the proof of Lemma 4.3 in [30] (see also [3]) we have the
following.

Lemma 6.2. If vol(M, ĥ) = 1, then |cβ | is non-increasing as a function of β ∈ [2, 2∗]; and if

Λγ(M, [ĥ]) ≥ 0, then cβ is continuous from the left at β = 2∗.



We now start the proof of Theorem 1.4. Readers are referred to [16], [30], [40] for more
details. Instead of applying the standard Sobolev embedding in the Yamabe problem we
apply the weighted trace ones discussed in the previous section. To ensure that Uβ as β → 2∗

produces a minimizer for the γ-Yamabe problem, we want to establish the a priori estimates
for Uβ . In the light of the discussions in Section 3, we only need to have a uniform L∞ bound
for wβ . We will establish the L∞ bound for wβ by the so-called blow-up method.

Otherwise, assume there exist sequences βk → 2∗, wk := wβk
and Uk := Uβk

, xk ∈ M
such that wk(xk) = maxM{wk} = mk → ∞ and xk → x0 ∈ M as k → ∞. Take a normal
coordinate system centered at x0, and rescale

Vk(x, y) = m−1
k Uk(δkx+ xk, δky),

with the boundary value
vk(x) = m−1

k wk(δkx+ xk),

where δk = m
1−βk
2γ

k . Then Vk is defined in a half ball of radius Rk = 1−|xk|
δk

and is a solution of




div (ρa∇Vk) = 0 in B+
Rk
,

−d∗γ lim
y→0

ya∂yVk + (Qĥγ)kvk = ckv
β−1
k on BRk

,
(6.1)

with respect to the metric ḡ∗(δkx+ xk, δky), where

(Qĥγ)k = δ1−ak Qĥγ(δkx+ xk) → 0.

Due to, for example, C2,α a priori estimates for the rescaled solutions Vk, to extract a subse-
quence if necessary, we have Vk → V0 in C2,α

loc
. Moreover the metrics ḡ∗(δkx+xk, δky) converge

to the Euclidean metric. Hence V0 is a non-trivial, non-negative solution of




−div (ya∇V0) = 0 in R
n+1
+ ,

−d∗γ lim
y→0

ya∂yV0 = c0V
n+2γ
n−2γ

0 on R
n,
. (6.2)

Let v0 = TV0. It is easily seen that
∫

Rn

v2
∗

0 (x) dx ≤ 1. (6.3)

Theorem 3.5 and Corollary 3.6 then assure that V0 > 0 on R
n+1
+ . Therefore we can obtain

∫

R
n+1

+

ya|∇V0|2 dxdy = c0d
∗
γ

∫

Rn

v2
∗

0 (x) dx. (6.4)

It is then obvious that c0 > 0, that is, c0 = Λγ(M, [ĥ]) in the light of Lemma 6.2. Moreover,
by the trace inequalities from Lemma 5.3, we have

(∫

Rn

v2
∗

0 (x) dx

) 2

2∗

≤ S̄(n, γ)

∫

R
n+1

+

ya|∇V0|2 dxdy. (6.5)

Then (6.3), (6.4) and (6.5), together with the definition of Λγ(S
n, [gc]) in (5.5) contradict the

initial hypothesis (1.6).
Once we have a uniform L∞ estimate, by the regularity theorems in Section 3 we may

extract a subsequence if necessary and pass to a limit U0, whose boundary value w0 satisfies

P ĥγ w0 = Λw2∗−1
0 , Iγ [w0] = Λ, Λ = lim cβ. (6.6)

Theorem 3.5 and Corollary 3.6 also ensure that w0 > 0 on M . It remains to check that
Λ = Λγ(M, [ĥ]). However, this is a direct consequence of Lemma 6.2 when Λγ(M, [ĥ]) ≥ 0.
Meanwhile it is easily seen that by the definition of the γ-Yamabe constants and (6.6) that Λ

can not be less than Λγ(M, [ĥ]). Hence it is also implied that Λ = Λγ(M, [ĥ]) by Lemma 6.2

when Λγ(M, [ĥ]) < 0. Thus, in any case, w0 is a minimizer of Iγ , as desired.



7 A sufficient condition

In this section we give the proof of Theorem 1.5, which provides a sufficient condition for the
resolution of the γ-Yamabe problem. Here the precise structure of the metric will play a crucial
role since a careful computation of the asymptotics is required, following the calculation in
[16]. The section is divided into two parts: the first contains the necessary estimates on the
Euclidean case, while in the second we go back to the geometry setting and finish the proof of
the theorem.

