
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
AMRNodeElliptic user guide: On irregular problem domains

Permalink
https://escholarship.org/uc/item/1pr239xd

Author
McCorquodale, Peter

Publication Date
2003-04-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pr239xd
https://escholarship.org
http://www.cdlib.org/

AMRNodeElliptic User Guide:

on irregular problem domains

Peter McCorquodale

April 15, 2003

Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California, The
views and opinion authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the University of
California.

1

Contents

1 Introduction 4

1.1 Constructing a makefile with AMRNodeElliptic 4

2 Subroutines Needed for Non-Rectangular Domains 6

2.1 The reachablenodes subroutine . 6
2.2 The nodalcoefficients subroutine 7

3 Node-Centered Data 9

3.1 The class NodeFArrayBox . 9
3.2 Notes on LevelData<NodeFArrayBox>::copyTo 11
3.3 Node-centered norms . 12

3.3.1 Norms of valid data on a single level 12
3.3.2 Norms of data on multiple levels 13

3.4 Dot product for node-centered data . 14
3.5 Functions for interior and exterior boundary nodes 15

3.5.1 interiorBoundaryNodes functions 15
3.5.2 exteriorBoundaryNodes function 18
3.5.3 copyInteriorNodes function 19
3.5.4 zeroBoundaryNodes function 19

4 Interface for AMRNodeElliptic Solver 22

4.1 The class AMRNodeSolver . 22
4.1.1 Internal class AMRNodeLevelMG 27
4.1.2 Internal class NodeLevelMG . 29

4.2 The class LevelNodeSolver . 31
4.3 The NodeMaskLevelOp interface . 34

4.3.1 The NodeMaskBaseBottomSmoother interface 38
4.3.2 The class NodeMaskPoissonOp 39

4.4 The class AMRNodeSolverAlt . 39

5 C++ Classes for Two-Level Operators 42

5.1 The class NodeMaskAverage . 42
5.2 The class NodeMGInterp . 43

2

5.3 The class NodeQuadCFInterp . 44
5.4 The class NodeCFIVS . 46

6 External Boundary Conditions 48

6.1 The DomainNodeBC class . 48
6.2 The FaceNodeBC interface . 49

3

Chapter 1

Introduction

This document describes an extension to the Chombo package [CGL+00] for solving elliptic
equations using adaptive mesh refinement on multiple levels with node-centered data on
non-rectangular domains. See the AMRNodeElliptic design document [McC02] for a
description of the algorithms used.
Chapter 2 describes the subroutines that the user must supply to describe the geometry

and the operator. Chapter 3 describes the class NodeFArrayBox and functions that use
this class to manipulate node-centered data. Interfaces for elliptic equation solvers are
described in chapter 4. Some internal classes of the solvers are described in chapter 5.
User interfaces for physical boundary conditions are described in chapter 6.
The AMRNodeElliptic package requires that Chombo library be installed. See chapter

1 of the Chombo design document [CGL+00] for requirements and installation of Chombo.

1.1 Constructing a makefile with AMRNodeElliptic

This section specifies how to construct a GNUmakefile compatible with the
AMRNodeElliptic extension to Chombo. Most of this is also described in section 1.2.3
in the Chombo design document [CGL+00].
To make an external makefile, first say where Chombo is installed by specifying

CHOMBO HOME and the base name of the application by specifying ebase.

####define the location of Chombo

CHOMBO_HOME = ../../../../ChomboLib

####define the base name of the application

ebase := myProg

Then specify the names of the Chombo libraries that should be linked:

##

names of Chombo libraries needed by this program, in order of search.

4

##

LibNames := AMRTools BoxTools

Now specify the path and source files external to Chombo and AMRNodeElliptic:

path to look for source files not in Chombo

VPATH_LOCAL = .

INCLUDES_LOCAL = -I.

C++ sources go here

CXX_SOURCES = NodeMaskPoissonBC.cpp testFuncs.cpp testRunPoint.cpp

Chombo Fortran sources go here

FORT_SOURCES = testProb.ChF OutsideSphereMask.ChF

standard C sources go here

C_SOURCES = myc1.c myc2.c

standard Fortran sources go here

F_SOURCES = myfort1.f myfort2.f

So far, the description of the makefile is as for any makefile that uses the Chombo
library. When using AMRNodeElliptic, end the makefile with the following lines:

####define location of AMRNodeElliptic source directory

SRC_DIR = ../../src

these commands include the AMRNodeElliptic source

include $(SRC_DIR)/Make.package

INCLUDES_LOCAL += -I$(SRC_DIR)

VPATH_LOCAL += $(SRC_DIR)

end of makefile for use with Chombo

include $(CHOMBO_HOME)/mk/Make.example

5

Chapter 2

Subroutines Needed for

Non-Rectangular Domains

For non-rectangular domains, the user must supply two Fortran subroutines described in
the AMRNodeElliptic design document [McC02]:

• reachablenodes specifies the geometry;

• nodalcoefficients specifies the coefficients of the operator.

2.1 The reachablenodes subroutine

This subroutine should return an array telling which nodes are in the domain and which are
reachable from their neighbors along lines parallel to the coordinate axes, where “reach-
able” in this context means that the connecting segment lies entirely in the domain. We
represent the domain by Ω.

subroutine reachablenodes(CHF_CONST_REAL[dx], CHF_FIA[mask])

Arguments:

• dx is the mesh spacing.

• mask is node-centered and has 2D+ 1 components.

At any node index i of the underlying Box of mask, the corresponding point in space
is x = x0+(i−

1

2
u) · dx, and the components of mask should be set to 0 or 1 as follows

(see Figure 2.1).

• component 0 is set to 1 if x ∈ Ω, and 0 otherwise.

• for each d = 0, . . . ,D − 1, component 2d + 1 is set to 1 if the entire segment
[x,x+ ed · dx] ⊂ Ω, and 0 otherwise.

6

• for each d = 0, . . . ,D − 1, component 2d + 2 is set to 1 if the entire segment
[x,x− ed · dx] ⊂ Ω, and 0 otherwise.

e1

e0

4:1

3:0

1:00:12:1

Figure 2.1: Components of the mask array at the center node indicated by ×, in two
dimensions. The notation i : v beside a node indicates that at node ×, component i has
value v, as determined by the reachability of the labeled node from ×. The shaded area
is outside the domain. We have v = 1 if the node is reachable from ×, and v = 0 if it
is not. Note that the point at top center is considered to be not reachable from ×, even
though it is in the domain, because the connecting segment does not lie entirely in the
domain.

2.2 The nodalcoefficients subroutine

This subroutine should return an array containing the coefficients of the discrete operator
at each point.

subroutine nodalcoefficients(CHF_CONST_REAL[dx], CHF_FRA[coeffs])

Arguments:

• dx is the mesh spacing.

• coeffs is node-centered and has 2D+ 2 components.

At any node index i of the underlying Box of coeffs, the components of coeffs are
set to the coefficients of the stencil for node i, as follows:

• component 0 is the coefficient of the value with index i.

• for each d = 0, . . .D − 1, component 2d + 1 is the coefficient of the value with
index i+ ed.

7

• for each d = 0, . . .D − 1, component 2d + 2 is the coefficient of the value with
index i− ed.

• component 2D+ 1 is the constant coefficient.

Summarizing, if c0i , . . . c
2D+1

i are the coefficients for node i at a level with mesh spacing
h, then the operator at point i is

c0i · ϕ
N,l
i +

∑

d=0,...,D−1

(c2d+1i · ϕ
N,l

i+ed + c2d+2i · ϕ
N,l

i−ed) + c2D+1i .

8

Chapter 3

Node-Centered Data

3.1 The class NodeFArrayBox

The NodeFArrayBox class is a wrapper for a node-centered FArrayBox. This class is used
in LevelData<NodeFArrayBox> with an underlying cell-centered DisjointBoxLayout.
The reason for introducing a new NodeFArrayBox class, instead of just using node-

centered FArrayBoxes, is to allow the use of LevelData. A LevelData<FArrayBox>

based on node-centered FArrayBoxes would have an underlying DisjointBoxLayout of
node-centered boxes, and no two of the boxes could be adjacent, because if they were,
they would share points, and the layout would not be disjoint. To get around this problem,
we use a cell-centered DisjointBoxLayout and build a LevelData<NodeFArrayBox>

on it, with the data located at the surrounding nodes of the cell-centered grids. Data
at nodes shared by two or more grids is stored redundantly in all of the corresponding
NodeFArrayBoxes.
The API for NodeFArrayBox is as follows.

