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Abstract

During intracellular signal transduction, protein–protein interactions (PPIs) facilitate protein complex assembly to regulate protein
localization and function, which are critical for numerous cellular events. Over the years, multiple techniques have been developed
to characterize PPIs to elucidate roles and regulatory mechanisms of proteins. Among them, the mass spectrometry (MS)-based
interactome analysis has been increasing in popularity due to its unbiased and informative manner towards understanding PPI
networks. However, with MS instrumentation advancing and yielding more data than ever, the analysis of a large amount of PPI-
associated proteomic data to reveal bona fide interacting proteins become challenging. Here, we review the methods and bioinformatic
resources that are commonly used in analyzing large interactome-related proteomic data and propose a simple guideline for identifying
novel interacting proteins for biological research.
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Introduction
Protein–protein interactions (PPIs) mediate cellular signal trans-
duction cascades where specific interactions between proteins
define unique and robust signalling outputs for different cellular
events [1]. Dysregulation of PPIs has been frequently associated
with various human diseases [2]. Therefore, better characteriz-
ing PPIs will create new opportunities for understanding normal
physiology and treating human diseases.

Mass spectrometry (MS) is an instrument for analyzing small
chemical and biological molecules [3], which has revolutionized
scientific research in the past decades. Regarding PPI study in
biological research, MS can be used in partner with multiple bio-
chemical approaches to uncover bona fide interactors for proteins
of interest. Commonly used methods for isolating protein com-
plexes comprise immunoprecipitation, affinity purification (AP)
[4] and protein-proximity labelling approaches like BioID [5] and
APEX [6]. However, with MS technology and methods of capturing
interactors continuously improving, the size and complexity of
PPI-related proteomic data keep increasing. Manually converting
such a large dataset to a meaningful biological list of PPIs is time-
and labour-consuming, and often results in errors and biases.

To tackle this issue, several bioinformatic tools have been
developed to facilitate the PPI-related proteomic data analysis,
which include but are not limited to MS raw data filtration, gene
ontology (GO) study, functional topology analysis and PPI net-
work visualization. These methods make processing, analyzing
and presenting large-scale MS data possible for regular biological
research labs. To produce a reliable interactome dataset that can
be used by other researchers, the refined PPI network also needs to

be experimentally validated and functionally characterized. How-
ever, integrating these tools and methods to produce meaningful
and reliable interactome data for in-depth functional studies has
been challenging.

Here, we review the current methods used for isolating and
identifying interacting proteins by MS analysis and provide a brief
summary on how to process MS raw data, interpret their bio-
logical significance, build PPI network and characterize biological
functions for newly identified interacting proteins. We hope this
guideline and the related bioinformatics resources can benefit
new researchers who are interested in taking MS as an approach
to investigate PPIs for their biological research.

Main
Isolation of interacting proteins for a protein of interest
Many biochemical methods have been developed to isolate the
associated protein complex for a protein of interest (i.e. bait
protein) [7], such as immunoprecipitation (IP) through antibodies
against either bait protein or an epitope tag fused with bait
protein, AP using single or tandem epitope tag [4] and protein-
proximity labelling approaches using the modified biotin-protein
ligase tag (e.g. BioID [5], APEX [6]). Despite their different mech-
anisms, the overall goal of these purification techniques is to
capture and reserve true binding proteins while minimizing the
non-specific ones for bait protein.

Attempting to capture all the interacting proteins whether they
are transient or stable has been a difficult task for the current
purification methods. Although performing IP with a bait protein
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Figure 1. Illustration of commonly used methods for isolating associated protein complex for a protein of interest. The commonly used methods for
purifying bait protein-associated protein complex from cells for MS analysis include antibody-based immunoprecipitation (A), one-step AP (B), proximity
ligation-based AP (C), ProteinA/TEV/CBP-based TAP (D), FLAG/HA-based TAP (E) and SFB-based TAP (F).

antibody (Figure 1A) can purify its associated protein complex at
endogenous level, antibody availability and its IP efficiency often
limit the use of this method. One way to overcome these issues
is to utilize well-established antibodies for epitope tags, such as
Flag, Myc, HA, GFP and indirectly isolate the binding proteins for
the bait protein fused with an epitope tag (Figure 1A). However,
exogenously expressing tag-fused protein often results in non-
specific and artificial binding proteins due to overexpression. In
addition, both methods share the common antibody leakage issue,
which can affect sample preparation for MS analysis.

