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ABSTRACT

An-“exact" quantum mechanical transition15£été theory is
defined; i.e., a model which invokes the basic’tfénsition state '
idea to calculate thevfate of a chemical réacﬁién"but whicﬁ is
free of any auxiliary approximations. Most importantly,.fdr
example, it is not neéeésafy fo.assume that thé“HaﬁiltoniAn is
separable about the saddle point. It isbarg;ed:that this model
should proﬁide an accuratevdescription of the'thfeshold‘regionl

of the reaction where quantum effects are most significant.

~Finally, an even more general model, a new kind-qf semiclassical

approximation, is presented which is essentially a synthesis

of this quantum mechanical transition state model and the

~completely classical trajectory procedure‘for determining the

rate constant; at sufficiently high temperatures quantum effects
become neglible, so that the correct rate constant is obtained,
while at low temperature the correct result is obtained because

the transition state model becomes valid.



I. ~INTRODUCTION

For many purposes classical tréjectory calcuiationsl provide
as complete a solution to molecular collision dynamics as is
ever called for under practical experimental cqnditiops. True,
there are quantum effects, such as interferéngé'énd tunﬁeling,
which can only be described by quantum mechanié;ﬂ-..2 or semi-
classicalB.collision'theories, but if the process éf interest
is "classigally allowed"--i.e., has a cross section (or rate
cOnstant) which is not too‘small;;theSe are usually quenched
by avefaging over scattering angle, collision énérgy, and/or
quantum states which pertains to anything other than the perfect
experimént (a completely state-selected diffgréﬁtial cross
section measurement).

\Classiqal trajectory methods are in generél not
useful, however, for treating "classically forbidden' processes,
i.e., thosé which do not take place via ordinary classical |
mechénics#n One of the most important'examples_qf_éuch a
process is tunngling in the threshold region of a.‘chemical
reaction which has an activation barrier. Since it is this
threshold region of the cross section which is most important
for determining the rate constant at temperatures comparable
to and below the barrier height, this short;comingvof standard
trajectory methods leaves an important gap in 6he‘3~ability to
treat kinetic phenomena theoretically. “

Low collision energy and a high activatioqvbarrier, however,

are the_ideal conditions for the applicability of transition



state‘tHEOry.S The cases ih which transition state theory
has been é&mparede with accurate quantum scatteriﬁg calcu~-
lations,.fﬁbugh, show quite poor agreement in ﬁherlow
temperature region wﬁere_quantum effects are impoftant, even -
when tunneling corrections ére applied in any-of'SeVeral |
different ways. fhe reason fof this failure of transitién
state theory is, in my opinidn, the failure of the aésumptipn
of-separéﬁility'of the Haﬁiltonian aboﬁt the saddle point,
a'feature,which is -an inhérent part of standard'trénsition
state theory; arguments supporting this point of'yiew are
presented below.

The goal of this paper, thérefore, is to obtain an
uexact".quéntum mechanical‘tranSition state theory, i.e., an
approximafion to the reaction rate constanﬁ which'invokes the
transifioh state approximation but no subsidiary ones (such
as'separability); surprisingly, no sgch formulati&ﬁ has prévi?
Ously-beén given.7’8 it is suggested that this should provide
an accurate description of the thfeshold region of a chemical
reaction. In the process there will also emerge‘a semiclassic#l
afproximation for the rate constant which goes bé;énd this
quantum transition state approximation, incorporating the full
‘classical dynamics of the reaction within a qﬁaﬁtum.framewérk.

One of the motivating factors in our pursﬁit'of a correct
quantum mechanical transition state theory has been the obser-
vation of how well classical transition state theory agrees

with classical dynémics, i.e., trajectory calculations. For




the collinear H + Hz'?eaqtion, fof'examplé{ claés;cal t;angition’
state théory agrees exéctlz'with completeiy claésic#i (not quasi-
classical)vtrajectory calculations in the energy fegion just
above the classical threshoid;9 this conclusion aiéo follo&s
from the work of Pechukas and McLafferfy.lO Quantum effects

in this énergy region are enormous, however, so that classical
mechanics is a poor approximation to reality. :Thebimplication,
nevertheléSs; is that the transition state idea ié:a good one
provided it can be implemented quantum mechanically.

'Anéther indication that the transition stéte'idea‘may be_
valid--but that the separability approximation is'poor——comes
from the quantum écattering calculations of Kupﬁérmann,'Adams,
#nd Truhlarll and tﬁé "eclassical S-matrix calculation of
George and Miller,12 both for fhe collinear H + szsystem.

The streamlines of quantumbflux11 show smooth flow at: low
energies from the reactant to product regiong of configuration

"~ space, implying that the dynamics is "straight through" the
_-transition region. (At high energies the streamlinés become
‘contorted.) This séme inference comes from the,classical

- S-matrix calculations,12 wheré.the comﬁléx—valuedi:fajectory
which tunnels from reactants to products move monbtonically
through the transition region. Classical transition state
theory is exact, however, if all trajectories move through the
transition regioﬁ without re-crossing the dividing surface,lO

so the fact that the quantum and semiclassical calculations

show this "straight through" dynamice suggests thé}transition



 state modél is a valid one at these energieé. 'Thé quéntum1
and semiclassical12 calcu;ations also show, howevef, that _ g
the tunnelihg doés not take place through the saddle point
itéelf but severely "“cuts the corher",13 implyiﬂg’thét
separability of the Bamiltonian is a poor apprqximation at
'theSe eﬁefgies. |

The organiza?ion of the paper is as follows{ ‘Section II
begins with the quantum mechanical’expression fbr the rate
constant as obtained from quéntum scaftering theqri and through
a sequence of maniphlatiqns_casts it inté a form as.c10se as
possible to tfansition state theory, i.e., in thé form of a
Boltzmann average of a flux oferator. Séction Iii discusses
the claséiéal expression for the rate constéht'and observes
a strikingly simple relétion between the classical and
quantum rate expressioné.' Section IV introduces_the tranéi—
tion state approximation,'first classically and'ﬁheh quantum’
:mechahically,_obfaining the desired quantum meCHanical transi-
tion state rate.expression; it is seen that the t;aditionai
expresSidn5 involving quantum partition functions and tunneling
correction factor is obtained if the separability approximation
is.madef_ Section V then presents a new kind of Semiclassical
" model which has several quite attractive features: itkis es-
sentially_a'synthesis éf this quantum transition?state model
: and'numefically exact classical dynamiés, and thus provides
another. way--other than cléssical S-matrix theory3?-of using

- numerically computed classical trajectories as input to a

quantum mechanical theory.