• NodeFArrayBox()

Default constructor. User must subsequently call define.

• Constructor.

NodeFArrayBox(

const Box& a_bx,

int a_nComp = 1)

Creates a NodeFArrayBox object.
Inputs:

– a bx specifies the cell-centered box. The data lie on the surrounding nodes of
this box.

– a nComp specifies the number of components of the FArrayBox.

9

• define(

const Box& a_bx,

int a_nComp = 1)

Defines a NodeFArrayBox object. Arguments are the same as those of the con-
structor above.

• FArrayBox& getFab()

Returns a reference to the node-centered FArrayBox containing the data.

• const Box& box()

Returns the cell-centered box of which the surrounding nodes contain the data.

• Real norm(

const Real a_dx,

const int a_p = 2,

const int a_startComp = 0,

const int a_numComp = 1) const

For a p > 0, returns the La p norm of the data in a numComp components, starting
at component number a startComp. The norm is computed by integration using
the trapezoidal rule with mesh spacing a dx, over those nodes that are in the domain
as determined by calling reachablenodes. For a p = 0, returns the L∞ norm of
the same data. An overloaded version of this function performs its operations
over a subbox. Another overloaded version takes as an argument the mask array
returned from reachablenodes, so that reachablenodes need not be called in
this function.

• Real maxnorm(

const int a_startComp = 0,

const int a_numComp = 1) const

Returns the maximum value of the data in a numComp components, starting at com-
ponent number a startComp, in those nodes that are in the domain as determined
by calling reachablenodes. An overloaded version of this function performs its
operations over a subbox. Another overloaded version takes as an argument the
mask array returned from reachablenodes, so that reachablenodes need not be
called in this function.

Principal data members

• Box m box. The cell-centered box of which the surrounding nodes contain the data.

• FArrayBox m fab. The node-centered data.

10

3.2 Notes on LevelData<NodeFArrayBox>::copyTo

The API for LevelData<NodeFArrayBox> is described in the Chombo design document
[CGL+00], but one part of it deserves particular attention because it does not work in the
same way.

void copyTo(

const Interval& a_srcComps,

BoxLayoutData<T>& a_dest,

const Interval& a_destComps) const

void copyTo(

const Interval& a_srcComps,

LevelData<T>& a_dest,

const Interval& a_destComps) const

The LevelData<NodeFArrayBox>::copyTo function must be used with caution. If
the source LevelData and the destination, a dest, do not have the same underlying
grid layout, then it is possible that some data will not be copied from the source to
the destination. The reason is that, in determining points where data should be copied,
copyTo finds intersections of the underlying cell-centered boxes and then copies at the
surrounding nodes. See Figure 3.1 for an example in which data are not copied at some
of the nodes shared by source and destination.

A B

Figure 3.1: Suppose A and B are LevelData<NodeFArrayBox>es, each having an
underlying grid layout of a single grid, and these two grids abut, as shown above
where the nodes of intersection are indicated by hollow circles. Then the statement
A.copyTo(A.interval(), B, B.interval()) results in no data being copied from A

to B, even though they share nodes, because the two grids have no cells in common.

If all cells in the grid layout of the destination of the copyTo are also in the grid
layout of the source, then this problem of uncopied data does not arise. For example,
when copying all of the data on one AMR level to a coarsened version of the grids on a
finer AMR level, copyTo works as expected, because of the nesting requirement for AMR
levels.
But whenever we want to use LevelData<NodeFArrayBox>::copyTo from src

where the underlying grid layout of the destination dest may contain cells that are not
in the grid layout of this, we use a Copier object, as follows:

11

Copier myCopier(src.getBoxes(), dest.getBoxes(), IntVect::Unit);

src.copyTo(srcComps, dest, destComps, myCopier);

3.3 Node-centered norms

3.3.1 Norms of valid data on a single level

• Real norm(const LevelData<NodeFArrayBox>& a_phi,

const ProblemDomain& a_domain,

const DisjointBoxLayout* a_finerGridsPtr,

const int a_nRefFine,

const Real a_dx,

const Interval a_comps,

const int a_p,

bool a_verbose = true)

• Real norm(const LevelData<NodeFArrayBox>& a_phi,

const Box& a_domain,

const DisjointBoxLayout* a_finerGridsPtr,

const int a_nRefFine,

const Real a_dx,

const Interval a_comps,

const int a_p,

bool a_verbose = true)

Returns the norm of valid data on one level.
Inputs:

– a phi is the data at this level.

– a domain is the entire cell-centered problem domain at this level.

– a finerGridsPtr is a pointer to the grid layout at the next finer level, or
NULL if there is no finer level.

– a nRefFine is the refinement ratio between this level and the next finer level.

– a dx is the mesh spacing at this level.

– a comps specifies the components over which to take the norm.

– a p specifies which norm to take: if a p = 0 then the max (L∞) norm, and
if a p > 0 then the La p norm.

– a verbose specifies whether to display the norm of each grid.

This function calls reachablenodes. An overloaded version takes as an argument
the mask array returned from reachablenodes, so that reachablenodes need not
be called in this function.

12

Other overloaded versions of this function include arguments with the exterior
boundary nodes of this level, and the interior boundary nodes of the coarsened
finer-level grids.

• Real maxnorm(const LevelData<NodeFArrayBox>& a_phi,

const ProblemDomain& a_domain,

const DisjointBoxLayout* a_finerGridsPtr,

const int a_nRefFine,

const Interval a_comps,

bool a_verbose = true)

• Real maxnorm(const LevelData<NodeFArrayBox>& a_phi,

const Box& a_domain,

const DisjointBoxLayout* a_finerGridsPtr,

const int a_nRefFine,

const Interval a_comps,

bool a_verbose = true)

Returns the max (L∞) norm of valid data on one level. Inputs are a subset of those
for the norm function above, and there are overloaded versions as with norm.

3.3.2 Norms of data on multiple levels

• Real norm(

const Vector<LevelData<NodeFArrayBox>* >& a_phi,

const Vector<ProblemDomain>& a_domain,

const Vector<int>& a_nRefFine,

const Real a_dxCrse,

const Interval a_comps,

const int a_p,

const int a_lBase,

bool a_verbose = true)

• Real norm(

const Vector<LevelData<NodeFArrayBox>* >& a_phi,

const Vector<Box>& a_domain,

const Vector<int>& a_nRefFine,

const Real a_dxCrse,

const Interval a_comps,

const int a_p,

const int a_lBase,

bool a_verbose = true)

Returns the norm of valid data on multiple levels.
Inputs:

13

– a phi is a vector of pointers to data at multiple levels.

– a domain specifies the entire cell-centered problem domain at all levels of
resolution. Vector index corresponds to level number.

– a nRefFine specifies the refinement ratios between adjacent levels.
a nRefFine[ilev] is the refinement ratio between levels ilev and ilev+1.
a nRefFine[ilev] must be a power of two, with a nRefFine[ilev] ≥ 1.

– a dxCrse is the mesh spacing at level a lBase.

– a comps specifies the components over which to take the norm.

– a lBase is the index of the coarsest level on which the norm is to be computed.

– a p specifies which norm to take: if a p = 0 then the max (L∞) norm, and
if a p > 0 then the La p norm.

– a verbose specifies whether to display the norm of each grid.

• Real maxnorm(

const Vector<LevelData<NodeFArrayBox>* >& a_phi,

const Vector<ProblemDomain>& a_domain,

const Vector<int>& a_nRefFine,

const Interval a_comps,

const int a_lBase,

bool a_verbose = true)

• Real maxnorm(

const Vector<LevelData<NodeFArrayBox>* >& a_phi,

const Vector<Box>& a_domain,

const Vector<int>& a_nRefFine,

const Interval a_comps,

const int a_lBase,

bool a_verbose = true)

Returns the max (L∞) norm of valid data on multiple levels. Inputs are a subset of
those for the multi-level norm function above.

3.4 Dot product for node-centered data

The DotProductNodes functions return the dot product of data distributed over two
instances of LevelData<NodeFArrayBox> with the same layout. The dot product is the
sum, over all valid nodes and over specified components, of the product of the data in
the two data holders. That is, for data sets f and g on nodes ΩN , the dot product is

f · g =
∑

i∈ΩN,valid

fi gi.

