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Abstract

Use and analysis of new optimization techniques for decision theory and data mining

by

Erick Moreno Centeno

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Dorit S. Hochbaum, Chair

This dissertation addresses important problems in decision theory and data mining. In par-
ticular, we focus on problems of the form: Each of several information sources provides
evaluations or measurements of the objects in a universal set, and the objective is to ag-
gregate these, possibly conflicting, evaluations into a consensus evaluation of each object in
the universal set. In addition, we concentrate on the scenario where each source provides
evaluations of only a strict subset of the objects; that is, each source provides an incomplete
evaluation.

In order to define the consensus evaluation from a given set of incomplete evaluations,
two distances are developed: the first is a distance between incomplete rankings (ordinal
evaluations) and the second is a distance between incomplete ratings (cardinal evaluations).
These two distances generalize Kemeny and Snell’s distance between complete rankings and
Cook and Kress’ distance between complete ratings, respectively. Specifically, we introduce
a set of natural axioms that must be satisfied by a distance between two incomplete rankings
(ratings) and prove the uniqueness and existence of a distance satisfying such axioms. Given a
set of incomplete rankings (ratings), the consensus ranking (rating) is defined as the complete
ranking (rating) that minimizes the sum of distances to each of the given rankings (ratings).
We provide several examples that show that the consensus ranking (rating) obtained by this
approach is more intuitive than that obtained by other approaches.

Finding the consensus ranking is NP-hard, thus we develop two optimization method-
ologies to find the consensus ranking: one efficient approximation algorithm based on the
separation-deviation model and one exact algorithm based on the implicit hitting set ap-
proach. In addition, we show that the optimization problem that needs to be solved in order
to find the consensus rating is a special case of the separation-deviation model (hereafter
SD model), which is solvable in polynomial time. In this sense the herein developed theory
(described in the previous paragraph) can be thought of an axiomatization of the SD model.

Three applications of the SD model are presented: rating the credit-risk of countries;
customer segmentation; and ranking the participants in a student paper competition. In
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the credit-risk rating study, it is shown that the SD model leads to an improved aggregate
rating with respect to several criteria. We compare the SD model with other aggregation
methods and show the following: Although the SD model is a method to aggregate cardinal
evaluations, the aggregate credit-risk ratings obtained by the SD model are also good with
respect to “ordinal criteria”. Several properties of the SD model are proven, including the
property that the aggregate rating obtained by the SD model agrees with the majority of
agencies or reviewers, regardless of the scale used.

The customer segmentation study shows how to use the SD model to process data on
customer purchasing timing. The outcome of the SD model provides insights on the rate
of new product adoption by the company’s consumers. In particular, the SD model is used
as follows: given the purchase dates for each customer of several products, this information
is aggregated in order to rate the customers with regard to their promptness to adopt new
technology. We show that this approach outperforms unidimensional scaling—a widely used
data mining methodology. We analyze the results with respect to various dimensions of the
customer base and report on the generated insights.

The last presented application illustrates our aggregation methods in the context of the
2007 MSOM’s student paper competition. The aggregation problem in this competition
poses two challenges. First, each paper was reviewed only by a very small fraction of the
judges; thus the aggregate evaluation is highly sensitive to the subjective scales chosen by
the judges. Second, the judges provided both cardinal and ordinal evaluations (ratings and
rankings) of the papers they reviewed. This chapter develops the first known methodology
to simultaneously aggregate ordinal and cardinal evaluations into a consensus evaluation.

Although the content of this dissertation is framed in terms of decision theory, Hochbaum
showed that data mining problems can be viewed as special cases of decision theory problems.
In particular, the customer segmentation study is a classic data mining problem.
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Chapter 1

Introduction

One of the most important problems in decision theory is the group-decision making
problem, which consists of aggregating several individual evaluations of a set of objects
into a collective evaluation of those objects. This group-decision making problem has been
widely-studied and has many applications, such as: voting (electors choose one among several
candidates), jury decisions (judges evaluate competitors and rank them), consumer opinion
aggregation (consumers evaluate a set of products), and project selection (committee mem-
bers choose one or more projects among several).

In general, the group-decision problem is defined as follows: A group of individuals, which
we refer to as judges or reviewers, must collectively evaluate all of the objects in a set. The
problem is to aggregate the individual evaluations into a collective evaluation that aims to
represent the individuals’ assessments; such collective evaluation is referred to as consensus.

Group-ranking problems are differentiated by whether the evaluations are given in ordinal
or cardinal scales. An ordinal evaluation, or ranking, is one where the objects are ordered
from “most preferred” to “least preferred” (allowing ties). In other words, the most preferred
object(s) is assigned to the ordinal number ‘first’, the next preferred object(s) is assigned
to the ordinal number ‘second’, and so on. Specifically, in a ranking numbers indicate the
relative position of the objects, but not a magnitude of difference. A cardinal evaluation, or
rating, is one where the objects are assigned a scalar which is a cardinal score/grade. In a
rating, the difference between the scores of two objects indicates the magnitude of separation
between such objects. Depending on the type of evaluations being aggregated, group-ranking
problems are characterized as ranking aggregation problem or rating aggregation problems.

The individual evaluations input to a group-ranking problem can be complete or incom-
plete. If an individual ranks (rates) all of the objects, then we say that he/she provides a
complete evaluation; otherwise we say that he/she provides an incomplete evaluation. Re-
gardless of the completeness (or lack thereof) of the given individual evaluations, we require
that the collective evaluation is complete.

Most of the group-decision making literature concerns models that assume the judges’
evaluations are complete. In contrast, in most applied settings the judges’ evaluations are
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incomplete: in all of the aforementioned group-decision making applications it is conceiv-
able that electors/judges/consumers/committee members do not evaluate all of the objects.
Moreover, in the context of eliciting consumer opinions, Gibbons [32, page 257] states that
the ability of respondents “to rank objects effectively and reliably may be a function of the
number of comparative judgments to be made. For example, after 10 different brands of
bourbon have been tasted, the discriminatory powers of the observers may legitimately be
questioned.” Similarly, in the context of Internet, a problem of particular interest is how to
create a robust meta-search engine that combines the results of several search engines [24].
In this problem, it is inconceivable to ask each search engine to rank all webpages and then
to create a consensus meta-search by aggregating all these rankings.

In the group-decision making problem, the objective is to determine a consensus eval-
uation that best agrees with the judges’ evaluations. Note that the existence of a measure
of agreement or disagreement between evaluations is implicit in the problem statement.
Therefore, one subarea of group-decision making has concentrated on the axiomatic charac-
terization of distance functions; each of these axiomatic distances is defined on a different
“evaluation space.” For example, Kemeny and Snell [49]—the pioneers in this subarea—
defined an axiomatic distance in the space of complete rankings; Bogart [9, 10] defined an
axiomatic distance in the space of strict partial orders; Cook, Kress and Seiford [21] defined
an axiomatic distance in the space of non-strict partial orders; and, Cook and Kress [20]
defined an axiomatic distance in the space of complete ratings (they referred to ratings as
“ordinal rankings with intensity of preference”). We refer to all of these methods as axiomatic
distance-based methods.

The judges’ evaluations can also be expressed as pairwise comparisons. That is, each
judge gives pairwise intensities of preference between object pairs. The intensity of preference
may be expressed either in an additive (e.g., in [4]), or a multiplicative sense (e.g., in [56]).
Here we use intensities of preference in the additive sense. That is, the intensity of preference
represents the difference between the strengths of the two objects compared. We will use
the term separation gap to refer to the additive intensity of a preference. Hochbaum’s
separation-deviation model (SD model) [37, 38, 41] is, to the best of our knowledge, the
only aggregation method that permits the combination of both kinds of inputs: ratings and
pairwise comparisons.

The contributions of this dissertation are:
• Developing an axiomatic distance-based method to derive the consensus ranking from

a given set of incomplete rankings—a generalization of Kemeny and Snell’s complete-
ranking aggregation method.
• Providing two optimization methodologies to find the consensus ranking: one efficient

approximation algorithm based on the SD model, and one exact solution methodology
based on the implicit hitting set approach (developed in [47]).
• Developing an axiomatic distance-based method to derive the consensus rating from a

given set of incomplete ratings—a generalization of Cook and Kress’ complete-rating
aggregation method.
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• Showing that the optimization problem that needs to be solved in order to find the
consensus rating is a special case of the SD model, which is solvable in polynomial
time.
• Illustrating the advantages of the SD model in the context of country-credit risk rating

and proving several properties of the SD model, including the property that the ag-
gregate rating obtained by the SD model, when aggregating a set of complete ratings,
agrees with the majority of the judges’ ratings.
• Demonstrating the advantages of our incomplete-rating aggregation method in the

context of customer rating, and comparing this approach to a widely-used data mining
methodology—unidimensional scaling. (Note: Hochbaum [39] added Data Mining to
the list of applications characterized as group-decision making problems. Specifically,
Hochbaum showed how the SD model could be applied to the following data mining
scenario: Given a database formed of a list of records, or cases, each case characterized
by an array of measurements; the goal is to identify a function that maps each record
array into a scalar value.)
• Proposing the first framework to simultaneously aggregate, both cardinal and ordinal

evaluations (i.e., ratings and rankings) into a consensus and illustrate the advantages
of this framework in the context of a student paper competition.

1.1 Preliminaries

1.1.1 Representations of ordinal evaluations

Consider the universe V of n objects to be ranked; and, without loss of generality, assign
a unique identifier to each object in V so that V = {1, 2, . . . , n}.

In the vector representation, a complete ranking is a vector of the form a = (a1, . . . , an),
where ai is the rank of object i. A natural way to represent an incomplete ranking as a
vector is by setting ai equal to a special symbol • if object i is not ranked in a. Given an
incomplete ranking a we denote as A the set of objects ranked in a.

For example, for V = {1, 2, 3, 4} the incomplete ranking a = ( 2
3 ) with object 2 as first,

object 3 as second, and objects 1 and 4 not-ranked is represented as a = (•, 1, 2, •); here
A = {2, 3}. Similarly, the incomplete ranking b = ( 4

1−3 ) with object 4 as first, objects 1 and
3 tied as second, and object 2 not-ranked is represented as b = (2, •, 2, 1); here B = {1, 3, 4}.
All the theory reviewed and developed in this dissertation is independent of the convention
used to report ties (all that is required is that the tied objects have the same rank). So, for
example, the ranking b can also be represented as b = (2.5, •, 2.5, 1).

Throughout this dissertation we will primarily use the vector representation, however, in
some instances the Kemeny-Snell representation [49] will be utilized. Under Kemeny-Snell,
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the ranking a is represented by an n by n matrix (aij). Where,

aij =


1 if i is preferred to j,

−1 if j is preferred to i,

0 if i and j are tied.

Any ranking can be represented by such a matrix, but for a given matrix to represent a
ranking, it must satisfy the properties of a ranking: The preference relationship aij = 1 must
be asymmetric and transitive, and the “tie” relationship aij = 0 must be an equivalence
relation.

A natural way to extend the Kemeny-Snell representation for incomplete rankings is to
set aij = aji = • for j = 1, . . . , n when object i is not ranked in a.

It should be clear from our notation that when we use one subscript, we are using the
vector representation, and, when we use two, we are using Kemeny-Snell’s. The Kemeny-
Snell representation can be obtained from the vector representation as follows:

aij =

{
sign(aj − ai) if ai 6= • and aj 6= •
• otherwise.

In the ranking aggregation problem, each one of K judges provides a ranking ak of the
objects in V . In the complete-ranking aggregation problem, all of the judges’ rankings are
complete, and, in the incomplete-ranking aggregation problem, some or all of the judges’
rankings are incomplete.

1.1.2 Representations of cardinal evaluations

As before, consider the universe V of n objects to be rated; and, without loss of generality,
assign a unique identifier to each object in V so that V = {1, 2, . . . , n}.

In the vector representation, a complete rating is a vector of the form a = (a1, a2, . . . , an),
where ai is the cardinal evaluation, or score, of object i. A natural way to represent an
incomplete rating as a vector is by setting ai equal to a special symbol • if object i is not
rated in a. Given an incomplete rating a we denote as A the set of objects rated in a.

Throughout this dissertation it is assumed that possible scores are the integers contained
in some pre-specified interval [`, u]. Generally, this is the case in any group-decision making
scenario: Judges are given a grading scale from which they must assign a score to the objects
being evaluated. The range of the ratings is defined as R ≡ u− `.

Alternatively, the judges’ evaluations can be expressed as pairwise comparisons. That
is, each judge gives pairwise intensity of preferences between object pairs. The intensity
of preference between a pair of objects may be used either in the additive (e.g., in [4]), or
multiplicative sense (e.g., in [56]). Here we use intensities of preference in the additive sense.
That is, the intensity of preference represents the difference between the strengths of the two
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objects compared. We will use the term separation gap to refer to the additive intensity of
a preference.

In order to represent cardinal evaluations that are given in the form of separation gaps,
we use a separation gap matrix (Cook and Kress [20] refer to this matrix as the intensity
of preference matrix ). In this representation, the cardinal evaluations are represented by
a matrix (pij)i,j=1,...,n, where, pij gives the separation gap between object i and object j.
Specifically, pij is a cardinal number giving the additive intensity of preference by which
object i is preferred to object j (if object j is preferred to object i, then pij will be negative).

A separation gap matrix is said to be consistent if for all triplets i, j, k, pij + pjk = pik.
Consistency is equivalent to the existence of rating a so that pij = ai− aj for i, j = 1, . . . , n.
This rating is not unique since for any scalar c the rating a + c has also the same set of
differences. In contrast, a rating a uniquely defines a separation gap matrix: p

(a)
ij = ai − aj

for i = 1, . . . , n.
Throughout this dissertation we assume that all separation gap matrices are consistent;

moreover, all separation gap matrices are calculated from a given rating. For that reason,
hereafter we denote as (aij)i,j=1,...,n the separation gap matrix that is calculated from the
rating a = (ai)i=1,...,n. It should be clear from our notation that ai refers to the cardinal
score of object i and aij refers to the separation gap of object i over object j. In Chapter
3 we demonstrate that, even when the input to a complete-rating aggregation problem is
given only as ratings, it is also useful to consider their corresponding separation gaps.

A natural way to represent a separation gap matrix corresponding to an incomplete rating
is to set aij = aji = • for j = 1, . . . , n when object i is not rated in a.

In the rating aggregation problem, each one of K judges provides a rating ak of the
objects in V . The separation gap matrices corresponding to each of the judges’ ratings are
denoted by (pkij)

n
i,j=1. In the complete-rating aggregation problem, all of the judges’ ratings

are complete, and, in the incomplete-rating aggregation problem, some or all of the judges’
ratings are incomplete.

1.2 Literature Review

Here we review the literature that is common to all chapters.

1.2.1 Review of the separation-deviation model (SD model)

The SD model, developed in [37, 38, 41], considers an scenario where the input to the
rating process is in the form of separation gaps, and, in addition, the reviewers can also
provide ratings.

The input of the SD model can be stated in terms of a multi-graph G = (V,A). Each node
i ∈ V corresponds to an object, and each arc (i, j) ∈ A represents a comparison between
two objects. Since there are several judges, each possibly having a different separation gap
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for the same pair of objects, a pair of nodes can have multiple arcs in between. The weight
associated with each arc represents the separation gap pkij of the ith object over the jth object
as given by the kth judge. Additionally, if the kth judge provides a score of the ith object,
then node i has the weight aki associated with it (a node can have multiple weights associated
with it).

Let the variable x be the aggregate rating, and the variable z be the corresponding aggre-
gate separation gap matrix. The mathematical programming formulation of the separation-
deviation model, given in [41] is:

(Sep-Dev) min
x, z

K∑
k=1

n∑
i=1

n∑
j=1

fkij(zij − pkij) +
K∑
k=1

n∑
i=1

gki (xi − aki ) (1.1a)

subject to zij = xi − xj i = 1, . . . , n; j = 1, . . . , n (1.1b)

` ≤ xi ≤ u i = 1, . . . , n (1.1c)

xi ∈ Z i = 1, . . . , n. (1.1d)

The function fkij(·), called separation penalty function, penalizes the difference between the
aggregate separation gap of the object pair (i, j) and the kth judges’ separation gap of
the object pair (i, j). The function gki (·), called deviation penalty function, penalizes the
difference between the aggregate rating of object i and the kth judges’ cardinal score of
object i. In order to ensure polynomial-time solvability, the functions fkij(·) and gki (·) must
be convex. In the context of rating aggregation, the penalty functions assume the value 0
for the argument 0. If the kth judge did not gave a separation gap on the pair (i, j) (i.e.,
pkij = •), then fkij(·) is set to zero; similarly, if the kth judge did not gave a cardinal score
on the ith object (i.e., ai = •), then gki (·) is set to zero. Equation (1.1b) enforces that the
aggregate separation gaps correspond to the aggregate rating.

We refer to the SD model with no deviation functions, or gki () ≡ 0 for k = 1, . . . , K, as
the separation model. In the separation model, for any feasible solution x and any constant
c, x + c e (where e is the vector of ones) is also a feasible solution with the same objective
value. Therefore the separation model has an infinite number of optimal solutions. To avoid
this, the rating of an arbitrarily selected anchor node is set to zero, e.g. x1 = 0. The other
aggregate scores xi for i = 2, . . . , n are then relative to this ‘anchor’ value. The mathematical
representation of the separation model as optimization problem is:

(Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

fkij(zij − pkij) (1.2a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n) (1.2b)

x1 = 0. (1.2c)

For both (Sep-Dev) and (Sep) it is easy to see that a feasible solution always exists. This
holds since, e.g. for some k, the solution xi = rk1 for i = 1, . . . , n and zij = xi − xj for
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i, j = 1, . . . , n, is obviously feasible. The uniqueness of the optimal solution is guaranteed
when the functions fkij() and gki () are strictly convex functions. Otherwise the separation-
deviation model might have multiple optimal solutions.

1.2.2 Review of the Kemeny and Snell’s theory

Kemeny and Snell [49] proposed a set of axioms which any distance between complete
rankings must satisfy, proved that the axioms lead to the existence of a unique distance
function—referred to as the Kemeny-Snell distance.

Kemeny-Snell’s distance can be interpreted as follows: The distance between two com-
plete rankings a and b is given by the total number of rank reversals between them. A
rank reversal is incurred whenever two objects have a different relative order in the complete
rankings a and b. Similarly, half a rank reversal is incurred whenever two objects are tied
in one ranking but not in the other ranking.

Given a set of complete rankings, Kemeny and Snell defined the consensus ranking to be
the ranking with the minimum sum of distances to the given rankings. Kemeny and Snell
did not provide a method for finding such a consensus ranking. Subsequently, Bartholdi et.
al. [6] showed that finding the Kemeny-Snell consensus ranking is NP-hard.

1.3 Organization of the dissertation

With the exception of the material presented in the previous section, which is common
to all chapters and is required to understand what follows, the subsequent chapters are
presented in as self-contained a manner as possible.

Chapter 2 - Axiomatic distances for aggregating incomplete evaluations

Kemeny and Snell’s (Cook and Kress’) axiomatic distance in the space of complete
rankings (ratings) is generalized in order to define an axiomatic distance in the space
of incomplete rankings (ratings). Specifically, this chapter: (1) introduces a set of
natural axioms that must be satisfied by a distance between two incomplete rankings
(ratings); (2) proves the uniqueness and existence of a distance satisfying such axioms;
(3) shows that this distance is equivalent to Kemeny and Snell’s (Cook and Kress’)
distance on their subspace of complete rankings (ratings); and (4) shows that the
consensus ranking obtained when using our axiomatic distance is more intuitive than
that obtained by other approaches.

Given a set of incomplete rankings (ratings) and a distance between incomplete rank-
ings (ratings), the consensus ranking (rating) is defined as the complete ranking (rating)
with the minimum sum of distances to the given rankings (ratings). In this chapter we
give specific algorithms to find the consensus ranking (rating) using the herein-defined
distance. Since finding the consensus ranking is NP-hard, we develop two optimization
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methodologies: one efficient approximation algorithm based on the SD model, and one
exact solution methodology based on the implicit hitting set approach (developed in
[47]). We show that the optimization problem that needs to be solved in order to find
the consensus rating is a special case of the SD model, thus solvable in polynomial
time.

Since our distance on the space of incomplete rankings (ratings) is equivalent to Ke-
meny and Snell’s (Cook and Kress’) distance on their subspace of complete rankings
(ratings), the developed algorithms can be also used in the case where the given rank-
ings (ratings) are complete. Since one of the developed algorithms, finds a consensus
ranking with the additional restriction of not containing ties, the herein-developed
methodology to derive a consensus ranking can be thought of as a unifying framework
for ranking aggregation: It can be used to aggregate rankings that are complete, in-
complete, contain ties, or do not contain ties; and the consensus ranking can be further
restricted to not contain ties.

Chapter 3 - Country credit-risk rating aggregation

This chapter addresses the problem of aggregating several conflicting country credit risk
ratings into a consensus rating. Country credit-risk ratings quantify the risk associated
with investing in a given country. Haque et al. [35] define country credit-risk rating
as an estimate of the probability that a country will fail to pay back its debt. To
satisfy increasing investor need for information on countries’ creditworthiness, several
agencies periodically publish country credit-risk ratings. Often there are differences
between the agencies’ credit-risk ratings for a particular country. It is therefore of
interest to aggregate those differing views into a coherent rating that represents a
group consensus capturing the different expertise of the rating agencies.

Within this dissertation, this chapter is the only one dealing with the aggregation of
complete ratings. In this context, we demonstrate that, even when the input is given
only as ratings, it is also useful to consider the implied separation gaps. The use of
separation gaps is shown to mitigate the effect of inflated scores or shifts in evaluation
scale.

The most commonly used method of rating aggregation is the averaging method. In
this method the aggregate score of each country is the average of the ratings scores
that this country received from all of the judges. We assess the performance of the
separation-deviation model and compare the model to the averaging method, using
several performance measures. We demonstrate that, for aggregating complete ratings,
the aggregate rating obtained by the SD model better preserves the relative order of
the objects induced by each of the input ratings as compared to the aggregate rating
obtained by the averaging method.

In this chapter we also prove several properties of the SD model when applied to the
complete-rating aggregation problem; for example, that the aggregate rating obtained
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by the SD model agrees with the majority of agencies or judges, regardless of the scale
used.

Chapter 4 - Rating customers according to their promptness to adopt new tech-
nology

This chapter studies the problem of customer segmentation. Here the segmentation
is according to the promptness to adopt new technology. In particular, this chapter
addresses the following problem: Given a set of customers, a set of products, and
the purchase times of each customer-product pair, rate each customer according to
its adoption promptness. We focus on the problem where the information available
is incomplete; that is, there are customers who do not purchase every product. We
illustrate our methodology on data obtained from Sun Microsystems. We compare our
methodology to the well known unidimensional scaling methodology, which is widely
used for customer segmentation as well as in several other contexts (see, for example,
[27, 53, 31]).

Chapter 5 - Simultaneous aggregation of cardinal and ordinal evaluations: rank-
ing in a student paper competition

This chapter describes the ranking of the participants of the 2007 MSOM’s student
paper competition (SPC). The group-ranking problem arising in the context of SPC is
special in that the judges evaluating the papers provide both ratings and rankings.

We develop a group-decision making framework to simultaneously aggregate ratings
and rankings. The framework consists of finding the combined aggregate rating (CAT)
and its implied ranking, referred to as combined aggregate ranking (CAK). This rating-
ranking pair is the one that minimizes the sum of the distances from the CAT to the
judges’ ratings plus the sum of the distances from the CAK to the judges’ rankings.
The aggregation method is supplemented by two methods to identify inconsistencies
in the evaluations of the objects. This information is helpful to identify judges whose
rating scales significantly differ form those used by the rest of the judges.
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Chapter 2

Axiomatic distance-based methods for
aggregating incomplete evaluations

2.1 Introduction

This paper generalizes Kemeny and Snell’s (Cook and Kress’) axiomatic distance in the
space of complete rankings (ratings) in order to define an axiomatic distance in the space of
incomplete rankings (ratings). Specifically, this paper (1) introduces a set of natural axioms
that must be satisfied by a distance between two incomplete rankings (ratings); (2) proves
the uniqueness and existence of a distance satisfying such axioms; and (3) shows that this
distance is equivalent to Kemeny and Snell’s (Cook and Kress’) distance on their subspace
of complete rankings (ratings).

In all of the axiomatic-distance based methods mentioned in Chapter 1, the consensus
evaluation is defined as the median evaluation of the judges’ evaluations. For example,
Kemeny and Snell define the consensus ranking as the median complete ranking, and Cook
and Kress define the consensus rating as the median complete rating. The median is defined
as follows: Given a finite collection Ω of points in a metric space, a median of Ω is a point
in the space with minimum sum of distances to the points in Ω. Unfortunately, in all of the
aforementioned evaluation spaces medians may not be unique. Given a set of incomplete
rankings (ratings), we define the consensus ranking (rating) as the complete ranking (rating)
with the minimum sum of distances to the given rankings (ratings). In this sense, we require
that the consensus evaluation is in a subspace of the evaluation space. However, with a
slight abuse of notation, we refer to our consensus ranking (rating) as a median ranking
(rating). The requirement of the consensus evaluation to be complete captures the nature of
the group-decision making problem; where it would be unacceptable to obtain a consensus
ranking (rating) that is incomplete—after all, the group’s goal is to evaluate every object
in V . Hereafter we use the terms consensus ranking (rating) and median ranking (rating)
interchangeably.
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The contributions of this paper include showing that the consensus ranking obtained
when using the herein-defined axiomatic distance is more intuitive than that obtained by
other approaches. In addition, this paper provides specific algorithms to find the median
ranking (rating). Since the herein-defined distance on the space of incomplete rankings
(ratings) is equivalent to Kemeny and Snell’s (Cook and Kress’) distance on their subspace
of complete rankings (ratings), the proposed algorithms can also be used in the case where
the given rankings (ratings) are complete. Since one of the proposed algorithms, finds a
consensus ranking with the additional restriction of not containing ties, the herein-proposed
methodology to derive a consensus ranking can be thought of as a unifying framework for
ranking aggregation: It can be used to aggregate rankings that are complete, incomplete,
contain ties, or do not contain ties; and the consensus ranking can be further restricted to
not contain ties.

