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RESEARCH

Genome insights into the pharmaceutical 
and plant growth promoting features 
of the novel species Nocardia alni sp. nov
Imen Nouioui1*, Sung‑min Ha2, Inwoo Baek3, Jongsik Chun3,4 and Michael Goodfellow5 

Abstract 

Background: Recent studies highlighted the biosynthetic potential of nocardiae to produce diverse novel natural 
products comparable to that of Streptomyces, thereby making them an attractive source of new drug leads. Many of 
the 119 Nocardia validly named species were isolated from natural habitats but little is known about the diversity and 
the potential of the endophytic nocardiae of root nodule of actinorhizal plants.

Results: The taxonomic status of an actinobacterium strain, designated  ncl2T, was established in a genome‑based 
polyphasic study. The strain was Gram‑stain‑positive, produced substrate and aerial hyphae that fragmented into 
coccoid and rod‑like elements and showed chemotaxonomic properties that were also typical of the genus Nocar-
dia. It formed a distinct branch in the Nocardia 16S rRNA gene tree and was most closely related to the type strains 
of Nocardia nova (98.6%), Nocardia jiangxiensis (98.4%), Nocardia miyuensis (97.8%) and Nocardia vaccinii (97.7%). A 
comparison of the draft genome sequence generated for the isolate with the whole genome sequences of its closest 
phylogenetic neighbours showed that it was most closely related to the N. jiangxiensis, N. miyuensis and N. vaccinii 
strains, a result underpinned by average nucleotide identity and digital DNA‑DNA hybridization data. Corresponding 
taxogenomic data, including those from a pan‑genome sequence analysis showed that strain  ncl2T was most closely 
related to N. vaccinii DSM  43285T. A combination of genomic, genotypic and phenotypic data distinguished these 
strains from one another. Consequently, it is proposed that strain  ncl2T (= DSM  110931T = CECT  30122T) represents 
a new species within the genus Nocardia, namely Nocardia alni sp. nov. The genomes of the N. alni and N. vaccinii 
strains contained 36 and 29 natural product‑biosynthetic gene clusters, respectively, many of which were predicted to 
encode for a broad range of novel specialised products, notably antibiotics. Genome mining of the N. alni strain and 
the type strains of its closest phylogenetic neighbours revealed the presence of genes associated with direct and indi‑
rect mechanisms that promote plant growth. The core genomes of these strains mainly consisted of genes involved in 
amino acid transport and metabolism, energy production and conversion and transcription.

Conclusions: Our genome‑based taxonomic study showed that isolate  ncl2T formed a new centre of evolutionary 
variation within the genus Nocardia. This novel endophytic strain contained natural product biosynthetic gene clus‑
ters predicted to synthesize novel specialised products, notably antibiotics and genes associated with the expression 
of plant growth promoting compounds.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  imen.nouioui@dsmz.de
1 Department of Microorganisms, Leibniz Institute DSMZ–German 
Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, 
Germany
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-08257-y&domain=pdf


Page 2 of 13Nouioui et al. BMC Genomics           (2022) 23:70 

Introduction
The actinobacterial genus Nocardia [1], the type genus 
of the family Nocardiaceae [2] emend. Zhi et al. [3], has 
a long and convoluted taxonomic history mainly due 
to an overreliance placed on morphological properties 
[4, 5]. The application of polyphasic taxonomic pro-
cedures led to marked improvements in the classifica-
tion of nocardiae and related mycolic acid containing 
actinobacteria [6]. In general, the genus encompasses 
aerobic, Gram-stain-positive, acid-alcohol-positive, 
nonmotile, chemoorganotrophic actinobacteria which 
form rudimentary to extensively branched substrate 
hyphae that fragment into coccoid to rod-shaped 
elements, aerial hyphae may only be visible micro-
scopically; the diamino acid of the peptidoglycan is 
meso-diaminopimelic acid  (A2pm), the characteristic 
whole-organism sugars are arabinose and galactose; 
diphosphatidylglycerol, phosphatidylethanolamine, 
phosphatidylinositol and phosphatidylinositol manno-
sides are the major polar lipids; the fatty acids consist 
of straight-chain, saturated, unsaturated and 10-methyl 
(tuberculosteric) components; mycolic acids have 
46-64 carbon atoms and up to four double bonds; the 
predominant respiratory quinone is a hexahydrogen-
ated menaquinone with eight isoprene units where the 
two end ones are cyclized (MK-8[H6-ω-cyclo]) and the 
DNA G+C content ranges from 63-72 mol% [5, 7].

Many of the 119 Nocardia species with validly pub-
lished names (https:// www. bacte rio. net/) are recognized 
using combinations of genotypic and phenotypic prop-
erties [7–9]. Most of these taxa are composed of strains 
isolated from natural habitats but the best-known species 
contain causal agents of serious suppurative and granu-
lomatous diseases in humans and animals, especially 
mycetoma and nocardiosis [10–12]. In contrast, Nocar-
dia vaccinii produces galls on blueberry plants [13]. Soil 
is probably the primary reservoir for Nocardia strains as 
they are found in diverse soil types, including acidic for-
est [14, 15], arid [16], Cerrado [17], karst cave [18], rhizo-
sphere [19, 20] and saline soils [21, 22]. However, they 
have also been isolated from marine habitats, especially 
from sponges [23, 24], as well as from the gut of fungus-
growing termites [25] and are increasingly being isolated 
from plant tissue [26], notably from nodules of actinorhi-
zal plants suggesting that they may have a role in promot-
ing plant growth and inhibiting phytopathogens [27, 28]. 
Two Nocardia strains isolated from Casuarina glauca 
nodules induced root nodule-like structures in the origi-
nal host plant [29].