7.1 Some preliminary results on R
n+1
+

Here we consider the divergence equation (2.11) on R
n+1
+ , as understood in [10], [23]. The

main point is that by using the Fourier transform, a solution to this problem can be written
in terms on its trace value on R

n and the well known Bessel functions. Indeed, let U be a
solution of {

div(ya∇U) = 0 in R
n+1
+ ,

U(x, 0) = w on R
n × {0},

(7.1)

or equivalently, U = Kγ ∗x w, where Kγ is the Poisson kernel as given in (2.13).
The main idea is to reduce (7.1) to an ODE by taking Fourier transform in x. We obtain





− |ξ|2 û(ξ, y) + a

y
ûy(ξ, y) + ûyy(ξ, y) = 0,

Û(ξ, 0) = ŵ(ξ),

that is an ODE for each fixed value of ξ.
On the other hand, consider the solution ϕ : [0,+∞) → R of the problem

− ϕ(y) +
a

y
ϕy(y) + ϕyy(y) = 0, (7.2)

subject to the conditions ϕ(0) = 1 and lim
t→+∞

ϕ(t) = 0. This is a Bessel function and its

properties are summarized in Lemma 7.1. Then we have that

Û(ξ, y) = ŵ(ξ)ϕ(|ξ| y). (7.3)

For a review of Bessel functions (see, for instance, Lemma 5.1 in [23], or section 9.6.1. in
[1]):

Lemma 7.1. Consider the following ODE in the variable y > 0:

−ϕ(y) + a

y
ϕy(y) + ϕyy(y) = 0,

with boundary conditions ϕ(0) = 1, ϕ(∞) = 0. Its solution can be written in terms of Bessel
functions:

ϕ(y) = c1y
γKγ(y),

where Kγ is the modified Bessel function of the second kind that has asymptotic behavior

Kγ(y) ∼
Γ(γ)

2

(
2

y

)γ
, when y → 0+,

Kγ(y) ∼
√

π

2y
e−y, when y → +∞,

for a constant

c1 =
21−γ

Γ(γ)
.



Now we are ready to prove the main technical lemmas in the proof of Theorem 1.5. More
precisely, we will explicitly compute several energy terms through Fourier transforms, thanks
to expression (7.3). Such precise computation is needed in order to obtain the exact value of the

constant (1.8). For the rest of the section, we denote |∇U |2 = (∂x1
U)

2
+. . .+(∂xnU)

2
+(∂yU)

2
,

and |∇xU |2 = (∂x1
U)2 + . . .+ (∂xnU)2.

Lemma 7.2. Given w ∈ Hγ(Rn), let U = Kγ ∗ w defined on R
n+1
+ . Then

A1(w) :=

∫

R
n+1

+

ya+2|∇U |2 dxdy = d1

∫

Rn

|ŵ(ξ)|2 |ξ|2(γ−1)
dξ, (7.4)

A2(w) :=

∫

R
n+1

+

ya+2|∇xU |2 dxdy = d2

∫

Rn

|ŵ(ξ)|2 |ξ|2(γ−1) dξ, (7.5)

A3(w) :=

∫

R
n+1

+

yaU2 dxdy = d3

∫

Rn

|ŵ(ξ)|2 |ξ|2(γ−1)
dξ, (7.6)

where

d2 =
−a+ 3

6
d1, d3 =

1

a+ 1
d1.

Proof. We write Ai := Ai(w), i = 1, 2, 3, for simplicity. Note that the integrals in the right
hand side of (7.4), (7.5), (7.6) are finite because w ∈ Hγ(Rn) →֒ Hγ−1(Rn), and because of
the definition of the Sobolev norm (5.1).

Thanks to (7.3) we can easily compute, using the properties of the Fourier transform,

A1 : =

∫

R
n
+

ya+2|∇U |2 dxdy =

∫

R
n
+

ya+2
(
|∇xU |2 + |∂yU |2

)
dxdy

=

∫

Rn

∫ ∞

0

ya+2
(
|ξ|2|Û |2 + |∂yÛ |2

)
dydξ

=

∫

Rn

∫ ∞

0

ya+2 |ŵ(ξ)|2 |ξ|2
(
|ϕ(|ξ| y)|2 + |ϕ′(|ξ| y)|2

)
dydξ

=

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a
∫ ∞

0

ta+2
(
|ϕ(t)|2 + |ϕ′(t)|2

)
dtdξ

= d1

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a dξ

(7.7)

for a constant

d1 :=

∫ ∞

0

ta+2
(
|ϕ(t)|2 + |ϕ′(t)|2

)
dt. (7.8)

Similarly,

A2 : =

∫

R
n
+

ya+2|∇xU |2 dxdy =

∫

Rn

∫ ∞

0

ya+2|ξ|2|Û |2 dydξ

=

∫

Rn

∫ ∞

0

ya+2 |ŵ(ξ)|2 |ξ|2 |ϕ(|ξ| y)|2 dydξ

=

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a
∫ ∞

0

ta+2 |ϕ(t)|2 dtdξ

= d2

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a
dξ

for

d2 :=

∫ ∞

0

ta+2 |ϕ(t)|2 dt. (7.9)



And finally,

A3 : =

∫

R
n+1

+

yaU2 dxdy =

∫

Rn

∫ ∞

0

ya|Û |2 dydξ =
∫

Rn

∫ ∞

0

ya|ŵ(ξ)|2|ϕ(|ξ| y)|2 dydξ

=

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a
∫ ∞

0

ta|ϕ(t)|2 dtdξ = d3

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a
dξ,

(7.10)

for

d3 =

∫ ∞

0

ta|ϕ(t)|2 dt.