This paper is organized as follows: Section 2.2 presents the literature review, with special
emphasize on Kemeny-Snell’s complete-ranking aggregation model (§2.2.1), and Cook-Kress’
complete-rating aggregation model (§2.2.2). Section 2.3 develops the incomplete-ranking
aggregation method. Specifically, Section 2.3.1 introduces a set of natural axioms that must
be satisfied by any distance between two incomplete rankings; Section 2.3.2 proves that
these axioms lead to the existence of a unique distance function; Section 2.3.3 shows that
the consensus ranking obtained with this approach is more intuitive than that obtained with
other approaches previously suggested in the literature; Section 2.3.4 shows that finding
the consensus ranking is NP-hard; and proposes two optimization methodologies to find
the consensus ranking—one efficient heuristic based on the separation-deviation model, and
one exact solution methodology based on the implicit hitting set approach [47]. Section 2.4
develops the incomplete-rating aggregation method. Specifically, Section 2.4.1 introduces a
set of natural axioms that must be satisfied by any distance between two incomplete ratings;
Section 2.4.2 proves that these axioms lead to the existence of a unique distance function;
§2.4.3 shows that the consensus rating can be found in polynomial time since this problem
turns out to be a special case of the separation-deviation model.

2.2 Literature review

A number of distance-based methods have been developed to address the group-decision
making problem; each method solving a different variant of the problem. The difference
between these methods is the type of evaluations (complete rankings, complete ratings,
strict partial orders, non-strict partial orders, etc.) being aggregated. Regardless of the type
of evaluations, all of these methods are developed as follows: (1) provide a set of axioms
which any distance in the evaluation space should satisfy, (2) prove that the axioms lead to
the existence of a unique distance function, and (3) provide solution procedures to find the
consensus evaluation—although not all studies provide solution procedures.

Kemeny and Snell [49] were the first researchers to propose a distance-based method, they
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examined the problem where the evaluations are given as complete rankings that allow ties,
or weak orderings. Since our axioms (given in §2.3.1), for a distance between incomplete
rankings, are generalizations of Kemeny-Snell’s axioms, section 2.2.1 thoroughly reviews
their work.

Bogart [9, 10] looked at the problem of aggregating strict partial orders. A strict partial
order is a binary relation that is irreflexive, asymmetric and transitive. Bogart’s distance,
defined in the space of strict partial orders, is equivalent to Kemeny-Snell’s distance in the
subspace of complete rankings. Bogart neither provided a method for finding the consensus
strict partial order, nor analyzed the complexity of such problem. Section 2.3.3 briefly
reviews Bogart’s distance and shows that, with a minor modification, Bogart’s distance
can be used as a distance between incomplete rankings. When using Bogart’s distance to
aggregate incomplete rankings, the consensus ranking tends to favor rankings that do not
contain ties (see section 2.3.3).

Cook, Kress and Seiford [21] examined the problem of aggregating non-strict partial
orders. A non-strict partial order is a binary relation that is reflexive, antisymmetric and
transitive. In particular, a non-strict partial order allows three levels of comparison between
each pair of objects, namely, strict preference, tied preference and “no comparison.” Cook-
Kress-Seiford’s distance, defined in the space of non-strict partial orders, is also equivalent
to Kemeny-Snell’s distance in the subspace of complete rankings. Cook, Kress and Seiford
did not provide a method for finding the consensus non-strict partial order, nor did they
analyze the complexity of such a problem. Section 2.3.3 briefly reviews Cook-Kress-Seiford’s
distance, which can also be used as a distance between incomplete rankings. When using
Cook-Kress-Seiford’s distance to aggregate incomplete rankings, the consensus ranking tends
to favor rankings that contain ties (see section 2.3.3).

Kemeny-Snell’s distance can be easily extended to a distance between incomplete rank-
ings: The distance between two incomplete rankings, a and b, is the total number of rank
reversals between them, where, the rank reversals are only summed over the object-pairs that
are ranked in both a and b. For reasons that will become clear later, we call this distance
the projected Kemeny-Snell distance, or PKS distance. The PKS distance was explored by
Dwork et. al. [24] and Cook et al. [19]. We note that both, [24] and [19], only consider strict
rankings, that is, rankings that do not contain ties. Unlike the other distances reviewed in
this section, neither Cook et al. nor Dwork et. al. provide a set of axioms that uniquely
define the PKS distance. This by itself is not so important; indeed in section 2.3.3 we prove
that there exists such a set of axioms. The trouble is that, when using the PKS distance to
aggregate incomplete rankings, the consensus ranking tends to be disproportionately closer
to the rankings that compare a large amount of objects as compared to other rankings (see
section 2.3.3). This limitation can be easily tracked down to the set of axioms that uniquely
define the PKS distance.

Dwork et. al. [24] and Cook et al. [19] developed a heuristic and a Branch-and-Bound
algorithm, respectively, for the following problem: Given a set ofK incomplete strict rankings
find the complete strict ranking with the minimum sum of PKS distances to the given
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rankings. The algorithms developed in this paper can be applied to solve the above problem.
Moreover, the herein-developed heuristic algorithm has no restriction on the given rankings
being strict (that is, the given rankings may or may not contain ties) and the consensus
ranking may or may not contain ties. Similarly, the herein-developed exact algorithm has
no restriction on the input rankings being strict; however, the consensus ranking is limited
to not containing ties.

Cook and Kress [20] developed what they called an “ordinal ranking with intensity of
preference.” The motivation behind this model was to capture the relative intensities of
preference:

It is often common to require that voters supply not only a list of preferences,
but some expression of intensity of preference as well. For example, in ranking
R&D projects it is often the case that a committee member is given a 100-point
scale, and each of n projects (n = 20, say) is to be positioned at an integer point
on this scale. Thus, a particular voter may choose to place the first ranked object
at position 1, the second at position 4, the third at position 5, and so on. In this
example the voter perceives a greater intensity of preference for the first object
over the second than for the second over the third. Obviously, this intensity
component must not be ignored. Yet, it cannot be handled conveniently within
the framework of existing axiomatic models such as that of Kemeny and Snell.
[20]

In this quote Cook and Kress were referring to what we defined as a complete rating. In [20],
Cook and Kress (1) provided a set of axioms, similar to those of Kemeny and Snell, which
any distance between ratings should satisfy; (2) proved that the axioms lead to the existence
of a unique distance function; and (3) discussed a (not-polynomial-time) algorithm to find
the consensus rating. Ali et. al. [4] showed that the consensus rating could be obtained in
polynomial time by formulating this problem as an integer program over a totally unimodular
constraint matrix.

In [37, 38, 41] Hochbaum developed the separation-deviation model, thoroughly reviewed
in §1.2.1. The separation-deviation model (hereafter SD model) is solvable via network flow
techniques, yet it is a very general group-decision making model since it can accept a wide va-
riety of cardinal inputs: complete ratings, incomplete ratings, pairwise comparisons (defined
in §1.2.1), pointwise-scores (defined in §1.2.1) and even imprecise beliefs about the given
cardinal evaluations. Finding the consensus rating using Cook and Kress’ distance is a spe-
cial case of the SD model. Similarly, finding the consensus rating using the herein-developed
axiomatic distance between incomplete ratings is a special case of the SD model. Moreover,
the herein-developed heuristic to solve the incomplete ranking aggregation problem is based
on the SD model.
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2.2.1 Kemeny-Snell’s distance between complete rankings

Kemeny and Snell [49], proposed a set of axioms describing a distance function between
complete rankings. In order to present Kemeny-Snell’s axioms the following concepts are
defined.

Definition 2.2.1. A ranking b is between rankings a and c if, for each pair of objects i
and j, the preference judgment of b either agrees with a; or, agrees with c; or, a prefers i,
c prefers j, and b ties i and j.

Definition 2.2.2. A set S of objects is a segment of a given ranking a if S̄ (the complement
of S) is not empty and if the rank ai of every element i in S̄ is either higher than that of
every element of S, or lower than that of every element of S.

Kemeny and Snell argue that a distance, d(·, ·), between two complete rankings, a and
b, should satisfy the following axioms:

Axiom K1 (Nonnegativity) d(a, b) ≥ 0, and d(a, b) = 0 if and only if a and b are the
same ranking.

Axiom K2 (Commutativity) d(a, b) = d(b,a).

Axiom K3 (Triangular inequality) d(a, b) + d(b, c) ≥ d(a, c), and the equality holds if
and only if b is between a and b.

Axiom K4 (Anonymity) If a′ results from a by a permutation of the objects in V , and
b′ results from b by the same permutation, then d(a, b) = d(a′, b′).

Axiom K5 (Extension) If two rankings a and b agree except for a set S of k elements,
which is a segment of both, then d(a, b) may be computed as if these k
objects were the only objects being ranked.

Axiom K6 (Scaling) The minimum positive unit is 1/2.

Axioms K1 to K3 are self-explanatory. Axiom K4 ensures that the distance does not depend
on the particular labeling of the objects. Axiom K5 states that, if the two rankings are in
complete agreement at the beginning and at the end of the list, and differ only as to the
ranking of k objects in the middle, then this distance is the same as if these k objects were
the only objects under consideration. Axiom K6 is just a matter of convention (choosing a
unit of measurement). Kemeny and Snell set the minimum positive unit to 1; however, as
explained below, their distance has a nicer interpretation if the minimum positive unit is
1/2.

Kemeny and Snell proved that Axioms K1 to K6 are simultaneously satisfied by only one
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distance, dKS(·, ·):

dKS(a, b) =
1

4

n∑
i=1

n∑
j=1

|aij − bij| (2.1a)

=
1

4

n∑
i=1

n∑
j=1

|sign(ai − aj)− sign(bi − bj)| , (2.1b)

where, equation (2.1a) uses Kemeny-Snell’s representation of rankings; and equation (2.1b)
uses the vector representation of rankings.

Kemeny-Snell’s distance, dKS(·, ·), has the following interpretation: The distance between
two rankings is given by the total number of rank reversals between them. A rank reversal
is incurred whenever two objects have a different relative order in the rankings a and b.
Similarly, half a rank reversal is incurred whenever two objects are tied in one ranking but
not in the other ranking.

2.2.2 Cook and Kress’ distance between complete ratings

Cook and Kress [20], proposed a set of axioms describing a distance function between
complete ratings. In order to present Cook-Kress’ axioms the following concepts are defined.

Definition 2.2.3. A rating b is between ratings a and c if, for every pair of objects i and
j, either aij ≤ bij ≤ cij or aij ≥ bij ≥ cij.

Definition 2.2.4. A rating a is said to be adjacent to a rating b if, for every pair of objects i
and j, |aij − bij| ≤ 1. That is, for every pair of objects the intensity of preference in ranking
b is either the same as in a or differs by exactly one unit.

Definition 2.2.5. A rating a is said to be adjacent of degree k to a rating b if a is adjacent
to b and |{(i, j) : |aij − bij| = 1, i < j}| ≤ k. That is, the set of all pairs of objects for which
the intensity of preference differs by one unit has cardinality k.

Cook and Kress argue that a distance, d(·, ·), between two complete ratings, a and b,
should satisfy the following axioms:

Axiom C1 (Nonnegativity) d(a, b) ≥ 0.

Axiom C2 (Commutativity) d(a, b) = d(b,a).

Axiom C3 (Triangular inequality) d(a, b) + d(b, c) ≥ d(a, c), and the equality holds if
and only if b is between a and b.

Axiom C4 (Proportionality) The distance between any two adjacent rankings is pro-
portional to the degree of adjacency.

Axiom C5 (Scaling) The minimum positive unit is 1.
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Cook and Kress proved that Axioms 1 to 5 are simultaneously satisfied by only one distance,
dCK(·, ·):

dCK(a, b) =
1

2

n∑
i=1

n∑
j=1

|aij − bij| (2.2a)

=
1

2

n∑
i=1

n∑
j=1

|(ai − aj)− (bi − bj)| , (2.2b)

where, equation (2.2a) uses Cook-Kress’ representation of ratings; and equation (2.2b) uses
the vector representation of ratings.

2.3 Incomplete-ranking aggregation

2.3.1 Axioms for a distance between incomplete rankings

In this section we modify Kemeny-Snell’s axioms (given in Section 2.2.1) in order to obtain
a set of axioms appropriate for a distance between incomplete rankings. Moreover, we want
to define a distance, d(·, ·), that is suitable for solving the incomplete-ranking aggregation
problem.

Recall that given the incomplete rankings of K judges,
{
a1, ...,aK

}
, the consensus rank-

ing r is the optimal solution to the following optimization problem:

min
r

K∑
k=1

d(ak, r), (2.3)

where the minimum is over all complete (strict and non-strict) rankings.
The aim of the axioms proposed in this section is to describe a distance between incom-

plete rankings such that, when this distance is used in problem (2.3), the consensus ranking
minimizes the disagreement of the judges. We now specify the axioms that our distance
must satisfy.

Throughout this section, the axioms are denoted using the number of the corresponding
Kemeny-Snell axiom. In addition, the axioms denoted by a prime are those that are modified
slightly so that they applied to distances between incomplete rankings. For example, Axiom
0 (below) has no corresponding Kemeny-Snell axiom; Axiom 1’ (below) is a slight variant of
Axiom K1; and Axiom 2 (below) corresponds exactly to Axiom K2.

First, d(·, ·) must capture our intuition of disagreement between incomplete rankings.
In particular, given two incomplete rankings a and b, d(a, b) must consider only the dis-
agreement between a and b in the objects ranked by both a and b (i.e., only the objects in
A
⋂
B). Intuitively, we want d(·, ·) to measure the disagreement in the relative order of the

ranked objects, not the disagreement on which objects were ranked. So, for example, given
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the incomplete rankings a = (1, 2, •, 3) and b = (•, 3, 2, 1), the distance should only consider
the objects in A

⋂
B = {2, 4}. Specifically, we do not say that a disagrees with b because

b doesn’t rank object 1; likewise, we do not say that b disagrees with a because a doesn’t
rank object 3; however, it is clear that rankings a and b disagree in their preference between
objects 2 and 4, with each object preferred over the other object by a and b, respectively.
This condition is self-explanatory; to make it mathematically precise, we need the following
definition.

Definition 2.3.1. Given a ranking a and a subset S of the object universe V , the projection
of a on S, denoted as a|S, is the ranking of the objects in S that preserves the relative order
of the objects specified by a on the objects in S.

The desired condition that d(a, b) must only consider the objects in A
⋂
B is expressed

as follows:

Axiom 0 (Relevance) d(a, b) = d(a|(A⋂
B), b|(A⋂

B))

The next two conditions, Axioms 1’ and 2, correspond to Axioms K1 and K2.

Axiom 1’ (Nonnegativity) d(a, b) ≥ 0, and d(a, b) = 0 if and only if a|(A⋂
B) and

b|(A⋂
B) are the same ranking.

Axiom 2 (Commutativity) d(a, b) = d(b,a).

The modification of Axiom 1’ (with respect to Axiom K1) has the same justification as
Axiom 0. That is, we want d(·, ·) to measure the disagreement in the relative order of the
ranked objects, not the disagreement on which objects were ranked. Therefore the rankings
a and b have no disagreement d(a, b) = 0 whenever they have the same preferences among
the objects ranked by both.

Notice that given two arbitrary incomplete rankings a and b, the set A
⋂
B might be

empty or contain just one object. In the case when A
⋂
B = ∅, we have that

d(a, b) = d(a|∅, b|∅) = d(∅, ∅) = 0,

where the first equality follows from Axiom 0; the second inequality follows since a ranking of
an empty set of objects is itself the empty set (interpreting a ranking as a partial order); and
the third inequality follows from Axiom 1’. A similar analysis shows that, when |A

⋂
B| = 1,

these axioms imply that d(a, b) = 0. This makes sense since two incomplete rankings that do
not rank the same objects (or, that only rank one object in common) have no disagreement.
In any case, for our purposes, we will only use d(·, ·) in the context of problem (2.3). In
particular, we only need to calculate the disagreement between a complete ranking and an
incomplete ranking. Thus the observation articulated in this paragraph is not important;
since we can assume, without loss of generality, that all of the given rankings ak rank at
least two objects.
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Axiom K3 requires that the distance satisfies the triangle inequality (d(a, b) + d(b, c) ≥
d(a, c)). This condition cannot be imposed directly on the distance, because this condition
is inconsistent with Axioms 0 and 1’. This is illustrated in the following example:

Let a = (1, 2, •), b = (•, 1, 2), and c = (2, 1, •). Since |A
⋂
B| = 1 and |B

⋂
C| = 1, we

have d(a, b) = 0 and d(b, c) = 0. On the other hand, from Axiom 1’ and the fact that a
and c are not the same ranking when projected to A

⋂
C, we have that d(a, c) > 0. This

clearly violates the triangle inequality. We nevertheless require that our distance satisfies a
“relaxed version” of the triangle inequality (Axiom 3’ below). Strictly speaking, d(·, ·) will
not be even a pseudometric, because it violates the (unrelaxed) triangle inequality.

Axiom 3’ (“Relaxed” triangular inequality) d(a|(A⋂
B
⋂
C), b|(A⋂

B
⋂
C))+

d(b|(A⋂
B
⋂
C), c|(A⋂

B
⋂
C)) ≥ d(a|(A⋂

B
⋂
C), c|(A⋂

B
⋂
C)), and equality holds if

and only if b|(A⋂
B
⋂
C) is between a|(A⋂

B
⋂
C) and c|(A⋂

B
⋂
C).

The next two conditions are identical to the corresponding Kemeny-Snell’s Axioms.

Axiom 4 (Anonymity) If a′ results from a by a permutation of the objects in V , and
b′ results from b by the same permutation, then d(a, b) = d(a′, b′).

Axiom 5 (Extension) If two rankings a and b agree except for a set S of k elements,
which is a segment1 of both, then d(a, b) may be computed as if these k
objects were the only objects being ranked.

The sixth and last Kemeny-Snell axiom, Axiom K6, is the scaling axiom. For the case of
complete rankings, this axiom is a mere convention. However, the scaling axiom is of central
importance for measuring the disagreement between incomplete rankings. More precisely,
the scaling axiom is of central importance for the incomplete-ranking aggregation problem,
and in particular for problem (2.3). The idea behind the scaling axiom is that, implicit in
the definition of the incomplete-ranking aggregation problem, all of the judges’ rankings,{
ak
}K
k=1

, have the same importance.
Axiom 0 requires that the distance is evaluated by projecting the two incomplete rankings

into the set of objects ranked by both. And problem (2.3) minimizes a sum of distances, each
of which may be evaluated over spaces of different number of dimensions. Therefore, since
distances in higher dimensional spaces tend to be bigger than distances in lower dimensional
spaces, the objective function of problem (2.3) will tend to be dominated by the distances
from r to the given incomplete rankings that rank a larger number of objects.

In light of the discussion in the previous paragraph, the following is argued: The distances
between incomplete rankings should be normalized so that all the distances in problem (2.3)
are comparable. This can be achieved by normalizing the distances so that they are between
zero and one (inclusively). So, a distance of zero will indicate total agreement, and a distance
of one will indicate total disagreement. Intuitively, given a ranking a, the ranking which
disagrees the most with a is its reverse ranking. A ranking a is the reverse ranking of b

1On the natural extension of a segment (Definition 2.2.2) to incomplete rankings.
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if, for every pair of objects i and j, either a prefers i and b prefers j or a prefers j and b
prefers i. Instead of having a scaling axiom like Kemeny and Snell, we impose the following
normalization axiom on our distance.

Axiom 6’ (Normalization) d(a, b) ≤ 1; and d(a, b) = 1 if and only if b|(A⋂
B) is the

reverse ranking of a|(A⋂
B).

2.3.2 Uniqueness and existence of a distance

This section shows that the distance between incomplete rankings given in equation
(2.4), here called the normalized projected Kemeny-Snell distance, or simply NPKS distance,
satisfies Axioms 0 to 6. Moreover, we prove that the NPKS distance is the unique distance
that simultaneously satisfies Axioms 0 to 6.

dNPKS(a, b) =

{
dKS(a|(A⋂

B),b|(A⋂
B))

(|A
⋂
B|2−|A

⋂
B|)/2 if |A

⋂
B| ≥ 2,

0 otherwise.
(2.4)

Lemma 2.3.2 ([49]). Given two complete rankings a and b on a set of objects V , dKS(a, b)
attains its maximum of (|V |2 − |V |)/2 when b is the reverse ranking of a .

Lemma 2.3.3. The NPKS distance satisfies Axioms 0 to 6.

Proof. It follows directly from equation (2.4) that dNPKS(·, ·) satisfies Axiom 0.
The nonnegativity of dNPKS(·, ·) follows from equation (2.4) and the nonnegativity of

dKS(·, ·). To see that dKS(·, ·) satisfies the second part of Axiom 1’, we consider three cases:
1. |A

⋂
B| = 0: In this case, dNPKS(a, b) = 0 and both a|(A⋂

B) and b|(A⋂
B) are rankings

over an empty set of objects; thus, they are, by definition, the same ranking. Therefore
the second part of Axiom 1’ is satisfied.

2. |A
⋂
B| = 1: In this case, dNPKS(a, b) = 0 and both a|(A⋂

B) and b|(A⋂
B) are rankings

over a set with a single object; thus, they are, by definition, the same ranking. Therefore
the second part of Axiom 1’ is satisfied.

3. |A
⋂
B| ≥ 2: In this case, dNPKS(·, ·) satisfies the second part of Axiom 1’ as a conse-

quence of equation (2.4) and the fact that dKS(·, ·) satisfies the second part of Axiom
K1.

Axioms 2, 4 and 5 follow from equation (2.4) and the fact that dKS(·, ·) satisfies Axioms
K2, K4 and K5, respectively.

Axiom 3’ follows from equation (2.4); the fact that a|(A⋂
B
⋂
C), b|(A⋂

B
⋂
C) and

c|(A⋂
B
⋂
C) are complete rankings; and the fact that dKS(·, ·) satisfies Axiom K3.

From Lemma 2.3.2 and equation (2.4) we have that dNPKS(·, ·) satisfies Axiom 6’.

Corollary 2.3.4. Axioms 0 to 6 are consistent.

Next, we show that Axioms 0 to 6 uniquely determine the NPKS distance.
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Theorem 2.3.5. The distance dNPKS(·, ·) is the unique distance satisfying Axioms 0 to 6
simultaneously.

Proof. The fact that dNPKS(·, ·) satisfies Axioms 0 to 6 was established in Lemma 2.3.3. So
we only need to show that no other distance satisfies Axioms 0 to 6 simultaneously. Let
d(·, ·) be a generic distance that satisfies Axioms 0 to 6. We shall prove the theorem by
showing that, for any two rankings a and b, we have d(a, b) = dNPKS(a, b). We divide our
analysis in the following three cases:
Case 1: |A

⋂
B| ≤ 1.

As argued in section 2.3.1, for any distance function satisfying Axioms 0 and 1’, and
for any two rankings a and b such that |A

⋂
B| ≤ 1, the distance must be equal to

zero.
Case 2: |A

⋂
B| ≥ 2, and both a and b are complete rankings.

Since in this Case 2 we are restricting our attention to complete rankings, it follows
that Axioms 1 to 5 are identical to Axioms K1 to K5. Therefore, since by assumption
d(a, b) satisfies Axioms 1 to 5 we have that d(a, b) satisfies axioms K1 to K5.
As explained in section 2.2.1, the sole purpose of Axiom K6 is to fix the measurement
unit; in other words, Axioms K1 to K5 uniquely determine a distance function up to
a scaling factor. Therefore, since both d(a, b) and dKS(a, b) satisfy Axioms K1 to K5,
it follows that d(a, b) = αdKS(a, b) for some constant α that may depend only on |V |.
From equation (2.4), and since in this Case 2 |V | ≥ 2 and A

⋂
B = V , we have that

dNPKS(a, b) = 1
(|V |2−|V |)/2dKS(a, b).

Let the ranking r be the ranking on which the objects are ranked according to their
index; that is r = (1, 2, ..., |V |). Let the ranking −r be the reverse ranking of r; that is
−r = (|V |, |V |−1, ..., 1). From Axiom 1 we have that d(r, r) = 0 and dNPKS(r, r) = 0,
and from Axiom 6 it follows that d(r,−r) = 1 and dNPKS(r,−r) = 1. Therefore, it
must be the case that α = 1

(|V |2−|V |)/2 .

We conclude that in this Case 2, as in Case 1, it is true that d(a, b) = dNPKS(a, b) for
any two rankings a and b.

Case 3: |A
⋂
B| ≥ 2, and at least one of a or b is an incomplete ranking.

In this Case 3, as in the two previous cases, it is true that d(a, b) = dNPKS(a, b) for
any two rankings a and b. This is shown by the following sequence of equalities.

d(a, b) = d(a|(A⋂
B), b|(A⋂

B))

=
1

(|A
⋂
B|2 − |A

⋂
B|)/2

dKS(a|(A⋂
B), b|(A⋂

B))

= dNPKS(a|(A⋂
B), b|(A⋂

B))

= dNPKS(a, b)

The first and last equalities follow from Axiom 0. The second equality follows from our
analysis of Case 1 and the fact that a|(A⋂

B) and b|(A⋂
B) are complete rankings over
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the set A
⋂
B. The third equality follows by definition of dNPKS(a|(A⋂

B), b|(A⋂
B)).