Nocardiae are an important source of novel antibiotics 
[30, 31], as exemplified by the production of amicouma-
cin B from Nocardia jinanensis [32], asterobactin from 
Nocardia asteroides [33], brasilicardin A from Nocardia 
brasiliensis [34], nocardicins from Nocardia uniformis 
subsp. tsuyamanensis [35] and tubelactomicin A from 
Nocardia vinacea [36]. A comparative survey of nocar-
dial genomes showed that their biosynthetic potential to 
produce diverse novel natural products is comparable to 
that of better studied actinobacterial taxa, such as Amy-
colatopsis and Streptomyces, thereby making them an 
attractive source of new drug leads [37]. These research-
ers showed that Nocardia strains from diverse sources, 
including clinical material, were equally spread across six 
phylogenetic clades and found that the genomes of the 
more pathogenic strains were, on average, slightly smaller 
than those of most of the other genomes (7.4 Mbp against 
7.8 Mbp) and contained fewer BGCs (32.5 against 36.5). 
Similarly, information from the genome of Nocardia cyr-
iacigeorgica shows evidence of adaptation from a sapro-
phytic to a pathogenic lifestyle [38].

The present study was designed to establish the taxo-
nomic status of Nocardia strain  ncl2T, isolated from a 
root nodule of an actinorhizal plant, and to determine its 
biotechnological and ecological potential. The strain was 
the subject of a genome-based taxonomic study which 
showed that it formed a new centre of evolutionary vari-
ation within the genus Nocardia, the name proposed for 
this organism is Nocardia alni sp. nov. with isolate  ncl2T 
as the type strain. The genomes of N. alni and N. vaccinii 
strains contained natural product biosynthetic gene clus-
ters predicted to synthesize novel specialised products, 
notably antibiotics and genes associated with the expres-
sion of plant growth promoting compounds. Statistical 
comparison between genomic features of the isolate and 
its taxogenomic neighbours were undertaken to establish 
any positive correlations between them.

Materials and methods
Isolation, maintenance and cultivation
Strain  ncl2T was isolated from a root nodule of an Alnus 
glutinosa plant growing in Leazes Park, Newcastle upon 
Tyne, UK, as described in Ghodhbane-Gtari et  al. [27]. 
The permission to collect the root nodules was obtained 
and this study complies with local and national regula-
tions. Sterile lobes of harvested nodules prepared using 
the procedure described by these workers were placed 
onto BAP agar plates [39] which were incubated until 
single actinobacterial colonies were detected. One such 

Keywords: Genome mining, Plant growth promoting properties, Polyphasic taxonomy, Putatively novel antibiotics
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strain was checked for purity and maintained in 35% 
(w/v) glycerol at -80°C, as was Nocardia vaccinii DSM 
 43285T obtained from the German Collection of Micro-
organisms and Cell Cultures (DSMZ). Working cultures 
of these strains were kept on yeast extract-malt extract 
agar slopes (International Streptomyces Project [ISP] 
medium 2) [40]. Biomass for the chemotaxonomic anal-
yses carried out on the strains was harvested from ISP2 
broths shaken at 200 rpm in baffled flasks for 7 days at 
28°C. The harvested cells were washed in distilled water 
and freeze dried.

Chemotaxonomic, cultural and morphological properties
Smears from ISP2 agar slopes of the isolate were Gram-
stained using Hucker’s modification [41] and the pres-
ence of fragmenting branched hyphae sought by light 
microscopy. The isolate was examined for its ability 
to grow over a wide range of temperatures (4°C, 10°C, 
15°C, 25°C, 28°C, 37°C, 42°C and 45°C) using ISP2 agar 
as the basal medium. Growth and cultural properties 
were recorded on GYM (DSMZ medium 65), nutrient 
agar (NA), peptone-meat extract-glucose agar (DSMZ 
medium 250) and tryptic soy agar (TSA) after 7 days at 
28°C.

The isolate and N. vaccinii DSM  43285T were examined 
for chemotaxonomic properties known to be of value in 
nocardial systematics [5, 25]. Standard chromatographic 
procedures were used to establish the diamino acid of 
the wall peptidoglycan [42], whole organism sugars [43] 
and polar lipid profiles [44]). Cellular fatty acids were 
extracted and methylated after Miller [45], as modified 
by Kyukendall et al. [46], and analysed by gas chromatog-
raphy (Agilent instrument, model 6890N). The resultant 
peaks were identified using the Standard Microbial Iden-
tification (MIDI) system, version 4.5 and the ACTINO6 
database [47]. Mycolic acids were extracted using the 
procedure described by Minnikin and Goodfellow [48], 
purified and their profiles determined by gas chromatog-
raphy (Agilent instrument, model 6890N).

Genome sequencing
Genomic DNA was extracted from wet biomass of a 
single colony of isolate  ncl2T grown on ISP2 agar for 10 
days at 28°C. The extracted DNA was purified and quan-
tified following the protocol of MicrobesNG, Birming-
ham (UK). Genomic DNA libraries and sequencing were 
achieved using an Illumina HiSeq instrument and the 
250bp paired end protocol, as used in the service pro-
vided by MicrobesNG. The draft genome sequence was 
annotated using the RAST-SEED webserver with default 
options [49].