AP can overcome the antibody leakage issue and has been
widely used for PPI studies. To achieve so, epitope tags with
high binding affinity to corresponding agarose beads have been
developed (Figure 1B). For example, a commonly used tag for AP
is streptavidin binding protein (SBP) (Figure 1B), which has high
binding affinity to streptavidin beads [8]. However, streptavidin
beads also bind endogenous biotinylated proteins in cells, result-
ing in non-specific interactions [8]. Maltose-binding protein (MBP)
[9] and glutathione S-transferase (GST) [10] tags are often used
for protein complex purification, because they can strongly bind
to the agarose beads conjugated with amylose and glutathione,
respectively (Figure 1B). However, these two epitope tags are both
large in protein size and can causes potential folding issues for
a bait protein, thus hindering the isolation of its true binding
proteins. In contrast, hexa-histidine (His) tag [11] is a small tag
that binds to immobilized nickel beads (Figure 1B), which offers

a better solution for AP as compared with MBP and GST tags.
However, His tag-mediated protein purification requires the step
of optimizing imidazole concentration for different bait proteins,
adding additional work to ensure the protein purification quality.

Recently, proximity labelling methods have been widely used
for interactome study (Figure 1C) because it allows identification
of transient and weak binding proteins for a bait protein.
Like the previously mentioned SBP tag, this method relies on
streptavidin beads to purify the newly biotinylated proteins,
though the endogenous modification of biotinylation leads to
the issue of isolating non-specific binding proteins.

Over time, methods for purifying protein complex associated
with a protein of interest have been evolving to increase their
performance and efficiency [12]. Some labs incorporated different
epitope tags as one for protein complex purification, allowing
further elimination of non-specific binding interactions through
multiple purification and washing steps [13]. For example, tandem
affinity purification (TAP) was developed to fuse two epitope tags
with one bait protein to reduce the non-specific binding proteins
[4, 13]. Initially, TAP was designed with two IgG-binding units of
protein A of Staphylococcus aureus (Protein A) and the calmodulin-
binding peptide (CBP) [12] (Figure 1D), whereas its upgraded ver-
sion includes tags like FLAG and HA in tandem [14] (Figure 1E) to
achieve a better purification performance.

In the past years, we have been extensively utilizing an S-Flag-
SBP (SFB) triple tagged system for TAP (Figure 1F) and revealed
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new regulators/effectors for multiple key proteins involved in
growth control and cancer development [15–28]. As for it, SBP is a
small peptide that binds effectively to streptavidin beads, which
can be easily eluted with a biotin-containing solution [8]; S protein
is another small peptide that binds efficiently with S protein beads
and can be also used for AP [29]. The Flag tag in this system is
used to detect bait protein expression by Western blot and verify
its localization by immunofluorescence. As a routine practice in
our lab, cells stably expressing the SFB-tagged bait protein are
generated by either lentiviral infection or single colony isolation.
After verifying the bait protein expression and localization using
anti-Flag antibody, these stable cells will be expanded to a large
scale and lysed for TAP. As shown in Figure 1F, the first step of
this purification method involves the use of streptavidin beads to
isolate the associated protein complex by binding to SBP tag. After
biotin elution, S protein beads are used for the second around of
purification. The whole process can be finished in several hours
and only one buffer solution (i.e. NETN buffer) is used from the
beginning to end, which greatly reduces the chance of protein
degradation and protein complex dissociation.

