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Abstract

Decision Making under Uncertainty: Reliability and Incentive Compatibility

by

Tingting Cui

Doctor of Philosophy in Engineering- Industrial Engineering and Operations
Research

University of California, Berkeley

Professor Zuo-Jun Shen, Chair

This dissertation studies analytical and computational aspects of two types of prob-
lems in applied operations research. In the first part of the dissertation, we consider
the reliable facility location models in which facilities are subject to unexpected fail-
ures. We propose a compact mixed integer programming formulation that is polyno-
mial in size. To compute optimal facility locations that balance the trade-off between
normal operation and failure costs, we develop two exact algorithms: one is based on
Lagrangian Relaxation, and the other is a hybrid of neighborhood search and cut-
ting plane procedures. To obtain more managerial insights, we further investigate a
Continuum Approximation (CA) model that predicts the total system cost without
details about facility locations and customer assignments. The CA model is a valuable
tool for sensitivity analysis, as well as a fast heuristic for large problem instances.

The second part of the dissertation is dedicated to theoretical and applied mecha-
nism design, which consists of two chapters. In the first chapter, we study a problem
of allocating limited capacity of a queueing system to serve several segments of cus-
tomers, who differ in their willingness to pay and their sensitivity to delays, both of
which are their private information. We show that probabilistic admission control,
randomized priority rule, and strategic idleness can emerge as optimal solutions in a
revenue maximizing mechanism.

In the second chapter of part two, we revisit the optimal auction design problem
and propose a robust formulation based on an uncertainty set that characterizes the
conservativeness of the bidders’ beliefs, with two special cases being the Bayesian
and Ex post formulations. Using the network approach, we identify the necessary
and sufficient conditions under which the expected revenues achieved by different
formulations are identical. Furthermore, we show that in a multiple-object auction,
the auctioneer’s expected revenue may strictly decrease as the bidders’ beliefs become
more uncertain.
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Chapter 1

Outline

This dissertation concerns itself with two diverse topics arise from applied oper-
ations research: reliable facility location and multiple dimension mechanism design.
For this reason, the report is organized in two parts. In this chapter, we briefly
outline the contents of each part.

Part I

The classic uncapacitated fixed charge location problem (UFL) selects facility loca-
tions and customer assignments in order to balance the trade-off between initial setup
costs and day-to-day transportation costs. However, some of the constructed facili-
ties may become unavailable due to disruptions caused by natural disasters, terrorist
attacks or labor strikes. When a facility failure occurs, customers may have to be
reassigned from their original facilities to others that require higher transportation
costs. We present facility location models that minimize normal construction and
transportation costs as well as hedge against facility failures within the system.

In Chapter 2, we proposed an implicit formulation of the reliable facility loca-
tion problem that are based on level assignment. Unlike scenario based stochastic
programs that have exponentially many variables and constraints, our formulation is
polynomial in size. The formulation can also be easily linearized as a mixed integer
program (MIP), which can be solved using off-the-rack MIP solvers such as ILOG
CPLEX. However, due to the large scale nature of the problem, the CPLEX solver is
not reliable and usually requires excessive computation time. This motivates our de-
velopment of a Lagrangian algorithm, which provides decomposition of the customer
assignment problem, along with two custom-designed algorithms for the individual as-
signment problems. Our computation results indicate that the Lagrangian algorithm
is efficient for mid-sized problem instances. However, the algorithm performance is
not ideal for large test instances.
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To further improve computational efficiency, we introduce a group of new algo-
rithms in Chapter 3. All of the algorithms rely on a neighborhood search procedure
to improve the upper bound/best available feasible solution, but differ in the way
to find lower bounds of the optimal solution. We proposed three different methods
to update the lower bounds, listed in increasing order of accuracy: an MIP formula-
tion assuming no facility failures, a linear MIP formulation that assumes fixed failure
probabilities, and a Lagrangian relaxation of the original problem with varying fail-
ure probabilities. Once all the neighborhood solutions have been evaluated, they are
eliminated from future consideration using integer cuts. Our test results indicates
that these algorithms provide a good combination of speed and accuracy.

Both Chapter 2 and Chapter 3 address discrete models of the reliable facility
location problems, for which only computational results are available and very few
insights can be drawn from the optimal solutions. To provide more managerial
insights, we develop a Continuum Approximation (CA) model in Chapter 4. The CA
model precisely predicts the system costs by focusing on important decisions like the
number of facilities and the influential areas, omitting details of facility locations and
customer assignments. Since the system cost is approximated as continuous function
of the key parameters, the CA model is a handy tool for sensitivity analysis. Fur-
thermore, the continuous results from the CA model can be translated into a discrete
facility location design, making the CA model an alternative heuristic approach to
the discrete models. Our extensive test results show that the CA model provide
approximate solutions that are close to the optimal solutions found by the discrete
models, especially for the larger problem instances.

Part II

In Chapter 5, we study a problem setting in which a capacity-constrained server (mod-
eled as an M/M/1 queueing system) intends to serve several segments of customers.
Customers request the same amount of task; nevertheless, they are heterogeneous in
two attributes: their willingness to pay, and their willingness to wait, both of which
are privately observed by this customer but unknown to the server. In the absence
of the information about the customers’ preference, the server faces an adverse selec-
tion problem and therefore must design an appropriate mechanism: On one hand, the
mechanism must induce the customers to reveal their true preferences at their own
will; on the other hand, this mechanism must maximize the server’s long-run average
expected payoff in the presence of capacity constraint and congestion effect.

We show that a well-designed menu of probabilistic admission control along with
priority pricing contracts may force customers to reveal their true valuations and at
the same time induce customers that are more sensitive to the delay to opt for higher
priorities. Thus, the probabilistic admission control allows the server to identify the
customers that are willing to pay more for the service (thereby reducing the unde-
sirable congestion) and consequently may enable the server to increase its revenue.
We further find that randomized priority rule, probabilistic admission control, and
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strategic idleness can emerge as optimal solutions (from the server’s perspective).
Moreover, even though ex ante the server may exhibit specific preference/ranking
over different groups of customers, the server may probabilistically admit more than
one group and the preference becomes endogenous.

In Chapter 6, we switch our focus to the robustness of some well-known auction
mechanisms. In an attempt to answer the Wilson’s doctrine, that criticizes game
theory models assuming too much common knowledge amongst the players, we’re
particularly interested in the revenue difference of optimal mechanisms under the
Bayesian Nash (less robust) and the Ex post (more robust) settings. We adopt a novel
approach based on a graph theory representation of the incentive compatibility (IC)
constraints, to characterize the necessary and sufficient condition under which a fixed
allocation rule achieves the same revenue under the Bayesian and the Ex post settings.
Based on this result, we show that Bayesian optimal allocation for a single-object
auction has a revenue equivalent implementation in the Ex post setting, however, the
same result do not apply for multiple-object auctions. We further characterize Ex
post optimal allocations for special cases of multiple-object auctions, and verify the
revenue difference from the Bayesian optimal solutions.
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Chapter 2

Reliable Facility Location:

Formulation and Lagrangian

Relaxation

2.1 Introduction

The classic uncapacitated fixed charge location problem (UFL) selects facility lo-
cations and customer assignments in order to balance the trade-off between initial
setup costs and day-to-day transportation costs. However, some of the constructed
facilities may become unavailable due to disruptions caused by natural disasters, ter-
rorist attacks or labor strikes. When a facility failure occurs, customers may have to
be reassigned from their original facilities to others that require higher transporta-
tion costs. In this chapter we present facility location models that minimize normal
construction and transportation costs as well as hedge against facility failures within
the system.

The reliable location model was first introduced by Snyder and Daskin Snyder and
Daskin [2005] to handle facility disruption. Their motivating example is as follows.
Consider a supply network that serves 49 cities, consisting of all state capitals of
the continental United States and Washington, DC. Demands are proportional to the
1990 state populations and the fixed costs are proportional to the median house prices.
The optimal UFL solution for this problem is shown in Figure 2.1. This solution has a
fixed cost of $348,000 and a transportation cost of $509,000 (at $0.00001 per mile per
unit of demand). However, if the facility in Sacramento, CA failed, customers from

4



Figure 2.1. UFL solution to 49-data set

the entire west-coast region would have to get service from the facilities in Springfield,
IL and Austin TX, which would increase the transportation cost to $1,081,000 (112%).
Table 2.1 lists the “failure cost”, the transportation cost associated with each facility
failure.

Location Failure Cost % Increase
Sacramento, CA 1,081,229 112%
Harrisburg, PA 917,332 80%
Springfield, IL 696,947 37%

Montgomery, AL 639,631 26%
Austin, TX 636,858 25%

Transp. cost w/o failures 508,858 0%

Table 2.1. Failure costs of UFL solution

Snyder and Daskin Snyder and Daskin [2005] suggested that locating facilities in
the capitals of CA, NY, TX, PA, OH, AL, OR, and IA (Figure 2.2) is a more reliable
solution. In this solution, the maximum failure cost is reduced to $500,216, less than
the smallest failure cost in Table 2.1. However, three additional facilities are used
in this solution resulting in a total location and day-to-day transportation cost of
$919,298 - a 7.25% increase from the UFL optimal solution.

Realistically, no company would accept a supply network with high normal oper-
ating costs just to hedge against very rare facility disruptions. In order to balance
the trade-off between normal operating costs and failure costs, the network structure
should depend on how likely the candidate sites may get disrupted, as well as their
closeness to the potential customers. In Snyder and Daskin Snyder and Daskin [2005],
all facility locations are assumed to have identical failure probabilities, which might
not be very representative of practical situations. Let us illustrate how site-dependent
failure probabilities impact the choice of facility locations. Specifically, suppose that
the facilities are vulnerable to hurricane related disasters. Facilities located in the
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Figure 2.2. A more reliable solution

Figure 2.3. A cost efficient solution

Gulf coast area (TX, LA, MS, AL and FL) all have a 10% chance of disruption, while
other potential sites have a much lower failure probability of 0.1%. It is cost efficient
here to hedge against disruption by locating facilities in the capitals of CA, PA, IL,
GA and OK (Figure 2.3). In this solution, the two facilities along the Gulf coast
(TX and AL) are moved to adjacent “safer” locations. Although the failure costs of
CA and PA are high, we choose not to build “backup” facilities for them because
their probability of disruption is so small. The expected failure cost in this solution
is about $4,000, compared to $130,344 in the UFL optimal solution in Figure 2.1,
and the location and day-to-day transportation costs are increased by only 3.6%.
Table 2.2 compares the normal operating costs and the expected failure costs of the
three solutions.

In this chapter, we seek to design supply networks that are both reliable and cost
efficient. We minimize the expected transportation costs in both the regular and the
failure scenarios (plus the fixed construction costs) to balance the trade-off between

6



Solution 1
Location Failure Cost Failure Probability Expected Cost

Sacramento, CA 1,081,229 0.001 1,081
Harrisburg, PA 917,332 0.001 917
Springfield, IL 696,947 0.001 697

Montgomery, AL 639,631 0.1 63,963
Austin, TX 636,858 0.1 63,686

Expected failure cost 130,344
Normal operating cost 857,128

Solution 2
Location Failure Cost Failure Probability Expected Cost

Sacramento, CA 500,216 0.001 500
Albany, NY 419,087 0.001 419
Austin, TX 476,374 0.1 47,637

Harrisburg, PA 409,383 0.001 409
Columbus, OH 434,172 0.001 434

Montgomery, AL 474,640 0.1 47,464
Salem, OR 389,484 0.001 389

Des Moines, IA 452,305 0.001 452
Expected failure cost 97,706
Normal operating cost 919,298

Solution 3
Location Failure Cost Failure Probability Expected Cost

Sacramento, CA 1,058,226 0.001 1,058
Harrisburg, PA 908,672 0.001 909
Springfield, IL 681,786 0.001 682
Atlanta, GA 679,022 0.001 679

Oklahoma City, OK 660,985 0.001 661
Expected failure cost 3,989
Normal operating cost 888,009

Table 2.2. Comparisons of the normal operating costs and the expected failure costs

normal and emergency operating costs. The failure of each facility site is assumed to
be independent and the probability is taken as a prior. Unlike in Snyder and Daskin
Snyder and Daskin [2005], the failure probabilities are allowed to be site-dependent.
The facility location decisions and customer assignments are made at the first stage,
before any failures occur. Each customer can be assigned to up to R ≥ 1 facilities
to hedge against failures. After any disruptions occur, each customer is served by
her closest assigned operating facility; if all her assigned facilities have failed then a
penalty cost is charged. We feel that it is reasonable to restrict each customer’s facility
assignments to a pre-determined subset of all open facilities. In reality a customer
may not be able to get service from all facilities due to system compatibility, limited
capacity, or simply excessive transportation costs. Our computational results indicate
that the choice of R has no significant impact on the network structure of the optimal
solutions.

7



The extensive literature on facility location dates back to its original formulation
in 1909 and the Weber problem Weber and Friedrich [1929]. Traditionally, facility
location problems are modeled as discrete optimization problems and solved with
mathematical programming techniques. Daskin Daskin [1997] and Drezner Drezner
[1995] provide good introductions to and surveys of this topic.

Recently, reliability issues in supply chain design are of particular interest. Most of
the existing literature focuses on facility congestions from stochastic demand. Daskin
Daskin [1982], Daskin et al. [1983], Ball and Lin Ball and Lin [1993], ReVelle and
Hogan ReVelle and Hogan [1989], and Batta et. al. Batta et al. [1989] all attempted
to increase the system availability through redundant coverage.

Focus on system failures due to facility disruptions in supply chain design is gain-
ing attention recently Qi and Shen [2007], Qi et al. [2008]. In the traditional loca-
tional analysis literature, Snyder and Daskin Snyder and Daskin [2005] propose an
implicit formulation of the stochastic P-median and fixed-charge problems based on
level assignments, where the candidate sites are subject to random disruptions with
equal probability. Works by Shen et al. [2009] and Berman et al. [2007] relax the
assumption of uniform failure probabilities. Shen et al. [2009] formulate the stochas-
tic fixed-charged problem as a nonlinear mixed integer program and provides several
heuristic solution algorithms. Berman et al. [2007] focus on an asymptotic property
of the problem. They prove that the solution to the stochastic P-median problem
coincides with the deterministic problem as the failure probabilities approach zero.
They also propose heuristics with bounds on the worst-case performance.

2.2 Formulation

Define I to be the set of customers, indexed by i, and J to be the set of candidate
facility locations, indexed by j. For the ease of notation, we also use I and J to
indicate the cardinalities of the sets. Each customer i ∈ I has a demand rate of λi.
The cost to ship a unit of demand from facility j ∈ J to customer i ∈ I is denoted
by dij. Associated with each facility j ∈ J are the fixed location cost fj and the
probability of failure 0 ≤ qj < 1. The events of facility disruptions are assumed to be
independent.

Each customer is assigned to up to R ≥ 1 facilities, and can be serviced by these
and only these facilities. There is a cost φi associated with each customer i ∈ I that
represents the penalty cost of not serving the customer per unit of missed demand.
This cost may be incurred even if some of her assigned facilities are still online, given
that φi is less than the cost of serving i via any of these facilities. This rule is modeled
using an “emergency” facility, indexed by j = J , that has fixed cost fJ = 0, failure
probability qJ = 0 and transportation cost diJ = φi for customer i ∈ I.

The variables used in this model are the location variables (X), the assignment

8



variables (Y ) and the probability variables (P ):

Xj =

{
1, if a facility j is open
0, otherwise

Yijr =

{
1, if facility j is assigned to customer i at level r
0, otherwise

Pijr = probability that facility j serves customer i at level r.

We employ the modeling techniques introduced by Snyder and Daskin Snyder
and Daskin [2005] for assigning customers to facilities at multiple levels. A “level-
r” assignment for a customer i ∈ I will serve her if and only if all of her assigned
facilities at levels 0, · · · , r − 1 have failed. At optimality, each customer i ∈ I should
have exactly R assignments, unless i is assigned to the emergency facility at certain
level s < R. If a customer i is indeed assigned to exactly R regular facilities at levels
0, · · · , R − 1, she must also be assigned to the emergency facility J at level R to
capture the possibility that all of the R regular facilities may fail. Finally, Pijr is
the probability that facility j serves customer i at level r, given her other assigned
facilities at levels 0 to r − 1.

The reliability UFL problem (RUFL) is formulated as:

(RUFL) Min
J−1∑

j=0

fjXj +
I−1∑

i=0

J∑

j=0

R∑

r=0

λidijPijrYijr (2.1a)

s.t.
J−1∑

j=0

Yijr +
r−1∑

s=0

YiJs = 1 ∀ 0 ≤ i ≤ I − 1, 0 ≤ r ≤ R (2.1b)

R−1∑

r=0

Yijr ≤ Xj ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1 (2.1c)

R∑

r=0

YiJr = 1 ∀ 0 ≤ i ≤ I − 1 (2.1d)

Pij0 = 1− qj ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J (2.1e)

Pijr = (1− qj)
J−1∑

k=0

qk

1− qk
Pi,k,r−1Yi,k,r−1 (2.1f)

∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 1 ≤ r ≤ R

Xj , Yijr ∈ {0, 1} ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ r ≤ R. (2.1g)

The objective function (2.1a) is the sum of the fixed costs and the expected trans-
portation costs. Constraints (2.1b) enforce that for each customer i and each level
r, either i is assigned to a regular facility at level r or she is assigned to the emer-
gency facility J at certain level s < r (taking

∑r−1
s=0 YiJs = 0 if r = 0). Constraints
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(2.1c) limit customer assignments to only the open facilities, while constraints (2.1d)
require each customer to be assigned to the emergency facility at a certain level.
(2.1e)-(2.1f) are the “transitional probability” equations. Pijr, the probability that
facility j serves customer i at level r, is just the probability that j remains open if
r = 0. For 1 ≤ r ≤ R, Pijr is equal to

qk(1−qj)

1−qk
Pi,k,r−1 given that facility k serves

customer i at level r− 1. Note that constraints (2.1b) imply that Yi,k,r−1 can equal 1
for at most one k ∈ J , which guarantees correctness of the transitional probabilities.

Formulation (2.1a)-(2.1g) is nonlinear. However, the only nonlinear terms are
PijrYijr, 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ r ≤ R, each being a product of a continuous
variable and a binary variable. We apply the linearization technique introduced by
Sherali and Alameddine Sherali and Alameddine [1992] by replacing each PijrYijr with
a new variable Wijr. For each 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J and 0 ≤ r ≤ R a set of new
constraints is added to the formulation to enforce Wijr = PijrYijr:

Wijr ≤ Pijr (2.2a)

Wijr ≤ Yijr (2.2b)

Wijr ≥ 0 (2.2c)

Wijr ≥ Pijr + Yijr − 1. (2.2d)

The linearized formulation (LRUFL) is stated below:

(LRUFL) Min
J−1∑

j=0

fjXj +
I−1∑

i=0

J∑

j=0

R∑

r=0

λidijWijr (2.3a)

s.t. (2.1b)− (2.1d) (2.3b)

Pijr = (1− qj)
J−1∑

k=0

qk

1− qk
Wi,k,r−1 (2.3c)

∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 1 ≤ r ≤ R

(2.2a)− (2.2d) ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 1 ≤ r ≤ R (2.3d)

Xj , Yijr ∈ {0, 1} ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ r ≤ R. (2.3e)

Unlike scenario based stochastic programming problems that have exponentially
many variables and constraints, our formulation is compact and polynomial in size.
Proposition 1 shows the equivalence of (LRUFL) to the scenario based formulation.

Proposition 1. If R = J , then formulation (2.1a)-(2.1g) is equivalent to the stochas-
tic programming formulation that covers all failure scenarios.

In general, (LRUFL) is not equivalent to the scenario based formulation if R < J .
However, our computational results show that the choice of R has little impact on
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Figure 2.4. Fraction of a supply network

the optimal facility locations. Similar to classic facility location problems, we do not
enforce a customer to be served by her closest open facility in our formulation. It is
proved in Snyder and Daskin Snyder and Daskin [2005] that the optimal solution al-
ways assigns a customer to open facilities level by level in increasing order of distance,
given that all facilities are equally likely to fail. The following proposition extends
this result to the case where the facility failure probabilities are different across sites.

Proposition 2. In any optimal solution (X,Y,P) of (RUFL), if Yijr = 1 and
Yik,r+1 = 1, then dij ≤ dik, for all 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J , and 0 ≤ r ≤ R.

Proposition 2 tells us that for a given subset of facilities assigned to a customer,
the optimal assignment levels only depend on the distances from the customer to these
facilities. However, if more than R facilities are constructed, it may be sub-optimal
to assign each customer to her R closest facilities. As the following example shows, it
may be optimal to assign a customer to a facility that is farther away but less likely
to fail.

Example 1. Consider a fraction of a supply network depicted in Figure 2.4. Three
facilities are constructed around customer i. The distances from i to the facilities
are di1 = di2 = 10, and di3 = 20. The failure probabilities of the three facilities
are q1 = q3 = 0.1, and q2 = 0.2. The demand rate at i is λi = 1 and the penalty
for not serving a unit of demand is φi = 1000. Suppose that each customer is only
allowed one primary and one back-up facility (R = 2). If we assign customer i to the
two closest facilities 1 and 2, then the expected transportation/penalty cost for this
customer is 29.8. However, the optimal strategy is to assign i to facilities 1 and 3,
which reduces the expected transportation cost to 11.98.

Example 1 implies that even with fixed facility locations, the customer assignment
problem is combinatorial and requires more sophisticated solution methods. In this
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regard, our model is harder than that in Snyder and Daskin Snyder and Daskin
[2005], in which the customer assignment problem with fixed facility locations can
be easily solved. We discuss how to decompose the customer assignment problem
using Lagrangian relaxation in section 2.3, and how to efficiently solve the individual
customer assignment problem in section 2.4.

2.3 Lagrangian Relaxation

The linear mixed-integer program (LRUFL) can be solved using commercial soft-
ware packages like ILOG CPLEX, but generally such an approach takes an excessively
long time even for moderately sized problems. This fact motivates the development
of a Lagrangian relaxation algorithm. Relaxing constraints (2.1c) with multipliers µ
yields the following objective function:

J−1∑
j=0

(fj −
I−1∑
i=0

µij)Xj +
I−1∑
i=0

J∑
j=0

R∑
r=0

λidijWijr +
I−1∑
i=0

J−1∑
j=0

R−1∑
r=0

µijYijr.

For given value of µ, the optimal value of X can be found easily:

Xj =

{
1 if fj −

∑I−1
i=0 µij < 0

0 otherwise.

To find the optimal Y, the customer assignment decision, note that the problem is
separable in i. For given Lagrangian multipliers µ an individual customer’s assignment
problem is referred to as the relaxed subproblem (RSP). The complexity of RSP
is demonstrated in Example 1, in which the simple heuristic leads to suboptimal
solutions. We discuss efficient algorithms for RSP in Section 2.4.

We use standard subgradient optimization technique to update the Lagrangian
multipliers µ, as described in Fisher Fisher [2004]. If the Lagrangian process fails to
converge in a certain number of iterations, we use branch-and-bound to close the gap.
As a benchmark, we tested our algorithm on the same data sets used by Snyder and
Daskin Snyder and Daskin [2005]. The computational results are discussed in Section
2.5.
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2.4 The Relaxed Subproblem

Below is the MIP formulation of the relaxed subproblem with respect to customer

i (RSPi). For ease of notation, we omit the subscript i in Yijr, Pijr and Wijr.

(RSPi) Min Φi =
J∑

j=0

R∑

r=0

λidijWjr +
J−1∑

j=0

R−1∑

r=0

µijYjr (2.4a)

s.t.
J−1∑

j=0

Yjr +
r−1∑

s=0

YJs = 1 ∀ 0 ≤ r ≤ R (2.4b)

R−1∑

r=0

Yjr ≤ 1 ∀ 0 ≤ j ≤ J − 1 (2.4c)

R∑

r=0

YJr = 1 (2.4d)

Pj0 = 1− qj ∀ 0 ≤ j ≤ J (2.4e)

Pjr = (1− qj)
J−1∑

k=0

qk

1− qk
Wk,r−1 ∀ 0 ≤ j ≤ J, 1 ≤ r ≤ R (2.4f)

Yjr ∈ {0, 1} ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (2.4g)

(2.2a)− (2.2d). (2.4h)

We propose two methods to solve the relaxed subproblem: one exact algorithm
that finds the optimal customer assignment, and one fast approximate algorithm that
provides an lower bound.

2.4.1 An Exact Algorithm

Following a similar argument to Proposition 2, given the subset of facilities that
serve a certain customer, it is optimal to assign this customer to the facilities level
by level in increasing order of the distances. Therefore the objective value of (RSPi)
only depends on the set of facilities that serve customer i. Define Φi(S) to be the
minimum cost to serve customer i, using only facilities in S; i.e.,

Φi(S) = Min
J∑

j=0

R∑
r=0

hidijWjr +
∑
j∈S

µij (2.5a)

s.t. (2.4b)− (2.4g) (2.5b)

R−1∑
r=0

Yjr = 0 ∀ j ∈ {1, · · · , J − 1} \ S. (2.5c)
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It is clear that (RSPi) is equivalent to the following minimization of a set function
(MSFi):

(MSFi) Min Φi(S) (2.6a)

s.t. S ⊆ {0, · · · , J − 1} (2.6b)

|S| ≤ R. (2.6c)

We solve (MSF) using a special branch-and-bound algorithm, based on some unique
properties of the set function Φ, as described in Proposition 3.

Proposition 3. The set function Φi is supermodular, for all i = 0, · · · , I − 1.

The minimization of a supermodular set function can be solved more efficiently,
using the branch-and bound algorithm developed by Goldengorin et al. Goldengorin
et al. [1999]. The algorithm keeps track of A and B, the set of facilities that have
been forced in or out for each branch-and-bound node. The supermodularity of the
objective function allows us to force out a facility if its addition to set A does not
reduce the total cost. In an unconstrained problem, it is also possible to force in a
facility if its deletion from {0, · · · , J−1}\B increases the total cost. However, since
MSF is subject to the cardinality constraint (2.6c), the second option does not apply
here.

2.4.2 An Approximate Solution

Although the exact algorithm in Section 2.4.1 takes advantage of special structure
of the problem, its worst case complexity is still exponential. In this section we provide
a fast approximate algorithm that finds lower bounds for the Lagrangian procedure.

In our approximate solution, we replace the variable probability Pjr with fixed
numbers. Let j0, j1, · · · , jJ−1 be an ordering of the facilities such that qj0 ≤ qj1 ≤
· · · ≤ qJ−1. Define

αr = (1− qjr)
r−1∏

`=0

qj`

βr =
r−1∏

`=0

qj`
.

We define a reformulation of the relaxed subproblem (RRSP) by replacing Pjr
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with αr if 0 ≤ j ≤ J − 1, and replacing PJr with βr:

(RRSPi) Min
J−1∑

j=0

R−1∑

r=0

(λidijαr + µij)Yjr +
R∑

r=0

λidiJβrYJr (2.7a)

s.t.
J−1∑

j=0

Yjr +
r−1∑

s=0

YJs = 1 ∀ 0 ≤ r ≤ R (2.7b)

R−1∑

r=0

Yjr ≤ 1 ∀ 0 ≤ j ≤ J − 1 (2.7c)

R∑

r=0

YJr = 1 (2.7d)

Yjr ∈ {0, 1} ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R. (2.7e)

The following proposition states that we can solve (RRSP) for a lower bound of
(RSP).

Proposition 4. The (RRSP) formulation (2.7a)-(2.7e) yields a lower bound to the

relaxed subproblem (2.4a)-(2.4h).

We note that the (RRSP) formulation (2.7a)-(2.7e) leads to a combinatorial as-
signment problem, which can be solved in strongly polynomial time using the Hun-
garian algorithm Kuhn [2005]. In our numerical tests, we use both the exact and the
approximate algorithm to get the best combination of speed and accuracy.

Although our compact MIP formulation and the Lagrangian relaxation algorithm
are significant improvements over scenario based stochastic programming formula-
tions, the worst case complexity is still exponential, due to the NP-hardness of the
underlying problem. Furthermore, because only numerical results are available from
the discrete model, very few managerial insights can be drawn from the optimal solu-
tions. In the next section, we overcome these difficulties by introducing the continuum
approximation (CA) model.

2.5 Computational Results

The Lagrangian Algorithm was tested on two types of networks - the “real” net-
work based on the US map with 49 or 88 nodes and the “random” network generated
on a unit square region with 50 or 100 nodes (the data set was kindly provided by L.
Snyder and is available from his website Snyder). The failure probabilities qj in the
real networks are calculated using qj = 0.1e−Dj/400, in which Dj is the great cycle dis-
tance (in miles) between location j and New Orleans, LA. In the random networks, qj
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are randomly generated from a uniform distribution between 0 and 0.2. For each data
set, we test our algorithm for R = 2, 3 and 4. The Lagrangian relaxation/branch-
and-bound procedure is executed to a tolerance of 0.5%, or up to 3600 seconds (60
minutes) in CPU time. The algorithm was coded in C++ and tested on an Intel
Pentium 4 3.20GHz processor with 1.0 GB RAM under Linux. Parameter values for
the Lagrangian relaxation algorithm can be found in Table 2.3, and the algorithm
performance is summarized in Table 2.4.

Parameter Value
Optimal tolerance 0.005

Maximum number of approximate iterations at root node 1000
Maximum number of exact iterations at root node 500

Maximum number of approximate iterations at child nodes 200
Maximum number of exact iterations at child nodes 100

Initial value for µij optimal dual of LP relaxation

Table 2.3. Parameter values for the Lagrangian relaxation

Nodes R Root LB Root UB Root gap Overall UB Overall gap CPU time
49 2 875,899 880,098 0.479 880,098 < 0.500 6
49 3 870,417 874,423 0.460 874,423 < 0.500 25
49 4 870,125 874,323 0.483 874,323 < 0.500 49
88 2 122,755 123,365 0.497 123,365 < 0.500 244
88 3 121,743 122,348 0.497 173,5400 < 0.500 419
88 4 121,727 122,329 0.494 122,329 < 0.500 925
50 2 6,332.89 6,362.71 0.471 6,362.71 < 0.500 1
50 3 6,336.73 6,362.71 0.410 6,362.71 < 0.500 2
50 4 6,338.15 6,362.71 0.387 6,362.71 < 0.500 2
100 2 11,881.1 11,981.0 0.841 11,970.2 < 0.500 69
100 3 11,853.3 12,127.9 2.317 11,970.0 < 0.500 94
100 4 11,883.6 12,036.1 1.283 11,970.0 < 0.500 120

Table 2.4. LR Algorithm Performance

We notice that the maximum re-assignment level R does not affect the optimal
facility locations in all of our test instances, although a higher R in general helps to
reduce the optimal cost. Figure 2.5 and 2.6 illustrate the optimal facility locations
for the 49-node and the 88-node problem respectively. Table 2.5 and 2.6 list the
percentage of covered demand, fixed cost, and failure probability at each optimal
facility location in the two problem instances. In both cases, the optimal solutions
avoid highly risky areas such as LA and MS. In areas with moderate risk, clusters
of facilities are formed to hedge against possible disruptions. In areas with low risk
(OR, CA and AZ), facilities are located relatively sparsely.

Our algorithm appears to have performed efficiently on the random test instances.
However, the algorithm convergence is slow for some of the real test instances. Due to
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Figure 2.5. Optimal Solution to the 49-Node Problem

Figure 2.6. Optimal Solution to the 88-Node Problem

the computational complexity of finding exact solutions for the relaxed subproblems
(RSP), we can only afford to run the exact algorithm for a very limited number of
iterations (100 at each B&B node as compared to 2000 in Snyder and Daskin Snyder
and Daskin [2005]), The approximate algorithm for RSP is fast, but the bound it
provides can be lax in some circumstances. For fixed-charge location problems, it is
generally more efficient to relax the assignment constraint (2.1b) instead of the linking
constraint (2.1c). However, in our case relaxing (2.1c) allows us to decompose the
customer assignment problem, a key step in the algorithm development. To improve
the efficiency of the algorithm, we introduce a new algorithm in Chapter 3 based on
neighborhood search and cutting plain procedures.
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Location Demand Covered Fixed Cost Failure Probability
Sacramento, CA 19% 115,800 0.001

Austin, TX 9% 72,600 0.043
Harrisburg, PA 29% 38,400 0.012

Lansing, MI 12% 48,400 0.013
Montgomery, AL 17% 62,200 0.053
Des Moines, IA 15% 49,500 0.014

Table 2.5. Optimal Locations for the 49-Node Problem

Location Demand Covered Fixed Cost Failure Probability
Houston, TX 10% 58,000 0.043

Philadelphia, PA 27% 49,400 0.012
Detroit, MI 10% 25,600 0.013

Milwaukee, WI 10% 53,500 0.014
Portland, OR 3% 59,200 0.001
Tucson, AZ 5% 66,800 0.001
Fresno, CA 17% 80,300 0.001

Montgomery, AL 9% 62,200 0.053
Topeka, KS 8% 48,800 0.024

Table 2.6. Optimal Locations for the 88-Node Problem
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Chapter 3

Reliable Facility Location: the

Search-and-Cut Algorithm

3.1 Introduction

In this chapter, we study the reliable version of the uncapacitated fixed-charge
location problem (UFLP), although our model can be easily extended to address
other facility location problems. The uncertainty of facility failure is specified by
individual and independent failure probability inherent at each facility. To hedge
against failures within the system, each customer is assigned to multiple facilities,
ordered by levels. The facility at the lowest level is a customer’s primary facility,
which will serve the customer as long as it remains operational. A facility at a
higher level is the customer’s backup facility, and it only serves the customer when
all facilities at lower levels have failed. In the rare event that all facilities assigned
to a customer have failed, a penalty cost is incurred, which can be taken as the loss
of goodwill, or the cost to serve the customer at a competitor’s facility. Our goal is
to minimize the sum of fixed location costs, the expected transportation costs at all
levels, and the expected penalty costs. This problem will be referred to as the reliable
uncapacitated fixed-charge location problem (RUFLP).

