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Abstract 
Motivation: Biologists increasingly turn to machine learning models not just to predict, but to explain. Feature reduction is a common approach 
to improve both the performance and interpretability of models. However, some biological datasets, such as microbiome data, are inherently or
ganized in a taxonomy, but these hierarchical relationships are not leveraged during feature reduction. We sought to design a feature engineer
ing algorithm to exploit relationships in hierarchically organized biological data.
Results: We designed an algorithm, called TaxaHFE, to collapse information-poor features into their higher taxonomic levels. We applied 
TaxaHFE to six previously published datasets and found, on average, a 90% reduction in the number of features (SD¼ 5.1%) compared to using 
the most complete taxonomy. Using machine learning to compare the most resolved taxonomic level (i.e. species) against TaxaHFE- 
preprocessed features, models based on TaxaHFE features achieved an average increase of 3.47% in receiver operator curve area under the 
curve. Compared to other hierarchical feature engineering implementations, TaxaHFE introduces the novel ability to consider both categorical 
and continuous response variables to inform the feature set collapse. Importantly, we find TaxaHFE’s ability to reduce hierarchically organized 
features to a more information-rich subset increases the interpretability of models.
Availability and implementation: TaxaHFE is available as a Docker image and as R code at https://github.com/aoliver44/taxaHFE.

1 Introduction
With the cost of DNA sequencing continuing to drop faster 
than compute power increases (Wetterstrand), the analysis of 
large datasets remains a bottleneck in biological research. 
One method for analysis is machine learning (ML) (Choi 
et al. 2022), which is a blanket term that refers to computer 
algorithms designed to find patterns in data, iteratively opti
mizing performance without human input. While ML meth
ods represent a suite of powerful and sensitive tools, they can 
suffer from a problem present in many humanomic studies: 
many features (i.e. microbial taxa) describing relatively few 
samples. Mathematician Richard Bellman referred to this 
problem as the “curse of dimensionality” (Bellman 2003). 
Practically speaking, too many features can result in 
“overfitting,” leading to poor generalizability of the model. 
For this reason, implementing methods to reduce the size of 
data while retaining its important features can improve both 
the speed, generalizability, and interpretability of the data.

Feature engineering, or the set of preprocessing steps done 
to data prior to ML model evaluation, can help address prob
lems imposed by high-dimensional data. While illustrating 
the totality of feature engineering is beyond the scope of this 
paper, some general examples include scaling or normalizing 
features, removing low variance features, collapsing highly 

correlated features, sophisticated methods for selecting sub
sets of features, and collapsing features into principal coordi
nate space. The goal of several of these methods is to reduce 
the feature space (dimensionality) and produce a highly dis
criminatory set of variables with respect to a response of in
terest. However, in biology models are not just used to make 
predictions, but to explain. This means that the reduced fea
ture set needs to also be interpretable, rather than alternate 
ordinations, such as principal components.

Some biological data, such as microbiome and dietary 
data, can be represented using hierarchical structures (Jacobs 
and Steffen 2003; Johnson et al. 2019; Choi et al. 2022). 
Taxonomic assignments have long been used to identify 
microorganisms. This taxonomy is usually represented by a 
hierarchical classification scheme, whereby the ancestral level 
is the most general group, followed by increasingly specific 
grouping rules. More recently, researchers have begun to rep
resent consumed foods in a similar taxonomic way (Johnson 
et al. 2019). More than merely identifying information, tax
onomy represents relatedness, reflecting ecological patterns 
(for microorganisms) (Bevilacqua et al. 2021) or complex 
admixtures of similar chemicals and nutrients (for food) 
(Johnson et al. 2019). While data with a hierarchical struc
ture presents many different levels by which to analyze a trait 
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or response, researchers generally choose to collapse these 
data to a single level for ease of analysis (i.e. analyzing micro
biome data at the family level) (Kleine Bardenhorst et al. 
2021). This can be a useful strategy, especially if the trait/re
sponse of interest is known to be conserved at a certain phy
logenetic depth which can be approximated by a taxonomic 
level (Martiny et al. 2015). Even without knowledge of a con
served phylogenetic depth a priori, tools exist to identify the 
average phylogenetic depth of a trait/response; however, 
many of these tools require a phylogenetic tree as input 
(Martiny et al. 2013). Often there is not a priori information 
available, and summarizing taxa to a specific level is weakly 
justified. Even more, if the data was summarized at a taxo
nomic level, but the response to a treatment is conserved at a 
different taxonomic level, it could lead to a false conclusion 
that, for example, the microbiome does not respond to a 
treatment of interest. A systematic review of current practices 
for the analysis of human microbiome data revealed a lack of 
consensus about which taxonomic level to study (Kleine 
Bardenhorst et al. 2021). Why not let information the
ory decide?