Phylogeny
An almost full length 16S rRNA gene sequence (1523 
bp) extracted directly from the draft genome sequence 
of isolate  ncl2T was deposited in the GenBank data-
bases under accession number MZ014381. The resultant 
gene sequence was compared with corresponding gene 
sequences of closely related Nocardia strains retrieved 
from the EzBioCloud server [50]. Phylogenetic trees 
based on single 16S rRNA genes and corresponding 
genome sequences were inferred using the Type Strain 
Genome Server (TYG), the high throughput Genome 
to Genome Distance Calculator (GGDC) webserver of 
Meier-Kolthoff et  al. [51]. Average nucleotide identity 
(ortho ANI, [52]) and digital DNA-DNA hybridization 
(dDDH) [53] similarities were determined between the 
isolate and its phylogenomic neighbours using the ANI 
calculator from the EZBioCloud (http:// www. ezbio cloud. 
netto ols/ ani) and the GGDC webservers, respectively. 
The type strain of Nocardia casuarinae, isolated from 
root nodules of Casuarina glauca [27] was included for 
comparative purposes, as was that of Nocardia pseudo-
brasiliensis which was isolated from a leg abscess of a 
patient suffering from ulcerative colitis [54].

Comparative genomic analyses
The genome sequence of isolate  ncl2T was compared 
with that of N. vaccinii NBRC  15922T (GenBank acces-
sion number BDCC00000000.1), its nearest taxogenomic 
neighbour, and with those of other phylogenomic rela-
tives, namely Nocardia jiangxiensis NBRC  101359T (Gen-
Bank accession number BAGB00000000.1), Nocardia 
miyunensis NBRC  108239T (GenBank accession number 
BDBQ00000000.1), as well as with N. casuarinae BMG 
 51109T (GenBank accession number JAFQ00000000) 
and N. pseudobrasiliensis DSM  44290T (GenBank acces-
sion number QQBC00000000.1). These strains were from 
diverse sources, namely from bud-proliferating galls on 
blueberry [13], the rhizosphere of goose-grass (Eleusine 
indica), a pine forest soil [14], the root nodule of Casu-
arina glauca and a leg abscess of the patient with ulcera-
tive colitis, respectively. The draft genome assemblies of 
the strains were annotated using the RAST-SEED web-
server [49, 55] with default options.

Genome-based species identification was achieved 
using the TrueBac ID System v1.92, DB:20190603 
[https:// www. trueb acid. com/] [56] and the algorithm 
proposed by Chun et  al. [57]. For the comparative 
genomic analyses, homologous regions in the target 
genomes were determined to query ORFs using the USE-
ARCH program version v8.1.1861, and aligned using a 
pairwise global alignment [58]. The matched region in 
the subject contig was extracted and saved as a homolog.

http://www.ezbiocloud.nettools/ani
http://www.ezbiocloud.nettools/ani
https://www.truebacid.com/
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A pairwise gene-to-gene comparison of each genome 
was conducted using USEARCH and the gene contents 
among the isolates and related strains compared using 
the reciprocal homology search tool as described in 
Chun et  al. [59] and Ha et. al [60]. Reciprocal relations 
are determined if two different genes give bidirectionally 
top hits to one another. A pairwise orthologous group is 
defined if the pair of genes has reciprocal relations. The 
term pairwise orthologous groups (POGs) was coined for 
these collections of reciprocally linked orthologs. After 
the initial grouping, partial genes that are grouped due 
to their short sequence length are targeted for clustering 
analysis against the POGs using UCLUST (≥95 % iden-
tity). The coding sequences (CDSs) were classified into 
groups based on their roles, with reference to ortholo-
gous groups (EggNOG 4.5;  http:// eggno gdb. embl. de) 
[61].

Statistical comparisons of the genomic properties of 
the isolate and those of closely related strains (genome 
size, digital G+C content, number and median length of 
codon sequences) were carried out to determine possible 
correlations between them.

Phenotypic properties
Strain  ncl2T and N. vaccinii DSM  43285T were screened 
for a broad range of phenotypic properties, including 
their ability to metabolize diverse sole carbon and nitro-
gen sources, to grow in the presence of several concentra-
tions of sodium chloride, at a range of pH values and in 
the presence of antibiotics using GENIII microplates and 
an OMNILOG device (Biolog Inc., Hayward, CA, USA), 
as described previously [8]. The resultant data were ana-
lysed using version 1.3.36 of the OPM package [62, 63]. 
They were also tested for their ability to produce niacin, 
arylsulfatase after 3 days [64], and to reduce tellurite [65]. 
All of these tests were carried out in duplicate using a 
standard inoculum. Enzymatic and additional metabolic 
properties of the strains were determined using API-
ZYM kits and the protocol provided by the manufacturer 
(Biomerieux, France).