14

• Real DotProductNodes(

const LevelData<NodeFArrayBox>& a_dataOne,

const LevelData<NodeFArrayBox>& a_dataTwo,

const BoxLayoutData< BaseFab<int> >& a_mask,

const ProblemDomain& a_domain,

const Interval& a_comps)

• Real DotProductNodes(

const LevelData<NodeFArrayBox>& a_dataOne,

const LevelData<NodeFArrayBox>& a_dataTwo,

const BoxLayoutData< BaseFab<int> >& a_mask,

const Box& a_domain,

const Interval& a_comps)

Returns the dot product of data on one level.
Inputs:

– a dataOne contains the first set of data on a level.

– a dataTwo contains the second set of data on a level.

– a mask is the mask array from REACHABLENODES on this level.

– a domain is the cell-centered problem domain on this level.

– a comps specifies the components to be used in computing the dot product.

An overloaded version of this function includes the exterior boundary nodes of the
level as an argument. It is more efficient to use this other version when the dot
product is to be computed multiple times on data with the same layout.

3.5 Functions for interior and exterior boundary nodes

An interior node of a grid layout is any node in the layout with the property that all of
the cells adjacent to the node are also contained in the grid layout. An interior boundary

node of a grid layout is an interior node that lies on the boundary of one or more grids in
the layout. See Figure 3.2 for a sample layout with interior boundary nodes marked.
An exterior node or exterior boundary node of a grid layout is any node of the layout

that is not an interior node. See Figure 3.3 for the same layout as Figure 3.2, with exterior
nodes marked.

3.5.1 interiorBoundaryNodes functions

The interiorBoundaryNodes functions return the interior boundary nodes of a
DisjointBoxLayout. The interface would be simplest if the function returned a ref-
erence to an IntVectSet, but because of the way that IntVectSet is implemented,

15

Figure 3.2: Hollow circles indicate the interior boundary nodes of a two-dimensional grid
layout inside a problem domain delineated by the dashed lines. Nodes marked × are also
interior boundary nodes if the problem domain is periodic in the horizontal direction.

Figure 3.3: Hollow circles indicate the exterior boundary nodes of a two-dimensional grid
layout inside a problem domain delineated by the dashed lines. Nodes marked × are also
exterior boundary nodes if the problem domain is not periodic in the horizontal direction.
Any node that is not an exterior boundary node is an interior node.

16

this would be very slow. Instead, the first interiorBoundaryNodes function returns
a reference to a LayoutData< Vector<IntVectSet> > such that the union of all the
IntVectSets in the Vectors contains exactly the indices of all interior boundary nodes
of the input layout.
To make matters even more complicated, there is a second interiorBoundaryNodes

function, which takes two DisjointBoxLayout arguments. This function returns a ref-
erence to a LayoutData that stores the indices of interior boundary nodes of one layout
that are also nodes (interior or exterior) of a second layout. The output of this function
is needed for calling copyInteriorNodes, described in section 3.5.3.

• void interiorBoundaryNodes(

LayoutData< Vector<IntVectSet> >& a_IVSV,

const DisjointBoxLayout& a_boxes,

const ProblemDomain& a_domain)

• void interiorBoundaryNodes(

LayoutData< Vector<IntVectSet> >& a_IVSV,

const DisjointBoxLayout& a_boxes,

const Box& a_domain)

Returns the interior boundary nodes of a layout.
Inputs:

– a boxes specifies the cell-centered layout of boxes.

– a domain specifies the cell-centered problem domain that contains the layout.

Output:

– a IVSV contains the interior boundary nodes of a boxes in a LayoutData

based on a boxes. For each box in the layout of a boxes, there is a Vector
of IntVectSets that together contain the indices of the interior boundary
nodes of the box.

• void interiorBoundaryNodes(

LayoutData< Vector<IntVectSet> >& a_IVSV,

const DisjointBoxLayout& a_dest,

const DisjointBoxLayout& a_src,

const ProblemDomain& a_domain)

• void interiorBoundaryNodes(

LayoutData< Vector<IntVectSet> >& a_IVSV,

const DisjointBoxLayout& a_dest,

const DisjointBoxLayout& a_src,

const Box& a_domain)

17

Returns the interior boundary nodes of a source layout that are also nodes of a
destination layout. This function is used when copying from data based on the
source layout to data based on the destination layout.
Inputs:

– a dest specifies the cell-centered layout of boxes on which to base the
LayoutData to be returned.

– a src specifies the cell-centered layout of boxes of which we wish to find the
interior boundary nodes.

– a domain specifies the cell-centered problem domain that contains both lay-
outs.

Output:

– a IVSV contains the interior boundary nodes of a src in a LayoutData based
on the layout in a dest. For each box in the layout of a dest, there is a
Vector of IntVectSets that together contain the indices of all nodes of the
box that are also interior boundary nodes of a src.

If a dest is the same as a src, then the result is the same as calling the first
interiorBoundaryNodes function with a boxes set to a dest.

3.5.2 exteriorBoundaryNodes function

• void exteriorBoundaryNodes(

LayoutData< Vector<IntVectSet> >& a_exterior,

const LayoutData< Vector<IntVectSet> >& a_interior,

const DisjointBoxLayout& a_boxes)

Returns the exterior boundary nodes (also called exterior nodes) of a boxes.
Inputs:

– a interior is the object returned by

interiorBoundaryNodes(a_interior, a_boxes, a_domain)

described in section 3.5.1.

– a boxes specifies the cell-centered layout of boxes.

Output:

– a exterior contains the exterior boundary nodes of a boxes in a LayoutData
based on a boxes. For each box in the layout of a boxes, there is a Vector
of IntVectSets that together contain the indices of the exterior boundary
nodes of the box.

18

3.5.3 copyInteriorNodes function

The copyInteriorNodes function copies data from a source to a destination, but only
from interior nodes of the source. Recall that the interior nodes are simply those that
are not exterior nodes. This function is similar to copyTo but copies valid data only. See
Figure 3.4 for an example.

• void copyInteriorNodes(

LevelData<NodeFArrayBox>& a_dest,

const LevelData<NodeFArrayBox>& a_src,

const LayoutData< Vector<IntVectSet> >& a_IVSV)

Copies data from the interior boundary nodes of a src to a dest.
Inputs:

– a src contains the data to be copied at its interior nodes.

– a IVSV is the object returned by

interiorBoundaryNodes(a_interior, a_dest.boxLayout(),

a_src.boxLayout(), a_domain)

described in section 3.5.1.

Output:

– a dest, at interior nodes of the layout of a src, is replaced by data from
a src. Elsewhere, a dest is unchanged.

3.5.4 zeroBoundaryNodes function

• void zeroBoundaryNodes(

BoxLayoutData<NodeFArrayBox>& a_dest,

const LayoutData< Vector<IntVectSet> >& a_IVSV)

Sets data to zero on specified nodes.
Input:

– a IVSV is an object containing indices of nodes for each box, where data are
to be set to zero. Usually it stores the indices of exterior boundary nodes of
a dest. These are obtained with the sequence of calls:

interiorBoundaryNodes(a_IVSVint, a_dest.boxLayout(), a_domain);

exteriorBoundaryNodes(a_IVSV, a_IVSVint, a_dest.boxLayout());

where a domain is the cell-centered problem domain.

Output:

19

Figure 3.4: An example of a source and destination layout for copyInteriorNodes. The
problem domain, delineated by dashed lines, is taken to be non-periodic.
Top: Hollow circles indicate the interior nodes of a source layout.
Bottom: Hollow circles indicate the nodes of a destination layout that are filled by
copyInteriorNodes with data from the source layout above.

20

– a dest is set to zero at nodes in a IVSV. Elsewhere, a dest is unchanged.

The underlying layouts of a dest and a IVSV must be the same.

21

Chapter 4

Interface for AMRNodeElliptic Solver

NodeLevelMG

NodeMGInterp

. . .
AMRNodeSolver

AMRNodeLevelMG LevelNodeSolver

NodeMaskLevelOpNodeMaskAverage

Figure 4.1: This chart shows the major classes of AMRNodeElliptic used by
AMRNodeSolver. An arrow from one class to another indicates that an instance of the first
class defines an instance of the second class. In each case, only one instance of the second
class is defined, except that the AMRNodeSolver defines an instance of AMRNodeLevelMG
for each level in the AMR hierarchy.