2.3.3 Comparison to other approaches

There are other distances that may be used to solve the incomplete-ranking aggregation
problem (IAP). These distances include Bogart’s distance [9], Cook-Kress-Seiford’s distance
[21], and the un-normalized version of the NPKS distance (proposed in [24]. This section
shows that the consensus ranking obtained when using the NPKS distance is “more intuitive”
than those obtained with these distances. This section is organized as follows: Sections 2.3.3,
2.3.3 and 2.3.3 present each of these distances and comment on their drawbacks when applied
to solve the IAP. Section 2.3.3 gives specific examples to illustrate these drawbacks.

Review and discussion of Bogart’s distance

Bogart [9] generalized the Kemeny-Snell distance between complete rankings to a dis-
tance function between partial orders. (A partial order is a binary relation that is reflexive,
antisymmetric and transitive.) In particular, Bogart proposed a set of axioms that a dis-
tance between partial orders should satisfy and then proved that his distance was the unique
distance that simultaneously satisfied his axioms. Bogart showed that, in the subspace of
all complete rankings (a complete ranking is a partial order where all pairs of objects are
compared), his distance and the Kemeny-Snell distance are the same.

Bogart’s distance between two given partial orders, P and Q, is given by2

dB(P,Q) = ‖I(P )− I(Q)‖

where ‖·‖ denotes the matrix L1 norm (i.e., the sum of all the matrix entries’ absolute
values), and I(P ) is the incidence matrix of the partial ordering P given by

I(P )ij =

{
1 if (i, j) ∈ P
0 otherwise,

where (i, j) ∈ P means that object j is not preferred to object i (that is, either object i is
preferred to object j or the objects are tied).

Since an incomplete ranking is a partial order, we can use Bogart’s distance in order to
find the distance between incomplete orders (see the example below).

2Strictly speaking, Bogart’s distance is defined for strict partial orders—irreflexive, asymmetric and tran-
sitive binary relations—, but it is easily extended for (non-strict) partial orders, as done here.
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Example: Consider the universe of objects V = {1, 2, 3, 4}, and the incomplete ranking
a = (2, •, 2, 1); that is, ranking a has object 4 as first, objects 1 and 3 tied as second, and
object 2 not ranked. The partial order representation of a is P a = {(1, 1), (2, 2), (3, 3), (4, 4),
(1, 3), (3, 1), (4, 1), (4, 3)}, whose incidence matrix, I(P a), is

I(P a) =


1 0 1 0
0 1 0 0
1 0 1 0
1 0 1 1


Now consider the incomplete rankings b = (2, •, 3, 1), c = (3, •, 2, 1), and d = (•, 2, •, 1),
whose incidence matrices are

I(P b) =


1 0 1 0
0 1 0 0
0 0 1 0
1 0 1 1

 I(P c) =


1 0 0 0
0 1 0 0
1 0 1 0
1 0 1 1

 I(P d) =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1


Pictorially, these rankings are a = ( 4

1−3 ), b =
(

4
1
3

)
, c =

(
4
3
1

)
, and d = ( 4

2 ).

Bogart’s distances between the above rankings are dB(a, b) = 1, dB(a, c) = 1,
dB(a,d) = 5, dB(b, c) = 2, dB(b,d) = 4, and dB(c,d) = 4.

Notice that dB(b,d), and dB(c,d) are smaller than dB(a,d). Therefore, using Bogart’s
distance, one might conclude that there is a higher level of agreement between b (alterna-
tively, c) and d than between a and d. We believe that this is incorrect. In particular, we
believe that the level of agreement between b (alternatively, c) and d should be equal to the
level of agreement between a and d. We believe this because the only difference between b
(alternatively, c) and a is that a ties objects 1 and 3; while b prefers 1 over 3 (alternatively,
c prefers 3 over 1).

In general, the “behavior” of Bogart’s distance, illustrated in the above example, can
be generalized as follows: Suppose that a given incomplete ranking, d, does not compare
objects i and j. The incidence matrix I(d) will have I(d)ij = 0 and I(d)ji = 0. The incidence
matrix I(a) of some arbitrary ranking a that ties objects i and j will have I(a)ij = 1 and
I(a)ji = 1. The incidence matrix I(b) of some arbitrary ranking b that prefers i to j will
have I(b)ij = 1 and I(b)ij = 0. Finally, the incidence matrix I(c) of some arbitrary ranking
c that prefers j to i will have I(c)ij = 1 and I(c)ij = 0. Therefore, with respect to the pair
of objects i and j, ranking b (alternatively, c) and ranking d are closer than ranking a and
ranking d.

The above discussion hints that the consensus ranking obtained by using Bogart’s dis-
tance will tend to be a ranking containing an “artificially low” amount of ties. That is, even
objects that are expected to be tied by the consensus ranking will not be tied by it; this is
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illustrated in section 2.3.3. We close this section with the following remark: Our purpose
is not to criticize Bogart’s distance (a legitimate distance between partial orders); rather it
is to show that Bogart’s distance is not appropriate to solve the IAP. (Unlike our NPKS
distance, Bogart’s distance was not designed to solve the IAP.)

Review and discussion of Cook-Kress-Seiford’s distance

Cook, Kress and Seiford [21] proposed another distance between partial orders. Like
Bogart, they also proposed a set of axioms that a distance between partial orders should
satisfy and then proved that their distance was the unique distance that simultaneously
satisfied their axioms. As Bogart, Cook et. al. also demonstrated that, in the subspace of
all complete rankings, their distance and the Kemeny-Snell distance are the same.

Cook-Kress-Seiford’s distance between two given partial orders, Q and R, on a set of n
objects, is given by

dC(Q,R) =
n∑
i=1

n∑
j=1

[
1

2
|J(Q)ij − J(R)ij|+ |P (Q)ij − P (R)ij|

]
,

where J , referred to as the information matrix, and P , referred to as the preference matrix,
are

Iij =

{
1 if i and j are compared (strict preference or tie)

0 if i and j are not compared.

Pij =

{
1 if i is strictly preferred to j

0 otherwise.

Example: Consider the universe of objects V = {1, 2, 3, 4}, and the incomplete rankings
given in section 2.3.3: a = (2, •, 2, 1), b = (2, •, 3, 1), c = (3, •, 2, 1), and d = (•, 2, •, 1).

Pictorially, these rankings are a = ( 4
1−3 ), b =

(
4
1
3

)
, c =

(
4
3
1

)
, and d = ( 4

2 ).

Cook-Kress-Seiford’s distances between the above rankings are dB(a, b) = 1, dB(a, c) =
1, dB(a,d) = 8.5, dB(b, c) = 2, dB(b,d) = 9.5, and dB(c,d) = 9.5.

Notice that dB(b,d), and dB(c,d) are bigger3 than dB(a,d). Therefore, using Cook-
Kress-Seiford’s distance, one might conclude that there is a lower level of agreement between
b (alternatively, c) and d than between a and d. We believe that this is incorrect. In
particular, we believe that the level of agreement between b (alternatively, c) and d should
be equal to the level of agreement between a and d. We believe this because the only
difference between b (alternatively, c) and a is that a ties objects 1 and 3; while b prefers 1
over 3 (alternatively, c prefers 3 over 1).

3Recall that with Bogart’s distance we had the opposite situation.
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In general, the “behavior” of Cook-Kress-Seiford’s distance, can be generalized in a sim-
ilar way that Bogart’s distance ‘behavior” was generalized in section 2.3.3. The difference
being that the consensus ranking obtained by using Cook-Kress-Seiford’s distance will tend
to be a ranking containing an “artificially high” amount of ties. That is, even objects that
are expected not to be tied by the consensus ranking will be tied by it; this is illustrated in
section 2.3.3. We close this section with the following remark: Our purpose is not to criticize
Cook-Kress-Seiford’s distance (a legitimate distance between partial orders); our intention
is to show that it is not appropriate to use Cook-Kress-Seiford’s to solve the IAP. (Unlike
our NPKS distance, Cook-Kress-Seiford’s distance was not designed to solve the IAP.)

Review and discussion of the (not-normalized) projected Kemeny-Snell distance

In [24], Dwork et. al. extended the Kendall Tau distance (a distance between complete
without-ties rankings that is equivalent to the Kemeny-Snell distance in the space of complete
without-ties rankings) to a distance between incomplete without-ties rankings. Dwork et. al.
refer to this distance as the induced Kendall Tau distance, but, for reasons that will become
clear later, we refer to it as the projected Kemeny-Snell distance, or PKS distance. (Strictly
speaking, the induced Kendall Tau distance does not allows rankings with ties, but the PKS
distance does allows rankings with ties; if the rankings do not contain ties, then the two
distances are equivalent.) Unlike Bogart and Cook et. al., Dwork et. al. did not articulated
a set of axioms that characterized the PKS distance; here we show that the PKS distance
can be derived axiomatically. Given a universe of objects V and two incomplete rankings a
and b, the PKS distance, is

dPKS(a, b) = dKS(a|(A⋂
B), b|(A⋂

B)) (2.5)

Note that the PKS distance is simply a not-normalized version of the NPKS distance
defined in section 2.3.2. From this observation and Theorem 2.3.5 it follows that:

Corollary 2.3.6. The distance dPKS(·, ·) is the unique distance satisfying simultaneously
Axioms 0 to 5 and Axiom K6.

The only difference between the sets of axioms uniquely satisfied by dPKS(·, ·) and
dPKS(·, ·), respectively, is the scaling axiom; in particular dPKS(·, ·) satisfies Axiom K6,
while dNPKS(·, ·) satisfies Axiom 6’.

When using the PKS distance to find the consensus ranking it tends to favor incomplete
rankings that compare a large number of objects over incomplete rankings that compare a
small number of objects. The reason is the following. Recall that the consensus ranking is
the complete ranking with the minimum sum of distances to the given incomplete rankings.
Since the PKS distance between two rankings a and b is calculated by projecting the two
rankings to the set A

⋂
B, the distances in the objective function are taken over object-

spaces of possibly different dimensions. Therefore, since distances in higher dimensional



25

spaces tend to be bigger than distances in lower dimensional spaces, the objective function
will be dominated by the distances from the consensus ranking to the rankings that compare
the highest number of objects. This is illustrated in section 2.3.3.

Comparison of the consensus rankings

In this section three examples are given illustrating that the consensus ranking obtained
when using the NPKS distance are more intuitive than those obtained by Bogart’s distance,
Cook-Kress-Seiford’s distance and the PKS distance.

Table 2.1 illustrates that the consensus ranking obtained by using Bogart’s distance tends
to be a ranking containing an “artificially low” amount of ties. That is, even objects that
are expected to be tied by the consensus ranking are not tied by it.

Table 2.1: Given rankings a, b and c (each ranking ties a pair of objects), it is reasonable
to expect that the consensus ranking ties all objects. However, using Bogart’s
distance any possible strict ranking (that is, any possible permutation of the
objects) is a consensus ranking. In other words, using Bogart’s distance, all
3-object strict rankings have the same sum of distances to rankings a, b and
c; and such sum of distances is smaller than the sum of distances from the
ranking tying all objects to rankings a, b and c. Note that all other consensus
rankings, including the one obtained using our dNPKS distance agree with the
“intuitive” consensus rankings.

Judge’s rankings Consensus ranking using distance
a b c dB dC dPKS dNPKS

Object 1 • 1 1 Any 1 1 1
Object 2 1 • 1 possible 1 1 1
Object 3 1 1 • permutation 1 1 1

Table 2.2 illustrates that the consensus ranking obtained by using Cook-Kress-Seiford’s
distance tends to be a ranking containing an “artificially high” amount of ties. That is, even
objects that are expected not to be tied by the consensus ranking are tied by it.
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Table 2.2: Given rankings a, b and c, it is reasonable to expect that the consensus rank-
ing is (1, 2, 3, 4). However, using Cook-Kress-Seiford’s distance the consensus
ranking ties all of the objects. Note that all other consensus rankings, in-
cluding the one obtained using our dNPKS distance agree with the “intuitive”
consensus rankings.

Judge’s rankings Consensus ranking using distance
a b c dB dC dPKS dNPKS

Object 1 1 1 • 1 1 1 1
Object 2 2 2 • 2 1 2 2
Object 3 • 3 1 3 1 3 3
Object 4 • 4 2 4 1 4 4

Table 2.3 illustrates that the consensus ranking obtained by using the PKS distance tends
to agree with the ranking that compares the largest amount of objects. (Indeed this is also
the case of the consensus ranking obtained using Bogart’s distance.)

Table 2.3: Given rankings a to j, it is reasonable to expect that the consensus ranking
is (1, 2, 3, 4, 5)—for each pair of objects (i,i + 1), a clear majority of judges
prefer i over i + 1. However, using the PKS distance, the consensus ranking
is (5, 2, 3, 4, 1); this ranking contradicts what the rankings b to j collectively
imply: object 1 is the best, and object 5 the worst. Moreover the ranking
(5, 2, 3, 4, 1) contradicts the fact that a majority of judges prefer object 1 over
2 and a majority of judges prefer object 4 over 5. Note that, since Bogart’s
distance is also not-normalized, it also has the same un-intuitive consensus
ranking as the PKS distance.

Judge’s rankings Consensus ranking using distance
a b&c d&e f&g h&i j dB dC dPKS dNPKS

Object 1 5 1 • • • • 5 1 5 1
Object 2 4 2 1 • • 1 2 1 2 2
Object 3 3 • 2 1 • 2 3 1 3 3
Object 4 2 • • 2 1 3 4 1 4 4
Object 5 1 • • • 2 • 1 1 1 5

2.3.4 Finding a consensus ranking

In this section we study the optimization problem that needs to be solved in order to
find the consensus ranking. In all of the group-ranking methods and problems reviewed so
far, the optimization problem that needs to be solved in order to get the consensus ranking,
r, is

min
r

K∑
k=1

d(ak, r), (2.6)
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where, a1, ...,aK are the judges’ rankings, the minimum is over all the complete (strict and
non-strict) rankings, and d(·, ·) is an appropriate distance.

In the complete-ranking aggregation problem (CAP) each of the judges’ rankings is a
complete (strict or non-strict) ranking and the distance in problem (2.6) is Kemeny-Snell’s
distance, dKS(·, ·). Bartholdi et. al. [6] showed that, when restricting the input to be
complete without-ties rankings, the CAP is NP-hard. Since the CAP contains as a special
case the restricted-to-no-ties CAP, then CAP is also NP-hard.

In the incomplete-ranking aggregation problem (IAP) each of the judges’ rankings in
problem (2.6) is a possibly incomplete (strict or non-strict) ranking. Since Bogart’s distance,
Cook-Kress-Seiford’s distance, the PKS distance, and our NPKS distance all are equivalent
(up to scaling factors) to the Kemeny-Snell distance in the space of complete rankings, then
it follows that IAP, using any of these distances, is also NP-hard.

Section 2.3.4 provides a heuristic approach, and Section 2.3.4 provides an exact solution
approach. Both of this approaches are applicable to solve problem (2.6) using any of these
distances: Kemeny-Snell’s distance, the PKS distance and our NPKS distance.

A heuristic method

In this section we give a heuristic to solve the IAP.
Given a set of objects to be ranked, V = {1, ..., n}, and a set of incomplete rankings,{

ak
}K
k=1

, the IAP is to find the complete ranking, r, that minimizes the sum of NPKS
distances to the given rankings:

min
r

K∑
k=1

dNPKS(ak, r). (2.7)

Using the definition of the NPKS distance, the mathematical programming formulation of
problem (2.7) is

min
r

K∑
k=1

Dk
∑
i∈Ak

∑
j∈Ak

1

2

∣∣sign(ri − rj)− sign(aki − akj )
∣∣ (2.8a)

s.t. 1 ≤ ri ≤ n for i = 1, ..., n (2.8b)

ri ∈ Z for i = 1, ..., n, (2.8c)

where Dk =
(∣∣Bk

∣∣2 − ∣∣Bk
∣∣)−1 is a normalization factor which depends only on the number

of objects ranked in ak. Note that in problem (2.8) two feasible solutions might represent
the same ranking. For example, with V = {1, 2, 3} the ranking (2, 1, 2), that places object
2 in first place and objects 1 and 3 tied in second place, can be represented as r = (2, 1, 2),
r′ = (3, 2, 3) and r′′ = (3, 1, 3). This representation multiplicity is unimportant since, from
equation (2.8a), all representations of a given ranking have the same objective value.



28

As shown earlier, problem (2.7), equivalently problem (2.8), is NP-hard. Here we propose
a heuristic approach to solve problem (2.8). This approach is motivated by the following
result [44]: Integer-separable convex programming problems with totally unimodular (TUM)
constraints are solvable in polynomial time. To be able to use this result, problem (2.8) is
reformulated first into an integer-separable non-convex programming problem with TUM
constraints (see problem (2.9)).

min
r, z

K∑
k=1

Dk
∑
i∈Ak

∑
j∈Ak

1

2

∣∣sign(zij)− sign(aki − akj )
∣∣ (2.9a)

s.t. zij = ri − rj for i, j = 1, ..., n (2.9b)

1 ≤ ri ≤ n for i = 1, ..., n (2.9c)

ri ∈ Z for i = 1, ..., n. (2.9d)

Problem (2.9), which is equivalent to problem (2.8), has a separable objective function
and has TUM constraints. Since equation (2.9a) is not convex, we cannot solve problem
(2.9) efficiently. Next we will convexify the objective function of problem (2.9). For this
purpose the following functions are defined.

Let fkij(zij) and hkij(zij) for k = 1, .., K, i = 1, .., n, j = 1, .., n, be defined as

fkij(zij) =
1

2

∣∣sign(zij)− sign(aki − akj )
∣∣

hkij(zij) =


max

{
0,

zij+1

2

}
if sign(aki − akj ) = −1

max
{−zij

2
,
zij
2

}
if sign(aki − akj ) = 0

max
{

1−zij
2
, 0
}

if sign(aki − akj ) = 1.

(2.10)

Note that each fkij(zij) corresponds to one of the terms in equation (2.9a), and that each
hkij(zij) is a convex function. As Figure 2.1 shows, each hkij(zij) is a closely approximates the
corresponding fkij(zij).

Figure 2.1: Relationship between 1
2 | sign(zij)− sign(rki − rkj )| (red) and hkij(zij) (blue)

(a) sign(rki − rkj ) = −1 (b) sign(rki − rkj ) = 0 (c) sign(rki − rkj ) = 1
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The convexified version of problem (2.9) is

min
x, z

K∑
k=1

Dk
∑
i∈Bk

∑
j∈Bk

hkij(zij) (2.11a)

s.t. zij = ri − rj for i = 1, ..., n; j = 1, ..., n (2.11b)

1 ≤ ri ≤ n for i = 1, ..., n (2.11c)

ri ∈ Z for i = 1, ..., n. (2.11d)

Since problem (2.9) is an integer-separable convex programming problems with (TUM)
constraints, it follows from [44] that it is solvable in polynomial time. More precisely, problem
(2.11) is a special case of the separation-deviation problem (see Section 1.2.1), and therefore
it is solvable in O(nm log(n

2

m
) log(n)) time, where n is the number of objects and m is the

total number of object-pairs that are compares by at least one judge.
Next we analyze the quality of the ranking obtained by solving the polynomial-time-

solvable problem (2.11), as compared to the consensus ranking, obtained by solving the
NP-hard problem (2.9) (equivalently, problem (2.7)). For this purpose we give the following
definition.

Definition 2.3.7. Given a minimization problem P with objective function f(·), a polynomial
time algorithm, A, is said to be a δ-approximation algorithm for P if the following condition
is satisfied:

For every problem instance of P with an optimal solution x∗, A delivers a feasible solution
x satisfying, f(x) ≤ δf(x∗).

Theorem 2.3.8. Solving problem (2.11) is an (n− 1)-approximation algorithm for problem
(2.9).

Proof. Let r′ and r∗ be the optimal solutions to problems (2.11) and (2.9), respectively. Let
H(·) and F (·) be the objective functions (as function of a given ranking) of problems (2.11)
and (2.9), respectively.

From equations (2.9b) to (2.9d), (equivalently, (2.11b) to (2.11d)) we note that we are

only interested in evaluating fkij(zij) and hkij(zij) in the points contained in the set S
4
=

{−(n− 1),−(n− 2), ..., n− 2, n− 1}. For all i, j = 1, ..., n, k = 1, ..., K and zij in S, we
make the following observations:

1. hkij(zij) ≥ fkij(zij).
2. hkij(zij) = 0 if and only if fkij(zij) = 0.
3. hkij(zij) > fkij(zij) if and only if sign(zij) 6= sign(aki − akj ).
4. hkij(zij) ≤ (n− 1)fkij(zij)
We have the following series of inequalities, from which the result follows,

F (r′) ≤ H(r′) ≤ H(r∗) ≤ (n− 1)F (r∗), (2.12)
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where the first inequality follows from Observation 1; the second inequality is valid since,
with respect to problem (2.11), r′ and r∗ are an optimal and a feasible solution, respectively;
and third inequality follows from Observation 4.

Theorem 2.3.8 implies that, if there exists a ranking that agrees completely with all of
the given incomplete rankings, then such a ranking is obtained by solving problem (2.11).
Formally,

Corollary 2.3.9. The optimal solution to problem (2.11) has an objective value of zero if
and only if the consensus ranking (optimal solution to problem (2.7)) has a total NPKS
distance of zero to the given incomplete rankings.

We close this section by noting that the solutions to problem (2.11), for all of the examples
given in Tables 2.1, 2.2 and 2.3 coincide with the consensus ranking (optimal solution to
problem (2.7)).

An exact method

This section gives an exact method to solve the IAP. For this purpose a new problem is
introduced: the strict-IAP is a problem identical to the IAP, except that in the strict-IAP
the solution space is restricted to the set of all complete strict rankings. The herein-proposed
exact method to solve the IAP can be summarized as follows: find an optimal solution for
the strict-IAP, and then use the solution found for the strict-IAP as a starting point to find
an optimal solution for the IAP. Throughout this section r(s) denotes an optimal solution to
the strict-IAP, and r∗ denotes an optimal solution to the IAP.

Next, the problem of finding r(s) is reduced to the minimum weight feedback arc set
problem (FASP).

Definition 2.3.10. A feedback arc set for a directed graph G = (V,A) is a subset A′ ⊆ A
such that A′ contains at least one arc from every directed cycle in G. The minimum weight
feedback arc set problem is defined a follows: Given a directed graph G(V,A) with a weight
assigned to each arc, find a feedback arc set, A∗, with minimum sum of weights.

The preferences expressed in an incomplete ranking a can be represented as a directed
graph as follows: we have a node for each object, and we have arc(s)

(i, j) if i is preferred to j,

(j, i) if j is preferred to i,

(i, j) and (j, i) if i and j are tied.

If i and/or j are not ranked in a, then we do not have any arc between nodes i and j. Note
that a complete strict ranking corresponds to a directed acyclic graph containing exactly(|V |

2

)
arcs; i.e., containing exactly one of (i, j) and (j, i).
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Given a set of objects to be ranked, V = {1, ..., n}, and a set of incomplete rankings,{
ak
}K
k=1

, we find r(s) by solving the FASP on the following weighted directed graph G =
(V,A): We have a node for each object, and each arc (i, j) has a weight

wij =
K∑
k=1

wkij, (2.13a)

where, (2.13b)

wkij =


1

(|Ak|2−|Ak|)/2 if i is preferred to j in ak,

1
2

1

(|Ak|2−|Ak|)/2 if i and j are tied in ak,

0 if i and/or j are not ranked in ak.

(2.13c)

The preferences in r(s) are represented by the arcs on the complement of A∗—the minimum
weight feedback arc set in G. To see that this is statement is true, we note that, from the
interpretation of Kemeny-Snell’s distance (see §2.2.1, and the definition of the NPKS ditance
(equation (2.4)) the NPKS distance can be interpreted as follows: The NPKS distance
between two incomplete rankings a and b is given by the sum of the weights of the rank
reversals between them, where each rank reversal has a weight of 1

(|A
⋂
B|2−|A

⋂
B|)/2 . Therefore,

r(s) is the complete strict ranking with the minimum sum of the weights of the rank reversals

between r(s) and each of the given incomplete rankings
{
ak
}K
k=1

. Now, since if arc (i, j) is in

A∗, then r(s) prefers j over i4, and thus r(s) has a rank reversal with every given incomplete
ranking that prefers i over j; the sum of the weights of all these rank reversals is exactly
the weight of arc (i, j) (see equation (2.13)). We conclude that, by minimizing the weights
of the arcs in the feedback arc set, we are minimizing the weights of the rank reversals that
r(s) has with the given incomplete rankings.

The FASP is NP-hard [30] and approximable within O(log |V | log log |V |) [25], and the
FASP can be solved using the implicit hitting set (IHS) approach as described in [47]. Since
this approach is practical for solving the maximum-weight trace problem, a problem that is
closely related to the FASP, we believe that the IHS approach will be able to solve practical-
size problems within a reasonable amount of time.

Given a complete strict ranking a, its neighborhood N(a) is the set of rankings that
includes a and all complete rankings that only differ from a by tying objects that are ranked
consecutively in a. It seems reasonable to expect that given an optimal solution to the strict-
IAP, r(s), there would exist an optimal solution to the IAP in the neighborhood of r(s). If
this were the case, then a straight forward dynamic programming algorithm (very similar to
the dynamic programming algorithm for parenthesizing matrix-chain multiplications given
in page 331 of [22]) would explore in polynomial time the neighborhood of r(s) and find
an optimal solution to the IAP. Unfortunately, as the following example shows, the above

4Since G is a complete graph it can be proved that A∗ will contain exactly one of (i, j) and (j, i).
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statement is not true. Given the rankings a1 = (1, 2, 3, 4) and a2 = (1, •, •, 1), the optimal
solution to the strict-IAP is r(s) = (1, 2, 3, 4) and the optimal solutions to the IAP are
{(1, 1, 2, 1), (1, 2, 3, 1), (2, 1, 2, 2), (2, 1, 3, 2), (3, 1, 2, 3)}; none of which is in the neighborhood
of r(s). It remains an open question if the statement at the beginning of this paragraph is
true when all the given rankings are complete; that is, for the complete-ranking aggregation
problem.