This chapter can be viewed as an extension of Chapter 2, where we do not limit
the customer assignment levels. Using a combination of neighborhood search and
cutting plane process, our search-and-cut algorithm that outperform the Lagrangian
algorithm in Chapter 2 in both execution time and solution quality, especially for
larger R. The new algorithm also works as a heuristic, which can solve extremely
large problem instances.

The remainder of the chapter is organized as follows. In Section 3.2, we introduce
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the formulation of the RUFLP problem. Section 3.3 is dedicated to solution algo-
rithms for RUFLP, with Section 3.3.1 introducing a linear reformulation that pro-
vides a lower bound, Section 3.3.2 discussing an exact algorithm, and Section 3.3.3
proposing an approximate solution. Numerical experiment design and computational
results are discussed in Section 3.4.

3.2 Formulation

Let N(|N | = n) be the set of customer demand aggregation points and M(|M | =
m) be the set of candidate locations for the facilities. We denote demand rate at node
i as λi for each i ∈ N , at the fixed cost to locate a facility at node j as fj for each
j ∈ M . Let dij be the unit cost to serve demand from node i at a facility located at
node j. We model facility disruptions as independent events, happening at location
j ∈ M with probability 0 ≤ qj < 1.

To hedge against disruption risk, each customer is assigned to up to R > 1 facili-
ties, and can be served by these and only these facilities. A penalty cost φi is incurred
for each unit of unmet demand due to facility failures, which can be taken as the lost
of good will, or the cost to serve the customers at a competitor’s facility.

We will use S ⊂ M to denote the set of facilities selected. If a facility is located
at site j, we call it facility j.

Define S[i] = {k | φi ≥ dik, k ∈ S} to be the set of facilities in S whose unit
shipping cost to customers at i ∈ N is lower than the unit penalty cost. Define i[r]
∈ S (r = 1, 2, .., |S[i]|) to be the facility that serves customers at i ∈ N. at level r.
Assume q0[i] = 1 for i ∈ N. Define Ci(S) to be the sum of shipping cost and lost sales
cost of one unit of demand to customers at i ∈ N. Then, it can be verified that

Ci(S) =



|S[i]|∑
r=1

(
r−1∏
t=0

qi[r]

)
(
1− qi[r]

)
di,i[r] +



|S[i]|∏
t=0

qi[t]


 φi


 . (3.1)

Define F (S) to be the total cost of shipping and fixed facilty given location set S,
such that

F (S) =
∑
j∈S

fj +
∑
i∈N

λiCi(S). (3.2)

The Reliable Uncapacitated Fixed-Charge Location problem (RUFL) is formu-
lated:

min
S⊆M

{F (S)}.

Define E[i] = {j | φi ≥ dij, j ∈ M} to be the set of facilities in M which their
unit shipping cost to customers at i ∈ N is lower than the unit lost sales cost φi. Let
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ei = |E[i]|. Denote xj to be a binary variable which is one if we open a facility at
j ∈ M and zero otherwise. Denote yijr to be a binary variable which is one if facility
j ∈ M is assigned to customers at i ∈ N at level r = 1, .., ei and zero otherwise.
Define Pijr to be the probability that facility j ∈ M is assigned to customers at i ∈ N
at level r = 1, .., ei. Then Pij1 = 1−qj and Pijr = (1−qj)

∑
k∈M

qk

1−qk
Pi,k,r−1yi,k,r−1 for

i ∈ N, j ∈ E[i], 2 ≤ r ≤ ei. Given the above defintitions the reliable uncapacitated
facility location problem RUFL is formulated as:

(RUFL) Minimize Z =
∑
j∈M

fjxj +
∑
i∈N

∑

j∈E[i]

ei∑
r=1

λidijPijryijr

s.t.

ei∑
r=1

yijr ≤ xj ∀i ∈ N, j ∈ E[i],

∑

j∈E[i]

yijr = 1 ∀i ∈ N, 1 ≤ r ≤ ei,

Pij1 = 1− qj,

Pijr = (1− qj)
∑

k∈M

qk

1− qk

Pi,k,r−1yi,k,r−1 ∀i ∈ N, j ∈ E[i], 2 ≤ r ≤ ei,

xj ∈ {0, 1} ∀j ∈ M,

yij ∈ {0, 1} ∀i ∈ N, j ∈ E[i].

Note that RUFL is a nonlinear mixed integer program which is large-scale in
nature. Unlike in Chapter 2, R, the number of facilities assigned to a customer, is
not limited to a certain fixed value and customers are able to be assigned at all open
facilities with a shipping cost less than unit slaes lost cost, which is in fact more
realistic. When R is fixed the above model can be rewritten by replacing max{R, ei}
with ei for i ∈ N.

Here we develop a solution approach which finds an optimal solution more ef-
ficiently regardless of whether R is fixed or not. To do this we first simplify the
customer assignment assumption such that customers are assigned to open facilities
level by level in an increasing order of shipping cost. This might not be the optimal
customer assignment, but later we show that even with this assumptions our solution
approach is frequently able to come up with better solutions with less amount of time
compared to the lagrangian relaxation algorithm in Chapter 2. We also develop an
efficient approximate approach which is capable of solving large problem instances.

3.3 Algorithms for RUFL

Our exact and approximate solution approaches is based on obtaining efficient
lower bounds for RUFL. We describe the lower bound in Section 3.1. The exact
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approach presented in 3.2 is based on finding succesive improved lower bounds and
their corresponding upper bounds. In Section 3.3, we prsent heuristics which are in
fact partial solutions to exact approach.

3.3.1 A Lower Bound for RUFL

Let q[1] ≤ q[2] ≤ ... ≤ q[m−1] ≤ q[m] be an ordering of failure probabilities. Define

Pr =

(
r−1∏
t=1

q[r]

) (
1− q[r]

)
. By replacing Pijr with fixed failure probabilities Pr ∀i ∈

N, j ∈ E[i] in RUFL will result the following mixed integer program which we call
RMIP :

(RMIP) MinimizeZ =
∑
j∈M

fjxj +
∑
i∈N

∑

j∈E[i]

ei∑
r=1

λidijPryijr (3.3)

s.t.

ei∑
r=1

yijr ≤ xj ∀i ∈ N, j ∈ E[i], (3.4)

∑

j∈E[i]

yijr = 1 ∀i ∈ N, 1 ≤ r ≤ ei, (3.5)

xj ∈ {0, 1} ∀j ∈ M, (3.6)

yijr ∈ {0, 1} ∀i ∈ N, j ∈ E[i]. (3.7)

Theorem 1.Define Z∗
RMIP to be the optimal value for the objective function of RMIP.

Also let S∗RUFL and Z∗
RUFL be an optimal location set and the optimal value of the

objective function of RUFL, respectively. Z∗
RMIP is a lower bound for Z∗

RUFL, i.e.

Z∗
RMIP ≤ Z∗

RUFL =
∑

j∈S∗RUFL

fj +
∑
i∈N

λiCi(S
∗
RUFL). (3.8)

Proof. First, we introduce an equivalent formulation of (RUFL) by “splitting” the
decision variables:

yjr =

{
1 if the level r facility is in the same distance as facility j
0 otherwise.

zjr =

{
1 if the level r facility has the same failure probability as facility j
0 otherwise.
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It is clear that RUFL is equivalent to the following problem:

Minimize
∑
j∈M

fjxj +
∑
i∈N

∑

j∈E[i]

ei∑
r=1

λidijPijryijr

s.t.

ei∑
r=1

yijr ≤ xj ∀i ∈ N, j ∈ E[i], (3.9)

∑

j∈E[i]

yijr = 1 ∀i ∈ N, 1 ≤ r ≤ ei, (3.10)

Pij1 = 1− qj, (3.11)

Pijr = (1− qj)
∑

k∈M

qk

1− qk

Pi,k,r−1zi,k,r−1

∀i ∈ N, j ∈ E[i], 2 ≤ r ≤ ei, (3.12)

xj ∈ {0, 1} ∀j ∈ M, (3.13)

yij, zij ∈ {0, 1} ∀i ∈ N, j ∈ E[i], (3.14)

yij = zij ∀i ∈ N, j ∈ E[i]. (3.15)

If we remove the last constraint (3.15), the customer is allowed to choose an arbi-
trary combination of transportation cost and failure probability. We call this relaxed
problem RELAX:

(RELAX) Minimize
∑
j∈M

fjxj +
∑
i∈N

∑

j∈E[i]

ei∑
r=1

λidijPijryijr

s.t. (3.9)− (3.14).

Next, we show that the RELAX is equivalent to formulation RMIP, based on the fol-
lowing claim. Claim 1. There exists an optimal solution (x∗,y∗, z∗,P∗) to RELAX,
such that if z∗ijr = 1, z∗ik,r+1 = 1 for some i ∈ N , then qj ≤ qk. To prove Claim
1, let (x,y, z,P) be an optimal solution to formulation RELAX, such that zijr = 1,
zik,r+1 = 1 for some i ∈ N , and qj > qk. Let u and v be the facilities assigned to
customer i at level r and r + 1, i.e. yiur = 1 and yiv,r+1 = 1. We construct a new
solution (x′,y′, z′,P′) as follows:

x′ = x;

y′ = y;

z′h`s =





1 if h = i, ` = k, s = r or h = i, ` = j, s = r + 1,
0 if h = i, ` = j, s = r or h = i, ` = k, s = r + 1,
zh`s otherwise;

P ′
h`s =





1−qk

1−qj
Pjr if h = i, ` = k, s = r,

qk(1−qj)

1−qk
P ′

k,s−1 = qkPjr if h = i, ` = j, s = r + 1,

0 if h = i, ` = j, s = r or h = i, ` = k, s = r + 1,
Ph`s otherwise.
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By construction, (x′,y′, z′,P′) is a feasible solution to RELAX. Define G(x,y, z,P) to
be the objective value of RELAX associated with solution (x,y, z,P). The following
assertion holds:

G(x′,y′, z′,P′)−G(x,y, z,P) = λi(P
′
ikrdiu + P ′

ij,r+1div − Pijrdiu − Pik,r+1div)

= λi[diu(P
′
ikr − Pijr) + div(P

′
ij,r+1 − Pik,r+1)]

= λi{diu[
1− qk

1− qj

Pijr − Pijr]− div(qkPijr − qj(1− qk)

1− qj

Pijr)}

=
qj − qk

1− qj

λiPijr(diu − div)

≥ 0,

where the last inequality follows from the fact that diu ≤ div (see Proposition 4 in
?). This implies that if optimal solution does not satisfy the monotonic condition
in Claim 1, we can always construct an alternative optimal solution by swapping j
and k, which completes the proof of Claim 1. Following from Claim 1, it is straight
forward that P∗, the optimal service probability to RELAX satisfies

P∗
ijr = Pr, ∀i ∈ N, j ∈ E[i], 1 ≤ r ≤ ei,

which implies that Z∗
RMIP = G(x∗,y∗, z∗,P∗) ≤ Z∗

RUFL, where the inequality follows
from the fact that RELAX is a relaxation of RUFL.

We note that RMIP is equivalent to its relaxation without the integrality con-
straints on y. This makes RMIP easy to solve.

3.3.2 An Exact Approach for RUFL

We note that any feasible location vector x including the one produced by solv-
ing RMIP generates a feasible solution to RUFL. This is achieved by first defin-
ing the assignment vector y(x) using the suumption that customers are assigned to
open facilities level by level in an increasing order of shipping cost. Denote Sx as
the set of facility locations under vector x, then the resulting value of ZRUFL(x ,
y(x)) =

∑
j∈Sx

fj +
∑

i∈N λiCi(Sx) provides an upper bound for RUFL.

At each step we find an improved lower bound by solving an improved RMIP. An
improved RMIP is RMIP with additional ”cuts” which eliminates the pre-visited
vectors from the feasible region (at the first step RMIP is solved without any cuts).
The location set found solving RMIP is used as a starting point in a neighbourhood
search to find an improved upper bound using a descent appraoch. For each location
set in the neighbourhood we find its corresponding sum of shipping and fixed costs
assuming customers are assigned to open facilities level by level in an increasing order
of shipping cost. The neighborhood of a location set Sx and the descent approach is
defined as follows.
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Define Nk(S), the distance-k neighborhood of S ⊆ M as

Nk(S) = {S ′ ⊆ M : |S − S ′|+ |S ′ − S| ≤ k};

i.e. S ′ is in the distance-k neighborhood of S if the number of non-overlapping
elements in the two sets does not exceed k.

Once the neighborhood is well defined, the descent algorithm is straightforward:
use the solution to RMIP a starting subset Sx; evaluate the change in the value of the
objective function for all the subsets in the neighborhood; if an improved subset exists
in the neighborhood, move the search to the best vector in the neighborhood. Repeat
the process with the new subset until no improved vector exists in the neighborhood.
The last subset the solution. Denote Sx as the solution subset to the descent approach,
then if the resulting vlaue of the objective function

∑
j∈Sx

fj +
∑

i∈N λiCi(Sx) is less
than the current upper bound then the solution to the descent appraoch x and y(x)
is our new and improved upper bound.

To complete the step, for each starting location set in the descent appraoch we
inroduce a ”cut” to RMIP to eliminate all of the feasible vectors which arein its
neighbourhood and have already been examined. Denote Sx̂ to be an starting location
set in the descent approach, then the following constarint will ensure that all location
vectors in the neighborhood of x̂ (and have already been examined) are infeasible:

∑
j∈Sx̂

xj −
∑

j∈M−Sx̂

xj ≤ |Sx̂| − k − 1. (3.16)

We note that that (3.16) does not make any location vector infeasible unless they
are in the neighborhood of x̂. The addition of this cut to the improved RMIP will help
to improve the lower bound in the next steps. The procedure terminates when the
gap between the current lower bound and upper bound is within a tolerable limit.

Now consider Problem RMIP (l) as follows:

min ZRMIP (l) =
∑
j∈M

fjxj +
∑
i∈N

∑

j∈E[i]

ei∑
r=1

λidijPryijr (RMIP (l))

s.t. (3.4)− (3.7),
∑
j∈S

xj −
∑

j∈M−S

xj ≤ |S| − k − 1, for S ∈ ARMIP (r) and r = 1, 2, .., l − 1. (3.17)

Denote x∗RMIP (r) as the optimal location vector for RMIP (r), and Sx∗
RMIP (r)

as

the set of facility locations under vector x∗RMIP (r), then ARMIP (r) in (3.17) is the
set of all the starting subsets in the descent approach with Sx∗

RMIP (r)
as the original

starting subset. Therefore, to solve RMIP (l), we need to solve RMIP (r) and the
descent approach with Sx∗

RMIP (r)
as the starting subset for r = 1, 2, .., l− 1. Note that
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RMIP (1) does not include constraint (3.17) and is the original RMIP by definition.
Note that constraints (3.17) ensures that all of the subsets that have already been
examined to become infeasible without enforcing infeasibility to the subsets which
have not been examined before.

Denote x(r) and y(x(r)) to be respectively the location and customer assign-
ment solution vectors for the best found solution after solving RMIP (r) and per-
forming descent approach with Sx∗

RMIP (r)
as the original starting subset. Note that

ZRUFL(x(r) , y(x(r))) is the resulting value of the objective function. Define UB(r)
= min{UB(r−1), ZRUFL(x(r) , y(x(r)))} as the improved upper bound after solving
RMIP (r) and performing descent approach with Sx∗

RMIP (r)
as the original starting

subset. Denote xUB(r) and y(xUB(r)) to be the corresponding location and customer
assignment solution vectors of the upper bound found UB(r), respectively, such that
UB(r) = ZRUFL(xUB(r) , y(xUB(r))) =

∑
j∈SxUB(r)

fj +
∑

i∈N λiCi(SxUB(r)
). We note that

UB(r), is non-increasing in r such that UB(1)≥ UB(2) ≥ ... ≥ UB(r − 1) ≥ UB(r).
From formulation of RMIP (l) we conclude that the optimal value of the objective
function in RMIP (r), is non-decreasing in r such that Z∗

RMIP (1) ≤ Z∗
RMIP (2) ≤ ... ≤

Z∗
RMIP (r−1) ≤ Z∗

RMIP (r).

Assume a specified tolerence level ε ≥ 0, then the exact approach based on con-
sequent improvements in lower and upper bounds is described as follows:

The Search-and-Cut Algorithm

Step 0: Set l = 1, Sx∗ = {}, and Upper Bound = ∞.

Step 1: Solve RMIP (l) and find x∗RMIP (l)and y(x∗RMIP (l)) the optimal location and

customer assignment solution vectors in RMIP (l), and Sx∗
RMIP (l)

as the set

of facility locations under vector x∗RMIP (l), and set Z∗
RMIP (l) =

∑
j∈Sx∗

RMIP (l)

fj +

∑
i∈N λiCi(Sx∗

RMIP (l)
). Set Lower Bound = Z∗

RMIP (l). If Upper Bound−Lower Bound
Lower Bound

< ε then go to Step 4. Otherwise, go to step 2.

Step 2: Perform the descent approach with Sx∗
RMIP (r)

as the original starting subset

and find ARMIP (l)−the set of all the starting subsets in the descent approach;
x(l), y(x(l))−the location and customer assignment solution vectors of the best
found solution; and ZRUFL(x(l) , y(x(l))) =

∑
j∈Sx(l)

fj +
∑

i∈N λiCi(Sx(l))−the

objective function value.

Step 3: If Upper Bound >ZRUFL(x(l) , y(x(l))), then set Upper Bound =
ZRUFL(x(l),y(x(l))), x∗ = x(l), y(x∗) = y(x(l)) and Sx∗= Sx(l). Set l = l + 1
and go to Step 1.

Step 4: Stop. Optimal location set is Sx∗ , optimal location vector is x∗, optimal
customer assignment vector is y(x∗), and the optimal objective function value
is ZA = Upper Bound.
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3.3.3 Approximate Approaches for RUFL

Next we will present heuristic H(l) which is an approximate solution approach
based on the solving RMIP (l) and performing descent approach with Sx∗

RMIP (l)
as

the original starting subset.

Heuristic H(l)

Step 0: Set r = 1, SH(0) = {}, and UB(0) = ∞.

Step 1: If r > l go to Step 2, otherwise go to Step 1-1.

Step 1-1: Solve RMIP (r) and find Sx∗
RMIP (r)

. Set S = Sx∗
RMIP (r)

, Ŝ =

S, SH(r) = S, and ARMIP (r) = {S}. Find Ci(Ŝ) for i ∈ N using (3.1) and

F (Ŝ) using (3.2).

Step 1-2: Evaluate all the subsets in the distance-k neighborhood of S, and
find Ŝ, the subset with the minimum objective value.

Step 1-3: If F (Ŝ) < F (S) then S = Ŝ, SH(r) = Ŝ, ARMIP (r) = ARMIP (r)∪{Ŝ}
and go back to Step 1-1. Otherwise go to Step 1-4.

Step 1-4: Set UB(r) = min{F (SH(r)), UB(r−1)}. If UB(r) = UB(r−1) then
SH(r) = SH(r−1). Set r = r + 1 and repeat Step 1.

Step 2: Stop. Output location set is SH(l), and objective function value is UB(l).

We note that for different values of l we may end up with differnt solutions. Also
it is clear that in order to solve heuristic H(l), we must succesively solve heuristics
H(1), H(2), .., H(l − 2), and H(l − 1).

3.4 Computational Results

We tested our exact and heuristic algorithms on two different types of data. The
exact algorithm is tested on four data sets with 50, 75, 100, and 150 nodes. These
data sets are based on 1990 census data, with each node representing one of the 50,
75, 100 or 150 largest cities in the U.S. Demands λi are set to the city population
divided by 104, while the fixed cost fj is set to the median home value in the city.
The transportation cost dij is calculated based on the great circle distance between
node i and j.

In all four data sets, the set of facilities M is equal to the set of customers N (each
demand point is a potential facility site). Penalty cost φi is set to 10,000 for each
customer, and the failure probabilities qj are calculated using qj = β + 0.1αe−dj/400,
where β = 0.01, and dj is the great cycle distance (in miles) between node j and New
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Orleans, LA. For each data set, we fix α = 1.0, and vary the maximum assignment
level R from 3 to 10; then set at R = M . We also fix R = 4 and vary α from 1.05 to
1.45 at 0.05 increment.

The heuristic algorithm H(1) based on distance-2 neighborhood is tested on data
sets based on dense networks with up to 600 nodes (the data set was kindly provided
by J.E. Beasley and is available from his website Beasley (2009)). The transportation
cost dij is calculated based on the shortest path distance between node i and j.
Demands and fixed costs are randomly generated from uniform distributions between
10 and 110, and between 1,000 and 11,000, respectively. Penalty cost is set to be 1,000
for each customer, and failure probabilities are randomly generated from a uniform
distribution between 0.01 and 0.11.

Our algorithms are coded in C++ and tested on an Intel Pentium 4 3.20GHz
processor with 1.0 GB RAM under Linux. The neighborhood search-cutting plane
procedure is executed to a precision of 0.005, or up to 3600 seconds in CPU time in
the exact algorithm, and executed for a single iteration in the heuristic algorithm.
For each ”real” test instance, we report the computational times of three different
search-and-cut algorithms, based on distance-k neighborhood, where k ∈ {1, 2, 3}.As
a comparison to our exact algorithm, we also test the Lagrangian Relaxation algo-
rithm of Cui et al. (2009). To simplify presentation, from now on we will refer the
Lagrangian Relaxation algorithm of Cui et al. (2009) as the ”LR method”. The test
results are summarized in Tables 3.1 - 3.4 for the exact algorithm, and in Table 3.5
for the heuristic algorithm.

Table 3.1. Performance of Exact Algorithms- 50 Nodes

Nodes R alpha SnC UB LR UB SnC-1 Time SnC-2 Time SnC-3 Time LR Time
50 3 1 1,021,060 1,020,980 14 9 6 23
50 4 1 1,020,540 1,020,540 26 16 14 54
50 5 1 1,020,520 1,020,520 28 16 12 84
50 6 1 1,020,520 1,020,520 38 26 16 180
50 7 1 1,020,520 1,020,520 40 27 15 273
50 8 1 1,020,520 1,020,520 44 34 25 626
50 9 1 1,020,520 1,020,520 43 33 20 908
50 10 1 1,020,520 1,020,520 47 31 20 1250
50 50 1 1,020,520 - 56 38 26 -

50 4 1.05 1,021,410 1,023,590 30 16 14 67
50 4 1.1 1,022,280 1,026,650 39 18 14 121
50 4 1.15 1,023,160 1,029,710 56 20 15 136
50 4 1.2 1,024,030 1,032,640 90 30 22 133
50 4 1.25 1,024,910 1,035,590 115 36 27 256
50 4 1.3 1,025,790 1,038,550 174 47 34 208
50 4 1.35 1,026,670 1,041,520 194 51 35 488
50 4 1.4 1,027,540 1,044,510 240 61 41 313
50 4 1.45 1,028,370 1,047,510 290 77 40 474
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Table 3.2. Performance of Exact Algorithms- 75 Nodes

Nodes R alpha SnC UB LR UB SnC-1 Time SnC-2 Time SnC-3 Time LR Time
75 3 1 1,149,130 1,149,070 27 17 28 195
75 4 1 1,148,590 1,148,590 38 26 26 273
75 5 1 1,148,580 1,148,580 52 29 35 382
75 6 1 1,148,580 1,148,580 95 53 52 540
75 7 1 1,148,580 1,148,580 101 73 67 708
75 8 1 1,148,580 1,148,580 124 89 67 2098
75 9 1 1,148,580 1,148,580 134 81 74 2382
75 10 1 1,148,580 1,148,580 135 81 76 2444
75 75 1 1,148,580 - 177 100 95 -

75 4 1.05 1,149,600 1,152,670 48 31 35 229
75 4 1.1 1,150,600 1,156,310 60 31 35 254
75 4 1.15 1,151,610 1,160,000 78 39 40 366
75 4 1.2 1,152,610 1,163,720 107 52 40 621
75 4 1.25 1,153,620 1,167,500 138 68 50 824
75 4 1.3 1,154,630 1,171,320 181 84 56 974
75 4 1.35 1,155,640 1,175,190 223 99 73 1518
75 4 1.4 1,156,660 1,179,110 322 128 91 1915
75 4 1.45 1,157,670 1,183,090 437 147 105 2216
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Table 3.3. Performance of Exact Algorithms- 100 Nodes

Nodes R alpha SnC UB LR UB SnC-1 Time SnC-2 Time SnC-3 Time LR Time
100 3 1 1,254,080 1,253,910 393 194 255 3612
100 4 1 1,253,010 1,253,010 1662 488 358 3672
100 5 1 1,252,990 1,252,990 1968 655 547 3707
100 6 1 1,252,990 1,254,560 3568 1103 691 3621
100 7 1 1,252,990 1,252,990 3631 1142 671 3745
100 8 1 1,252,990 1,253,460 3658 1315 717 3785
100 9 1 1,252,990 1,254,310 3643 1265 849 3660
100 10 1 1,252,990 1,253,460 3662 1261 885 3740
100 100 1 1,252,990 - 3656 1476 1066 -

100 4 1.05 1,254,040 1,256,560 2668 738 525 3612
100 4 1.1 1,255,060 1,260,120 3361 854 635 3615
100 4 1.15 1,256,060 1,263,280 3630 1207 692 3664
100 4 1.2 1,256,920 1,267,070 3636 1500 863 3618
100 4 1.25 1,257,780 1,269,310 3632 1848 1233 3632
100 4 1.3 1,258,640 1,274,070 3635 2301 1329 3749
100 4 1.35 1,259,500 1,275,410 3633 3106 1607 3633
100 4 1.4 1,260,370 1,277,030 3628 3633 1759 3613
100 4 1.45 1,261,240 1,281,280 3635 3641 1903 3610
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Table 3.4. Performance of Exact Algorithms- 150 Nodes

Nodes R alpha SnC UB LR UB SnC-1 Time SnC-2 Time SnC-3 Time LR Time
150 3 1 1,363,780 1,371,000 451 215 828 3706
150 4 1 1,362,630 1,369,790 1315 781 1034 4128
150 5 1 1,362,600 - 2265 1180 1463 -
150 6 1 1,362,600 - 3661 2292 2041 -
150 7 1 1,362,600 - 3620 2294 2550 -
150 8 1 1,362,600 - 3697 2583 2696 -
150 9 1 1,362,600 - 3608 2722 2729 -
150 10 1 1,362,600 - 3624 2845 2904 -
150 150 1 - - - - - -

150 4 1.05 1,363,630 1,368,280 1919 1044 1109 3610
150 4 1.1 1,364,640 1,369,450 2727 1328 1240 4110
150 4 1.15 1,365,640 1,372,880 3671 1731 1474 4257
150 4 1.2 1,366,650 1,382,480 3629 2650 1809 4076
150 4 1.25 1,367,660 1,385,280 3663 3148 2422 4330
150 4 1.3 1,368,670 1,383,290 3670 3629 3319 4036
150 4 1.35 1,369,680 1,392,260 3673 3638 3618 4124
150 4 1.4 1,370,690 1,395,780 3606 3636 3619 4754
150 4 1.45 1,371,710 1,400,550 3679 3624 3621 3730
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Both this chapter and the previous one address discrete models of the reliable fa-
cility location problems, for which only computational results are available and very
few insights can be drawn from the optimal solutions. To provide more managerial
insights, we develop a Continuum Approximation (CA) model in Chapter 4. The CA
model precisely predicts the system costs by focusing on important decisions like the
number of facilities and the influential areas, omitting details of facility locations and
customer assignments. Since the system cost is approximated as continuous function
of the key parameters, the CA model is a handy tool for sensitivity analysis. Fur-
thermore, the continuous results from the CA model can be translated into a discrete
facility location design, making the CA model an alternative heuristic approach to
the discrete models.
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Table 3.5. Performance of Heuristic Algorithm

Index Nodes LB UB Gap CPU Time
1 100 56005 59104 0.055 1
2 100 54119 57506 0.063 0
3 100 57061 60381 0.058 1
4 100 59160 62091 0.050 1
5 100 51212 54949 0.073 1

6 200 79185 82525 0.042 6
7 200 82317 85734 0.042 5
8 200 82458 85961 0.042 5
9 200 79602 82822 0.040 5
10 200 75862 79467 0.048 9

11 300 99306 102391 0.031 14
12 300 97632 101517 0.040 14
13 300 100576 103351 0.028 21
14 300 100142 103767 0.036 16
15 300 97933 101408 0.035 17

16 400 109138 112694 0.033 34
17 400 107013 109946 0.027 231
18 400 115546 118974 0.030 99
19 400 111601 115729 0.037 294
20 400 109719 113261 0.032 177

21 500 117043 121380 0.037 238
22 500 122883 126744 0.031 77
23 500 124377 128559 0.034 1821
24 500 119575 123328 0.031 351
25 500 122169 125422 0.027 90

26 600 130941 137923 0.053 970
27 600 130296 137564 0.056 1602
28 600 126871 129713 0.022 1047
29 600 130393 134152 0.029 318
30 600 138171 141906 0.027 279
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Chapter 4

Reliable Facility Location: a
Continuum Approximation
Approach

4.1 Introduction

Most of the discrete location models are NP-hard and thus it is difficult to obtain
good solutions for large problem instances within a limited time frame. This fact mo-
tivates research on the continuum approximation (CA) method as an alternative to
solving large-scale facility location problems. Building on the earlier work in Newell
Newell [1971, 1973] and Daganzo Daganzo [1984a,b], Daganzo and Newell Daganzo
and Newell [1986] propose a CA approach for the traditional facility location problem.
While conditions are slowly-varying, the cost of serving the demand near a facility
location is formulated as a function of a continuous facility density (number of facil-
ities per unit area) that can be efficiently optimized in a point-wise way. Note that
the inverse of facility density is the influence area size (area per facility). The opti-
mization yields the desired facility density and influence area size near each candidate
location, which informs the design of discrete facility locations. It is shown in various
contexts that the CA approach gives good approximate solutions to large-scale logis-
tics problems by focusing on key physical issues such as the facility size and demand
distribution Hall [1984, 1986, 1989], Campbell [1993a,b], Daganzo and Erera [1999],
Dasci and Verter [2001]. See Langevin et al. Langevin et al. [1996] and Daganzo
Daganzo [2005] for reviews of the CA model. Ouyang and Daganzo Ouyang and
Daganzo [2006] and Ouyang Ouyang [2007] propose methods to efficiently transform
output from the CA model into discrete design strategies. The former reference also
analytically validates the CA method for the traditional facility location problem.
Recently, Lim et al. Lim et al. propose a reliability CA model for facility location
problems with uniform customer density. For simplification, a specific type of failure-
proof facility is assumed to exist; a customer is always re-assigned to a failure-proof
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facility after its nearest regular facility fails, regardless of other (and nearer) regular
facilities. We relax these rather strong assumptions in our work.

The planar version of the reliable facility location problem is defined over a large
set of customers in the continuous metric space S ⊆ R2, where the demand rate λ,
fixed cost f , failure probability q and the penalty cost φ are continuous functions of
the location x ∈ S. All these spatial attributes are assumed to vary continuously and
slowly in x. Suppose that the cost units are set so that the transportation cost for
serving a unit demand at x by a facility at xj is equal to the distance measured by
the Euclidean metric, ‖x− xj‖. In addition, we assume that φ(x) ≥ max{‖x− xj‖ :
∀xj ∈ S}, for all x ∈ S. Under such assumption, a customer shall always be assigned
to R facilities if available.

Given any solution with n > 0 facilities located at x = {x1, · · · xn}, the demand
at x ∈ S could potentially be served by a subset of facilities or not be served at
all. We denote the customer assignment plan by y = {(y1(x), ..., yR(x)) : ∀x ∈ S},
where yk(x) is the index of the facility assigned as the k-th choice to the customer
at x. For any given design x,y, we use P̄ (x|x,y) to denote the probability that the
demand at x is not served, while P (x, xj|x,y) is the probability that this demand
is served by facility j. These probabilities depend on the set of facility distances,
{‖x − xj‖ : j = 1, · · · , n}, the maximum reassignment level R, and the facility
failure scenarios, but they must sum up to 1; i.e.,

P̄ (x|x,y) +
n∑

j=1

P (x, xj|x,y) = 1, ∀x ∈ S. (4.1)

We will derive these probability functions in the next section.