Here we introduce a method for hierarchical feature engi
neering (HFE) to dynamically collapse hierarchical data 
purely based on taxonomic relationships and information 
gain. Our algorithm, TaxaHFE, does not require the user to 
have knowledge a priori regarding the taxonomic level of 
conservation for a given trait. Rather, it seeks to maximize 
the information contained at various taxonomic levels while 
simultaneously reducing redundancy in the feature space. As 
a proof of concept, we apply TaxaHFE to microbiome data 
and compare it to an existing HFE algorithm (Oudah and 
Henschel 2018), assessing feature reduction and downstream 
ML performance. Additionally, we show that TaxaHFE’s 
utility extends to other hierarchically organized data by ap
plying our algorithm to hierarchical food data represented by 
taxonomic trees.

2 Methods
2.1 TaxaHFE algorithm
The algorithm (Fig. 1) can broadly be broken down into two 
main sections: (i) the creation of a taxonomic tree represent
ing the hierarchical data and (ii) the competitions of each 
taxon in a post-order tree traversal. Within the competition 
section, four major steps occur: (i) a feature abundance and 
prevalence filter, (ii) a correlation competition between par
ent and child taxa, (iii) an ML step to determine the informa
tion content of the taxa from the previous step, and (iv) one 
additional ML step on all the “winning” features. These steps 
are graphically represented in Fig. 1 and algorithmically out
lined below.

2.1.1 Build tree

1) Generate a node x in the tree T for each taxon. 
2) Store the abundance values for the taxon on x, as well as 

calculating whether the abundances meet minimum 
mean abundance and prevalence thresholds (Fig. 1, 
Step 1) 

3) To fill in any missing abundance data, traverse the tree 
T in post-order, generating a missing abundance vector 
an for a node xn as the vector sum of all abundance 

vectors from the direct descendants Cn ¼ children xnð Þ, 
where ac is the abundance vector of child node c. 

an ¼
X

c2Cn
ac 

2.1.2 Compete tree
Traverse the tree T in post-order, considering every subtree 
Tn using the following steps.

1) If rootðTnÞ has not met the minimum mean abundance 
and prevalence thresholds, this taxon will not be consid
ered further (Fig. 1, Step 1) 

2) If rootðTnÞ is a leaf node, mark “winner” and proceed 
to the next subtree. 
a) Note: Being marked a “winner” is temporary, and 

any “winner” in a particular subtree Tn at level l will 
be reconsidered at level l � 1 during the traversal. 

3) Traverse Tn, generating a set N0 of nodes previously 
marked as “winner.” If a node x is marked “winner,” 
no descendant nodes are considered. 

4) Generate a subset Nnc 2 N0, containing each node x in 
N0 whose abundance vector ax is not correlated with the 
abundance vector an of rootðTnÞ, above the specified 
threshold t (Fig. 1, Step 2). For all nodes N0 � Nnc, re
move the “winner” designation: 

Nnc ¼ fx j x 2 N0; corrðan; axÞ < tg

5) Using the set of abundance vectors A ¼
fan; anc1; anc2; . . .g (from rootðTnÞ and the non- 
correlated nodes Nnc) and response variables M (from 
the metadata input), fit a random forest (RF) model to 
determine the taxa importances to M calculated using 
Gini impurity-corrected scores (Nembrini et al. 2018) 
and generating a vector of scores S (Fig. 1, Step 3). 