In the next step, we find the relation between the constants d1,d2,d3. All the integrals will
be evaluated between zero and infinity in the following. Multiply (7.2) by ϕtt

a+3 and integrate
by parts:

−
∫
ϕϕtt

a+3 + a

∫
ϕ2
t t
a+2 +

∫
ϕttϕtt

a+3 = 0. (7.11)

In the above formula, we estimate the first term by
∫
ta+3ϕϕt =

1
2

∫
ta+3∂t

(
ϕ2
)
= −a+3

2

∫
ta+2ϕ2,

and the last one by
∫
ta+3ϕttϕt =

1
2

∫
ta+3∂t

(
ϕ2
t

)
= −a+3

2

∫
ta+2ϕ2

t ,

so from (7.11) we obtain

(a+ 3)

∫
ta+2ϕ2 = (−a+ 3)

∫
ta+2ϕ2

t .

Together with (7.8) and (7.9) this gives

d1 =
6

−a+ 3
d2,

as desired.
Now, multiply equation (7.2) by ϕta+2 and integrate:

−
∫
ta+2ϕϕt + a

∫
ta+1ϕ2

t +

∫
ta+2ϕttϕ = 0. (7.12)

The third term above is computed as
∫
ta+2ϕttϕ = −

∫
ta+2ϕ2

t − (a+ 2)

∫
ta+1ϕtϕ,

so (7.12) becomes

d1 = −2

∫
ta+1ϕtϕ = (a+ 1)

∫
taϕ2 = (a+ 1)d3. (7.13)

This completes the proof of the lemma.

In the following, we continue the estimates of the different error terms, although now we
only need the asymptotic behavior and not the precise constant.

Lemma 7.3. Let w be defined on R
n and U = Kγ ∗x w. Then

1. For each k ∈ N, if w ∈ Hγ−k/2(Rn),

Ek :=

∫

R
n+1

+

ya+k|∇U |2 dxdy <∞. (7.14)



2. If w ∈ Hγ−3/2(Rn) and (|x|w) ∈ H−1/2+γ(Rn), then

Ẽ3 :=

∫

R
n+1

+

ya |(x, y)|3 |∇U |2 dxdy <∞. (7.15)

Proof. Taking into account (7.3), we can proceed as in the calculation for A1 in (7.7), easily
arriving at

Ek = ck

∫

Rn

|ŵ(ξ)|2|ξ|1−k−a dξ,

where

ck :=

∫ ∞

0

ta+k
(
ϕ2(t) + ϕ2

t (t)
)
dt <∞,

and this last integral is finite for all k ∈ N because of the asymptotics of the Bessel functions
from Lemma 7.1. The second conclusion of the lemma is a little more involved. To show that
the integral (7.15) is finite, first note that (7.14) with k = 3 gives

∫

R
n+1

+

ya+3|∇U |2 dxdy <∞.

It is clear that it only remains to prove
∫

R
n+1

+

ya|x|3|∇U |2 dxdy <∞.

Since the computation of the previous integral can be made component by component, it is
clear that is enough to restrict to the case n = 1. Then we just need to show that

J :=

∫ ∞

0

∫

R

ya|x|3(∂xU)2 dxdy <∞. (7.16)

This is an easy but tedious calculation using Fourier transform. Without loss of generality, we
will drop all the constants 2π appearing in the Fourier transform. First notice that

∫

R

|x|3(∂xU)2 dx = ‖{|x|3/2∂xU}‖2L2(R) = ‖D3/2
ξ ∂̂xU‖2L2(R) = ‖D3/2(|ξ| Û)‖2L2(R)

=

∫

R

|ξ| ÛD3
ξ(|ξ| Û) dξ.

(7.17)

At this point we go back to (7.3) to substitute the explicit expression for Û . We will need to
compute

D3
ξ (|ξ|ŵ(ξ)ϕ(|ξ|y)) = ŵ′′′ [|ξ|ϕ] + ŵ′′ [3ϕ+ 3|ξ|ϕ′y]

+ ŵ′
[
6ϕ′y + 3|ξ|ϕ′′y2

]
+ ŵ

[
|ξ|ϕ′′′y3 + 3ϕ′′y2

]

= ŵ′′′ [|ξ|ϕ] + ŵ′′ [3ϕ+ 3tϕ′]

+ ŵ′
[
6|ξ|−1tϕ′ + 3|ξ|−1t2ϕ′′

]
+ ŵ

[
|ξ|−2ϕ′′′t3 + 3|ξ|−2t2ϕ′′

]
,

after the change |ξ|y = t. When we substitute the above expression into (7.17) and then back
into (7.16), taking into account the change of variables, we obtain:

J =

∫ ∞

0

taϕ2 dt

∫

R

ŵ′′′ŵ|ξ|1−a dξ

+

∫ ∞

0

ta
[
ϕ2 + 3tϕϕ′

]
dt

∫

R

ŵ′′ŵ|ξ|−a dξ

+

∫ ∞

0

ta
[
6tϕ′ϕ+ 3t2ϕ′′ϕ

]
dt

∫

R

ŵ′ŵ|ξ|−a−1 dξ

+

∫ ∞

0

ta
[
t3ϕ′′′ϕ+ 3t2ϕ′′ϕ

]
dt

∫

R

ŵ2|ξ|−a−2 dξ

=: c1J1 + c2J2 + c3J3 + c4J4.