-
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II. RATE EXPRESSION FROM QUANTUM SCATTERING THEORY

For simplicity of presentation I treat a collinear A + BC -+

- AB + C reaction explicitly, but it should‘be clear that with fairly

obvious generalizations of notation the results épply to bimolecular
reactive systems in general. If "a" denotes the initial arrangemenﬁ,
A + BC, and "b" the final arrangement, AB + C, ﬁhen the standard
expression for the equilibrium rate constant (i.e., the rate

summed évef‘final vibrational states of AB, and Boltzmann averaged

over initial vikrational states of BCFand over initiai translational

energy) is
-B(E, + &_)
-1/2 -1 B 1 n
kbfa(T) = (2mukT) QBC ga’ fo dEl e a
x Is (F,) |2 | | (2.1)
’na "1 ’ - .

where B (kT)-l, U is the reduced mass for translation in arrange-

- ment a, n, (nb) is the vibrational quantum number of BC (AB), F1

is the iﬁitial translational energy, Snb n (El)‘is the S-matrix
' ’ .
. a x
for the reactive process (obtained from a quantum scattering cal-

culation), and QB the vibrational partition function of BC:

C

- . n'a . , ’

€, denoting the vibrational energy levels of BC. An equivalent,
a .
but more suggestive expression for the rate is



o k -B(F, +e )
s =0T g ey

x 'S“b’“a(El)Iz . ey

‘where Qa is the total partition function per unit_ﬁolume (actually
ber unit length for this collinear system) for the unperturbed

A + BC system; i.e.,

. -pH | . ' |
a Ztr (e 9 ' o - o (2.4a)

QO
t

n

o, (2T [Sap exp(-gPi/2w) L, (2.4b)

"tr" denoting a quantum mechanical trace. [For the A + BC ~»
AR + C reaction in three dimensions the rate expression is

the natural extension of Eq. (2.3) and (2.4):

'—R . .
’(El + €0 3 )

34 kT . -1 o % am ’
K0 = %: 0TI ., (20+1) fa(eE) e a-a
g - a*Jdar*ar o -
Ty 3p oty sd
x |s Lo g @EPIE (2.5a)
o jb b*"a Ja "a
where

. -3 -8p2/ 2y
Q, = Qg (2mh) ~ S d;P e (2.5b)

'"Bena,ja . , -
oy G tDe . e

a’’a
where the indices denote the usual14 quantities.] .
- The first step in re-writing Eq. (2.3) in a more convenient

form is to introduce the idea of flux through a suffacé? Consider




first the suiface Sl(a fsqrface" invtwo—dimgﬁsioha} coordinate
- gpace is actually a line) shown in Figure 1 and défined by the
equation | |

.R;;'_R=0 . - | 2.6)
Ro being séme asymptpfically large value of thé:ﬁfaﬁslationél
coordiﬁate R: r-ié the vibrational coordinate ofvﬁC. For a

wavefunction ¥(r,R) the flux through surface Slvis.

o , . .
- * K 9 S .
- \ — — = .o
Re fédr ¥ (r,R) o 3% W(r,R)lR_ .Ro 'y (2.7)
where Re denotes "real part of", and where positive flux is
~ associated with decreasing R; i.e., the positive direction. of

flux is chosen in the "direction of reaction". The scattering

P,n

wavefunction V¥ (r,R),"the'solutiOn of the Schrodinger equation--—
. 1 a .

n

(H-E) ¥, =0 o (2.8)
1l7a S

-with

2
E f Pl /2u + ena

—--which corresponds to an incident wave in arrangement a with initial

'vibrational state,na, has the asymptotic form

-ik_R
n
Yoyn, 5B T oy /2 ¢na(r)
ikn'R v 1/2
. e a na .
Ly Gayl/2 9y (0 (;——) Soog (ED (2.9)
a a’ 1 a) a .

n
a



where

=
[

2
- P,7/2u

k
n

(2uce - e )12

vn.=~ﬁkn/u ;
vy is the asymptotic velocity for channel n. Y(This normalization
for the trénslational functibns‘corresponds,to delta function
norﬁalization on the momentum scale.) Sincé Eqa. (2.9) is valid
for large R, it can be used to compute the flux qhqugh_surface
Sl; by making use of the fact that tﬁe vibratiopalﬂfhnctions
'{¢n(r)} are orthonormél, it is then a simple méﬁterﬂto show that

Eqs. (2.7) and (2.9) give

- .
-Re [ dr ¥p o (r,R) 1 3% ¥p q (r,R)
— 1la 17a
=v o Cemy Yl -z, s £,) %] (2.10)
n_ . n' n',n 1 t ' . R
a _ a a’ a .

In the asymptotic region of arrangement b, the product

region, the wavefunction WP n --since it corresponds to an

- incident wave in arrangement a--has only outgoing waves:

e a ‘
%lné' '\’. gb Zrh) 1/2 d)p“b(rb) - (v—> Sn-b,na(El,) Y (2.11)

Ilb

where Rb'and r are.the translational and vibrationai coordinates,
respectively, of arrangement b, AB + C. (The sdbsctipt "a" was
omitted from the coordinates of that arrangement to keep.the notation

uncluttered.) It is easy to show that the flux from this wavefunction



through surface S, (see Figure 1) defined by

R, -R =0 S (2.12)
is given by
v (w7 §g'|5nb _aplt . g | (2.13)

a _ b'a
Unitatity;-however—-i.e., the fact that
1=, Is_, n €)%+ 5 ls“b’“ e (28
a a
\--——shows that the flux through surfaces Sl and 82, Eqs. (2. 10) and
(2. 13), are the same. In fact, the flux through __x surface which
divides reactant and product configuration space is the same; this
follows bécacse the flux from a time—independent'wavcfunction
th:ougﬁ a closed suiface ié zero-(the éuantuﬁ mechanical'continuity

equation)15

. % '
O PR | | (2.15)
. iu : - _
Since surfaces S1 and 82 can be made into one closed surface by
joining them with segments at infinity, and since there is no flux

through these segments at infinity, the flux into the closed "volume
through S1 must equal to the flux out of the closed "volume" through

S Thus the flux in the reactive direction through any surface

2.
which divides reactant and product'configuration spéce'in this
manner must be the same.

It is convenient to write the flux integral as-a volume, rather

cthan a surface integral. If the surface is defined more generally

by the equation
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£(r,R) =0 o (a.1e)

with £(r ,R) < 0 (>0) being the reactant (product) region of
configuration space, then the flux through this surface can

be written as the volume integral
' * .
Re fg S[£(@)]1 ¥ (@) 2 - v ¥ (@ o (2.17)

= Re <¥|F|¥>

where q = (r,R), and the components of the velocity operator are
v, o= ;ﬁ—:—é—‘, k = 1, 2; the operator F is thus defined by
k 1uk_aqu e . ‘ o

Feolr@] -y (2.18)
Eqs. (2.10) and (2.13) can now be written as
. o 5 . . _ :
2rh) I |s (E,)] = v Re <y, _ |F|¥ >, (2.19)
Ty Tpefy 1 Ba. \Epl’na - 'Plna
and substitution of this into Eq. (2.1) or (2.3) gives
-1 e L Ena) -1 Y ‘ -~
= (2.
kb+a" Qa % / dE1 € “n 5*? n IFIYP n ? (2.20)
- a o a l'a - "Y1a

where the real part of the RHS is.to be taken,'énd where it is
important to eﬁphasize fhat the flug operator F [Eq. (2}18)]‘is |
indegendgnt of the parﬁicular surface which is usedAto.divide' |
. reactaht and product cohfiguration space. PRy vir;ue of fhe
Schrodinger equation, Ed. (2.8);oﬁe has
-B(E1 + ena) —en
e ' e = e ¥

b}
Pl.na Plna

(2.21)

and since
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El = Pl /2p
, Pl
dEl = jr dPl =V dPl R
. Ta
Eq. (2.20) becomes
-1 o —BH L .
kb‘—a =Q, g / dPl “¥p n |F e l'lyP'n g ’ (2'22)3
S a - 1l a 17a -
. = 1/2
whege.Pl = (2uEl) .