4.1 The class AMRNodeSolver

The AMRNodeSolver class solves an elliptic equation on an adaptive mesh refinement hi-
erarchy of node-centered grids. The boundary conditions are obtained from a combination
of interpolation from the next coarser level of grids, plus some set of physical boundary
conditions on a rectangular domain.
The API is as follows.

• void define(

const Vector<DisjointBoxLayout>& a_gridsLevel,

const Vector<ProblemDomain>& a_domainLevel,

22

const Vector<Real>& a_dxLevel,

const Vector<int>& a_refRatio,

int a_numLevels,

int a_lBase,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

• void define(

const Vector<DisjointBoxLayout>& a_gridsLevel,

const Vector<Box>& a_domainLevel,

const Vector<Real>& a_dxLevel,

const Vector<int>& a_refRatio,

int a_numLevels,

int a_lBase,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

Sets up the internal state of an AMRNodeSolver object with information about the
grid hierarchy and the operator.
Inputs:

– a gridsLevel specifies the layout of the cell-centered grids on all levels. Vec-
tor index corresponds to level number.

– a domainLevel specifies the entire cell-centered problem domain at all levels
of resolution. Vector index corresponds to level number.

– a dxLevel specifies the mesh spacing at all levels. Vector index corresponds
to level number.

– a refRatio specifies the refinement ratios between adjacent levels.
a refRatio[ilev] is the refinement ratio between levels ilev and ilev+1.
a refRatio[ilev] must be a power of two, with a refRatio[ilev] ≥ 1.

– a numLevels is the number of AMR levels in the calculation. The length
of the Vectors a gridsLevel, a domainLevel and a dxLevel must be at
least a numLevels, and the length of the Vector a refRatio must be at
least a numLevels-1.

– a lBase is the index of the coarsest level on which the solution is to be
computed.

– a opin is a pointer to the NodeMaskLevelOp to use in solving.

– a minLength is the minimum length of the maximally coarsened box in
LevelNodeSolver, or 0 if there is to be no coarsening. If a minLength

≥ 1 then the multigrid solver will coarsen boxes only so far as to maintain the
lengths of all boxes as multiples of a minLength.

23

• void solveAMR(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Solves the elliptic equation over the hierarchy of levels m lBase ...

m finestLevel where m finestLevel = m numLevels-1. If m lBase > 0, then
the data at level m lBase-1 is used to interpolate boundary conditions at bound-
ary cells that are not adjacent to the domain boundary. Solves to tolerance
m tolerance.
Inputs:

– a phiLevel contains pointers to the current guess at the solution values
for levels (lMin = max(m lBase-1, 0)) .. m finestLevel. Index in the
Vector corresponds to level number. These values are updated in place.

– a rhsLevel contains pointers to values of the right-hand side for levels
m lBase .. m finestLevel.

Outputs:

– a phiLevel contains pointers to values of the updated solution at the same
levels.

• void AMRVCycleMG(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Does one relaxation V-cycle using an AMR multigrid solver.
Inputs:

– a phiLevel contains pointers to current guess at values of the solution at lev-
els m lBase .. m finestLevel. Vector index corresponds to level number.

– a rhsLevel contains pointers to values of the right-hand side on the same
levels as a phiLevel.

Outputs:

– a phiLevel contains pointers to values of the updated solution.

• Real computeResidualNorm(int a_normNtype)

Returns the norm of the multilevel residual on levels m lBase to
m finestLevel, where the residual at level ilev has been stored in
m amrmgLevel[ilev]->m resid. The residual must have been computed
already before this function is called.
Inputs:

– a normType is the type of norm: 0 for max norm, or p > 0 for Lp norm.

24

• void applyAMROperator(

LevelData<NodeFArrayBox>& a_lofPhi,

Vector<LevelData<NodeFArrayBox>*>& a_phiLev,

int a_ilev)

Applies the multilevel AMR operator to the data on a level.
Inputs:

– a phiLev contains pointers to current guess at values of the solution at levels
m lBase .. m finestLevel. Vector index corresponds to level number.

– a ilev is level on which operator is to be applied. The result
depends on a phiLev[a ilev], as well as a phiLev[a ilev-1] and
a phiLev[a ilev+1] if they are defined.

Outputs:

– a lofPhi contains value of operator applied on valid region of level a ilev.

• void computeAMRResidual(

LevelData<NodeFArrayBox>& a_res,

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel,

int a_ilev)

Computes the residual on a level using the multilevel operator.
Inputs:

– a phiLevel contains pointers to current guess at values of the solution at lev-
els m lBase .. m finestLevel. Vector index corresponds to level number.

– a rhsLevel contains pointers to the right-hand side at the same levels as
a phiLevel.

– a ilev is level on which the residual is to be computed. The result
depends on a rhsLevel[a ilev] and a phiLevel[a ilev], as well as
a phiLevel[a ilev-1] and a phiLevel[a ilev+1] if they are defined.

Outputs:

– a res contains residual on valid region of level a ilev. This is also stored in
m amrmgLevel[ilev]->m resid.

• void setTolerance(Real a_tolerance)

Sets the tolerance in the AMR solver: iterations end when the norm of the residual
is less than a tolerance times the initial residual. Default is 1.0e-10.

25

• void setOperatorTolerance(Real a_operatorTolerance)

Sets the “operator tolerance” of the AMR solver: iterations end if the ratio of the
new residual to the old residual exceeds 1 − a operatorTolerance and at least
m minIter iterations have been performed. Default is 1.0e-5.

• void setBottomTolerance(Real a_tolerance)

Sets the tolerance in the bottom solver, LevelNodeSolver m levelSolver.

• void setMaxIter(int a_maxIter)

Sets the maximum number of iterations in the AMR solver. Default is 42.

• void setMinIter(int a_minIter)

Sets the minimum number of iterations in the AMR solver before it will terminate
due to lack of convergence. Default is 5.

• void setBottomMaxIter(Real a_maxIter)

Sets the maximum number of iterations in the bottom solver,
LevelNodeSolver::levelSolve or LevelNodeSolver::levelSolveH. De-
fault is 33.

• void setNumSmoothDown(int a_numSmoothDown)

Sets the number of iterations of smoothing for the downward part of the V-cycle in
NodeLevelMG::mgRelax. Default is 4.

• void setNumSmoothUp(int a_numSmoothUp)

Sets the number of iterations of smoothing for the upward part of the V-cycle in
NodeLevelMG::mgRelax. Default is 4.

• void setNumBottomGSRB(int a_numBottomGSRB)

Sets the number of iterations of smoothing at the bottom of the V-cycle in
NodeLevelMG::mgRelax. Default is 16.

• void setBottomSmoothing(bool a_doBottomSmooth)

Sets whether the smoother is applied at the bottom of the V-cycle in
NodeLevelMG::mgRelax. Default is true.

Principal data members

• Vector<AMRNodeLevelMG*> m amrmgLevel is a vector of length m numLevels

containing pointers to AMRNodeLevelMG objects, each of which manages the data
and operations on one level.

26

• LevelNodeSolver m levelSolver solves elliptic equations on level m lBase using
multigrid.

• Vector<DisjointBoxLayout> m gridsLevel, Vector<Box> m domainLevel,
Vector<Real> m dxLevel, Vector<int> m refRatio, int m numLevels, int
m lBase are set to the arguments a gridsLevel, a domainLevel, a dxLevel,
a refRatio, a numLevels, a lBase in the constructor.

4.1.1 Internal class AMRNodeLevelMG

AMRNodeLevelMG manages the data and operations for AMRNodeSolver on one level.
AMRNodeSolver defines a vector of AMRNodeLevelMG objects, one for each level. This
class should be considered internal to AMRNodeSolver and should not be considered part
of the Chombo API.
These functions are called from AMRNodeSolver. In a multigrid V-cycle,

AMRNodeSolver::AMRVCycleMG calls downSweep at each level from the finest down to
one above the base level, solves at the base level with class LevelNodeSolver, and then
calls upSweep at each level from one above the base up to the finest level.

• void define(

const AMRNodeSolver* const a_parent,

int a_level,

const NodeMaskLevelOp* const a_opin)

Sets up the internal state of an AMRNodeLevelMG object.
Inputs:

– a parent is a pointer to the AMRNodeSolver object that called this construc-
tor.

– a level is the level for which this object manages data and operations.

– a opin is a pointer to the NodeMaskLevelOp to use in solving.