It is clear, looking at the asymptotic behavior of ϕ from Lemma 7.1 that the constants ci, i =
1, 2, 3, 4, are finite. On the other hand, by an straightforward integration by parts argument,
we can write each of the terms Ji, i = 1, 2, 3, 4, as a linear combination of just

∫

R

ŵ2(ξ)|ξ|−a−2 dξ and

∫

R

ŵ′(ξ)2|ξ|−a dξ. (7.18)

Finally, the proof is completed because the initial hypotheses show that both integrals in (7.18)
are finite. In particular, these hypothesis show that all the derivations are rigorous.

Lemma 7.4. Let w be defined on R
n and U = Kγ ∗x w.

1. For each k ∈ N, if w ∈ Hγ−k/2−1(Rn),

Fk :=

∫

R
n+1

+

ya+kU2 dxdy <∞. (7.19)

2. If w ∈ Hγ−5/2(Rn) and (|x|w) ∈ Hγ−3/2(Rn),

F̃3 :=

∫

R
n+1

+

ya |x|3 U2 dxdy <∞. (7.20)

Proof. The first assertion (7.19) follows as in (7.10):

Fk : =

∫

R
n+1

+

ya+kU2 dxdy =

∫

Rn

∫ ∞

0

ya+k|Û |2 dydξ =
∫

Rn

∫ ∞

0

ya+k|ŵ(ξ)|2|ϕ(|ξ| y)|2 dydξ

=

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a−k
∫ ∞

0

|ϕ(t)|2ta+k dtdξ = ck

∫

Rn

|ŵ(ξ)|2 |ξ|−1−a−k
dξ,

for

ck :=

∫ ∞

0

|ϕ(t)|2ta+k dt <∞.

For the second assertion, under the light of our previous discussions, it is enough to show that
in the one-dimensional case,

∫

R

|x|3 U2 dx = ‖{|x|3/2U}‖2L2(R) = ‖D3/2Û‖2L2(R) =

∫

R

ÛD3
ξ(Û) dξ.

Substitute the expression for Û from (7.3). Then
∫

R

|x|3 U2 dx =

∫
ŵ′′′ŵϕ2 dξ + 3

∫
ŵ′′ŵϕ′ϕy dξ + 3

∫
ŵ′ŵϕ′ϕy2 dξ +

∫
ŵ2ϕ′′′ϕy3 dξ,

so when we change variables t = |ξ| y,
∫ ∞

0

∫

R

ya |x|3 U2 dxdy =

∫ ∞

0

taϕ2 dt

∫

R

ŵ′′′ŵ |ξ|−1−a dξ

+ 3

∫ ∞

0

t1+aϕ′ϕdt

∫

R

ŵ′′ŵ |ξ|−2−a
dξ

+ 3

∫ ∞

0

t2+aϕ′′ϕdt

∫

R

ŵ′ŵ |ξ|−3−a
dξ

+

∫ ∞

0

t3+aϕ′′′ϕdt

∫

R

ŵ2 |ξ|−4−a dξ

= c̃1J̃1 + c̃2J̃2 + c̃3J̃3 + c̃4J̃4.

Clearly, from the asymptotics of the Bessel functions from Lemma 7.1, the constants c̃i, i =
1, 2, 3, 4 are finite. At the same time, each of the four integrals J̃i, i = 1, 2, 3, 4, can be written
as a linear combination of two:∫

(ŵ′)2 |ξ|−2−a
dξ and

∫
(ŵ)2 |ξ|−4−a

dξ,

which are finite because of the hypothesis on w.



Next, we check what happens with the previous two lemmas under rescaling. Here f = o(1)
means

lim
ǫ/µ→0

f = 0.

Given any function w defined on R
n, we consider its extension to R

n+1
+ as U = Kγ ∗x w, and

the rescaling, for each µ > 0,

Uµ(x, y) :=
1

µ
n−2γ

2

U

(
x

µ
,
y

µ

)
. (7.21)

Corollary 7.5. Fix ǫ, µ > 0 and let the hypotheses be as in Lemma 7.3 (in each of the two
cases).

1. For each k ∈ N,
∫

B+
ǫ

ya+k|∇Uµ|2dxdy = µk
∫

B+

ǫ/µ

ya+k|∇U |2dxdy = µk [Ek + o(1)] (7.22)

2. Also ∫

B+
ǫ

ya|(x, y)|3|∇Uµ|2 dxdy = µ3

∫

B+

ǫ/µ

ya+k|∇U |2 dxdy = µ3
[
Ẽ3 + o(1)

]
, (7.23)

where Uµ is the rescaling (7.21), and Ek, Ẽ3 <∞ are defined as in Lemma 7.3.

Corollary 7.6. Fix ǫ, µ > 0 and let the hypotheses be as in Lemma 7.4 (in each of the two
cases).

1. For each k ∈ N,
∫

B+
ǫ

ya+k(Uµ)
2 dxdy = µk+2

∫

B+

ǫ/µ

ya+kU2 dxdy = µk+2 [Fk + o(1)] , (7.24)

2. Also,
∫

B+
ǫ

ya |(x, y)|3 (Uµ)2 dxdy = µ5

∫

B+

ǫ/µ

ya |x|3 U2 dxdy = µ5
[
F̃3 + o(1)

]
, (7.25)

where Uµ is the rescaling (7.21), and Fk, F̃3 <∞ are defined as in Lemma 7.4.