'Eq; (2.22) is almost in the desifed form, namély-a qﬁantum

mechanical trace: the sum over {na} is a complete set in the

" space of the Vibfational coordinate, but tfanSlétional'scattering

wavefunctions are complete only if the integral over P, covers
all momenta, positive and negative. If the projeétion operator
P 1s defined by

Py. =y

o, Pmy

=0 y B >0, o (2.23)
then Eq. (2.22) can be written as

_ et . ‘SH . ' . .
k=0 I ,{wdpl <q%lna[F e Pl@%lnaé ; - (2.24)

‘ 16 ;
the sum over states is now complete,  so that this becomes

kb*a = Q;l t? [F‘e—BH Pl ,
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or since P and H commute,

kb«;-%an tf’(e-BH

FP) . R (2.25)

The raté constant is thus the qdahtum mechanical'Boltzmann
average of the reactive flux operafor FP. Up untii this
point the fact has been used'thaF the basié fug;fions {wPlna}
- are the eigenfunction of the Schrodinger equatibﬁ;_i.e., the
exacf écaftering states; quantum mechaﬁical traces are ihde—
Vpehdenﬁ df thé representation in which they are carried out,
however, so that in Iq. (2.25) there is.novlongef any explicit
feference to the séattering wavefunctions. |
It is illustrativé to write the projection'éﬁérator\P‘in
a more ph&sically meaningful form. P, defined bv Eq. (2,23),

can be written explicitly'as

S _
P=f Japy vy o>y
a = 1la la
=% [ dP, h(-P)) le R |, : © (2.26)
a - 7 la 1'a '

where h(x) is the step function:
h(x) = 1, x > 0
=0, x< 0 .
By invokirng the '"formal theory of scattering" (see Apﬁéndixil)
Vit is possible to write YP n in terms of the unperturbed fﬁncfionv-
. la
iP R/

%y (R =0 (D) =12 o (2.27)
17a a .
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This relation is

Y, o = m AHEA ~1Hot/H o (2.28)
l'a tr=o ‘17a :
so that Eq. (2;26) becomes
P = ethRi e-iﬂot/lh 'Po elHOt/ﬁ e.-th/‘ﬁ ’ (2'29)
where t » -, and where
- o |
Po=% Jdp b)) [8 > <& |
a - 1a la
or v
Po = h(-P) ‘ | o (2.30)
P being the translation momentum operator for arrangement a.
Since H, commutes with Py, Eq. (2.29) becomes
P=tim oMM p(py oHEA I (2.31)
=00 : oo

i.e., the projectbr.ﬁ is the Heisenberg transform of‘the projector

h(-P). In Heisenberg notation, therefore, the pfojecﬁor P is
P=h[-P(-)] S (2.32)

where | | |

P(~») = 2im P(t) ',

t>—0
P(t) being.thé Heisenberg transform of.thé tranélafional momentum .
operator. P, therefore, projects onto that part:of'Hiibert space
which in the iﬁfi;ite past had negative translational_ﬁomentum in

arrangement a.
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The finél,_formally exact expression for‘thevraté constant

thus becomes

;kb+é£= Q;l er{e™® F h[—P(;m)]} o ‘1 ' ' (2.33)

with F defined by Fq. (2.18). As emphésized above, this result
is‘indepéndent of the choice of éurface which.diviﬂes reactant
and prbduét configuration space. For the discussion in iater
' sections,.however; the surface S3 in Figure 1 is of special
intereSf;:in terms of the coordinates (s,u) of Figure 1 this v
surface is defined by '

f(S,U) S

i

=0 DR O (2.34)

so that for this choice of the sﬁrface Eq. (2.33) becomes
= o7t erte P (o) EE h[-P(~=)1} | o (2.35)
kb+a " rie s mé . . (2.
where msbis the reduced mass'for the s degree of freedom and-

P is its momentum operator.




L
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I11I. THE CLASSICAL RATE CONSTANT

It is interesting to Compare the quantum mechanical rate
expression obtained in the:pfevious section with“the analbgous
expression of C1assica1vmeChaﬁics. The correspoﬁdence is strikingly
direct.

Tﬂe transcription from quantum to classicél_mechanics is
accomplished by the rules that a quantum mechapical trace becomes
a clasSiéal phase spéce iﬂfegral, and quantum méchanical operators
become thevcorresponding cléssical function of coordinates and
momenta. The quantum mechanical expression of Eq._(2.33) thué

becomes

kO = QO 07 reprag e PR Drp, nl-ppiqs-] L (1)

where H(p,q) is the classical Hamiltonian, F(p,Q) is the function
of
Fp.) = olE@] SR . pm (3.2)
Qa.is classical partition function for the non—interacting'réactants_

Q, = n2 Jdp/dg e PHo(p, @) , - : (3.3)

and P(E»S;t) is the translational momentum of arrangment a at time
t which results from a trajectory beginning with initial conditions

(p,q) at t = 0; P(p,q;-~) is the t > -~ limit of P(p,q;t). The

-~ o~ ~

. step-function in the integrand of FEa. (3.1) is.l, therefore, if

the trajectory has come in the infinite past from arrangement a,

and zero otherwise; it is equivalent to the characteristic function

x(p,q) of Pechukas_and'McLafferty.lO
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If the dividing surface is taken to be_Sl"(éee Fig. 1)--i.e.,
f(r,R) = Ry - R
~-then it is easy to show that Eq. (3.1) becomes the traditional

classical rate expression: . o -

o : . 0 ~-BE oo ©
kbécCLv=~Q;é (ZvukT)_lzzrf dE1 e 1(2ﬁh)*l Sdr [fdp
AR ; . 0 S w0

o B (P, Xt E) - (3.