In addition to purifying the associated protein complex from
cell lysates, several library screening approaches are available for
identifying interacting proteins for a protein of interest, such as
yeast two-hybrid (Y2H) [30], bimolecular fluorescence comple-
mentation (BIFC) [31], which are developed based on the protein-
fragment complementation strategy [32]. For Y2H screening, a
transcription factor is split into the DNA-binding domain (DBD)
and activating domain (AD). If AD and DBD are brought into
proximity, they can activate downstream reporter gene by binding
onto its upstream activating sequence (UAS). In general, a protein
of interest is fused with DBD, while its candidate interacting
proteins are fused with AD and prepared as a cDNA library for
screening their interactions with the bait protein. PPI indirectly
connects DBD and AD to activate the transcription of reporter
gene through its UAS. For BIFC, a fluorescent protein (e.g. CFP, GFP,
YFP) is split into two fragments, which are, respectively, fused with
a bait protein and its candidate interacting proteins in a format of
cDNA library. The binding between bait protein and its interacting
proteins will bring the two fragments of a fluorescent protein
within proximity, allowing the fluorescent protein to reform and
emit its fluorescent signal. Detection and quantification of such
fluorescent signal can be achieved by fluorescent microscope and
flow cytometry. Notably, these two assays are both performed
in a live cell system, making the characterization of in vivo PPIs
possible. However, as these complementation assays require gen-
eration of two separate fusion proteins, technical issues need to
be taken into consideration, which include but are not limited to
the effects on protein localization/function as caused by fragment
fusion, overexpression-induced artificial effects and issues with
the reforming efficiency for the split fragments from two fusion
proteins. Previous studies also raise concerns regarding high false
positive and false negative rates for Y2H and BIFC assays. Tech-
nically, generating the large-scale cDNA library and setting up
conditions for screening is costly and labour / time-consuming,
making these assays difficult to be widely used by researchers.

MS data generation, submission, processing and quality
evaluation
Upon the completion of protein complex purification, a sample
can be prepared in a format either on beads or in a polyacry-
lamide gel and processed by an MS facility. After trypsin digestion,
produced peptides are eluted through high-performance liquid
chromatography (HPLC), subjected to electrospray ionization, and

loaded into a mass spectrometer, where peptides are detected,
isolated and fragmented to produce a tandem mass spectrum of
specific fragment ions for each peptide. Peptide sequences (i.e.
protein identity) are determined by matching protein databases
(e.g. UniProt) with the fragmentation pattern acquired by the soft-
ware program SEQUEST. Spectral matches are filtered to contain a
false discovery rate (FDR) of less than 1% at the peptide level using
the target-decoy method [33]. The protein inference is considered
followed the general rules [34] with manual annotation based on
experiences applied when necessary.

Users will then be provided with an extensive list of identified
proteins from the sample, which are referred as MS raw data. Now
it has become a standard practice by scientific journals that these
raw data should be shared through public repositories before
publication [35]. One commonly used repository is the PRoteomics
IDEntifications database (PRIDE) [36, 37], which is designed to
receive raw protein and peptide files for a MS experiment. To
deposit MS data to the PRIDE, users first need to gather the MS
data files from the MS facility including raw, result, search and
peak files. These files are then uploaded through the ProteomeX-
change (PX) submission tool [38], where a two-step assessment
process via PRIDE is provided for checking data quality [39]. After
submission, a PX accession number and permanent digital object
identifier (DOI) will be issued for publication use.

Next, we usually use a pipeline to deconvolute the MS raw data
into a short list of high confident interacting proteins (HCIPs) for
a bait protein (Figure 2A). To achieve so, a web-accessible resource
named the contaminant repository for AP (CRAPome) [40] is often
used to filter out commonly identified prey proteins (i.e. non-
specific binding proteins) by comparing to control experiments
provided by either CRAPome or users. Control experiments are a
group of unrelated MS raw datasets that are usually produced
under similar experimental settings [40]. Based on the quanti-
tative comparisons of prey abundance (using spectral counts)
against the prey abundances across control experiments, a signif-
icance analysis of interactome (SAINT) score [41] will be assigned
to each prey, allowing users to generate a list of HCIPs based on a
suitable cutoff value of SAINT score.

Specifically, SAINT identifies false interactions by estimating
the spectral count distribution from negative controls. For exper-
iments that are produced with multiple replicates, a probability
score is assigned to estimate the FDR [41], allowing users to
determine the reliability of interactions. Recently, SAINT has been
updated to SAINTExpress [42], which provides a topology-assisted
probability score (TopoAvgP), incorporating the prior knowledge of
the target interactome into the scoring step. In addition, SAINTEx-
press provides a simpler fold-change (FC) score based on the ratio
of averaged normalized spectral counts between experiments and
controls.