• void applyAMROperator(

LevelData<NodeFArrayBox>& a_Lofphi,

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel)

Calculates the multilevel AMR operator to the data on this level. This operator
uses inhomogeneous coarse-fine boundary conditions and inhomogeneous physical
domain boundary conditions.
Inputs:

– a phiLevel contains pointers to current guess at values of the so-
lution. Vector index corresponds to level number. The result de-
pends on a phiLev[m level], as well as a phiLev[m level-1] and
a phiLev[m level+1] if they are defined.

27

Outputs:

– a lofPhi contains value of operator applied on valid region of level m level.

• void computeAMRResidual(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Computes the residual on this level using the multilevel operator. The result is
stored in local data m resid.
Inputs:

– a phiLevel contains pointers to current guess at values of the solu-
tion. Vector index corresponds to level number. The result depends
on *a phiLevel[m level], as well as *a phiLevel[m level-1] and
*a phiLevel[m level+1] if they are defined.

– a rhsLevel contains pointers to the right-hand side at the same levels as
a phiLevel. The result depends on *a rhsLevel[m level].

• void downSweep(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Sweeps down a multigrid V-cycle from this level to next coarser level. This function
calculates the correction m corr and updates the solution at this level with it. It also
overwrites the residual at the next coarser level, if any, with the averaged residual
at this level.
Inputs:

– a phiLevel contains pointers to current guess at values of the solution. Vec-
tor index corresponds to level number.

– a rhsLevel contains pointers to the right-hand side at the same levels as
a phiLevel.

Outputs:

– a phiLevel contains pointers to updated solution.

• void upSweep(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Sweeps up a multigrid V-cycle from the next coarser level to this level. This function
interpolates the correction m corr from the next coarser level, uses it to finish the
calculation of residual m resid, and updates the solution at this level.
Inputs:

28

– a phiLevel contains pointers to current guess at values of the solution. Vec-
tor index corresponds to level number.

– a rhsLevel contains pointers to the right-hand side at the same levels as
a phiLevel.

Outputs:

– a phiLevel contains pointers to updated solution.

• Real computeResidualNorm(int a_normNtype)

Returns the norm of internal data m resid.
Inputs:

– a normType is the type of norm: 0 for max norm, or p > 0 for Lp norm.

Principal data members

• LevelData<NodeFArrayBox> m resid is the residual calculated in
computeAMRResidual.

• LevelData<NodeFArrayBox> m corr is the correction at this level.

• int m level is the level for which this object manages data and operations, set to
a level argument in constructor.

• NodeMaskLevelOp* m levelOpPtr is the pointer to the level operator, set to
a opin argument in constructor.

• NodeMGInterp m mginterp is used for interpolating the correction from the next
coarser level to this level in upSweep.

• NodeMaskAverage m averageOp is used for averaging the residual down to the
next coarser level in downSweep.

4.1.2 Internal class NodeLevelMG

The NodeLevelMG class is a multigrid solver on a level. It is used by the classes
LevelNodeSolver and AMRNodeLevelMG (internal to AMRNodeSolver). This class
should be considered internal to AMRNodeSolver and LevelNodeSolver, and should
not be considered part of the Chombo API.

• void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

const ProblemDomain& a_domain,

29

Real a_dx,

int a_refToCoarse,

const NodeMaskLevelOp* const a_opin,

int a_nCoarserLevels)

• void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

const Box& a_domain,

Real a_dx,

int a_refToCoarse,

const NodeMaskLevelOp* const a_opin,

int a_nCoarserLevels)

Defines the internal state of the NodeLevelMG object and allocates space for the
residual. The arguments are the same as for the LevelNodeSolver constructor, but
instead of a minLength we have a nCoarserLevels. This argument represents the
number of coarser-level NodeLevelMG objects to be defined recursively. Namely,

– when defined from LevelNodeSolver,

∗ if a minLength is 0 then a nCoarserLevels is also 0;

∗ if a minLength ≥ 1 then a nCoarserLevels is the exponent of the
largest power of 2 that divides the lengths of every grid at this level
divided by a minLength. Thus after a nCoarserLevels coarsenings by
2, the lengths of all grids will still be divisible by a minLength.

– when defined from AMRNodeLevelMG,

∗ if a minLength is 0 or a level is 0 then a nCoarserLevels is also 0;

∗ if a minLength ≥ 1 and a level ≥ 1 then a nCoarserLevels =
log2(r)− 1 where r is the refinement ratio to the next coarser level.

• void mgRelax(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs,

bool a_bottomsolveflag)

Invokes a relaxation step, updating a phi with right-hand side a rhs. It is assumed
that the problem is in residual-correction form. In particular, only the homogeneous
form of the physical and coarse-fine boundary conditions need be invoked. mgRelax
calls itself recursively on the coarsened grids.

Principal data members

• LevelData<NodeFArrayBox> m resid is the residual at this level.

30

• LevelData<NodeFArrayBox> m crseResid is the residual on the grids of this level
coarsened by 2.

• LevelData<NodeFArrayBox> m crseCorr is the correction on the grids of this
level coarsened by 2.

• NodeMaskLevelOp* m levelOpPtr is the pointer to the level operator, set to
a opin argument in constructor.

• NodeMaskAverage m averageOp is used for averaging the residual down to the
residual on the coarsened grids of this level, in mgRelax.

• NodeMGInterp m mginterp is used for interpolating the correction in mgRelax.

4.2 The class LevelNodeSolver

The LevelNodeSolver class solves elliptic equations on a level using the multigrid
method. It is used by AMRNodeSolver to solve at the base level.
The API is as follows.

• void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

const ProblemDomain& a_domain,

Real a_dx,

int a_refToCoarse,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

• void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

const Box& a_domain,

Real a_dx,

int a_refToCoarse,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

Sets up the internal state of a LevelNodeSolver object.
Inputs:

– a grids specifies the layout of the cell-centered grids at this level.

– a gridsCoarsePtr is a pointer to the layout of the cell-centered grids at the
next coarser level, or NULL if there is no coarser level.

31

– a domain specifies the cell-centered problem domain on this level.

– a dx is the mesh spacing at this level.

– a refToCoarse is the refinement ratio between this level and the next coarser
level. Ignored if there is no coarser level.

– a opin is a pointer to the NodeMaskLevelOp to use in solving.

– a minLength is the minimum length of the maximally coarsened box, or 0 if
there is to be no coarsening. If a minLength ≥ 1 then the multigrid solver will
coarsen boxes only so far as to maintain the lengths of all boxes as multiples
of a minLength.

• void levelSolve(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>* a_phiCoarse,

const LevelData<NodeFArrayBox>& a_rhs,

bool a_initializePhiToZero = true)

Does a level solve on this level using multigrid and inhomogeneous boundary con-
ditions at coarse/fine interfaces.
Inputs:

– a phi is initial guess at solution at this level.

– a phiCoarse is a pointer to solution at next coarser level, or NULL if there is
no coarser level.

– a rhs contains the right-hand side at this level.

– a initializePhiToZero tells whether to initialize the solution to zero.

Output:

– a phi is updated solution at this level.

• void levelSolveH(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs,

bool a_initializePhiToZero = true)

Does a level solve on this level using multigrid and homogeneous boundary conditions
at coarse/fine interfaces.
Inputs:

– a phi is initial guess at solution at this level.

– a rhs contains the right-hand side at this level.

– a initializePhiToZero tells whether to initialize the solution to zero.

32

Output:

– a phi is updated solution at this level.

• void setTolerance(Real a_tolerance)

Sets the tolerance in the level solver: iterations end when the norm of the residual
is less than a tolerance times the initial residual. Default is 1.0e-10.

• void setOperatorTolerance(Real a_operatorTolerance)

Sets the “operator tolerance” of the solver: iterations end if the ratio of the
new residual to the old residual exceeds 1 − a operatorTolerance and at least
m minIter iterations have been performed. Default is 1.0e-4.

• void setMaxIter(int a_maxIter)

Sets the maximum number of relaxation iterations. Default is 33.

• void setMinIter(int a_minIter)

Sets the minimum number of iterations in the solver before it will terminate due to
lack of convergence. Default is 4.

• void setnumSmoothDown(int a_numSmoothDown)

Sets the number of iterations of smoothing for the downward part of the V-cycle in
m levelMG.mgRelax. Default is 4.

• void setnumSmoothUp(int a_numSmoothUp)

Sets the number of iterations of smoothing for the upward part of the V-cycle in
m levelMG.mgRelax. Default is 4.