-

where h{p,r) is the vibrational Hamiltonian of. BC, QBC is the

classical vibrational partition functionm,

o

Qpe = (2! sdr fap e~Bh(psm) (3.5)

" and X(p,r,El) is 1 if the trajectory beginning with initial

conditions

Ry = R, h o - - .
Pl - (2uﬁl)l/2
'r1.=r‘

is reactive, and is zero otherwise. (A non-reactive trajectory

. crosses surface Sl twice, once on the wa§ in and once on the way>
out, and thus gives a net flux of zero.) The integrals éver PsTs
and Ei\iﬁ Eq. (3.4) are usually evaluated by Monte Carlo methods.}

. 17 : ‘
It has been emphasized by Keck, however, that this choice of

the dividing surface can be quite inefficient bécause many of the




»

=17~

trajectories beginning in the asymptotic region may be non;feactive.
' 18

Since Eq..(3.l) is invariant to where the surface is choseﬁ, one.
does better to choose it so that most of-the trajectories beginningn
on it are reactive, i.e., so that the function x(g,g) is 1 fér

most values of (p,q). Fdr a symmetric sysfem, such as,depiéted 

in Figure 1, the obvious choice for this "best" surface is S3

as defined by Eq. (2.34); with this choice forEthé dividing

sﬁrface Eq. (3.1) becomes | -

L -1 -2 52 2 Py
kb+a =Q " h " fdu fdpu fdps (a;).

a
—-00 =00 -00

-BH(pu’PS9u90)' : ; _
..e X(PsP>us0) 5 (3.7)

¢

where X is 1 only if the trajeétory with initial:ccnditions

=0

P, =P, (3.8)

is reactive in the direction of arrangement a td.arrangement b.

17 : .
By following Keck's arguments it is possible to re-write Eq. (3.7)

in an equivalent form which involves an integral over only positive

values of_ps;

CL 1.2 2 2 2 P
' =0 - _S
ll(b*‘a Qa h {iu fipu fgps (ms )

‘BH(PuaPS:uao) < 1 + (_l)N

> Nt D) ,(3.9)

e
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where N is the number of additional times that the trajectory
which begins with the initial conditions of Eq. (3.8) crosses
the surface s = 0 as time is run forward and backward.

. For purposes of calculating a classical rate constant it

is clear that Keck's choice of the dividing sufféce is superior,

for (1) most of the trajectories beginning on it aré reactive, .
and (2) it is not necessary to carry the numerical intégration
to long times in the past or future to see if the trajectory is
indeed going to‘be'a reactive one. If informaﬁiop.concerning
the distribution of initial or final intérnai sté;éé is desired,
it is of course .necessaryvto follow the trajegtbry all the way
into tﬁé initial or final asymptotic region; hére the trajectory
can be aésigned to quantum dumber "boxes" in the ﬁsual manner.
However a word of caution is necessary: 1if zero'Pbint energy
effects are important this procedure of "boxing"’the initial
and final quantum numbers does nof seem to work as well in
practice as the quasi-classical procedurg'of beginning the tra-
jectdry in thé initial asymptofic region with a quantum ehergy
level and "Boxing“ only the final quantum numberé.' Appendix ir

discusses this point in more detail.



_19- : #

IV. THE TRANSITION STATE APPROXIMATION

All discussion of the quantum and classicai rate expressions
so far Bas been dynamically exact, the only.assumpfion being that
the‘iﬁternal states of the separated reactapts.aﬁd their relative
translational energy are in Boltzmann equilibrium. .(There are,
of course, non—equilibrium effécts—-i.e., perburbétions‘of the
Boltzmann distribution--that result if the rate of reaction from
~ some internal states is much faster than inelastic rates which |
maintain Boltzmann equilibrium of the reactanté.' These non-
equilibrium effects have been studied in great déﬁaill9 and in
most c#ses.are quite small,Acertainly so in the region of the
‘reaction threshéld.) Now we wish to inject the transition state

approximation.

a. Classical Case

Considering the classical case first and following Pechukas
and.McLafferty,lOthe,transition state épproximation‘to Eq._(3.7)
corresponds to the repiacement

X(.p,u,0 > h(p) o G
'h being the step function; i.e., transition staté theory assumes
that any trajectory beginning on the su:face s =.(lwith positive.
momentum P is.reactivé; fhat it dSes not turn arouﬁd and bécome
a non-reactive one. In termé of Fag. (3.9), the traﬁsition state
approximation is that N = 0, again that there are nd.trajectories
that re-cross the dividing surface. The important éimplifying

featurevof transition state theory is, of course, that this
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approximation [Fq. (4.1)] eliminates all reference to dynamics.
For the general classical rate expression, Eq. (3.1) = (3.3),
invblving_thé general dividing surface f(q) = 0;~the transition

state approximation is

bl-P(pas==)] » h2L&L .y 4.2)

~

and the general transition state rate expression is

kbeaCL TST _ Q;l n=2 fdgfdg'e—BHSE’g)
ste@1 HB - pmy nBER L

~ . ~

For the case of the surface S.,, Eq. (2.34), this becomes

3.

. _ _ [+ o] (o] [ee] p ) —BH(p ,p ’u’o) (4'4)
Kk ETST o g 02 gap sausap e VS ;
a a u 8 m 3
-00 — 0 s
and since
i 2 2

v - Pg Pu
H(PU,PS,U,O) =55 t EE;_+ V(u,0) s

Eq. (4.4) becomes the usual classical transition state expression:

Q
CL TST _ kT “u
R 4.5).
a
- where Qu is the'partition function for the symmetfic stretch
. viBtation
o . o 2
Q =h"' fdp fdu exp{-B [EE + V01 . | (4.6)
u N I Zmu ’ T o

Although the dynamically exact rate expressions of Sections

IT and III are invariant to the choice of dividing surface, it is
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clear thatvthe transition state rate expression dépends on
‘where thé.surface is taken. To make Eq. (4.2)‘as‘accurate
as possibie one wishes to choose the surface to'bé the one
for'wﬁich'most trajectories begihning on it are féactive.
For a symmetric system such as Hv+ H2’ as depicted'in Figure
1, it isAclear that surface S, is the best choice. At low

3

collisidn.energies one certain%y expects most trajectories
beginning on this surface to be reactive. Pechukééiand McLaffertle
have given a beautiful analysis of the situation, obtaining a
simple geometrical criterion for deciding. under what_condi;ions
transition state theory will be exact, i.e., undefvwhat condi-
tions_gilvfrajectories beginning on thg dividing sp;face s =0
will be reactive. |

In‘ény event, the trénsition state rate expression is an
EEREE.EEEEQ to the dynamically exact rate; this is.most‘easily

seen from Keck'slzersion of the rate expression;'Eq;'(3.9),

where the transition approximation is N = O. Since
o
1+ (-1). 1 | ‘ o T (4.7)

PN+ D
for N = O; 1; 25 4 ;'._, the bounding relationvfollows.
Keckl%hus emphasizes tﬁat the dividing surface éﬂouldvbe chosen
tOiminimiée the transition state rate constant. . if.fhe function
f(g), which defines the dividing surface, is chosén,in fhe form
f(Q) =y-Yx =0 | | (4.8)
where x and y are the scaled coordinates in Figuré'l, then the
fﬁnCtiOn Y(X) QHich minimizes the rate can be detéfminedzgy the

condition
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CL TST _

® Kpea

Substituting Eq. (4.8) into Eq. (4.3) and carrying"out this

o . | . (4.9)

variation leads to the following Euler equatiqn~ji

av(X!Y(X)) ' BV(X Y(x)) Y"(k).'u _ :
3y - Y'(x) ——-—-—2——-—-'-ax - + BT T2 Y2 " 0 (4.10)

for';he'"best" function Y(x), i.e., the "bestfvdiQidiﬁg
surfacé.‘:Onebinteresting observation which fdlldWé'froﬁ
Eq. (4.10) is that forjhigh,temperatufe, T ~» w}:thé'best
&ividihg_éﬁrface (of line for this collinear system) is

straight, i.e., Y''(x) = 0.