2.3.5 Obtaining meaningful results when aggregating incomplete
rankings

In the incomplete-ranking aggregation problem, the following problem may arise: if each
reviewer only ranks a strict subset of A, then it is possible that some pairs are not comparable.
In particular, consider the problem where there are only two reviewers and the first one ranks
the alternatives in A1 = {a1, a2, ..., ak}, while the second reviewer ranks the alternatives
in A2 = {ak+1, ..., aM}. It is clear that any of the alternatives in A1 is not comparable
with any of the alternatives in A2. Thus no ranking aggregation method can provide a
meaningful aggregate ranking (recall that by definition we require that the aggregate ranking
is a complete ranking). This issue is formalized as follows: A comparability graph G = (V,E)
is a graph where each node corresponds to an alternative in A, and for any given pair of nodes
ai, aj, the edge [ai, aj] is included in E if and only if the corresponding pair of alternatives
are ranked by at least one common reviewer. A pair of alternatives ai, aj is said to be
comparable if there exists a path from ai to aj in G. Thus, in order for the aggregate
ranking to be meaningful, it is necessary that all pairs of alternatives are comparable. We
refer to [59, 17, 18, 40] for possible solutions to the problem of allocating the subsets of
objects to be ranked to individual reviewers in order to satisfy this condition (as well as
other stronger conditions that guarantee “higher” levels of comparability).

2.4 Incomplete-rating aggregation

2.4.1 Axioms for a distance between incomplete ratings

In this section Cook and Kress’ axioms (given in Section 2.2.2) are modified in order to
obtain a set of axioms appropriate for a distance between incomplete ratings. Moreover, we
want to design a distance, d(·, ·), that is suitable for solving the incomplete-rating aggregation
problem.

Recall that given the incomplete ratings of K judges,
{
a1, ...,aK

}
, the consensus rating

r is the optimal solution to the following optimization problem:

min
r

K∑
k=1

d(ak, r), (2.14)
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where the minimum is over all complete ratings.
The aim of the axioms proposed in this section is to describe a distance between incom-

plete ratings such that, when this distance is used in problem (2.14), the consensus rating
minimizes the disagreement of the judges. In contrast to the previous section, here we do
not give a thorough explanation of the modifications made to Cook-Kress’ axioms. This is
because the modifications to Cook-Kress’ axioms are almost identical to the modifications
to Kemeny-Snell’s axioms explained in the previous section.

The axioms are denoted using the number of the corresponding Cook-Kress axiom, and a
hat (ˆ) is added over the number to differentiate this axioms from those in section 2.3.1. In
addition, the axioms denoted by a prime are those modified slightly so that they applied to
distances between incomplete ratings. For example, Axiom 0̂ (below) has no corresponding
Cook-Kress axiom; Axiom 1̂ (below) corresponds exactly to Axiom C1; and Axiom 3̂’ (below)
is a slight variant of Axiom Axiom C3.

In order to specify our axioms, the following concepts are defined.

Definition 2.4.1. Given a rating a and a subset S of the object universe V , the projection
of a on S, denoted as a|S, is the rating of the objects in S that preserves the scores assigned
by a to the objects in S.

Definition 2.4.2. A pair of ratings a and b on a set of objects V are opposite ratings, if
(1) a rates |V | /2 objects (or d|V | /2e if |V | is odd) with the highest possible score, (2) b
rates those objects with the lowest possible score, (3) a rates the remaining objects with the
lowest possible score, and (4) b rates the remaining objects with the highest possible score.

Intuitively, two opposite ratings are ratings in total disagreement. We now specify the
axioms that our distance must satisfy.

Axiom 0̂ (Relevance) d(a, b) = d(a|(A⋂
B), b|(A⋂

B))

Axiom 1̂ (Nonnegativity) d(a, b) ≥ 0.

Axiom 2̂ (Commutativity) d(a, b) = d(b,a).

Axiom 3̂’ (“Relaxed” triangular inequality) d(a|(A⋂
B
⋂
C), b|(A⋂

B
⋂
C))+

d(b|(A⋂
B
⋂
C), c|(A⋂

B
⋂
C)) ≥ d(a|(A⋂

B
⋂
C), c|(A⋂

B
⋂
C)), and equality holds if

and only if b|(A⋂
B
⋂
C) is between for incomplete ratings a|(A⋂

B
⋂
C) and

c|(A⋂
B
⋂
C).

Axiom 4̂ (Proportionality) The distance between any two adjacent5 ratings is propor-
tional to the degree of adjacency.

Axiom 5̂’ (Normalization) d(a, b) ≤ 1; and d(a, b) = 1 if and only if b|(A⋂
B) and

a|(A⋂
B) are opposite ratings.

5On the natural extension of adjacency and degree of adjacency (Definitions 2.2.4 and 2.2.5) for incomplete
ratings.
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2.4.2 Uniqueness and existence of a distance

This section shows that the distance between incomplete rankings given in equation
(2.15), here called the normalized projected Cook-Kress distance, or simply NPCK distance,
satisfies Axioms 0̂ to 5̂. Moreover, we prove that the NPCK distance is the unique distance
that simultaneously satisfies Axioms 0̂ to 5̂.

dNPCK(a, b) =


dNPCK(a|(A⋂

B),b|(A⋂
B))

4·R·d |A
⋂

B|
2 e·b |A

⋂
B|

2 c
if |A

⋂
B| ≥ 2,

0 otherwise.
(2.15)

Lemma 2.4.3. Given two complete ratings a and b on a set of objects V , dCK(a, b) attains

its maximum of 4 ·R ·
⌈
|A

⋂
B|

2

⌉
·
⌊
|A

⋂
B|

2

⌋
when a and b are opposite ratings.

Lemma 2.4.4. The NPCK distance satisfies Axioms 0̂ to 5̂.

Proof. It follows directly from equation (2.15) that dNPCK(·, ·) satisfies Axiom 0̂.
The nonnegativity of dNPKS(·, ·) follows from equation (2.15) and the nonnegativity of

dCK(·, ·).
Axiom 2̂ follows from equation (2.15) and the fact that dCK(·, ·) satisfies Axiom C2.
Axiom 3̂’ follows from equation (2.15); the fact that a|(A⋂

B
⋂
C), b|(A⋂

B
⋂
C) and

c|(A⋂
B
⋂
C) are complete ratings; and the fact that dCK(·, ·) satisfies Axiom C3.

From Lemma 2.4.3 and equation (2.15) we have that dNPCK(·, ·) satisfies Axiom 5̂’.

Corollary 2.4.5. Axioms 0̂ to 5̂ are consistent.

Next, we show that Axioms 0̂ to 5̂ uniquely determine the NPCK distance.

Theorem 2.4.6. The distance dNPCK(·, ·) is the unique distance satisfying Axioms 0̂ to 5̂
simultaneously.

Proof. This proof follows the exact same arguments used in the proof of Theorem 2.3.5.

2.4.3 Finding a consensus rating

The NPCK distance generalizes the distance between complete ratings proposed in [20].
Hochbaum and Levin [41] showed that the complete-rating aggregation problem proposed in
[20] is a special case of their own separation-deviation model, and thus efficiently solvable.
Similarly, the incomplete-rating aggregation problem using the NPCK distance is a special
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case of the separation-deviation problem and can be reformulated as follows:

min
x, z

K∑
k=1

∑
i∈Ak

∑
j∈Ak

∣∣zij − pkij∣∣
4 ·R ·

⌈
|Ak|
2

⌉
·
⌊
|Ak|
2

⌋ (2.16a)

subject to zij = x
(c)
i − x

(c)
j i = 1, . . . , n; j = 1, . . . , n (2.16b)

` ≤ x
(c)
i ≤ u i = 1, . . . , n (2.16c)

x
(c)
i ∈ Z i = 1, . . . , n. (2.16d)
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Chapter 3

Country credit-risk rating aggregation

3.1 Introduction

Country credit-risk ratings quantify the risk associated with investing in a given country.
Haque et al. [35] define country credit-risk rating as an estimate of the probability that a
country will fail to pay back the debt it has acquired. To satisfy increasing investors’ needs
for information on countries’ creditworthiness, several agencies periodically publish country
credit-risk ratings. Often there are differences between the agencies’ credit-risk ratings for
a particular country. It is therefore of interest to aggregate those differing views into a
coherent rating that represents a group consensus capturing the different expertise of the
rating agencies.

Aggregating credit-risk ratings is a scenario within group decision making. Group decision
making concerns the problem of finding a group consensus from the expressed evaluations of
K reviewers (i.e., the agencies) in relation to n objects (i.e., the countries). In this chapter
we demonstrate that in the complete-rating aggregation problem, even when the input is

given only as ratings
{
ak
}K
k=1

, it is useful to consider also the implied separation gaps:

pkij = aki − akj . In particular, we show that the separation gaps mitigate the effect of inflated
scores or shifts in evaluation scale.

We prove several properties of the separation-deviation model, including the property
that the aggregate rating obtained by the separation-deviation model agrees with the ma-
jority of agencies or reviewers, regardless of the scale used. The analysis of the separation-
deviation model here is for the complete-rating aggregation problem. .

The most commonly used method of rating aggregation is the averaging method. In this
method the aggregate score of each country is the average of the scores that this country
received from all of the reviewers. We assess the performance of the separation-deviation
model and compare the model to the averaging method, using several performance measures.
We demonstrate that for the complete-rating aggregation problem the aggregate rating,
obtained by the separation-deviation model, has fewer rank reversals than the aggregate
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rating obtained by the averaging method.

The main contributions and results here are:
1. Illustrating the benefit of using the separation-deviation model in the credit-risk rating

context.
2. Demonstrating that, even when the input is given only as ratings, it is useful to consider

also the implied separation gaps: pkij = aki − akj . In particular, the separation gaps are
shown to mitigate the effect of inflated scores or shifts in evaluation scale.

3. Proving that the aggregate rating obtained by the separation-deviation model with ab-
solute value penalty functions agrees with the majority of reviewers. This demonstrates
the model’s robustness in the presence of individual reviewer’s manipulations.

4. Showing that the averaging method is a special case of the separation-deviation model
with uniform quadratic penalty functions1.

5. Presenting an experimental study showing that the aggregate rating obtained by the
separation-deviation model with absolute value penalty functions has fewer rank rever-
sals than the aggregate rating obtained by the averaging method. Informally, a rank
reversal is a discrepancy in the relative order between a pair of objects when comparing
the aggregate rating to the input ratings.

6. Using the separation-deviation model is shown to identify several outliers in the ratings
of the agencies.

The chapter is organized as follows: Section 3.2 analyses the robustness properties of
the SD model. Section 3.3 shows that the averaging method is a special of the separation-
deviation model. Finally section 3.4 provides the details on the application of the separation-
deviation model to country credit-risk aggregation.

3.2 Robustness of the separation-deviation model

3.2.1 Robustness of the absolute value separation problem

The absolute value separation problem, (||,Sep) is formulated as follows:

(||,Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

ukij
∣∣zij − pkij∣∣ (3.1a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n) (3.1b)

x1 = 0. (3.1c)

We denote an optimal solution to (||,Sep) as x|S|.

1the concept of uniform quadratic functions is defined in section 3.3
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In this section we show that for the complete-rating aggregation problem (||,Sep) is robust
in that it resists manipulation by a minority of the reviewers. For this purpose we prove
that x|S| agrees with the (weighted) majority of reviewers.

Theorem 3.2.1. A rating x is said to be equivalent under translation to the rating x̃ if
there exists a constant c, such that xi = x̃i + c for i = 1, . . . , n.

Definition 3.2.2. A rating x is said to be equivalent under translation to the rating x̃ if
there exists a constant c, such that xi = x̃i + c for i = 1, . . . , n.

The relation of equivalence under translation is reflexive, symmetric and transitive. As
such, it partitions the set of ratings into equivalence classes.

The following lemma is needed in the proof of the property of “resistance to manipu-
lation by a minority of reviewers”. The problem analysed in the lemma is a special case
of the weighted median on a line and the weighted median on a graph, which were studied
extensively in [8, 28].

Lemma 3.2.3. Given the optimization problem y∗ = argmin
∑K

k=1w
k|y−ak|, where wk ≥ 0

for k = 1, 2, . . . , K. If there is a weight wi such that wi > 1
2

∑K
k=1w

k, then the optimal
solution to the problem is y∗ = ai.

Proof. Suppose by contradiction that there exists an optimal solution of the form y∗∗ = ai−δ
for some δ > 0, then it follows from simple arithmetic calculations that y∗ = ai has a strictly
lesser objective value. The same holds for any solution of the form y∗∗ = ai + δ for some
δ > 0.

Theorem 3.2.4. For (||,Sep), if a subset S of reviewers has ratings equivalent under trans-
lation, and S is a weighted majority for every pair i, j, i.e.

∑
k∈S u

k
ij >

1
2

∑K
k=1 u

k
ij, then

x|S| is equivalent under translation to rating of the weighted majority. I.e. x|S| is equivalent
under translation to every ak, k ∈ S.

Proof. Omitting constraint (3.1b) decomposes the problem to several optimization problems,
one for each zij. Each of these optimization problems,

z∗ij = argmin
K∑
k=1

ukij
∣∣zij − pkij∣∣ for i, j = 1, 2, . . . , n,

is of the form described in Lemma 3.2.3. Since the reviewers in S have ratings equivalent
under translation, we have that pkij = pSij for all k ∈ S. Furthermore since S is a weighted

majority, then uSij =
∑

k∈S u
k
ij >

∑K
k=1 u

k
ij. Therefore, by Lemma 3.2.3, z∗ij = pSij. Finally,

since (by construction) the separation gaps pSij are consistent in the additive sense, it follows
that by setting x1 = 0 and xi = z∗i1 + x1 for i = 2, . . . , n we obtain a rating satisfying
constraints (3.1b) and (3.1c). In particular this rating is equivalent under translation to all
of the ratings of the reviewers in S.
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Corollary 3.2.5. For problem (||,Sep) with two reviewers, K = 2, if all the penalty weights
of reviewer 1 dominate the penalty weights of the reviewer 2 (i.e. u1ij > u2ij for every pair
i, j), then any optimal solution to (||,Sep) is an aggregate rating equivalent under translation
to the rating of reviewer 1.

Let the unweighted absolute value separation problem, (||,Sep,1), refer to (||,Sep) with
ukij = 1, for i, j = 1, . . . , n and k = 1, . . . , K.

From Theorem 3.2.4 we have the following corollaries.

Corollary 3.2.6. For (||,Sep,1), if a simple majority of reviewers has ratings equivalent
under translation, then any optimal solution to (||,Sep,1) is an aggregate rating equivalent
under translation to every rating of each of the reviewers in the majority.

Corollary 3.2.7. The problem (||,Sep,1) with two reviewers, K = 2, has an infinite number
of optimal solutions. Two of the solutions are equivalent under translation to the (input)
ratings of reviewer 1 and reviewer 2. And any convex linear combination of these two ratings
is an optimal solution as well.

In contrast to (||,Sep,1), the solution to the averaging method does not have the property
of agreeing with the majority. An example shown in Table 3.1 demonstrates that a single
reviewer (reviewer 3) can dominate the aggregate rating solution of the averaging method by
manipulating his/her rating scale. The aggregate rating obtained by the averaging method
is denoted in Table 3.1 as xAvg.

Table 3.1: Aggregate rating xAvg obtained by the averaging method.

Reviewer 1 Reviewer 2 Reviewer 3 xAvg

Object 1 1 1 13 5
Object 2 2 2 10 4.67
Object 3 3 3 7 4.33
Object 4 4 4 4 4
Object 5 5 5 1 3.66

Theorem 3.2.4 applies only when the penalty function used in (Sep) is the absolute value
function (it applies exclusively for (||,Sep)) and cannot be extended to other convex penalty
functions. It does not even hold for convex quadratic penalty functions, as shown in the
example in Table 3.2, where the third reviewer dominates the aggregate rating even though
reviewers 1 and 2 had the same ratings.
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Table 3.2: Aggregate rating obtained by solving (Sep) with fkij(y) = y2 for all i, j, k.

Reviewer 1 Reviewer 2 Reviewer 3 Aggregate rating
Object 1 1 1 25 4
Object 2 2 2 20 3
Object 3 3 3 15 2
Object 4 4 4 10 1
Object 5 5 5 5 0

3.2.2 Robustness of the absolute value separation-deviation prob-
lem

We define the absolute value separation-deviation problem, (||,Sep-Dev) as follows:

(||,Sep-Dev) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

ukij
∣∣zij − pkij∣∣+

K∑
k=1

n∑
i=1

vki
∣∣xi − aki ∣∣ (3.2a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (3.2b)

Let an optimal solution to (||,Sep-Dev) by denoted by x|SD|.
In this section we show that, for the complete-rating aggregation problem and under

certain restrictions, any optimal solution to (||,Sep-Dev) is an aggregate rating identical to
the rating of the majority of reviewers.

Theorem 3.2.8. For (||,Sep-Dev), if a subset S of reviewers has identical ratings a(S) and
S is a weighted majority for both the deviation and the separation terms (i.e.

∑
k∈S u

k
ij >

1
2

∑K
k=1 u

k
ij for any pair i, j and

∑
k∈S v

k
i >

1
2

∑K
k=1 v

k
i for every i), then x|SD| is equal to

a(S).

Proof. Omitting constraint (3.2b) decomposes the problem into the following optimization
problems:

z∗ij = argmin
K∑
k=1

ukij|zij − pkij| for i = 1, . . . , n; j = i+ 1, . . . , n (3.3)

x∗i = argmin
K∑
k=1

vki |xi − aki | for i = 1, 2, . . . , n. (3.4)

All of the problems are of the form described in Lemma 3.2.3. Since the reviewers in S have
identical ratings, we have that pkij = pSij and aki = a

(S)
i for all k ∈ S. Therefore by Lemma

3.2.3 we have that z∗ij = pSij and x∗i = a
(S)
i . Since the separation gaps were derived from the

ratings by setting pkij = aki − akj , it follows that z∗ij = x∗i − x∗j , and so constraints (3.2b) are
satisfied. Therefore the optimal solution to the separation-deviation problem is an aggregate
rating identical to all the ratings of the weighted majority of reviewers.
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Corollary 3.2.9. For problem (||,Sep-Dev) with two reviewers, K = 2, if all the penalty
weights of reviewer 1 dominate the penalty weights of the reviewer 2 (i.e. u1ij > u2ij for every
pair i, j, and v1i > v2i for all i), then the optimal solution to (||,Sep-Dev) is an aggregate
rating identical to the rating of reviewer 1.

Let the unweighted absolute value separation-deviation problem, (||,Sep-Dev,1), refer to
(||,Sep-Dev) with ukij = vki = 1, for i, j = 1, . . . , n and k = 1, . . . , K.

From Theorem 3.2.8 we have the following corollaries.

Corollary 3.2.10. For (||,Sep-Dev,1), if a simple majority of reviewers has identical ratings,
then the optimal solution to (||,Sep-Dev,1) is an aggregate rating identical to the rating of
the majority.

Corollary 3.2.11. The problem (||,Sep-Dev,1) with two reviewers, K = 2, has an infinite
number of optimal solutions. Two of the solutions are identical to the (input) ratings of
reviewer 1 and reviewer 2. And any convex linear combination of these two ratings is an
optimal solution as well.

Theorem 3.2.8 for (||,Sep-Dev) is weaker than the corresponding Theorem 3.2.4 for
(||,Sep) in that it requires the ratings of the majority to be identical rather than just being
equivalent under translation. Since there are O(Kn2) separation penalty terms and only
O(Kn) deviation penalty terms in the separation-deviation problem, one might think that
it is possible to make Theorem 3.2.8 as strong as Theorem 3.2.4. The example shown in
Table 3.3 proves that this is impossible.

Table 3.3: x|S| is equivalent under translation to the rating of the majority, but x|SD| is
not.

Reviewer 1 Reviewer 2 Reviewer 3 x|S| x|SD|

Object 1 1 4 517 0 4
Object 2 2 5 3 1 3

Still, Table 3.3 data is a pathological instance of the problem. To demonstrate that we
show in Table 3.4 that, with a minor perturbation in the data, x|SD| is equivalent under
translation to the ratings of the majority (reviewers 1 and 2).

Table 3.4: Both x|S| and x|SD| are equivalent under translation to the rating of the ma-
jority.

Reviewer 1 Reviewer 2 Reviewer 3 x|S| x|SD|

Object 1 1 4 516 0 4
Object 2 2 5 3 1 5
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One might still prefer (||,Sep-Dev) to (||,Sep) since, even though it is only guaranteed to
satisfy the weaker theorem, it tends to have an optimal solution on a ‘similar’ scale to the
input ratings. An example illustrating this ‘similarity’ is shown in Table 3.5.

Table 3.5: x|SD| is closer to the input ratings than x|S|.

Reviewer 1 Reviewer 2 Reviewer 3 x|SD| x|S|

Object 1 100 700 600 400 0
Object 2 200 800 500 500 100
Object 3 300 900 400 600 200

Table 3.5 provides an instance where x|S| and x|SD| are equivalent under translation to
the ratings given by the majority of reviewers (i.e. reviewers 1 and 2). The advantage of
x|SD|, is that its scale is closer to the scale used by the reviewers.

So far we have shown that (1) x|S| is equivalent under translation to the majority rating;
(2) (under stronger assumptions) x|SD| is identical to the majority rating; and (3) depending
on the choice of anchoring (generally x1 = 0), x|SD| is closer than x|S| to the scale of the
input ratings. We next show that, with a minor adjustment to (||,Sep-Dev), we can obtain
all of these desirable properties in a single model.

We note that (||,Sep-Dev) is a multi-objective problem. The first objective is to minimize
the separation penalty, and the second objective is to minimize the deviation penalty. So far
we have minimized an unweighted sum of these two (possibly conflicting) objectives. However
we can obtain all of the desired properties by minimizing a weighted sum of the separation
penalty and the deviation penalty. In particular we propose the following problem:

(||,M·Sep-Dev) min
x,z

M ·
K∑
k=1

n∑
i=1

n∑
j=i+1

ukij
∣∣zij − pkij∣∣+

K∑
k=1

n∑
i=1

vki
∣∣xi − aki ∣∣ (3.5a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n), (3.5b)

where M is a large enough number so that the separation penalty is lexicographically more
important than the deviation penalty. By lexicographically more important we mean that the
separation penalty is the dominant term in the optimization problem so that the deviation
penalty is only used to choose among the feasible solutions with minimum separation penalty.
In practice, it suffices to select M satisfying

M ≥ n · (max
ik

aki −min
ik

aki ) ·
maxik v

k
i

minijk ukij
.

We denote an optimal solution to (||,M·Sep-Dev) as xMSD.

Observation 3.2.12. The optimal solution to (||,M·Sep-Dev) is the rating that minimizes
the deviation penalty among all the ratings in the set of all optimal solutions to (||,Sep).
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Theorem 3.2.13. An optimal solution to (||,M·Sep-Dev) has the following properties:

1. If a subset S of reviewers has identical ratings and S is a weighted majority, then xMSD

is identical to the ratings of the majority.

2. If a subset S of reviewers has ratings equivalent under translation, and S is a weighted
majority, then xMSD is equivalent under translation to the ratings of the majority.

Proof. It is easy to see that, letting the weights of the separation terms to be M · ukij,
property (1) follows from Theorem 3.2.8. Property (2) follows from Observation 3.2.12,
Theorem 3.2.4 and the fact that if two ratings are identical, then they are also equivalent
under translation.

3.3 Equivalence between the uniform quadratic

separation-deviation problem and the

weighted averaging method

The mathematical formulation of the uniform quadratic separation-deviation
problem, (()2,Sep-Dev), is given in (3.6).

(()2,Sep-Dev) min
x,z

λ
K∑
k=1

n∑
i=1

n∑
j=i+1

wk(zij − pkij)2 +
K∑
k=1

n∑
i=1

wk(xi − aki )2 (3.6a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (3.6b)

Here λ is a parameter that allows to vary the relative importance of the separation penalty
to the deviation penalty. Note that in (()2,Sep-Dev) the weights wk depend only on the
reviewer and not on the object or object-pair as in (Sep-Dev). We denote an optimal solution
to (()2,Sep-Dev) as x(SD)2 .

Let the weighted averaging method be the rating aggregation method where the aggregate
score of each object is the weighted average of the scores of all reviewers for this object. The
following theorem establishes that for the complete-rating aggregation problem (()2,Sep-Dev)
is equivalent to the weighted averaging method.

Theorem 3.3.1. The optimal solution to (()2,Sep-Dev) is the same as the aggregate rating

solution to the weighted average method, that is, x∗i =
∑K

k=1 w
krki

W
for i = 1, 2, . . . , n, and

z∗ij = x∗i − x∗j , where W =
∑K

k=1w
k.

Proof. Omitting constraint (3.6b) decomposes the problem to separate optimization prob-
lems for each zij and each xi. Each of this problems is of the form

min
y

K∑
k=1

αk(y − ak)2.
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It is easy to see that this unconstrained optimization problem achieves its minimum at

y∗i =
∑

k α
krk∑

k α
k .