The total expected cost includes three components: fixed facility charges, expected
transportation costs for served demand, and expected penalty costs for unserved
demand. The optimization problem can now be formulated as follows:

min
x,y

n∑
j=1

f(xj) +

∫

x∈S

[
φ(x)P̄ (x|x,y) +

n∑
j=1

‖x− xj‖P (x, xj|x,y)

]
λ(x)dx. (4.2)

In (4.2), the first term is the total fixed facility charges. The integral term is the total
expected cost for serving (or not serving) all customer demand in S. The first part
of the integrand corresponds to the scenario where the customer at x is not served,
incurring a penalty cost of φ(x). The second part is the expected transportation
distance for the customer at x to obtain service.

4.2 Infinite Homogeneous Plane

We first consider the case where S = R2, and all parameters, λ, φ, q, f , are constant
everywhere. We will first identify optimal results for this simpler case and then use
them as building blocks to design solution methods for more general cases.
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Throughout this section, we focus on the non-trivial case where q < 1. Obviously,
on a homogeneous plane, given any set of locations x and any failure scenario, a
customer should always go to the nearest “available” facility. Otherwise we could
reduce the cost by simply switching this customer over to a closer facility. Snyder &
Daskin Snyder and Daskin [2005] used a similar argument to show that each customer
should go to a facility only if all nearer facilities have failed. Thus, any design x
(subject to failure) determines the assignment of customer demand.

From the perspective of a generic facility j, it will serve every customer on the
2-d plane with a certain probability (depending on its failure probability and that
of other facilities). The whole area S is partitioned into non-overlapping subareas
Rj0,Rj1,Rj2, · · · , such that Rjk,∀k, contains the subset of customers for whom fa-
cility j is the (k + 1)th nearest facility. With this definition, for every j there is a
non-overlapping partition if we ignore the boundaries of these subareas,

⋃

k

Rjk = S, and Rjk

⋂
Rjk′ = ∅, ∀k, k′.

Since every customer will always go to the nearest available facility, the customer at
x ∈ Rjk will go to facility j only after all of its k “nearest” facilities have failed, and if
k + 1 ≤ R. Facility j will serve customers at x with the following service probability:

P (x, xj|x,y) = (1− q)qk, if x ∈ Rjk, (4.3)

which decreases with k.

Particularly, the initial service area Rj0 denotes the subarea of S served by facility
j before any failure; i.e., Rj0 := {x : ‖x− xj‖ ≤ ‖x− xi‖, ∀i} ⊆ S. Further denoting
the set of initial service areas by R := {R10,R20, . . . ,Rn0}, they should form another
area partition (ignoring boundaries):

⋃
j

Rj0 = S and Ri0

⋂
Rj0 = ∅, ∀i, j.

Proposition 5 shows that the optimal facility design on a homogeneous plane has
the following special structure.

Proposition 5. In an infinite homogeneous Euclidean plane, the optimal initial ser-
vice areas should form a regular hexagon tessellation of the plane, while the facilities
are at the centroids of the initial service areas; see Figure 4.1(a).

With Proposition 5, we can estimate the exact optimal cost incurred by one facility
on an infinite homogeneous plane. First of all, the probability that a particular facility
serves a customer diminishes approximately exponentially with the distance between
them. This is because the number of facilities closer to the customer (i.e., k), is
approximately proportional to the square of the distance, while the service probability
in (4.3) decreases exponentially with k. From the facility’s perspective, the number of
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Figure 4.1. Regular hexagon tessellation in an infinite homogeneous 2-d Euclidean
plane: (a) Initial service areas; (b) Service subarea partition for facility j.

available customers grows only polynomially with the distance. Hence, the expected
service cost incurred to one facility on an infinite homogenous plane is bounded from
above even when R →∞.

The regular hexagonal tessellation design in Figure 4.1(a) obviously leads to the
service subarea partition in Figure 4.1(b). An arbitrary facility j has an initial service
area size A := |Rj0| and may fail with a probability of q. Note that on the infinite
plane, n → ∞ in general. For this facility to serve customers that only go to R
nearest facilities, we define the following useful term:

L :=

∫

x∈S
‖x− xj‖P (x, xj|x,y)dx =

R−1∑

k=0

∫

x∈Rjk

‖x− xj‖(1− q)qkdx,

where the second equality holds from (4.3). The average traveled distance for a
customer to get service at the facility is then L/(RA), and the total expected service
cost for the facility to serve all its potential customers on the two-dimensional plane
is hence λL. Certainly, L < ∞ (since q < 1) and its value should only depend on
three factors, A, R and q.

By dimensional analysis and the Buckingham-Π Theorem Johnson [1944], the

dimensionless quantities, L/A
3
2 , R, and q, must be interdependent; i.e., there must

exist a unique function G such that

L/A
3
2 = G (R, q) . (4.4)

Obviously, G(R,q) can be interpreted as the total expected service cost for a facility
to serve all its potential customers when λ = 1 and A = 1. The exact functional
form of G is unknown; however it only depends on the distance metric and can be
estimated by a simulation.

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

probability, q

R=1

R=2

R=3

R=7

R=11

R=5

 *    Simulated data
−−  Fitted function

Figure 4.2. Simulated and fitted L/(RA)3/2 for Euclidean metric.

For example, we hypothesize that ln(L/A3/2) can be approximated by a linear
function of a list of polynomial terms of R and q. For the Euclidean metric, least
squares regression with the simulated data in Figure 4.2 (with 1 ≤ R ≤ 11, 0 ≤ q ≤
0.95) yields

G(R, q) ≈ exp(−0.930− 0.223q + 4.133q2 − 2.906q3 − 1.542πq2/R), (4.5)

The R-square value for the above regression equals 0.96, indicating a very good fit,
especially for R ≥ 2 and q ≤ 0.5 (the realistic range of parameters for the reliability
problem). In the numerical example, we will use (4.5) to approximate G(R, q). It
should be noted, however, that (4.5) is by no means the only way to estimate G(R, q);
rather, it is a plausible and simple choice. The CA approach presented in this paper
can still be applied with any alternatives of (4.5).

Then, from (4.5)
L = G(R, q)A3/2.

Note that one facility is built in correspondence to the customers in an area of
size A. Intuitively, the optimal size of the initial service area can be obtained by
minimizing the average cost per unit area; i.e.,

min
A
{f/A + λL/A|A > 0}.

More detail on employing these results to solve general homogeneous or heterogeneous
problems is presented in the following sections.
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4.3 Heterogeneous Plane

In realistic cases, we allow the parameters λ, φ, q, f to be slowly varying functions
of the location x in a bounded area S. Instead of looking for x,y (and R) directly, we
proposed to use the CA method to look for a continuous function, A(x) ∈ R+, x ∈ S,
that approximates the initial service area size of a facility near x. i.e., A(x) ≈ |Ri0|
if x ∈ Ri0. We assume that S is far larger than A(x); i.e. approximately ‘infinite’.
When all parameters, f(x), λ(x), q(x) etc., are approximately constant over a region
comparable to the size of several influence areas, the influence area size A(x) should
also be approximately constant on that scale. We show below that possible demand
assignment and the associated service probabilities can be approximated by simple
functions.

In a heterogeneous area S, the objective function in (4.2) can be rewritten as:

min
x,y

n∑
j=1

f(xj) +

∫

x∈S
φ(x)P̄ (x|x,y)λ(x)dx +

n∑
j=1

∫

x∈S
‖x− xj‖P (x, xj|x,y)λ(x)dx.

(4.6)

We will now rewrite (4.6) in terms of the new decision function A(x) using results
from Section 4.2.

A facility near location x serves an area of approximate size A(x). We consider
large-scale cases where |S| À A(x), ∀x ∈ S, and as such, n ≥ R. The demand at x
shall not be served if and only if all R closest facilities are nonfunctional simultane-
ously. Since failures are independent of each other, the probability for this to happen
is approximately

P̄ (x|x,y) ≈ [q(x)]R. (4.7)

For R ≥ 1, we define an expected “service” cost incurred for facility j as the
summation of the fixed charge and the expected transportation costs:

Cj := f(xj) +

∫

x∈S
‖x− xj‖P (x, xj|x,y)λ(x)dx

≈ f(xj) + λ(xj)L(xj).

Cost Cj corresponds to facility j which covers an approximate area of size A(xj). The
cost per unit area near xj, based on (4.4), is

Cj

A(xj)
≈ f(xj)

A(xj)
+ λ(xj)G(R, q(xj))

√
A(xj). (4.8)

Substituting expressions (4.7) and (4.8) into (4.6), it is clear that the minimization
problem can be approximated by finding the optimal function A(x) ∈ [0,∞) that
minimizes the following integral:

min
A(x)

∫

x∈S
z(A(x), x)dx, (4.9)
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where z(A(x), x) is the cost of serving a unit area near x when the influence area size
is approximately A(x):

z(A(x), x) :=
f(x)

A(x)
+ φ(x)λ(x)[q(x)]R + λ(x)G(R, q(x))

√
A(x). (4.10)

Note that (4.9) can be optimized by minimizing z(A(x), x) over A(x) at every
x ∈ S. In the rest of this subsection, we omit the argument x and use the notation
z(A) for simplicity. Formula (4.10) can then be expressed in the following closed
form:

z(A) :=
f

A
+ φλqR + λG(R, q)

√
A. (4.11)

4.4 Feasible Discrete Location Design

Formula (4.9) yields an estimate of the total system cost without providing a
discrete facility design. However, the optimal initial service area sizes, A∗(x),∀x ∈ S,
can be used as guidelines to obtain feasible discrete location designs.

The optimal number of initial service areas, n∗, is approximately given by

n∗ :=

∫

S
[A∗(x)]−1dx.

The disk model by Ouyang and Daganzo Ouyang and Daganzo [2006] searches for
a set of n non-overlapping disks, each having a round shape (i.e., approximating
hexagons) and a proper size, that cover most of S. A disk centered at x will have
size αA∗(x), where the scaling parameter α is slightly smaller than 1 to ensure that
the round disks can jointly cover most of S without leaving the region.

The disks move within S in search of a non-overlapping distribution pattern. To
automate the sliding procedure, repulsive forces acting on the centers of the disks
are imposed on any overlapping disks and on any disks that lie outside of S. The
disks then move under these forces in small steps, and the disk sizes and forces
are updated simultaneously. Ouyang and Daganzo Ouyang and Daganzo [2006] and
Ouyang Ouyang [2007] provide detailed discussions on how to choose step sizes, how
to introduce necessary random perturbations, and how to decrease α incrementally
until all forces vanish (i.e., when a desired non-overlapping pattern is found). Then,
the disk centers will be used as the facility locations and the customer demands will
be assigned accordingly. This procedure will give a near-optimal feasible solution to
the planar problem.

4.5 Computational Results

To test the performance of the CA approach, we consider a [0, 1] × [0, 1] unit
square, where customer demands are distributed according to a density function λ(x).
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A facility built at location x incurs a cost of f(x) and may fail with probability q(x).
As a benchmark, we also construct and solve analogous discrete test instances by
partitioning the unit square into 7× 7 = 49 identical square cells; the center of each
cell represents a candidate facility location as well as the consolidation point of the
customer demand from that cell.

4.5.1 CA as a Heuristic Solution

We group our test instances into two categories: the homogeneous case and
the heterogeneous case. In the homogeneous case, all system parameters are con-
stant over space; i.e., λ(x) = λ, f(x) = f , and q(x) = q ∀x. We generate 16
test instances with key parameters taking values from q ∈ {0.05, 0.10, 0.15, 0.20},
λ ∈ {50000, 100000, 150000, 500000}. The fixed cost is f = 1000 for all 16 instances.

In the heterogeneous case, we let the key parameters be continuous functions that
can vary across space, defined as follows:

λ(x) = λ(1 + ∆λ cos(πx[2])), f(x) = fe−‖x‖, q(x) = q[1 + ∆q cos(π‖x‖)],∀x,

where ‖x‖ is the Euclidean distance from x to the origin, and x[2] is the second coor-
dinate of x. Note that q and λ control the average magnitude of failure probabilities
and demand densities, while ∆q and ∆λ control the variability of these parameters.
We generate 20 test instances in total, with q and ∆q drawn from q ∈ {0.1, 0.2} and
∆q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and ∆λ taking values from ∆λ ∈ {0.0, 1.0}. The average
demand density is set to be λ = 100000 and the average fixed cost is set to f = 1000
for all 20 instances.

The penalty cost is fixed at φ(x) =
√

2, and the reassignment level is set to R = 2
for all 36 test instances in both categories.

For each test instance, we implement the CA model through the following proce-
dure:

(i) Compute the continuous solution A∗(x) (4.9), the optimal number of facilities
n∗CA, and the predicted total cost ZCA (without discrete facility locations);

(ii) Use the disk model described in Section 4.4 to translate A∗(x) into a feasible
planar solution (i.e., facility can be anywhere in the unit square) and compute
the planar cost ZP

CA; and

(iii) Round the planar facility locations to the nearest cell centers, and compute
ZC

CA, the exact total system cost for the CA solution under continuous customer
demand.

For comparison, we solve the discrete version of the problem as follows:
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(i) Apply the LR algorithm to obtain the optimal number of facilities n∗LR and the
total system cost ZD

LR. The superscript ‘D’ here stands for discrete customer
demand;

(ii) Compute the cost for the LR solution to serve continuous customer demand ZC
LR,

where the superscript ‘C’ stands for continuous customer demand. While doing
this, we simply enforce that each customer goes to the nearest existing facility;
and

(iii) Compute ZD
CA, the cost for the CA solution under aggregated customer demand..

Particularly, we are interested in the percentage differences between the CA model
cost and the LR model cost, for continuous and discrete customer demand respec-

tively; i.e., εC =
ZC

CA−ZC
LR

ZC
LR

and εD =
ZD

CA−ZD
LR

ZD
LR

. These results are summarized in Table

4.1 for the homogeneous instances and in Table 4.2 for the heterogeneous instances.

Table 4.1. CA cost estimate, feasible solutions, and LR solutions for the homogeneous
cases.

q λ(104) ZCA ZP
CA ZC

CA ZD
CA n∗CA ZC

LR ZD
LR n∗LR εC (%) εD (%)

0.05 5 13908.5 14687.2 14694.2 14694.1 5 14521.9 14281.1 5 1.19 2.89
0.10 5 14430.9 15546.3 15608.2 15600.1 5 15705.8 15134.1 5 -0.62 3.08
0.15 5 15345.4 16666.9 16777.4 16762.3 5 16865.8 16251.5 5 -0.52 3.14
0.20 5 16632.0 18047.2 18201.9 18180.6 5 18318.1 17633.4 5 -0.63 3.10
0.05 10 22151.2 23270.2 23397.5 22895.4 7 23484.7 22607.4 7 -0.37 1.27
0.10 10 23199.4 24797.6 24951.4 24470.8 7 25104.2 24281.5 8 -0.61 0.78
0.15 10 25015.7 26886.8 27063.9 26605.3 7 27192.0 24281.5 8 -0.47 0.74
0.20 10 27568.7 29538.5 29734.8 29298.8 7 30093.5 28954.8 9 -1.19 1.19
0.05 15 28704.7 30085.7 31002.8 30538.9 10 30963.3 29460.2 10 0.13 3.66
0.10 15 29309.9 32162.6 33004.7 32702.9 10 33292.4 31807.3 10 -0.86 2.82
0.15 15 30667.5 35484.1 36263.4 35790.7 10 36339.7 34988.7 11 -0.21 2.29
0.20 15 32880.6 39222.6 39877.9 39546.5 10 40234.9 38945.2 10 -0.89 1.54
0.05 50 65504.6 67197.0 71305.8 65586.0 21 79225.5 54164.0 49 -10.00 21.09
0.10 50 70771.4 73815.2 77062.8 72551.7 21 85395.6 62506.1 49 -9.76 16.07
0.15 50 79752.2 83703.2 87206.1 83885.3 21 94838.5 74026.1 49 -8.05 13.32
0.20 50 92354.9 96457.2 100348.9 95861.2 21 107554.2 88724.3 49 -6.70 8.04

Our test results show that the CA method is a promising tool for finding near
optimal solutions. Even under the discrete demand distribution (i.e., considering the
continuous demand distribution as an approximation), the optimality gap is below 4%
in most test instances. Particularly, even when the demand distribution is significantly
variable across space (λ(x) varying from 0 to 2λ), the gaps is mostly within 4− 7%.
It should also be noted that most often εC is negative, indicating that the CA model
is more accurate for systems with continuous demand (i.e., considering the discrete
demand as an approximation).

We note that under very high demand density λ = 500, 000, the discrepancy
between the CA and the LR solutions is more significant in terms of both the optimal
number of facilities and the minimum total cost. This discovery is not surprising.
With high demand density, the consolidation of customer demand to the 49 cell
centers implies significant costs differences. Intuitively, the discrete model does not
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Table 4.2. CA cost estimate, feasible solution, and LR solution for the heterogeneous
case.

q ∆q ∆λ ZCA ZP
CA ZC

CA ZD
CA n∗CA ZC

LR ZD
LR n∗LR εC (%) εD (%)

0.1 0.1 0.0 18235 19061.8 20027.3 19563 12 19995.4 18971.1 15 0.16 3.12
0.1 0.2 0.0 18115.3 18891.9 19868.8 19405.5 12 19817.4 18726.6 14 0.26 3.63
0.1 0.3 0.0 18012.8 18753.3 19721.1 19245.2 12 19875.7 18631.9 15 -0.78 3.29
0.1 0.4 0.0 17927.5 18734.3 19943.9 19464.7 12 19493.9 18366.3 15 2.31 5.98
0.1 0.5 0.0 17859.4 18499.1 19500.8 18807.9 12 19453.6 18349.6 14 0.24 2.5
0.2 0.1 0.0 22158.7 23489.3 24376.4 23827.9 12 24046.2 23074.8 14 1.37 3.26
0.2 0.2 0.0 21668.7 22726.7 23573.6 23126.6 12 23747.5 22665.4 15 -0.73 2.03
0.2 0.3 0.0 21243.6 22190.3 23061.7 22621.5 12 23231.2 22076.7 17 -0.73 2.47
0.2 0.4 0.0 20884 21693.4 22593.4 22044.2 12 22540 21426.4 16 0.24 2.88
0.2 0.5 0.0 20590.4 21368.8 22139 21462.3 12 22266.6 20978.2 14 -0.57 2.31
0.1 0.1 1.0 16667.8 18337.7 19286 18573 11 19362.9 17670 14 -0.4 5.11
0.1 0.2 1.0 16646.7 18241.1 19137.8 18505.9 11 19203.7 17529.8 14 -0.34 5.57
0.1 0.3 1.0 16634.4 18136.5 19050.5 18411.5 11 19314.8 17435.3 16 -1.37 5.6
0.1 0.4 1.0 16630.7 18105.1 18971.4 18354 11 18843 17293.5 13 0.68 6.13
0.1 0.5 1.0 16635.4 18198.9 19278.5 18541.6 11 18852.6 17177.7 13 2.26 7.94
0.2 0.1 1.0 18864.4 22717.6 23525.2 22932.2 11 23326.4 22029.6 13 0.85 4.1
0.2 0.2 1.0 18740 22387.6 23258.8 22548.1 11 23270.6 21770.8 13 -0.05 3.57
0.2 0.3 1.0 18659.9 22169.5 22810.1 22284.3 11 23027.1 21369.5 14 -0.94 4.28
0.2 0.4 1.0 18623.1 22075.7 23253 22157.3 11 23075.8 21174.1 16 0.77 4.64
0.2 0.5 1.0 18628.6 21768.2 22486.7 21936.2 11 22686.9 20731.1 14 -0.88 5.81

involve the spatial distribution of customers within these cells. This omission tends to
overestimate the marginal benefit of building an additional facility (i.e., in terms of
reducing the customers’ transportation cost). Hence, when the customer demand
is extremely dense, the discrete model would tend to have more facilities in the
optimal solution. We anticipate that if we have more than 49 aggregation nodes,
the discrepancies would actually reduce.

To verify our hypothesis, we further divide the unit square to 10 × 10 identical
cells and aggregate demand to the 100 cell centers. We test all 4 instances with high
demand density λ = 500, 000 in the 100-node network. The results are listed in Table
4.3.

Table 4.3. CA cost estimate, feasible solutions, and LR solutions in the 100-node
network.

q λ(104) ZCA ZP
CA ZC

CA ZD
CA n∗CA ZC

LR ZD
LR n∗LR εC (%) εD (%)

0.05 50 65504.6 66973.7 70003.0 68263.3 21 69216.9 66173.5 22 1.14 3.16
0.10 50 70771.4 73570.7 76324.5 74491.9 21 76836.8 73528.5 24 -0.67 1.31
0.15 50 79752.2 83438.5 85746.0 84207.7 21 85840.0 83114.6 23 -0.11 1.32
0.20 50 92354.9 96398.9 98269.2 97045.5 22 98628.9 95837.4 25 -0.36 1.26

The results in Table 4.3 indicate that the CA solutions are more consistent with
the optimal solutions with more demand aggregation nodes. In general, the CA model
should work at its best with a large number of candidate locations. In this sense, the
LR and the CA methods can serve as complements of each other.
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4.5.2 CA for Sensitivity Analysis

The system cost predicted by the CA model is continuous in all parameters, and
is thus a useful tool for sensitivity analysis. In this section, we demonstrate how to
use CA to study the impact of the key parameters on the structure of the optimal
system design. In particular, we are interested in knowing how the degree of demand
aggregation affects the system cost. In other words, all other things being equal, is it
preferable to have evenly distributed demand or aggregated demand?

The CA model suggests that the total cost is determined by (4.9). It is easy to
verify that Z(A(x), x) is modular in A and that the point-wise optimal initial service
area can be determined by

A∗ = (
2f

λG(R, q)
)

2
3 .

Plugging A∗ back in (4.10) gives us the cost “density” near point x

z(x) ≡ z(A∗(x), x) = (2−
2
3 + 2

1
3 )f(x)

1
3 λ(x)

2
3 G

2
3 (R, q(x)) + φ(x)λ(x)q(x)R. (4.12)

Clearly, z(x) is concave in λ. From Jensen’s inequality, we know that the total
cost decreases as the degree of demand aggregation increases.

To verify our findings, we designed numerical tests using the LR algorithm. The
key parameters are determined by

λ(x) = λ(1 + ∆λ cos(πx[2])), f(x) = 1000, q(x) = 0.2, φ(x) =
√

2 ∀x.

We generated 30 test instances, 10 each for three different levels of average demand
λ at 50000, 100000 or 150000. The demand variation ∆λ ranges from 0 to 0.9. Like
the previous tests, we aggregate demand to 49 discrete points. Each test instance is
solved by the LR algorithm, and then the percentage change in the optimal cost is
calculated, using the case ∆λ = 0 as the benchmark. The test results are illustrated
in Figure 4.3.

Clearly, the test results from the discrete model verify the predictions made by
the CA model, with the total cost decreasing by up to 7% as the demand variation
increases from 0 to 0.9. This result implies that it is beneficial to aggregate demand.
In reality, this principle is commonly implemented through the use of warehouses and
distribution centers which serve as points for demand aggregation.
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Figure 4.3. Optimal Cost v.s. demand variability
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Chapter 5

Multiple-Dimension Mechanism
Design in a Queueing System

5.1 Introduction

Consider a capacity-constrained service provider (server) facing customers with
different values for service and sensitivities to delays, both of which are their private
information. What kind of pricing, scheduling, and admission control policy should
the server follow in order to maximize her expected revenue? This question is faced
by many firms in the production and service industries, including manufacturing,
telecommunication and transportation. A common strategy adopted by these servers
is to segment the customers by providing different classes of services. For exam-
ple, many make-to-order manufacturers charge the customers based on the delivery
dates, and transportation firms like Fedex and UPS offer a range of service classes
from ground shipping to same day delivery. By offering the option to pay more for
faster services, the server may extract more revenue from market segmentation. How-
ever, since the server only has aggregate information about the customer attributes
but cannot tell apart individual customers, all customers can choose among all ser-
vice classes in a self-interested way. This gives rise to the incentive compatibility
issue, which the server must take into account in designing the revenue maximizing
admission and scheduling policies.

In this chapter, we provide a unified framework to study the aforementioned
revenue maximization problem in the presence of asymmetric information regard-
ing the customers’ preferences. Our work is motivated by the recent papers of Afeche
[2006], Yahalom et al. [2005], and Katta and Sethuraman [2005]. Afeche [2006] adopts
the mechanism design approach to evaluate the incentive compatible priority pricing
problem in a queueing system where customers’ valuations are drawn from a continu-
ous distribution but their delay sensitivities can take only two values. He shows that
the revenue-maximizing priority rule does not conform with the celebrated cµ rule: it
may require strategically inserted idleness, randomized priorities, or even reversed cµ
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order. Yahalom et al. [2005] allow general distributions over valuation and convex de-
lay cost; this implies that higher moments of delay may be influential in their context.
Katta and Sethuraman [2005] impose perfect correlation between valuation and delay
sensitivity. Thus, they are able to recast it as a (standard) single-dimensional adverse
selection problem; consequently, they provide an efficient algorithm to characterize
the optimal mechanism and find that pooling multiple types of customers into the
same priority class emerges as an optimal solution.

Despite the insightful elaboration on the incentive issues and the managerial im-
plications that arise from those non-conventional queueing disciplines in the afore-
mentioned work, an important feature of all these mechanisms is that admission
control is made through the design of priority pricing. For example, in Katta and
Sethuraman [2005] and Yahalom et al. [2005], only the priority classes (and the cor-
responding prices) are specified in the contracts. In Afeche [2006], the contract does
specify the admission control. However, he focuses exclusively on the case with deter-
ministic admission control. In other words, a customer is either admitted for sure or
discarded entirely depending on the priority pricing scheme (the detailed discussions
are deferred to Section 5.2). Thus, all the mechanisms in his model primarily use the
priority classes as the sole screening tool to differentiate among customers.

In this paper, we argue that a previously ignored admission control policy plays a
significant role in mitigating the information asymmetry between the server and the
customers. Specifically, we show that a well-designed menu of admission control along
with priority pricing contracts may force customers to reveal their true valuations;
at the same time, this menu also induces the customers that are more sensitive to
the delay to opt for higher priorities. The intuition is as follows. The customers
with high valuations have higher opportunity costs when they do not get the services.
Hence, if a probabilistic admission control policy is used (with different probability of
rejecting customers), customers with high valuations may be willing to pay more for
a better chance of getting admitted. Thus, the probabilistic admission control allows
the server to choose the right customers to serve (thereby reducing the undesirable
congestion) and consequently may enable the server to receive more revenue from
those customers.

We illustrate our idea in a stylized model in which both the valuation and the
delay sensitivity can take only two values – high or low. This allows us to classify the
customers into four groups (types): {LH, HH, LL,HL}, where the first component
specifies whether the valuation is high (H) or low (L), and the second component
depicts whether the customer is highly sensitive to the delay (H in this case) or not
(L). While not attempting to be all inclusive and the most general possible, this four-
type model allows us to derive concrete managerial implications. Specifically, we show
that the server may partially admit (through probabilistic admission) more than one
customer types, although ex ante one type is more favorable than the other. Moreover,
the server may assign different/randomized priorities for customers with same delay
sensitivity but different valuations for service. Finally, the optimal contracts may
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require strategically inserted idleness to ensure incentive compatibility, which echoes
the results of Afeche [2006].

Admission control has long been recognized as a valuable tool to balance the
throughput and congestion trade-off in queueing systems; see Stidham [2002] for a
good survey. The probabilistic admission policy we propose is widely adopted by
connection admission control (CAC) protocols in communication networks; see, e.g.,
Gibbens et al. [1995] and Lewis et al. [1998] and the references therein. An example is
the RSVP (Resource Reservation Protocol) used for the ATM (Asynchronous Transfer
Mode) network. In this protocol, different groups of consumers (packets such as email,
ftp, voice data, etc.) are given choices over a number of flags (classes); each class is
associated with a price, a priority class, and the probability of being dropped (that
is analogous to the probabilistic admission control). See, e.g., Chang and Petr [2001]
and Zhang et al. [1993] for the detailed descriptions of the protocol. (These protocols
are proposed primarily from the system efficiency standpoint. On the contrary, in
our model, the joint admission control/priority pricing is adopted to maximizing the
server’s revenue.)

Our model falls in the category of mechanism design problems with multi-
dimensional private information (willingness to pay and willingness to wait) and
screening tools (admission control and priority classes). Multi-dimensional mechanism
design problems have long been recognized to be notoriously complicated and some-
times analytically intractable. The main challenges arise from the lack of complete
ordering among the multi-dimensional types. Unlike the classical uni-dimensional
framework, there is simply no unified way to ex ante identify redundant/ binding
incentive compatibility constraints, thereby breaking down the systematic approach
that has been prominently adopted in the literature; see the recent survey by Ro-
chet and Stole [2005]. Moreover, the unique capacity constraint that arises from our
queueing framework brings in new challenges and results in novel insights that would
not occur in other contexts.

Our model is related to the vast literature on pricing, scheduling, and admission
control in queueing systems. Classical papers in this field typically treat this problem
in a centralized manner (i.e., a central planner is able to control all the behavior
of the server, customers, etc.); see, e.g., Coffman and Mitrani [1980], Shanthikumar
and Yao [1992], and Stidham [2002] for an excellent survey. In contrast, we incor-
porate the strategic customer behavior and asymmetric information. The strategic
customer behavior has also been incorporated in the design of queueing systems at
least dating back to Naor [1969]; see the monograph by Hassin and Haviv [2002] for
a review of this literature. Mendelson [1985] and Mendelson and Whang [1990] are
among the first to study socially optimal and incentive compatible priority pricing
strategies in queueing systems. As aforementioned, Afeche [2006], Katta and Sethu-
raman [2005], and Yahalom et al. [2005] focus on incentive compatible priority pricing
policies that maximizes the server’s revenue. In line with this research stream, we
introduce the freedom of choosing the (probabilistic) admission control that allows
the server to extract more revenue from the customers effectively. Furthermore, by in-
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corporating the possibility of probabilistic admission control, this paper expands the
multi-dimensional nature of the classical incentive compatible revenue management
to its full force.

Since we adopt the mechanism design approach to study this joint pricing, schedul-
ing, and admission control problem, our work is also related to the principal-agent
problems in which the principal intends to design an appropriate mechanism (con-
tract) for the agents with private information to self-select. This framework has been
extensively applied to various contexts in the operations research field, mostly within
the single-dimensional framework, including capacity allocation (Cachon and Lariv-
iere), supplier-retailer contracting (Corbett and de Groote [2000], Ha [2001]), product
specification and production planning (Iyer et al. [2005]), inventory risk mitigation
through promised lead time (Lutze and Ozer [2008]), pricing information goods (Wu
and Chen [2008]), and long-term contract design (Zhang and Zenios [2008]). In con-
trast with the aforementioned papers, the multi-dimensional nature of our queueing
framework inevitably creates new challenges. Wilson [1993] and Armstrong [1996]
are the first to solve the multi-dimensional problems in closed form under specific
assumptions on the model characteristics. Armstrong and Rochet [1999] provide a
unified algorithm to solve discrete (specifically, four-type) multi-dimensional prob-
lems. This four-type framework is later adopted by Armstrong [2000] and Asker and
Cantillon [2008] to study the forward and reverse auctions. Our four-type framework
is also motivated by this stream of research. Nevertheless, the unique resource con-
straint that arises from the queueing framework results in a number of novel insights/
phenomena that would not occur in other contexts.

The remainder of this chapter is organized as follows. In Section 5.2, we describe
the model setup. In Section 5.3, we present socially optimal contracts under sym-
metric information, as a benchmark for our study of information asymmetry. We
discuss revenue maximizing contracts under asymmetric information in Section 5.4,
with structural properties of the optimal solutions in Section 5.4.1, full characteri-
zation of the exact optimal mechanism for some special cases in Section 5.4.2, and
novel features of the revenue maximizing contracts in Section 5.4.3. In Section 5.5, we
demonstrate the revenue gains from the admission control policy using two numerical
examples. We summarize our findings and give future research directions in Section
5.6. All proofs and the detailed derivations for the special cases can be found in the
appendices.

5.2 Formulation

We consider a stylized model in which a capacity-constrained server modelled as
an M/M/1 queueing system intends to serve several segments of customers. Cus-
tomers request the same amount of task but are heterogeneous in two attributes:
their willingness to pay, and their willingness to wait. Specifically, we assume that
the service time of each customer follows an exponential distribution with a common
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rate µ. Nevertheless, their valuations, denoted by v, and their delay sensitivities,
denoted by c, are different across different groups. The value attribute v > 0 char-
acterizes the customer’s willingness to pay (in the absence of delay) for one unit of
service, while the delay sensitivity c > 0 specifies the penalty per unit of time while
the customer is kept in the system (service time included).