b. Quantum Mechanical Case
The quantum mechanical transition state’appfo%;mation
is now defiﬁed as an approximation to the dynamicaily exact
quantum rate expression, Eq. (2;35), which is éﬁalpgéus to
the classical approximation in Eq. (4.1). In téfms’of the
dividiﬁg surface S3» definéd_by Eq. (2.34), therefore,vthe
transitibn state approximatioﬁ fesults from the repiaqemént

h[-P(-=)] > h(p) - TR (4.11)

in Eq. (2.35), where P is ‘the moméntum operator édrresponding
" to coordinate s (see.Figure 1). The projection operator h(ps)
projects dnto that part of Hilbert space which has positive
momentum in the s—direction, and the assumption of tranmsition
state tﬁeory,is that positive momentum at the diyiding surface

implies negative translational momentum in the infinite past.
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The physical meaning of the approxiﬁation is the same as in
the claésical case, and one thus expects that if the quaﬁtum
dynamics is "direct'--corresponding to the claséicél situation
of no ré—crossing trajectories—-then the’transi;ibn sﬁate
approximation will be a good one.

The quantum transition state expression for the rate is

thus given from Eqs. (2.35) and (4.11) as

- . _ P ' : ‘
ke T = erle ™ s(e) 2 hp 01 . B CR )

s
There is_one,complication which arises, howeQer: :Tﬁe épproximate
projectiqhiopéfétor h(ps), unlike thé dynam}éaliyﬂegact one, does
not commute with the total Hamiltonian H; with the‘dynamicélly

exact projector P one thus has

tr[efBH.S(é)ps Pl =vt:r[e-BH P 5(S)RS] _;‘-' -~ (4.13)
but for the approximate projector h(ps)

tr[e—BH é(s)ps h(ps)] # tr}e_BH h(ps) S(S)pé] . (4.14)

The ordering of the operators that ohe should choose in Eq. .
(4.12),'theréfore, is not obvious.

The most general prescription available for constructing

. the physically meaningful ordéring of a product of several

hermitian operators is given by the Weyl correspondénce rule2
(see Appendix I1I). If the trace in Eq. (4.12) is evaluated
in a coordinate representation, then one has (taking the coordinates

to be (s,u) in Figure 1)
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o] (e o] o] [}

T - -— -
ko QL TIST Q 1 rds rau fds' fdu' <sule 8Hls‘u'>
a a —00 =00 =00 —0 . S .
<s'_u'|R|su> , A - ‘ (4.15)

where R ié the Weyl operator corresponding to &(s) (ps/ms)
h(ps); from Appendix III one finds the coordinate matrix R

to be

" g oo =1 2P
<S'U'__'R|Su> 5(“‘_11) 6(S—$§) (2'”"“) 1 fdps(f-)

0. .s
. { '
X exp [1—6 Pg (s'-s)]
= Su'-w) 8¢ 2+S) Z:m (s:}s)l . (4.18)
. _

Substitution of Eq. (4.10) into (4.15) and an integration by

parts gives

QM TST -1 A e 1. 3 | -pH ~
¥b+a‘- = Q?‘ Z;E; {du {is (- ;9 T <sul§ I—s,u> L(4.17)

QO
- -pH .
Since the matrix element <sule |~s,u> is an even function of
s, its derivative is odd, so the factor (-1/s) causes no difficulty .
in the integrand of Eq. (4.17).
Eq. (4.17) is the desired quantum mechanical transition
, .22 - .

state rate expression, and one can easily verify that it repro-

. . [ .
duces traditional transition state theory in the separable limit.
Suppose, therefore, that the Hamiltornian H is éeparable'in s and

u variables:
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H=h +h
u s
where hu‘and‘hS are one-dimensional Hamiltoniaps'describing the

u-motion (symmetric stretch vibration) and s—motion (translation

along the reaction coordinate). It -is easy to see that Eq. (4.17)

becomés
- - | S |
QM TST _ . kT “u o _
ki ca =3 3 , o (4.18)
. ' a
where
Q, = Jdu <ule " U|u>
= tr (e-Bhu) ,
and 2 o I
N . h 1, d ~Bhg . Lo
r = 'Eﬁf {is (- ;) E;-<sle 8 §|-g> s o (419)

Qu is the quantum mechanical partition function for the symmetric
stretch vibration, and I' is the tunneling correction for motion

along the reaction coordinate. If hs is the free paftiéle

+Hamiltonian,
h_ = p.%/2m (4.20)
s  Ps s ° R )
then _ » _
<sle ~°|-s> = 5 eXp'—-7?— s . (4.21)
. 2mh 8 H B '

and one finds that Eq. (4.19) gives
=1 s
the expected result. If hS is chosen to have a ﬁarébolic potential

barrier about the saddle point,
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h = P /st - 7o ws" , R - (4.22),

—8h. m W 1/2. - om oW 4 ' 2'
"<Sle B S|-g> = [Zﬁﬁ sin(ﬁwﬁ)] exp|- —ﬁf- c f%gﬁs s (4.23)

™ and in.this:caSe Eq. (4.19) gives

T = 2B /"sin(izl-ms') . . - (4.24")
the Wigné; tunneling correctioﬂ?whiéh is knéwn fp;bé correct for
the ba;abolic barrier. |

This separable apﬁréximation, however, is'fhe precisely what
we do not wish to igtroduce, fbr-—as discussed in'the Introduction--
the system is quite non-separable over the regidqs”of configuration
space whi;h are important in the low energy regién‘near threshold

where tunneling is significant. To evaluate Eq. (4.17) in general

it may be most convenient to introduce a discrete set of square
integrable basis functions. With regard to the u~dependence of

the kernel

<su|e_sH|—s,u> o 7 o - (4.25)
it is clear that a basis set description is adequate, for the
u—motionvis_bound state—liké. A§ a function ofls itzis also
localized because it is off-diagonal with regard to the s:coérdinate;
the'above;sepafabie appréximations, Eqs,.(4.21) aﬁd (4.23), show it
to be gaﬁssian about s = 0, and oné expects this to be qualitativeiy
the same for the nop-separable césg. If {Qi(s,u)}, i=1,...., N

25 '
is a discrete basis set and {wi(s,u)} the particular linear

-~
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combinations of the {Qi} which diagonalize the finite matrix

Hi j = <¢i|H|®j>, then the basis set evaluatioﬁ Of’Eq. (4.17)
"J N . . )

gives.
. QMTST _ 1 ' o '
K ca Q, % e R, o (4.26)

where {Ei} are the eigenvalues of the matrix Hi'j; and
. _’ :

Ry = <y[R[y.>
S fdu fds (- —0 Y (é wy (-s.ujv’
‘4ﬂms o s Bs RS T
or
o ™ Bw (s,u)
Ri = 27Tms fdu {is (- —) lJJ (-s,u) ""-"'s—-—‘ s . 4.27)

where the {wi} have (without restriction) beenléhbsen'to be

real.