In addition to CRAPome, scoring algorithms like compara-
tive proteomic analysis software suite (CompPASS) [14], mass
spectrometry interaction statistics (MiST) [43] and Minkowski
distance-based unified scoring environment (MUSE) [18] are also
available for generating HCIP list. As compared with CompPASS
and MiST, SAINT can be applied to datasets of all sizes and per-
form filtering quantification simply using spectral counts rather
than other MS parameters [41]. In addition, SAINT removes inter-
actions with spectral counts less than two, making the filtering
process more robust [41]. Different from SAINT, MiST provides
a more complete dataset analysis by incorporating multiple MS
parameters-based measures, such as protein abundance (i.e. peak
intensities), invariability of abundance over replicated experi-
ments (i.e. reproducibility), uniqueness of an observed interaction
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Figure 2. Schematic overview of the interactome-related proteomics data processing. (A) Schematic workflow for the filtration of MS data to generate a
high confidence interacting proteins (HCIP) list used for further bioinformatics analysis. (B) Organization of MS summary data can include the number
of experiments, peptide information, protein information, cutoff score for HCIP generation and HCIP count. (C) Schematic illustration of the comparison
between the TSCs and HCIP number for an interactome study. (D) Reproducibility rate can be illustrated based on different prey peptide cutoffs. (E)
HCIPs can be compared with public PPI resources like BioGRID and BioPlex to reveal known and new interactions in the produced interactome dataset.

across all purifications (i.e. specificity) [43]. It is plausible to use
different methods to analyze the same MS raw data, although
extra bioinformatic work will be required.

For publication purpose, we usually provide an MS data filtra-
tion report as a table by detailing the numbers of total experi-
ments, control experiments, and identified peptides and proteins,
respectively (Figure 2B). In addition, the cutoff value (e.g. a SAINT
score) chosen for HCIP generation and the number of total HCIPs
generated in this study are often included in this report table
(Figure 2B).

To evaluate the quality of the produced HCIP dataset,
additional analyses are usually performed. For example, the
total spectral count (TSC) can be presented along with the
number of HCIPs (Figure 2C), allowing readers to evaluate the
HCIP rate of each sample in the dataset. Biological replicates are
required to be performed for current proteomic studies; therefore,
reproducibility is another key factor to assess the variation among
experiments for the bait proteins [44]. This can be determined
by calculating the HCIP correlation R value under different
numbered peptides in the dataset (usually from low to high),
where the reproducibility rate at each peptide cutoff number can
be shown (Figure 2D). Another way to qualitatively evaluate the
produced HCIP dataset is to compare them with some available

PPI databases, such as biological general repository for interaction
data sets (BioGRID) [45], biophysical interactions of ORFeome-
based complexes (BioPlex) [46], search tool for the retrieval
of interacting genes/proteins (STRING) [47]. These databases
comprise numerous reported protein interactions that have been
discovered through various experimental assays including AP-
MS, proximity label-MS, Y2H, immunoprecipitation, biochemistry,
immunofluorescence. Comparing HCIPs with these reported
interactions not only helps to evaluate the quality of the HCIP
dataset from a different perspective, but also allows to reveal
new PPIs through the current interactome study for functional
investigation in future.

Annotation of HCIP dataset
Once a list of HCIPs have been generated, a standard practice is
to deconvolute their underlying biological connections. This step
is crucial for revealing potential functional processes, signalling
pathways, cellular components and human diseases that bait
proteins may be involved through their HCIPs. To achieve so,
several web-based annotation tools such as the database for
annotation, visualization and integrated discovery (DAVID) [48],
protein analysis through evolutionary relationships (PANTHER)
[49] and Metascape [50] are available for GO analysis of HCIPs.
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Figure 3. GO and topological analyses of interactome data. (A) GO analysis can be applied and presented for bait proteins individually. (B) GO analysis
can be applied across a series of bait proteins and presented as a heatmap. (C) Topological analysis of multi-bait interactome data can be presented as
Circos plot to reveal the bait proteins that share overlapping HCIPs. (D) Topological analysis of multi-bait interactome data can be presented as heatmap
to reveal the overlapping HCIPs among bait proteins.

The common ontologies described in these tools include biological
process, molecular function, cellular components, pathways, dis-
eases and tissue distributions. As for a multiple-bait interactome
study, bait proteins can be either analyzed individually for its
HCIPs-associated GO terms (Figure 3A) or compared globally and
visualized as a heatmap (Figure 3B). The latter usually helps
reveal the bait proteins who share overlapped cellular functions
through their HCIPs.