7.2 Proof of Theorem 1.5

We first need to choose a very particular background metric for X near a non-umbilic point
on M . We will follow the steps as Escobar did in Lemmas 3.1 - 3.3 of [16]. But our situation
is a little different. Our freedom of choice of metrics is restricted to the boundary. Hence we
will make some assumptions on the behavior of the asymptotically hyperbolic manifolds in
order to allow us to see clearly what we can get for a good choice of representative from the
conformal infinity.

Lemma 7.7. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and ρ is a

geodesic defining function associated with a representative ĥ of the conformal infinity (Mn, [ĥ]).
Assume that

ρ−2
(
R[g+]−Ric[g+](ρ∂ρ) + n2

)
→ 0 as ρ→ 0. (7.26)

Then, at ρ = 0,
H := Trĥh

(1) = 0 (7.27)

and

Trĥh
(2) =

1

2
(‖h(1)‖2

ĥ
+

1

2(n− 1)
R[ĥ]), (7.28)

where

g+ =
dρ2 + hρ

ρ2
, hρ = ĥ+ h(1)ρ+ h(2)ρ2 + o(ρ2).



Proof. This simply follows from the calculations in [25]. Recall (2.5) from [25]

ρh′′ij + (1 − n)h′ij − hklh′klhij − ρhklh′ikh
′
jl +

1

2
ρhklh′klh

′
ij − 2ρRij [ĥ]

= ρ(Rij [g
+] + ng+ij),

(7.29)

where we use h to stand for hρ for simplicity. Taking its trace with respect to the metrics h,
we have

ρTrhh
′′ + (1− 2n)Trhh

′ − ρ‖h′‖2h +
1

2
ρ(Trhh

′)2 − 2ρR[ĥ]

= ρ−1(R[g+]−Ric[g+](x∂x) + n2)
(7.30)

Immediately from (7.26) we see that

Trhh
′ = 0 at ρ = 0.

Then, dividing ρ in both sides of the equation (7.30) and taking ρ→ 0, we have (7.28), under
the assumption (7.26), because

(Trhh
′)′ = Trĥh

′′ − ‖h′‖2
ĥ

at ρ = 0.

Notice that (7.26) is an intrinsic curvature condition of an asymptotically hyperbolic man-
ifold, which is independent of the choice of geodesic defining functions. Consequently we have
the following.

Lemma 7.8. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and (7.26)

holds. Then, given a point p on the boundary M , there exists a representative ĥ of the confor-
mal infinity such that,

i. H =: Trĥh
(1) = 0 on M ,

ii. Ric[ĥ](p) = 0 on M ,

iii Ric[ḡ](∂ρ)(p) = 0 on M ,

iv. R[ḡ](p) = ‖h(1)‖2
ĥ
on M .

Proof. The proof, like the proof of Lemma 3.3 in [16], uses Theorem 5.2 in [30]. Therefore we
may choose a representative of the conformal infinity whose Ricci curvature vanishes at any
given point p ∈M . In the light of Lemma 7.7 we get i. and ii. right away. We then calculate

Ric[ḡ](∂x) = −1

2
Trĥh

(2) +
1

4
‖h(1)‖2

ĥ
= 0

at p ∈M from (7.28). Finally we recall that

R[ḡ] = 2Ric[ḡ](∂ρ) +R[ĥ] + ‖h(1)‖2
ĥ
− (Trĥh

(1))2 = ‖h(1)‖2
ĥ
.

The proof is complete.

Assume that 0 ∈ M = ∂X̄ is a non-umbilic point. Choose normal coordinates x1, . . . , xn
around 0 on M and let (x1, . . . , xn, ρ) be the Fermi coordinates on X around 0. In particular,
we can write

g+ = ρ−2(dρ2 + hij(x, ρ)dxidxj), ḡ = dρ2 + hij(x, ρ)dxidxj .

In order to simplify the later notation, we denote the coordinate ρ by y. The only risk of
confusion comes from the fact that we have previously used y for the special defining function
ρ∗ from Proposition 2.2, but we will not need it any longer. In the new notation we have

ḡ = dy2 + hij(x, y)dxidxj

for some functions hij(x, y), i, j = 1, . . . , n. From what we have in the above two lemmas we
get from Lemma 3.1 and 3.2 of [16] the following.



Lemma 7.9. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold satisfying
(7.26). Given a non-umbilic point p on the boundary M , i.e. ‖h(1)‖ĥ(p) 6= 0 for p ∈M , where

ĥ is chosen as in Lemma 7.8. Then:

1.
√
|ḡ| = 1− 1

2 ‖π‖
2
y2 +O(|(x, y)|3).

2. ḡij = δij + 2πijy − 1
3R

i j
kl [ĥ]xkxl + ḡij,ymyxm +

(
3πimπm

j +Riy
j
y[ḡ]
)
y2 +O(|(x, y)|3),

where, for simplicity, we set π = h(1).