Therefore, the optimal solution to the optimization problem obtained by omitting con-
straint (3.6b) is:

x∗i =

∑
k w

krki
W

for i = 1, . . . , n (3.7)

z∗ij =

∑
k λw

k(aki − akj )
λW

=

∑
k w

k(aki − akj )
W

for i = 1, . . . , n; j = i+ 1, . . . , n. (3.8)

Since z∗ij =
∑

k w
k(aki−akj )
W

=
∑

k w
krki

W
−

∑
k w

krkj
W

= x∗i − x∗j , constraint (3.6b) is satisfied by
x∗i and z∗ij given in (3.7) and (3.8).

The analogous separation model with uniform quadratic is formulated as follows:

(()2,Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

wk(zij − pkij)2 (3.9a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (3.9b)

Corollary 3.3.2. The optimal solution to (()2,Sep) is an aggregate rating identical to the

aggregate rating obtained by the weighted averaging method, x∗i =
∑K

k=1 w
krki

W
for i = 1, 2, . . . , n,

and z∗ij = x∗i − x∗j , where W =
∑K

k=1w
k.

We conclude that, for the complete-rating aggregation problem, the optimal solution to
(()2,Sep-Dev) and (Sep) is the weighted average of the scores of each object. Therefore, the
separation-deviation model offers no advantage compared to the weighted averaging method
in this case. However this equivalence does not carry to the partial-list setting. Indeed
we show in [43] that, in the partial-list setting, (()2,Sep-Dev) and (()2,Sep) give a better
aggregate rating than the weighted averaging method.

3.4 Experimental Study

We set up an experimental study using the separation-deviation model for the purpose
of aggregating country credit-risk ratings. We use as data the credit-risk ratings given by
Standard and Poor’s (S&P), Moody’s (Mdy) and The Institutional Investor (InsI) in 1998.
The input data2 used is given in Table 3.6.

2We are grateful to Hammer et. al. [34] for permission to use this data.
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Table 3.6: Country credit-risk ratings by country and rating agency.
Country S&P Mdy InsI Country S&P Mdy InsI
Argentina BB Ba3 42.70 Latvia BBB Baa2 38.00
Australia AA+ Aa2 74.30 Lebanon BB- B1 31.90
Austria AAA Aaa 88.70 Lithuania BBB- Ba1 36.10
Belgium AA+ Aa1 83.50 Malaysia BBB Baa3 51.00
Bolivia BB- B1 28.00 Malta A A3 61.70
Brazil B+ B2 37.40 Mexico BB Ba2 46.00
Canada AA+ Aa1 83.00 Morocco BB Ba2 43.20
Chile A- Baa1 61.80 Netherlands AAA Aaa 91.70
China BBB A3 57.20 New Zealand AA+ Aa2 73.10
China-HK A A3 61.80 Norway AAA Aaa 86.80
Colombia BB+ Baa3 44.50 Pakistan B- Caa1 20.40
Costa Rica BB Ba1 38.40 Panama BB+ Ba1 39.90
Croatia BBB- Baa3 39.03 Paraguay B B2 31.30
Cyprus A A2 57.30 Peru BB Ba3 35.00
Czech Rep A- Baa1 59.70 Philippines BB+ Ba1 41.30
Denmark AA+ Aa1 84.70 Poland BBB Baa3 56.70
Dominican Rep B+ Ba2 28.10 Portugal AA Aa2 76.10
Egypt BBB- Ba1 44.40 Romania B- B3 31.20
El Salvador BB+ Ba2 31.20 Russia SD B3 20.00
Estonia BBB+ Baa1 42.80 Singapore AAA Aa1 81.30
Finland AA+ Aaa 82.20 Slovak Rep BB+ Ba1 41.30
France AAA Aaa 90.80 Slovenia A A3 58.40
Germany AAA Aaa 92.50 South Africa BB+ Baa3 45.80
Greece A- Baa1 56.10 Spain AA+ Aa2 80.30
Hungary BBB Baa2 55.90 Sweden AA+ Aa2 79.70
Iceland A+ Aa3 67.00 Switzerland AAA Aaa 92.70
India BB Ba2 44.50 Thailand BBB- Ba1 46.90
Indonesia CCC+ B3 27.90 Trin & Tobago BBB- Ba1 43.30
Ireland AA+ Aaa 81.80 Tunisia BBB- Baa3 50.30
Israel A- A3 54.30 Turkey B B1 36.90
Italy AA Aa3 79.10 UK AAA Aaa 90.20
Japan AAA Aa1 86.50 USA AAA Aaa 92.20
Jordan BB- Ba3 37.30 Uruguay BBB- Baa3 46.50
Kazakhstan B+ Ba3 27.90 Venezuela B B2 34.40
Korea Rep BBB Ba1 52.70

One challenge with this data is that each of the three agencies has its own rating scale:
S&P uses an alphabetical rating scale (shown in the “S&P scale” column in Table 3.7)
ranging from low end at SD, CC through AAA; Mdy uses an alphanumerical rating scale
(shown in the “Moody’s scale” column in Table 3.7) ranging from low end at C, Ca through
Aaa; and InsI uses a numeric scale ranging from high end at 100 through 0. Several authors
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(e.g. Ferri et. al. [26], [34]) converted S&P and Mdy rating scales to the numeric scales
shown in the ‘converted scale’ column of Table 3.7. This converted scale ranges from 0 to
100, where a lower numeric value denotes a higher probability of default. Note that in this
scale the differences in the values assigned are constant for any pair of consecutive rating
categories.

Table 3.7: Conversion from S&P and Mdy’s rating scales to a numeric scale.

S&P Moody’s Converted S&P Moody’s Converted
scale scale scale scale scale scale
AAA Aaa 100.00 BB Ba2 45.00
AA+ Aa1 95.00 BB- Ba3 40.00
AA Aa2 90.00 B+ B1 35.00
AA- Aa3 85.00 B B2 30.00
A+ A1 80.00 B- B3 25.00
A A2 75.00 CCC+ Caa1 20.00
A- A3 70.00 CCC Caa2 15.00
BBB+ Baa1 65.00 CCC- Caa3 10.00
BBB Baa2 60.00 CC Ca 5.00
BBB- Baa3 55.00 SD/D C 0.00
BB+ Ba1 50.00

Let (||,M·Sep-Dev,1), refer to (||,M·Sep-Dev) with ukij = vki = 1, for all i, j, k. We
use (||,M·Sep-Dev,1) as no a-priori estimates are available on the relative expertise of each
agency.

We obtain the aggregate country-credit-risk rating by solving (||,M·Sep-Dev,1). We refer
to the solution of (||,M·Sep-Dev,1) as the aggregate MSD1 rating, xMSD1, and to the aggre-
gate rating obtained by the averaging method as the aggregate averaging rating, xAvg. The
(converted) S&P’s rating is denoted by rSP , the (converted) Mdy’s rating by rMdy and the
InsI’s rating by rInsI . These ratings are given in Table 3.8.

Table 3.8: Input and output for the country credit-risk aggregation problem.

Country rSP rMdy rInsI xMSD xAvg

Argentina 45 40 42.7 44.1 42.6
Australia 95 90 74.3 90.0 86.4
Austria 100 100 88.7 99.1 96.2
Belgium 95 95 83.5 94.1 91.2
Bolivia 40 35 28.0 36.5 34.3
Brazil 35 30 37.4 34.1 34.1
Canada 95 95 83.0 94.1 91.0
Chile 70 65 61.8 69.1 65.6
China 60 70 57.2 65.7 62.4
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Table 3.8: (continued)

Country rSP rMdy rInsI xMSD xAvg

China-HK 75 70 61.8 70.3 68.9
Colombia 50 55 44.5 53.0 49.8
Costa Rica 45 50 38.4 46.9 44.5
Croatia 55 55 39.0 54.1 49.7
Cyprus 75 75 57.3 74.1 69.1
Czech Rep 70 65 59.7 68.2 64.9
Denmark 95 95 84.7 94.1 91.6
Dominican Rep 35 45 28.1 36.6 36.0
Egypt 55 50 44.4 52.9 49.8
El Salvador 50 45 31.2 45.0 42.1
Estonia 65 65 42.8 64.1 57.6
Finland 95 100 82.2 94.8 92.4
France 100 100 90.8 99.3 96.9
Germany 100 100 92.5 100.0 97.5
Greece 70 65 56.1 65.0 63.7
Hungary 60 60 55.9 60.0 58.6
Iceland 80 85 67.0 79.8 77.3
India 45 45 44.5 45.0 44.8
Indonesia 20 25 27.9 25.0 24.3
Ireland 95 100 81.8 94.8 92.3
Israel 70 70 54.3 69.1 64.8
Italy 90 85 79.1 87.6 84.7
Japan 100 95 86.5 95.0 93.8
Jordan 40 40 37.3 40.0 39.1
Kazakhstan 35 40 27.9 36.4 34.3
Korea Rep 60 50 52.7 58.3 54.2
Latvia 60 60 38.0 59.1 52.7
Lebanon 40 35 31.9 39.1 35.6
Lithuania 55 50 36.1 50.0 47.0
Malaysia 60 55 51.0 58.8 55.3
Malta 75 70 61.7 70.2 68.9
Mexico 45 45 46.0 45.0 45.3
Morocco 45 45 43.2 45.0 44.4
Netherlands 100 100 91.7 100.0 97.2
New Zealand 95 90 73.1 90.0 86.0
Norway 100 100 86.8 99.1 95.6
Pakistan 25 20 20.4 24.1 21.8
Panama 50 50 39.9 49.1 46.6
Paraguay 30 30 31.3 30.0 30.4
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Table 3.8: (continued)

Country rSP rMdy rInsI xMSD xAvg

Peru 45 40 35.0 43.3 40.0
Philippines 50 50 41.3 49.8 47.1
Poland 60 55 56.7 59.1 57.2
Portugal 90 90 76.1 89.1 85.4
Romania 25 25 31.2 25.0 27.1
Russia 0 25 20.0 24.1 15.0
Singapore 100 95 81.3 95.0 92.1
Slovak Rep 50 50 41.3 49.8 47.1
Slovenia 75 70 58.4 70.0 67.8
South Africa 50 55 45.8 54.1 50.3
Spain 95 90 80.3 90.0 88.4
Sweden 95 90 79.7 90.0 88.2
Switzerland 100 100 92.7 100.0 97.6
Thailand 55 50 46.9 54.1 50.6
Trin & Tobago 55 50 43.3 51.8 49.4
Tunisia 55 55 50.3 55.0 53.4
Turkey 30 35 36.9 35.0 34.0
UK 100 100 90.2 99.1 96.7
USA 100 100 92.2 100.0 97.4
Uruguay 55 55 46.5 55.0 52.2
Venezuela 30 30 34.4 30.0 31.5

3.4.1 Analysis of results

In this section we analyze the optimal solution to (||,M·Sep-Dev,1), xMSD1. The analysis
involves comparing the degree of agreement between xMSD1 and each agency’s ratings.

For given penalty functions fij() we define the vector-separation distance between two
ratings a and b to be

∑n
i=1

∑n
j=i+1 fij(p

a
ij− pbij) and the scalar-separation distance between

two score-pairs {ai, aj} and {bi, bj} to be fij(p
a
ij − pbij), where paij = ai − aj and pbij = bi − bj.

Similarly, for given penalty functions gi() we define the vector-deviation distance between
two ratings a and b to be

∑n
i=1 gi(ai − bi) and the scalar-deviation distance between two

scores ai and bi to be gi(ai − bi). When fij(y) = |y| (fij(y) = y2) will refer to the absolute
value (quadratic) vector-separation distance. Finally, when gi(y) = |y| (gi(y) = y2) will refer
to the absolute value (quadratic) scalar-separation distance.

The aggregate MSD1 rating xMSD1 is shown in the 5th column of Table 3.8. The absolute
value vector-separation and vector-deviation distances between each agency’s rating and
xMSD1 are shown in Table 3.9.



49

Table 3.9: Distances between xMSD1 and each agency’s rating.
rSP - xMSD1 rMdy - xMSD1 rInsI - xMSD1 Total

Absolute value vector-separation 7,540.00 6,058.60 13,952.00 27,550.60
Absolute value vector-deviation 148.60 108.20 600.40 857.20

Total distance 7,688.6 6,166.8 14,552.4 2,8407.8

The information in Table 3.9 demonstrates that InsI’s country credit-risk ratings is the
rating which deviate the most from xMSD1. To explain why, we provide in Table 3.10 the
absolute value vector-separation and vector-deviation distances for each pair of the three
agencies. These distances show that S&P and Mdy’s ratings are, by far, the closest among
the three pairs. We note that also Hammer et. al., [34], found that the correlation between
the ratings of S&P and Mdy is higher than both the correlation between the ratings of InsI
and S&P and the correlation between the ratings of S&P and InsI. Therefore, S&P and Mdy
form an ‘almost’ majority, and thus in the spirit of Theorem 3.2.8 should be closer to the
aggregate MSD1 rating. This explains why xMSD1 is significantly closer to the ratings of
S&P and Mdy.

Table 3.10: Distances between the ratings of each pair of agencies.

S&P - Mdy S&P - InsI Mdy - InsI
Absolute value vector-separation 11,440.00 19,496.80 17,994.60
Absolute value vector-deviation 230.00 703.60 618.60

Analysis of the results via the absolute value scalar-deviation distance

The absolute value scalar-deviation distance between each agency’s country score and
the respective country score of xMSD1 is given in Table 3.11.

As seen in Table 3.11, for each agency there is a set of countries where the absolute value
scalar-deviation distance with respect to xMSD1 is considerably higher than the rest of the
absolute value scalar-deviation distances. In particular we note that:

1. S&P’s score to Russia has an absolute value scalar-deviation distance with more than
6.6 σ’s from the mean, while all other S&P’s scores are within 1 σ from the mean.

2. Mdy’s scores to the Dominican and Korean Republics have absolute value scalar-
deviation distances with more than 3.3 σ’s from the mean, while all other Mdy’s scores
are within 1.8 σ’s from the mean.

3. InsI’s score to Estonia and Latvia have absolute value scalar-deviation distances with
more than 2.7 σ’s from the mean, while all other S&P’s scores are within 1.9 σ’s from
the mean.

We argue that these scores are outliers with respect to the country credit-risk ratings given
by this group of agencies.
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In particular, Russia’s score by S&P has a scalar-deviation distance to the respective
aggregate score dramatically larger than all other scalar-deviation distances. We note that
Russia appears to be an outlier in S&P’s scores as the 1998 scores of S&P, Mdy and InsI
are SD (0), B3 (25) and 20.0, respectively. One possible explanation for this discrepancy in
Russia’s scores is that S&P distinguishes between ‘default’ and ‘selective default’, whereas
the other agencies don’t do so. It should be pointed out that S&P upgraded Russia’s score
from SD in 1998 and 1999 to B-, B and B+ in December 2000, June 2001 and December
2001 respectively [3].

Table 3.11: Countries sorted in descending absolute-value scalar-deviation distance per agency.
For each agency and each country column ‘Dev’ gives the distance between the re-
spective agency’s rating and the aggregate MSD1 rating. Column ‘Total’ shows the
sum of the 3 absolute value scalar-deviations.

S&P Moody’s Institutional Investor Total
Country Dev Country Dev Country Dev Country Dev
Russia 24.1 Dominican Rep 8.4 Estonia 21.3 Russia 29.1
China 5.7 Korea Rep 8.3 Latvia 21.1 Estonia 23.1
Australia 5.0 Finland 5.2 New Zealand 16.9 Latvia 22.9
El Salvador 5.0 Iceland 5.2 Cyprus 16.8 New Zealand 21.9
Greece 5.0 Ireland 5.2 Australia 15.7 Australia 20.7
Indonesia 5.0 China 4.3 Croatia 15.1 Lithuania 18.9
Japan 5.0 Argentina 4.1 Israel 14.8 El Salvador 18.8
Lithuania 5.0 Brazil 4.1 Lithuania 13.9 Singapore 18.7
New Zealand 5.0 Chile 4.1 El Salvador 13.8 Cyprus 18.6
Singapore 5.0 Lebanon 4.1 Singapore 13.7 China 18.5
Slovenia 5.0 Pakistan 4.1 Ireland 13.0 Dominican Rep 18.5
Spain 5.0 Poland 4.1 Portugal 13.0 Ireland 18.4
Sweden 5.0 Thailand 4.1 Iceland 12.8 Iceland 18.2
Turkey 5.0 Malaysia 3.8 Finland 12.6 Finland 18.0
Malta 4.8 Kazakhstan 3.6 Norway 12.3 Croatia 16.9
China-HK 4.7 Peru 3.3 Slovenia 11.6 Israel 16.6
South Africa 4.1 Czech Rep 3.2 Canada 11.1 Slovenia 16.6
Bolivia 3.5 Costa Rica 3.1 Belgium 10.6 Korea Rep 15.6
Trin & Tobago 3.2 Egypt 2.9 Austria 10.4 Sweden 15.3
Colombia 3.0 Italy 2.6 Sweden 10.3 Portugal 14.8
Italy 2.4 Colombia 2.0 Spain 9.7 Spain 14.7
Egypt 2.1 Trin & Tobago 1.8 Denmark 9.4 Norway 14.1
Costa Rica 1.9 Bolivia 1.5 Panama 9.2 Greece 13.9
Czech Rep 1.8 Austria 0.9 Greece 8.9 Bolivia 13.5
Korea Rep 1.7 Belgium 0.9 UK 8.9 China-HK 13.5
Peru 1.7 Canada 0.9 Bolivia 8.5 Colombia 13.5
Dominican Rep 1.6 Croatia 0.9 China 8.5 Costa Rica 13.5
Kazakhstan 1.4 Cyprus 0.9 China-HK 8.5 Czech Rep 13.5
Malaysia 1.2 Denmark 0.9 Colombia 8.5 Egypt 13.5
Argentina 0.9 Estonia 0.9 Costa Rica 8.5 Italy 13.5
Austria 0.9 Israel 0.9 Czech Rep 8.5 Japan 13.5
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Table 3.11: (continued)
S&P Moody’s Institutional Investor Total

Country Dev Country Dev Country Dev Country Dev
Belgium 0.9 Latvia 0.9 Dominican Rep 8.5 Kazakhstan 13.5
Brazil 0.9 Norway 0.9 Egypt 8.5 Malta 13.5
Canada 0.9 Panama 0.9 France 8.5 Trin & Tobago 13.5
Chile 0.9 Portugal 0.9 Italy 8.5 Peru 13.3
Croatia 0.9 Russia 0.9 Japan 8.5 South Africa 13.3
Cyprus 0.9 South Africa 0.9 Kazakhstan 8.5 Canada 12.9
Denmark 0.9 UK 0.9 Malta 8.5 Malaysia 12.8
Estonia 0.9 France 0.7 Philippines 8.5 Belgium 12.4
Israel 0.9 China-HK 0.3 Slovak Rep 8.5 Chile 12.3
Latvia 0.9 Malta 0.2 Trin & Tobago 8.5 Austria 12.2
Lebanon 0.9 Philippines 0.2 Uruguay 8.5 Lebanon 12.2
Norway 0.9 Slovak Rep 0.2 Netherlands 8.3 Thailand 12.2
Pakistan 0.9 Australia 0.0 Peru 8.3 Denmark 11.2
Panama 0.9 El Salvador 0.0 South Africa 8.3 Panama 11.0
Poland 0.9 Germany 0.0 Malaysia 7.8 UK 10.7
Portugal 0.9 Greece 0.0 USA 7.8 France 9.9
Thailand 0.9 Hungary 0.0 Germany 7.5 Philippines 8.9
UK 0.9 India 0.0 Chile 7.3 Slovak Rep 8.9
France 0.7 Indonesia 0.0 Switzerland 7.3 Pakistan 8.7
Finland 0.2 Japan 0.0 Lebanon 7.2 Uruguay 8.5
Iceland 0.2 Jordan 0.0 Thailand 7.2 Brazil 8.3
Ireland 0.2 Lithuania 0.0 Romania 6.2 Netherlands 8.3
Philippines 0.2 Mexico 0.0 Korea Rep 5.6 Indonesia 7.9
Slovak Rep 0.2 Morocco 0.0 Tunisia 4.7 USA 7.8
Germany 0.0 Netherlands 0.0 Venezuela 4.4 Germany 7.5
Hungary 0.0 New Zealand 0.0 Hungary 4.1 Poland 7.4
India 0.0 Paraguay 0.0 Russia 4.1 Switzerland 7.3
Jordan 0.0 Romania 0.0 Pakistan 3.7 Turkey 6.9
Mexico 0.0 Singapore 0.0 Brazil 3.3 Argentina 6.4
Morocco 0.0 Slovenia 0.0 Indonesia 2.9 Romania 6.2
Netherlands 0.0 Spain 0.0 Jordan 2.7 Tunisia 4.7
Paraguay 0.0 Sweden 0.0 Poland 2.4 Venezuela 4.4
Romania 0.0 Switzerland 0.0 Turkey 1.9 Hungary 4.1
Switzerland 0.0 Tunisia 0.0 Morocco 1.8 Jordan 2.7
Tunisia 0.0 Turkey 0.0 Argentina 1.4 Morocco 1.8
USA 0.0 USA 0.0 Paraguay 1.3 Paraguay 1.3
Uruguay 0.0 Uruguay 0.0 Mexico 1.0 Mexico 1.0
Venezuela 0.0 Venezuela 0.0 India 0.5 India 0.5

Total 148.6 108.2 600.4 857.2
Maximum 24.1 8.4 21.3 29.1
Average 2.2 1.6 8.7 12.4
σ 3.3 2.0 4.4 5.7
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Analysis of the results via the absolute value scalar-separation distance

This section provides an analysis of the solution to (||,M·Sep-Dev,1) in terms of the ab-
solute value scalar-separation distance analogous to the analysis we provided in the previous
section. The overall results are consistent with those of the previous section.

With a rating of 69 countries we have 2346 pairwise comparisons and it is impossible to
list all of the absolute value scalar-separation distances. Instead in Table 3.12 we list only
the most significant pairwise comparisons in terms of largest absolute value scalar-separation
distances between each agency’s rating and xMSD1.

It is interesting to observe that the countries which have the highest scalar-deviation dis-
tances belong to the country-pairs which have the highest absolute value scalar-separation
distances. Indeed reviewing the ranked list of the pairwise comparisons which deviate the
most from xMSD1, one observes that certain countries appear in country-pairs with high
scalar-separation distances. These two observations are related to having derived the sep-
aration gaps from the ratings pkij = aki − akj . Thus any discrepancy in one score affects all
pairwise comparisons with such score. Indeed it is easy to see in Table 3.12 that for the case
of S&P the first 68 pairwise comparisons concern Russia. In the case of Mdy the countries
which dominate the results are the Dominican Republic and the Korean Republic. Finally,
in the case of InsI, this clustering of countries is not as evident; however one can still ob-
serve the predomination of Estonia and Latvia as the countries with the higher absolute
value scalar-separation distances. Recall that these countries were the ones with the highest
scalar-deviation distances.

Table 3.12: Country-pairs with the highest absolute value scalar-separation distance per agency
sorted in descending order. For each agency and each country-pair the column ‘Sep’
gives the scalar-separation distance between the respective agency’s separation gap
and the aggregate MSD1 rating’s.