• void setnumBottomGSRB(int a_numBottomGSRB)

Sets the number of iterations of smoothing at the bottom of the V-cycle in
m levelMG.mgRelax. Default is 16.

• void setBottomSmoothing(bool a_bottomSolveFlag)

Sets whether the smoother is applied at the bottom of the V-cycle in
m levelMG.mgRelax. Default is true.

Principal data members

• NodeLevelMG m levelMG is a multigrid level solver object to relax on this level.

• NodeMaskLevelOp* m levelOpPtr is a pointer to the NodeMaskLevelOp to use
in solving.

• LevelData<NodeFArrayBox> m resid is the residual in the level solve.

• LevelData<NodeFArrayBox> m corr is the correction in the level solve.

33

4.3 The NodeMaskLevelOp interface

NodeMaskLevelOp is a pure base class to encapsulate level operations for node-centered
elliptic solvers.

• virtual NodeMaskLevelOp* new_levelop() = 0

Returns a pointer to a new instance of NodeMaskLevelOp of the same type. This
gets around the “no virtual constructor” rule.

• virtual void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

Real a_dx,

int a_refToCoarse,

const ProblemDomain& a_domain,

bool a_homogeneousOnly = false,

int a_ncomp = 1) = 0

• virtual void define(

const DisjointBoxLayout& a_grids,

const DisjointBoxLayout* a_gridsCoarsePtr,

Real a_dx,

int a_refToCoarse,

const Box& a_domain,

bool a_homogeneousOnly = false,

int a_ncomp = 1) = 0

Full define function. Makes all coarse/fine information and sets internal variables.
Inputs:

– a grids specifies the layout of the cell-centered grids at this level.

– a gridsCoarsePtr is a pointer to the layout of the cell-centered grids at the
next coarser level, or NULL if there is no coarser level.

– a domain specifies the cell-centered problem domain on this level.

– a dx is the mesh spacing at this level.

– a refToCoarse is the refinement ratio between this level and the next coarser
level. Ignored if there is no coarser level.

– a homogeneousOnly specifies whether all coarse/fine interpolation is homo-
geneous.

– a ncomp is the number of components in the operator argument.

34

• virtual void define(

const NodeMaskLevelOp* a_opfine,

int a_refToFine) = 0

Full define function. Makes all coarse/fine information and sets internal variables
from finer NodeMaskLevelOp. Any NodeMaskLevelOp defined with this function is
not able to execute inhomogeneous boundary conditions at the coarse/fine interface.
Inputs:

– a opfine is the finer-level operator.

– a refToFine is the refinement ratio between this level and the next finer level.

• virtual void CFInterp(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_phiCoarse,

bool a_inhomogeneous) = 0

Fills the nodes on the coarse/fine interface with interpolated data from the coarser
level.
Inputs:

– a phi is the solution on the current level.

– a phiCoarse is the solution at the next coarser level.

– a inhomogeneous specifies whether the physical boundary condition is inho-
mogeneous.

• virtual void homogeneousCFInterp(

LevelData<NodeFArrayBox>& a_phi) = 0

Zeroes out the nodes that lie on the interface with the coarser level.
Input:

– a phi is the solution on this level.

Output:

– a phi is the solution on this level with interface nodes set to zero.

• virtual void smooth(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs) = 0

Smoother. This smooths the solution (in the multigrid sense) on a level. It as-
sumes that the problem has already been put into residual-correction form, so that
coarse/fine boundary conditions are homogeneous.
Inputs:

35

– a phi is the solution on this level.

– a rhs is the right-hand side on this level.

Output:

– a phi is the smoothed solution on this level.

• virtual void applyOpH(

LevelData<NodeFArrayBox>& a_LofPhi,

LevelData<NodeFArrayBox>& a_phi) = 0

• virtual void applyOpI(

LevelData<NodeFArrayBox>& a_LofPhi,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>* a_phiCoarsePtr) = 0

• virtual void applyOpHcfIphys(

LevelData<NodeFArrayBox>& a_LofPhi,

LevelData<NodeFArrayBox>& a_phi) = 0

• virtual void applyOpIcfHphys(

LevelData<NodeFArrayBox>& a_LofPhi,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>* a_phiCoarsePtr) = 0

Evaluate the operator. The four functions differ in whether the boundary conditions
are homogeneous or inhomogeneous on the coarse/fine interface and on the physical
boundary:

function coarse/fine interface physical boundary
applyOpH homogeneous homogeneous
applyOpI inhomogeneous inhomogeneous
applyOpHcfIphys homogeneous inhomogeneous
applyOpIcfHphys inhomogeneous homogeneous

Inputs:

– a phi is the solution on this level.

– a phiCoarsePtr is a pointer to the solution at the next coarser level, required
for inhomogeneous coarse/fine boundary conditions.

Output:

– a LofPhi is the result of the operator on this level.

36

• virtual void residualH(

LevelData<NodeFArrayBox>& a_resid,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs) = 0

• virtual void residualI(

LevelData<NodeFArrayBox>& a_resid,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>* a_phiCoarsePtr,

const LevelData<NodeFArrayBox>& a_rhs) = 0

• virtual void residualHcfIphys(

LevelData<NodeFArrayBox>& a_resid,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs) = 0

• virtual void residualIcfHphys(

LevelData<NodeFArrayBox>& a_resid,

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>* a_phiCoarsePtr,

const LevelData<NodeFArrayBox>& a_rhs) = 0

Calculate the residual of the operator. If L is the operator, ϕ is the solution to
which the operator is applied, and ρ is the right-hand side, then the residual is
simply ρ− L(ϕ). The four functions differ in whether the boundary conditions are
homogeneous or inhomogeneous on the coarse/fine interface and on the physical
boundary:

function coarse/fine interface physical boundary
residualH homogeneous homogeneous
residualI inhomogeneous inhomogeneous
residualHcfIphys homogeneous inhomogeneous
residualIcfHphys inhomogeneous homogeneous

Inputs:

– a phi is the solution on this level.

– a phiCoarsePtr is a pointer to the solution at the next coarser level, required
for inhomogeneous coarse/fine boundary conditions.

– a rhs is the right-hand side on this level.

Output:

– a resid is the residual on this level.

37

• virtual void bottomSmoother(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs) = 0

Performs smoothing at the bottom level. This is used when it is not possible to
coarsen the grid. Typically, the function is either a point relaxation or a conjugate-
gradient type of method.
Inputs:

– a phi is the solution on this level.

– a rhs is the right-hand side on this level.

Output:

– a phi is the smoothed solution on this level.

• virtual void levelPreconditioner(

LevelData<NodeFArrayBox>& a_phihat,

const LevelData<NodeFArrayBox>& a_rhshat) = 0

Applies preconditioner. In the notation of [BBC+94], if the preconditioner is M ,
which is an approximation to the operator, then this solves the related equation
Mφ̂ = ρ̂. In the AMR multigrid implementation, this function is generally most
often used by the bottom solver.
Input:

– a rhshat is the right-hand side of the preconditioning.

Output:

– a phihat is the result of the preconditioning.

4.3.1 The NodeMaskBaseBottomSmoother interface

NodeMaskBaseBottomSmoother is a pure base class to encapsulate operations for
smoothers used by node-centered elliptic solvers.

• virtual NodeMaskBaseBottomSmoother* new_bottomSmoother() const = 0

Returns a pointer to a new instance of NodeMaskBaseBottomSmoother of the same
type.

• virtual void doBottomSmooth(

LevelData<NodeFArrayBox>& a_phi,

const LevelData<NodeFArrayBox>& a_rhs,

const BoxLayoutData< BaseFab<int> >& a_mask,

NodeMaskLevelOp* a_levelop_ptr) = 0

38

Performs smoothing of L(ϕ) = ρ.
Inputs:

– a phi is the solution on a level.

– a rhs is the right-hand side on a level.

– a mask is the mask array from REACHABLENODES on this level.

– a levelop ptr is a pointer to an instance of the operator.

Output:

– a phi is the smoothed solution on the level.

Examples of smoothers are conjugate gradient and BiCGStab, described in [BBC+94].
These are implemented as the NodeMaskCGSmoother and NodeMaskBiCGStabSmoother
classes, respectively, described in detail in [McC02].

4.3.2 The class NodeMaskPoissonOp

NodeMaskPoissonOp is a subclass of NodeMaskLevelOp that includes operations for
the discrete Laplacian operator. Here we describe only the functions and members of
NodeMaskPoissonOp that are not described in the section on NodeMaskLevelOp.