V. A NEW KIND OF SEMICLASSICAL MODEL

Altﬁough the transition state approximation;ié-expected
to be good at low energy for cases where therevis a well-defined
activation barrier, it is clear that it will bécome:poor at
sufficiénﬁly high energy;'the energy ét which it.bégins'to
fail is‘presumably'lowep the lower the activation barrier.
In the language of claésical mechanics this‘faiIUré’is due to
trajectories thch‘cross the dividing surface mdré'than oncé,
and quantum mechanically it is manifest in stréam;ines of flux11
1which have whirlpool effects, etc., at high enérgy.' It would"
clearly bé'desirable to have one model which incorporates the
simplifying features of quantum mechanical transi;idn state
theory at low energiés where quantum effects are exﬁected to
be impqrtaét, aﬂd which also takes account of ﬁﬁééé;dynamical
effects at the higher ehergies where transitionVSt;tg theory
fails. 'Thié section shows how such an expressiéhvdéﬁ be
constfucted;'
If the trace in the dynamicélly exact_quénfum mechanical
rate expression, Eq. (2.35), .is carried out in tﬂg (s,u) coordi-
nate représentation, theﬁ it reads

) [-<] ] o - S
kb?a = Q;l fds fdu fds' [du' <sule_BH|s'u'>

-00 -0 -C0 -0

S

P
<s'u'J5(s)(;§) h [-P(-m)]!su> . (5.1)

The present semiclassiéal model is obtained by uéiﬁg the Weyl

rulezkseeprpendix I11) to approximate the matrix elements of
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the operator §(s) Pg h [-P(-=)]; from Appendix III one sees that this

gives , s
<sfu'|6(s)(§—) h[-P(-=)]|su>

s

_ ' o oo p
~ (2m) 2 §(E ;S) fap_ Jdp (;n—si)

x exp{,% [p (s'-s) + p (u'-u)]} h[—'P(pu,ps.u';u;. -S-'-g—s-;—w)], (5.2)

where P(pu;ps,u,s;-W) is the t > -~ 1limit of the translational
momentum of arrangement a that results from a trajeCﬁbry beginn-
ing at t = 0 with the indicated initial conditioﬁs:vaith this

“approximation Eq. (5.1) can be written as

- }SC—Q'lf: f:uf: E)—S-IW( uoj
. kb*a_v T ta ;wpu o _wps m PyrPgrts
X h["P(P P yU, 03~) ] s ‘ L (5.3)
, u’’s e v
where W(pu,ps,u,s) is the Wigner distribution function‘6
'2 00 o . .
= = ' ' 1l ' '
W(PU,PS,U,S) (2mh) ._{iu fis expLh (pss + p YU )1
' ' - 1 v
<g - %53 - H: | BHI s + %r;vu'+ —> , (5.4)

here with s = O.

In the limit that transition state theory is a good approximation,

i.e., at low temperatures, one has
h[‘P(Pu,PSsU,O;‘“’)] "h(PS) ) ’ ':’ (5-5)

and it is not hard to show that Eq. (5.3) then becomes identical to

' quantum transition state theory, Eq. (4.17). 1In the'high
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temperature limit quantum effects become neglible;sorthat the

Wigner distritution function of Eq. (5.4) takes oﬁrits classical

limit

- ‘BH(P sP ,U,O) R
W(p, spg»>u,0) > (27) 2o Tus T (5.6)

and one sees that Eq; (5.3) becomes identical to'the:dynamically
exact classiéal rate, Eq. (3.7),'in this case. Eé{l(S.B) thus
has the desifed broperty of combining the quantumjtfansifion
state rate‘exbression éﬁd the dynamically exact classical rate
expression.ipto one unified model.
If thé:ﬁéyl correspbndence fulglalways prodﬁéed_the exactly
correct qﬁantum’mechanical operator, then Eq. (5;3).wou1d be
the dynamical exact Quantum mechanical rate cbnstéhf:: This is
~not true (éée_Appendix I1I), but the érguments in Ehe ébove
pafagréph SGggesf that it may indeed provide an e#cgllent ap-
proximation. Aﬁqther insight‘into why this éhould_bé_so is
the following: The dynamically exact rate expreséioﬁgiof both
' classical and guantuﬁ mechanics involve an infinite timé-limit.
" In the classical casé, howevef; it is clear that ;_ﬁréjéctory
ﬁeed not‘bérfuh to particulérly long times in order t6 see if
‘it wili be reactivé or not. Aﬁalogously, one expects ﬁhat.a
.short time approximation ﬁo the proje;tion operétor-ht—P(t)] is
sufficient to determine the reactive flux if the diQidiﬁg surface
is chosen, as it'is, in the optimum location. As i§ shown in
Appendix IIi, the Weyl.rule does indeed describe the_quéntum

propagator cofrectly for short times, thus implying that Eq..(5.2)
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- is 5 godd:épproxiﬁétion for purposes of determining.the net
- rate constant.
‘ With'fééérd t6 the evaluation of Eqs. (5.3) ané (5.4),
a basis s¢t evaluatioﬁ is also possible here. If:.
O N O N R R
is the setvdf ;inear coﬁbinations of b;sis functions {¢nxm}
which diagonaliz¢ thé‘Hamiltonian'matrix, then the rate

constant is given by Eq. (4.26) but where Ri is now given by

- = s

. ‘ o0 @ L fp
- s
Ri _%,n,m',nf Ui,mn Ui,m'n' £ipu Jdu fdps (E—)

X h[‘P(Pu;PS,U,O;'m)] Jn’nr(pu,U) Km m}(Pé.o) > (508)

- where.
-1 *° , . . Loy '
Jn,n"(pu’U) = (2mh) {iu exp(;puu /) cbn(ufu?) ¢n.(_u+ u7)(5.9a)
o -1 °°.' _ : ' ' )
Koo (g 8 = (2m) fis exp (ip_s' A1) xm__('s‘-sé—-) xm.(s+§§-)'(5.9b)

It is:élsb'interesting to notevhowfdifférent"fhis semi~-
classical model is from "claésical S-matrix" the§£y3 where classical
trajectories are used to construct amplitudes for transitions
between specific initial and final quantum stateé; 'The semiclassical
model described above alsé uses exact claséical mechanics within
a qtantum mechanical framework, bﬁt the rate constapt'itself is
constructed without going through the intermediate uée of amplitudes.
It is clear that the present sgmiclassical model will be much
easier to implement than classiéal S-matrix theory,.primarily’

because much more limited information is being sought, namely
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the net reaction rate constant rather than complete information
about initial and final state distributions. |