We assume that both attributes can take only two values to simplify our analysis.
Specifically, we assume that v ∈ {vL, vH} and c ∈ {cL, cH}, where ∆v = vH −
vL > 0 and ∆c = cH − cL > 0. Given these values, there are four combinations
{(vL, cH), (vH , cH), (vL, cL), (vH , cL)}, which are denoted by LH, HH, LL, and HL,
respectively in the sequel. A customer with valuation vH is willing to pay more for the
service than the one with vL; likewise, a customer endowed with a delay sensitivity
cH incurs a higher penalty (compared to the case with cL). Each group of customers
arrive at the system following a Poisson process, and we use λij to denote the aggregate
arrival rate of group ij of customers, where ij ∈ {LH, HH, LL, HL} ≡ T . Notably,
from the server’s viewpoint, type-HL customers are the most favorable customers
since they are willing to pay more for the service and do not mind waiting so much.
On the contrary, the server can extract the least amount of profit from the type-
LH customers due to their low willingness to pay and high delay sensitivity. In
compliance with the literature on incentive compatible priority pricing, we assume
that the arrival process, the value and cost distributions and the service procedure
are common knowledge. However, a customer’s valuation and delay sensitivity are
privately observed by this customer but unknown to the server. Thus, this private
preference profile also represents a customer’s type.

The server’s problem is to design an appropriate mechanism to maximize his
long-run expected payoff. In the absence of the information about the customers’
preference, the server faces an adverse selection problem. As suggested by the agency
literature (Laffont and Martimort [2002]), a common approach is to offer the cus-
tomers a menu of contracts and let her self-select. Furthermore, the revelation prin-
ciple allows us to restrict our attention to the direct mechanism in which the server
simply requests the customers to report their types and then choose the contracts
on behalves of the customers. Thus, we assume that the server offers a menu of
contracts {qij, wij, pij}, where qij ∈ [0, 1] is the admission rate, wij is the expected
delay, and pij denotes the associated price charged by the server. Upon arrival, each
customer decides which service class to purchase, and is charged and scheduled as
prescribed by the contract. Given a contract {q, w, p}, a type-ij customer receives an
expected (net) utility: q(vi − cjw − p). We assume that a customer receives a null
(zero) expected utility upon walking away without loss of generality. Notably, based
on the above descriptions, the server is allowed to adopt a stochastic/ probabilistic
admission control policy for a specific type (this occurs when qij 6= {0, 1}). This is in
strict contrast with the extant literature on priority pricing, see, e.g., Afeche [2006],
Katta and Sethuraman [2005], and Yahalom et al. [2005].

We restrict our attention to static scheduling policy and allow preemption. Fur-
thermore, we adopt the achievable-region approach introduced by Coffman and Mi-
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trani [1980] and Shanthikumar and Yao [1992]. Under our queueing framework, the
associated expected delay is confined with the following resource constraints:

∑
ij∈T

λijqij < µ, and
∑
ij∈S

λijqijwij

µ
≥

∑
ij∈S λijqij/µ

µ−∑
ij∈S λijqij

, ∀S ⊆ T. (RE)

The condition
∑

ij∈T λijqij < µ guarantees that the system size does not explode
(since the effective aggregate arrival rate

∑
ij∈T λijqij is less than the service rate). In

the second inequality of (RE), the left-hand side is the expected steady-state virtual
load (defined as the remaining processing time) in set S as we recall by Little’s law that
λijwij is the steady-state queue length of group ij; the right-hand side corresponds to
the average sojourn time (the waiting time plus the service time) when the customers
in set S are given the absolute priority over all other customers outside this set (i.e.,
T \S). Thus, from the viewpoint of the customers in set S, it is as if those customers
outside this set are never in the system (and thus no further congestion is incurred
due to the presence of customers in T \ S). This derivation follows from the classical
queueing theory (see, e.g., Coffman and Mitrani [1980], Shanthikumar and Yao [1992]
and also Katta and Sethuraman [2005]). For ease of notation, we denote RE(S) as
the resource constraint associated with the set S.

It is worth mentioning that this achievable region can be regarded as a sort of
resource constraints for this queueing system. Moreover, each extreme point of this
achievable region corresponds to a specific absolute priority rule. In our four-group
setting, an extreme point is determined by four binding constraints, each of which
is associated a specific set. Further, these sets must be nested in order to avoid any
conflict between the queueing discipline. For example, if the sets associated with
an extreme point is {HH}, {HH, LH}, {HH, LH, HL}, and {HH, LH, HL, LL},
the corresponding absolute priority rule is HH, LH, HL, LL, in descending order.
This peculiar property implies that the achievable region is a base of a polymatroid
(Shanthikumar and Yao [1992]). Another interesting observation is that since any
interior point can be represented as a convex combination of a finite number of ex-
treme points and feasible directions (which correspond to the “strategic idleness” in
the terminology of Afeche [2006]). This convex combination also gives rise to a de-
tailed implementation through a (randomized) priority rule, i.e., a certain group of
customers are given priority only probabilistically. See Shanthikumar and Yao [1992]
for more discussions and algorithms that implement the priority rules.

By the revelation principle, we restrict our attention to direct revelation mecha-
nisms. Let

u(i′j′|ij) = qi′j′(vi − cjwi′j′ − pi′j′)

denote the expected utility of a type-ij customer who pretends to be type-i
′
j
′
. For

ease of notation, define

Wij = qijwij, and Pij = qijpij,

the customer’s expected utility can be rewritten as u(i
′
j
′|ij) = viqi′j′ − cjWi′j′ −Pi′j′ .

In order to induce customers to participate, the following individual rational (IR)

51



constraint has to hold:

viqij − cjWij − Pij ≥ 0, ∀ij ∈ T, (IR)

where the right-hand side corresponds to the customers’ reservation utility (which is
normalized to zero). Furthermore, the menu of contracts has to induce the customers
to willingly reveal their types, thereby giving rise to the following incentive compatible
(IC) constraint:

viqij − cjWij − Pij ≥ viqi′j′ − cjWi′j′ − Pi′j′ , ∀ij, i′j′ ∈ T, (IC)

where the left-hand side, as aforementioned, is the expected utility of a type-ij cus-
tomer under truth-telling, and the left-hand side corresponds to the case of misrep-
resentation. Note that even if a customer misreports her type, the actual valuation
as well as the delay sensitivity remain genuine (vi and cj, respectively). We use
IC(ij − i

′
j
′
) to denote the incentive compatibility constraint that guarantees that a

type-ij customer does not want to pretend to be type-i
′
j
′
.

Having discussed the customers’ incentive problems, we now turn to the server’s
side. The server’s goal is to find an appropriate menu of contracts that maximize her
expected revenue:

max
{qij ,wij ,pij}

∑
ij∈T

λijPij,

s.t. (IC), (IR), and (RE).

For our convenience, we can replace the decision variables {qij, wij, pij} by
{qij,Wij, Pij} following the definitions of Wij and Pij. Moreover, we introduce
the “information rent”:

Rij ≡ viqij − cjWij − Pij

for each ij ∈ T . From the definition of Rij, we have Pij = viqij − cjWij − Rij. After
these substitutions, the server’s problem is reformulated as below:

max
{qij ,Wij ,Rij}

∑
ij∈T

λij(viqij − cjWij −Rij)

s.t. Rij −Ri′j′ ≥ (vi − vi′)qi′j′ − (cj − cj′)Wi′j′ , ∀ij, i′j′ ∈ T, (5.1)

Rij ≥ 0, ∀ij ∈ T, (5.2)∑
ij∈T

λijqij < µ, (5.3)

∑
ij∈S

λijWij ≥
∑

ij∈S λijqij

µ−∑
ij∈S λijqij

, ∀S ⊆ T, (5.4)

Wij ≥ 0, 0 ≤ qij ≤ 1, ∀ij ∈ T,

where (5.1) follows from (IC), (5.2) follows from (IR), and (5.3) and (5.4) are simply
a restatement of (RE).
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In the sequel, we derive the optimal mechanism (from the server’s perspective)
with four groups of customers. As a benchmark, we first study optimal (socially
optimal) contracts under symmetric information in Section 5.3. Revenue maximizing
contracts under asymmetric information are discussed in Section 5.4.

5.3 Optimal Contracts under Symmetric Informa-

tion

To demonstrate the impact of information asymmetry, we first derive the optimal
menu of contracts when the server has perfect knowledge of the customers’ type infor-
mation. We refer to this benchmark case as the scenario with symmetric information.

As the server knows the customers’ types, the incentive compatibility condition
(5.1) is no longer required, and since the server can extract the entire social surplus,
the problem reduces to social maximization. The optimal contract design problem in
this scenario can be formulated as follows:

max
{qij ,Wij}

∑
ij∈T

λij(viqij − cjWij) (5.5)

s.t.
∑
ij∈T

λijqij < µ, (5.6)

∑
ij∈S

λijWij ≥
∑

ij∈S λijqij

µ−∑
ij∈S λijqij

, ∀S ⊆ T, (5.7)

Wij ≥ 0, 0 ≤ qij ≤ 1, ∀ij ∈ T. (5.8)

Let (q̂,Ŵ) be an optimal solution to (5.5)-(5.8). The following propositions char-
acterize the optimal admission control and priority ranking policies under symmetric
information.

5.3.1 Admission Preference

As a profit maximizer, the server has preferences of admitting certain types of
customers over the others. We say that the server has strong preference of type ij
over type i′j′ if she does not admit any type i′j′ customers unless she fully admits
all type ij customers; i.e. qi′j′ = 0 if qij < 1. The following proposition characterizes
the component-wise strong preference of a socially optimal admission policy: among
customers with the same delay sensitivity, the server has strong preference of types
with higher valuation; analogously, among customers with same valuation, the server
has strong preference of types with lower delay sensitivity.

Proposition 6. A socially optimal menu of contracts (q̂,Ŵ) satisfies the following
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properties:

q̂LL = 0, if q̂HL < 1;

q̂LH = 0, if q̂HH < 1;

q̂HH = 0, if q̂HL < 1;

q̂LH = 0, if q̂LL < 1.

For comparison, we define the weak preference of customer types to be the or-
dering of their admission probabilities; i.e. the server has week preference of type ij
customers over type i′j′ customers if and only if qij > qi′j′ . It is easy to see that the
strong preference always implies the weak preference. Later on, we will show that
component-wise strong preference no longer holds in revenue maximizing contracts
under information asymmetry; however, weak preference is preserved.

5.3.2 Priority Scheduling

We say that type ij customers has absolute priority over type i′j′ customers if
type ij always has the preemptive advantage of service over type i′j′. In terms of
the resource constraints, there exists S ⊆ T such that ij ∈ S, i′j′ /∈ S, and RE(S)
is binding. We say that type ij has randomized priority over type i′j′ if type ij
customers have shorter lead times than type i′j′, but does not have absolute priority
over type i′j′. Finally, we say that type ij and type i′j′ have equal priority if their
average lead times are the same, i.e., wij = wi′j′ .

The following proposition states that in a socially optimal contract, customers
with higher delay sensitivity have absolute priority over the others; however, there’s
no need to differentiate customers with same delay sensitivity but different valuations.
On the contrary, while the first assertion still holds in a revenue maximizing contract
under information asymmetry, it maybe optimal to assign absolute or randomized
priorities among customers with same delay sensitivity but different valuation.

Proposition 7.There exists a socially optimal menu of contracts (q̂,Ŵ) that satisfies
the following properties:

ŴLH

q̂LH

=
ŴHH

q̂HH

<
ŴLL

q̂LL

=
ŴHL

q̂HL

;

λLHŴLH + λHHŴHH =
λLH q̂LH + λHH q̂HH

µ− λLH q̂LH − λHH q̂HH

.

5.3.3 Work Conservation

We say that a scheduling policy follows the work conservation rule if it never
idles the server. In terms of the resource constraints, RE(T ) is always binding in
any work conservation policy. Since we allow preemption, a socially optimal contract
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that minimizes delay costs should always satisfy the work conservation condition.
However, in the presence of information asymmetry, it may be optimal to insert
unforced idleness to delay the service for customers with lower delay sensitivity, in
order to induce customers with higher delay sensitivity to report their true types.

Proposition 8. A socially optimal menu of contracts (q̂,Ŵ) satisfies

∑
ij∈T

λijŴij =

∑
ij∈T λij q̂ij

µ−∑
ij∈{LH,HH} λij q̂ij

.

The proof of Propositions 6-8 is straightforward and thus is omitted for con-
ciseness. In the next Section, we present solutions for the optimal contract design
problem under asymmetric information, focusing on the novel features introduced by
information asymmetry.

5.4 Optimal Contracts under Information Asym-

metry

In this section, we first overview general properties of the server’s optimal contracts
under information asymmetry in Section 5.4.1. Then we discuss detailed solutions for
different cases of parameter values in Section 5.4.2. In Section 5.4.3, we compare the
optimal contracts to that under symmetric information.

5.4.1 General Properties of the Optimal Contracts

To characterize structural properties of the revenue maximizing contracts, we
use q∗ ∈ R|T |

+ to denote the optimal allocation rule and W ∗ ∈ R|T |
+ to denote the

corresponding optimal schedule. We first focus on the admission control policies and
summarize our results in the next two propositions. Proposition 9 shows that the
server has strong preference of customers with higher evaluation among all that with
lower delay sensitivity, and customers with lower delay sensitivity among all that with
higher evaluation (strong preference at top).

Proposition 9. A revenue maximizing menu of contracts (q∗,W∗,R∗) has the fol-
lowing properties:

q∗LL = 0, if q∗HL < 1;

q∗HH = 0, if q∗HL < 1.

However, as demonstrated by the special cases in Section 5.4.2, strong preference
no longer holds among customers with lower evaluations or higher delay sensitivities,
as the server may partially admit both the HH and LH types or the LL and LH
types. Nonetheless, Proposition 10 shows the monotonicity on the optimal admission
probability among these types (week preference at bottom).

55



Proposition 10. The following assertions hold for any revenue maximizing menu of
contracts (q∗,W∗,R∗):

q∗LH ≤ q∗HH ;

q∗LH ≤ q∗LL.

Next, we turn to the priority scheduling policy. Analogously to the case un-
der symmetric information, Proposition 11 shows that an optimal menu of contracts
should always grant customers with higher delay sensitivity the absolute service pri-
ority.

Proposition 11. A revenue maximizing solution (q∗,W∗,R∗) satisfies

λHHW ∗
HH + λLHW ∗

LH =
λHHq∗HH + λLHq∗LH

µ− λHHq∗HH − λLHq∗LH

.

As opposed to the symmetric information case, the server may have to use more
than two priority classes in order to differentiate customers with the same delay
sensitivity but different valuations. Proposition 12 shows that the HH type should
have absolute priority over the LH type if neither of them are fully admitted.

Proposition 12. The resource constraint RE({HH}) is binding if q∗HH < 1; i.e.,

λHHW ∗
HH =

λHHq∗HH

µ− λHHq∗HH

.

Depending on the system configurations, it may be optimal to use randomized or
reversed priority ranking between the HH and the LH types. It is also possible that
the optimal contract schedules the HL and LL types at different priorities, along with
strategic idleness to ensure incentive compatibility. These interesting phenomena are
demonstrated by the special cases discussed in Section 5.4.2, and are discussed in
detail in Section 5.4.3.

5.4.2 Some special cases

In this section, we present some special cases for which intriguing phenomena arise
in terms of the optimal admission control and priority rules. Following Proposition
9 and 10, the server has strong preference of the HL type over any other customer
types. In other words, the server will not admit customers of any other types if he
does not fully admit the HL type. However, if the server fully admits the HL type,
in general he could partially admit all three inferior types of customers, since the
server has no clear-cut preference between the customers of two (intermediate) types
HH and LL, although type-HL (type-LH) customers are always the most (least)
favorable from the seller’s perspective. For simplicity, we focus on the extreme cases
in which the server partially admits at most two customer types.
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When ∆c

∆v
, the ratio of the difference of delay sensitivity and the valuation differ-

ence, exceeds certain threshold level, upon fully admitting the most favorable type-HL
customers, the server admits the type-LL customers until they are exhausted before
admitting the type-HH and LH customers. When ∆c

∆v
is below certain critical level,

the preference is reversed: the server now intends to exhaust the type-HH customers
before admitting any type-LL and LH customers. It would be difficult to determine
the ranking between these two types in the intermediate cases; thus, in the sequel,
we restrict ourselves to these two extreme cases.

Our results are summarized in Table 1, which are categorized by the the number of
admitted groups (types) in the optimal solution. For each special case, we specify the
admission policy, the number of priority classes required, and the detailed scheduling
policy in each case. In the sequel we classify them by the number of admitted groups
and elaborate on these cases. Detailed derivations of the optimal solutions for the
special cases are provided in the online appendix.

Table 5.1. Summary of optimal contracts under asymmetric information

Number of ∆c
∆v

≥ µ(1 + λHL
λLL

) ∆c
∆v

≤ (µ−λHH )2

µ(1+λHL/λLL)admitted classes

1
Case 1a Case 1b

qHL = 1, qLL = qHH = qLH = 0 qHL = 1, qHH = qLL = qLH = 0
Single queue. Single queue.

2

Case 2a Case 2b
qHL = 1, 0 < qLL ≤ 1, qHH = qLH = 0 qHL = 1, 0 < qHH ≤ 1, qLL = qLH = 0

Single queue, wHL = wLL. Two queues, wHH < wHL.
Absolute priority rule.

3

Case 3a Case 3b
qHL = qLL = 1, 0 < qHH ≤ 1, qLH = 0 qHL = qHH = 1, 0 < qLL ≤ 1, qLH = 0

Two queues, wHH < wHL = wLL. Three queues, wHH < wHL < wLL.
Absolute priority rule. Randomized priorities between LL and HL.

Strategic idleness may be optimal.

4

qHL =< qLL = 1, 0 < qLH ≤ qHH ≤ 1 qHL = qHH = 1, 0 < qLH ≤ qLL ≤ 1

Case 4a-1 Case 4b-1
If qHH < 1, three queues. If qLL < 1, four queues.

wHH < wLH < wHL = wLL, wLH < wHH < wHL < wLL

Absolute priority rule. Randomized priorities between LL and HL.
Strategic idleness may be optimal.

Case 4a-2 Case 4b-2
If qHH = 1 and qLH < 1, three queues. If qLL = 1 and qLH < 1, three queues.

wHH < wLH < wHL = wLL. wLH < wHH < wHL = wLL.
Randomized priorities between HH and LH. Randomized priorities between LH and HH.

Strategic idleness may be optimal.

Case 4a-3 Case 4b-3
If qHH = qLH = 1, two queues. If qLL = qLH = 1, two queues.
wHH = wLH < wHL = wLL. wLH = wHH < wHL = wLL.

Absolute priority rule. Absolute priority rule.
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One group of customers

Let us start with the simplest case in which only one group of customers are
admitted (Case 1a and 1b). Since the server can extract the most revenue from the
type-HL customers (who values the service highly and is less averse to the delay),
this is the only group of customers that are admitted (as shown in Proposition 9). In
this case, the “priority rule” degenerates since all admitted customers are identical.

Two groups of customers

A slightly more interesting case is when the server admits two groups of cus-
tomers. By the above arguments, in addition to the type-HL customers, when the
valuation difference is relatively small, the other admitted type is the type-LL (Case
2a); whereas the type-HH customers are admitted if the difference of delay sensitivity
is relatively small (Case 2b).

In Case 2a, the two admitted types – HL and LL – have the same delay sensitiv-
ity. Thus, it makes no sense for the server to provide different priority rules; the only
relevant parameter to differentiate between these two types is the admission proba-
bility. On the contrary, the server admits two types with different delay sensitivities
(HL and HH) in Case 2b. In such a scenario, offering two priority classes allows the
server to differentiate between them, since the type-HH customers are more averse
to the delay and therefore are willing to pay more for a higher priority. We therefore
observe that the server offers two priority classes in this case.

Three groups of customers

When the server admits three groups of customers, the admission and scheduling
rules again critically depend on ∆c

∆v
; nevertheless, the set of admitted groups (HL,

HH, and LL) is the same in the two extreme cases. When the valuation difference
is relatively small (Case 3a), the server fully admits type LL and probabilistically
admits type HH customers; the preference is reversed and the LL type is partially
admitted if the difference of delay sensitivity is relatively small (Case 3b).

Following from Proposition 11, type-HH customers are given absolute priority
over other types in both cases. However, the priority ranking between the HL and
the LL types differs in the two extreme cases. In Case 3a, there is no need to
offer different priority classes for the HL and LL types, since doing so will affect
neither the system delay cost nor the customers’ incentives. However, in Case 3b, the
server intends to assign the type-HL customers a higher priority than the type-LL
customers, even if these customers are homogeneous in terms of their delay sensitivity.
In such a scenario, the purpose of this delay differentiation is to prevent the type-HH
customers from misrepresenting themselves as either the LL or the HL type. The
randomized priority rule provides the server with the desired flexibility to align the
incentives of the customer’s and minimize the information rent.
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We further find that occasionally the server may insert unforced idleness to the
queues with lower priority; in other words, strategic idleness may emerge as an optimal
solution. This is because all work-conserving priority rules, although achieving system
efficiency, result in severe incentive compatibility issues. Consequently, in order to
differentiate the customers, the server must reduce the prices for the high priority
queue significantly. Alternatively, the server may be better off by distorting the
queueing discipline rather than adjusting the prices dramatically. This observation
echoes the seminal work by Afeche [2006].

Four groups of customers

Finally, let us consider the case in which all four groups of customers are admit-
ted, when the difference in delay sensitivity is relatively more significant (Case 4a-1 to
4a-3). We find that given the (soft) resource constraint, it may be in the server’s best
interest to probabilistically admit both the HH and LH types, even if ex ante the
type-LH customers are perceived as the worst group. This probabilistic admission
rule allows the server to maintain the customers’ incentive compatibility in the least
costly way. Since the difference in delay sensitivity is more significant than the dif-
ference in valuation, the server’s main goal is to prevent customers with lower delay
sensitivity from mimicking types with higher delay sensitivity. If the server solely
admits type-HH customers besides the HL and the LL types, the contract intended
for type-HH may look too appealing for the HL and LL types. In order to avoid
this situation, the server may then be willing to allocate some capacity to serve the
worst type (i.e., type-LH) customers.

If the server fully admits all customers, we find that only two priority classes
are needed to differentiate between customers with high and low delay sensitivities.
However, if at least one group of customers are admitted probabilistically, the server
intends to offer higher priority to the HH type over the LH type, and he may
randomize over the priority rule in order to achieve the best incentive provision.

When the difference in valuation is relatively more significant (Cases 4b-1 to 4b-
3), the server partially admits both the LL and LH type, to leverage information
rent paid to customers with higher valuation. Similarly to Case 3b, the type-HH
customers may have the incentive to misreport as the LL and the HL type, and
the server has to further differentiate between the LL and HL types with absolute
or randomized priorities, in addition to the priority scheduling between the LH and
HH types. Like the previously discussed cases, strategic idleness may also occur in
an optimal solution, if the benefit outweighs the cost.

5.4.3 Novel Features of the Optimal Contracts

The aforementioned special cases reveal some interesting phenomena that arise
from information asymmetry. For example, 1) the system may partially admit two
customer groups, even though ex ante the server prefers one type to the other; 2)
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customer groups with the same delay sensitivities (but different valuations) may be
awarded priority over one another; 3) instead of fully exhausting the system resource,
it may be optimal to idle the server intentionally. Although we relegate the detailed
derivations to the online appendix, here we provide intuitive explanations for these
novel features.

Mixed Admission Policy

We call an admission strategy a mixed policy, if it partially admits more than one
customer types. Analogously, an exclusive admission policy is the one that partially
admits at most one customer type. In Section 5.4.2, the mixed admission policy is
applied in both Case 4a-1 and Case 4b-1.

Let us take Case 4a-1 and Case 3a as examples. In both cases, the type-HL and
type-LL customers are fully admitted; however, the first case uses a mixed admission
policy that partially admits both the type-HH and type-LH customers, while the
admission policy for the second case is exclusive, with HH being the only partially
admitted customer type. The main trade-off is as follows. In Case 4a-1, ∆v, the
difference in valuation, is extremely small as compare to ∆c, the difference in delay
sensitivity. The inclusion of type-LH customers helps reduce the admission rate of the
type-HH customers while maintaining the same throughput level, which in turn helps
to reduce the incentive of the type-HL and type-LL customers to misreport as the
HH type. On the other hand, this mixed admission strategy also results in a decrease
in valuation, as well as an increase in the information rent to the type-HH customer,
both of which are determined by ∆v. Since the reduction in information rent of
type-HL and type-LL customer is proportional to ∆c and is thus more significant
than the decrease in valuation, the mixed admission policy can extract higher revenue
for the server. Whereas in Case 3a, ∆v is not sufficiently small as compared to ∆c,
and the cost of using the mixed admission policy outweighs the benefit. Therefore
the exclusive admission policy is optimal in this case. The reasoning for the mixed
admission policy in Case 4b-1 and the exclusive admission policy in Case 3b is similar.

To demonstrate the major trade-off, we illustrate the binding IC constraints of
Case 4a-1 and Case 4b-1 in Figures 5.1 - 5.2. Here and in all the following diagrams,
an edge from type-ij to type-i′j′ represents the IC constraints that type-i′j′ does
not not be tempted to choose the contract intended for type-ij. The value along an
edge is the right-hand side of the corresponding IC constraint; in other words, it is
a lower bound on the difference in the information rents received by the origin and
destination customer types. The solid lines represent unique binding IC constraints,
while the dotted lines imply multiple binding IC constraints.

Randomized Priority Scheduling

In a system under information symmetry, it is not necessary to differentiate cus-
tomers with the same delay sensitivity but different valuations. Under information
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Figure 5.1. Binding IC constraints in Case 4a-1.

asymmetry, however, it may be optimal to give different priority rankings to these
customers. For example, in Case 4a-2, the type-HH customers have higher service
priority over the type-LH customers. Moreover, the priority ranking between the
HH and the LH is randomized to achieve the best information provision. Figure 5.3
shows the binding IC constraints in this case. In order to minimize the information
rent of the type-HL customers, the optimal menu of contracts needs to satisfy the
following equation:

∆cWLH + ∆vqLL = ∆vqLH + ∆cWHH ,

which can only be achieved through randomized priority ranking between the type-
LH and type-HH customers.

Strategic Idleness

If the server has complete knowledge of the customers’ valuations and delay sen-
sitivities, the optimal strategy is to exhaust the system resources, since any idleness
will result in excessive costs. However, when the valuation and delay sensitivities
are the customers’ private information, it may be optimal to strategically delay the
service for customers with lower delay sensitivities in order to provide appropriate
incentives for customers with higher delay sensitivities. We call this non-exhaustion
of system capacity the strategic idleness. This phenomena may arise in Case 3b, Case
4b-1 and Case 4b-2.

Let us take Case 3b as an example, in which the binding IC constraints are
illustrated in Figure 5.4. If we increase WLL by a small amount ε > 0, RHH , the
information rent received by type-HH customers, will decrease by ∆cε, so will RHL

since it is equal to RHH +∆cWHH . However, the delay cost will increase by cLε. The
benefit and cost trade-off depends on the relative significance of ∆c as compared to
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Figure 5.2. Binding IC constraints in Case 4b-1.

cL, as well as the arrival rates λLL, λHH and λHL. In situations where the benefit
outweighs the cost, strategic idleness may emerge as an optimal solution.

5.5 Revenue Gains from the Probabilistic Admis-

sion Policy

One of the key differences of our model and that of Afeche [2006] is the prob-
abilistic admission control that allows the server to obtain more revenue from the
customers. The revenue gains from a probabilistic admission policy follow from two
sources. First, it helps the server to better utilize the limited resource; second, it
provides the server the desired flexibility to leverage the information rents that must
be paid to the customers. A natural question, that arises, is how much incremen-
tal revenue the probabilistic admission control can raise. To this end, we construct
two examples to demonstrate the revenue gains from the probabilistic admission con-
trol policy, using the 0-1 (deterministic) admission policy (as in Afeche [2006]) as a
benchmark. Example 2 demonstrates how the probabilistic admission policy gives
the server the flexibility to accept the optimal level of work load, in order to balance
the trade-off between the revenue gains from serving the customers and the delay
costs due to congestion. Example 3 shows the revenue gains from leveraging the
information rent by partially admitting two of the less favorable types (LH and LL).

Example 2. In this example, we use the following key parameter values: µ = 100,
λHL = 30, λLL = 30, λHH = 10, λLH = 10, vL = 5, vH = 6, cL = 100, and
cH = 300. Because vH > cL

µ
(µ−λHH)2

, the system should fully admit the type-HL (the

most favorable) customers; i.e., qHL = 1. Also, because ∆c

∆v
> µ(1 + λHL

λLL
), the server
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Figure 5.3. Binding IC constraints in Case 4a-2.

always prefers type-LL customers to type-HH customers. Since vL−cL
µ

(µ−λHL−λLL)2
−

∆v
λHL

λLL
< 0, qHH = qLH = 0.

Deterministic admission policy. If the server uses the deterministic admission
policy, then following the above argument we obtain that either qLL = 0 or qLL = 1.
If qLL = 0, it follows that wHL = 1

µ−λHL
= 1

70
, and RHL = 0. The server’s revenue is:

πs = vHλHL − cLλHLwHL = 137.

On the other hand, if qLL = 1, wHL = wLL = 1
µ−λHL−λLL

= 1
40

, RLL = 0, and
RHL = ∆vqLL = 1. The server’s corresponding revenue is:

πs = vHλHL + vLλLL − cL(λHLwHL + λLLwLL)− λHLRHL = 150.

Thus, under the deterministic admission policy, the server’s optimal revenue is 150.

Probabilistic admission policy. If instead the server adopts the probabilistic
admission control policy, the optimal admission probability q∗LL should be the solution
to the following equation:

vL − cL
µ

(µ− λHL − λLLqLL)2
−∆v

λHL

λLL

= 0. (5.9)

Solving (5.9) yields q∗LL = 2
3
. It then follows that w∗

HL = w∗
LL = 1

µ−λHL−λLLq∗LL
= 1

50
,

R∗
HL = ∆vq

∗
LL = 2

3
, and the server’s optimal revenue is:

π∗s = vHλHL + vLλLLq∗LL − cL(λHLw∗
HL + λLLw∗

LL)− λHLR∗
HL = 160,

which is clearly higher than the highest revenue (150) achieved by the deterministic
admission policy.
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Figure 5.4. Binding IC constraints in Case 3b.

Example 3. The following parameters are adopted in this example: µ = 100, λHL =
30, λLL = 20, λHH = 10, λLH = 20; vL = 20, vH = 21, cL = 100, and cH = 400.
In this case, since ∆c

∆v
> µ(1 + λHL

λLL
), the server always prefers type-LL customers to

type-HH customers. Also, since vL − cL
µ

(µ−λHL−λLL)2
−∆v

λHL

λLL
> 0, qHL = qLL = 1.

Deterministic admission policy. If the server uses the deterministic admission
policy, she has three options: 1) admitting neither the type-HH nor the type-LH
customers (qHH = qLH = 0); 2) admitting only the type-HH customers (qHH = 1,
qLH = 0); and 3) admitting both type-HH and type-LH customers (qHH = qLH = 1).
Her revenue associated with the three policies are calculated below.

When qHH = qLH = 0, it follows that wHL = wLL = 1
µ−λHL−λLL

= 1
50

, RLL = 0,
and RHL = ∆vqLL = 1. The server’s corresponding revenue is:

πs = vHλHL + vLλLL − cL(λHLwHL + λLLwLL)− λHLRHL = 900.

In the second case where qHH = 1, qLH = 0, we obtain that wHH = 1
µ−λHH

= 1
90

, and

wHL = wLL = 1
λHL+λLL

( λHH+λHL+λLL

µ−λHH−λHL−λLL
− λHH

µ−λHH
) = 1

36
. The information rents in this

case are RHH = 0, RLL = ∆cwHHqHH −∆vqHH = 7
3
, and RHL = RLL + ∆vqLL = 10

3
.

Accordingly, the server’s revenue is:

πs = vH(λHL+λHH)+vLλLL−cL(λHLwHL+λLLwLL)−cHλHHwHH−λLLRLL−λHLRHL = 910.

Finally, when qHH = qLH = 1, wHH = wLH = 1
µ−λHH−λLH

= 1
70

, and

wHL = wLL =
1

λHL + λLL

(
λHH + λLH + λHL + λLL

µ− λHH − λLH − λHL − λLL

− λHH + λLH

µ− λHH − λLH

) =
1

14
.
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The information rents in this case are RLH = 0, RHH = ∆vqLH = 1, RLL =
∆cwLHqLH = 30

7
, and RHL = RLL + ∆vqLL = 37

7
. The server’s revenue is:

πs = vH(λHL + λHH) + vL(λLL + λLH)− cL(λHLwHL + λLLwLL)

− cH(λHHwHH + λLHwLH)− λHHRHH − λLLRLL − λHLRHL = 857.