Results and discussion
Chemotaxonomic, cultural and micromorphological 
properties
Isolate  ncl2T showed a range of phenotypic properties 
consistent with its classification in the genus Nocardia 
[5]. It is aerobic, Gram-strain-positive and forms exten-
sively branched substrate hyphae and aerial hyphae 
that fragment into coccoid to rod-like elements. Beige-
pinkish aerial mycelia were formed on DSMZ 65; ISP2 
and TSA agar after 10 days at 28°C and 37°C (Fig. S1). 
The strain grew well on DSMZ 65 and ISP2 agar at 
28°C and 37°C, but not at 4°C, 10°C, 15°C, 25°C, 42°C 

or 45°C, nor did it grow on nutrient agar. It contained 
meso-A2pm as the diamino acid of the peptidoglycan, 
arabinose, galactose and glucose as cellular sugars; 
mycolic acids with 42-62 carbon atoms; the major fatty 
acids (>10%) were  C16.0 and  C18.1 ω9c (Table S1) and the 
polar lipid pattern consisted of diphosphatidylglycerol 
(DPG), phosphatidylethanolamine (PE), phosphati-
dylinositol (PI), phosphoglycolipid (PGL), and uniden-
tified phospholipids (PL1-2), aminolipid (AL) and lipids 
(L1-2) as shown in Fig. S5.

Phylogeny
The phylogenetic tree (Fig.  1) shows that strain  ncl2T 
forms a distinct branch in the Nocardia 16S rRNA gene 
tree which lies between lineages composed of the type 
strains of Nocardia nova [66], Nocardia aobensis [67], 
Nocardia cerradoensis [17], and N. vaccinii, and N. 
jiangxiensis and N. miyunensis, respectively. The close 
relationship between the N. jiangxiensis and N. miyun-
ensis strains has been recorded repeatedly [14, 24, 25, 
68, 69]. Isolate  ncl2T was most closely related to N. 
nova NBRC  15556T, these strains shared a 16S rRNA 
gene sequence similarity of 98.6%, which corresponds 
to 20 nucleotides differences. It also showed relatively 
low sequence similarities with the N. aobensis (97.2%), 
N. cerradoensis (97.0%), N. jiangxiensis (98.4%), N. 
miyunensis (97.8%) and N. vaccinii (97.7%), these rela-
tionships were not supported by high bootstrap values 
(Fig. 1).

Greater confidence can be placed in the topology 
of phylogenomic tree when compared against corre-
sponding 16S rRNA gene tree as the former is based on 
millions, not hundreds, of unit characters [70]. The phy-
logenomic tree (Fig. 2) shows that isolate  ncl2T forms a 
distinct branch that is most closely related to an evolu-
tionary group composed of the type strains of N. jiangx-
iensis, N. miyunensis and N. vaccinii, a relationship 
supported by a 100% bootstrap value. The members of 
this lineage form a subclade next to a well-supported 
taxon composed of the type strains of N. aobensis, N. cer-
radoensis and N. nova.

The recommended threshold used to distinguish 
between closely related strains based on ANI and DDH 
values are 95% to 96% and 70%, respectively [57, 71]. 
Table 1 shows that on this basis isolate  ncl2T can be dis-
tinguished from its closest phylogenomic neighbours and 
from the type strains of N. casuarinae and N. pseudobra-
siliensis. It is also clear that it is most closely related to 
the N. jiangxiensis, N. miyunensis and N. vaccinii strains 
although the shared ANI and dDDH similarities are low 
falling within the range 80.2% to 80.7% and 24.4% to 
24.9%. respectively.

http://eggnogdb.embl.de
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Genome features
Key genomic features of the isolate and the associated 
reference strains are shown in Table 2 The in silico G+C 
content of the strains fall within a narrow range, namely 
66.7 to 68.9%. In contrast, the corresponding genomes 
show more variation ranging from 8.4 up to 10.5 Mbp in 
size. The isolate is most closely related to N. vaccinii DSM 

 43285T, as these strains have genomes of a similar size 
(9.9 Mbp and 9.2 Mbp, respectively), very similar dG+C 
values (67.0% and 66.7%, respectively), and a similar 
number of CDCs (8969 and 8502) and tRNA genes (49). 
In contrast, the N. jiangxiensis and N. miyunensis strains 
have larger genomes, namely 10.45 and 10.52 Mbp, 
respectively, and a similar, albeit larger, number of CDS; 

Fig. 1 Maximum‑likelihood tree based on almost complete 16S rRNA gene sequences showing relationships between isolate  ncl2T and the type 
strains of closely related Nocardia species. The numbers at the nodes are bootstrap support values greater than 60%. The root position of the tree 
was determined using Rhodococcus rhodochrous NBRC  16069T; the type strain of the type species of the genus Rhodococcus 

Fig. 2 Phylogenomic tree showing relationships between isolate  ncl2T and the type strains of closely related Nocardia species using the TYG 
webserver. The numbers at the nodes are bootstrap values greater than 60%
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these results underpin the close relationship between 
these strains as found in 16S rRNA gene sequence analy-
ses. The N. pseudobrasiliensis strain, a representative of a 
species associated with invasive human diseases [54], has 
the smallest genome, thereby providing further evidence 
that genome sizes of clinically significant nocardiae are 
lower than corresponding results from non-pathogenic 
strains [37]. It is also interesting that the type strain of N. 
casuarinae, which induces root nodule formation in C. 
glauca, has a genome size similar to that of N. pseudobra-
siliensis DSM  44285T. 