Fiqaily, it is worthwhile to noﬁe that the'éeﬁiclassical
rate expression, Eq. (5.3), agdlits transition s;éié approximation,
Eq. (4.17),‘can both be oBtained directly from thé ébrrespOnding
classical_rate expressions,lEqs. (3.1) and (4.4) réspectively,
simply by féplacing the classical distribution fuﬁction by the

26 '
Wigner 6vdistribution function:

~N - N
p N PR, > W(p,q)

where W(p,q) is defined by Eq. (5.4). Use of the Weyl flux N
operator in quantum mechanical rate expressions is:thus‘equivalent

to use of the Wigner distribution function in classical expressionms,
. : ; .

and any shortcomings of one approach are preseht7iﬁ the other.
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VI. ‘SUMMARY AND CONCLUDING REMARKS

Iﬁ obtaihing a quéntum mechanical transition state theéry
which is free of aﬁy additional approximations it.was.firét ﬁse-,
ful to ﬁrite the dynémically exact quahtum meéhaﬁicél fate in
the formvof a Boltzmann average of a flux oper#tdr; This is
given by Eq.  (2.33) and is quite an interesting éxﬁression
itself, being a verbatim transcriptioﬁ of the'dyﬁéﬁically
exact classical rate expression, Eq. (3.1).

The quantum rate expfession, Eq. (2.33),‘iﬁvolves the
total Hamiltonian H in two ways, one in the Bol;émanh 6perat6r

-exp(-BH) , and the other through the projection operator

-iHt /&

‘ ﬁ[-P(-°°)] = Lim e

t>—c0.

P being the translation momentum operator of arrangement a. It
is the infinite time limit of this projection operator»that'can
only .be handled completeiy correctly by a quantum scatteriﬁg'
calculation. | |

The’transition‘state approximation, in éither fhe.quantum
or classical framework, circumvents the need to know,tﬁe full
vséattering dynamics by.invoking the approkimatioh h[~P(-»)] =~ h(ps)
quantum mechanically;.or‘h[—P(g,g;—W)] o~ h(ps) classically;-the
full Hamiltonian is retained with no approximation in the 3oltzmahn
operator. Physicélly, this approximation assumes tﬁét_if the
momentum in the s—di;ection‘at:the dividing surfaéé-s.= 0 is
positive, then the systéﬁ must haQe come from arrangément a in
the infiniﬁé past. This will be exact classically at s§fficient%y'

low energy.
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The quantum mechanical trapsition state rate éxpression,
Eq.-(4.17); is seen to reduce to the standard t;anéi;ion state
expression if separability of the Hamiltonian i§ assumed; the.
indicatiénsvare,vhowever, that this is not a godﬁ'éésumption iﬁ_
the thrgshold region where tunneling is important.' For a collinear
A + BC ~ AB + C reaction the evaluation of the quantﬁm transition
state.expréssion via Eq. (4.26) - (4.27), for example, should be
relatively easy, and may evén be quite tractible}fﬁr-such a system,
and largey.ones, in full three dimensional space.'

| To overcome the failure of the transition stage approximation
at higher energies Section V shows how classica1 traject§ry_infor—
mation can be combined with the quantum transition state model by
use of the Weyl correspondence :uie to approximaﬁe.thé projector |
in Eq. (6;1). Although the projector is defined és»é'limit -0,
one expecté that it is actually necessary to deséfibé tﬁé time
evolution only for reasonably short times; this is’by analogy
with the classical caseIWhere one knows that a trajectory néed be
followed over only a short time internal to detéfmine from which
'arrangement it originates. Since the Weyl appro%imaéion is correct
for short times, the implication is that it should_brpvide a good

approximation to the projector.

In any event, for temperatures high enough that quantum effects

are neglible the semiclassical model of Section V becomes the

dynamically exact classical rate expression and therefore correct.

~The model is thus completely correct of temperatures sufficiently

high that quantum effects aré:neglible and at temperatures sufficiently
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low for transition state theory (our quantum mechanical version

of it) to be valid; if these two temperature regions overlap or-

" if the Weyl approximation to the projector operaﬁor is good, then

this semiclassical model will provide a cdmplete'dégcription of
the reaction rate constant for all femperatures,._ o

To éﬁéwer these questions as to aBsolute actutééy; eaée of
application, etc., it is clear that numerical appiiéétions are

required. Some of these are now in progress.
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APPENDIX I. STEPS LEADING TO EQ. (2.28)

Here we show how Eq. (2.28) follows from the formal theory

. of scattering.27128 Since the manipulations are'standard, they

are given without comment.

‘y . ‘ -:— \y (+\

Plna Plna

= [1+ (E-H+ ie)—l v] ¢
. . P n
1l a

L+ E-8B+ie) T @- 8] 0
' o . Plna

ie(E - H + 1e) L ¢ ,
. P.n
_ 1la

where V = H - H,. Thevgreen's function (E - H + ie)fl can be
expressed as the "half Fourier transform" of the propagator,
so that this becomes

WP = (ig) (ih)_l S de e—gt//ﬁ eiEt/ﬁ e—thAﬁ'Q.
n P.n
1la 0 _ . "1la

= (e/n) S dt e_et/h e_thﬁh eiHOt/ﬁ-QP.n.
0 ’ ,

1la
= fdxe ™ e—lHX/E.eiHOX/ESQP n
0 : 1l a
o : . A .
< [ dx e X [%im e—lHt/h,elHot/h] o,
0 B S ‘ 1M,
v, - tin JAHE/ -iH t/h 0,
1 a  tr-o 1la
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APPENDIX_II_' AVERAGED CLASSICAL TRANSITION PROBABILITY
Consider for simplicity the collinear A + BC collision
system; the following discussion can easily be eXt-énded29 to

the three-dimensional case. The n, > n, transition probability,

either reactive or non-reactive, is given classically by30
-1 ' ‘
on, (q,sn,) o
P .n - [Z'TT ’ 28 1 1 I y . (II.l)
M22M 9

where nz(ql,nl) is the final vibrational quantum number that
results from the trajectory with initial conditions (nl,ql),

n and q being the action and angle variables for the vibrational

degree of freedom; 93 in Eq. (II.1) is determined by the condition30

nz(qlsnl) = nz ’ ' . (11'2)

" where n, and'n2 are integers.