As in Proposition 5.4, we try to find a good test function for the Sobolev quotient given by

I∗γ [U, ḡ] =
d∗γ
∫
X
ya |∇U |2ḡ dvḡ +

∫
X
E(y)U2 dvḡ

(∫
M |U |2∗ dvĥ

) 2
2∗

,

where E(y) is given by (2.8), with respect to the metric ḡ:

E(y) =
n− 1− a

4n

[
R[ḡ]− (n(n+ 1) +R[g+])y−2

]
ya. (7.31)

We need to perform a careful computation of the lower order terms in order to find an estimate
for Λγ(M, [ĥ]). For simplicity, we introduce the following notation: for a subset Ω ⊂ R

n+1
+ , we

consider the energy functional restricted to Ω given by

K(U,Ω) := d∗γ

∫

Ω

ya |∇U |2ḡ dvḡ +
∫

Ω

E(y)U2 dvḡ

Given any ǫ > 0, let Bǫ be the ball of radius ǫ centered at the origin in R
n+1 and B+

ǫ

be the half ball of radius ǫ in R
n+1
+ . Choose a smooth radial cutoff function η, 0 ≤ η ≤ 1,

supported on B2ǫ, and satisfying η = 1 on Bǫ. We recall here the conformal diffeomorphisms
of the sphere wµ given in (5.8) and their extension Uµ as in (5.9). Our test function is simply

Vµ := ηUµ.

Step 1: Computation of the energy in B+
ǫ .

It is clear that in the half ball B+
ǫ , Vµ = Uµ, so that K(Vµ, B

+
ǫ ) = K(Uµ, B

+
ǫ ). We compute

the first term in the energy K(Uµ, B
+
ǫ ). Using the asymptotics for ḡ from Lemma 7.9 (here

the indexes i, j run from 1 to n),

∫

B+
ǫ

ya |∇Uµ|2ḡ dvḡ =
∫

B+
ǫ

ya
[
ḡij (∂iUµ) (∂jUµ) + (∂yUµ)

2
]
dvḡ

=

∫

B+
ǫ

ya |∇Uµ|2 dvḡ

+ 2πij
∫

B+
ǫ

ya+1 (∂iUµ) (∂jUµ) dvḡ

+

∫

B+
ǫ

ya+2
(
3πimπm

j +Riy
j
y[ḡ]
)
(∂iUµ) (∂jUµ) dvḡ

+

∫

B+
ǫ

ya+1ḡij,tkxk (∂iUµ) (∂jUµ) dvḡ

− 1
3

∫

B+
ǫ

yaRikl
j [ḡ]xkxl (∂iUµ) (∂jUµ) dvḡ

+ c

∫

B+
ǫ

ya |(x, y)|3 |∇Uµ|2 dvḡ

=: J1 + J2 + J3 + J4 + J5 + J6.

(7.32)



We estimate the first integral J1 in the right hand side of (7.32), using the estimate for the
volume element

√
|ḡ| from Lemma 7.9:

J1 =

∫

B+
ǫ

ya |∇Uµ|2 dvḡ

≤
∫

B+
ǫ

ya |∇Uµ|2 dxdy − 1
2 ‖π‖

2
∫

B+
ǫ

y2+a |∇Uµ|2 dxdy

+ c

∫

B+
ǫ

ya |∇Uµ|2 |(x, y)|3 dxdy

≤
∫

B+
ǫ

ya |∇Uµ|2 dxdy − 1
2 ‖π‖

2
µ2A1 + µ2o(1) + cµ3

[
Ẽ3 + o(1)

]
,

(7.33)

if we take into account the notation from (7.4) and Corollary 7.5.
Now we look closely at the equation for Uµ. Multiply expression (5.11) by Uµ and integrate

by parts:

∫

B+
ǫ

ya |∇Uµ|2 dxdy = cn,γ

∫

Γ0
ǫ

w2∗

µ dx +

∫

Γ+
ǫ

Uµ (∂νUµ) dσ ≤ cn,γ

∫

Γ0
ǫ

w2∗

µ dx, (7.34)

where ν is the exterior normal to B+
ǫ . Here we have used the properties of the convolution with

a radially symmetric, nonincreasing kernel Kγ . More precisely, since wµ is radially symmetric
and non-increasing, Uµ = Kγ ∗x wµ also satisfies ∂νUµ ≤ 0 on Γ+

ǫ (c.f. [8], Lemma 2.3, for
instance).

From (7.34), using (5.13), we arrive at

∫

B+
ǫ

ya |∇Uµ|2 dxdy ≤ Λ(Sm, [gc])(d
∗
γ)

−1

[∫

Γ0
ǫ

(wµ)
2∗ dx

]n−2γ
n

. (7.35)

For simplicity, we set Λ1 := Λ(Sm, [gc])(d
∗
γ)

−1. Equations (7.33) and (7.35) tell us that

J1 =

∫

B+
ǫ

ya |∇Uµ|2 dvḡ ≤ Λ1

[∫

Γ0
ǫ

(wµ)
2∗ dx

] 2

2∗

− 1
2 ‖π‖

2
µ2A1 + µ2o(1) + cµ3. (7.36)

On the other hand, the asymptotics for the metric ĥ = ḡ|y=0 near the origin are explicit.
Indeed, from Lemma 7.8 we know that

√
|ĥ| = 1 +O(|x|3). (7.37)

Moreover, we can compute from (5.10)

∫

Γ0
ǫ

(wµ)
2∗ |x|3 dx = µ3

∫

Γ0
ǫ/µ

(w1)
2∗ |x|3 dx ≤ cµ3.

Consequently, from (7.37) we are able to relate the integrals in dvĥ and dx:

∫

Γ0
ǫ

(wµ)
2∗ dx ≤

∫

Γ0
ǫ

(wµ)
2∗ dvĥ + cµ3.