S ¼ RFgiðA;MÞ

Any node x with a score sx greater than rootðTnÞ score sn is 
marked “winner.” 

Nw ¼ fxjx 2 N0; sx > sng

Otherwise, if the score of rootðTnÞ is the highest value, 
only it is selected. 

Nw ¼ frootðTnÞg

All other nodes Nnc � Nw have the “winner” designation 
removed, as well as rootðTnÞ if rootðTnÞ 62 Nw.

Traversal will be stopped at a level l, where l � 2, such 
that levelðrootðTnÞÞ � l for all competed subtrees Tc. This 
prevents rootðT0Þ (that contains the sum of all abundance 
vectors) from being included in the competition, and also 
allows for the preservation of taxonomic information at a de
finable level. Because they have not been traversed, any node 
x where levelðxÞ < l is not considered in the algorithm and 
cannot be marked “winner.”

The result of this is a set of distinct nodes Nw, marked as 
“winner” across all competed subtrees Tc having rootðT0Þ

(the root of the full tree) as the only common ancestor. An 
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optional final RF model (Fig. 1, Step 4) is then fit using the 
set of abundance vectors AW from NW , and the response vari
ables M. 

SW ¼ RFgiðAW;MÞ

The final feature set Nf is the set of nodes x with scores sx 

greater than zero and the average score Gini impurity- 
corrected scores of Nf: 

Nf ¼ fxjx 2 NW ; sx > 0; sx > meanðSWÞg

2.2 Input data
The input data to TaxaHFE is (i) a flat file (comma- or tab- 
delimited) with a column labeled “clade_name” containing 
the taxonomic features with subsequent columns as samples 
containing numeric feature abundances and (ii) a response 
variable flat file (Fig. 1). The levels of the features within the 
input data should be delineated by a pipe symbol (“j”). For 
example, if the input data are microbiome features, the fea
tures should be KingdomjPhylumjClassj… jlast level. The 
taxonomic features can contain any number of levels present. 
The sample column names must be unique for each column 
in the input file and match a column in the response variable 
file, which also must contain a column encoding the response 
of interest (either categorical or continuous).

2.3 Implementation
A reference implementation of this algorithm was written in 
R as part of development. The implementation uses the data. 
tree package (v1.0.0) (Glur 2020) to represent the hierarchi
cal structure of input taxa, as well as for the post-order tra
versal of the data used in several places. Data.tree parses the 

input file column by using the pipe symbol (“j”) found in the 
input data, described above. Once imported into TaxaHFE, 
four broad steps occur, as described in the algorithm above: 
(i) feature abundance and prevalence filters, (ii) a correlation 
competition between parent taxon and child taxa, (iii) a RF 
competition selecting the most informative (relative to the re
sponse variable) features from the previous step, and (iv) and 
an optional final “super filter” (SF) RF of all the taxa that 
have survived from steps 1–3 (Fig. 1). TaxaHFE applies rea
sonable defaults to these steps. For instance, by default, fea
tures are only considered if they have a minimum mean 
feature abundance of 0.01% and a minimum feature preva
lence of 1%. Both filters can be set to zero or any other num
ber, depending on the scale of the input data. Additionally, if 
the user is predicting a rare class (i.e. class imbalance), it may 
be prudent to keep rare features by setting these filters to 
zero. For the correlation competition, a child taxon abun
dance must be correlated with the parent abundance at 
<0.95 Pearson correlation to pass to step 3. Finally, both 
step 3 and step 4 use RFs to report back Gini impurity- 
corrected scores per feature, indicating the feature’s ability to 
predict the user-supplied response variable. These RF models 
are built and rebuilt 40 times by default, averaging out the 
Gini impurity scores per feature. The RF model fitting is done 
using the ranger package (v0.14.1) (Wright and Ziegler, 
2017), including the ability to distinguish between numeric 
and factor response variable types in the input metadata. 
Randomness is seeded in the implementation using system 
time, but an allowance is made for defining a specific random 
seed. This randomness influences the outcome of the RF com
petitions run by the ranger package. For ease of use, the im
plementation has been released on GitHub and additionally 
packaged into a Docker container, allowing it to be run reli
ably in a variety of computing environments.