Collectively, the server’s optimal revenue under the deterministic admission policy is
910.

Probabilistic admission policy. Now we investigate the case with the proba-
bilistic admission policy. In such a scenario, the optimal contract should satisfy the
following equations:

wHH =
1

µ− λHHqHH

,

wLH =
1

λLHqLH

(
λHHqHH + λLHqLH

µ− λHHqHH − λLHqLH

− λHHqHH

µ− λHHqHH

),

∆cwLHqLH = ∆vqLH + ∆cwHHqHH −∆vqHH ,

vL − cL
µ

(µ− λHL − λLL − λHHqHH − λLHqLH)2

−∆c
µ

(µ− λHHqHH − λLHqLH)2
(1 +

λHL + λLL

λLH

)−∆v
λHH + λHL

λLH

= 0.

Solving the system of equations above yields

q∗LH = 0.3535, q∗HH = 0.4194, w∗
LH = 0.0128, w∗

HH = 0.0104.

It follows that

w∗
HL = w∗

LL =
1

λHL + λLL

(
λHHq∗HH + λLHq∗LH + λHL + λLL

µ− λHHq∗HH − λLHq∗LH − λHL − λLL

− λHHq∗HH + λLHq∗LH

µ− λHHq∗HH − λLHq∗LH

)

= 0.029,

R∗
LH = 0, R∗

HH = ∆vq
∗
LH = 0.3535, R∗

LL = ∆cw
∗
LHq∗LH = 1.3545, and

R∗
HL = R∗

LL + ∆vq
∗
LL = 2.3545

. The server’s optimal revenue is:

π∗s = vH(λHL + λHHq∗HH) + vL(λLL + λLHq∗LH)− cL(λHLw∗
HL + λLLw∗

LL)

− cH(λHHw∗
HH + λLHw∗

LH)− λHHR∗
HH − λLLR∗

LL − λHLR∗
HL = 962,

which is clearly higher than that achieved by the best deterministic admission policy
(910).
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5.6 Conclusions

In this paper, we characterize the optimal joint pricing, scheduling, and admission
control policy when the server faces customers with heterogeneous valuations and
delay sensitivities. We show that the server always exhausts the most favorable type
of customers (that have the highest valuation and are least sensitive to the delay)
before admitting any other type of customers. Moreover, we find that even if the
customers have identical valuations, in determining the admission policy, the server
may still prefer one to another based on their delay sensitivity. Except the most
favorable type of customers, the server’s preference over the customers is endogenous.
In particular, we find that the server may probabilistically admit more than one type.

We also characterize the optimal mechanisms in a number of special cases to gain
further insights. Specifically, we find that the server may intend to offer different
admission probabilities for the customers with common valuations, and may pool
some groups of customers into one priority queue. Finally, occasionally a random-
ized priority may be adopted to prevent different types of customers to misrepresent
themselves. Regarding the priority rules, we find that the server always optimally
gives the customers with high delay sensitivity the absolute priority over those with
low delay sensitivity. Moreover, to distinguish among different groups of customers, it
may be the server’s best interest to insert some strategic idleness and use randomized
priority rules.

As we intend to provide a simple framework to illustrate the above managerial
implications, our stylized model certainly has its own limitations and may be extended
in various dimensions. In this paper, we focus exclusively on the case when the server
makes a one-time decision on managing his business. In reality, there might be
situations in which this can be done dynamically. For example, if the server is able
to adjust dynamically the admission control based on the current queueing status,
he may be able to strategically select the appropriate customers to serve. Also, if
the scheduling policy can be adjusted over time, if the server attempts to serve a
specific type of customers, he may be able to (temporarily) give the highest priority
to those customers, thereby reducing their disutility that arises from the congestion.
Extending our framework to a dynamic setting is a crucial step as well as a challenging
task.

Another possible direction is to consider nonlinear delay cost. In contrast with
our current setting in which only the expected delay is active, higher moments of
the delay may also affect the customers’ utility in such a nonlinear environment
(Yahalom et al. [2005]). In this scenario, while designing the priority rule, the server
may also intend to minimize, for example, the variance of the delay a customer may
encounter. In particular, static priority rule may be suboptimal (Yahalom et al.
[2005]) and one inevitably needs to search among those dynamic scheduling policy
(e.g., the generalized cµ rule). Including these effects may broaden the applicability
of our framework, and it definitely deserves further investigation.
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Chapter 6

Robust Auction Mechanism Design

6.1 Introduction

In the area of mechanism design, an emerging trend of research attempts to ad-
dress issues of the very restrictive common knowledge assumption. For example,
Bergemann and Morris [2005] argue that the notion of robustness should be exam-
ined in the richer universal type space. Thus, they proceed to study the equiva-
lence/difference between Bayesian and Ex post implementations and find that the
equivalence holds in some settings that are termed “separable,” but the discrepancy
may arise beyond these environments; see also Bergemann and Morris [2008, 2009]
along the same vein. Chung and Ely [2007] argue that a mechanism should be robust
against the principal’s (auctioneer’s) own belief about the agents’ (bidders’) types.
They show that, for every detail-free mechanism, there must exist a belief for which
it is outperformed by the optimal dominant strategy mechanism; thus, this provides
a normative justification for dominant strategy mechanisms. Bose et al. [2006] study
the optimal auction design when the auctioneer exhibits ambiguity aversion. Most
recently, Lopomo et al. [2007] introduce Knightian uncertainty to the players’ beliefs,
and identify the conditions on the uncertainty set under which the Ex post formu-
lation is equivalent to the robust formulation in the single-dimensional mechanism
design problems.

Despite the insightful elaborations in the aforementioned literature on the robust
implmentability of auction mechanisms, surprisingly little attention has been paid
to the revenue loss associated with a (more) robust formulation. In this paper, we
adopt the Knightian uncertainty model introduced by Lopomo et al. [2007] and re-
visit the optimal auction design problem. We first provide a unified framework that
allows us to formally define the bidders’ belief uncertainty. This leads to a contin-
uum of formulations/games, each of which corresponds to different levels of belief
uncertainties. In this general framework, the bidders’ valuations are allowed to be
interdependent, and the auctioneer may sell more than one object, thereby giving rise
to the multi-dimensional mechanism design problem.
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We apply the network approach developed by Malakhov and Vohra [2005] to
reformulate our optimal auction design problems, and use this to characterize the
necessary and sufficient conditions (for a fixed allocation) to achieve the same rev-
enue in a robust formulation as in the Bayesian formulation. This allows us to spot
the possible distinction between different formulations and investigate the impact
of bidders’ belief uncertainty on the auctioneer. We apply our framework to study
the two classical problems, namely the single-object auction introduced by Myerson
[1981] and the multi-object auction introduced by Armstrong [2000]. Our results
show that there is no discrepancy between any pair of formulations in the single-
object auction even if the bidders’ types are discrete. This is admittedly intuitive,
but it serves as a benchmark that validates our result. Furthermore, we show that in
a multiple-object auction, the auctioneer’s expected revenue may strictly decrease as
the bidders’ beliefs become more uncertain. Following this, we provide a concrete ex-
ample for which the ex post formulation gives rise to a strictly lower expected revenue
in the multi-dimensional setting.

Our paper belongs to a long-standing literature on auction theory, including the
seminal paper by Vickrey [1961], the paper on interdependent values by Milgrom and
Weber [1982], the mechanism design approaches of Myerson [1981] and Maskin and
Riley [1989], the survey by Klemperer [1999], and the recent book by Krishna [2002].
Recent advances are on the design of multi-object auctions with multi-dimensional
valuations (Armstrong [2000]), on the competing auctions (Moldovanu et al. [2008]),
and on the characterization of bidding behavior when there are interactions among
bidders (Figueroa and Skreta [2009] and Jehiel et al. [1999]). Unlike all the afore-
mentioned papers, we introduce the robust formulation in which the bidders may
exhibit belief uncertainty. Our paper is also related to a broader class of papers on
mechanism design. Stemming from Mirrlees [1971], this framework with informa-
tion asymmetry has been applied extensively in a variety of areas, including product
line design (Moorthy [1984] and Mussa and Rosen [1978]), taxation policies (Salanie
[2003]), managerial compensation schemes (Holmstrom and Milgrom [1991]), and
government regulation (Laffont and Tirole [1993]). Please see Laffont and Martimort
[2002] for detailed discussions. Our approach to model the belief uncertainty may
find its applications in these domains as well.

As aforementioned, we attempt to relax the common knowledge assumption and
evaluate the robustness of mechanism design. Thus, our paper also belongs to a rising
stream on robust or “detail-free” mechanism design, including Bergemann and Morris
[2005, 2008, 2009], Bose et al. [2006], Chung and Ely [2007], and Lopomo et al. [2007].
Unlike Bergemann and Morris [2005], we focus on the conventional “first-order” belief
space. While Bose et al. [2006] and Chung and Ely [2007] allow the auctioneer to
exhibit belief uncertainty, we assume that the belief uncertainty arises solely from
the bidders’ side. A closely related recent paper by Heydenreich et al. [2009] applies
the graph theory to mechanism design problems with a continuous type space and a
discrete outcome space; their main objective is to identify the conditions under which
all Ex post incentive compatible payment schemes can only vary by a constant. Our
results complement theirs as we focus on the characterization of conditions for the
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existence of Ex post incentive compatible payment scheme that is revenue equivalent
to the Bayesian formulation; it can be verified that their conditions imply ours, but
not vice versa. Moreover, in the terminology of network approach, their condition
is equivalent to that all paths being equal between any pair of nodes, whereas we
only require there be overlapping between the sets of longest paths; once again, the
former condition implies the latter. Finally, as a relatively minor difference, we focus
on a discrete type space and unrestricted outcome space rather than the environment
studied by Heydenreich et al. [2009].

The rest of the paper is organized as follows. In Section 6.2, we describe the basic
setting. In Section 6.3, we formulate the robust mechanism design problems, of which
the Bayesian and the Ex post formulations can be taken as special cases. In Section
6.4, we introduce the network approach and the necessary and sufficient conditions
for a fixed allocation mechanism to achieve the same revenue in a robust formulation
as in the nominal Bayesian formulation. We then consider robust formulations of
Bayesian optimal auction mechanisms in Section 6.5, in both the single-object and
multiple-object settings. Finally, we conclude in Section 6.6.

6.2 The model

Let us first introduce the general model in which an auctioneer faces a number of
bidders that possess privately known valuations. All players, including the auctioneer
and the bidders, are risk neutral. Let F be the set of feasible allocations of the
resources amongst the bidders and the auctioneer, and T = {t1, t2, ..., tm} is a finite
set of a bidder’s types (possibly multi-dimensional). That is, each bidder privately
observes the realization of this signal ti ∈ T . A collection of types one for each (of n
bidders) will be called a “profile” t, and a profile involving only n− 1 bidders will be
denoted tn−1. Let T n denote the set of all possible profiles.

Given an allocation a ∈ F , if a bidder has type ti while other bidders have type
profile tn−1, she assigns monetary valuation v(a|ti, tn−1) to the allocation a. In other
words, v(a|ti, tn−1) is the gross “utility” a bidder receives from the allocation. Here,
we do not limit our formulation to the private value model, i.e., the valuation of each
bidder, v(a|ti, tn−1), can depend on the realized types of the bidder herself and that of
the other bidders. For the purpose of this paper, we assume that bidders are ex ante
symmetric. In other words, we assume that bidders’ types are independent draws from
a common distribution that is commonly known. Specifically, we let fi > 0 denote
the probability that a bidder has type ti. The probability of a profile tn−1 ∈ T n−1

being realized is π(tn−1) > 0.

By the revelation principle, we can restrict our attention to the direct revelation
mechanisms (this holds regardless of the common prior assumption). In such a mech-
anism, each bidder is asked to announce her own type. The auctioneer, as a function
of the announcements, decides what element (allocation) of F to pick and what pay-
ments each bidder has to make. As aforementioned, our primary goal is to provide
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a unified framework that incorporates various types of belief systems depending on
how confident the bidders are regarding their estimation of the game. To this end, in
the following we first review the classical Bayesian and Ex post formulations of the
optimal auction design problem. We then introduce the general framework, of which
the two formulations can be regarded as two polar cases.

6.3 Formulations and uncertainty set

In this section, we provide the formulations for the classical solution concepts and
introduce our solution concepts.

6.3.1 Bayesian formulation

We now formulate the auctioneer’s optimization problem. To this end, we need to
introduce the solution concept for the games played by the bidders. In the standard
literature on mechanism design, the solution concept is Bayesian Nash equilibrium.
Despite its popularity, this solution concept requires a relatively strong assumption
on the common prior beliefs. Specifically, it requires that each bidder possesses the
correct belief about other bidders’ types, each bidder knows that each bidder pos-
sesses the correct belief about other bidders’ types, and so on. Putting it in this
particular problem, it translates to the following Bayesian incentive compatibility
(BIC) constraint:

∑

tn−1∈T n−1

v(ai[ti, t
n−1]|ti, tn−1)π(tn−1)−

∑

tn−1∈T n−1

P (ti, t
n−1)π(tn−1)

≥
∑

tn−1∈T n−1

v(aj[tj, t
n−1]|ti, tn−1)π(tn−1)−

∑

tn−1∈T n−1

P (tj, t
n−1)π(tn−1), ∀ti, tj ∈ T,

where, on the right-hand side,

∑

tn−1∈T n−1

v(aj[tj, t
n−1]|ti, tn−1)π(tn−1)

is the expected utility the type-ti bidder receives if she pretends to be type-tj, and
P (tj, t

n−1) is the payment associated with this misreporting if other bidders’ report
profile is tn−1. The left-hand side is a special case in which the bidder reports truth-
fully. This inequality guarantees that the bidder is willing to disclose her type. More-
over, we have to include the Bayesian individual rationality (BIR) condition to ensure
that each bidder receives at least a null payoff:

∑

tn−1∈T n−1

v(ai[ti, t
n−1]|ti, tn−1)π(tn−1)−

∑

tn−1∈T n−1

P (ti, t
n−1)π(tn−1) ≥ 0, ∀ti ∈ T.
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For convenience of our analysis, we define R(ti, t
n−1) to be the “information rent”

to a bidder with type ti while other bidders have type tn−1:

R(ti, t
n−1) ≡ v(ai[ti, t

n−1]|ti, tn−1)− P (ti, t
n−1), ∀ti ∈ T.

Using this new notation, we can reformulate the (BIC) and (BIR) constraints as
follows: ∑

tn−1∈T n−1

R(ti, t
n−1)π(tn−1)−

∑

tn−1∈T n−1

R(tj, t
n−1)π(tn−1) (BIC)

≥
∑

tn−1∈T n−1

v(aj[tj, t
n−1]|ti, tn−1)π(tn−1)−

∑

tn−1∈T n−1

v(aj[tj, t
n−1]|tj, tn−1)π(tn−1), ∀ti, tj ∈ T,

∑

tn−1∈T n−1

R(ti, t
n−1)π(tn−1) ≥ 0, ∀ti ∈ T. (BIR)

The auctioneer’s problem is to maximize his expected revenue subject to the
constraints (BIC) and (BIR). Therefore, assuming that the allocation a ∈ F has been
fixed, the auctioneer’s optimization problem under the Bayesian formulation is the
following:

Sb(a) = max
P (ti,tn−1)

∑
ti∈T

fi

∑

tn−1∈T n−1

{
v(ai[ti, t

n−1]|ti, tn−1)−R(ti, t
n−1)

}
π(tn−1)

s.t. (BIC) and (BIR),

where the objective function is simply the expected revenue the auctioneer gets from
the bidders. Note that from this formulation, fiπ(tn−1) is the probability that a
specific bidder’s type is ti, and other bidders’ type profile is π(tn−1). Furthermore,
we can write down the auctioneer’s expected payoff from a specific bidder’s viewpoint
precisely because all these bidders are ex ante symmetric. It is worth mentioning that
if the allocation is fixed, the problem degenerates to a simple linear program.

Note that in this Bayesian formulation, we have assume that the bidder knows
perfectly well the distributions of realized type profile tn−1 of other bidders. This
is exactly where the common prior (common knowledge) assumption is used in this
particular context. We shall call this case the “nominal model.”

As a remark, with this representation, we force the auctioneer to specify the
payment scheme (or equivalently information rent) for every realization of the report
profile. Thus, there are much more decision variables (compared to that in Malakhov
and Vohra [2005]). However, in our formulation,

∑
tn−1∈T n−1 R(ti, t

n−1)π(tn−1) can
be conveniently redefined as Ri, which is what really matters to the bidders as well
as the auctioneer under the Bayesian formulation. This handy change of variables is
adopted by Malakhov and Vohra [2005] and most of the papers using the mechanism
design approach, and it gives rise to the classical “reduced form” of the auctioneer’s
optimization problem.
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6.3.2 Ex post formulation

The second extreme case is when the bidders completely have no idea of the
realizations of other bidders’ types. In such a scenario, their equilibrium bidding
strategies have to be the best responses, regardless of what other bidders’ strategies
are. Equivalently, we can write down the following Ex post incentive compatibility
(EPIC) constraint to represent this solution concept:

R(ti, t
n−1)−R(tj, t

n−1) ≥ v(aj[tj, t
n−1]|ti, tn−1)− v(aj[tj, t

n−1]|tj, tn−1), (EPIC)

∀ti, tj ∈ T, tn−1 ∈ T n−1.

Furthermore, to ensure that each bidder receives at least a null payoff, we need to
impose the Ex post individual rationality condition (EPIR):

R(ti, t
n−1) ≥ 0, ∀ti ∈ T, tn−1 ∈ T n−1. (EPIR)

Note that both (EPIC) and (EPIR) are much stronger constraints than (BIC) and
(BIR) in the Bayesian formulation because they require the inequalities to hold for
every instance rather than in expectation. Clearly, (EPIC) implies (BIC) and (EPIR)
implies (BIR) as we aggregate these Ex post constraints weighted by the probabilities
in the nominal model.

Given these incentive constraints, the auctioneer’s optimization problem in this
case (Ex post formulation) is:

Se(a) = max
R(ti,tn−1)

∑
ti∈T

fi

∑

tn−1∈T n−1

[v(ai[ti, t
n−1]|ti, tn−1)−R(ti, t

n−1)]π(tn−1)

s.t. (EPIC) and (EPIR).

Apparently, this optimization should yield a weakly lower expected profit (Se(a)) for
the auctioneer since the constraints are tighter than those in the Bayesian formulation.

The Ex post incentive compatibility is a commonly accepted response by
economists to Wilson doctrine (see, e.g., Bergemann and Morris [2005], Bikhchan-
dani et al. [2006], and Chung and Ely [2007]). The primary reason may be that
the mechanisms derived from this ex post formulation is “belief-free” as the bidders’
(agents’) beliefs regarding others and the game do not factor into the formulation.
However, under this solution concept, an implicit assumption is that each bidder
(agent) has completely no information of other bidders’ types (or equivalently, other
bidders’ strategies based on their realized type profile).

If instead, a bidder more or less has an estimation regarding roughly the possible
type realizations of others and how others perceive the game, she would not have com-
pletely abandoned her one estimation while determining her best response. In such a
scenario, it seems appropriate to explicitly model the confidence and uncertainty of a
bidder and formally incorporate this into the formulation of optimal auction design.
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Incidentally, in Wilson [1987], the statement is that the players may not completely
know the correct prior distributions of other players’ types. It is certainly legitimate
to push this argument to the extreme and derive the Ex post formulation (as is typ-
ically done in the economics literature for the past two decades). Nevertheless, it
might be also useful to construct a flexible formulation that allows for the intermedi-
ate cases in which the bidders do not possess the completely correct beliefs but yet
still retain some reasonable expectation/estimations. This is precisely our primary
objective in this paper, as we describe next.

6.3.3 Uncertainty set and robust formulation

In the sequel, we propose a continuum of solution concepts that lie in between the
two extreme cases – Bayesian and Ex post formulations; these solution concepts allow
us to model various situations that account for the bidders’ confidence or uncertainty
about the beliefs. From the aforementioned two formulations, we find that only the
incentive constraints differ in different solution concepts ((BIC), (BIR), (EPIC), and
(EPIR)), and the probability distributions q(tn−1), π(tn−1) are actually the coefficients
of linear programs. This motivates us to propose the following formulation for bidders’
belief systems. Specifically, we shall take π(tn−1) as the nominal model and define
the following “uncertainty set”:

U ε = {q ∈ [0, 1]n−1 : |q(tn−1)− π(tn−1)| ≤ ε,
∑

tn−1∈T n−1

q(tn−1) = 1}.

Note that we require
∑

tn−1∈T n−1 q(tn−1) = 1 since a bidder’s belief regarding other
bidders’ types have to be consistent even if it does not coincide with the correct
prior. This uncertainty set nicely provides a ground for us to represent the confidence,
conservatism, and uncertainty the bidders are endowed with. The larger the value of
ε, the more conservative the bidders are, (or equivalently, the less confident they are
regarding their beliefs on other bidders’ types). An interpretation for the existence of
uncertainty set is that bidders are endowed with incomplete preferences (see Lopomo
et al. [2007]).

Based on the uncertainty set U ε, we define the robust incentive compatibility
(RIC) constraints as:

∑

tn−1∈T n−1

R(ti, t
n−1)q(tn−1)−

∑

tn−1∈T n−1

R(tj, t
n−1)q(tn−1) (RIC)

≥
∑

tn−1∈T n−1

[v(aj[tj, t
n−1]|ti, tn−1)− v(aj[tj, t

n−1]|tj, tn−1)]q(tn−1), ∀ti, tj ∈ T, q ∈ U ε

Similarly, the robust individual rationality (RIR) constraints are defined as:

∑

tn−1∈T n−1

R(ti, t
n−1)q(tn−1) ≥ 0, ∀ti ∈ T, q ∈ U ε. (RIR)
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The auctioneer’s robust mechanism design problem is defined as follows:

Sε(a) = max
R(ti,tn−1)

∑
ti∈T

fi

∑

tn−1∈T n−1

[v(ai[ti, t
n−1]|ti)−R(ti, t

n−1)]π(tn−1)

s.t. (RIC) and (RIR).

If ε = 0, the uncertainty set is a singleton that contains only the correct prior:
U0(π) = {π}. This corresponds to our nominal model and the corresponding solution
concept is Bayesian Nash equilibrium, i.e.,

S0(a) = Sb(a), ∀a ∈ F.

On the other hand, if ε = 1, any prior is contained in the uncertainty set: U1(π) =
{q(tn−1) ∈ [0, 1]n−1 :

∑
tn−1∈T n−1 q(tn−1) = 1} because |q(tn−1) − π(tn−1)| ≤ 1 is

redundant. The auctioneer’s robust optimization problem becomes equivalent to the
Ex post formulation:

S1(a) = Se(a), ∀a ∈ F.

Therefore, the existing two solution concepts are actually two extreme cases of this
general class of solution concepts. In general, we should be able to identify a con-
tinuum of optimization problems, each of which corresponds to a different solution
concept that captures the conservativeness of bidders’ beliefs.

¿From the above formulations, the objective functions are identical, but the in-
centive constraints ((RIC) and (RIR)) are more restrictive as we increase the value
of ε. This implies that the feasible region of this class of optimization problems be-
comes larger when we increase the measure of belief uncertainty, ε. This observation
immediately leads to the following result:

Lemma 1. In the auction game among bidders with belief uncertainty, 1) The set of
equilibria is nested for all ε, and is enlarging as ε becomes larger; 2)The auctioneer’s
expected revenue is decreasing in ε.

Lemma 1 shows that the auctioneer is averse to the uncertainty the bidders possess
regarding their beliefs, and it has a clear economic intuition. When bidders are more
uncertain regarding which types of bidders they are bidding with (as ε becomes
larger), their strategies are more conservative. Thus, the set of mechanisms that the
auctioneer can select amongst is smaller; consequently, he collects a (weakly) lower
expected revenue.

It is worth mentioning that the idea of using robust optimization to formulate
a solution concept was first proposed in Aghassi and Bertsimas [2006]. However, in
their paper, the uncertainty is on the players’ payoff profiles, in games with perfect
or private information. In our setting, this corresponds to the case in which the
form of v(·|ti, tn−1) is unknown, but the beliefs are correct. Since the players in
Aghassi and Bertsimas [2006] are uncertain about their own payoffs (even though
they have observed their types), the players’ goal is to find a strategy that provides
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the optimal worst case performance guarantee; on the other hand, the uncertainty
in our formulation generates a larger set of constraints that the auctioneer has to
encounter while designing the optimal auction. Another key difference of our paper
and Aghassi and Bertsimas [2006] is that Aghassi and Bertsimas [2006] mainly focus
on proving the existence of “robust optimization equilibrium” in finite games, while
we focus on the revenue difference under different solution concepts.

Having described the general robust formulation of the auction design problem,
we next proceed to characterize the difference between the intermediate case and the
two extreme cases, namely the Bayesian and Ex post formulations. Following this,
we then provide some examples to illustrate the discrepancies explicitly.

6.4 Robust formulations of fixed allocations

In this section, we first introduce the network approach developed by Malakhov
and Vohra [2005] to reformulate our optimal auction design problems. We then
apply it to characterize the necessary and sufficient conditions (for a fixed allocation)
to achieve the same revenue in a robust formulation as in the nominal Bayesian
formulation.

6.4.1 The network approach

First, we introduce the network approach to solve the robust auction design prob-
lem. Our analysis closely follows the elegant framework by Malakhov and Vohra
[2005], except that we work with the information rent R, instead of the payment P.
Our goal is to recast the optimal auction design as a network design problem and
utilize the established techniques in the network flow literature, as we elaborate in
the sequel.

For fixed allocation a ∈ F , let us define a complete directed graph G(a,q) =
(N,A, w(a,q)), for each q ∈ U ε. Here, N = {n0, n1, · · · , n|T |} is the set of nodes,
with n1, · · · , n|T | each corresponding to a type in T , and n0 being the “pseudo”
node. The set A = {(i, j) : 0 ≤ i, j ≤ |T |} contains the edges of the graph,
each corresponding to an incentive compatible constraint. To transform our optimal
auction design problem to a network design problem, we can denote the weights on
the edges as

wji(a,q) =
∑

tn−1∈T n−1

[v(aj[tj, t
n−1]|ti)− v(aj[tj, t

n−1]|tj)]q(tn−1), ∀1 ≤ i, j ≤ |T |,

and
w0i(a,q) = wi0(a,q) = 0, ∀1 ≤ i ≤ |T |.

Let di(a,q) be the length of the longest path from n0 to ni in G(a,q), if one exists.
We say that an allocation a ∈ F is robust incentive compatible with respect to uncer-
tainty set U ε, if we can find a pricing/rent mechanism that satisfies (RIC). Lemma
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2 reveals the connection between the robust auction design problem and the longest
path problem in G.

Lemma 2. If a ∈ F is robust incentive compatible with respect to U ε, the following
results hold:

1. There is no positive cost cycle and a longest path exits between each pair of
nodes in G(a,q), for all q ∈ U ε;

2. For all ti ∈ T and q ∈ U ε, any feasible pricing/rent scheme R satisfies

∑

tn−1∈T n−1

R(ti, t
n−1)q(tn−1) ≥ di(a,q).

Proof. Let us first prove the first claim. For an arbitrary cycle C =
{(i1, i2), · · · , (ik−1, ik), (ik, i1)} in G(a,q), it follows that

∑

(i,j)∈C

wij(a,q) =
∑

tn−1∈T n−1

[v(ai1 [ti1 , t
n−1]|ti2)− v(ai1 [ti1 , t

n−1]|ti1)]q(tn−1) + · · ·

+
∑

tn−1∈T n−1

[v(aik−1
[tik−1

, tn−1]|tik)− v(aik−1
[tik−1

, tn−1]|tik−1
)]q(tn−1)

+
∑

tn−1∈T n−1

[v(aik−1
[v(aik [tik , t

n−1]|ti1)− v(aik [tik , t
n−1]|tik)]q(tn−1)

≤ [R(ti2 , t
n−1)−R(ti1 , t

n−1)] + · · ·+ [R(tik , t
n−1)−R(tik−1

, tn−1)]

+[R(ti1 , t
n−1)−R(tik , t

n−1)]

= 0,

where the first inequality is implied by (RIC). This suggests that there should be no
positive cost cycle in G(a, tn−1) and asserts the first claim.

Let us now switch to the second claim. The proof is by induction. Specifically,
from the first claim we know that there exist a longest path between each pair of
nodes in G(a,q). For each ti ∈ T , let Pi(a,q) be a longest path from n0 to ni in
G(a,q), and let

A(a,q) ≡
⋃
ti∈T

Pi(a,q).

¿From the first claim, A(a,q) is acyclic, thus there exists a topological ordering
of the nodes 0, j1, · · · , j|T |, such that for all edges (ju, jv) ∈ A(a,q), u < v.

Since n0 → nj1 is the only path to nj1 in A(a,q), it follows that

∑

tn−1∈T n−1

R(tj1 , t
n−1)q(tn−1) ≥ 0 = w0j1(a,q) = dj1(a,q),
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where the first inequality is implied by (RIR). For u > 1, let jv (v < u) be the
predecessor of ju in A(a,q). It follows that

∑

tn−1∈T n−1

R(tju , t
n−1)q(tn−1)

≥
∑

tn−1∈T n−1

R(tjv , t
n−1)q(tn−1) +

∑

tn−1∈T n−1

[v(ajv [tjv , t
n−1]|tju)− v(ajv [tjv , t

n−1]|tjv)]q(t
n−1)

≥ djv(a,q) + wjvju(a,q)

= dju(a,q),

where the first inequality follows from (RIC), and the second one is implied by the
inductive assumption. ¤

With the help of Lemma 2, we are now ready to state our main results.

6.4.2 Main results

Let a ∈ F be a robust incentive compatible allocation with respect to U ε. We say
that the robust formulation achieves the same expected revenue as the Bayesian formu-
lation under allocation a, if there exists a robust incentive compatible payment/rent
scheme R that generates the Bayesian optimal revenue, i.e. Sε(a) = Sb(a). Note that
this condition is weaker than the characterization of revenue equivalence in Heyden-
reich et al. [2009], which requires all Ex post incentive compatible payment schemes
to generate the Bayesian optimal revenue.

For each q ∈ U ε, we define Li(a,q) to be the set of longest paths from the
pseudo node n0 to ni in graph G(a,q). Theorem 2 characterizes the necessary and
sufficient conditions for a robust formulation to achieve the same revenue as a Bayesian
formulation (the nominal case).

Theorem 2. For a fixed allocation a ∈ F that is robust incentive compatible with
respect to U ε, Sε(a) = Sb(a) if and only if

⋂
q∈Uε

Li(a,q) 6= φ, ∀ti ∈ T. (6.1)

Proof. If (6.1) holds, there must exist a path Pi(a) ∈ Li(a,q), for each ti ∈ T and
q ∈ U ε. Let di(a) represent the length of Pi(a). We claim that the optimal solution
to the robust formulation is

Rε
a(ti, t

n−1) = di(a), ∀tn−1 ∈ T n−1,

and the proof goes as follows.

First, the above solution satisfies (RIC) because for all q ∈ U ε,
∑

tn−1∈T n−1

R(ti, t
n−1)q(tn−1)−

∑

tn−1∈T n−1

R(tj, t
n−1)q(tn−1) = di(a)− dj(a) ≥ wji(a,q)

=
∑

tn−1∈T n−1

[v(aj[tj, t
n−1]|ti, tn−1)− v(aj[tj, t

n−1]|tj, tn−1)]q(tn−1),
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where the inequality follows from the properties of longest paths in a network.

Let RB
a be the optimal solution to the Bayesian formulation. It follows that

Sε(a) =
∑
ti∈T

fi

∑

tn−1∈T n−1

π(tn−1)v(ai[ti, t
n−1]|ti, tn−1)−

∑
ti∈T

fidi(a)

≥
∑
ti∈T

fi

∑

tn−1∈T n−1

π(tn−1)v(ai[ti, t
n−1]|ti, tn−1)−

∑
ti∈T

fi

∑

tn−1∈T n−1

π(tn−1)RB
a (ti, t

n−1)

= Sb(a),

where the inequality follows from Lemma 2. However, Sε(a) ≤ Sb(a) from Lemma 1,
which indicates that Sε(a) = Sb(a).

Conversely, if (6.1) does not hold, there exists q1 ∈ U ε such that

Li(a,q1)
⋂

Li(a, π) = φ.

Let q2 ∈ U ε be a probability vector such that π = αq1 + (1 − α)q2 for some
0 < α < 1 (since π is an interior point of U ε, such a vector always exists). Also let
Pi(a,q) be a longest path from n0 to ni in G(a,q), i.e. Pi(q) ∈ Li(a,q), for each
1 ≤ i ≤ |T | and q ∈ U ε.