S&P Mdy InsI
Country 1 Country 2 Sep Country 1 Country 2 Sep Country 1 Country 2 Sep
Australia Russia 29.1 Dom. Rep. Korea Rep 16.7 Estonia Romania 27.5
El Salvador Russia 29.1 Finland Korea Rep 13.5 Latvia Romania 27.3
Greece Russia 29.1 Iceland Korea Rep 13.5 Estonia Venezuela 25.7
Japan Russia 29.1 Ireland Korea Rep 13.5 Latvia Venezuela 25.5
Lithuania Russia 29.1 China Korea Rep 12.6 Brazil Estonia 24.6
N. Zealand Russia 29.1 Argentina Dom. Rep. 12.5 Brazil Latvia 24.4
Russia Singapore 29.1 Brazil Dom. Rep. 12.5 Estonia Indonesia 24.2
Russia Slovenia 29.1 Chile Dom. Rep. 12.5 Indonesia Latvia 24.0
Russia Spain 29.1 Dom. Rep. Lebanon 12.5 Estonia Turkey 23.2
Russia Sweden 29.1 Dom. Rep. Pakistan 12.5 N. Zealand Romania 23.1
Malta Russia 28.9 Dom. Rep. Poland 12.5 Cyprus Romania 23.0
China-HK Russia 28.8 Dom. Rep. Thailand 12.5 Latvia Turkey 23.0
Bolivia Russia 27.6 Dom. Rep. Malaysia 12.2 Estonia Paraguay 22.6
Russia Trin&Tob 27.3 Kazakhstan Korea Rep 11.9 Latvia Paraguay 22.4
Italy Russia 26.5 Dom. Rep. Peru 11.7 Estonia Mexico 22.3
Egypt Russia 26.2 Czech Rep Dom. Rep. 11.6 Latvia Mexico 22.1
Czech Rep Russia 25.9 Costa Rica Korea Rep 11.4 Australia Romania 21.9
Korea Rep Russia 25.8 Dom. Rep. Egypt 11.3 N. Zealand Venezuela 21.3
Peru Russia 25.8 Dom. Rep. Italy 11.0 Croatia Romania 21.3
Malaysia Russia 25.3 Colombia Korea Rep 10.3 Cyprus Venezuela 21.2



53

Table 3.12: (continued)
S&P Mdy InsI

Country 1 Country 2 Sep Country 1 Country 2 Sep Country 1 Country 2 Sep
Argentina Russia 25.0 Dom. Rep. Trin&Tob 10.2 Israel Romania 21.0
Austria Russia 25.0 Bolivia Dom. Rep. 9.9 Estonia India 20.8
Belgium Russia 25.0 Argentina Finland 9.3 India Latvia 20.6
Brazil Russia 25.0 Argentina Iceland 9.3 Brazil N. Zealand 20.2
Canada Russia 25.0 Argentina Ireland 9.3 Australia Venezuela 20.1
Chile Russia 25.0 Brazil Finland 9.3 Brazil Cyprus 20.1
Croatia Russia 25.0 Brazil Iceland 9.3 Lithuania Romania 20.1
Cyprus Russia 25.0 Brazil Ireland 9.3 El Salvador Romania 20.0
Denmark Russia 25.0 Chile Finland 9.3 Argentina Estonia 19.9
Estonia Russia 25.0 Chile Iceland 9.3 Romania Singapore 19.9
Israel Russia 25.0 Chile Ireland 9.3 Indonesia N. Zealand 19.8
Latvia Russia 25.0 Finland Lebanon 9.3 Argentina Latvia 19.7
Lebanon Russia 25.0 Finland Pakistan 9.3 Cyprus Indonesia 19.7
Norway Russia 25.0 Finland Poland 9.3 Estonia Morocco 19.5
Pakistan Russia 25.0 Finland Thailand 9.3 Croatia Venezuela 19.5
Panama Russia 25.0 Iceland Lebanon 9.3 Latvia Morocco 19.3
Poland Russia 25.0 Iceland Pakistan 9.3 Ireland Romania 19.2
Portugal Russia 25.0 Iceland Poland 9.3 Portugal Romania 19.2
Russia Thailand 25.0 Iceland Thailand 9.3 Israel Venezuela 19.2
Russia UK 25.0 Ireland Lebanon 9.3 Australia Brazil 19.0
France Russia 24.8 Ireland Pakistan 9.3 Iceland Romania 19.0
Finland Russia 24.3 Ireland Poland 9.3 Estonia Poland 18.9
Iceland Russia 24.3 Ireland Thailand 9.3 N. Zealand Turkey 18.8
Ireland Russia 24.3 Austria Korea Rep 9.2 Finland Romania 18.8
Philippines Russia 24.3 Belgium Korea Rep 9.2 Latvia Poland 18.7
Russia Slovak Rep 24.3 Canada Korea Rep 9.2 Cyprus Turkey 18.7
Germany Russia 24.1 Croatia Korea Rep 9.2 Australia Indonesia 18.6
Hungary Russia 24.1 Cyprus Korea Rep 9.2 Estonia Jordan 18.6
India Russia 24.1 Denmark Korea Rep 9.2 Norway Romania 18.5
Jordan Russia 24.1 Estonia Korea Rep 9.2 Brazil Croatia 18.4
Mexico Russia 24.1 Israel Korea Rep 9.2 Jordan Latvia 18.4
Morocco Russia 24.1 Korea Rep Latvia 9.2 Lithuania Venezuela 18.3
Netherlands Russia 24.1 Korea Rep Norway 9.2 N. Zealand Paraguay 18.2
Paraguay Russia 24.1 Korea Rep Panama 9.2 El Salvador Venezuela 18.2
Romania Russia 24.1 Korea Rep Portugal 9.2 Brazil Israel 18.1
Russia Switzerland 24.1 Korea Rep Russia 9.2 Singapore Venezuela 18.1
Russia Tunisia 24.1 Korea Rep S. Africa 9.2 Cyprus Paraguay 18.1
Russia USA 24.1 Korea Rep UK 9.2 Croatia Indonesia 18.0
Russia Uruguay 24.1 Finland Malaysia 9.0 Mexico N. Zealand 17.9
Russia Venezuela 24.1 France Korea Rep 9.0 Romania Slovenia 17.8
Kazakhstan Russia 22.7 Iceland Malaysia 9.0 Cyprus Mexico 17.8
Dom. Rep. Russia 22.5 Ireland Malaysia 9.0 Indonesia Israel 17.7
Costa Rica Russia 22.2 China-HK Dom. Rep. 8.7 Australia Turkey 17.6
Colombia Russia 21.1 Dom. Rep. Malta 8.6 Estonia Pakistan 17.6
Russia S. Africa 20.0 Finland Peru 8.5 Ireland Venezuela 17.4
Indonesia Russia 19.1 Iceland Peru 8.5 Latvia Pakistan 17.4
Russia Turkey 19.1 Ireland Peru 8.5 Portugal Venezuela 17.4
China Russia 18.4 Korea Rep Philippines 8.5 Canada Romania 17.3
Australia China 10.7 Korea Rep Slovak Rep 8.5 Brazil Lithuania 17.2
China El Salvador 10.7 Czech Rep Finland 8.4 Estonia Russia 17.2
China Greece 10.7 Czech Rep Iceland 8.4 Estonia Hungary 17.2
China Japan 10.7 Czech Rep Ireland 8.4 Iceland Venezuela 17.2
China Lithuania 10.7 Australia Dom. Rep. 8.4 Brazil El Salvador 17.1
China N. Zealand 10.7 Dom. Rep. El Salvador 8.4 Brazil Singapore 17.0
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Table 3.12: (continued)
S&P Mdy InsI

Country 1 Country 2 Sep Country 1 Country 2 Sep Country 1 Country 2 Sep

Total 7,540.0 6,058.2 13,952.0
Maximum 29.1 16.7 27.5
Average 3.2 2.6 5.9
σ 4.4 2.6 5.0

3.4.2 Comparison of the aggregate MSD1 rating to the aggregate
averaging rating

We now show that the aggregate MSD1 rating xMSD1 is in some sense closer than the
aggregate averaging rating xAvg to the group consensus. The aggregate MSD1 rating and the
aggregate averaging rating are shown in the 5th and 6th columns of Table 3.8, respectively.
We compare xMSD1 to xAvg by evaluating their respective distances to each of the agencies’
ratings. For this purpose we use the vector-separation and vector-deviation distances and
the Kemeny-Snell distance.

Since xMSD1 is the optimal solution to (||,M·Sep-Dev,1), it is the vector with minimum
total sum of absolute value vector-separation and vector-deviation distances with respect to
the agencies’ ratings. Thus xMSD1 tends to perform better than xAvg for the absolute value
vector-deviation distance alone, and the absolute value vector-separation distance alone.
This is shown in the Tables 3.13 and 3.14.

Table 3.13: Absolute value vector-deviation distances between each aggregate rating and
each agency rating.

rSP rMdy rInsI Total
xMSD1 148.6 108.2 600.4 857.2
xAvg 280.8 210.8 432.2 923.8

Table 3.14: Absolute value vector-separation distances between each aggregate rating
and each agency rating.

rSP rMdy rInsI Total
xMSD1 7,540.0 6,058.6 13,952.0 27,550.6
xAvg 8,990.4 8,099.0 11,839.0 28,928.4

From Theorem 3.3.1 we have that xAvg is the optimal solution to the separation-deviation
problem with uniform quadratic penalty functions. I.e. it is the vector with minimum total
sum of quadratic vector-separation and vector-deviation distances to the agencies’ ratings.
Thus xAvg tends to perform better than xMSD1 for the quadratic vector-deviation distance
alone, and the quadratic vector-separation distance alone. This is shown in the Tables 3.15
and 3.16.
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Table 3.15: Quadratic vector-deviation distances between each aggregate rating and each
agency rating.

rSP rMdy rInsI Total
xMSD1 1,049.76 453.69 6,577.21 8,080.66
xAvg 1,624.09 1,043.29 3,528.36 6,195.74

Table 3.16: Quadratic vector-separation distances between each aggregate rating and
each agency rating.

rSP rMdy rInsI Total
xMSD1 70,596.49 31,187.56 142,129.00 243,913.05
xAvg 64,566.81 43,597.44 94,740.84 202,905.09

In Table 3.17 we show the number of reversals when comparing xMSD1 and xAvg with
each of the agency’s original ratings. As shown in the 4th column of Table 3.17, xMSD1 has
fewer total number of reversals from rSP , rMdy, and rInsI , as compared to xAvg. Therefore,
the solution to (||,M·Sep-Dev,1) is closer to the ordering implied by the agencies’ ratings than
xAvg. Furthermore, xMSD1 is closer to both rSP and rMdy than xAvg. As noted previously,
S&P and Mdy form a kind of ‘majority’. We argue that even when there is no clear majority,
as Theorem 3.2.13 requires, xMSD1 is closer to the ratings of the reviewers that show a “high
degree of agreement” than to the ratings of other reviewers. We conclude that xMSD1 is
close to a group consensus.

Table 3.17: Number of reversals distance between each aggregate rating and each agency
rating.

rSP rMdy rInsI Total
xMSD1 86 87.5 158.5 332
xAvg 107 112.5 129.5 349

We note that rSP has the fewest number of reversals from xMSD1, followed closely by
rMdy. The rInsI rating has a far larger number of reversals. This contrasts with the obser-
vations in the previous sections, where Mdy had the closest agency-rating to xMSD1. This
apparent contradiction might be explained by the following two observations:

1. As shown in Table 3.18, rSP has the fewest total number of reversals when compared
to the other two rating agencies. Furthermore with respect to the number of reversals
measure, rSP is closer to rInsI than rMdy to rInsI and rSP is closer to rMdy than rInsI

to rMdy. So, when using this distance measure, rSP is closer to the group consensus
than the other two ratings.

2. Since the number of reversals distance is only relative to the (implied) ordering, rather
than to the magnitude of the scores, it is less sensitive to outliers than the vector-
separation and vector-deviation distances. In this regard, note that Russia’s score by
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S&P is the score with the highest deviation and separation distances; while Russia
contributes only one reversal when comparing rSP to rMdy and only one reversal when
comparing rMdy to rInsI .

Table 3.18: Number of reversals between the ratings of each pair of agencies.

rSP rMdy rInsI Total
rSP 0 133.5 214.5 348.0
rMdy 133.5 0 228.0 361.5
rInsI 214.5 228 0 442.5

3.5 Conclusions

In this chapter we demonstrate several properties of the separation-deviation model. The
main result here is that the separation model has the property of resistance to manipulation
by a minority. We also prove a similar, but weaker, result for the separation-deviation model.
Additionally we characterize the optimal solution to the model for certain classes of penalty
functions.

The separation deviation model is used here to aggregate conflicting credit-risk ratings.
We show that the aggregate MSD1 rating is closer to the group rating than the aggregate
averaging rating. This is established here for the absolute value vector-deviation and vector-
separation distances. Moreover, the aggregate MSD1 rating also has fewer reversals from
the agencies’ ratings than the aggregate averaging rating. We conclude that the aggregate
MSD1 rating better reflects each of the agency’s ratings than the aggregate averaging rating.

We anticipate that in more general scenarios the separation-deviation model will prove
to be a useful aggregation method. We believe that the separation-deviation model is a
useful tool for aggregating disparate sources of information, and should be considered as an
alternative to other group decision making methods.
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Chapter 4

Rating customers according to their
promptness to adopt new technology

4.1 Introduction

Databases are a significant source of information in organizations and play a major role in
managerial decision-making. From commercial data, organizations derive information about
their customers and use it to hone their competitive strategies.

Customer rating with respect to the promptness to adopt new products is a compelling
exercise, as it allows companies to define appropriate actions for the launch of a new prod-
uct into the marketplace. Innovators, customers that adopt technology promptly, are often
the main target of a firm’s marketing efforts of new products. Because the innovators tend
to influence the remaining potential adopters, that is, the majority, firms tend to allocate
more marketing efforts and resources toward the innovators than toward the majority [51].
Therefore, knowing the customers’ adoption promptness allows companies to market innova-
tors effectively. In addition, customer rating is the first step in order to be able to perform
studies that link individual characteristics (such as age, gender, usage rate, and loyalty) to
the adoption promptness.

Rating the customers’ adoption promptness is particularly important in high tech mar-
kets, where products generally have short—and indeed shrinking—life-cycles [58]. For exam-
ple, whereas memory semiconductor chips had a life of mature product lasting approximately
5 years in the early 90s, this had shrunk to one year in the early 2000s, (see e.g. Figure 4.1
for product life cycles in the semiconductor industry).
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Figure 4.1: Shrinking product life cycles in the semi-conductor industry over time.
Wafers’ starts per week (WSPW) are given as a function of time.

The motivation of this chapter is to solve the customer rating problem, defined as follows:
Given a set of customers, a set of products, and the purchase times of each customer-product
pair, rate each customer according to its adoption promptness. We illustrate our proposed
methodology on data obtained from Sun Microsystems.

We focus our attention on the problem where the information available is incomplete; that
is, there are customers who do not purchase every product. This is true in Sun Microsystems
data and it is often the case in other customer segmentation data.

Two of the main contributions of this chapter are: (1) to present the novel application
of the separation-deviation model to the customer rating problem, and, (2) to compare the
separation-deviation model to the well known unidimensional scaling methodology, which is
widely used in several contexts (see, for example, [27, 53, 31]).

This chapter is organized as follows. Section 4.2 reviews how the customer rating prob-
lem has been previously addressed in the literature, and reviews unidimensional scaling as
an approach to solve the customer rating problem. Section 4.3 indicates how the separation-
deviation model is used in the customer rating context and how it differs from other tech-
niques. Section 4.4 compares, in simulated scenarios, the performance of the separation-
deviation model to that of unidimensional scaling. Specifically, section 4.4 compares the
performance of the two methods in simulated scenarios where the correct adoption prompt-
ness of the customers is known in advance. Section 4.5 presents a study on commercial data
from Sun Microsystems and reports the generated insights obtained by using our approach.
Finally Section 4.6 gives some final remarks about the separation-deviation model and its
usefulness for other type of applications.
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4.2 Literature review

Generally speaking, the input to data-mining techniques consists of a collection of records
that characterize customer purchase behavior, as well as other relevant customer character-
istics such as age, gender, usage rate, loyalty status, etc. At an abstract level, many data-
mining techniques attempt to explain customer behavior in terms of a meaningful subset of
customer characteristics, by identifying a function that maps a vector of customer attributes
to a scalar value.

There are two main classes of data-mining techniques: those for supervised learning and
those for unsupervised learning. The main objective of supervised learning techniques is to
try to identify how to use independent variables (i.e., observable customer characteristics)
in order to be able to predict an unobservable customer characteristic. These techniques
require as input a customer database with pre-classified customers. Some classical customer
segmentation techniques that fall under this category are automatic interaction detector
(AID) and its extensions (e.g. CHAID), linear regression and its generalizations (e.g. canon-
ical analysis), discriminant analysis, conjoint analysis and its extensions (e.g. componential
segmentation and POSSE — product optimization and selected segment evaluation), logis-
tic regression, neural networks, etc. For the Sun Microsystems study we have no a priori
labeling of the customers, i.e. we do not have a “training set”. Therefore, the focus of
this chapter is on the unsupervised-learning problem of rating customers according to their
adoption promptness.

In unsupervised-learning techniques, there is no pre-classified set of customers. Thus
unsupervised learning techniques aim to determine the customer ratings from the unlabeled
data. We mention an approach used in [55] based on maximum-cut clustering. Maximum-
cut is an NP-hard problem, so the approach in [55] is to approximate maximum-cut with
semidefinite-programming. The output is not a full customer rating but rather a classification
of the customers only in early versus late adopters. The limitations of their approach are
considerable and therefore we restrict our attention to multidimensional scaling, a widely
used unsupervised learning technique.

Multidimensional scaling (MDS) is a set of related techniques used for representing the
similarities and dissimilarities among pairs of objects as distances between points on a low-
dimensional space. MDS models aim to approximate given nonnegative dissimilarities, δij,
among pairs of objects, i, j, by distances between points in an m-dimensional MDS config-
uration X. Here X, the configuration, is an n × m matrix with the coordinates of the n
objects in <m. Most MDS techniques assume that the dissimilarity matrix [δij] is symmetric;
we review two important exceptions below. The most common function to measure the fit
between the given dissimilarities, δij, and distances, dij(X), is STRESS, defined by

STRESS(X) ≡
n∑
i=1

n∑
j=1

wij(δij − dij(X))2, (4.1)
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where wij is a given nonnegative weight reflecting the importance or precision of the dissim-
ilarity δij. Note that wij can be set to 0 if δij is unknown. dij(X) is a vector norm, defined
as

dij(X) =

[
n∑
s=1

|xis − xjs|q
]1/q

with given parameter q ≥ 1. Usually, dij(X) is the L2 norm (q = 2) or the L1 norm (q=1).
Finding a global minimum of (4.1) is a hard optimization problem since STRESS is

a nonlinear non-convex function with respect to X and thus optimization algorithms can
converge to local minima (see, for example, [23, 33, 2]).

In a useful MDS technique, the so-called three-way MDS, for each pair of objects we
are given K dissimilarity measures from different “replications” (e.g., repeated measures,
different experimental conditions, multiple raters, etc.). The objective function of three-way
MDS is defined as [23],

3WAY − STRESS(X) ≡
K∑
k=1

n∑
i=1

n∑
j=1

wkij(δ
k
ij − dij(X))2. (4.2)

Unidimensional scaling (UDS) is the important one-dimensional case of MDS where the
configuration X is an n× 1 matrix. Therefore UDS seeks to approximate the given dissimi-
larities by distances between points in a one-dimensional space. Unidimensional scaling has
been studied mainly as a model for object sequencing and seriation [45, 15]; thus its rele-
vance to the problem concerning this chapter. Unidimensional scaling is a hard optimization
problem, and combinatorial techniques (e.g., branch-and-bound and dynamic programming)
are only able to optimally solve instances of up to 30 objects, see for example [50, 13, 46, 16].

In our particular application, rating customers according to their adoption promptness,
the input data is a matrix A with aki giving the adoption time (relative to product launch)
of customer i for product k. This matrix is, in general, incomplete and has many missing
elements. The objective is to assign each customer i to a scale x such that xi most accurately
recovers the across-customer ordering of product adoption times within any product. In order
to solve our problem, we can setup the following three-way UDS problem:

min
x

K∑
k=1

n∑
i=1

n∑
j=1

wkij(
∣∣aki − akj ∣∣− |xi − xj|)2. (4.3)

Here the interpretation is that product k gives a pairwise dissimilarity,
∣∣aki − akj ∣∣, among a

pair of customers i and j the purchased product k. Then, the objective is that customers
with low (high) dissimilarities have similar (dissimilar) adoption promptness and should be
placed “close (far) to each other” in the desired scale x.

We note a couple of drawbacks of formulating our customer rating problem as the three-
way UDS problem (4.3), and later introduce our scaling methodology which addresses these
drawbacks.
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1. As mentioned earlier, finding the optimal solution to (4.3) is a hard optimization
problem and current optimization techniques are only able to optimally solve instances
of at most 30 objects.

2. By calculating the dissimilarities as
∣∣aki − akj ∣∣, problem (4.3) ignores the so-called di-

rectionality of dominance, that is, the sign of (aki − akj ). In particular, problem (4.3)
does not capture the information regarding which customer adopted earlier product k.
Note that this information is very relevant in the customer rating problem.

A closely related observation is that given an optimal solution, x∗, to (4.3), −x∗ is also
an optimal solution to (4.3). Thus, by solving (4.3), we get a rating of the customers
but we do not know whether a higher rating means a greater adoption promptness or
viceversa.

While the vast majority of the papers in the UDS literature assume that the given
dissimilarities are non-negative and symmetric, there are two papers ([45] and [14])
that consider the case where the dissimilarities are given in a complete skew-symmetric
matrix (i.e., δij = −δji).
Since these approaches consider only one matrix [δij] and this matrix is complete, these
are not applicable to the customer rating problem. Indeed, the approach presented in
this chapter is a nice generalization of one of these approaches. We discuss briefly the
approaches presented in [45] and [14] and refer for further details to the original papers.

In [45], Hubert et. al. observe that a skew-symmetric matrix contains two distinct
types of information between any pair of objects: degree of dissimilarity, |δij|, and
directionality of dominance, sign(δij). They consider two approaches to sequencing the
objects. The first approach consists on finding the object ordering π such that the
matrix [δπ(i)π(j)] has the maximum sum of above-diagonal entries. Hubert et. al. note
that this problem is exactly the minimum feedback arc set problem, which is NP-hard.
The second approach proposed in [45] is to solve the following problem

min
x

n∑
i=1

n∑
j=1

(δij − (xi − xj))2, (4.4)

where the dissimilarity matrix [δij] is assumed to be skew-symmetric and has no missing
entries. Hubert et. al. give an analytic solution to problem 4.4; [42] gives a general-
ization of this result to the case of multiple dissimilarity matrices (but still no missing
entries).

In [14], the authors also differentiate between the degree of dissimilarity, |δij|, and
directionality of dominance, sign(δij). They propose a bicriteria optimization problem
that balances between these two types of information. While interesting, this approach
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is not practical since the proposed solution technique is only able to determine the non-
dominated solutions for matrices up to size 20 × 20 (and can take as input only one
skew-symmetric matrix).

A simplified version of the separation-deviation model presented in this chapter is to
solve problem (4.5). We present here this simplified version in order to allow for a quick
comparison with the methods reviewed so far.

min
x

K∑
k=1

n∑
i=1

n∑
j=1

wkijf
k
ij(δ

k
ij − (xi − xj)) (4.5)

Where, for the customer rating problem, δkij ≡ aki − akj , and thus, for each product k, [δkij] is
a (possibly incomplete) skew-symmetric matrix. wkij is a non-negative weight reflecting the
importance or precision of the dissimilarity δkij (wkij is set to 0 if δkij is unknown). And, each
fkij(·) is a given of convex function.

In MDS terminology, problem (4.5) is a three-way unidimensional scaling problem, where
the K dissimilarity matrices are skew-symmetric. In contrast to all of the MDS literature,
where fkij(·) are either the quadratic function or the absolute value function, in the separation-
deviation model these functions can differ form each other and may be any convex function.
In contrast to problem (4.3)—the direct application of UDS to the customer rating problem—
, problem (4.5) is solvable in polynomial time (as we show later) and does not ignore the
directionality of the dominance. In contrast to the approaches in [45] and [14] for skew-
symmetric matrices, problem (4.5) accepts multiple and incomplete dissimilarity matrices
and is solvable in polynomial time.

4.3 Applying the separation-deviation model to the

customer rating problem

Consider a population of customers, identified by the index i, who may elect to purchase
products indexed by k ∈ {1, . . . , K} over a period comprising a number of periods (months).
Let aki be the first month (if any) in which customer i purchased product k. Each of the n
customers is associated with an K-dimensional vector ai = (a1i , . . . , a

K
i ), recording the first

month in which he/she bought the different products. In the event that the customer did
not purchase a product, the corresponding entry in the vector is regarded as “missing”. The
model appropriately (and seamlessly to the user) deals with this missing information.

One of the important features of the separation-deviation model is that the model takes
as input a collection of separation gaps between the objects (customers) to be classified.
That is, a single customer-pair can have several, possibly conflicting separation gaps. In
this particular application, the separation-deviation model (henceforth abbreviated as SD-
model) uses the purchase-times to create separation gaps among the different customers.
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Example 4.3.1. Consider the input given in the following table:

aki a b c
A 8 - 1
B - 2 6
C 9 1 5.

The first row of the table says that customer A bought products a and c eight and one months
after each was launched; customer A did not buy product b. In addition to considering the
information given in the above table, the model explicitly generates five separation gaps that
represent the difference in the adoption promptness between each pair of customers. For
instance, the model will explicitly use the fact that customer A bought product a one month
before customer B.

The main motivations for considering separation gaps are the following:
1. We are interested in differentiating between customers that buy earlier and customers

that buy later; this is a question about the relative purchase times between customers.
In this respect it is important to emphasize that we are not concerned with the problem
of predicting the time when a certain customer will buy a given product (the “absolute”
purchase times of each customer).

2. While the specific months of purchase for different products might have a high variation,
the difference in the purchase times between two given customers might have less
variation. So for example say that Alice buys two products in months 1 and 100
respectively and Bob buys the same products in months 3 and 110 respectively. Just
looking at Alice’s purchases it would be unclear to determine if she is an early adopter
or a late adopter; however when considering that she always bought the products earlier
than Bob we can be certain that she adopts new products faster than Bob.

The model is formalized with a weighted directed graph G = (V,A), where each node
in V represents a customer and each arc (u, v) ∈ A represents a separation gap between
customers u and v. Every node, v, on the graph is associated with the respective vector av
(containing the purchase times of customer v). Similarly, every arc (u, v) on the graph has
associated a vector of weights containing all the separation gaps between customers u and
v.

The graph representing the table given in Example 4.3.1 is:
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In the application described in this chapter, separation gaps between customers are de-
rived from the observed first purchase times described above. Specifically, let aki and akj be
the observed first purchase times of customers i and j respectively, both of whom bought
product k. Then the separation gap between the two customers is defined as δkij = aki − akj ;
note that comparisons are skew-symmetric, since δkij = −δkji. Ultimately the output of the
SD model is a rating on the set of objects so that the difference between the scores of each
object-pair violates as little as possible the input separation gaps. Let the output rating of
the ith customer be denoted by xi, and let zij denote the output separation gap between the
ith and jth customers.

The penalty function fkij() for violating a separation gap given by the kth product between
the ith and jth customers is set to be a convex function of the violation, zij−δkij. The total sum
of these penalties,

∑
k

∑
i

∑
j w

k
ijf

k
ij(zij − δkij) is called the separation penalty. As in MDS,

wkij are given nonnegative weights reflecting the importance or precision of the dissimilarity
δkij and are set to 0 if δkij is unknown (that is, if one of the ith and jth customers did not
bought the kth product).

The penalty function gki () for deviating from the purchase time of product k by the
ith customer is set to be a convex function of the violation, xi − aki . The total sum of these
penalties

∑
k

∑
i v

k
i g

k
i (xi − aki ) is called the deviation penalty. The vkij are given nonnegative

weights reflecting the importance or precision of the purchase time aki and are set to 0 the
ith customer did not bought the kth product.