• void setBottomSmoother(const NodeMaskBaseBottomSmoother& a_bottomSmoother)

Sets the bottom smoother to be used in the smooth function. The default bottom
smoother for NodeMaskPoissonOp is an object of class NodeMaskCGSmoother.

• void setInterpolationDegree(int a_interpolationDegree)

Sets the degree of interpolation to be used in NodeQuadCFInterp: 1 for linear in
two dimensions or bilinear in three dimensions; 2 for quadratic in two dimensions or
biquadratic in three dimensions. Default is 2. This function must be called before
define. The interpolation degree cannot be changed later without calling define
again.

• void setDomainNodeBC(const DomainNodeBC& a_dombcIn)

Sets the boundary conditions of the physical domain.

4.4 The class AMRNodeSolverAlt

The AMRNodeSolverAlt class solves an elliptic equation on an adaptive mesh refinement
hierarchy using an alternative algorithm to the AMR multigrid solver implemented in
AMRNodeSolver. AMRNodeSolverAlt solves one level at a time, from coarsest to finest,
interpolating from coarser to finer solutions as it proceeds. See Figure 4.2 for a chart of
major classes used in AMRNodeSolverAlt.

39

LevelNodeSolver

. . .

NodeLevelMG

AMRNodeSolverAlt

NodeMaskLevelOpNodeMaskAverage

Figure 4.2: This chart shows the major classes of AMRNodeElliptic used by
AMRNodeSolverAlt. An arrow from one class to another indicates that an instance
of the first class defines an instance of the second class. In each case, only one instance
of the second class is defined, except that the AMRNodeSolverAlt defines an instance of
LevelNodeSolver for each level in the AMR hierarchy.

• void define(

const Vector<DisjointBoxLayout>& a_gridsLevel,

const Vector<ProblemDomain>& a_domainLevel,

const Vector<Real>& a_dxLevel,

const Vector<int>& a_refRatio,

int a_numLevels,

int a_lBase,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

• void define(

const Vector<DisjointBoxLayout>& a_gridsLevel,

const Vector<Box>& a_domainLevel,

const Vector<Real>& a_dxLevel,

const Vector<int>& a_refRatio,

int a_numLevels,

int a_lBase,

const NodeMaskLevelOp* const a_opin,

int a_minLength = 1)

Sets up the internal state of an AMRNodeSolverAlt object with information about
the grid hierarchy and the operator. The arguments are the same as for the define
function of AMRNodeSolver.

• void solveAMR(

Vector<LevelData<NodeFArrayBox>*>& a_phiLevel,

40

const Vector<LevelData<NodeFArrayBox>*>& a_rhsLevel)

Solves the elliptic equation over a hierarchy of levels. The arguments are the same
as for the solveAMR function of AMRNodeSolver.

• void setTolerance(Real a_tolerance)

Sets the tolerance in the one-level solvers: iterations at a level end when the norm of
the residual is less than a tolerance times the initial residual. Default is 1.0e-10.

• void setMaxIter(int a_maxIter)

sets the maximum number of iterations in the solvers at all levels. Default is set in
LevelNodeSolver.

• void setBottomSmoothing(bool a_doBottomSmooth)

sets whether the smoother is applied at the bottom of the V-cycle in the function
NodeLevelMG::mgRelax. Default is true.

Principal data members.

• Vector<LevelNodeSolver*> m levelSolver is a vector of length m numLevels

containing pointers to LevelNodeSolver objects, each of which manages the data
and operations on one level.

• Vector<DisjointBoxLayout> m gridsLevel, Vector<Box> m domainLevel,
Vector<Real> m dxLevel, Vector<int> m refRatio, int m numLevels, int
m lBase are set to the arguments a gridsLevel, a domainLevel, a dxLevel,
a refRatio, a numLevels, a lBase in the constructor.

41

Chapter 5

C++ Classes for Two-Level Operators

5.1 The class NodeMaskAverage

The NodeMaskAverage class is used for replacing coarse-level data with an average of
fine-level data in the classes NodeLevelMG and AMRNodeLevelMG.

• void define(

const DisjointBoxLayout& a_gridsFine,

const DisjointBoxLayout& a_gridsCoarse,

int a_numcomps,

int a_refRatio,

const ProblemDomain& a_domainFine,

Real a_dx)

• void define(

const DisjointBoxLayout& a_gridsFine,

const DisjointBoxLayout& a_gridsCoarse,

int a_numcomps,

int a_refRatio,

const Box& a_domainFine,

Real a_dx)

Defines the internal state of the NodeMaskAverage object.
Inputs:

– a gridsFine specifies the layout of the cell-centered grids at the finer level.

– a gridsCoarse specifies the layout of the cell-centered grids at the coarser
level.

– a numcomps is the number of components in the data.

– a refRatio is the refinement ratio between the two levels.

– a domainFine specifies the cell-centered problem domain

42

– a dx is the mesh spacing at the finer level.

• void define(

const DisjointBoxLayout& a_gridsCoarse,

int a_numcomps,

int a_refRatio,

const ProblemDomain& a_domainFine,

Real a_dx)

• void define(

const DisjointBoxLayout& a_gridsCoarse,

int a_numcomps,

int a_refRatio,

const Box& a_domainFine,

Real a_dx)

Defines the internal state of the NodeMaskAverage object. The arguments are the
same as that of the longer define function above, except that a gridsFine is not
present; the grids at the finer level are taken to be refinements of the grids at the
coarser level.

• void averageToCoarse(

LevelData<NodeFArrayBox>& a_coarse,

LevelData<NodeFArrayBox>& a_fine)

Replaces coarse-level data with an average of nearby finer-level cells’ data, on the
interior of the coarsened finer-level domain. Elsewhere, the coarse-level data is
unchanged.
Input:

– a fine is finer-level data.

Output:

– a coarse is coarser-level data with interior nodes replaced by average of finer-
level data.

5.2 The class NodeMGInterp

The NodeMGInterp class is used for interpolating data from a coarser to a finer AMR
level in the class AMRNodeLevelMG.

• void define(

const DisjointBoxLayout& a_grids,

int a_numcomps,

43

int a_refRatio,

const ProblemDomain& a_domain,

Real a_dx)

• void define(

const DisjointBoxLayout& a_grids,

int a_numcomps,

int a_refRatio,

const Box& a_domain,

Real a_dx)

Defines the internal state of the NodeMGInterp object.
Inputs:

– a grids specifies the layout of the cell-centered grids at the finer level.

– a numcomps is the number of components in the data.

– a refRatio is the refinement ratio between the two levels.

– a domain specifies the cell-centered problem domain on the finer level.

– a dx is the mesh spacing at the finer level.

• void interpToFine(

LevelData<NodeFArrayBox>& a_fine,

const LevelData<NodeFArrayBox>& a_coarse)

bool a_sameGrids = false)

Modifies the finer-level data by adding interpolated values of the coarser-level data.
Input:

– a fine is original finer-level data.

– a coarse is coarser-level data.

– a sameGrids specifies whether the finer-level grids are refinements of the
coarser-level grids.

Output:

– a fine is updated finer-level data.

5.3 The class NodeQuadCFInterp

The NodeQuadCFInterp class interpolates data from a coarse level to a fine level on
coarse/fine interfaces.

44

• void define(

const DisjointBoxLayout& a_grids,

Real a_dx,

const ProblemDomain& a_domain,

const LayoutData<NodeCFIVS>* const a_loCFIVS,

const LayoutData<NodeCFIVS>* const a_hiCFIVS,

int a_refToCoarse,

int a_interpolationDegree = 2,

int a_ncomp = 1)

• void define(

const DisjointBoxLayout& a_grids,

Real a_dx,

const Box& a_domain,

const LayoutData<NodeCFIVS>* const a_loCFIVS,

const LayoutData<NodeCFIVS>* const a_hiCFIVS,

int a_refToCoarse,

int a_interpolationDegree = 2,

int a_ncomp = 1)

Defines the internal state of the NodeQuadCFInterp object.
Inputs:

– a grids specifies the layout of the cell-centered grids at the finer level.

– a dx is the mesh spacing at the finer level.

– a domain specifies the cell-centered problem domain on the finer level.