Figure 1. Overview of TaxaHFE.
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2.4 Output data
The outputs of TaxaHFE are individual files of summarized 
original abundances for each hierarchical level and two files 
containing either the TaxaHFE or the TaxaHFE þ SF selected 
features alongside the response variable.

2.5 Downstream ML
The output of TaxaHFE is a reduced feature set, which may 
increase the performance of predictive analyses such as ML. 
To test this, we analyzed hierarchical datasets using a ML 
pipeline based around the Tidymodels package (v1.0.0) 
(Kuhn et al. 2020) in R. Input data was split using 70% data 
for training and hyperparameter tuning, and 30% was used 
for testing. Inside the training split, 10-fold repeated (3�) 
cross-validation was used for Bayesian-search hyperpara
meter tuning. A gentle correlation feature reduction step was 
also introduced within each cross-validation fold, yet at 0.95 
Pearson (the same as TaxaHFE’s internal correlation filter), it 
likely had minimal effect on ML performance. The search 
space was limited to 80 different hyperparameter combina
tions (optimizing mtry and minimum node size) or ten 
minutes of search time, whichever finished first. Bayesian 
hyperparameter search was allowed to preemptively end if 
the scoring metric was not improved after ten iterations. The 
metric optimized was balanced accuracy for classification or 
mean absolute error for regression. The best model was fit to 
the left-out test data and assessed using area under the re
ceiver operator curve (ROC-AUC), balanced accuracy, and 
Cohen’s kappa (Kuhn et al. 2023). For multi-class models, 
the Hand-Till ROC-AUC (Hand and Till 2001) and macro- 
averaged balanced accuracy were used. Each ML model was 
run using ten different random seeds to reduce stochasticity 
introduced from different train-test splits. To determine the 
importance of features, the package fastshap (v0.0.7) 
(Greenwell 2021; �Strumbelj and Kononenko 2014) was used. 
Briefly, the best model was fit to the entire input data, and 
Shapley values were calculated for each feature. The R pack
age ShapViz (v0.4.1) (Mayer 2023) was used to plot 
these values.

2.6 Evaluation of TaxaHFE
Six previously published microbiome datasets (Lloyd-Price 
et al. 2019; Franzosa et al. 2019; Mars et al. 2020; Wang 
et al. 2020; Erawijantari et al. 2020; Muller et al. 2022; 
Oliver et al. 2022) and a dietary tree dataset (Kable et al. 
2022) were used to assess TaxaHFE (Supplementary Table 
S1). For the microbiome datasets, TaxaHFE parameters were 
set to minimum mean feature abundance of 0.01% and mini
mum feature prevalence of 1%. The correlation threshold 
was set to 0.95, and nperm¼40 (defaults for TaxaHFE) and 
the random seed was set to 42. For the food dataset, the 
abundance filter was changed to 0. Each dataset was summa
rized at either the order, family, genus, or species level (using 
TaxaHFE, which applies the prevalence and abundance fil
ters prior to writing the summary files). Additionally, the spe
cies summarized microbiome data was analyzed using a 
previously published algorithm (hfe_algorithm.py: Oudah 
and Henschel, 2018), using two correlation cutoffs: the pro
gram’s default 0.7 and 0.95 (matching TaxaHFE’s default 
correlation filter). These summarized and TaxaHFE-selected 
data were used in ML models to predict response variables 
associated with each study (Supplementary Table S1), as de
scribed above. To test whether ML performance was 

significantly different across different feature reduction meth
ods, we used a linear mixed-effects model (from the R pack
age nlme v3.1–157: Pinheiro et al. 2022), with study�level as 
a fixed effect and the random seed as a random effect. 
Quantile-quantile plots were investigated for normality of 
residuals. Study-specific models were also built like the above 
model, without the study interaction term. Finally, we per
formed estimated marginal means (EMMs) post hoc tests us
ing the emmeans package (v1.8.8) (Lenth 2023) with 
Bonferroni adjusted P-values. We also analyzed the features 
compositionally by measuring the variance explained by the 
features selected using PERMANOVA models. To do so, we 
used the adonis(method ¼ “bray,” nperm¼999) function 
from the vegan (v2.6–4) package (Oksanen et al. 2022) in 
R. For comparative purposes, Lefse (Segata et al. 2011) 
was run on Galaxy (http://galaxy.biobakery.org/) using 
default parameters, and Boruta was run using the Boruta 
package (v8.0.0) (Kursa and Rudnicki, 2010) in R using de
fault parameters.