A comparison of the taxogenomic features (genome 
size, digital GC content, number of CDSs, median length 
of CDS) of strain  ncl2T and the five associated refer-
ence strains shows that the number of CDSs is positively 
correlated with genome size and with the coefficient 
of determination (R2=0.94), this means that 94% of 
the data points support the predicted regression lines 
(y=c[176]+c[896]x), shown in Fig.  S2. The frequency 
plot of the pan genome orthologous groups (POGs) of 
the strains highlight POGs involved in amino acid and 
carbohydrate metabolism, information storage and pro-
cessing (eg. recombination and replication) and cellular 
processes and signaling (Fig. S3). However, no clear cor-
relation was found between genome size and the number 

of orthologous gene groups though the frequency plots 
of the POGs for the genomes of the N. casuarinae, N. 
jiangxiensis, N. miyunensis strains were similar with little 
evidence of quantitative variation.

Comparison of the functional categories between genes 
in the core and pan genomes using COG/EggNog soft-
ware gives results in good agreement with those found 
in the SEED analysis. Apart from genes with unknown 
function and unassigned categories, the core genomes 
are composed mainly of genes involved in amino acid 
transport and metabolism, energy production, and con-
version and transcription, as shown in Fig. S4a. However; 
the pan genome of the strains also contain genes asso-
ciated with carbohydrate metabolism, clustering based 
systems and the metabolism of amino acids and deriva-
tives, as presented in Fig.  S4b. Around 75% of the core 
genomes are composed of genes assigned to defined cate-
gories whereas less than 40% of those in the pan genomes 
are associated with functional categories based on COG 
and SEED pathways. When the strains were examined 
for strain specific CDSs the highest number were for 
strain  ncl2T with 2162 and the N. pseudobrasiliensis DSM 
 44290T with 2187. The highest similarity was between the 
pan genome of strain  ncl2T and its closest taxogenomic 
neighbour, N. vaccinii, then by the N. jiangxiensis, N. 
miyunensis strains which were isolated from acidic soil; 
no correlation was found between the genome gene con-
tents of the strains and the habitats from which they were 
isolated.

Phenotypic properties
Identical results were obtained for nearly all of the dupli-
cated cultures included in the phenotypic tests. Table  3 
shows that the isolate can be distinguished from N. vacci-
nii DSM  43285T as it produced niacin, utilized L-alanine 
and L-serine and an extensive range of organic com-
pounds, including β-gentiobiose, dextrin, D-maltose, 
D-mannose, pectin, D-raffinose, L-rhamnose, sucrose, 
D-trehalose and D-turanose, was resistant to fusidic 
acid, lincomycin, minocycline, troleandomycin and 

Table 1 Average nucleotide identity (ANI) and digital DNA‑
DNA hybridization (dDDH) values between strain  ncl2T and its 
closest phylogenomic neighbours and with the type strains of N. 
casuarinae and Nocardia pseudobrasiliensis 

Species Strain designation dDDH values ANI values

N. aobensis NBRC  100429T 22.4 77.9

N. casuarinae BMG 51109 T 23.0 78.9

N. cerradoensis NBRC  101014T 22.4 77.8

N. jiangxiensis NBRC 101359 T 24.6 80.6

N. miyunensis NBRC 108239 T 24.9 80.7

N. nova NBRC  15556T 22.4 77.9

N. pseudobrasiliensis DSM  44290T 22.4 78.7

N. vaccinii NBRC  15922T 24.4 80.2

Table 2 Genomic features of isolate  ncl2T (1) and the type strains of N. vaccinii (2), N. miyunensis (3), N. jiangxiensis (4), its closest 
phylogenetic relatives, and with those of Nocardia casuarinae (5) and N. pseudobrasilensis (6)

Genomic features 1 2 3 4 5 6

Genome size (Mbp) 9.9 9.2 10.5 10.4 8.8 8.4

Digital G+C content 67.0 66.7 66.9 66.7 68.9 67.3

No. of rRNA genes 12 4 4 3 9 8

No. of tRNA genes 49 49 49 49 56 51

No. of CDSs 8969 8502 9567 9695 7746 7949

Median length of CDS (bp) 831 816 831 822 819 822
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vancomycin, and grew in the presence of lithium chlo-
ride, guanidine hydrochloride, sodium bromate, sodium 
chloride (4% and 8%), tetrazolium blue and tetrazolium 
violet. In contrast, only the N. vaccinii strain utilized 
α-keto-glutaric acid, L-malic acid, mucic acid, propionic 
acid and bromo-succinic acid, it also showed greater 
activity in the API-ZYM tests.

Strains  ncl2T and N. vaccinii NBRC  15922T can also 
be distinguished using chemotaxonomic and genomic 
traits. They showed qualitative and quantitative differ-
ences in fatty acid profiles, as exemplified by the pres-
ence of a trace of  C17:1ω9c and a high proportion of 

 C18:010-methyl in the N. vaccinii strain and a higher pro-
portion of  C18:1ω9c in the isolate (24.4% against 9.6%) 
(Table  S1). These properties distinguish them from the 
type strains of N. jiangxiensis and N. miyunensis as shown 
in Table S1. Further, only the isolate contains glucose in 
whole cell hydrolysates and unidentified aminolipid and 
glycolipid in its polar lipid profile, unlike N. vaccinii DSM 
 43285T (Fig. S5). The isolate contains mycolic acids rang-
ing from 42 to 62 carbons with predominant amounts of 
C42 and C44 whereas the N. vaccinii strain has mycolic 
acids ranging from 52 to 62 carbons with C54, C56, and 
C58 as major components. Both strains have meso-A2pm 