To reveal the shared HCIPs across different bait proteins,
clustering methods through Circos plot (Figure 3C) or heatmap
(Figure 3D) are often used. On a global scale, Circos plot can
provide easy visualization of relationships between different
bait proteins [51], whereas heatmap can show details of the
overlapped HCIPs among different bait proteins to reveal potential
PPI sub-networks within a multi-bait interactome study.

Notably, innovative technologies like artificial intelligence (AI)
machine learning greatly facilitate the predictions of protein
structures and PPIs, providing additional tools for HCIP dataset
annotation. For example, AlphaFold [52, 53] and RoseTTAFold
[54] are both open-sourced AI tools, which can provide structural
information for the identified HCIPs and predict their protein
complex formations with the bait protein. In addition, TissueNet
[55] and integrated interactions database (IID) [56] tools can offer
tissue expression information for HCIPs, while weighted gene co-
expression network analysis (WGCNA) [57] can be incorporated
to annotate functional correlations between bait protein and its
HCIPs.

Visualization of PPI network
Once HCIPs have been generated and annotated, a PPI network
can be built up to provide an informatic overview of bait

protein-associated interactome. Such PPI network can be gen-
erated using Cytoscape [58, 59] through various freely available
plugins [60] or R program, a programming language for statistical
computing and graphic [61].

Visualizing PPI network can easily present PPIs identified
from different experiments and is useful when looking for
unique connections and patterns among bait and prey proteins
[62]. There are different ways visualizing a PPI network along
with necessary experimental and/or biological information.
Specifically, PPI network can be organized in a format of prey
nodes surrounding their baits, where each node simply represents
prey alone (Figure 4A). Moreover, these prey nodes can be
complimented with further information by adding various ‘visual
features’, such as different shapes, sizes, colours, patterns, outline
thickness, to convey their experimental and/or biological details.
For example, the size of the node can convey its identified TSC,
where larger nodes represent preys with more TSC (Figure 4B).
Nodes also can be made in different colours to represent the prey-
associated GO terms, such as biological processes, localization,
cellular components (Figure 4C). Another commonly presented
information is to incorporate data gathered from BioGRID or
STRING database to indicate the known interacting proteins
within the PPI network. In addition, if reciprocal MS studies
are performed using the identified HCIPs as bait proteins, the
PPI network can be further enhanced through their connecting
lines using either uni- or bi- directional arrows to indicate the
relationship between bait proteins and its HCIPs (Figure 4D).
Simultaneously visualizing all these representations (e.g. shape,
size, colour, line direction) will make a PPI network summarizing
all the experimental and biological information comprehensively
achieved.
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Figure 4. Visualization of PPI networks. (A) A PPI network can be organized in a format of prey nodes surrounding their baits, where nodes simply
represent preys alone. (B) A PPI network can be organized in a format of prey nodes surrounding their baits, where nodes represent preys and their TSC.
The size of the node conveys its identified TSC, where larger nodes represent preys with more TSC. (C) A PPI network can be organized in a format of
prey nodes surrounding their baits, where nodes represent preys and their GO terms that are labelled in different colours. (D) The information from
reciprocal MS studies using HCIPs as bait proteins can be included in the PPI network and indicated as connecting lines with either uni- or bi- directional
arrows. Many figure labelings are missing.

Designing functional assays for characterizing newly
identified HCIPs
After generating a list of HCIPs and annotating their biological
functions, a group of HCIPs of interest first need to be experi-
mentally validated. Typically, immunoprecipitation and pulldown
are the choice assays for assessing the interaction between bait
protein and its HCIPs. As mentioned earlier, antibody-based
immunoprecipitation offers a way to examine PPI at endogenous
level (Figure 5A); however, difficulties may arise in identifying
a suitable antibody for use. To combat this, protein can be
fused with a tag (e.g. Flag, HA, Myc, GFP, SFB), whose antibody
or antibody-conjugated beads are available to help validate
the PPI at a level of overexpression (Figure 5B). In addition,
immunofluorescent staining is usually used to assess the co-
localization between a bait protein and its HCIPs, confirming
their complex formation from a different perspective (Figure 5C).