2.7 Software and data availability
The code for TaxaHFE, along with installation instructions and 
example inputs, can be found on GitHub (https://github.com/ 
aoliver44/taxaHFE). TaxaHFE version 2.0 was used for all 
analyses. The ML pipeline to assess the performance of 
TaxaHFE can also be found on GitHub (https://github.com/aoli 
ver44/nutrition_tools). Location of datasets used for compari
sons can be found in Supplementary Table S1. We downloaded 
five of the microbiome datasets from a microbiome- 
metabolome dataset collection (Muller et al. 2022).

3 Results
3.1 TaxaHFE improves feature reduction compared 
to alternative taxonomically informed methods
We initially investigated how well TaxaHFE performs com
pared to summarizing microbiome datasets to higher taxo
nomic levels (order (L4) to species (L7)), or when using a 
previously published HFE program (Oudah_70 and 
Oudah_95). In all six previously published studies, the di
mensional reduction produced by TaxaHFE (±SF) selects fea
tures which, when used as input in ML models, result in the 
higher mean ROC-AUC scores compared to data summarized 
at specific taxonomic levels, or a previously published HFE 
algorithm (Fig. 2A, Supplementary Fig. S1 and Table S2). 
The mean ROC-AUC for TaxaHFE (þSF) across all studies 
assessed was 0.901 (SD ¼ 0.071) followed by TaxaHFE 
(−SF) (0.897, SD ¼ 0.071). Moreover, TaxaHFE (þSF) pro
duces the best models for 4/6 studies when assessed using bal
anced accuracy (Fig. 2B, Supplementary Table S2) and 4/6 
studies using Cohen’s kappa (Fig. 2C, Supplementary Table 
S2). In the other two cases, TaxaHFE-preprocessed models 
were not significantly different from the best models pro
duced (Supplementary Fig. S1).

In addition to performance improvements, TaxaHFE 
(þSF) utilizes less features than comparable methods 
(Fig. 2D). Models utilizing species-level features (after abun
dance and prevalence filters, see methods) utilized 469 (SD ¼
97) species on average, compared with the 45 (SD ¼ 22) tax
onomic features used by TaxaHFE (þSF) on average. 
Additionally, TaxaHFE (þSF) selects 95 less features on aver
age compared to a previously published HFE algorithm by 
Oudah and Henschel (2018). Importantly, TaxaHFE’s 
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reduced feature set generally captures more variance in com
munity composition compared to existing HFE methods or 
summarizing to a specific taxonomic level (Fig. 2E).

3.2 TaxaHFE can reduce features for both 
categorical and continuous predictions
A previous effort toward HFE produced an algorithm which 
maximized a performance metric with respect to a categorical 
variable (Oudah and Henschel 2018). We designed TaxaHFE 
to handle both categorical and continuous variables. To illus
trate this, we used normalized antibiotic resistance gene 
abundance as a continuous or categorical response variable 

for selecting taxa using previously published data (Oliver 
et al. 2022). Specifically, we only analyzed samples in the 
highest or lowest ARG abundance quartile. Using categorical 
ARG abundance (low quartile versus high quartile), 
TaxaHFE, with or without the default super-filter, selected 4 
and 14 taxon features respectively. Using these features as in
put to a RF classification model predicting categorical ARG 
abundance (high versus low) resulted in mean ROC-AUC val
ues of 0.941 (þSF) and 0.952 (−SF) (Fig. 3). Features summa
rized at the L4 level performed slightly better in classification 
models than TaxaHFEþSF (L4 (order) ROC-AUC: 0.943). 
The previously published HFE algorithm by Oudah and 