Since the social surplus is the same in the robust and the Bayesian formulations
for fixed allocation, it suffices just to compare the expected information rent. Let RB

a

and Rε
a be the optimal rent in the Bayesian and the robust formulations, respectively.

Following an argument similar to the first part of the proof, RB
a satisfies

∑

tn−1∈T n−1

RB
a (ti, t

n−1)π(tn−1) = di(a, π), ∀ti ∈ T.

Therefore, the expected rent in the Bayesian formulation is:

E[RB
a ] =

∑
ti∈T

fi

∑

tn−1∈T n−1

RB
a (ti, t

n−1)π(tn−1) =
∑
ti∈T

fidi(a, π),

and the expect rent in the robust formulation is:

E[Rε
a] =

∑
ti∈T

fi

∑

tn−1∈T n−1

Rε
a(ti, t

n−1)π(tn−1)

=
∑
ti∈T

fi

∑

tn−1∈T n−1

Rε
a(ti, t

n−1)[(α)q1(tn−1) + (1− α)q2(tn−1)]

≥
∑
ti∈T

fi[(α)di(a,q1) + (1− α)di(a,q2)],

where the inequality follows from Lemma 2.
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Since di(a,q2) is the length of the longest path to ni in G(a,q2), it is greater
than the length of Pi(a, π), which is a longest path in G(a, π), but not necessarily the
longest in G(a,q2), i.e.,

di(a,q2) ≥
∑

(u,v)∈Pi(π)

wuv(a,q2).

Moreover, as Pi(a, π) is not a longest path in G(a,q1), it follows that

di(a,q1) >
∑

(u,v)∈Pi(π)

wuv(a,q1).

Putting everything together, we have

E[Rε
a] >

∑
tin∈T

fi

∑

(u,v)∈Pi(π)

[(α)wuv(a,q1) + (1− α)wuv(a,q2)]

=
∑

tin∈T

fi

∑

(u,v)∈Pi(π)

wuv(a, π)

=
∑

tin∈T

fidi(a, π)

= E[RB
a ].

This implies that Sε(a) < Sb(a) and completes our proof. ¤
Because the Ex post formulation can be taken as a special case of the robust

formulation when ε = 1, we can derive the conditions under which it achieves the same
expected revenue as in the nominal case, as a corollary to Theorem 2. To simplify the
notation in this case, we define G(a, tn−1) ≡ G(a,qtn−1

) and Li(a, tn−1) ≡ Li(a,qtn−1
),

where qtn−1
(tn−1) = 1 and qtn−1

(sn−1) = 0 for all sn−1 ∈ T n−1 \ {tn−1}.
Corollary 1. For an Ex post incentive compatible allocation a ∈ F , Se(a) = Sb(a),
if and only if ⋂

tn−1∈T n−1

Li(a, tn−1) 6= φ, ∀ti ∈ T. (6.2)

The next corollary provides sufficient conditions for a robust formulation of a ∈ F
to achieve the same expected revenue for the auctioneer as in the Ex post formulation.
Here, we introduce new notation: define Θε as the set of extreme points of U ε, and
τ(q) = {tn−1 ∈ T n−1 : q(tn−1) > 0}.
Corollary 2. For an Ex post incentive compatible allocation a ∈ F , Sε(a) = Se(a) if

⋂

tn−1∈τ(q)

Li(a, tn−1) 6= φ, ∀ti ∈ T, q ∈ Θε. (6.3)
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The proofs of Corollaries 1 and 2 follow directly from that of Theorem 2 and
thus are omitted from our discussion. It should be noted that condition (6.2) in
Corollary 1 is weaker than the characterization of revenue equivalence in Theorem 1 of
Heydenreich et al. [2009]. Specifically, in Heydenreich et al. [2009], the necessary and
sufficient condition (under our setting) for an Ex post incentive compatible allocation
a ∈ F to satisfy revenue equivalence is

dij(a, tn−1) = −dji(a, tn−1), ∀ti, tj ∈ T, tn−1 ∈ T n−1, (6.4)

where dij(a, tn−1) is the length of the longest path from ni to nj in G(a, tn−1). It can
be verified that (6.4) is equivalent to the condition that all paths have equal length
between any pair of nodes in G(a, tn−1) for all tn−1 ∈ T n−1. Clearly, (6.4) indicates
(6.2), but not vice versa. Thus, our results can be regarded as complementary to
those in Heydenreich et al. [2009].

In the next section, we analyze Bayesian optimal allocations in single and multi-
ple object auctions; we then focus on the revenue difference between various robust
formulations.

6.5 Robust formulations given Bayesian optimal

allocations

In this section, we demonstrate whether and when the different formulations give
rise to different expected revenues.

6.5.1 Single object auction- Myerson’s case

We first investigate the setting of Myerson [1981], in which the auctioneer intends
to sell a single object to bidders with private valuations. The valuation follows a
continuous distribution that satisfies the monotone hazard rate condition. Malakhov
and Vohra [2005] consider a similar problem under the discrete setting that allows
for more transparent network representations. In this section, we adopt this discrete
setting and their assumptions:

v(ρi|ti) = tiρi, and
1− Fi

fi

≥ 1− Fj

fj

, if ti ≥ tj,

where ρi is the expected quantity allocation to a type ti bidder, and Fi =
∑

j: tj≤ti
fj

is the cumulative distribution of a bidder’s type. Malakhov and Vohra [2005] show
that the optimal allocation for the Baysian formulation is a standard auction with
reservation price x∗ = min{ti ∈ T : ti − 1−Fi

fi
≥ 0}, which coincides with results in

the continuous setting in Myerson [1981]. Here, we show that this optimal allocation
has a robust formulation that achieves the same expected revenue, irrespective of the
associated uncertainty set.
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Theorem 3. The Bayesian optimal allocation for Myerson’s single-object auction,
aB, achieves the same optimal expected revenue in any robust formulation, i.e.,

Sε(aB) = Sb(aB), ∀0 < 1 < ε.

Proof. Without loss of generality, we assume that the types are ordered such that
t1 < t2 < · · · < tm. We first show that for each i (1 ≤ i ≤ |T |), a longest path from
n0 to ni in G(aB,q) is n0 → n1 → · · · → ni. That is, the longest path is the same for
all q ∈ U ε, or equivalently,

di(a
B,q) =

i∑

k=1

wk−1,k(a
B,q), ∀q ∈ U ε.

To show that di(a
B,q) is indeed the length of a longest path, let ti > tj be two

arbitrary types. It follows that

di(a
B,q)− dj(a

B,q) =
i∑

k=1

wk−1,k(a
B,q)−

j∑

k=1

wk−1,k(a
B,q)

=
i∑

k=j+1

wk−1,k(a
B,q)

=
i∑

k=j+1

∑

tn−1∈T n−1

[v(aB
k−1[tk−1, t

n−1]|tk)− v(aB
k−1[tk−1, t

n−1]|tk−1)]q(t
n−1)

≥
i∑

k=j+1

∑

tn−1∈T n−1

[v(aB
j [tj, t

n−1]|tk)− v(aB
j [tj, t

n−1]|tk−1)]q(t
n−1)

=
∑

tn−1∈T n−1

v(aB
j [tj, t

n−1]|ti)− v(aB
j [tj, t

n−1]|tj)q(tn−1)

= wij(a
B,q),

where the inequality follows from the monotonicity of aB in a standard auction.

Following a similar argument, we can show that di(a
B,q)−dj(a

B,q) ≥ wij(a
B,q)

if ti < tj. This implies that di(a
B,q) is indeed the length of a longest path in

G(abB,q). Clearly,
⋂

q∈Uε Li(a
B,q) 6= φ, for all ti ∈ T . Following Theorem 2,

Sb(aB) = Sε(aB). ¤
It is well known that in the single-object auction design problem, when the bid-

ders’ valuations are private-valued and follow a continuous distribution, the optimal
auction can be implemented by a second-price auction with an appropriately cho-
sen reservation price (Myerson [1981]). Since the second-price auction can sustain
truth-telling as a dominant strategy equilibrium, it is not surprising that all the in-
termediate case under any robust formulation should yield the same expected revenue
for the auctioneer in the continuous setting. Note that the proof of Theorem 3 also
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applies to arbitrary feasible allocation, as we do not explicitly use any property of the
optimal allocation. Thus, as anticipated, it can be slightly generalized to establish
the equivalence between the Bayesian solution and any other robust formulation. On
a related note, Theorem 3 also follows as a corollary of Theorem 1 in Heydenreich
et al. [2009], which implies that any Bayesian incentive compatible mechanism can
be implemented in dominant strategy, in a single object auction with discrete value.
However, as we show in Section 6.5.2, this result no longer holds in a multiple object
auction.

6.5.2 Multiple object auction- Armstrong’s case

We now consider the multi-object auction design problem introduced by Arm-
strong [2000]. In this setting, the auctioneer intends to sell two objects, denoted as
A and B. A bidder’s type t is described by a pair (νA, νB), where ν` is the bidder’s
valuation for object `. If an allocation a = (pA, pB) awards object A (B) to this
bidder with probability qA (qB), her gross utility is

v(a|t) = pAνA + pBνA.

In Armstrong [2000], it is assumed that ν` ∈ {ν`
L, ν`

H}, where ∆` = ν`
H − ν`

L >
0. Thus there are four types of bidder corresponding to the four realizations
{(νA

L , νB
L ), (νA

L , νB
H), (νA

H , νB
L ), (νA

H , νB
H)}, and these types are denoted by LL,

LH, HL, and HH. The probability that a bidder has type ij is fij, where
fLL + fLH + fHL + fHH = 1. Let f `

L and f `
H = 1 − f `

L denote the marginal prob-
ability of having a high or low valuation for object `, respectively; in other words,
fA

L = fLL + fLH , fA
H = fHL + fHH , and likewise for object B. This is arguably

the simplest possible setting that fully demonstrates the complicated nature of the
multi-object auction design problem. Furthermore, this four-type framework has been
adopted as a fixture in the multi-dimensional mechanism design problem, see, e.g.,
Armstrong and Rochet [1999] and Asker and Cantillon [2008].

Results from Armstrong [2000]

Before we demonstrate how the various solution concepts apply to this multi-
object auction design problem, let us first revisit the results in Armstrong [2000].
Following the convention in the auction theory, Armstrong [2000] focuses exclusively
on the Bayesian formulation of this problem. He finds that, the optimal auction
crucially depends on the “correlation” between the bidders’ valuations for the two
objects, defined as follows:

λA =
fHHfA

L

fLHfA
H

, λB =
fHHfB

L

fHLfB
H

.

Based on the above model characteristics, Armstrong [2000] identifies the struc-
tural properties of the optimal auctions. If 1/λA + 1/λB ≤ 1, i.e., there is strong
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positive correlation, the optimal allocation takes the format of an Independent Auc-
tion, in which ρ`

ij, the expected quantity of object ` that is allocated to a type-ij
bidder is prescribed as:

ρA
HH = ρA

HL =
1− (fA

L )n

nfA
H

, and ρA
LL = ρA

LH =
(fA

L )n−1

n
;

ρB
HH = ρB

LH =
1− (fB

L )n

nfB
H

, and ρB
LL = ρB

HL =
(fB

L )n−1

n
.

When 1/λA + 1/λB ≥ 2, there is negative correlation. Armstrong [2000] charac-
terizes some other technical conditions (for example, the symmetric case and the case
in which there are sufficiently many bidders) and shows that the optimal allocation
takes the format of a Bundling Auction. Under this format, the allocation of an ob-
ject to a bidder with high valuation for the object is the same as in the Independent
Auction, and the allocation to low-valuation bidders is given below:

ρA
LH =

(fA
L )n − fn

LL

nfLH

, and ρA
LL =

fn−1
LL

n
;

ρB
HL =

(fB
L )n − fn

LL

nfHL

; and ρB
LL =

fn−1
LL

n
.

In all other cases, the optimal allocation is a Mixed Auction, which is a convex
combination of the Independent Auction and the Bundling Auction.

Difference between the formulations

We now introduce other solution concepts for this problem. Our first result is that
the auctioneer’s expected revenue may be strictly less if the Ex Post formulation is
used instead of the Baysian formulation. To this end, let us introduce a new notation,
in which each profile tn−1 ∈ T n−1 is specified with a triplet (k1, k2, k3), where k1, k2,
and k3 respectively are the number of bidders with types LH, HL and HH, and
0 ≤ k1 + k2 + k3 ≤ n− 1.

Theorem 4. Unless the Bayesian optimal allocation is the Independent Auction for
both objects, the auctioneer’s expected revenue under the Ex post formulation is strictly
lower than that under the Bayesian formulation, i.e., Se(aB) > Sb(aB).

Proof. Suppose that aB is an Bayesian optimal allocation (specified by the ex-
pected quantities ρ). We can then construct a detailed allocation p that satisfies

ρ`
ij =

∑

tn−1∈T n−1

p`
ij(t

n−1)π(tn−1), ∀ (i, j) ∈ T, ` ∈ {A,B}.

It is straightforward that an optimal allocation to the high-valuation bidders
should satisfy

pA
HH(k1, k2, k3) = pA

HL(k1, k2, k3) =
1

k2 + k3 + 1
, and
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pB
HH(k1, k2, k3) = pB

LH(k1, k2, k3) =
1

k1 + k3 + 1
.

To characterize the allocation to the low-valuation bidders, we restrict our atten-
tion to the case where k3 = 0 and k1k2 = 0, since otherwise the solution is trivial.
Now there are three possible scenarios, depending on the structural properties of the
Bayesian optimal allocation aB. In the following we discuss them separately.

Case 1. Independent Auction for both objects.

It is clear that if the Bayesian optimal allocation is an independent auction, the
auctioneer can obtain the same expected revenue under the Ex post formulation by
utilizing “the same” allocation. Specifically, we can construct a detailed allocation
that is equivalent to the independent auction as follows

pA
LL(k, 0, 0) = pA

LH(k, 0, 0) =
1

n
, and pB

LL(0, k, 0) = pB
HL(0, k, 0) =

1

n
.

It is easy to verify that the detailed allocation p satisfy condition (6.2) in Corollary
1; therefore, it achieves the same expected revenue under the Ex post formulation.

Case 2. Bundling Auction for both objects.
In this case, the unique equivalent detailed allocation is given by

pA
LL(0, 0, 0) =

1

n
, pA

LL(k, 0, 0) = 0, ∀ 1 ≤ k ≤ n− 1,

pA
LH(k, 0, 0) =

1

k + 1
, ∀ 1 ≤ k ≤ n− 1,

pB
LL(0, 0, 0) =

1

n
, pB

LL(0, k, 0) = 0, ∀ 1 ≤ k ≤ n− 1,

pB
HL(0, k, 0) =

1

k + 1
, ∀ 1 ≤ k ≤ n− 1.

It is straightforward that for k ≥ 1 and tn−1 = (k, 0, 0), pA
LH(tn−1) > pA

LL(tn−1).
Thus, LL → LH → HH is the unique longest path from the LL type to the HH type
in graph G(ab, tn−1). Similarly, for k ≥ 1 and tn−1 = (0, k, 0), pB

HL(tn−1) > pB
LL(tn−1).

Therefore, LL → HL → HH is the unique longest path. Clearly, condition (6.2) in
Corollary 1 is violated, which indicate that Se(aB) < Sb(aB).

Case 3. Bundling Auction for one object and Mixed Auction for the other.
According to Armstrong [2000], the expected allocation in this case satisfies

∆A(ρA
LH − ρA

LL) = ∆B(ρB
HL − ρB

LL). (6.5)

Suppose that there exists an equivalent detailed allocation p which achieves the
same expected revenue in the Ex post formulation. We first consider the case in which
the optimal allocation for object A is Bundling Auction.

For tn−1 = (k, 0, 0), 1 ≤ k ≤ n− 1, the detailed allocation of the two objects

pA
LL(k, 0, 0) = 0, pA

LH(k, 0, 0) =
1

k + 1
, pB

LL(k, 0, 0) = 0, pB
HL(k, 0, 0) = 0,
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which implies that

∆B[pB
HL(0, k, 0)− pB

LL(0, k, 0)] = 0 < ∆A[pA
LH(0, k, 0)− pA

LL(0, k, 0)]. (6.6)

This detailed allocation also indicates that LL−LH −HH is the unique longest
path in G(ab, tn−1) if tn−1 = (k, 0, 0). From Corollary 1, LL − LH −HH must also
be a longest path in G(ab, tn−1) for all tn−1 ∈ T n−1.

For tn−1 = (0, k, 0), 1 ≤ k ≤ n− 1, this implies

∆ApA
LL(0, k, 0) + ∆BpB

HL(0, k, 0) ≥ ∆BpB
LL(0, k, 0) + ∆ApA

LH(0, k, 0),

where the left-hand side is the length of path LL − LH − HH and the right-hand
side is the length of LL−HL−HH.

Since pA
LL(0, k, 0) = pA

LH(0, k, 0) = 0, it follows that

∆B[pB
HL(0, k, 0)− pB

LL(0, k, 0)] ≤ 0 = ∆A[pA
LH(0, k, 0)− pA

LL(0, k, 0)]. (6.7)

Moreover, for tn−1 = (0, 0, 0), since LL−LH−HH is no shorter than LL−HL−
HH,

∆ApA
LL(0, 0, 0) + ∆BpB

HL(0, 0, 0) ≥ ∆BpB
LL(0, 0, 0) + ∆ApA

LH(0, 0, 0),

or equivalently,

∆B[pB
HL(0, 0, 0)− pB

LL(0, 0, 0)] ≤ ∆A[pA
LH(0, 0, 0)− pA

LL(0, 0, 0)]. (6.8)

Finally, for tn−1 = (k1, k2, k3) where k1k2 > 0 or k3 > 0, the detailed allocation is

pA
LL(k1, k2, k3) = pA

LH(k1, k2, k3) = 0, pB
LL(k1, k2, k3) = pB

HL(k1, k2, k3) = 0.

It follows that

∆B[pB
HL(k1, k2, k3)−pB

LL(k1, k2, k3)] = 0 = ∆A[pA
LH(k1, k2, k3)−pA

LL(k1, k2, k3)]. (6.9)

Adding (6.6)-(6.9) leads to

∆B(ρB
HL − ρB

LL) < ∆A(ρA
LH − ρA

LL),

which leads to a contradiction to (6.5).

Following a similar argument, one can show that there does not exist a detailed
allocation that achieves the same revenue in the Ex post formulation, in the case
where the optimal allocation is Bundling Auction for object B. ¤

Theorem 4 indicates the possibility of discrepancies between different formulations
in terms of the auctioneer’s expected revenue. A natural question, that follows, is
whether there is indeed a gap between any two formulations. To this end, we present
an example for which different formulations give rise to distinct maximum expected
revenues, thereby asserting this possibility.
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Example 4. In this example, there are two bidders, i.e., n = 2. The differences in
bidders’ valuations are ∆A = ∆B = ∆. The probabilities of bidder types are

fLL =
1

6
, fLH =

1

4
, fHL =

5

12
, and fHH =

1

6
,

and the common prior π is given by

π(LL) =
1

6
, π(LH) =

1

6
, π(HL) =

1

2
, and π(HH) =

1

6
.

Since 1/λA + 1/λB > 2, the Bayesian optimal allocation is Bundling Auction
for both objects according to Armstrong [2000]. Following Theorem 4, the Ex post
formulation achieves a strictly lower expected revenue than the Bayesian formulation.
In the following steps, we demonstrate how the auctioneer’s revenue changes according
to the level of uncertainty ε. Since both objects are always sold, the social surpluses
under the two formulations are the same. It suffices to only consider the difference in
information rents.

According to Armstrong [2000], the Bayesian optimal (expected) allocation in this
case is:

ρA
LL =

fn−1
LL

n
=

1

12
, ρA

LH =
(fA

L )n − fn
LL

nfLH

=
7

24
;

ρB
LL =

fn−1
LL

n
=

1

12
, ρB

HL =
(fB

L )n − fn
LL

nfHL

=
3

8
.

Thus, Rb
ij, the minimum expected information rent received by a type-ij bidder,

is:

Rb
LL = 0, Rb

LH = ∆BρB
LL =

1

12
∆;

Rb
HL = ∆AρA

LL =
1

12
∆, Rb

HH = ∆BρB
LL + ∆AρA

LH =
3

8
∆.

Ex ante, the expected information rent for any bidder in the Bayesian formulation
is therefore

E[Rb] =
∑

(i,j)∈T

fijRij =
17

144
∆.

For the Ex post formulation, consider the following equivalent detailed allocation:

pA
LL(0, 0, 0) =

1

2
, pA

LH(0, 0, 0) = 1, pB
LL(0, 0, 0) =

1

2
, pB

HL(0, 0, 0) = 1;

pA
LL(1, 0, 0) = 0, pA

LH(0, 0, 0) =
1

2
, pB

LL(1, 0, 0) = 0, pB
HL(1, 0, 0) = 0;

pA
LL(0, 1, 0) = 0, pA

LH(0, 1, 0) = 0, pB
LL(0, 1, 0) = 0, pB

HL(0, 1, 0) =
1

2
;
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pA
LL(0, 0, 1) = 0, pA

LH(0, 0, 1) = 0, pB
LL(0, 0, 1) = 0, pB

HL(0, 0, 1) = 0.

In this case, Re
ij(t

n−1), the minimum information rent in the Ex post formulation,
is given by:

Re
LL(0, 0, 0) = 0, Re

LH(0, 0, 0) =
1

2
∆, Re

HL(0, 0, 0) =
1

2
∆, Re

HH(0, 0, 0) =
3

2
∆;

Re
LL(1, 0, 0) = 0, Re

LH(1, 0, 0) = 0, Re
HL(1, 0, 0) = 0, Re

HH(1, 0, 0) =
1

2
∆;

Re
LL(0, 1, 0) = 0, Re

LH(0, 1, 0) = 0, Re
HL(0, 1, 0) = 0, Re

HH(0, 1, 0) =
1

2
∆;

Re
LL(0, 0, 1) = 0, Re

LH(0, 0, 1) = 0, Re
HL(0, 0, 1) = 0, Re

HH(0, 0, 1) = 0.

The expected information rent received by a bidder in the Ex post formulation is:

E[Re] =
∑

(i,j)∈T

fij

∑

tn−1∈T n−1

Re
ij(t

n−1)π(tn−1) =
11

72
∆,

which is clearly higher than that of the Bayesian formulation (E[Rb]). This indicates
that the auctioneer’s expected revenue is strictly lower in the Ex post formulation,
i.e. Se(a) > Sb(a).

Next, let us consider a more general case where 0 < ε < 1. It can be verified that
condition (6.1) in Theorem 2 holds if and only if ε ≤ 1

12
, which indicates Se(a) <

Sε(a) = Sb(a). Moreover, condition (6.3) in Corollary 2 holds if ε ≥ 3
4
, which implies

that Se(a) = Sε(a) < Sb(a). It should be noted that for 1
12

< ε < 3
4
, the robust

formulation might be different from both the Bayesian and the Ex post formulations.
For example, if ε = 1

6
, the extreme points of U ε are:

q1 = (1/3, 1/12, 1/4, 1/3), q2 = (0, 5/12, 7/12, 0), q3 = (0, 1/12, 7/12, 1/3),

q4 = (1/3, 1/12, 7/12, 0), q5 = (0, 5/12, 1/4, 1/3), q6 = (1/3, 5/12, 1/4, 0).

Furthermore, it can be verified that a payment/rent scheme is robust incentive
compatible if and only if (RIC) holds for qk, k = 1, · · · , 6, since (RIC) is linear and
all probability vectors in U ε can be written as a convex combination of the extreme
points. Solving the corresponding linear program yields the following robust optimal
rent Rε:

Rε
LL(0, 0, 0) = 0, Rε

LH(0, 0, 0) =
1

2
∆, Rε

HL(0, 0, 0) =
1

2
∆, Rε

HH(0, 0, 0) =
3

2
∆;

Rε
LL(1, 0, 0) = 0, Rε

LH(1, 0, 0) = 0, Rε
HL(1, 0, 0) = 0, Rε

HH(1, 0, 0) =
7

32
∆;

Rε
LL(0, 1, 0) = 0, Rε

LH(0, 1, 0) = 0, Rε
HL(0, 1, 0) = 0, Rε

HH(0, 1, 0) =
15

32
∆;

Rε
LL(0, 0, 1) = 0, Rε

LH(0, 0, 1) = 0, Rε
HL(0, 0, 1) = 0, Rε

HH(0, 0, 1) = 0.
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Accordingly, the expected information rent received by a bidder in this robust
formulation is:

E[Rε] =
∑

(i,j)∈T

fij

∑

tn−1∈T n−1

Rε
ij(t

n−1)π(tn−1) =
5

36
∆,

which indicates that Se(a) < Sε(a) < Sb(a). Thus, we have constructed an ex-
ample for which all the three formulations (Bayesian, Ex post, and general robust
formulations) lead to different expected revenues for the auctioneer. It is worth men-
tioning that in Lopomo et al. [2007], they identify the conditions on the uncertainty
set under which the Ex post formulation is equivalent to the robust formulation in
single-dimensional mechanism design problems. Specifically, they demonstrate that
as long as the uncertainty set has full dimensionality, then the incentive compati-
bility constraints in fact expand to cover every possible scenario of belief systems;
thus, the set of feasible solutions is the same under the two formulations. Our result
complements theirs by explicitly finding an example for which the results differ in the
multiple-dimensional setting.

6.6 Conclusions

In this chapter, we revisit the optimal auction design problem and propose a
robust formulation that incorporates the bidders’ belief uncertainty. For a fixed allo-
cation mechanism, we identify the necessary and sufficient conditions under which the
robust formulation achieves the same expected revenue as the Bayesian formulation.
We apply this result to show that the optimal allocation of a single-object auction
achieves the same expected revenue in any robust formulation, even though the bid-
ders’ valuations are discrete rather than continuous. We also find that, there may
be a discrepancy between different formulations in a multiple-object auction, and we
provide a concrete example for which the ex post formulation gives rise to a strictly
lower expected revenue in the multi-dimensional setting. Our results imply that the
auctioneer may have to sacrifice the expected revenue for a more robust formulation.
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Appendix A

Proof of Propositions in Chapter 2

A.1 Proof of Proposition 1

Let Ω = {0, 1}J be the set of failure scenarios. For each ω ∈ Ω, let pω be the
probability that scenario ω will occur, also let δjω be the binary parameter indicating
whether or not facility j is operational in scenario ω. The scenario based stochastic
program (SSP) is formulated as follows

(SSP) Min
J−1∑

j=0

fjXj +
I−1∑

i=0

J∑

j=0

∑

ω∈Ω

λidijpωYijω (A.1a)

s.t.
J∑

j=0

Yijω = 1 ∀ 0 ≤ i ≤ I − 1, ω ∈ Ω (A.1b)

I−1∑

i=0

Yijω ≤ δjωXj ∀ 0 ≤ j ≤ J − 1, ω ∈ Ω (A.1c)

Xj , Yijω ∈ {0, 1} ∀ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, ω ∈ Ω, (A.1d)

where Xj is the binary variable indicating whether or not a facility is build at location
j, and Yijω is equal to one if and only if customer i is served by facility j in scenario
ω (YiJω = 1 indicates that the penalty cost is incurred in scenario ω).

To verify that the scenario based formulation (A.1a)-(A.1d) is equivalent to the
compact (RUFL) formulation (2.1a)-(2.1g), we first show how to map an optimal
solution of (RUFL) to a feasible solution of (SSP). Let (X,Y,P) be an optimal
solution of (RUFL), we construct a solution (X′,Y′) for (SSP) by letting X′ = X.
For each 0 ≤ i ≤ I − 1 and 0 ≤ r ≤ J , let j(i, r) ∈ {0 ≤ j ≤ J : Yijr = 1}, i.e. j(i, r)
is the unique facility that serves customer i at level r. The customer assignment in
each scenario is determined as follows (by convention, we let δJω = 1 for all ω ∈ Ω)

Y ′
ijω =





1 if j = j(i, r) for some 0 ≤ r ≤ J, δjω = 1,
and δj(i,`)ω = 0, ∀ 0 ≤ ` ≤ r − 1

0 otherwise.
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By construction, (X′,Y′) is feasible to (SSP). Next, we show that (X′,Y′) achieves
the same object value as (X,Y,P). Let Φ(X,Y,P) and Ψ(X′,Y′) be the objective
function of (RUFL) and (SSP) respectively. Also, define Ω(i, r) = {ω ∈ Ω : Y ′

ij(i,r)ω =

1}, i.e. Ω(i, r) is the set of scenarios in which customer i is served by facility j(i, r).
It follows that

Ψ(X′,Y′) =
J−1∑
j=0

fjX
′
j +

I−1∑
i=0

J∑
j=0

∑
ω∈Ω

λidijpωY ′
ijω

=
J−1∑
j=0

fjXj +
I−1∑
i=0

J∑
r=0

λidi,j(i,r)

∑

ω∈Ω(i,r)

pω

=
J−1∑
j=0

fjXj +
I−1∑
i=0

J∑
r=0

λidi,j(i,r)(1− qj(i,r))
r−1∏

`=0

qj(i,`)

=
J−1∑
j=0

fjXj +
I−1∑
i=0

J∑
r=0

J∑
j=0

λidijPijrYijr

= Φ(X,Y,P),

which implies that solving (SSP) yields a lower bound to (RUFL).

Conversely, given an optimal solution (X,Y) to (SSP), we construct a feasible
solution (X′,Y′,P′) to (RUFL), also by letting X′ = X. Without loss of generality,
we assume that Yijω = 1 if and only if j = min{0 ≤ k ≤ J : δkωXk = 1, dik ≤
dik′ ∀ k′ 6= k s.t. δk′ωXk′ = 1} (by convention, we assume XJ = 1), i.e. each customer
is always served by her closest open facility, and if there are more than one facilities
that are equally close, we break the tie by choosing the facility with the lowest index.

Let N = {0 ≤ j ≤ J − 1 : Xj = 1} be the set of facilities that are constructed in
the optimal solution to (SSP). For each customer i, let j(i, 0), j(i, 1), · · · , j(i, |N |)
be an ordering of the facilities in N

⋃{J} such that for all 1 ≤ r ≤ |N |, di,j(i,r−1) ≤
di,j(i,r), and if di,j(i,r−1) = di,j(i,r), then j(i, r− 1) < j(i, r). Also, define Ω(i, r) = {ω ∈
Ω : δj(i,r)ω = 1, and δj(i,`)ω = 0, ∀ 0 ≤ ` ≤ r− 1}. We set the values of Y′ and P′ as
follows

Y ′
ijr =

{
1 if j = j(i, r) and dij ≤ diJ

0 otherwise

P ′
ijr =

{
(1− qj(i,r))

∏r−1
`=0 qj(i,`) if j = j(i, r) and dij ≤ diJ

0 otherwise.

It is clear that by construction (X′,Y′,P′) is feasible to (RUFL). The objective
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value associated with solution is

Φ(X′,Y′,P′) =
J−1∑
j=0

fjX
′
j +

I−1∑
i=0

J−1∑
r=0

J−1∑
j=0

λidijP
′
ijrY

′
ijr

=
J−1∑
j=0

fjXj +
I−1∑
i=0

|N |∑
r=0

λidi,j(i,r)(1− qj(i,r))
r−1∏

`=0

qj(i,`)

=
J−1∑
j=0

fjXj +
I−1∑
i=0

J∑
r=0

λidi,j(i,r)

∑

ω∈Ω(i,r)

pω

=
J−1∑
j=0

fjXj +
I−1∑
i=0

J∑
j=0

∑
ω∈Ω

λidijpωYijω

= Ψ(X,Y).

Therefore, the optimal solution to (SSP) is also a lower bound to (RUFL). This
completes our proof.

A.2 Proof of Proposition 2

Suppose, for a contradiction, that (X,Y,P) is optimal for (RUFL) where Yijr =
Yik,r+1 = 1 and dij > dik for some 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J , and 0 ≤ r ≤ R. We
will show that by “swapping” j and k the objective value will decrease. Obviously
j ≤ J − 1, otherwise j is the pseudo facility and customer i cannot be assigned to
facility k as a backup. We consider two cases based on whether or not k is the pseudo
facility.

If k ≤ J − 1 we construct a different solution (X′,Y′,P′) as follows:

X ′ = X;

Y ′
h`s =





1 if h = i, ` = k, s = r or h = i, ` = j, s = r + 1,
0 if h = i, ` = j, s = r or h = i, ` = k, s = r + 1,
Yh`s otherwise;

P ′
h`s =





1−qk

1−qj
Pjr if h = i, ` = k, s = r,

qk(1−qj)

1−qk
P ′

kr = qkPjr if h = i, ` = j, s = r + 1,

0 if h = i, ` = j, s = r or h = i, ` = k, s = r + 1,
Ph`s otherwise.