Although Eq. (II.1l) is the formally exact classical transition

probability-—and thus, for example, satisfies microscopic reversibility,

P =P ~--it is awkward to apply directly because of the
fpefp  DpsMy .
necessity of solving Eq. (II.2), a non-linear boundary value

: ’ 1
"quasi-classical" procedure” corresponds

problem. The now:standard
to averaging Eq. (II.1) over a quantum number width about the final

quantum number:

1
_ "tz |
B = [ dn P SRTEEI € § 9|
it T f‘; MM o
| 272
L1
™ +.5 -1 8n2 -1
= f dn2 (ZTT) Ig—-l ’
o -1 E
272



38—
or

) Pnz;nl,= fd(ql/Zﬁ) x(nl,ql) R - (I1.4)

where X(nl?ql) =1 if

1 B | o :
. 1 S I.5
ny =3 Smlapn) <yt gy » (115

and is zero>otherwise. Thevintegrél over q, in‘Eq. (II;A) is
most efficiently carriedvout by Monte Carlo, or otﬁer.éampling
methods, particularly so for systems with more iﬁté;ﬁal degrees
of freedom. | | |

Although the.quasi-classical fransition préﬁéﬁility; Eq.
(II.&), is Simplef to evaluate, it has the undesi;able feature

of not being microscopically reversible, i.e.,

A microscopically reversible result can be regained by the more
democratic procedure of averaging over the initial, as well as
final, quantum number:

n,+% n +-%-"

- 2772 1
Pn n ° Jdny Jdny Pn n
22" 7 1 - T 1 PM
"272 ™M T2
1
vnl+§
= fdny - Jd(q,/2m) X(n,,q,) , . (11.6)
L 1 4 _
"1 T2

where x(hl,ql) is the same as above. (Thé averagé over n, is done

holding the total energy constant.) This "double;aYeraged" transi-

tion probability is the quantity which is obtained in a Keck—type17
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Monte Carlo calculation, i.e., by beginning the trajectory in

the interaction region, integrating forward and backward in

time, and a;signing initial and final quantum gdmbéfé to "quantum

numbér boxes". | - ”
Although thié dbuble;averaging proceddre seems. more internally

consistent (and is no more difficult to apply) thgg the singly-

averaéed, quasi-classical approach, it is interesting that it

does not neceSéarily give better agreement with quantum mechanical

calcuiations; For the collinear H + H2 reagtion,.fof example,

Figure 2 shows the singly-averaged [Eq. (I1.4)] and doubiy—

averaged [Ed; (11.6)] results, compared to the ﬁumerically

- exact quaﬁtum mechanical_result;31 ;he singly averaged result

is seen to mimic the quantum mechanical beﬁavior more closely.

This is probably due to the fact that at these low energies

this system is highly vibrationally adiébatic. Thé‘?ibrational

zero pointnenergy with which‘the quasi-classical tféjéctory

begins is thus not all available to motion along_the-reaction

.cqordinate, and this corresponds well to the quantum mechanical

situation.
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APPENDIX III. THE WEYL CORRESPONDENCE RULE
The Weyl correspondence rule21 gives a prescription for
constructing the hermitian operator Fop that éofresponds to

the classical function of coordinates and momenfa-FCL(p,q).

~ o~

For the general case of N degrees 6f_freedom the rule is

F o= (2mn) 2N fdp fdq fdp' fdq' F. (p,q) .
op bt SR e ¥ < CL

~

-exp[-i(p'*q + p-q')/H] exp[i(p'-qop

+ SJ;EOP)/ﬁ] , (111.1)

where (q,p) are cartesian coordinates and momenta and Yop and -
p are the coordinate and momentum operators. Using the fact
that

P ~ =~OP

v

~

exp[i(g"go + q'*p )] = exp(d B"gop/h)’exp(i S'.po )

one can readily show that the coordinate matrix representation

xFo (o, =) . o amy

~

One can verify that Eq. (III.l),or'(III.3),gives'the correct

quantum mechanical result if FCL is a function only of coordinates

or only of momenta (or a sum of such functions); for example, if - -

FCL is a function only of coordinates, FCL(q), then Eq. (III.1)

gives the obvious result

X éxp(% ip'q'/m) (II1.2)

Ty
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F (q ) .
op Fer gop
For the case that FCL is a non-additive function of coordinates
and momenta the operator F (pop, qop) is not well-defined due
to lack of commutlvity of the operators Pop and qop" q. (111.1)
thus defines a unique orderlng of these non—commutlng operators

If

Foo @9 =p'2

N~

for example, then Eq. (III.1l) gives the symmetrized product

1 ' '
F = e ( . + . )
op 2 gop SOP Sop Eop ’
the intuitively reasonable choice. More generally, if Fop 1s
a product'of a function of coordinates and a function of

momenta,

Fo (phd) = £0) g(a) BN ¢ S 0%
Eq. (III.B) gives

. - ' q2+q1 .
QIF lap = Elay -9 e . (111.5)

where f is the Fourier transform of f.

Although the Weyl rule is the most general prescription
available for constructing the appropriéte quantum'mechanical
operator ffom.an‘arbitréry ciaséical function oflgéqréinates
and momenta--or, equivéiently, for uniquely defin;ng'the
appropriate ordering of coordinate and momentum opérétors in
FCL(Bop’ gop)—?it unfortunately does not'always‘p?odﬁce the

correct quantum mechanical result. For the propagator,
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F =-e—1Ht/ﬁ
op

H

for example,. the corresponding classical function is'clearly
- ~iH(p,q)t/h
FCL(E"("I) = e E’g
' 2 PR
exp (-i'gi t/) exp[-iV(a)t/R] <,

so-that Eq. (III.5) gives

— it /A
<g,le A

-~

. -N/2 i :
4> = (2mifit/u) / exp[%%; ISZ - g
q, + g '
-1 V(:g_i_:lg t/ﬁ] .

which is recognized3§s a short time approximation to the

£
—

coordinafe representation of the propagator. Thevimplied
warning is that one should invoke the Weyl correspondence
rule with eaution} In Section IV it was used to .define a
unique orderieg of.the non-commuting operators é(s)ﬁg and
h(ps); since ne_other basié for choosing the ordefing is

apparent, it seems to be the most justifiable procedure.
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FIGURE CAPTIONS

1. Sketch of a collinear potential energy surface for. a symmetric

A+ BC ~ AB + C reaction (i.e., A = C). x and y are mass

weighted, or "skewed" coordinates that diagonalize the kinetic

/2 /2

energy: x = R(u/M)1 y = r(m/M)1 , where R ahd r are the

translétibnal and vibrétional céordinatés, respeétively, and
py and m the corresponding reduced masses [m = BC/(B+C), U =

A(B+C)/(A+B+C)]). M is aﬁy arbitrary mass, andAtHe_classical
kinetié energy is %-M(iz + &25.' s and u are‘tﬁejlinear com-

binations of x and y which diagonalize the potential energy

at the saddle point. ’Sl’ SZ’ and 83 indiCate_fhe "surfaces"

which are referred to in the text.

2 + H reaction

Reaction probability for the collinear H + H, > H

2
on the Porter-Karplus potential surface_[R.ijvPorter and M.
Karplué, J. Chem. Phys. fg, 1105 (1980] as a fénqtion of
relativé collisioﬁ energy. The dotted,énd dasﬁéd iines are
the singly and doﬁbly averaged classical traiecﬁdry-resul;s,

Eqs. (II.4) and (II.6), respectively, and the:sélid line the

quantum mechanical values of ref. 31.
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