A B

C D

E

Figure 2. Comparisons made used summarized microbiome data (L4–L7, order through species), a previously published HFE program (Oudah) employing 
two different internal correlation cutoffs (Pearson 0.7 and 0.95), and TaxaHFE with and without the super-filter. ML performance metrics (A–C) and 
number of features used for model building (D). (E) Variance explained in PERMANOVA models by the composition of the features relative to the 
response variable used.
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Henschel (Oudah and Henschel 2018) selected 134 features, 
a considerable increase from TaxaHFE (þSF) 4 features. 
Even with far fewer features, TaxaHFE (þSF) achieved better 
performance metrics compared to models built with Oudah 
engineered features (ROC-AUC: TaxaHFEþSF, 0.941; 
Oudah_70, 0.915).

When analyzing continuous ARG abundance, TaxaHFE, 
with or without the default super-filter, selected 6 and 18 
taxon features, respectively. Using these features as input to 
an RF regression model predicting continuous ARG abun
dance resulted in mean R2 (coefficient of determination) val
ues of 0.644 (þSF) and 0.649 (−SF) (Fig. 3C). Like the 
categorical example, TaxaHFEþSF performed slightly behind 
the L4 model (by mean R2 performance), which used L4 (or
der) summarized data (0.645), yet a post hoc test showed 
these differences were not significant, and the L4 model used 
far more features than TaxaHFEþSF (36 versus 6). No data 
is shown for the Oudah and Henschel algorithm as that algo
rithm does not support continuous outcome variables. In 
summary, TaxaHFE maximized performance while minimiz
ing features for both categorical and continuous outcomes.

Both the categorical and continuous examples resulted in 
models utilizing similar features (Fig. 3D and E). Compared 
to a model built using Level 7 features (species), TaxaHFE 
identified higher taxonomic levels to discriminate categorical 
ARG abundance. These higher taxonomic levels, such as the 
class Gammaproteobacteria and family Streptococcaceae, 
resulted in nearly an order of magnitude higher SHAP values, 
suggesting TaxaHFE identified features that were more 

influential to model predictions than models built using 
species-level data.

3.3 TaxaHFE also works on hierarchically organized 
diet data
Since TaxaHFE works with hierarchical features, we sought 
to examine its utility beyond microbiome data. Dietary data 
represented as food trees could also be a useful feature set to 
apply HFE. To test this, we utilized a previously published di
etary food tree and tested TaxaHFE’s ability to select features 
that explain average fiber intake (Baldiviez et al. 2017). After 
prevalence and abundance filters, 456 foods were assessed. 
TaxaHFEþSF selected 4 features as the most informative for 
predicting average fiber intake, nearly a 99% reduction from 
the 456 features used as input. When assessed using the con
cordance correlation coefficient, a measure of both correla
tion and accuracy, Bonferroni corrected EMM post hoc test 
revealed that TaxaHFEþSF performed significantly better 
than summarized features in a RF (P<0.05) (Fig. 4A). We 
next used Shapley values to determine which features were 
most important to a model built with TaxaHFEþSF (Fig. 4B) 
compared to a model built with Level 7 features (Fig. 4C). 
The most important features identified by TaxaHFEþSF 
were “other fruits” (Level 2), which include high fiber staples 
such as berries and avocados, and “dry beans peas other 
legumes nuts and seeds” (Level 1) (Fig. 4B). In contrast, the 
predictive model performance is lower for Level 7 (Fig. 4A) 
and the SHAP values, which indicate the magnitude of impor
tance, are also lower (Fig. 4C) than those identified by 

A B C

D E F

Figure 3. Analysis of TaxaHFE on categorical and continuous data. Histogram of antibiotic resistance gene abundance, showing just the top quartile and 
bottom quartile of the cohort (A). These data were analyzed as a categorical factor (low versus high ARG abundance) or continuous ARG abundance, and 
the (B, C) boxplots show the performance of ML models utilizing summarized taxonomic data or taxonomic HFE. (D–F) Shapley values of the most 
informative features from a model built using TaxaHFEþSF data as input for both categorical and continuous ARG abundance are shown, as well as a 
model built only using L7 level data against the categorical ARG outcome. Colored font levels share a common taxonomic group with TaxaHFE.
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TaxaHFEþSF (Fig. 4B). In summary, the use of TaxaHFE im
proved both model performance and feature importance 
when used with dietary data arranged in food trees.