With the interaction between bait protein and its HCIPs val-
idated, functional significance underlying their complex forma-
tion can be further explored. For example, the binding regions
between bait protein and its HCIPs can be mapped in detail
through generating a series of truncation and/or deletion mutants
for both bait protein and its HCIPs (Figure 5D). In addition, we
usually knockout (KO) or knockdown (KD) HCIPs in functionally
relevant cells to examine the potential effects on the bait protein-
dependent signalling events or biological functions (Figure 5E). If
confirmed, these KO or KD cells will be reconstituted with wild-
type HCIP or its mutant protein that fails to bind bait protein
(Figure 5D) and used to determine whether their complex forma-
tion is required for the related cellular functions. For example, to
examine the roles of one HCIP of interest in regulating the bait
protein-dependent cell proliferation and migration (Figure 5F),
altered proliferation and migration will be examined in the HCIP
KO cells. If there is a change in cell proliferation/migration, rescue
experiments will be performed by reconstituting the HCIP KO cells
with wild-type HCIP and its bait protein non-binding mutants
(Figure 5F). Using this strategy, we can provide both functional and
mechanistic insights into the newly identified HCIPs through the
interactome study.

Conclusions and perspectives
In this study, we reviewed the commonly used methods and bioin-
formatic resources for characterizing the interacting proteins for
a protein of interest and illustrated a pipeline for analyzing the
related MS data. This proposed pipeline is mainly composed of
three steps. First, it assigns each identified prey with a confidence
score, allowing users to generate a list of HCIPs for a bait protein.
Second, it provides a series of bioinformatic resources (Table 1)
for users to annotate HCIPs, build up PPI network and visualize
interactome data informatically. Third, it suggests the strategies
for follow-up data validation and functional investigation for
newly identified HCIPs. In the past years, we have been frequently
using this pipeline to define and characterize the PPI networks for
different signalling pathways and protein families [17, 18, 23–26,
28], fully testifying its feasibility for addressing biological ques-
tions in different fields. Here, we would like to pinpoint several key
factors that may affect the outcome of the interactome analysis
for researchers who may be interested in trying this method for
their own studies.

First, using different cell lines may lead to the difference in
the identified HCIPs due to protein abundancy variation between
cells; therefore, the cell line choice should be considered prior to
starting. In general, cell lines should be chosen based on scientific
questions and their related biological contexts, whereas other
issues, such as cell proliferation rate, cell culture costs, the way
for cell collection, are also taken into consideration. We usually
use HEK293T cells for protein complex purification due to their
ease of growth and collection in a large quantity, but later move
to functional cell lines to study biological functions for HCIPs.

Second, technical caveats for isolating associated protein com-
plex for a bait protein should be taken into consideration. For
example, choosing appropriate tag is crucial, as it could cause pro-
tein structure change and introduce false positive/negative hits.
In addition, users should be aware of the positioning of the tag
(e.g. N terminus, C terminus), as it may alter bait protein cellular
localization and function. Regarding this point, several methods
are available to characterize PPIs without using an epitope tag.
For example, thermal proximity coaggregation approach can be
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Figure 5. Validation and functional characterization of HCIPs produced through an interactome study. (A–B) Illustration of experimental assays used
for validating the complex formation between bait proteins and HCIPs. To examine the interaction between a bait protein and its HCIP, cell lysates can
be subjected to immunoprecipitation (A) and pulldown (B) assays. (C) Immunofluorescence assay can be used to examine the co-localization of bait
proteins with their HCIPs. (D) The bait protein-HCIP complex formation can be further characterized through mapping the regions required for their
interaction. (E) Illustration of the HCIP knockout (KO) cell generation using CRISPR/Cas9 technique. (F) Rescue experiments can be performed in the
HCIP KO cells to determine whether the bait protein binding is required for HCIP to regulate the related cellular functions such as cell proliferation and
migration.

used to examine protein complex dynamics in cells [63]. Size
exclusion chromatography can separate different protein com-
plexes based on their size [64]. Combined with MS analysis, these
approaches provide options for elucidating interacting proteins
for untagged bait protein, although additional factors could be
introduced to affect protein complex formation (e.g. temperature,
chromatography sample preparation). These approaches can be
concurrently performed when analyzing limited bait proteins,
whereas this strategy may not be feasible for a large-scale multi-
bait interactome study.