The objective function of the model is the sum of the separation penalty and the deviation
penalty. Therefore, the optimal rating, x, and optimal separation gaps z are the solutions
to the following problem:

min
x,z

M ·
K∑
k=1

k∑
i=1

n∑
j=1

wkijf
k
ij(zij − δkij) +

K∑
k=1

n∑
i=1

vki g
k
i (xi − aki ) (4.6a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (4.6b)

In problem (4.6) the parameter M is chosen so that the separation penalty is lexicographi-
cally more important than the deviation penalty. By lexicographically more important we
mean that the separation penalty is the dominant term in the optimization problem so that
the deviation penalty is only used to choose among the feasible solutions with minimum
separation penalty. We set the separation penalty to be lexicographically more important
than the deviation penalty since it better represents our objective to “learn” the relative
purchase-time ordering of the customers (as opposed to learning the absolute purchase times
of the customers).

In this study, we use for the penalty functions fkij() and gki () the absolute value functions
(problem (4.7)) and the quadratic penalty functions (problem (4.8)). In this study we set
wkij equal to 1 if both customers i and j bought product k, and set wkij equal to 0 otherwise.
Similarly, we set vki equal to 1 if customers i bought product k, and set vki equal to 0
otherwise.
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As demonstrated in Chapter 3, when all products are purchased by all customers, using
the absolute value penalty function guarantees that the output rating will agree with the
rating implied by the majority of the products; and be close to the group consensus in the
case where there is no clear majority. We denote the optimal solution to problems (4.7) and
(4.8) as x|SD| and x(SD)2 respectively.

min
x,z

M ·
K∑
k=1

n∑
i=1

n∑
j=1

wkij|zij − δkij|+
K∑
k=1

n∑
i=1

vki |xi − aki | (4.7a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (4.7b)

min
x,z

M ·
K∑
k=1

n∑
i=1

n∑
j=1

wkij(zij − δkij)2 +
K∑
k=1

n∑
i=1

vki (xi − aki )2 (4.8a)

s.t. zij = xi − xj (i = 1, . . . , n; j = i+ 1, . . . , n). (4.8b)

Example 4.3.2. The following table provides the optimal solutions of problems (4.7) and
(4.8) for the data in Example 4.3.1. The column xAvg gives the row average of the inputs.

Inputs Outputs

a b c x|SD| x(SD)2 xAvg

A 8 - 1 1 2.9 4.5
B - 2 6 6 5.6 4.0
C 9 1 5 5 5.0 4.6

As the above table shows, both x|SD| and x(SD)2 preserve the order of the customers implied
by all the products purchased. On the other hand, taking the row average does not preserve
such order; indeed it contradicts the ordering of customers (B,C) according to product b,
and the ordering of the customers (A,B) and (B,C) according to product c.

4.4 Performance assessment on simulated scenarios

This section assesses the performance of the SD model under several different simulated
scenarios and compares its performance to that of three-way UDS (problem (4.3)).

We denote as xUDS the customer rating obtained using three-way UDS, that is, the
solution to problem (4.3). Recall that obtaining the optimal solution to problem (4.3) is
only possible (with current optimization techniques) for n ≤ 30 [45]. While specialized
heuristics to solve UDS are available (see [46] for a survey of these heuristics), none of them
apply to the three-way UDS or to the weighted UDS (that is, all of the heuristics assume
that the data is complete and wij = 1 for i, j = 1, ..., n). Therefore in order to find an
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heuristic solution to problem (4.3) we used Matlab’s heuristic to solve the weighted MDS
problem. Strictly speaking, Matlab’s heuristic was designed to minimize problem (4.1) (that
is, it only accepts one dissimilarity matrix). However, as shown in [23], when using the
quadratic function as penalty function, minimizing (4.2) can be reduced to the problem of
minimizing (4.1).

Each scenario represents a different customer purchase-timing behavior, and consists of
600 customers each buying up to 4 products. We associate a different purchase-time distri-
bution with each customer-product pair. By letting the purchase-time distributions depend
on both the customer and the product, we are able to simulate scenarios where the products
have different life cycle and characteristics. In these scenarios, the customers’ purchase-
times may have different expected values and/or variances depending on the product under
consideration.

We simulated the purchase time of each product by each customer using the gamma
distribution, which is commonly used to simulate “customer arrival times”. Let c and p
represent the index of the customer and product, respectively. We used 7 different expected
purchase times {c, c+ 2p, c+ 5p, c+ 50p, cp, 10cp, 50cp}, and 11 different variances {10, 50,
5c, 10c, 50c, 5p, 10p, 50p, 5c+ 5p, 10c+ 10p, 50c+ 50p}. Overall, we simulated 77 difference
scenarios, one for each possible mean-variance combination. For example, in the scenario
having cp mean and 5p+5c variance, the purchase time of the jth product by the ith customer
had an expected value of ij and a variance of 5i + 5j. Note that, in all of these scenarios,
customers with lower indices adopt new products earlier. That is, given two customers i, j
such that i < j, then, for any given product, customer i has an earlier expected-purchase-
time than customer j. Thus, for every one of the 77 scenarios, the customers are ordered with
respect to their adoption promptness. In particular, the true ranking, xTi , of the ith customer
is equal to i.

In order to measure how successful the SD model is in recovering the true ranking vector,
xT , of the customers we used Kendall’s Tau rank-correlation coefficient. This coefficient
provides a measure of the degree of correspondence between two vectors. In particular, it
assesses how well the order (i.e. rank) of the elements of the vectors is preserved. We
note that, as an alternative to three-way UDS (problem (4.3), and the SD model (problems
(4.7) and (4.8)), we could instead find the customer rating vector that maximizes Kendall’s
Tau rank-correlation coefficient. We decided not to do so because (1) finding such a vector
is NP-hard [6] and (2) this objective would ignore the degree of dissimilarity between the
adoption times of the customers. On the other hand, we believe that Kendall’s Tau rank-
correlation coefficient is appropriate to measure how well the customer ratings recovered
xTi (notice that xTi gives the true ordering of the customers; and does not give a degree of
dissimilarity between the customers).

Recall that this chapter focuses on the case where the data available is incomplete; that
is, there are customers who did not purchase every product. To generate incomplete data,
we first simulated the complete data; that is, we simulated the purchase times of every
customer-product pair and then deleted some of the purchase-times at random. In Sun’s
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data 59%, 23%, 9% and 9% of the customers bought one, two, three and four products,
respectively. We mimicked this data by deleting the entries with this empirical distribution.
In particular, each customer had a probability of 0.59, 0.23, 0.09 and 0.09 of buying one, two,
three, and four products. For each customer the purchased products were chosen uniformly
at random.

To summarize, the performance assessment of the SD model on each of the 77 scenarios
was executed as follows:
Step 1: Repeat 30 times:

Step 1.1: Simulate the purchase-time data of four products by 600 customers.
Step 1.2: Delete some of the purchase times at random in order to obtain incomplete

information.
Step 1.3: Solve for x|SD|, x(SD)2 and xUDS.
Step 1.4: Compute the Tau correlation coefficient between xT (the true customer

ranking) and each of x|SD|, x(SD)2 and xUDS.
Step 2: Calculate the average and standard deviation of the 30 Tau correlation coefficients

(with xT ) computed for each of x|SD|, x(SD)2 and xUDS.

Tables 4.1, 4.2, and 4.3 give, for each of the 77 scenarios, the average Tau correlation coeffi-
cient between xT and x|SD|, x(SD)2 and xUDS, respectively.

In order to facilitate comparing the performances of these methods, Tables 4.4, 4.5, and
4.6 give the average differences between the correlation coefficients achieved by different
methods. For example, each entry in Table 4.4 is the difference between the corresponding
entries of Tables 4.1 and 4.3. In Tables 4.4, 4.5, and 4.6, the numbers given in bold are those
that are at least three standard deviations above (or below) zero. Therefore the scenarios
with bold entry are those where one method significantly outperforms the other; while, in
the rest of the scenarios, the performance of both methods is essentially the same.

It is clear from Tables 4.4 and 4.5 that the SD model, irrespective of the penalty func-
tions used, is better than UDS on most of the 77 scenarios. In particular, the SD model
outperforms UDS in 46 out of the 77 scenarios; and in 36 of these 46 scenarios, the SD model
significantly outperforms UDS.

We now compare the performance of the SD model using different penalty functions. For
this purpose, Table 4.6 reports the average difference between the correlation coefficients
(with respect to xT ) for x|SD| and x(SD)2 . We note that using the absolute value penalty
functions is only slightly better than using the quadratic value penalty functions.

The simulation results indicate that the SD model determines with high accuracy the
true ranking of the customers with respect to their adoption promptness.
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Table 4.1: Average Tau correlation coefficients between xT and x|SD|.

τ 10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p
c 0.9913 0.9784 0.8884 0.8434 0.6934 0.9902 0.9857 0.9662 0.8873 0.8433 0.6903

c+2p 0.9911 0.9783 0.8872 0.8445 0.6947 0.9903 0.9855 0.9666 0.8879 0.8450 0.6903
c+5p 0.9912 0.9785 0.8886 0.8455 0.6900 0.9905 0.9856 0.9666 0.8851 0.8444 0.6906

c+50p 0.9913 0.9784 0.8877 0.8448 0.6847 0.9904 0.9856 0.9665 0.8863 0.8430 0.6830
cp 0.8427 0.8386 0.8271 0.8198 0.7745 0.8395 0.8416 0.8428 0.8270 0.8161 0.7766

10cp 0.8431 0.8449 0.8432 0.8419 0.8403 0.8439 0.8424 0.8441 0.8438 0.8426 0.8391
50cp 0.8426 0.8443 0.8433 0.8437 0.8452 0.8437 0.8433 0.8438 0.8451 0.8462 0.8423

Table 4.2: Average Tau correlation coefficients between xT and x(SD)2 .

τ 10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p
c 0.9915 0.9788 0.8903 0.8464 0.6958 0.9902 0.9858 0.9660 0.8891 0.8453 0.6928

c+2p 0.9913 0.9787 0.8891 0.8468 0.6971 0.9902 0.9856 0.9666 0.8897 0.8474 0.6936
c+5p 0.9914 0.9788 0.8904 0.8478 0.6925 0.9905 0.9856 0.9666 0.8873 0.8467 0.6932

c+50p 0.9915 0.9789 0.8902 0.8474 0.6892 0.9904 0.9857 0.9665 0.8882 0.8452 0.6871
cp 0.8356 0.8322 0.8241 0.8169 0.7745 0.8333 0.8351 0.8365 0.8238 0.8140 0.7758

10cp 0.8349 0.8380 0.8357 0.8350 0.8339 0.8360 0.8348 0.8371 0.8368 0.8360 0.8331
50cp 0.8348 0.8373 0.8351 0.8366 0.8385 0.8362 0.8365 0.8368 0.8372 0.8383 0.8347

Table 4.3: Average Tau correlation coefficients between xT and xUDS .

τ 10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p
c 0.9787 0.9781 0.9766 0.9767 0.7198 0.7618 0.7613 0.9708 0.9712 0.9710 0.9704

c+2p 0.7602 0.7697 0.7662 0.8871 0.8868 0.8879 0.8867 0.7610 0.7691 0.7645 0.8442
c+5p 0.8450 0.8450 0.8458 0.7583 0.7677 0.7662 0.6893 0.6917 0.6769 0.6842 0.7287

c+50p 0.7659 0.7678 0.9770 0.9782 0.9764 0.9756 0.7644 0.7664 0.7688 0.9764 0.9742
cp 0.9739 0.9740 0.7624 0.7676 0.7668 0.9603 0.9599 0.9617 0.9612 0.7665 0.7681

10cp 0.7674 0.8862 0.8874 0.8843 0.8854 0.7578 0.7150 0.7650 0.8443 0.8456 0.8436
50cp 0.8433 0.7188 0.7171 0.7195 0.6856 0.6887 0.6886 0.6816 0.7305 0.7628 0.7651
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Table 4.4: Average difference between the correlation coefficients obtained by x|SD| and xUDS .

Positive numbers indicate that x|SD| has higher average correlation with xT than xUDS .
10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p

c 0.0126 0.0003 -0.0882 -0.1333 -0.0265 0.2283 0.2244 -0.0046 -0.0840 -0.1277 -0.2801
c+2p 0.2310 0.2087 0.1210 -0.0427 -0.1921 0.1024 0.0988 0.2056 0.1188 0.0805 -0.1539
c+5p 0.1462 0.1335 0.0427 0.0872 -0.0778 0.2243 0.2962 0.2748 0.2082 0.1603 -0.0381

c+50p 0.2254 0.2106 -0.0893 -0.1333 -0.2918 0.0148 0.2212 0.2000 0.1175 -0.1334 -0.2912
cp -0.1312 -0.1354 0.0647 0.0522 0.0076 -0.1207 -0.1183 -0.1189 -0.1343 0.0496 0.0085

10cp 0.0756 -0.0413 -0.0442 -0.0424 -0.0451 0.0861 0.1274 0.0792 -0.0005 -0.0030 -0.0045
50cp -0.0007 0.1255 0.1262 0.1241 0.1596 0.1549 0.1547 0.1622 0.1145 0.0834 0.0773

Table 4.5: Average difference between the correlation coefficients obtained by x(SD)2 and xUDS .
Positive numbers indicate that x(SD)2 has higher average correlation with xT than xUDS .
10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p

c 0.0128 0.0007 -0.0863 -0.1303 -0.0241 0.2283 0.2244 -0.0048 -0.0822 -0.1257 -0.2776
c+2p 0.2311 0.2090 0.1230 -0.0403 -0.1896 0.1024 0.0988 0.2056 0.1205 0.0829 -0.1506
c+5p 0.1464 0.1338 0.0445 0.0894 -0.0752 0.2243 0.2963 0.2749 0.2103 0.1626 -0.0356

c+50p 0.2256 0.2110 -0.0869 -0.1307 -0.2872 0.0148 0.2213 0.2000 0.1195 -0.1312 -0.2871
cp -0.1383 -0.1417 0.0617 0.0493 0.0077 -0.1270 -0.1248 -0.1251 -0.1375 0.0475 0.0077

10cp 0.0675 -0.0483 -0.0517 -0.0494 -0.0516 0.0782 0.1199 0.0721 -0.0075 -0.0096 -0.0104
50cp -0.0085 0.1185 0.1179 0.1171 0.1529 0.1475 0.1479 0.1551 0.1067 0.0754 0.0696

Table 4.6: Average difference between the correlation coefficients obtained by x|SD| and x(SD)2 .
Positive numbers indicate that x|SD| has higher average correlation with xT than x(SD)2 .

10 50 5c 10c 50c 5p 10p 50p 5c+5p 10c+10p 50c+50p
c -0.0002 -0.0004 -0.0019 -0.0030 -0.0024 0.0000 -0.0001 0.0002 -0.0018 -0.0020 -0.0025

c+2p -0.0001 -0.0004 -0.0020 -0.0023 -0.0024 0.0000 0.0000 0.0000 -0.0017 -0.0024 -0.0033
c+5p -0.0002 -0.0003 -0.0018 -0.0022 -0.0026 0.0000 -0.0001 0.0000 -0.0021 -0.0023 -0.0026

c+50p -0.0002 -0.0004 -0.0024 -0.0026 -0.0045 0.0000 0.0000 0.0000 -0.0020 -0.0023 -0.0041
cp 0.0071 0.0064 0.0030 0.0029 0.0000 0.0063 0.0065 0.0062 0.0032 0.0021 0.0008

10cp 0.0081 0.0069 0.0075 0.0069 0.0064 0.0079 0.0075 0.0070 0.0070 0.0066 0.0059
50cp 0.0078 0.0070 0.0082 0.0071 0.0067 0.0074 0.0068 0.0071 0.0079 0.0079 0.0077
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4.5 Rating Sun’s customers according to their adop-

tion promptness

4.5.1 Sun’s data

The empirical analysis presented below is based on a (disguised) dataset comprising
customer purchase information provided by Sun Microsystems, Inc. The dataset encompasses
four products and some 1,916 customers. It records the number of months (measured from
the month of the earliest product launch) that elapsed before each customer bought each
product. This section shows that Sun’s products are not independent in several ways (for
instance all four products are servers in the same family), and we propose how to cope with
this situation.

As shown in Figure 4.2, most of the customers did not buy all four products, and in
fact about half of the customers only bought one of the products. Such sparse data would
pose a challenge for many of the existing data-mining and market segmentation techniques
described in Section 4.2, and in general, some form of preprocessing would be required to fill
in the missing data. The separation deviation model, however, handles missing data quite
routinely, without preprocessing.

Figure 4.2: Number of customers that bought each product or set of products.

As may be deduced from Figure 4.3, products 3 and 4 were launched together at the
beginning of the observation period, with the launches of products 1 and 2 following re-
spectively 10 and 12 months later—in fact, products 3 and 4 represent the first generation
of a product line of which products 1 and 2 were the second generation, with updated and
advanced features. The figure also exhibits the strong degree of correlation between product
sales; peaks and valleys in the sales of all products tend to occur at the same time (this
sales behavior is almost certainly due to the effect of salesforce and customer incentives that
the company applied simultaneously to all products in this market). Moreover, as shown in
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Figure 4.4, most of the customers that bought products 1 and 2 did not buy either product 3
or 4. Therefore, it is reasonable to suppose that purchasers of the earlier products (products
3 and 4) exhibit greater adoption promptness than purchasers of products 1 and 2 alone.

Figure 4.3: Number of customers that bought each product per month.
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In general the purchase times should be measured from the release date of each product.
Because products 1 and 2 are second generation of products 3 and 4 we find that the purchase
times of products 3 and 4 are more significant in determining the adoption promptness. In
order to consider this, we decided to measure all purchase times with respect to the release
time of products 3 and 4. That is, we still consider the purchase times of products 1 and 2,
but measure these times with respect to the launch-time of products 3 and 4—as opposed
to measuring these times from the launch time of the respective product.

4.5.2 Results and their interpretation

In this section we demonstrate the use of the SD model to rate Sun’s customers with
respect to their adoption promptness. In particular, we show that the results obtained using
the SD model, agree with an intuitive interpretation of Sun’s business.

Using as input Sun’s data, we solved for x|SD|, which was the best performer in Sec-
tion 4.4. In order to facilitate the interpretation of the obtained results, we generated 4
customer classes from x|SD|. Specifically, we classified Sun’s customers into the classes de-
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Figure 4.4: Customers that bought product 1 or 2 after buying products 3 and/or 4.
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fined by Rogers’ model of innovation diffusion (see Section 4.5.3). That is, we segmented
the customers into 4 classes (Vanguard—composed of innovators and early adopters—, Early
Majority, Early Minority, and Laggard) as follows: (1) We sorted the customers according to
their rating as given by x|SD|. (2) We selected threshold values determining the boundaries
between consecutive segments, so that the segments have the sizes given by Rogers’s model.

4.5.3 Rogers’ model of innovation diffusion, an overview

According to Rogers’ now-classic model of innovation diffusion [54], customers may be
classified based on the timing of their first purchase of a new product into: Innovators, who
are the first to purchase the product and use it. This group of people are typically well-
educated, adventurous and open to new experiences. Product purchases by those outside of
this group are influenced to various degrees by the reactions of innovators. Later purchasers
are essentially imitators; they buy new products because the innovators had positive reac-
tions to them and they wish to replicate the innovators experience. Early adopters begin
purchasing as the innovators communicate positive responses toward a product. This group
is made up of people that are inclined to try new ideas, but tend to be cautious. Early
majority adopters are more likely to accept a new product than the average person; rarely
acting as leaders, the early majority essentially imitates the behavior of the first adopters.
Late majority customers who decide to buy only because many other customers have already
tried the new product. Finally, laggard adopters are reluctant to adopt new products. Those
in this group buy a new product only once this product has established a substantial track
record.
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Figure 4.5: Adoption Process

As seen in Figure 4.5, Innovators represent only 1.5% of all customers. Thus, throughout
the chapter we conflate the classes Innovators and Early adopters under the title Vanguard.
Customers in the Vanguard class play a major role in the adoption of the innovation, since
their acceptance or rejection will affect all the other groups. The method proposed below
aims to identify more effectively this group of customers and, therefore, increase the proba-
bility of success of a target action. Furthermore, the proposed technique identifies the other
groups of customers: Early Majority, Late Majority and Laggard. In this sense, it is a
valuable instrument for the design of marketing strategies.

4.5.4 Interpretation

Next we provide the interpretation of the obtained results. As mentioned previously, we
classified Sun’s customers into the classes defined by Rogers’ model of innovation diffusion as
follows: using as input Sun’s data, we solved for x|SD|, then we sorted the customers accord-
ing to their rating as given by x|SD|, and finally we selected threshold values determining
the boundaries between consecutive segments, so that the segments have the sizes given by
Rogers’s model.

Figures 4.6 and 4.7 provide an analysis of the customer segmentation in terms of customer
industry and location, respectively. The bars in the figures relate the percentage of each
characteristic comprised by customers of a particular class. Thus in Figure 4.6, just under
60% of resellers are in the Vanguard, and 10% are Early Majority, while in Figure 4.7,
approximately 50% of US customers are in the Vanguard, and about 40% are Laggards.

Broadly speaking, the results illustrated in the Figures accord with an intuitive under-
standing of Sun’s business. In Figure 4.6, for example, resellers and computer manufacturers
must pass the product on to end-users, and are thus likely to be first in line to purchase a
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Figure 4.6: Customer classification by industry
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new model. By contrast, telecommunications utilities (“telecoms”) have high fixed capital
investments and very exacting quality standards, and it is quite reasonable to see this cate-
gory skewed toward the Laggard class. Figure 4.7 seems well grounded in the geography of
Sun’s markets: Since it is a US-based company, one would expect a preponderance of Sun’s
US customers to be Vanguard and Early Majority, with adoptions occurring fairly early on
in the developed markets of western Europe, Australia, Japan and Canada. Less developed
markets, such as Latin America and eastern Europe, where Sun’s sales and distribution in-
frastructure is less well established, adopt later. Overall, it appears that the classification
obtained using x|SD| do indeed characterizes Sun’s customers in a convincing fashion.

4.6 Conclusions

The proposed approach of using the separation-deviation model (SD model) is novel in
data mining in general and customer rating in particular. It is shown here to generate
valuable information on the characteristics of the customer base of an organization and as
such it is useful in managing the launch and the life-cycle of a new product.

In this study, we used the SD model in order to rate Sun’s customers according to their
adoption promptness. Using the ratings obtained, we were able to classify Sun’s customers
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Figure 4.7: Customer classification by location
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according to their adoption promptness and show that the results give an intuitive interpre-
tation of Sun’s business.

We have shown that the SD model is a valuable alternative to traditional unidimensional
scaling techniques. In particular we established that the SD model outperforms unidimen-
sional scaling in determining the customers’ adoption promptness.

The potential of the method is broad and suggests its use for different types of scaling
problems.
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Chapter 5

Simultaneous aggregation of cardinal
and ordinal evaluations: ranking in a
student paper competition

5.1 Introduction

This chapter presents a new framework for group decision making when a group of indi-
viduals needs to collectively rank all of the objects in a set. Previous work focuses either on
the ranking aggregation problem (see, for example, [49, 5, 6]), or on the rating aggregation
problem (see, for example, [48, 56, 3]), but not both. One of the prime contributions in this
chapter is to simultaneously aggregate rankings and ratings into a consensus evaluation.

The motivation of this chapter is to rank the participants of the 2007 MSOM’s student
paper competition (SPC). The particular group-ranking problem arising in this SPC poses
unique challenges:

1. The judges provided both ratings and rankings of the papers they reviewed.
2. The incompleteness of the evaluations is extreme: Each judge evaluated only less than

ten percent of the papers, and each paper was reviewed by less than ten percent of
the judges. This causes the aggregation to be subject to the “incomplete evaluation”
phenomenon bias. That is, grades that are too low or too high tend to dominate the
aggregate score of the papers.

In a rating aggregation problem it is important to use an aggregation method that is
insensitive to the subjective scales used by the judges. French [29] argues that, the value
difference functions (the rating scales) of two individuals involve an arbitrary choice of scale
and origin and thus the same numeric score from two different judges generally do not
have the same meaning. Similarly, in the context of international surveys, a large number
of studies (see, for example, [7, 57, 36]) show that the responses across different countries
do not have the same meaning. In particular, even when asking respondents to rate each
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object using a simple 5-point rating scale, there are significant differences in the response
styles between countries. One example of a difference in response style, that arises even
when using a simple 5-point rating scale, is that in some countries there is a tendency to
use only the extreme categories while in others there is a tendency to use only the middle
categories. Another example of a difference in response style, is that in some countries there
is a tendency to use only the top categories while in others there is a tendency to use only
the bottom categories.

As noted above, in the 2007 MSOM’s SPC, the incompleteness of the evaluations received
is extreme. Therefore it is particularly important to mitigate the bias introduced by outlier
scores because an object assigned to a strict (lenient) judge has an advantage (disadvantage)
compared to objects that were not assigned to this specific judge.

The methodology developed in this chapter includes two mechanisms to limit the sen-
sitivity to the subjective evaluation scales used by the judges. The first mechanism is the
use of pairwise comparisons (defined in Section 5.4), which are less sensitive to the subjec-
tive scales than the given cardinal scores. The second mechanism is the simultaneous use
of cardinal and ordinal evaluations. Ordinal evaluations are independent of the individual
subjective scales [29].