4 Discussion
A common practice in microbiome analyses is the summari
zation of abundance data at a single taxonomic level. In one 
review examining 419 microbiome studies, the authors found 
that the genus level was the most commonly summarized tax
onomic level, followed by analysis at the phylum level (Kleine 
Bardenhorst et al. 2021). However, the discernable variation 
in microbial composition with respect to a trait or response is 
strongly dependent on the taxonomic level analyzed (Martiny 
et al. 2015). Thus, an analysis at a single taxonomic level, es
pecially at a level that is not optimized for the trait or re
sponse of interest, could lead investigators to incorrectly 
conclude the absence of a relationship between microbiome 
and response. Our results support this; to explain ARG abun
dance, a model built using species-level data would perform 
significantly worse than a model built using order level or 
TaxaHFE-preprocessed data (Fig. 3).

Here we propose an algorithm for the feature engineering 
of hierarchically organized data, particularly microbiome 
abundance data or dietary data represented using food trees. 
Currently, few algorithms exist to reduce the high dimension
ality found in microbiome data with respect to the taxonomic 
structure inherent in microbial features. Oudah and Henschel 
(2018) provided an excellent implementation; however, the 
Oudah algorithm is unable to handle: (i) a continuous re
sponse variable, (ii) non-bacterial features and (iii) abundan
ces that are not relative abundances. At the core of TaxaHFE 
is a RF, which is a particularly capable ML algorithm for 
handling both continuous and categorical response variables. 
Moreover, there is no need for specific feature names; 

TaxaHFE bases its understanding of hierarchical levels purely 
based on the use of a separator (“j”) between levels. As such, 
any hierarchically organized data can be used as input.

One important shared logic of both the Oudah algorithm 
and our algorithm is the use of the parent taxon as the taxon 
to “beat” in the competitions. This decision was inspired by 
an early implementation of HFE (Ristoski and Paulheim 
2014), for which the goal of the algorithm was to choose the 
most valuable features from the highest taxonomic levels pos
sible. Indeed, when the goal is feature reduction, and the par
ent taxon and child taxa contain redundant information 
relative to a response of interest, choosing the parent taxon 
results in a feature that is likely representative of the child 
taxa in some way. The reverse is not necessarily true.

Other feature reduction programs such as Lefse (based on 
linear discriminant analysis) (Segata et al. 2011) and Boruta 
(based on RFs) (Kursa and Rudnicki 2010) are often used, 
particularly with microbiome data. However, when all taxo
nomic levels are supplied, these programs often choose fea
tures that carry redundant abundance information. For 
example, when using Lefse to select features based the 
Erawijantari study, the output contained Lactobacillales, 
Streptococcaceae, and Streptococcus (Supplementary Fig. 
S2A), which are all directly related features that carry nested 
but redundant feature abundance information (i.e., the abun
dance of Streptococcus is contained within the abundance of 
Streptococcaceae). And while Boruta performs slightly better 
than TaxaHFE in almost every case (Supplementary Fig. 
S2B), it exhibits similar behavior as Lefse, choosing features 
with redundant feature abundance information 
(Supplementary Fig. S2C). For some types of analyses this be
havior is desirable. However, for explicit feature reduction, 
we suggest that TaxaHFE’s method of removing overlapping 
features is usually preferable to aid interpretation of biologi
cal data.