– a loCFIVS and a hiCFIVS are pointers to arrays of length SpaceDim of
LayoutData<NodeCFIVS>, each of which holds information about nodes on
the coarse/fine interface for each finer-level box. The underlying layout in
every case is a grids. The arrays of LayoutData<NodeCFIVS> are indexed
by dimension, with a loCFIVS for faces on the low sides and a hiCFIVS for
faces on the high sides.

– a refToCoarse is the refinement ratio between the two levels. It must be a
power of 2.

– a interpolationDegree is the degree of interpolation. It is 1 if interpolation
is linear in two dimensions or bilinear in three dimensions. It is 2 if interpolation
is quadratic in two dimensions or biquadratic in three dimensions.

– a ncomp is the number of components in the data.

• void coarseFineInterp(

LevelData<NodeFArrayBox>& a_phiFine,

const LevelData<NodeFArrayBox>& a_phiCoarse,

45

bool a_inhomogeneous)

Fills the nodes of the fine level of the coarse/fine interfaces with interpolated data
from the coarser level.
Inputs:

– a phiCoarse is coarser-level data.

– a inhomogeneous specifies whether the physical boundary condition is inho-
mogeneous.

Output:

– a phiFine is the finer-level data, modified at nodes on interfaces with the
coarser level.

• void setDomainNodeBC(const DomainNodeBC& a_dombcIn)

Sets the boundary conditions of the physical domain. This is required if the refine-
ment ratio is more than 2, because then the boundary conditions need to be set on
the intermediate levels between successive interpolations by refinement ratio of 2.

5.4 The class NodeCFIVS

The NodeCFIVS class determines the set of nodes that lie on the coarse/fine interface,
for a particular face of a particular box at the finer level.

• void define(

const ProblemDomain& a_domain,

const Box& a_box,

const DisjointBoxLayout& a_levelBoxes,

int a_idir,

Side::LoHiSide a_hiorlo)

• void define(

const Box& a_domain,

const Box& a_box,

const DisjointBoxLayout& a_levelBoxes,

int a_idir,

Side::LoHiSide a_hiorlo)

Defines the internal state of the NodeCFIVS object.
Inputs:

– a domain specifies the cell-centered problem domain on the finer level.

– a box specifies the finer-level box.

46

– a levelBoxes specifies the layout of all cell-centered boxes at the finer level.

– a idir and a hilorlo specify the particular face of a box.

• const IntVectSet& getFineIVS() const

Returns the indices of the finer-level nodes on this face that also lie on the interface
with the coarser level. The IntVectSet excludes indices of nodes that lie on the
boundary of the problem domain, and nodes that are on faces of any other boxes
in a levelBoxes on the side of a box specified by a idir and a hilorlo. See
Figure 5.1.

Figure 5.1: This figure indicates, with hollow circles, all nodes with indices returned by
getFineIVS over all settings of a box in a two-dimensional layout over a non-periodic
domain.
Top: a idir = 0, and a hiorlo = (left) Side::Lo or (right) Side::Hi.
Bottom: a idir = 1, and a hiorlo = (left) Side::Lo or (right) Side::Hi.

47

Chapter 6

External Boundary Conditions

Boundary conditions on the faces of the rectangular problem domain are enforced with the
class DomainNodeBC, which contains a pointer to an instance of the class FaceNodeBC for
each boundary face. The user adds a FaceNodeBC-derived class for each face to enforce
particular boundary conditions.
The AMRNodeElliptic package allows boundary conditions that are expressed as

A
∂ϕ

∂n
+Bϕ = C (6.1)

for each node lying on the boundary, where A, B, and C may vary over the boundary. The
class derived from FaceNodeBC provides a function to fill A, B, and C on a boundary face.
DomainNodeBC calls this function and fills the boundary nodes appropriately. Examples:

• Dirichlet: A = 0, B = 1. For homogeneous, C = 0.

• Neumann: A = 1, B = 0. For homogeneous, C = 0.

The user needs to define an instance of DomainNodeBC only once, regardless of the
number of levels of refinement. The problem domain and the mesh spacing for the level
are inputs to the functions that set and apply the boundary conditions.

6.1 The DomainNodeBC class

There is one instance of DomainNodeBC for the whole problem domain.

• DomainNodeBC()

This constructor defines the object in an unusable state until the user calls
setFaceNodeBC for each face.

• void setFaceNodeBC(

const FaceNodeBC& a_bc)

48

Sets boundary conditions at a face.
Input:

– a bc is boundary condition at a face.

• void applyHomogeneousBCs(

NodeFArrayBox& a_state,

const ProblemDomain& a_domain,

Real a_dx) const

• void applyHomogeneousBCs(

NodeFArrayBox& a_state,

const Box& a_domain,

Real a_dx) const

• void applyInhomogeneousBCs(

NodeFArrayBox& a_state,

const ProblemDomain& a_domain,

Real a_dx) const

• void applyInhomogeneousBCs(

NodeFArrayBox& a_state,

const Box& a_domain,

Real a_dx) const

Apply boundary conditions. The difference between applyHomogeneousBCs and
applyInhomogeneousBCs is that applyHomogeneousBCs sets C = 0 in (6.1).
Inputs:

– a domain is the cell-centered problem domain on the level.

– a dx is the mesh spacing on the level.

Output:

– a state contains the data. Data at nodes on the boundary of the problem
domain are modified according to the boundary conditions. Data at other
nodes are unchanged.

6.2 The FaceNodeBC interface

There is a FaceNodeBC object for each of the 2*SpaceDim faces of the problem domain.

• FaceNodeBC(

int a_dir,

Side::LoHiSide a_sd)

49

• FaceNodeBC(

int a_dir,

Side::LoHiSide a_sd,

const Interval& a_comps)

Constructor that defines boundary conditions on a face.
Inputs:

– a dir is dimension of face, 0 up to SpaceDim-1.

– a sd is either Side::Lo or Side::Hi in specifying the face.

– a comps, if present, specifies the interval over which components of the data
will have boundary values set. If absent, then the interval is (0:0).

• virtual FaceNodeBC* new_boxBC() const = 0

Returns a pointer to a new instance of FaceNodeBC of the same type.

• void define(

int a_dir,

Side::LoHiSide a_sd)

• void define(

int a_dir,

Side::LoHiSide a_sd,

const Interval& a_comps)

Define the FaceNodeBC object with the same arguments as the constructors.

• virtual void applyHomogeneousBCs(

FArrayBox& a_state,

const ProblemDomain& a_domain,

Real a_dx) const

• virtual void applyHomogeneousBCs(

FArrayBox& a_state,

const Box& a_domain,

Real a_dx) const

• virtual void applyInhomogeneousBCs(

FArrayBox& a_state,

const ProblemDomain& a_domain,

Real a_dx) const

• virtual void applyInhomogeneousBCs(

FArrayBox& a_state,

const Box& a_domain,

50

Real a_dx) const

The difference between applyHomogeneousBCs and applyInhomogeneousBCs is
that applyHomogeneousBCs sets C = 0 in (6.1).
Inputs:

– a domain is the cell-centered problem domain on the level.

– a dx is the mesh spacing on the level.

Output:

– a state contains the data. Data on nodes of a state that lie on the boundary
of the cell-centered problem domain a domain are modified according to the
boundary conditions. Data on other nodes of a state are unchanged.

• virtual void fillBCValues(

FArrayBox& a_neumfac,

FArrayBox& a_dircfac,

FArrayBox& a_inhmval,

Real a_dx,

const ProblemDomain& a_domain) const = 0

• virtual void fillBCValues(

FArrayBox& a_neumfac,

FArrayBox& a_dircfac,

FArrayBox& a_inhmval,

Real a_dx,

const Box& a_domain) const = 0

Sets the coefficients in (6.1). This function must be provided in the derived class.
Inputs:

– a dx is the mesh spacing on the level.

– a domain is the cell-centered problem domain on the level.

Outputs: Data in these node-centered FArrayBoxes are set on the nodes that lie
on this face of the boundary of a domain. When called by applyEitherBCs, all
three of them have the same underlying node-centered box, which will be a subbox
of this boundary face. In the boundary condition equation A ∂ϕ

∂n
+Bϕ = C (6.1):

– a neumfac contains A.

– a dircfac contains B.

– a inhmval contains C.

51

Bibliography

[BBC+94] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia,
PA, 1994.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Ser-
afini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[McC02] P. McCorquodale. AMRNodeElliptic Software Package: Node-Centered AMR
for Elliptic Problems. unpublished, 2002.

52