And substituting the above expression into (7.36) we get

J1 =

∫

B+
ǫ

ya |∇Uµ|2 dvḡ ≤ Λ1

[∫

Γ0
ǫ

(wµ)
2∗ dvĥ

] 2

2∗

− 1
2 ‖π‖

2 µ2A1 + µ2o(1) + cµ3.



Now we go back to (7.32), and try to estimate the second term J2 in the right hand side.
If we again use the asymptotics of the metric ḡ given in Lemma 7.9, then

∫

B+
ǫ

ya+1 (∂iUµ) (∂jUµ) dvḡ ≤
∫

B+
ǫ

ya+1 (∂iUµ) (∂jUµ) dxdy + B, (7.38)

for

B ≤ c

∫

B+
ǫ

ya+3 |∇Uµ|2 dxdy + c

∫

B+
ǫ

ya+1|∇Uµ|2 |(x, y)|3 dxdy.

We notice here that B can be easily estimated from Corollary 7.5:

B ≤ cµ3(E3 + o(1)) + cµ3ǫ
(
Ẽ3 + o(1)

)
≤ cµ3 + µ3o(1). (7.39)

Let us look at the cross terms (∂iUµ)(∂jUµ), 1 ≤ i, j ≤ n in (7.38). We note that ∂iUµ =
Kγ ∗x (∂iwµ), just by taking the derivatives in the convolution. This last derivative can be
explicitly written, and in particular, ∂iwµ is an odd function in the variable xi. By the
properties of the convolution, we know that ∂iUµ is also an odd function in the variable xi.
Then, using the symmetries of the half ball, the integral

∫
B+

ǫ
ya+1(∂iUµ)(∂jUµ) dxdy is zero if

i 6= j. If i = j, we use that the mean curvature at the point vanishes, i.e., πii = 0 by Lemma
7.8. Then, when we substitute formula (7.38) in the expression for J2, only the error term
remains, and by (7.39) we conclude that

J2 = 2πij
∫

B+
ǫ

ya+1 (∂iUµ) (∂jUµ) dvḡ ≤ B ≤ µ3(c+ o(1)). (7.40)

Now we estimate the next term in (7.32), J3. Again using the asymptotics for the volume
element dvḡ from Lemma 7.9, we have that

∫

B+
ǫ

ya+2 (∂iUµ) (∂jUµ) dvḡ ≤
∫

B+
ǫ

ya+2 (∂iUµ) (∂jUµ) dxdy + B′, (7.41)

for

B′ ≤ c

∫

B+
ǫ

ya+4 |∇Uµ|2 dxdy + c

∫

B+
ǫ

ya+2 |(x, y)|3 |∇Uµ|2 dxdy

≤ µ4(E4 + o(1)) + µ3ǫ2(Ẽ3 + o(1)) ≤ cµ3,

where the last estimate follows thanks to Corollary 7.5 again.
Notice again that, for i 6= j the first integral in the right hand side of (7.41) vanishes

- thanks to the symmetries of the half ball and the discussion above on the oddness of the
derivatives of Uµ. Then, we recall the definition of A2 from (7.5) and the estimate (7.22).
When we put all these ingredients together:

J3 =
(
3πimπm

j +Riy
j
y[ḡ]
) ∫

B+
ǫ

ya+2 (∂iUµ) (∂jUµ) dvḡ

=
1

n

[
3 ‖π‖2 +Ric(ν)

]
µ2A2 + cµ3

=
3

n
‖π‖2 µ2A2 + µ2o(1) + cµ3.

if we take into account that Ric(ν)(0)[ĥ] = 0 because of Lemma 7.8.
Next, the calculation for J4 is very similar to the previous one. Indeed,

∫

B+
ǫ

ya+1xk (∂iUµ) (∂jUµ) dvḡ ≤
∫

B+
ǫ

ya+1xk (∂iUµ) (∂jUµ) dxdy + B′′,

and because of symmetries on the unit ball, the first integral in the right hand side above
vanishes for all i, j, k, while B′′ ≤ cµ3. Thus

J4 = ḡij,tk

∫

B+
ǫ

ya+1xk (∂iVµ) (∂jVµ) dvḡ ≤ cµ3.



And finally J5, J6 can be estimated in a similar manner.
Putting all the estimates together for the Jj , j = 1, . . . , 6, we have shown that (7.32)

reduces to

∫

B+
ǫ

ya |∇Uµ|2ḡ dvḡ ≤ Λ1

[∫

Γ0
ǫ

(wµ)
2∗ dvĥ

] 2

2∗

+
[
− 1

2A1 +
3
nA2

]
‖π‖2 µ2 +µ2o(1)+ cµ3. (7.42)

Finally, we are able to complete the computation of the energy K(Uµ, B
+
ǫ ). Note that in

the half ball B+
ǫ , we have a very precise behavior for the lower order term (7.31). In particular,

Lemma 7.8 gives that R[ḡ](p) = ‖π‖2, so

E(y) =
n− 1 + a

4n
‖π‖2 ya +O(y1+a). (7.43)