Table 3 Phenotypic, enzymatic and biochemical properties that distinguish strain  ncl2T from Nocardia vaccinii DSM  43285T

+, positive result; -, negative result

Both strains reduced potassium tellurite and gave positive results for acid phosphatase, β-galactosidase α-glucosidase; oxidized, D-glucose, D-gluconic acid, 
glycerol, and myo-inositol (sugars); acetic acid, acetoacetic acid, butyric acid, β-hydroxy-butyric acid, α-keto-butyric acid, citric acid, and D-saccharic acid, (organic 
acids); L-arginine, L-glutamic acid and D-serine #2 (amino acids); were resistant to nalidixic acid, and rifamycin sv (antibiotics); and grew in presence of potassium 
tellurite, and Tween 40 (inhibitory compounds); and in the presence 1% sodium lactate, sodium chloride (1%) (salts) and at pH 5- 6. The strains gave negative results 
for arylsulfatase after 3 days, D-fucose, L-fucose, D-fructose, D-fructose-6-phosphate, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, D-glucose-6-phosphate, 
glucuronamide, 3-O-methyl-D-glucose, β-methyl-D-glucoside, α-D-lactose, D-melibiose, D-salicin, D-sorbitol, and D-stachyose (sugars); D-gluconic acid, D-malic acid, 
N-acetyl-neuraminic acid, and L-pyroglutamic acid (organic acids), D-aspartic acid, glycine-proline, L-histidine, and D-serine #1 (amino acids); inosine (nucleoside); 
aztreonam (antibiotic); gelatin (polymer), niaproof, and sodium formate (inhibitory compounds); α-fucosidase; α-galactosidase, N-acetyl-β-glucosaminidase; 
β-glucuronidase, and α-mannosidase (API-ZYM tests)

Characteristics Isolate 
ncl2T

N. vaccinii 
DSM 
43285T

GEN III Biolog microplate tests
 Sugars:

 D‑Cellobiose, D‑galactose, β‑gentiobiose, D‑maltose, D‑mannose, D‑raffinose, L‑rhamnose, sucrose, D‑trehalose, and 
D‑turanose

+ ‑

 Polymers:
 Dextrin, pectin + ‑

 Tolerance to:
 Lithium chloride, guanidine hydrochloride, sodium bromate, sodium chloride (4% and 8%), tetrazolium blue, and tetrazo‑
lium violet

+ ‑

Sugar alcohols:
 D‑Arabitol + ‑

 D‑Mannitol ‑ +
Oxidation of amino acids:
 L‑Alanine, L‑serine + ‑

 L‑Aspartic acid ‑ +
Resistant to:
 Fusidic acid, lincomycin, minocycline, troleandomycin, and vancomycin + ‑

Sugar acids:
 L‑Galactonic acid‑γ‑lactone, andD‑galacturonic acid + ‑

Organic acids
 γ‑amino‑n‑Butyric acid, α‑hydroxy‑butyric acid, L‑lactic acid, D‑lactic acid methyl ester, p‑hydroxy‑phenylacetic acid, 
methyl pyruvate, and quinic acid,

+ ‑

 α‑keto‑Glutaric acid, L‑malic acid, mucic acid, propionic acid, and bromo‑succinic acid, ‑ +
API ZYM tests:
 Alkaline phosphatase, α‑chymotrypsin, cystine aminopeptidase, esterase (C4), esterase lipase (C8), lipase (C14), trypsin, 
and valine aminopeptidase

‑ +

Other tests:
Niacin + ‑
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as the diamino acid of the wall peptidoglycan, arabinose 
and galactose as diagnostic whole cell sugars and  C16:0 as 
the major fatty acids. Furthermore, the genome size of 
the isolate is larger than that of the N. vaccinii strain (9.9 
against 9.2 Mbp).

Specialized metabolite biosynthetic gene clusters
Antismash 5.0 [72] predicts NP-BGCs based on the 
percentage of genes from the closest known bioclusters 
which show BLAST hits to the genomes of the strains 
under consideration. The genomes of strain  ncl2T and N. 
vaccinii NBRC  15922T contained 36 and 29 well-defined 
bioclusters that are predicted to encode for a broad 
range of specialized metabolites albeit with low levels of 
gene identity, as shown in Table S2. The genomes of the 
strains are well equipped to synthesize non-ribosomal 
peptide syntethases, type I polyketides, ribosomally syn-
thesized and post-translationally modified peptides, as 
well as betalactone (3% gene similarity) and carotenoid-
like terpene (18% gene similarity) compounds. They have 
the genetic capacity to produce products most closely 
related to himastatin (3% gene similarity), an antitumor 
antibiotic produced by Streptomyces hygroscopicus [73], 
steffimycin D (8% gene similarity), which was initially 
produced by a Streptomyces strain and inhibits ras-onco-
gen expressed cells [74], and teicoplanin, a product of a 
Streptomyces strain that inhibits growth of Gram-positive 
bacteria, including Enterococcus faecalis and methicillin-
resistant Staphylococcus aureus (MRSA) strains [75]. The 
strains also contain bioclusters predicted to synthesise 
arylpolyene-like compounds that are structurally and 
functionally similar to caretonoids [76] and which show 
antimicrobial and antioxidant activity [77]. They also 
have bioclusters predicted to encode for ectoine (100% 
gene similarity), a protective molecule which enables 
bacteria to survive extreme conditions [78].