By construction, (X′,Y′,P′) is a feasible solution. Let Φ(X,Y,P) be the objective
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value associated with (X,Y,P), it follows that:

Φ(X′,Y′,P′)− Φ(X,Y,P) = λi(P
′
krdik + P ′

j,r+1dij − Pjrdij − Pk,r+1dik)

= λi[dik(P
′
kr − Pk,r+1)− dij(Pjr − P ′

j,r+1)]

= λi{dik[
1− qk

1− qj

Pjr − qj(1− qk)

1− qj

Pjr]− dij(Pjr − qkPjr)}
= λi(1− qk)(dik − dij)Pjr < 0.

The case in which k = J is similar, except that Y ′
ij,r+1 = P ′

ij,r+1 = 0, which reduces
the cost even more. This implies a contradiction to that (X,Y,P) is optimal.

A.3 Proof of Proposition 3

Let S ⊆ {0, · · · , J − 1} be a subset of candidate locations, and u, v ∈ {0, · · · , J −
1} \ S, we show that

Φi(S ∪ {u, v})− Φi(S ∪ {u}) ≥ Φi(S ∪ {v})− Φi(S). (A.2)

Assume that S = {j1, j2, · · · , jn} where dij1 ≤ dij2 ≤ · · · ≤ dijn , i.e., we sort
elements in S in nondecreasing order of their distance to customer i. Let

n̄ = inf{1 ≤ k ≤ n : dijk
≤ φi}

s = inf{1 ≤ k ≤ n : dijk
≤ diu}

t = inf{1 ≤ k ≤ n : dijk
≤ div}.

In addition, define

Pk =

{ ∏k
`=1 qj`

1 ≤ k ≤ n̄
1 k = 0,

Ck =

{
Pk−1(1− qjk

)dijk
1 ≤ k ≤ n̄

Pn̄φi k = n̄ + 1.

Following a similar argument as in the proof of Proposition 2, we know that it is
optimal to assign the facilities level by level in increasing order of distance, until the
transportation cost exceeds the penalty cost, i.e.,

Φi(S) = λi

n̄∑

k=1

Pk−1(1− qjk
)dijk

+ Pn̄φi +
∑
j∈S

µij

= λi

n̄+1∑

k=1

Ck +
∑
j∈S

µij.
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Without loss of generality, we assume that diu and div are less than the penalty
cost φi, i.e. s ≤ n̄ and t ≤ n̄. It follows that

Φi(S ∪ {v})− Φi(S)

= λi[
t∑

k=1

Ck + Pt(1− qv)div + qv

n̄+1∑

k=t+1

Ck] +
∑

j∈S∪{v}
µij − λi

n̄+1∑

k=1

Ck −
∑
j∈S

µij

= λi[Pt(1− qv)div − (1− qv)
n̄+1∑

k=t+1

Ck] + µiv

= λi(1− qv)[Ptdiv −
n̄+1∑

k=t+1

Ck] + µiv.

Note that the first item in the last equation is negative, because

Ptdiv −
n̄+1∑

k=t+1

Ck = Pt[div −
n̄∑

k=t+1

(
k−1∏

`=t+1

qj`
)(1− qjk

)dijk
− (

n̄∏

`=t+1

qj`
)φi]

< Ptdiv[1− (
k−1∏

`=t+1

qj`
)(1− qjk

)−
n̄∏

`=t+1

qj`
] = 0.

To show that (A.2) holds, we consider the following two cases.

Case 1: diu ≤ div. In this case, it follows that

Φi(S ∪ {u, v})− Φi(S ∪ {u})

= λi[
s∑

k=1

Ck + Ps(1− qu)diu + qu

t∑

k=s+1

Ck + quPt(1− qt)div + quqv

n̄+1∑

k=t+1

Ck

+
∑

j∈S∪{u, v}
µij − λi[

s∑

k=1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]−
∑

j∈S∪{u}
µij

= λi[quPt(1− qv)div − qu(1− qv)
n̄+1∑

k=t+1

Ck] + uiv

= λiqu(1− qv)(Ptdiv −
n̄+1∑

k=t+1

Ck) + µiv.

Clearly (A.2) holds in this case, since 0 ≤ qu ≤ 1 and Ptdiv −
∑n̄+1

k=t+1 Ck < 0.
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Case 2: diu > div. In this case t ≤ s, and the following assertion holds:

Φi(S ∪ {u, v})− Φi(S ∪ {u})

= λi[
t∑

k=1

Ck + Pt(1− qv)div + qv

s∑

k=t+1

Ck + qvPs(1− qu)diu + qvqu

n̄+1∑

k=s+1

Ck]

+
∑

j∈S∪{u, v}
µij − λi[

s∑

k=1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]−
∑

j∈S∪{u}
µij

= λi{Pt(1− qv)div − (1− qv)[
s∑

k=t+1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]}+ µiv

= λi(1− qv){Ptdiv − [
s∑

k=t+1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]}+ µiv.

We claim that (A.2) holds in this case, because

[
s∑

k=t+1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]−
n̄+1∑

k=t+1

Ck

≤ [
s∑

k=t+1

Ck + Ps(1− qu)diu + qu

n̄+1∑

k=s+1

Ck]−
n̄+1∑

k=s+1

Ck

= (1− qu)[Psdiu −
n̄+1∑

k=s+1

Ck] < 0.

A.4 Proof of Proposition 4

First, we introduce an equivalent formulation of (RSP) by “spliting” the decision
variables:

Yjr =

{
1 if the level r facility has the same transportation distance as facility j
0 otherwise.

Zjr =

{
1 if the level r facility has the same failure probability as facility j
0 otherwise.
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It is clear that RSP is equivalent to the following problem:

Min
J∑

j=0

R∑

r=0

λidijWjr +
J−1∑

j=0

R−1∑

r=0

µijYjr (A.3a)

s.t. (2.4b)− (2.4d) (A.3b)
J−1∑

j=0

Zjr +
r−1∑

s=0

ZJs = 1 ∀ 0 ≤ r ≤ R (A.3c)

R−1∑

r=0

Zjr ≤ 1 ∀ 0 ≤ j ≤ J − 1 (A.3d)

R∑

r=0

ZJr = 1 (A.3e)

Pj0 = 1− qj ∀ 0 ≤ j ≤ J (A.3f)

Pjr = (1− qj)
J−1∑

k=0

qk

1− qk
Wi,k,r−1 ∀ 0 ≤ j ≤ J, 1 ≤ r ≤ R (A.3g)

Wjr ≤ Pjr ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (A.3h)
Wjr ≤ Zjr ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (A.3i)
Wjr ≥ 0 ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (A.3j)
Wjr ≥ Pjr + Zjr − 1 ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (A.3k)
Yjr, Zjr ∈ {0, 1} ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R (A.3l)
Yjr = Zjr ∀ 0 ≤ j ≤ J, 0 ≤ r ≤ R. (A.3m)

If we remove the last constraint (A.3m), the customer is allowed to choose an
arbitrary combination of transportation cost and failure probability. Next, we show
that the (RRSP) formulation (2.7a)-(2.7e) is equivalent to formulation (A.3a) - (A.3l),
based on the following lemma.

Lemma 3. There exists an optimal solution (Y∗,Z∗,P∗) to formulation (A.3a) -
(A.3l), such that if Z∗

jr = 1, Z∗
k,r+1 = 1 and r + 1 ≤ R− 1, then qj ≤ qk.

Proof of Lemma 3. Suppose that (Y,Z,P) is an optimal solution to formulation
(A.3a) - (A.3l), such that Zjr = 1, Zk,r+1 = 1, j, k ≤ R − 1 and qj > qk. Let u and
v be the facilities assigned to this customer at level r and r + 1, i.e. Yur = 1 and
Yv,r+1 = 1. We construct a new solution (Y′,Z′,P′) as follows:

Y′ = Y;

Z ′
`s =





1 if ` = k, s = r or h = i, ` = j, s = r + 1,
0 if ` = j, s = r or h = i, ` = k, s = r + 1,
Z`s otherwise;

P ′
`s =





1−qk

1−qj
Pjr if ` = k, s = r,

qk(1−qj)

1−qk
P ′

kr = qkPjr if ` = j, s = r + 1,

0 if ` = j, s = r or h = i, ` = k, s = r + 1,
P`s otherwise.
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By construction, (Y′,Z′,P′) is a feasible solution to formulation (A.3a) - (A.3l).
Define G(Y,Z,P) to be the objective value of formulation (A.3a) - (A.3l) associated
with solution (Y,Z,P). The following assertion holds:

G(Y′,Z′,P′)−G(Y,Z,P) = λi(P
′
krdiu + P ′

j,r+1div − Pjrdiu − Pk,r+1div)

= λi[diu(P
′
kr − Pjr) + div(P

′
j,r+1 − Pk,r+1)]

= λi{diu[
1− qk

1− qj

Pjr − Pjr]− div(qkPjr − qj(1− qk)

1− qj

Pjr)}

=
qj − qk

1− qj

λiPjr(diu − div).

Following a similar argument as in the proof of Proposition 2, diu ≤ div, implying
G(Y′,Z′,P′) ≤ G(Y,Z,P). Therefore, if an optimal solution does not satisfy the
condition in Lemma 3, we can always construct an alternative optimal solution by
swapping j and k. This completes the proof of Lemma 3.

Without loss of generality, we can fix Z = Z∗ and P = P∗ in formulation (A.3a)
- (A.3l), which leads to the (RRSP) formulation (2.7a)-(2.7e). Since formulation
(A.3a) - (A.3l) is a relaxation of (RSP), it follows that (RRSP) yields a lower bound
for (RSP).
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Appendix B

Proof of Proposition in Chapter 4

B.1 Proof of Proposition 5

The following lemma gives a necessary optimality condition for facility location
design and customer allocation.

Lemma 4. The optimal facility locations should satisfy the following conditions:

1. the initial service areas R (i.e., initial customer allocation before any failure)
should form a Voronoi tessellation;

2. the location of each facility should be the centroid of all customer demands
weighted by this facility’s service probability to the customers.

Proof of Lemma 4. The first condition is obvious from the fact that for any given
facility location design, every customer always goes to the nearest available facility.
The second necessary condition can be proven by examining the cost objective with
respect to an infinitesimal perturbation of one generic facility location, xj, while
holding Rjk,∀j, k, fixed. Let F(xj) denote the expected service cost of a facility
located at xj to serve all its potential customers. Consider an arbitrary location
perturbation ∆x and a scalar ε > 0. Consider an arbitrary location perturbation ∆x

and a scalar ε > 0:

F(xj + ε∆x)−F(xj) =
R−1∑

k=0

∫

x∈Rjk

(1− q)qkλ {‖x− xj − ε∆x‖ − ‖x− xj‖} dx

=
R−1∑

k=0

∫

x∈Rjk

(1− q)qkλ

{‖x− xj − ε∆x‖2 − ‖x− xj‖2

‖x− xj − ε∆x‖+ ‖x− xj‖
}

dx.

It is easy to show that the first-order condition limε→0
1
ε
{F(xj +ε∆x)−F(xj)} = 0
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requires that the optimal facility location xj satisfies

xj =

∑R−1
k=0

∫
x∈Rjk

(1− q)qkλxdx
∑R−1

k=0

∫
x∈Rjk

(1− q)qkλdx
=

∑R−1
k=0

∫
x∈Rjk

P (x, xj|x)xdx
∑R−1

k=0

∫
x∈Rjk

P (x, xj|x)dx
.

Hence, the optimal facility location xj is the centroid of all customer demands
weighted by the corresponding service probability. This completes the proof of Lemma
4.

It is worth noting that the above proof does not require S to be homogeneous and
infinite. Hence, Lemma 4 holds also for finite and heterogeneous S.

Since the plane is infinite and homogeneous, the facility locations and all service
areas should be translationally and rotationally symmetric. The initial service area
of every facility (which, as a Voronoi polygon, must be convex Okabe et al. [1992])
should have the facility location as its centroid. Hence, collectively they should form
a centroidal Voronoi tessellation—which should then minimize the total customer
initial access cost (before any failure) to the facilities. As pointed out by Gersho
Gersho [1979], Fejes Toth Toth [1959] proved that this cost is minimized under the
Euclidean metric when the shape of the initial service areas are exactly congruent
(i.e., of same shape and size) and form a regular hexagonal tessellation of the space.
Gersho further proved that even in a finite 2-d plane, regular hexagonal tessellations
should cover most of the space if the number of facilities is sufficiently large Gersho
[1979]. This result leads to Proposition 5.
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Appendix C

Proof for Propositions in Chapter 5

C.1 Technical Lemmas

Before we prove the propositions, we first introduce the following technical lemmas
that are necessary for establishing our results.

Lemma 5.Let (q1,W 1, R) and (q2,W 2, R) be two solutions such that for some ij ∈ T ,

q2
ij ≥ q1

ij, if ij ∈ {HL,HH},
q2
ij ≤ q1

ij, if ij ∈ {LL,LH},
W 2

ij ≤ W 1
ij, if ij ∈ {LH, HH},

W 2
ij ≥ W 1

ij, if ij ∈ {LL,HL}.
If (q1,W 1, R) satisfies constraint IC(i′j′ − ij), then (q2, W 2, R) also satisfies it.

Proof. Consider the following constraint IC(i′j′ − ij):

Ri′j′ −Rij ≥ (vi′ − vi)qij − (cj′ − cj)Wij.

Since the left hand side of the constraint only depends on R, if we could show that

(vi′ − vi)q
2
ij − (cj′ − cj)W

2
ij ≤ (vi′ − vi)q

1
ij − (cj′ − cj)W

1
ij, ∀ij, i′j′ ∈ T, (C.1)

then (q2,W 2, R) must satisfy this constraint if (q1,W 1, R) does. To see this is the
case, we first consider ij = LH. In this case, vi′ − vi ≥ 0 and cj′ − cj ≤ 0, since
vi = vL and cj = cH . Because q2

ij ≤ q1
ij and W 2

ij ≤ W 1
ij, (C.1) must hold. Following

similar procedures, one can show that (C.1) holds if ij is LL, HH or HL.

Lemma 6. WLH ≤ WLL, and WHH ≤ WHL.

Proof. From the IC constraints IC(LL−LH) and IC(LH −LL), we have RLL−
RLH ≥ ∆cWLH , and RLH − RLL ≥ −∆cWLL. Adding the above two inequalities
together, it follows that 0 ≥ ∆c(WLH − WLL), which implies that WLH ≤ WLL.
Similarly, one can verify that IC(HL − HH) and IC(HH − HL) implies WHH ≤
WHL.
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C.2 Proof of Proposition 9

We divided the proof in three parts, each dedicated to show that if the optimal
solution does not fully admit the type-HL customers, then it is optimal not to admit
any the type-LH, LL or HH customers respectfully. The proof is by contradiction.
Thus, in the following three parts we posit hypotheses by negation and then show
that they result in contradictions.

Part 1: q∗LH > 0 and q∗HL < 1.

In this case, for some positive number ε, we construct a new solution (q′,W ′, R′)
as follows:

q′ij =





q∗ij + ε
λij

ij = HL

q∗ij − ε
λij

ij = LH

q∗ij ij ∈ {HH, LL}
,

W ′ = W ∗,

R′ = R∗.

By Lemma 5, the new solution satisfies all IC constraints. We only need to check
the resource constraint RE(S) for all S ⊆ T . If S = {HL}, then RE(S) is not binding
at (q∗,W ∗, R∗), because from Proposition 11 RE({LH, HH}) is binding, leading to
a conflict against the properties of a polymatroid. In this case, we can always find
an ε small enough so that RE({HL}) is satisfied at (q′,W ′, R′). On the other hand,
if S 6= {HL}, the right-hand side of RE(S) never increases in the new solution,
while the left-hand side remains unchanged. Therefore, the new solution satisfies all
resource constraints.

In summary, the new solution is feasible, and the objective increases by ∆vε
as compared to (q∗,W ∗, R∗). This leads to a contradiction to the optimality of
(q∗,W ∗, R∗).

Part 2: q∗LL > 0 and q∗HL < 1.

In this case, for some ε > 0, we define a new mechanism (q′, W ′, R′) as follows:

q′ij =





q∗ij + ε
λij

ij = HL

q∗ij − ε
λij

ij = LL

q∗ij ij ∈ {HH, LL}
,

W ′ = W ∗,

R′ = R∗.

Following similar procedures as in Case 1, one can verify that (q′,W ′, R′) satisfies
all IC and resource constraints for sufficiently small ε. Furthermore, the objective
value under this new solution increases by ∆vε, thus leading to a contradiction to the
fact that (q∗,W ∗, R∗) is optimal.
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Part 3: q∗HH > 0 and q∗HL < 1.

Suppose that q∗HH > 0 and q∗HL < 1. From parts 1 and 2, we know that q∗LH =
q∗LL = 0. In this case, RE({HH}) and RE({HH, HL}) must be binding, otherwise

the solution would be suboptimal. This implies W ∗
HH =

q∗HH

µ−λHHq∗HH
, and

W ∗
HL =

q∗HL + λHH

λHL
q∗HH

µ− λHLq∗HL − λHHq∗HH

− q∗HH

µ− q∗HHλHH

.

To disprove the optimality of (q∗,W ∗, R∗) , we define a new solution (q′,W ′, R′)
as below:

q′ij =





q∗ij + ε
λij

ij = HL

q∗ij − ε
λij

ij = HH

0 ij ∈ {LH, LL}
,

W ′
ij =





q′HL+
λHH
λHL

q′HH

µ−λHLq′HL−λHHq′HH
− q′HH

µ−λHHq′HH
ij = HL

q′HH

µ−λHHq′HH
ij = HH

0 ij ∈ {LH, LL}.
,

R′ = R∗.

By construction, λHHW ′
HH + λHLW ′

HL = λHHW ∗
HH + λHLW ∗

HL, and it can be veri-
fied that the objective function,

∑
ij∈T λij(viqij − cjWij − Rij), increases by a posi-

tive amount of ∆c(λHHW ∗
HH − λHHW ′

HH) in the new solution. As all the resource
constraints are clearly satisfied by the new solution, we just need to check the IC
constraints. Following Lemma 5, IC(ij − HL) is satisfied, since q′HL > q∗HL and
W ′

HL > W ∗
HL. Furthermore, IC(LH −HH) and IC(HL−HH) can not be binding

at (q∗,W ∗, R∗), since R∗
HH = 0, which means the left-hand sides of these constraints

are nonnegative, while the right-hand sides are negative. Therefore the small changes
in qHH and WHH will not affect these constraints.

The only constraint that might be violated by the new solution is IC(LL−HH),
and this only happens when IC(LL−HH) is binding at (q∗,W ∗, R∗). Suppose this
is the case, define f(qHH) to be the right-hand side of IC(LL−HH):

f(qHH) ≡ ∆c
qHH

µ− λHHqHH

−∆vqHH .

The derivative of f is f ′(qHH) = µ
(µ−λHHqHH)2

, which is increasing in qHH . This

suggests that f is modular. Because f(0) = 0, f(q
∗
HH) = R∗

LL − R∗
HH ≥ 0, and

0 ≤ q′HH < q∗HH , it must be true that f(q′HH) ≤ f(q∗HH), which implies IC(LL−HH)
is not violated by the new solution.
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C.3 Proof of Proposition 10

First, recall the incentive compatibility constraints IC(HH −LH) and IC(LH−
HH), R∗

HH − R∗
LH ≥ ∆vq

∗
LH and R∗

LH − R∗
HH ≥ −∆vq

∗
HH . Adding the above two

inequalities together, it follows that 0 ≥ ∆v(q
∗
LH − q∗HH), which implies that q∗LH ≤

q∗HH . Similarly, one can verify that IC(HL− LL) and IC(LL−HL) implies q∗LL ≤
q∗HL.

Second, the claim q∗LL ≤ q∗HL follows straightly from Proposition 9, since either
q∗HH = 0 or q∗HL = 1.

Finally, we show q∗LH ≤ q∗LL by contradiction. Suppose that q∗LH > q∗LL, we
construct a new solution (q′,W ′, R′) as below

q′ij =





q∗LH − ε
λLH

ij = LH

q∗LL + ε
λLL

ij = LL

q∗ij ij ∈ {HH, HL}
,

W ′
ij =





W ∗
LH − ε

λLH

1
µ−λLHq∗LH

ij = LH

W ∗
LL + ε

λLH

1
µ−λLHq∗LH

ij = LL

W ∗
ij ij ∈ {HH,HL}

,

R′ = R∗.

The objective value increased by ∆v
ε

µ−λLHq∗LH
under the new solution. Next we

show that it satisfy all IC and resource constraints. Among all resource constraints, we
limit our attention to RE({LH}) and RE({LH, HH}), All resource constraints are
either non-binding at (q∗,W ∗, R∗), or not affected by the change. To see RE({LH})
still holds under the new solution:

λLHW ′
LH = λLHW ∗

LH −
ε

µ− λLHq∗LH

≥ λLHq∗LH

µ− λLHq∗LH

− ε

µ− λLHq∗LH

=
λLHq′LH

µ− λLHq∗LH

≥ λLHq′LH

µ− λLHq′LH

.
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In addition, it follows that

λLHW ′
LH + λHHW ′

HH = λLHW ∗
LH + λHHW ∗

HH −
ε

µ− λLHq∗LH

≥ λLHq∗LH + λHHq∗HH

µ− λLHq∗LH − λHHq∗HH

− ε

µ− λLHq∗LH

≥ λLHq∗LH + λHHq∗HH

µ− λLHq∗LH − λHHq∗HH

− ε

µ− λLHq∗LH − λHHq∗HH

=
λLHq′LH + λHHq′HH

µ− λLHq∗LH − λHHq∗HH

≥ λLHq′LH + λHHq′HH

µ− λLHq′LH − λHHq′HH

,

which implies that RE({LH, HH}) is satisfied by the new solution.

Following from Lemma 5, all IC constraints remain valid under the new solution
except for IC(HH − LL) and IC(HL− LL). Our next step is to show that both of
them are non-binding at (q∗,W ∗, R∗).

By contradiction, if IC(HH − LL) is binding at (q∗,W ∗, R∗), it follows that

R∗
HH = R∗

LL + ∆vq
∗
LL −∆cW

∗
LL < R∗

LL −∆cW
∗
LL + ∆vq

∗
LH ≤ R∗

LH + ∆vq
∗
LH ,

where the first inequality follows from the assumption that q∗LL < q∗LH , and the
second one follows from IC(LH − LL). Clearly, this leads to a contradiction to
IC(HH − LH).

Additionally, if IC(HL − LL) is binding, we claim that either IC(LL − LH) or
IC(LL−HH) must also binding. First of all, at least one of IC(LL−LH), IC(LL−
HH) and IC(LL − HL) has to be binding, otherwise (q∗, W ∗, R∗) is suboptimal.
Secondly, IC(LL − HL) cannot be binding when IC(HL − LL) is binding, due to
the fact that q∗LL < q∗LH ≤ q∗HL.

If both IC(HL− LL) and IC(LL− LH) are binding, it follows that

R∗
HL = R∗

LL + ∆vq
∗
LL = R∗

LH + ∆cW
∗
LH + ∆vq

∗
LL < R∗

LH + ∆cW ∗
LH + ∆vq

∗
LH ,

which leads to a contradiction to IC(HL− LH).

On the other hand, if both IC(HL − LL) and IC(LL − HH) are binding, it
follows that

R∗
HL = R∗

LL + ∆vq
∗
LL = R∗

HH + ∆cW
∗
HH −∆vq

∗
HH + ∆vq

∗
LL < R∗

HH + ∆cW ∗
HH ,

where the inequality follows from the fact that q∗LL < q∗LH ≤ q∗HH . Clearly, this leads
to a contradiction to IC(HL−HH).
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C.4 Proof of Proposition 11

Suppose that RE({LH,HH}) is not binding at (q∗,W ∗, R∗), then at most one of
RE({LH}) and RE({HH}) can be binding. Because from the properties of a polyma-
troid, if both RE({LH}) and RE({HH}) are binding, it must be that q∗LH = q∗HH = 0,
which implies that RE({LH,HH}) is binding. Let i1j1 ∈ {LH, HH} be a type such
that RE({ij}) is not binding. We consider the following two cases, depending on
whether there exists a set S ⊆ T such that RE(S) is binding at (q∗,W ∗, R∗) and
LH ∈ S (Case 1) or not (Case 2).

Case 1:

Suppose we can find a set S ⊆ T such that RE(S) is binding at (q∗,W ∗, R∗)
and LH ∈ S. We let S0 to be the minimal among such sets. It must be true that
S0 ∩ {LL,HL} 6= Φ, since otherwise S0 = {LH, HH}, which means RE({LH, HH})
is binding. Let i2j2 ∈ S0 ∩ {LL,HL}. We construct a new solution (q′,W ′, R′) as
follows:

q′ = q∗,

W ′
ij =





W ∗
ij − ε

λij
ij = i1j1

W ∗
ij + ε

λij
ij = i2j2

W ∗
ij ij ∈ T \ {i1j1, i2j2},

R′ = R∗,

where ε > 0 is a sufficiently small number.

¿From Lemma 5, the new solution satisfies all IC constraints, we only need to
it also satisfies the resource constraint RE(S) for all S ⊆ T . As a reminder, the

resource constraint is formulated as
∑

ij∈S λijWij ≥
∑

ij∈S λijqij

µ−∑
ij∈S λijqij

.

Clearly, RE(S) is satisfied if S0 ⊆ S, since both sides of the constraint remain
unchanged under the new solution, as compare to (q∗,W ∗, R∗). If S ⊂ S0, but
i1j1 /∈ S, RE(S) is not violated by the new solution, since its left-hand side can only
increase, while its right-hand side remains the same. Finally, if S ⊂ S0 and i1j1 ∈ S,
it must be true that RE(S) is not binding at (q∗,W ∗, R∗). In this case, we could
always find an ε small enough so that the new solution does not violate RE(S).

However, the server’s revenue,
∑

ij∈T λij(viqij − cjWij −Rij), increases by ∆cε in
the new solution, which leads to a contradiction to the optimality of (q∗,W ∗, R∗).

Case 2:

If we cannot find a set S ⊆ T that contains the type-ij such that RE(S) is binding
at (q∗,W ∗, R∗), for some ε > 0, we construct a new solution (q′,W ′, R′) as below:

q′ = q∗,

W ′
ij =

{
W ∗

ij − ε ij = i1j1

W ∗
ij ij ∈ T \ {i1j1} ,

R′ = R∗.
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This new solution clearly yields a higher revenue for the service provider. It also
satisfies all the IC constraints, following Lemma 5. If we choose a small enough ε,
the new solution also satisfy the resource constraint RE(S) for all S ⊆ T , because
either RE(S) is not binding at (q∗,W ∗, R∗), or S does not contain type-i1j1. This
again leads to a contradiction to the fact that (q∗,W ∗, R∗) is optimal.

C.5 Proof of Proposition 12

Without loss of generality, we assume that q∗LH > 0, because if q∗LH = 0,
RE({HH}) is equivalent to RE({LH, HH}), which is binding by Proposition 11.
Suppose q∗HH < 1, but RE({HH}) is non-binding. For some ε > 0, we construct a
new solution (q′,W ′, R′) as follows:

q′ij =





W ∗
LH − ε

λLH
ij = LH

W ∗
HH + ε

λLH
ij = HH

W ∗
ij ij ∈ {LL,HL}

,

W ′ = W ∗,

R′ = R∗.

By Lemma 5, all IC constraints are satisfied by the new solution. All resource
constraints must also be satisfied, except for RE({HH}). Since RE({HH}) is non-
binding at (q∗,W ∗, R∗), we can always find an ε small enough so that this resource
constraint is not violated by the new solution. However, the object value increase
by ∆vε under the new solution, leading to a contradiction to the optimality of
(q∗,W ∗, R∗).
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Appendix D

Detailed Solutions to Special Cases
in Chapter 5

In this appendix, we construct detailed solutions to some special cases. All of
proofs follow three identical steps. In Step 1, we construct an upper bound function
g(q) or g(q,W ) of the server’s objective Z(q, W,R) by replacing all the information
rent R and the expected delay W of some customer types with their valid lower
bounds. In Step 2, we then search for q̃ or (q̃, W̃ ), the optimal solution to maxq{g(q) :
0 ≤ qij ≤ 1 ∀ij ∈ T} or maxq,W{g(q, W ) : 0 ≤ qij ≤ 1 ∀ij ∈ T, (RE)}. Based on the
concavity of g(q) or g(q, W ), it suffice to look for solutions that satisfy the first order
conditions. In Step 3, we construct a feasible solution (q∗, W ∗, R∗) where q∗ equals
q̃, and W ∗ and R∗ are set to their lower bounds used in Step 1. Then we verify that
Z(q∗,W ∗, R∗) is equal to g(q̃) or g( ˜q, W ), an upper bound on the server’s maximum
revenue, validating (q∗,W ∗, R∗) as an optimal solution to the server’s problem. In the
sequel we present our results as propositions and prove them accordingly following
the aforementioned procedures.

D.1 One Group of Customers

Proposition 13. If vH − cL

(µ−λHL)2
≤ 0, the optimal mechanism is to admit only the

type-HL customers.

Proof. Step 1: Constructing an upper bound function.
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The server’s objective function satisfies

Z(q,W,R) ≡
∑
ij∈T

λij(viqij − cjWij −Rij)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

≡ g(q),

where the first inequality is due to the nonnegativity of q, W and R, and the second
follows from RE(T ). Note that in this case the upper bound function only depends
on q.

Step 2: Optimizing the upper bound function.

Define q̃LH = q̃LL = q̃HH = 0, and q̃HL to be the solution of vH − cL

(µ−λHLqHL)2
= 0.

Because vH − cL

(µ−λHL)2
≤ 0, q̃HL ≤ 1. In addition,

∂g

∂qij

|q=q̃ = λij(vH − cL

(µ− λHLq̃HL)2
) = 0, ∀ij ∈ T.

Since g is concave in q, q̃ is optimal to the optimization problem maxq{g(q) : 0 ≤
qij ≤ 1 ∀ij ∈ T}.

Step 3: Constructing a feasible solution.

Given q̃ ,we construct a solution (q∗,W ∗, R∗) as below

q∗ij =

{
y∗

λHL
ij = HL

0 ij ∈ {LH,LL, HH} ,

W ∗
ij =

{
q∗HL

µ−λHLq∗HL
ij = HL

0 ij ∈ {LH, LL,HH} ,

R∗
ij = 0, ∀ij ∈ T.

Since Z(q∗,W ∗, R∗) = g(q̃), it is clear an upper bound on any feasible solution.
We only need to verify that (q∗,W ∗, R∗) is feasible, which is obvious since all IC and
resource constraints are satisfied.
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D.2 Two Groups of Customers

Proposition 14.The optimal mechanism is to fully admit the HL and partially admit
the type-LL customers with equal priority, if the following conditions hold:

• ∆v(1 + λHL

λLL
) ≤ ∆c

1
µ
,

• vH − cL
µ

(µ−λHL)2
−∆v(1 + λHL

λLL
) > 0,

• vH − cL
µ

(µ−λHL−λLL)2
−∆v(1 + λHL

λLL
) ≤ 0.

Proof. Step 1: Constructing an upper bound function.

Z(q,W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆vλLLqLL

−∆c(λLHWLH + λHHWHH)− λHL∆vqLL

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆v(1 +
λHL

λLL

)λLLqLL

−∆c
λLHqLH + λHHqHH

µ− λLHqLH − λHHqHH

≡ g(q).

Here the first inequality is due to IC(HL − LL) and the nonnegativity of q and R;
the second follows from RE(T ) and RE({LH,HH}).

Step 2: Optimizing the upper bound function.

Define q̃HL = 1, q̃LH = q̃HH = 0, and q̃LL to be the solution to

h(qLL) ≡ vH − cL
µ

(µ− λHL − λLLqLL)2
−∆v(1 +

λHL

λLL

) = 0.

We claim that q̃ is the optimal solution to maxq {g(q) : 0 ≤ qij ≤ 1, ∀ij ∈ T}.
By assumption, we have

h(0) = vH − cL

(µ− λHL)2
−∆v(1 +

λHL

λLL

) > 0,

h(1) = vH − cL

(µ− λHL − λLL)2
−∆v(1 +

λHL

λLL

) ≤ 0.
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Because h(qLL) is decreasing in qLL, it must be true that 0 < q̃LL ≤ 1.

We now claim that q̃ satisfies the KKT (Karush-Kuhn-Tucker) conditions of the
optimization problem maxq {g(q) : 0 ≤ qij ≤ 1, ∀ij ∈ T}. Since g(q) is a concave
function, q̃ must be an optimal solution to this problem and g(q̃) is an upper bound
on Z(q,W,R). To see that the KKT conditions are satisfied, we observe that

∂g

∂qLL

|q=q̃ = λLL[vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆v(1 +
λHL

λLL

)]

= λLL[vH − cL
µ

(µ− λHL − λLLq̃LL)2
−∆v(1 +

λHL

λLL

)]

= 0,

∂g

∂qHL

|q=q̃ = λHL[vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

]

= λHL[vH − cL
µ

(µ− λHL − λLLq̃LL)2
]

> λHL[vH − cL
µ

(µ− λHL − λLLq̃LL)2
−∆v(1 +

λHL

λLL

)]

= 0,

∂g

∂qLH

|q=q̃ = λLH [vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆c
µ

(µ− λLH q̃LH − λHH q̃HH)2
]

= λLH [vH − cL
µ

(µ− λHL − λLLq̃LL)2
−∆c

1

µ
]

≤ λLH [vH − cL
µ

(µ− λHL − λLLq̃LL)2
−∆v(1 +

λHL

λLL

)]

= 0,

∂g

∂qHH

|q=q̃ =
λHH

λLH

∂g

∂qLH

|q=q̃ ≤ 0.