Expressing a bait protein in cells will also bring in the
overexpression issue. To address it, knock-in approach can be
adopted to integrate a tag into the bait protein-coding region
via CRISPR technique, so we can directly purify endogenous bait
protein-associated protein complex. To accelerate the progress, an
inducible lentiviral system can be used to establish the stable cells
for a bait protein, where doxycycline concentration is optimized
to make the level of exogenously expressed bait protein close to
that of endogenous one [16, 65].

In addition, the steps of cell lysing and followed protein com-
plex purification can lead to protein degradation, loss of weak

and transient interactors, and non-specific binding [66]. To reduce
these problems, isolating associated protein complex from cells
should be finished in a timely manner and avoid frequent changes
of buffer systems between different steps.

Third, identifying bona fide interacting partners can be hin-
dered by a vast number of contaminants (i.e. non-specific bind-
ing proteins) during the purification of bait protein-associated
protein complex. This issue can be solved by including a group
of control experiments for MS data filtration. Before that, users
are suggested to carefully examine their control experiments
to ensure that they are appropriate and unrelated to their bait
proteins. Another way to reduce contaminants is to apply dif-
ferent purification approaches (e.g. TAP and BioID) (Figure 1) to
the same bait protein and then compare their identified HCIPs.
Not only would this confirm true binding proteins for a bait
protein, but also allow the user to reduce the contaminants due
to technical issues, thus making the interactome analysis more
robust.

Lastly, interactome data analysis has become more compre-
hensive with online databases and software constantly evolving,
allowing the generation of more informative PPI datasets based
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Table 1. Summary of available bioinformatic resources for analyzing interactome-related proteomics data

Name Annotation Website Reference

CRAPome Data Filtering https://reprint-apms.org/ [40]
CompPASS Data Filtering [14]
MUSE Data Filtering [23]
MiST Data Filtering https://modbase.compbio.ucsf.

edu/mist/
[43]

BioPlex Compare Datasets https://bioplex.hms.harvard.edu/ [46]
BioGRID Compare Datasets https://thebiogrid.org/ [45]
AlphaFold Structural Analysis https://alphafold.ebi.ac.uk/ [52, 53]
RoseTTAFold Structural Analysis https://www.ipd.uw.edu/2021/07/

rosettafold-accurate-protein-
structure-prediction-accessible-to-
all/

[54]

TissueNet Tissue Association for PPI https://netbio.bgu.ac.il/tissuenet3/ [55]
IID Condition Association for PPI http://iid.ophid.utoronto.ca/ [56]
WGCNA Explore PPI via Gene Expression Profiles [57]
PANTHER Gene Ontology http://pantherdb.org/ [49]
Metascape Gene Ontology http://metascape.org/ [50]
DAVID Bioinformatics Gene Ontology https://david.ncifcrf.gov/ [48]
R Studio Visualization/Graphs Clustering/Heatmaps https://www.rstudio.com/ Open-Source

License
Cytoscape Visualization of PPI network https://cytoscape.org/ [58, 59]

The commonly used bioinformatic resources for interactome studies are listed, which include the tools for proteomics data filtration, GO analysis, PPI
databases for HCIP compare, PPI network visualization.

on needs. For example, PPI dataset can be further integrated with
cancer-related databases (e.g. TCGA), which can help annotate
the produced HCIPs from a cancer-related perspective and provide
opportunities for identifying new therapeutic strategies for cancer
treatment.

Collectively, we review the commonly used methods/resources
for characterizing cellular PPI networks and propose a simple
pipeline for researchers to process the related large-scale MS data.
As mentioned earlier, deconvoluting the MS data into a list of
HCIPs and validating the HCIP dataset are just the beginning of
the study. The goal of the entire work is to reveal valuable HCIPs
for in-depth functional studies to advance our understanding of
the mechanisms underlying the related biological questions. We
hope this work would not only help alleviate the fears newcomers
may face when trying to piece together bioinformatic methods/re-
sources to analyze large-scale proteomic data, but also aid users
with a user-friendly pipeline that incorporates details behind
the methods/resources needed to identify bona fide interacting
proteins for their research.

Key Points

• A review of the commonly used biochemical methods for
identifying interacting proteins for a protein of interest.

• A summary of the bioinformatic tools and resources for
analyzing interactome-based mass spectrometry data.

• A proposed guideline for taking proteomics as an
approach to study protein–protein interactions in biolog-
ical research.
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