The genome of strain  ncl2T, unlike that of N. vaccinii 
NBRC  15922T, contains presumptive NP-BGCs associ-
ated with the synthesis of amycolamycin A and B (2% 
gene similarity), type I polyketides that are cytotoxic 
for breast cancer cell lines [79], pepticinnamin E (6% 
gene similarity) which has the potential to treat cancer 
and malaria [80] and echosides A, B, C, D and E (11% 
gene similarity) and stambomycin A to D (36% gene 
similarity),which are antitumor antibiotics [81]. Strain 
 ncl2T also contains bioclusters predicted to encode for 
the antitubercular polyketides atratumycin (7% gene 
similarity) and capreomycin A and B (6% gene similar-
ity), which are produced by ‘Streptomyces aratus’ and 
‘Streptomyces capreolus’, respectively [32, 82]. Additional 
presumptive bioclusters are linked to the synthesis of 
lasolocid (3% gene similarity), a betalactone produced 
by ‘Streptomyces lasaliensis’, which has antibacterial and 

coccidiostatic properties [83] and tiacumicin B (3% gene 
similarity), a type I polyketide active against nosocomial 
diarrahea caused by Clostridium difficile [84]. Other bio-
clusters are predicted to encode for the antifungal agents 
fengycin (3% gene similarity) and nystatin (31% gene sim-
ilarity) that are produced by Bacillus subtilis and Strepto-
myces noursei strains, respectively [85–87].

The genome of the N. vaccinii strain harbours sev-
eral bioclusters absent from that of strain  ncl2T, includ-
ing ones predicted to encode for polyketides (Table S2). 
These bioclusters include cyphomycin (2% gene similar-
ity), which is produced by a Streptomyces strain and is 
used to control multidrug resistant fungal pathogens [88] 
and caniferolides A- D, that are synthesized by Strepto-
myces caniferus and inhibit the growth of Candida albi-
cans and Aspergillus spp. [89]; caniferolide A has been 
used to treat Alzheimer’s disease [90]. Further, the N. 
vaccinii strain has the genetic capacity to synthesise 
cremimycin MJ635-86F5 and tetarimycins A and B, these 
antibiotics are produced by Streptomyces strains and 
show activity against MRSA strains [91, 92]. In addition, 
the strain contains a presumptive biocluster associated 
with the expression of leinamycin (2% gene similarity), 
a betalactone terpene produced by Streptomyces atrooli-
vaceus which shows antibacterial and antitumor activity 
[93].

It can be concluded that strain  ncl2T and N. vaccinii 
NBRC  15928T have genomes rich in NP-BGCs, notably 
ones predicted to express for putatively novel polyketide 
and non-ribosomal peptide compounds thereby pro-
viding further evidence that nocardiae are a potentially 
prolific source of new bioactive compounds [37]. It is 
particularly interesting that these strains have the capac-
ity to synthesise antifungal and antibiotics given their 
association with plant tissues. Clearly, nocardiae should 
feature more prominently in natural product discovery 
campaigns.

Plant growth promoting properties
Comparative genome mining of strain  ncl2T and the 
type strains of N. jiangxiensis, N. miyunensis and N. vac-
cinii, its closest phylogenomic neighbours, revealed the 
presence of genes associated with direct (eg. phosphate 
solubilization, phytohormone production) and indirect 
(eg. lytic enzyme and siderophore production) mecha-
nisms that promote plant growth. Nocardia casuarinae 
 BMG51109T and N. pseudobrasiliensis DSM  44290T were 
included in these analyses to represent taxa isolated from 
plant and clinical sources, respectively [27, 54].

Microbes have a pivotal role in making phosphorus 
available to plants [94] either enzymatically [95] or by 
producing organic acids and siderophores and other 
molecules that solubilize inorganic phosphate [96, 97]. 
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The genome of all of the strains, apart from that of the 
N. pseudobrasiliensis DSM  44290T, contained genes 
associated with phosphate regulation and metabolism 
(Table  S3). These included gene ppx-gppA, which is 
responsible for the solubilization of inorganic polyphos-
phate [98] and gene pstS which encodes for phosphate 
binding protein PstS that is involved in the production of 
the phosphate ABC transporter [99]. The pstS gene was 
not detected in the genome of the clinical isolate thereby 
suggesting a possible correlation between the environ-
mental origin of the other strains, namely soil and plant 
tissues, and phosphate metabolism. The genome of all 
of the strains contained gene senX3 which is associated 
with the production of histidine kinase, a high affinity 
phosphate transporter which has a role in controlling the 
phosphate regulon [100].