Step 3: Constructing a feasible solution.

Define (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗
ij =

{
q∗ij

µ−λHLq∗HL−λLLq∗LL
ij ∈ {HL, LL}

0 ij ∈ {LH,HH} ,

R∗
ij =

{
∆vq

∗
LL ij = HL

0 ij ∈ {LH, HH,LL} .

By construction, (q∗, W ∗, R∗) satisfies all IC and resource constraints. Furthermore,
since Z(q∗,W ∗, R∗) = g(q̃), (q∗,W ∗, R∗) is an optimal solution to the server’s problem.
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Proposition 15. The optimal mechanism is to fully admit the type-HL customers,
partially admit the type-HH customers, and give the type-HH absolute priority, if
the following conditions hold

• ∆v ≥ ∆c(1 + λHL

λLL
) µ

(µ−λHH)2
,

• vH − cL
µ

(µ−λHL)2
−∆c(1 + λHL

λHH
) 1

µ
> 0,

• vH − cL
µ

(µ−λHL−λHH)2
−∆c(1 + λHL

λHH
) µ

(µ−λHH)2
≤ 0.

Proof. Step 1: Constructing an upper bound function.

Z(q,W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆cλHHWHH

−∆v(λLHqLH + λLLqLL)− λHL∆cWHH

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆c(1 +
λHL

λHH

)
λHHqHH

µ− λHHqHH

−∆v(λLHqLH + λLLqLL)

≡ g(q).

Here the first inequality is due to IC(HL−HH) and the nonnegativity of W and R,
while the second one follows from RE(T ) and RE({HH}).

Step 2: Optimizing the upper bound function.

Define q̃HL = 1, q̃LH = q̃LL = 0, and q̃HH to be the solution to

h(qHH) ≡ vH − cL
µ

(µ− λHL − λHHqHH)2
−∆c(1 +

λHL

λLL

)
µ

(µ− λHHqHH)2
= 0.

We claim that q̃ is the optimal solution to maxq {g(q) : 0 ≤ qij ≤ 1, ∀ij ∈ T}.
By assumption, we have

h(0) = vH − cL
µ

(µ− λHL)2
−∆c(1 +

λHL

λHH

)
1

µ
> 0,

h(1) = vH − cL
µ

(µ− λHL − λHH)2
−∆c(1 +

λHL

λHH

)
µ

(µ− λHH)2
≤ 0.

Because h(qHH) is decreasing in qHH , it must be true that 0 < q̃HH ≤ 1.
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Moreover, it follows that

∂g

∂qHH

|q=q̃ = λHH [vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆c(1 +
λHL

λLL

)
µ

(µ− λHH q̃HH)
]

= λHH [vH − cL
µ

(µ− λHL − λHH q̃HH)2
−∆c(1 +

λHL

λLL

)
µ

(µ− λHH q̃HH)2
]

= 0,

∂g

∂qHL

|q=q̃ = λHL[vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

]

= λHL[vH − cL
µ

(µ− λHL − λLLq̃HH)2
]

> λHL[vH − cL
µ

(µ− λHL − λHH q̃HH)2
−∆c(1 +

λHL

λLL

)
µ

(µ− λHH q̃HH)2
]

= 0,

∂g

∂qLH

|q=q̃ = λLH [vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆c
µ

(µ− λLH q̃LH − λHH q̃HH)2
]

= λLH [vH − cL
µ

(µ− λHL − λHH q̃HH)2
−∆v]

≤ λLH [vH − cL
µ

(µ− λHL − λLLq̃LL)2
−∆c(1 +

λHL

λHH

)
µ

(µ− λHH)2
]

≤ λLH [vH − cL
µ

(µ− λHL − λHH q̃HH)2
−∆c(1 +

λHL

λLL

)
µ

(µ− λHH q̃HH)2
]

= 0,

∂g

∂qLL

|q=q̃ =
λLL

λLH

∂g

∂qLH

|q=q̃ ≤ 0.

Clearly, q̃ satisfies the KKT conditions of the optimization problem maxq {g(q) :
0 ≤ qij ≤ 1, ∀ij ∈ T}. Since g(q) is a concave function, q̃ must be an optimal solution
to this problem and g(q̃) is an upper bound on Z(q,W,R).

Step 3: Constructing a feasible solution.

Define (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗
ij =





q∗HH

µ−λHHq∗HH
ij = HH

1
λHL

(
λHHq∗HH+λHLq∗HL

µ−λHHq∗HH−λHLq∗HL
− λHHq∗HH

µ−λHHq∗HH
) ij = HL

0 ij ∈ {LH, LL}
,

R∗
ij =

{
∆cW

∗
HH ij = HL

0 ij ∈ {LH,HH, LL} .
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By construction, (q∗, W ∗, R∗) satisfies all IC and resource constraints. Furthermore,
since Z(q∗,W ∗, R∗) = g(q̃), (q∗,W ∗, R∗) is an optimal solution to the server’s problem.

D.3 Three Groups of Customers

Proposition 16. The optimal mechanism is to fully admit the type-HL and type-LL
customers, partially admit the type-HH customers, give the type-HH absolute prior-
ity, and treat the type-HL and type-LL customers equally, if the following conditions
hold:

• ∆v(1 + λHL

λLL
) ≤ ∆c

1
µ
,

• ∆v(1 + λLL+λHL

λHH
+ λHH+λLL+λHL

λLH
) ≥ ∆c(1 + λLL+λHL

λHH
) µ

(µ−λHH)2
,

• vH − cL
µ

(µ−λHL−λLL)2
−∆c(1 + λHL

λHH
) 1

µ
+ ∆v

λLL+λHL

λHH
> 0,

• vH − cL
µ

(µ−λHL−λLL−λHH)2
−∆c(1 + λHL

λHH
) µ

(µ−λHH)2
+ ∆v

λLL+λHL

λHH
≤ 0.

Proof. Step 1: Constructing an upper bound function.

Z(q, W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)− λHH∆vqLH − λLL(∆vqLH + ∆cWHH −∆vqHH)

−λHL(∆vqLH + ∆cWHH −∆vqHH + ∆vqLL)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(1 +
λHL

λLL

)λLLqLL

−∆c(1 +
λLL + λHL

λHH

)λHHWHH + ∆v
λLL + λHL

λHH

λHHqHH

−∆v(1 +
λHH + λLL + λHL

λLH

)λLHqLH

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆v(1 +
λHL

λLL

)λLLqLL

−∆c(1 +
λLL + λHL

λHH

)
λHHqHH

µ− λHHqHH

+ ∆v
λLL + λHL

λHH

λHHqHH

−∆v(1 +
λHH + λLL + λHL

λLH

)λLHqLH

≡ g(q).
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Step 2: Optimizing the upper bound function. Define q̃HL = q̃LL = 1, q̃LH = 0
and q̃HH to be the solution to

h(qHH) ≡ vH − cL
µ

(µ− λHL − λLL − λHHqHH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHHqHH)2
+ ∆v

λLL + λHL

λHH

= 0.

By assumption,

h(0) = vH − cL
µ

(µ− λHL − λLL)2
−∆c(1 +

λLL + λHL

λHH

)
1

µ

+∆v
λLL + λHL

λHH

> 0,

h(1) = vH − cL
µ

(µ− λHL − λLL − λHH)2
−∆c(1 +

λLL + λHL

λHH

)
µ

(µ− λHH)2

+∆v
λLL + λHL

λHH

≤ 0.

Because h(qHH) is decreasing in qHH , it follows that 0 < q̃HH ≤ 1. Next we verify that
q̃ satisfies the KKT conditions of the optimization problem maxq {g(q) : 0 ≤ qij ≤
1, ∀ij ∈ T}. Because g(q) is concave, these conditions are sufficient for optimality.
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The partial derivatives at q̃ satisfy

∂g

∂qHH

|q=q̃ = λHH [vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHH q̃HH)2
+ ∆v

λLL + λHL

λHH

]

= λHH [vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHH q̃HH)2
+ ∆v

λLL + λHL

λHH

]

= 0,

∂g

∂qHL

|q=q̃ = λHL[vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

]

= λHL[vH − cL
µ

(µ− λHL − λLL − λLLq̃HH)2
]

> λHL[vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHH q̃HH)2
+ ∆v

λLL + λHL

λHH

]

= 0,

∂g

∂qLL

|q=q̃ = λLL[vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆v(1 +
λHL

λLL

)]

= λLL[vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2
−∆v(1 +

λHL

λLL

)]

> λLL[vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHH q̃HH)2
+ ∆v

λLL + λHL

λHH

]

= 0,

∂g

∂qLH

|q=q̃ = λLH [vH − cL
µ

(µ−∑
ij∈T λij q̃ij)2

−∆v(1 +
λHH + λLLλHL

λLH

)]

= λLH [vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2
−∆v(1 +

λHH + λLLλHL

λLH

)]

≤ λLH [vH − cL
µ

(µ− λHL − λLL − λHH q̃HH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHH q̃HH)2
+ ∆v

λLL + λHL

λHH

]

= 0.
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Step 3: Constructing a feasible solution

Given q̃, we define a solution (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗
ij =





q∗HH

µ−λHHq∗HH
ij = HH

1
λLL+λHL

(
λHHq∗HH+λLLq∗LL+λHLq∗HL

µ−λHHq∗HH−λLLq∗LL−λHLq∗HL
− λHHq∗HH

µ−λHHq∗HH
) ij ∈ {LL,HL}

0 ij = LH,

R∗
ij =





0 ij = LH
∆vq

∗
LH ij = HH

∆vq
∗
LH + ∆cW

∗
HH −∆vq

∗
HH ij = HL

∆vq
∗
LH + ∆cW

∗
HH −∆vq

∗
HH + ∆vq

∗
LL ij = HL.

.

By construction, (q∗, W ∗, R∗) satisfies all IC and resource constraints. Furthermore,
since Z(q∗,W ∗, R∗) = g(q̃), (q∗,W ∗, R∗) is an optimal solution to the server’s problem.

Proposition 17. If all of the following conditions holds, the optimal admission policy
is to fully admit the type-HL and type-LL customers and partially admit the type-
HH customers. The optimal priority ranking is absolute, with type-HH at the highest,
followed by type-HL, and type-LL at the lowest. Strategic idleness is always required.

• ∆v ≥ ∆c(1 + λHL

λLL
) µ

(µ−λHH)2
,

• ∆v > ∆c

λLL
( λHH+λHL+λLL

µ−λHH−λHL−λLL
− λHH+λHL

µ−λHH−λHL
),

• ∆v(1 + λLL+λHL

λHH
+ λHH+λLL+λHL

λLH
) ≤ ∆c

λLL+λHL

λHH

1
µ
,

• cL < ∆c
λHH

λLL+λHL
,

• vH − cL
µ

(µ−λHL−λHH)2
−∆c(1 + λHL

λHH
) µ

(µ−λHH)2
> 0.

• vL − cL
∆c

∆v
> 0,

• vH −∆v(1 + λHL

λLL
)− cL

∆c

∆v
(1 + λHL

λLL
) < 0.

Proof. Step 1: Constructing an upper bound function.

Z(q, W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)− λLL∆cWLH

−λHH max{∆vqLL −∆cWLL, ∆vqLL −∆cWHL, 0} − λHL max{∆vqLL, ∆cWHH}
≡ g(q, W ).
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Step 2: Optimizing the upper bound function. Let (q̃, W̃ ) be an optimal solution
to maxq,W {g(q, W ) : 0 ≤ qij ≤ 1, ∀ij ∈ T, (RE)}. First of all, it can be verified that
q̃HL = q̃LL = 1, and q̃LH = 0 if q̃LL < 1. And since WHH doesn’t appear in g(q,W ),
we arbitrarily set it to its lower bound, i.e. W̃HH = 1

µ−λHH
. The problem left is to

determine q̃LL, W̃LL and W̃HL.

Because cL < ∆c
λHH

λLL+λHL
, it must be true that max{∆vqLL − ∆cWLL, ∆vqLL −

∆cWHL, 0} = 0, otherwise we can increase WLL and WHL equivalently to increase
g(q,W ). It follows that

∆v q̃LL −∆cW̃LL ≤ 0, and ∆v q̃LL −∆cW̃HL ≤ 0.

This implies that strategic idleness has to be applied to the optimal solution, be-
cause otherwise even if LL is given the lowest priority, the left hand side of the first
equality will always be positive, under the condition that ∆v > ∆c

λLL
( λHH+λHL+λLL

µ−λHH−λHL−λLL
−

λHH+λHL

µ−λHH−λHL
). Therefore, we have

W̃LL =
∆v

∆c

q̃LL,

W̃HL = max{∆v

∆c

q̃LL,
1

λHL

(
λHH + λHL

µ− λHH − λHL

− λHH

µ− λHH

)},

since W̃HL has to satisfy RE({HH, HL}) at the same time.

After substituting WLL and WHL out, it can be verified that g(q,W ) has two
breakpoint at q1

LL ≡ ∆c

∆v(µ−λHH)
and q2

LL ≡ ∆c

∆vλHL
( λHH+λHL

µ−λHH−λHL
− λHH

µ−λHH
). Furthermore,

0 < q1
LL < q2

LL.

The marginal benefit of increasing qLL is

vL − cL
∆c

∆v

, 0 ≤ qLL ≤ q1
LL,

vH −∆v(1 +
λHL

λLL

)− cL
∆c

∆v

, q1
LL < qLL ≤ q2

LL,

vH −∆v(1 +
λHL

λLL

)− cL
∆c

∆v

(1 +
λHL

λLL

), q2
LL < qLL ≤ 1.

Because vL − cL
∆c

∆v
> 0 and vH −∆v(1 + λHL

λLL
)− cL

∆c

∆v
(1 + λHL

λLL
) > 0, the optimal

value of qLL is either q1
LL or q2

LL, depending on the sign of vH −∆v(1 + λHL

λLL
)− cL

∆c

∆v
.

Specifically, if vH −∆v(1 + λHL

λLL
)− cL

∆c

∆v
≤ 0, (q̃, W̃ ) is given below

q̃ij =





0 ij = LH
1 ij ∈ {HH, HL}

∆c

∆v(µ−λHH)
ij = LL

,

W̃ij =





0 ij = LH
1

µ−λHH
ij = HH

1
λHL

( λHH+λHL

µ−λHH−λHL
− λHH

µ−λHH
) ij = HL

∆v

∆c
q̃LL ij = LL

.
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If vH −∆v(1 + λHL

λLL
)− cL

∆c

∆v
> 0, (q̃, W̃ ) can be specified as below

q̃ij =





0 ij = LH
1 ij ∈ {HH,HL}

∆c

∆vλHL
( λHH+λHL

µ−λHH−λHL
− λHH

µ−λHH
) ij = LL

W̃ij =





0 ij = LH
1

µ−λHH
ij = HH

∆v

∆c
q̃LL ij = {HL,LL}

.

Step 3: Constructing a feasible solution.

Given (q̃, W̃ ), we define a solution (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗ = W̃ ,

R∗
ij =

{
0 ij ∈ {LH, LL, HH}
max{∆vq

∗
LL, ∆cW

∗
HH} ij = HL

.

By construction, (q∗,W ∗, R∗) satisfies all IC and resource constraints. Further-
more, since Z(q∗,W ∗, R∗) = g(q̃, W̃ ), (q∗,W ∗, R∗) is an optimal solution to the
server’s problem.

D.4 Four Groups of Customers

Proposition 18. If the following conditions hold, the optimal admission control is
to fully admit the type-HL and type-LL customers and partially admit the type-HH
and type-LH customers. If q∗HH < 1 and q∗LH < 1, the optimal priority ranking is
absolute, with type-HH at the highest, followed by type-LH at the second, and type-LL
and type-HL equally at the lowest. If q∗HH = 1 and q∗LH < 1, the optimal mechanism
uses randomized ranking between type-HH and type-LH. If q∗HH = 1 and q∗LH = 1,
the optimal mechanism only uses two priority classes, with type-LH and type-HH
equally at the higher, and type-LL and type-HL equally at the lower priority.

• ∆v(1 + λHL

λLL
) ≤ ∆c

1
µ
,

• vH − cL
µ

(µ−λHL−λLL)2
−∆c(1 + λHL

λHH
) 1

µ
> 0,

• ∆v(1 + λLL+λHL

λHH
+ λHH+λLL+λHL

λLH
) < ∆c(1 + λLL+λHL

λHH
) 1

µ
,
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Proof. Step 1: Constructing an upper bound function.

Z(q, W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)

−λHH∆vqLH − λLL max{∆vqLH + ∆cWHH −∆vqHH , ∆cWLH}
−λHL max{∆vqLH + ∆cWHH −∆vqHH + ∆vqLL, ∆cWLH + ∆vqLL}
≡ g(q, W ).

Step 2: Optimizing the upper bound function.

Let (q̃, W̃ ) be an optimal solution to maxq,W {g(q, W ) : 0 ≤ qij ≤ 1, ∀ij ∈
T, (RE)}. Clearly, q̃HL = q̃LL = 1 in this case. The problem left is to find the optimal
value of qHH , qLH , WHH and WLH . For fixed q, the optimal value of W depends on
qHH . If q̃HH < 1, type-HH should be given absolute priority over LH, otherwise
(q̃, W̃ ) would be suboptimal since we could re-balance the allocations between type-
LH and type-HH to improve g(q,W ). This implies

W̃HH =
q̃HH

µ− λHH q̃HH

.

Further more, RE({HH, LH}) should also be binding at optimality, which leads
to

W̃LH =
1

λLH

(
λHH q̃HH + λLH q̃LH

µ− λHH q̃HH − λLH q̃LH

− λHH q̃HH

µ− λHH q̃HH

)

In addition, the following condition has to be satisfied at optimality in order
minimize the information rent:

∆v q̃LH + ∆cW̃HH −∆vq̃HH = ∆cW̃LH .

First, we assume qHH < 1 and look for a solution that satisfies the first order
conditions. Define q1

LL = q1
HL = 1, and (q1

HH , q1
LH) to be the solution of

vH − cL
µ

(µ− λLL − λHL − λHHqHH − λLHqLH)2

−∆c(1 +
λLL + λHL

λHH

)
µ

(µ− λHHqHH)2
+ ∆v

λLL + λHL

λHH

= 0,
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vH − cL
µ

(µ− λLL − λHL − λHHqHH − λLHqLH)2

−∆c
µ

(µ− λHHqHH − λLHqLH)2
−∆v(1 +

λHH + λLL + λHL

λLH

) = 0,

∆vqLH+∆c
qHH

µ− λHHqHH

−∆vqHH = ∆c
1

λLH

(
λHHqHH + λLHqLH

µ− λHHqHH − λLHqLH

− λHHqHH

µ− λHHqHH

),

where the left hands side of the first two equalities are the marginal benefits to increase
qHH and qLH respectively.

If q1
HH ≤ 1, we claim that (q̃, W̃ ), specified as below, is optimal to

maxq,W {g(q, W ) : 0 ≤ qij ≤ 1, ∀ij ∈ T, (RE)}:
q̃ = q1,

W̃ij =





q̃HH

µ−q̃HH
ij = HH

1
λLH

( λHH q̃HH+λLH q̃LH

µ−λHH q̃HH−λLH q̃LH
− λHH q̃HH

µ−λHH q̃HH
) ij = LH

1
λHL+λLL

(
∑

ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH q̃HH+λLH q̃LH

µ−λHH q̃HH−λLH q̃LH
) ij = {HL,LL}

.

If q1
HH > 1, it follows that q̃HH = 1. In order to minimize the information rent

and maximize the social surplus, we need to apply randomized priority rule to reduce
the difference in WHH and WLL such that the following equalities holds:

∆v q̃LH + ∆cW̃HH −∆vq̃HH = ∆cW̃LH .

The resource constraint RE({HH,LH}) should still be binding in this case. There-
fore,

λLHW̃LH + λHHW̃HH =
λLH q̃LH + λHH q̃HH

µ− λLH q̃LH − λHH q̃HH

.

Combining the above two equations yields

W̃LH = (
1

λLH + λHH

)[
λHH + λLH q̃LH

µ− λHH − λLH q̃LH

− ∆v

∆c

λHH(1− q̃LH)].

To find the first order solution under the current setting, we define q2
LL = q2

HL =
q2
HH = 1 and q2

LH to be the solution to the following equation

vH−∆v(1+
λHH

λLH

)−∆c(1+
λLL + λHL

λLH

)(
1

λLH + λHH

)[
µ

(µ− λHH − λLHqLH)2
+

∆vλHH

∆c

] = 0,

where the left hand side is the marginal benefit of increasing qLH under this condition.

If q2
LL < 1, (q̃, W̃ ) can be specified as below:

q̃ = q2

W̃ij =





( 1
λLH+λHH

)[ λHH+λLH q̃LH

µ−λHH−λLH q̃LH
− ∆v

∆c
λHH(1− q̃LH)] ij = LH

1
λHH

( λHHH̃H+λLH L̃H

µ−λHHH̃H−λLH L̃H
− λLHW̃LH) ij = HH

1
λHL+λLL

(
∑

ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH q̃HH+λLH q̃LH

µ−λHH q̃HH−λLH q̃LH
) ij ∈ {HL,LL}

.
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Finally, if q2
LL ≥ 1, it is clear that q̃LH = q̃HH = q̃LL = q̃HL = 1, and W̃ can be

specified as follows:

W̃ij =

{
1

µ−λLH+λHH
ij = {LH, HH}

1
λHL+λLL

(
∑

ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH+λLH

µ−λHH−λLH
) ij = {HL, LL} .

Step 3: Constructing a feasible solution.

Given (q̃, W̃ ), we define a solution (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗ = W̃ ,

R∗
ij =





0 ij = LH
∆vq

∗
LH ij = HH

max{∆vq
∗
LH + ∆cW

∗
HH −∆vq

∗
HH , ∆cW

∗
LH} ij = LL

R∗
LL + ∆vq

∗
LL ij = HL

.

By construction, (q∗,W ∗, R∗) satisfies all IC and resource constraints. Further-
more, since Z(q∗,W ∗, R∗) = g(q̃, W̃ ), (q∗,W ∗, R∗) is an optimal solution to the
server’s problem.

Proposition 19. If the following conditions hold, the optimal admission control is to
fully admit the type-HL and type-HH customers and partially admit the type-LL and
type-LH customers. If q∗LL < 1 and q∗LH < 1, the optimal priority ranking is absolute,
with type-LH at the highest, followed by type-HH at the second highest, type-HL at
the third, and type-LL at the lowest. If q∗HH = 1 and q∗LH < 1, the optimal mechanism
uses randomized ranking between LH and HH. If q∗HH = 1 and q∗LH = 1, the optimal
mechanism only uses two priority classes, with type-LH and type-HH equally at the
higher priority, and type-LL and type-HL equally at the lower priority.

• ∆v ≥ ∆c(1 + λHL

λLL
) µ

(µ−λHH)2
,

• ∆v ≥ ∆c

λLL
( λHH+λHL+λLL

µ−λHH−λHL−λLL
− λHH+λHL

µ−λHH−λHL
),

• vH − cL
µ

(µ−λHL−λHH)2
−∆c(1 + λHL

λHH
) µ

(µ−λHH)2
> 0,

• cL ≥ ∆c
λHH+λHL

λLL
,

• ∆v(
λHL

λLL
− λHH

λLH
) > ∆c(1 + λLL+λHL

λLH
).
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Proof. Step 1: Constructing an upper bound function.

Z(q, W,R)

= vH

∑
ij∈T

λijqij − cL

∑
ij∈T

λijWij −∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)−
∑
ij∈T

λijRij

≤ vH

∑
ij∈T

λijqij − cL

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

−∆v(λLHqLH + λLLqLL)

−∆c(λLHWLH + λHHWHH)− λLL∆cWLH

−λHH max{∆cWLH + ∆vqLL −∆cWLL, ∆vqLH}
−λHL max{∆cWLH + ∆vqLL −∆cWLL + ∆cWHH , ∆cWLH + ∆vqLL}
≡ g(q, W ).

Step 2: Optimizing the upper bound function.

Let (q̃, W̃ ) be an optimal solution to maxq,W {g(q, W ) : 0 ≤ qij ≤ 1, ∀ij ∈
T, (RE)}. It is obvious that q̃HL = q̃LL = 1. So the problem left is to find the
optimal qLL, qLH , WLH , WHH and WLL.

We note that strategic idleness should never be used since the cost overweighs the
benefit. Therefore, for fixed q, the optimal value for WLL is equal to its upper bound,
which equals to

W̃LL =
1

λLL

(

∑
ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH q̃HH + λLH q̃LH + λHLq̃HL

µ− λHH q̃HH − λLH q̃LH − λHLq̃HL

).

The optimal value of WLH and WHH depends on qLL. If q̃LL < 1, it can be verified
that LH should be given absolute priority over HH. This implies

W̃LH =
q̃LH

µ− λLH q̃LH

,

W̃HH =
1

λHH

(
λHH q̃HH + λLH q̃LH

µ− λHH q̃HH − λLH q̃LH

− λLH q̃LH

µ− λLH q̃LH

).

If qLL = 1, we may need to apply randomized priority ranking between LH and
HH. In either case, (q̃, W̃ ) should satisfy the following equality in order to minimize
the information rent:

∆cW̃LH + ∆vq̃LL = ∆v q̃LH + ∆c min{W̃LL, W̃HH}.

We note that g(q, W ) has two breakpoints. The first breakpoint (qa,W a) occurs
when W a

LL ≤ W a
HH , while the second breakpoint (qb,W b) arises when qb

LL = 1. Clearly
qa
LL < qb

LL = 1, otherwise W a
LL must be greater than W a

HH . Our next step is to look
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for first order solutions separately on the three regimes 0 ≤ qLL < qa
LL, qa

LL ≤ qLL < 1,
and qLL = 1

For the first regime 0 ≤ qLL ≤ qa
LL, let (q1,W 1) be the first order solution. Clearly,

q1
HH = q1

HL = 1, and (q1
LL, q1

LH) is the solution of

vH − cL
µ

(µ− λHH − λHL − λLLqLL − λLHqLH)2
−∆v(1 +

λHL

λLL

) = 0,

vH − cL
µ

(µ− λHH − λHL − λLLqLL − λLHqLH)2
−∆v(1 +

λHH

λLH

)

−∆c(1 +
λLL + λHL

λLH

)
µ

(µ− λLHqLH)2
= 0,

∆c
qLH

µ− λLHqLH

+∆vqLL = ∆vqLL+∆c
1

λLL

(

∑
ij∈T λijqij

µ−∑
ij∈T λijqij

− λHHqHH + λLHqLH + λHLqHL

µ− λHHqHH − λLHqLH − λHLqHL

),

where the left hand sides of the first two equalities are the marginal benefits of in-
creasing qLL and qLH respectively.

In this case, W 1 is determined by

W 1
ij =





q1
LH

µ−q1
LH

ij = LH

1
λHH

(
λHHq1

HH+λLHq1
LH

µ−λHHq1
HH−λLHq1

LH
− λHHq1

LH

µ−λHHq1
LH

) ij = HH

1
λHL

(
λHLq1

HL+λHHq1
HH+λLHq1

LH

µ−λHLq1
HL−λHHq1

HH−λLHq1
LH
− λHHq1

HH+λLHq1
LH

µ−λHHq1
HH−λLHq1

LH
) ij = HL

1
λLL

(
∑

ij∈T λijq1
ij

µ−∑
ij∈T λijq1

ij
− λHLq1

HL+λHHq1
HH+λLHq1

LH

µ−λHLq1
HL−λHHq1

HH−λLHq1
LH

) ij = LL

.

If W 1
LL ≤ W 1

HH , it follows that q1
LL ≤ qa

LL. Because g(q,W ) is concave, (q̃, W̃ ) =
(q1,W 1) is optimal. If W 1

LL > W 1
HH , we need to continuing searching in the second

regime qa
LL < qLL ≤ qb

LL. Define q2
HH = q2

HL = 1, and (q2
LL, q2

LH) to be the solution of

vH − cL
µ

(µ− λHH − λHL − λLLqLL − λLHqLH)2
−∆v(1 +

λHL

λLL

) = 0,

vH − cL
µ

(µ− λHH − λHL − λLLqLL − λLHqLH)2
−∆v(1 +

λHH

λLH

)

−∆c(1 +
λLL + λHL

λLH

)
µ

(µ− λLHqLH)2
= 0,

∆c
qLH

µ− λLHqLH

+∆vqLL = ∆vqLL +∆c
1

λHH

(
λHHqHH + λLHqLH

µ− λHHqHH − λLHqLH

− λLHqLH

µ− λLHqLH

).

Again, the left hand sides of the first two equalities are the marginal benefits of
increasing qLL and qLH under the current assumptions.
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If q2
LL ≤ 1, the optimal solution (q̃, W̃ ) can be specified as below:

q̃ = q2,

W̃ij =





q2
LH

µ−q2
LH

ij = LH

1
λHH

(
λHHq2

HH+λLHq2
LH

µ−λHHq2
HH−λLHq2

LH
− λHHq2

LH

µ−λHHq2
LH

) ij = HH

1
λHL

(
λHLq2

HL+λHHq2
HH+λLHq2

LH

µ−λHLq2
HL−λHHq2

HH−λLHq2
LH
− λHHq2

HH+λLHq2
LH

µ−λHHq2
HH−λLHq2

LH
) ij = HL

1
λLL

(
∑

ij∈T λijq2
ij

µ−∑
ij∈T λijq2

ij
− λHLq2

HL+λHHq2
HH+λLHq2

LH

µ−λHLq2
HL−λHHq2

HH−λLHq2
LH

) ij = LL

.

However, if q2
LL > 1, we need to look for the optimal solution in the third regime

qLL = 1. Let (q3,W 3) be the first order condition in this case. Apparently, q3
LL =

q3
HL = q3

HH = 1. The problem left is to determine the optimal qLH , WLH and WHH .

First, we fix qLH and determine the optimal WLH and WHH . Recall that the
optimal solution satisfies

∆cWLH + ∆vqLL = ∆vqLH + ∆cWHH .

Additionally, RE({HH, LH}) is binding at optimality, implying

λLHWLH + λHHWHH =
λLHqLH + λHHqHH

µ− λLHqLH − λHHqHH

.

Combining the above two equations yields

WLH = (
1

λLH + λHH

)[
λHH + λLHqLH

µ− λHH − λLHqLH

− ∆v

∆c

λHH(1− qLH)].

Under this setting, q3
LH should be the solution of the following equation

vH−∆v(1+
λHH

λLH

)−∆c(1+
λLL + λHL

λLH

)(
1

λLH + λHH

)[
µ

(µ− λHH − λLHqLH)2
+

∆vλHH

∆c

] = 0,

where the left hand side is the marginal benefit of increasing qLH in this case.

If q3
LL < 1, (q̃, W̃ ) can be specified as below:

q̃ = q3,

W̃ij =





( 1
λLH+λHH

)[ λHH+λLH q̃LH

µ−λHH−λLH q̃LH
− ∆v

∆c
λHH(1− q̃LH)] ij = LH

1
λHH

( λHHH̃H+λLH L̃H

µ−λHHH̃H−λLH L̃H
− λLHW̃LH) ij = HH

1
λHL+λLL

(
∑

ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH q̃HH+λLH q̃LH

µ−λHH q̃HH−λLH q̃LH
) ij = {HL, LL}

.

Finally, if q3
LL ≥ 1, it is obvious that q̃LH = q̃HH = q̃LL = q̃HL = 1, and W̃ satisfies

W̃ij =

{
1

µ−λLH+λHH
ij = {LH, HH}

1
λHL+λLL

(
∑

ij∈T λij q̃ij

µ−∑
ij∈T λij q̃ij

− λHH+λLH

µ−λHH−λLH
) ij = {HL, LL} .
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Step 3: Constructing a feasible solution.

Given (q̃, W̃ ), we define a solution (q∗,W ∗, R∗) as follows:

q∗ = q̃,

W ∗ = W̃ ,

R∗
ij =





0 ij = LH
∆cW

∗
LH ij = LL

∆vq
∗
LH ij = HH

∆cW
∗
LH + ∆vq

∗
LL ij = HL

.

By construction, (q∗, W ∗, R∗) satisfies all IC and resource constraints. Furthermore,
since Z(q∗,W ∗, R∗) = g(q̃, W̃ ), (q∗,W ∗, R∗) is an optimal solution to the server’s
problem.
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