A
B

C

Figure 4. Testing TaxaHFE on hierarchically organized dietary data. ML performance metrics of models predicting average fiber intake using food tree 
data (A) and number of features used for model building. Shapley values (B, C) of the most informative features from a model built using TaxaHFEþSF 
data as input or L6 as input. Colored font levels are those shared with TaxaHFE.
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Importantly, TaxaHFE-preprocessed data improves the 
performance of ML models, especially compared to models 
produced using the lowest taxonomic levels available (e.g. 
species). This is perhaps not altogether surprising; indeed, a 
common observation across many microbiome studies is the 
highly personalized nature of microbiomes (Oliver et al. 
2021). It stands to reason then, that while utilizing the most 
resolved taxonomic data might best highlight differences 
from person to person, it will often mask more generalizable 
microbial responses within heterogeneous cohorts. HFE 
allows for the capture of these more generalizable responses, 
concomitantly increasing the accuracy of ML models in the 
process. We note, however, that if the goal is a generalizable 
model, using feature engineering inside of a cross-validation 
strategy is important to avoid data leakage (Aldehim and 
Wang 2017). We briefly examined the similarity of features 
selected across k¼ 3-fold partitions of the data and found a 
high amount of dissimilarity (83%, data not shown) among 
the features selected in each fold. One reason for this variabil
ity is the small number of samples in the published studies we 
used to assess TaxaHFE (mean 262 samples). Like other fea
ture reduction tools, we expect the performance of TaxaHFE 
will suffer when samples are limited.

Overall, perhaps the most important aspect of TaxaHFE is 
the gains in interpretability. In the microbiome example of 
the status quo method of using the lowest level taxa (Fig. 3F), 
it is difficult to interpret the meaning of the ten species se
lected, each with a very low SHAP value. But with TaxaHFE 
(Fig. 3D and E), it is readily apparent that the class 
Gammaproteobacteria and family Streptococcaceae are top 
predictors of antimicrobial resistance in the human gut 
microbiome and their SHAP values are an order of magnitude 
higher. The relationship between Gammaproteobacteria and 
antibiotic resistance has been shown previously in a Hi-C 
study linking ARGs to their microbial hosts (Stalder et al. 
2019). Moreover, when considered together TaxaHFE- 
selected features also appear to explain more compositional 
variance than using a single taxonomic level (Fig. 2E). In the 
diet example (Fig. 4C), the model based on the lowest taxo
nomic level is again difficult to interpret, with 456 individual 
food items (e.g. apples, bananas, avocados, oranges, olive oil, 
salty corn snacks, flax seeds, etc.) predictive of fiber intake. 
TaxaHFE reports low intake of other_fruits (non-citrus), 
legumes/nuts/seeds, uncooked cereals, and vegetables of low 
fiber intake. The results from TaxaHFE suggest, for example, 
that it is the entire class of legumes/nuts/seeds that is predic
tive, not just flax seeds, which is more reasonable. For this 
reason, dietary data is traditionally summarized and reported 
at the highest taxonomic level (e.g. fruits, vegetables, dairy, 
meat, etc.). However, nuances like the association of low in
take of uncooked cereals with low fiber intake will be missed 
with such standard summary variables.

One shortcoming of TaxaHFE is its speed. For example, in 
a microbiome dataset with 4640 features, TaxaHFE took 
2 min 44 s, whereas the Oudah algorithm took only 13 s on a 
2.3 GHz Quad-Core IntelVR Core i7 machine. Future itera
tions of TaxaHFE could utilize a more distributed paralleliza
tion implementation.

Another limitation of TaxaHFE is true of all ML algo
rithms in that large high-quality datasets are needed. Without 
sufficient information in the data (i.e., no relationship be
tween the response variable and the features) all ML algo
rithms will suffer. However, what may not be obvious to 

users is that in the absence of information, ML algorithms 
will still report results, which often represent noise. Methods 
for avoiding pitfalls of ML have been described elsewhere 
(Whalen et al. 2021), but we would be remiss to not echo 
them here. Specifically, we implore users to not merely trust 
models based on their accuracy alone but to also investigate 
the features utilized for making predictions.

5 Conclusion
We demonstrate that TaxaHFE dramatically reduces the fea
ture space of hierarchically organized data while generally in
creasing the performance of downstream ML models and 
improving interpretability. While our examples come from mi
crobiology and nutrition research, TaxaHFE could be used 
with any dataset that has hierarchically related features. 
Moreover, TaxaHFE removes the prerequisite of choosing a 
taxonomic level that captures the most information relative to 
a response of interest, removing the need to ask, “At what tax
onomic level should I analyze my data?” Overall, we suggest 
that HFE can lead to more accurate and interpretable models.
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