Phytohormones have a central role in plant growth 
[101], notably indole -3-acetic acid (IAA) and ethylene; 
the levels of these and other auxins in plants can be reg-
ulated by soil microorganisms able to synthesize them 
[102]. The genome of all of the strains contained genes 
encoding for indole-3-glycerol phosphate synthase, the 
precursor of IAA in the tryptophan biosynthetic path-
way in plants [103]. They also contained genes encoding 
for other components of this pathway, including anthra-
nilate phosphoribosyl transferase (trpD), anthranilate 
synthase (trpE), and aminase (trp A and B) [104]. Simi-
larly, gene trpF, which is associated with the synthesis 
of anthranilate phosphoribosyl transferase, was present 
in the genomes of all of the strains, apart from N. pseu-
dobrasiliensis DSM  44290T. Genes pdxl and aad, which 
encode for pyridoxine 4-dehydrogenase and aryl-alcohol 
dehydrogenase (NADP (+)) and are involved in auxin 
signaling pathways, were found in the genomes of strain 
 ncl2T, N. jiangxiensis NBRC  101359T, N. miyunensis 
NBRC  108239T and N. casurinae  BMG51109T (Table S3). 
In contrast, the genomes of all of the strains contained 
genes associated with tricarboxylic acid biosynthesis, as 
shown in Table  S3. However, only the genome of strain 
 ncl2T contains gene acc that encodes for 1-aminocylopro-
pane-1-carboxylatedeaminase, an ACC deaminase which 
reduces toxicity due to high levels of ethylene in plants 
caused by plant growth promoting rhizobacteria. This 
enzyme also regulates ethylene levels produced by the 
plant by converting ACC to ammonia and α-ketobutyrate 
[105, 106].

Plant growth promoting microorganisms can also 
enhance plant growth by modulating biotic stress as they 
can decrease, neutralize or prevent infections caused 
by phytopathogens by synthesizing antibiotics and lytic 
enzymes [107]. The genomes of all of the strains were 
equipped with genes associated with the production of 
chitinases and glucoamylases, as shown in Table S3. They 

also contained genes involved in the biosynthesis of anti-
biotics, as exemplified by fabG, bacC2 and hdhA which 
express for 3-oxoacyl-[acyl-carrier-protein] reductase, 
bacitracin synthase and 7-alpha-hydroxysteroid dehy-
drogenase which play a role in the biosynthesis of pen-
talenolactone, bacitracin and clavulanic acid, respectively 
[108–110]. Further, the genomes of all of the strains, 
apart from N. pseudobrasiliensis DSM  442990T, con-
tained gene auaJ which encodes for the epoxidase LasC 
that is involved in the synthesis of lasalocid, a polyether 
antibiotic [111]. In contrast, only strain  ncl2T contained 
gene tcmO which expresses tetracenomycin polyketide 
synthesis 8-O-methyl transferase, a gene is associated 
with tetracenomycin biosynthesis [112].

It can be concluded that while strain  ncl2T is most 
closely related to the type strains of N. jiangxiensis, N. 
miyunensis and N. vaccinii, it can be distinguished from 
them as it forms a distinct branch in the phylogenomic 
tree, has a distinct fatty acid profile and shares low ANI 
and dDDH values with them. Genomic features, notably 
genome size and CDS numbers, show that the strain is 
most closely related to N. vaccinii  NBRC15992T, but can 
be distinguished from the latter by a wealth of chemot-
axonomic, genomic and phenotypic data. It is, therefore, 
proposed that strain  ncl2T should be recognized as a new 
species within the genus Nocardia for which the name 
Nocardia alni sp. nov. is proposed.

Description of Nocardia alni sp. nov.
Nocardia alni (al’ni L. gen. fem. n. alni, of Alnus (a genus 
name), referring to the source of the strain, a root nodule 
of Alnus glutinosa)

Aerobic, Gram-stain-positive, nonmotile actinobac-
terium that forms an extensively branched substrate 
mycelium and aerial hyphae which fragment into coc-
coid to rod-like elements. Beige pink aerial hyphae are 
formed on DSMZ 65, yeast extract-malt extract and 
tryptic soy agar. Grows from pH 5-7.5 (optimally at pH 
7), from 28 to 37°C and in the presence of up to 8% w/v 
sodium chloride. Produces niacin, reduces potassium 
tellurite, but is arylsulfatase negative after 3 days. Addi-
tional phenotypic properties are shown in Table 3. The 
diamino acid of the peptidoglycan is meso-A2pm, the 
whole cell sugars are arabinose, galactose and glucose 
and the predominant fatty acids are  C16:0 and  C18:1ω9c. 
Mycolic acids have 42 to 62 carbon atoms and the polar 
lipids are diphosphatidylglycerol, phosphatidylethan-
olamine and phosphatidylinositol, unidentified phos-
phoglycolipid, phospholipids, lipids,  an aminolipid 
and a glycolipid. The genome size is 9.93 Mbp and the 
in-silico G+C content 67.0%. The genome is rich in 
biosynthetic gene clusters predicted to encode for new 
specialised metabolites, notably antibiotics, and with 
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genes with the capacity to produce products that pro-
mote plant growth.

The type strain  ncl2T (DSM  110931T = CECT  30122T) 
was isolated from a root nodule of Alnus glutinosa grow-
ing in Leazes Park, Newcastle upon Tyne, UK. The Gen-
Bank accession number for the 16S rRNA gene and whole 
genome sequence of the strain were MZ014381 and JAG-
POX000000000, respectively.

Conclusions
Novel endophytic nocardiae are being isolated from 
rhizospheric soil [19, 113], plant roots and stems [26] 
and from nodules of actinorhizal plants [28–30] as in the 
case of N. alni. Nodular tissues are rich in carbohydrates 
hence they are excellent habitats for bacteria, including 
actinobacteria [114, 115]. Filamentous actinobaceria are 
associated with actinorhizal and legume root nodules, 
notably novel Micromonospora species [116]. The present 
study suggests that nocardiae, like micromonosporae, 
have the potential to promote plant growth though eco-
physiological studies are needed to establish their inter-
actions with plants, notably their role in root nodules of 
actinorhizal plants.
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