We now give a brief description of the group-decision making framework developed in
this chapter. The method to simultaneously aggregate the ratings and rankings consists of
finding the combined aggregate rating (CAT) and its implied ranking, referred to as combined
aggregate ranking (CAK). This rating-ranking pair is the one that minimizes the sum of the
distances from the CAT to the judges’ ratings plus the sum of the distances from the CAK to
the judges’ rankings. The aggregation method is supplemented by two methods to identify
inconsistencies in the evaluations of the objects. This information is helpful to identify judges
whose rating scales significantly differ form those used by the rest of the judges.

The chapter is organized as follows: Section 5.2 reviews the literature on group-decision
making and in particular ranking and rating aggregation techniques. Section 5.3 describes
the evaluation methodology used in the 2007 MSOM’s SPC, and gives examples where the
differences in scale used by the judges are evident. Section 5.4 describes our methodology to
simultaneously use the given ratings and rankings in order to obtain the CAT and its implied
CAK. Section 5.5 uses the framework presented in Section 5.4 to rank the contestants in the
2007 MSOM’s SPC and analyzes the obtained results. Finally, Section 5.6 comments on our
group-decision making framework and its usefulness for different applications and decision-
making scenarios.

5.2 Literature review

The ranking aggregation problem has been studied extensively, especially in the social
choice literature. In this context, one of the most celebrated results is Arrows’s impossibility
theorem [5], which states that there is no “satisfactory” method to aggregate a set of rankings.
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For Arrow, a satisfactory method is one that satisfies the properties: universal domain, no
imposition, monotonicity, independence of irrelative alternatives, and non-dictatorship.

Kemeny and Snell [49] proposed a set of axioms that a distance metric between two
complete rankings must satisfy. They proved that these axioms were simultaneously satisfied
by a unique metric: this distance between two rankings is given by the number of rank
reversals between them. A rank reversal is incurred whenever two objects have a different
relative order in the given rankings. Similarly, half a rank reversal is incurred whenever two
objects are tied in one ranking but not in the other. Kemeny and Snell defined the consensus
ranking as the ranking that minimizes the sum of the distances to each of the input rankings.
Bartholdi et. al. [6] showed that the optimization problem that needs to be solved to find
the Kemeny-Snell consensus ranking is NP-hard.

Following the work of Kemeny-Snell, several axiomatic approaches have been developed
to determine consensus. For instance, Bogart [9] developed an axiomatic distance between
partial orders. One of the applications of Bogart’s distance is to determine a consensus
partial order from a set of partial orders. Moreno-Centeno [52] developed an axiomatic
distance between incomplete rankings. In this chapter we build upon this distance in order
to rank the contestants in the 2007 MSOM’s SPC.

One method of overcoming the difficulties arising in the ranking aggregation problem
presented by Arrow’s impossibility theorem and the NP-hardness of finding the Kemeny-
Snell’s consensus ranking, is to ask for the individuals’ evaluations in the form of ratings,
rather than rankings. Following this direction, Keeney [48] proved that the averaging method
satisfied all of Arrow’s desirable properties. In the averaging method, the consensus rating
of each object is the average of the scores it received. The most immediate drawback of
this approach is that the averaging method implicitly requires that all judges use the same
rating scale; that is, that all individuals are equally strict or equally lenient in their score
assignments.

As in the case of the ranking aggregation problem, the rating aggregation problem was
first studied in the social choice literature. In this context, the ranking aggregation problem
was transformed to a rating aggregation problem (e.g. by regarding the ordinal numbers
as cardinal numbers) and then solved as a rating aggregation problem. The first and most
simple of these methods is the so-called Borda count developed in 1770 by Jean-Charles de
Borda.

The rating aggregation problem has also been studied in the multi-criteria decision mak-
ing literature. (Hochbaum [41] showed the equivalence between the rating aggregation prob-
lem and the multi-criteria decision making problem). In this context, the non-axiomatic
ELECTRE [11] and PROMETHEE [12] methods (and their extensions) solve the rating ag-
gregation problem by transforming it in some sense to a ranking aggregation problem. This
transformation is needed because each criteria is evaluated on a different scale.
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5.3 The Data

The data used here is the evaluations for the 2007 MSOM’s SPC. A total of 58 papers
were submitted for this competition and a total of 63 judges participated in the evaluation
process. Each of the 63 judges evaluated only three to five out of the 58 papers; and each of
the 58 papers was evaluated by only three to five out of the 63 judges. Each judge reviewed
and evaluated each of the papers that were assigned to him/her on each the following features:

A) Problem importance/interest (1–10),
B) Problem modeling (0–10),
C) Analytical results (0–10),
D) Computational results (0–10),
E) Paper writing (1–10), and
F) Overall contribution to the field (1–10).

On each feature, each judge assigned a score to the paper he/she reviewed; the score defini-
tions (i.e., the rating scale) provided to the judges are found in Table 5.1. In addition, each
judge also provided a ranking of the papers he/she reviewed (1 = best, 2 = second best,
etc.).

Table 5.1: Interpretation of each numerical score. The journals considered are: MSOM,
Operations Research (OR) and Management Science (MS).

Score Definition / Interpretation
10 Feature considered is comparable to that of the best papers published in the journals.
8,9 Feature considered is comparable to that of the average papers published in the journals.
7 Feature considered is at the minimum level for publication in the journals.
5,6 Feature considered independently would require a minor revision before publication in the journals.
3,4 Feature considered independently would require a major revision before publication in the journals.
1,2 Feature considered would warrant by itself a rejection if the paper were submitted to the journals.
0 Feature considered is not relevant or applicable to the paper being evaluated.

Although these precise score definitions (Table 5.1) were provided, the judges’ rating
scales were different, as shown in Tables 5.2 and 5.3. (To maintain the anonymity of judges
and papers the judge and paper identification numbers were assigned randomly.)

Table 5.2: Evaluations received on paper 43.
Judge Problem Problem Analytical Computational Paper Field Paper

Importance Modeling Results Results Writing Contribution Ranking
47 9 8 8 8 9 9 1
6 6 4 2 4 4 4.5 1

55 9 6 0 9 8 6 2
2 7 7 2 6 7.5 4 3

Table 5.2 illustrates that for paper 43, the judges’ used different scales: Paper 43 received
in the Problem Modeling category a score of 8 (meaning that the Problem Modeling in the
paper are comparable to that in an average paper published in MSOM, OR and MS), and
also a score of 4 (meaning that the problem modeling in the paper requires a major revision
before publication in MSOM, OR and MS). These score differences are, by all standards,
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not insignificant. Another example of the differences between the judges’ scales is found on
the Analytical Results category. In this category, a judge gave a score of 8 (meaning that
the analytical results in the paper are comparable to those in an average paper published in
MSOM, OR and MS), two judges gave a score of 2 (meaning that the analytical results in
the paper are so bad that the paper should be rejected by MSOM, OR and MS), and the
remaining judge considered that the category was not applicable to the paper (thus assigned
the value of zero).

Table 5.3: Evaluations received on paper 26.
Judge Problem Problem Analytical Computational Paper Field Paper

Importance Modeling Results Results Writing Contribution Ranking
21 8 10 8 8 5 8 3
24 8 9 8 10 7 8 1
14 7 2 3 2 2 2 5
26 8 8 7 8 8 7 3
49 10 7 6 9 9 8 1

Table 5.3 shows that judge 14’s evaluations are not in the same scale as the evaluations of
the other judges (one could even argue that judge 14 is deliberately trying to manipulate the
evaluation of this paper). In particular, note that in all of the features (with the exception of
Problem Importance) judge 14 gives a score indicating that the paper would be rejected by
MSOM, OR and MS; on the other hand in every feature all of the other judges consider the
paper is worth of publishing (some of their evaluations even indicate that the paper would
be among the best papers published in MSOM, OR and MS!). These discrepancies in the
judges’ evaluations are quite common throughout the data.

Another sample of the judges’ evaluations for this study is given in Table 5.4.

Table 5.4: Sample of judges’ evaluations.
Judge - Problem Problem Analytical Computational Paper Field Paper
Paper Importance Modeling Results Results Writing Contribution Ranking
28 - 55 8 6 6 6 8 5 4
28 - 23 8 9 9 9 9 9 1
28 - 8 9 9 10 9 9 9 1
28 - 1 7 7 6 6 8 6 3
60 - 11 8 7 7 7 7 8 1
60 - 6 5 5 4 6 4 4 4
60 - 46 7 5 5 0 5 6 3
60 - 34 8 7 7 8 5 8 1
56 - 22 4 0 0 6 4 4 4
56 - 17 8.5 7 8 7 8 8 2
56 - 58 7 7 7 6 6 7 3
56 - 39 9 8 8.5 7 8 8.5 1

Henceforth, we use as cardinal evaluation only the evaluation on the feature “Overall
Contribution to the Field”. This is because, the authors and Jérémie Gallien (head judge
of the 2007 MSOM’s SPC), believe that this feature is the single most important feature
evaluated. This belief is supported by our detailed analysis (provided upon request) regarding
the correlation of the ratings to the rankings. This analysis provides evidence that the vast
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majority of the judges based their paper rankings on their “Overall Contribution to the
Field” rating, thus the vast majority of the judges also considered this feature to be the
most important feature.

5.4 The method

In this section we describe the framework used to simultaneously aggregate cardinal and
ordinal evaluations and how it was used to rank the student papers.

5.4.1 Simultaneous aggregation of ratings and rankings

In this section we describe the method to simultaneously aggregate the judges’ ratings
and the judges’ rankings. The advantage of this technique over traditional techniques (only
aggregating ratings or only aggregating rankings) is that it highlights the objects/papers
whose ratings and ranking are in conflict with several other objects/papers. These conflicts
generally arise in the following circumstances:

1. when a paper is assigned to strict judges and these judges rank it higher than the other
papers they reviewed;

2. when a paper is assigned to lenient judges and these judges rank it lower than the
other papers they reviewed;

3. when a low-quality paper is assigned to judges who reviewed other papers of lesser
quality; and,

4. when a high-quality paper is assigned to judges who reviewed other papers of higher
quality.

The purpose of our technique is not to identify the cause of these conflicts, but rather to
highlight the papers with a high number of conflicts. This information is helpful so that (say)
the manager of the competition can initiate an investigation of the nature of the discrepancies
and act appropriately (for example, by discussing these inconsistencies with the judges that
evaluated these papers).

A simple first step of our technique is motivated by Brans and Vincke’s PROMETHEE
method [12], which is used in the context of multi-criteria decision making. Given the
consensus rating x(c) (optimal solution to problem (2.16)) and the consensus ranking x(o)

(optimal solution to problem (2.11)) aggregate them into a partial order (P, I, R) as follows:

a is preferred to b (a P b) if

{
x(c)(a) > x(c)(b) and x(o)(a) ≥ x(o)(b)

x(c)(a) ≥ x(c)(b) and x(o)(a) > x(o)(b)
(5.1a)

a is indifferent to b (a I b) if x(c)(a) = x(c)(b) and x(o)(a) = x(o)(b) (5.1b)

a and b are incomparable (a R b) if otherwise. (5.1c)
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In essence the partial order (P, I, R) summarizes the agreement (or lack thereof) between
the consensus rating x(c) and the consensus ranking x(o). The Hesse diagram of this partial
order gives a graphical representation of which objects have a consensus rating and a con-
sensus ranking that agree, and which ones are not. This graphical representation is helpful
in determining object pairs where the cardinal and ordinal evaluations are not consistent.

The consensus rating is also used to identify objects such that the judges evaluating them
had particularly divergent evaluations. These objects are those that assigned/received scores
that disagree the most with the consensus rating x(c). Specifically, these objects are those
with the highest contribution to the separation penalty. The contribution of object i to the
separation penalty is calculated as∑

k|i∈Ak

∑
j∈Ak

∣∣∣(x(c)
i − x

(c)
j )− (aki − akj )

∣∣∣ . (5.2)

In Section 5.5 we illustrate these methods and their usefulness when combining the con-
sensus rating and the consensus ranking and for pinpointing objects whose evaluations de-
serve special attention/further discussion.

Next we develop a method for rating all the objects using simultaneously the rankings
and ratings given by the judges. This method aims to find a combined aggregate rating
(CAT) that is as close as possible to both the given rankings and the given ratings. The
CAT balances between the cardinal and ordinal evaluations, and thus represents better the
judges’ opinions as compared to a consensus that uses only the given ratings or only the
given rankings.

A complete rating a of a set of objects implies a complete ranking rank
(
a
)

on the ob-
jects by sorting the objects according to their scores. Therefore we can obtain a combined
aggregate rating x(dc) and its implied ranking, x(do), referred to as combined aggregate rank-
ing (CAK), that are representative of both the judges’ ratings and the judges’ rankings as

follows. Given a set of ratings
{
ak
}K
k=1

and a set of rankings
{
bk
}K
k=1

, a combined aggregate
rating is an optimal solution to problem 5.3.

min
x(dc)

K∑
k=1

dNPCK

(
ak,x(dc)

)
+

K∑
k=1

dNPKS

(
bk,x(do)

)
(5.3)

Problem (5.3) is a natural combination of the rating aggregation problem (2.16) and the
ranking aggregation problem (2.7). The fact that both dNPCK and dNPKS are normalized
distances, guarantees that both ratings and rankings are of equal importance in the opti-
mization problem (5.3).

Since problem (2.7) is NP-hard and a special case of problem (5.3), then problem (5.3) is
NP-hard. The (nonlinear, nonconvex) mathematical programming formulation of problem
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(5.3) is

min
x(dc), z

K∑
k=1

Ck
∑
i∈Ak

∑
j∈Ak

∣∣zij − pkij∣∣+
K∑
k=1

Dk
∑
i∈Bk

∑
j∈Bk

1

2
| sign(zij)− sign(bkj − bki )| (5.4a)

subject to zij = x
(cat)
i − x(cat)j i = 1, . . . , n; j = 1, . . . , n (5.4b)

` ≤ x
(cat)
i ≤ u i = 1, . . . , n (5.4c)

x
(cat)
i ∈ Z i = 1, . . . , n. (5.4d)

We approximate the solution to problem (5.4) by applying the convexification strategy
defined on Section 2.3.4 to problem (5.4) resulting in the formulation:

min
x(dc), z

K∑
k=1

Ck
∑
i∈Ak

∑
j∈Ak

∣∣zij − pkij∣∣+
K∑
k=1

Dk
∑
i∈Bk

∑
j∈Bk

hkij(zij) (5.5a)

subject to zij = x
(cat)
i − x(cat)j i = 1, . . . , n; j = 1, . . . , n (5.5b)

` ≤ x
(cat)
i ≤ u i = 1, . . . , n (5.5c)

x
(cat)
i ∈ Z i = 1, . . . , n (5.5d)

where, hkij(zij) =


max

{
0,

zij+1

2

}
if sign(bkj − bki ) = −1

max
{−zij

2
,
zij
2

}
if sign(bkj − bki ) = 0

max
{

1−zij
2
, 0
}

if sign(bkj − bki ) = 1.

(5.5e)

Problem (5.5) is a special case of the SD model and thus solvable in polynomial time.
Remark: Note that in equations (5.4a) and (5.5e), the argument of the sign function

is bkj − bki and not bki − bki as in equations (2.8a) and (2.10). This is because of the classical
convention that in the given ratings a high cardinal number is assigned to the most preferred
objects; while in the given rankings a high ordinal number is assigned least preferred objects.

5.5 Results

In this section we use the framework presented in Section 5.4.1 to rank the contestants of
the 2007 MSOM’s SPC. We also compare these results to those obtained by aggregating only
the cardinal evaluations, and those obtained by aggregating only the ordinal evaluations.

Table 5.5 gives the consensus rating (optimal solution to problem (2.16)) x(c); the (ap-
proximate) consensus ranking (optimal solution to problem (2.11)) x(o); and, the combined
aggregate rating x(dc) and ranking x(do) (optimal solutions to problem (5.5)).
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Table 5.5: Aggregate ratings and rankings for the 2007 MSOM’s SPC.
Paper x(c) x(o) x(dc) x(do) Paper x(c) x(o) x(dc) x(do)

1 3 41 4 41 30 5 24 5 23
2 5.5 24 5 23 31 6 24 5 23
3 5 41 4 41 32 5.5 24 5 23
4 5.5 24 5 23 33 5.5 41 4 41
5 4.5 41 4 41 34 6.5 3 7 2
6 6.5 9 6 8 35 5 41 4 41
7 6.5 24 5 23 36 5.5 24 5 23
8 6 9 6 8 37 5 24 5 23
9 5.5 9 6 8 38 3 41 4 41

10 6 3 7 2 39 7 9 6 8
11 6 3 7 2 40 5 41 4 41
12 5 24 5 23 41 6.5 3 6 8
13 6.5 9 6 8 42 6 24 5 23
14 7.5 9 6 8 43 6 9 6 8
15 5 41 4 41 44 4.5 9 5 23
16 4 53 3 53 45 5.5 24 5 23
17 6.5 9 6 8 46 6 9 6 8
18 3.5 53 3 53 47 6 9 6 8
19 5.5 24 5 23 48 6.5 9 6 8
20 2.5 53 2 58 49 7.5 2 7 2
21 4.5 41 4 41 50 4.5 53 3 53
22 4 41 4 41 51 5.5 9 6 8
23 4.5 41 4 41 52 4.5 41 4 41
24 5.5 24 5 23 53 5.5 24 5 23
25 5 24 5 23 54 7 3 7 2
26 6.5 24 5 23 55 4.5 53 3 53
27 7.5 9 6 8 56 6.5 3 7 2
28 4.5 53 3 53 57 7 1 8 1
29 6 9 6 8 58 6 24 5 23

In Table 5.5, the consensus rating x(c) is non-integral because some of the judges as-
signed fractional scores (in particular they assigned grades that are multiple of 1/2). To
appropriately handle the judges’ fractional grades, we decided to set the ‘grading unit’ to
1/2. From an optimization point of view, this represents no problem, since the separation-
deviation problem can be solved in any pre-specified precision. (This is true since to solve
the separation-deviation problem, we use the algorithm developed in [1] to solve the con-
vex dual of the minimum cost network flow problem (CDMCNF), and this algorithm solves
CDMCNF in any pre-specified precision.)

As described at the beginning of Section 5.4.1, in order highlight the discrepancies (and
similarities) between the consensus rating x(c) and the consensus ranking x(o), we can rep-
resent them graphically (see Figure 5.1).
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Figure 5.1: The papers (circled) are ordered (top to bottom) in decreasing consensus score. There is an arc between

two papers whenever the lower rated paper has a better ranking than a higher rated paper.
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We start by highlighting the similarities between the consensus rating x(c) and the con-
sensus ranking x(o). From Figure 5.1 we observe the following: (1) Paper 20 (lower left corner
of Figure 5.1) should have the lowest consensus evaluation. (2) Although the agreement be-
tween x(c) and x(o) is not perfect, there are subsets of papers should receive a lower (or higher)
collective evaluation than others. For example, the papers {1, 38, 18, 22, 16, 28, 50, 55} should
receive a collective evaluation higher than that of paper 20, lower or equal to the collective
evaluation of papers {5, 21, 23, 52} and lower than the rest of the papers.

Next we give a specific example of the conflicts described at the beginning of Section
5.4.1. In particular, from Figure 5.1 we note that paper 14 has the highest consensus score,
however this conflicts with several papers (e.g., paper 54) that have a lower consensus score
but a higher consensus rank. The evaluations received by papers 14 and 54 are given in Table
5.6. The number of papers reviewed by each judge and the average Field Contribution (FC)
they gave are given in Table 5.7. The adjusted FC, obtained by dividing the paper’s FC by
the judge’s average FC, is given in Table 5.8. From these Tables we observe the following:

1. The ordinal evaluations of paper 54 seam better than those of paper 14. This explains
in part (The consensus ranking also depends on the rankings of the papers to which
they were compared.) why paper 14 has a higher consensus rank than paper 54.

2. The average FC of paper 14 (5.6) is only slightly bigger than that of paper 54 (5.5).
This explains in part (The consensus rating also depends on the ratings of the papers
to which they were compared.) why paper 14 has a better consensus score than paper
54.

3. It seems that judge 44, who evaluated paper 14, was remarkably lenient, while judge
30, who evaluated paper 14, was remarkably strict. This suggests that the FC of ’5’
given by these two judges is not comparable. Note that the adjusted FC of paper
14-judge 44 is of 0.71; while the adjusted FC of paper 54-judge 30 is of 1.39. Moreover,
the average adjusted FC of paper 14 and 54 are 1.10 and 1.28, respectively.

4. All of this suggests that paper 54 deserves a collective evaluation better than that of
paper 14.

In the CAT and CAK, x(dc) and x(do), paper 54 is rated (ranked) higher than paper 14;
this, as discussed previously, seems appropriate. This is evidence that the CAT and CAK
represent better the judges’ evaluations/opinions than the consensus rating x(c), which takes
into consideration only the ratings provided by the judges.
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Table 5.6: Evaluations of papers 14
and 54.

Field
Contribution Paper

Paper Judge Score Ranking
14 35 6 1
14 23 6 1
14 48 7 1
14 57 4 4
14 44 5 4
54 30 5 1
54 32 4 4
54 25 6 1
54 22 7 1

Table 5.7: Evaluation statistics of
the judges that evalu-
ated papers 14 and 54.

Number Average
of Papers Field

Judge Evaluated Contribution
35 4 4.50
23 4 4.25
48 4 5.25
57 4 5.75
44 5 7.00
30 5 3.60
32 4 5.25
25 5 4.00
22 4 4.75

Table 5.8: Adjusted Field Contri-
bution received by pa-
pers 14 and 54.

Adjusted
Paper Judge Field C.

14 35 1.33
14 23 1.41
14 48 1.33
14 57 0.70
14 44 0.71
54 30 1.39
54 32 0.76
54 25 1.50
54 22 1.47

In the 2007 MSOM’s SPC, papers 38, 14, 10, 1 and 42 had the highest contributions to
the separation penalty. As noted previously, this indicates that these papers are those whose
evaluations are not consistent/deserve further discussion. For example, paper 38—a very
low rated paper in the consensus rating—received scores from 2 to 5 and was ranked by all
but one of the judges as their least preferred paper (see Tables 5.9 and 5.10). In particular,
paper 38 was the second most preferred paper of judge 9; perhaps because this judge received
other papers with less quality than paper 38? We believe this is not the case since, as shown
in Table 5.11, the paper ranked last by judge 9 was paper 10. As noted above, paper 10 is
also among the highest contributors to the separation penalty. Paper 10 received three high
evaluations and 2 very low evaluations (see Table 5.12). Therefore, we believe that, in order
to get a better consensus, the scores/ranks of paper 38 and paper 10 should be discussed by
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the judges assigned to these two papers.

Table 5.9: Evaluations of paper 38.
Field

Contribution Paper
Judge Score Ranking

30 3 5
41 2 5
44 3 5
9 5 2
20 5 4

Table 5.10: Evaluation statistics
of the judges that
evaluated paper 38.

Number Average
of Papers Field

Judge Evaluated Contribution
30 5 3.60
41 5 5.00
44 5 7.00
9 5 4.60
20 4 7.25

Table 5.11: Evaluations of judge 9.
Field

Contribution Paper
Paper Score Ranking

10 3 5
19 4 3
38 5 2
50 4 3
58 7 1

Table 5.12: Evaluations of paper
10.
Field

Contribution Paper
Judge Score Ranking

33 7 1
41 7 1
19 2 3
15 6 1
9 3 5

Next we analyze the combined aggregate rating x(dc) and ranking x(do) (solution to prob-
lem (5.5)). We make the following observations:

1. The consensus rating, x(c), has a total rating distance (equation (2.16)) of 7.3611.
2. The consensus ranking, x(o), has a total ranking distance (equation (2.7)) of 13.8500.
3. (a) The combined aggregate rating, x(dc), has a total rating distance (equation (2.16))

of 8.16667.
(b) The combined aggregate ranking, x(do), (derived from x(dc)), has a total ranking

distance (equation (2.7)) of 13.9333.
This shows that, in this case, the combined aggregate rating and ranking achieve a very
good compromise. In particular, they remain almost as close as the consensus rating to the
judges’ ratings, and remain almost as close as the consensus ranking to the judges’ rankings.

5.6 Concluding remarks

We develop here a new framework for group decision making that aggregates both cardinal
and ordinal input evaluations. Our framework consists on finding the combined aggregate
rating (CAT) and its implied combined aggregate ranking (CAK) that minimize the sum of
the distances from the CAT to the given ratings plus the sum of the distances from the CAK
to the given rankings.
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We illustrate the effectiveness of the new framework by ranking the contestants of the
2007 MSOM’s student paper competition. We provide evidence that obtaining a combined
aggregate rating that aggregates both cardinal and ordinal evaluations better represents the
judges’ opinions as compared to a rating that aggregates only the judges’ ratings.

Aggregating incomplete evaluations is challenging because of the “bias phenomenon”
of incomplete evaluations: the collective evaluation is prone to be biased by the judges’
subjective scales because an object assigned to a particularly strict (lenient) judge has an
advantage (disadvantage) compared to those objects not assigned to this specific judge. Our
framework, applicable when the given ratings and rankings are incomplete, addresses the
bias phenomenon by:

1. detecting inconsistencies between the consensus rating (which aggregates only the given
ratings) and the consensus ranking (which aggregates only the given rankings), and

2. identifying papers with high separation penalty.
This information is helpful so that (say) the manager of the competition can initiate an
investigation of the nature of the conflicts and act accordingly (for example, by discussing
these inconsistencies with the judges that evaluated these papers).

The problem of aggregating complete evaluations (in which all judges evaluate all objects)
is a special case of the problem of aggregating incomplete evaluations (in which the judges
are allowed to evaluate only some of the objects). Therefore our framework is also applicable
to aggregating complete evaluations.

We believe that the new framework is valuable also in cases where the input is in the
form of cardinal ratings only. In order to apply the framework in this case, we use as input
both the given ratings and the rankings implied by the ratings.
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