Then, again using the asymptotics for the volume element dvḡ,

∫

B+
ǫ

E(y)(Uµ)
2 dvḡ =

n− 1 + a

4n
‖π‖2

∫

B+
ǫ

ya(Uµ)
2 dxdy + B′′′, (7.44)

where

B′′′ ≤ c

∫

B+
ǫ

ya+1(Uµ)
2 dxdy + c

∫

B+
ǫ

ya |x|3 (Uµ)3 dxdy

can be estimated from Corollary 7.6 as

B′′′ ≤ cµ3 + o(1). (7.45)

Summarizing, from (7.44) and (7.45), and using the scaling properties of Uµ as given in (5.10),
we have

∫

B+
ǫ

E(y)(Uµ)
2 dvḡ ≤ n−1+a

4n ‖π‖2 µ2

∫

B+

ǫ/µ

ya(U1)
2 dxdy + cµ3

= n−1+a
4n ‖π‖2 µ2A3 + cµ2o(1) + cµ3,

(7.46)

where for the last inequality we have used Corollary 7.6 and the definition of A3 from (7.6).
The energy of Vµ in the half ball B+

ǫ is computed from (7.42) and (7.46), noting that
Λ1 = Λ(Sn, [gc])d

∗
γ , and the relation between A1,A2,A3 from Lemma 7.2:

K(Vµ, B
+
ǫ ) = d∗γ

∫

B+
ǫ

ya |∇Uµ|2 dvḡ +
∫

B+
ǫ

E(y)(Uµ)
2 dvḡ

≤ Λ(Sn, [gc])

[∫

Γ0
ǫ

(wµ)
2∗dvĥ

] 2
2∗

+
[
d∗γ
(
− 1

2A1 +
3
nA2

)
+ n−1+a

4n A3

]
‖π‖2 µ2 + µ2o(1) + cµ3

≤ Λ(Sn, [gc])

[∫

Γ0
ǫ

(wµ)
2∗ dvĥ

] 2
2∗

+ θn,γ ‖π‖2 µ2

∫

Rn

|ξ|2(γ−1) |ŵ1(ξ)|2 dξ + µ2o(1) + cµ3

for

θn,γ =
1

4n

[
−n+ a− 3

1− a
22γ+1 Γ(γ)

Γ(−γ) +
n− 1 + a

a+ 1

]
d1. (7.47)

Finally, we note that the w1 ∈ Hγ(Rn) and (|x|w) ∈ Hγ(Rn), so that all our computations
are well justified.

Step 2: Computation of the energy in the half-annulus B+
2ǫ\B+

ǫ .

In order to compute K(Vµ, B
+
2ǫ\B+

ǫ ), note that

|∇Vµ|2ḡ ≤ c|∇Vµ|2 ≤ c
(
η2|∇Uµ|2 + (Uµ)

2|∇η|2
)



so that, because of the structure of the cutoff function η,

|∇Vµ|2ḡ ≤ c|∇Uµ|2 +
c

ǫ
(Uµ)

2. (7.48)

Moreover, ∫

B+

2ǫ\B
+
ǫ

ya (Uµ)
2 dxdy ≤ µ2

∫

B+

2ǫ/µ
\B+

ǫ/µ

ya(U1)
2 dxdy = µ2o(1), (7.49)

because the integral
∫
Rn y

a(U1)
2 dxdy is finite and ǫ/µ → ∞. On the other hand, we know

that
(
ǫ

µ

)3 ∫

B+

2ǫ/µ
\B+

ǫ/µ

ya|∇U1|2 dxdy ≤
∫

B+

2ǫ/µ
\B+

ǫ/µ

ya |(x, y)|3 |∇U1|2 dxdy ≤ Ẽ3 <∞

because of Lemma 7.4. As a consequence,
∫

B+

2ǫ\B
+
ǫ

ya|∇Uµ|2 dxdy =

∫

B+

2ǫ/µ
\B+

ǫ/µ

ya|∇U1|2 dxdy ≤
(µ
ǫ

)3
Ẽ3. (7.50)

If we put together formulas (7.48), (7.49) and (7.50) we arrive at

K(Vµ, B
+
2ǫ\B+

ǫ ) =

∫

B+

2ǫ\B
+
ǫ

ya|∇Uµ|2 dxdy +
∫

B+

2ǫ\B
+
ǫ

E(y)(Uµ)
2 dxdy ≤ µ2o(1)

when µ/ǫ→ 0.

Step 3: Completion of the proof.

We have very carefully computed

K(Vµ, X) = d∗γ

∫

X

ya |∇Vµ|2 dvolḡ +
∫

X

E(y)(Vµ)
2 dvolḡ

≤ Λ(Sn, [gc])

[∫

Γ0
ǫ

(wµ)
2∗ dvĥ

] 2
2∗

+ θn,γ ‖π‖2 µ2

∫

Rn

|ŵ1(ξ)|2|ξ|2(γ−1) dξ + µ2o(1) + cµ3,

where θn,γ is given in (7.47).

If there is a non-umbilic point, ‖π‖2 6= 0 at that point. In the case that θn,γ < 0, we are
done, because fixing ǫ small and then choosing µ much smaller, then

K(Vµ, X) < Λ(Sn, [gc])

[∫

M

(wµ)
2∗ dvĥ

] 2

2∗

,

as desired.
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[7] X. Cabré and E. Cinti. Sharp energy estimates for nonlinear fractional diffusion equations.
Calculus of Variations and Partial Differential Equations, online 2012.
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