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Machines that Forget: Learning from retrieval failure of mis-indexed explanations

Michael T. Cox

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
cox@cc.gatech.edu

Abstract

A reasoner may fail at a cognitive task, not because it does not
have appropriate knowledge with which to reason, but instead
because it does not have the proper index or cue with which to
retrieve such knowledge from memory. The reasoner knows
this memory item; it simply cannot remember the item. This
paper argues that forgetting provides an opportunity for learn-
ing through memory reorganization. A reasoner that takes full
advantage of such opportunities, however, must be able to rea-
son about its own memory system. To do so, it must possess a
language for declaratively representing its reasoning failures
and must reflectively inspect such representations if it is to
fully explain the reason for its failure. Once such an error is
understood as a memory failure, the problem of forgetting is to
re-adjust the indexes so that the knowledge is properly
retrieved in similar, future situations.

Introduction

The phrase “machines that forget” appears to be a contradic-
tion in terms. Computer memory is often viewed as a virtu-
ally error-free medium in which retrieval of data is
performed by simple fetch operations. As computer memo-
ries grow, however, brute-force search for the address to per-
form the fetch becomes increasingly intractable. Memory
indexing is added in order to make memory retrieval more
efficient. A memory-indexing mechanism is a trade-off
between time to search and accuracy of retrieval; though
efficiency is gained, poor indexing schemes risk not finding
the proper information. That is, given some query, a com-
puter may not find an item at all — from the user’s point of
view, it can “forget.” Cognitive science research provides
insights into this problem that take it beyond a mere com-
puter science technicality. I will argue that development of
improved computer memories for intelligent systems does
not necessarily entail a memory that never forgets; rather, a
useful memory is one that is integrated with a system that
transforms forgetting into an opportunity to learn.

The indexing problem (Domeshek, 1992; Kolodner, 1984,
1993; Owens, 1993; Schank, 1982; Schank & Osgood, 1990)
is that of choosing cues, or features in an input, to be used as
indexes for retrieving from memory the knowledge struc-
tures necessary to process an input. The converse problem,
then, is the problem of forgetting (Cox & Ram, 1992). If the
cues are not chosen with care during retrieval time, or if the
indexes are not chosen well during encoding, the reasoner
may not recall a memory structure when it is needed. Thus,
reasoning failures can occur because of faulty memory orga-
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nization, as well as because of faulty reasoning components
or faulty knowledge; forgetting is not simply a problem of
“deleted” memory items. The solution to the problem of for-
getting is to provide a system with an ability to recognize
when its memory fails and the ability to associate these fail-
ures with abstract representations of the problem. It can then
reason about the representations and associate them with
specific learning goals. Performance systems that do not
depend on brute-force search methods for information needs
must therefore be integrated with learning systems that are
sensitive to memory reorganization as well as to knowledge
refinement.

Section 2 describes the theory and methodology that
enables a system to reason about its own memory. Section 3
illustrates a solution to the problem of forgetting with an
example from an implementation called Meta-AQUA and
shows how it affects learning. Section 4 compares and con-
trasts both computational and psychological perspectives on
the phenomenon of forgetting. Section 5 closes the paper
with a brief discussion.

Introspective Multistrategy Learning

This paper illustrates how forgetting effects learning in a
multistrategy learning system called Meta-AQUA (Ram &
Cox, 1994). The system learns by choosing a learning strat-
egy on the basis of introspective explanations of its own per-
formance failures. The performance task for Meta-AQUA is
story understanding. That is, given a stream of concepts as
the representation for a story sequence, the task is to create a
causally connected conceptual interpretation of the story. If
the system fails at the task, its subsequent learning tasks are
(1) blame assignment — analyze the cause of its misunder-
standing, (2) decide what to learn — form a set of explicit
learning goals to change its knowledge so that such a misun-
derstanding is not repeated on similar stories, and then (3)
strategy selection — choose or construct some learning
method by which it achieves these goals. The solution to
these learning problems is to maintain a declarative trace of
reasoning that leads to or supports a particular choice of
goals or plans, to retrieve past cases of meta-reasoning that
can explain the reasoning failure, and then to directly inspect
and manipulate such explanations. The system’s analysis of
its failure is then used as a basis for generating specific
learning goals and subsequently planning to achieve such
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goals by choosing a proper learning strategy.

An extension of explanation pattern (XP) theory (Ram,
1991, 1993; Schank, 1986) helps the system to reason about
these types of failures. A meta-explanation pattern (Meta-
XP) is an explanation of how and why an ordinary explana-
tion fails in a reasoning system (Ram & Cox, 1994). Two
classes of Meta-XPs exist to facilitate a system'’s ability to
reason about itself and to assist in selecting a learning algo-
rithm or strategy. A Trace Meta-XP (TMXP) explains how a
system generates an explanation about the world or itself,
and an Introspective Meta-XP (IMXP) explains why the rea-
soning captured in a TMXP goes awry. A TMXP records the
structure of reasoning tasks and the reasons for decisions
taken during processing in a series of decide-compute nodes.
An IMXP is a general causal structure composed of primi-
tive, network structures that represent various failure types.
IMXPs are retrieved and applied to instances of reasoning
captured in TMXPs, and assist in forming the learning goals
of the systems after failure occurs. The algorithm that uses
such knowledge structures is outlined in figure 1.

0. Perform and Record Reasoning in TMXP
1. Failure Detection on Reasoning Trace
2. If Failure Then
Learn from Mistake:
* 2a. Blame Assignment
Compute index as characterization of failure
Retrieve Introspective Meta-XP
Apply IMXP to trace of reasoning in TMXP
If XP application is successful then
Check XP antecedents
If one or more nodes not believed then
Introspective questioning
GOTO step 0
Else GOTO step 0
* 2 b. Create Learning Goals
Compute tentative goal priorities
¢ 2 c. Choose Learning Algorithm(s)
Expand subgoals
Build learning plan
Compute data dependencies
Order plans
« 2 d. Apply Learning Algorithm(s)
3. Evaluate Learning (not implemented)

Figure 1: Introspective Learning Algorithm

Once a system has identified the causes of a given reason-
ing failure (step 2a of figure 1), it must decide what it needs
to learn. To represent these desires explicitly, it posts a series
of learning goals that, if achieved, will reduce the likelihood
of repeating the failure (step 2b). Some learning goals seek
to add, delete, generalize or specialize some concept or pro-
cedure, or to reconcile or differentiate two concepts (Cox &
Ram, 1994). Others deal with the ontology of the knowl-
edge, that is, with the kinds of categories that constitute par-
ticular concepts.

Given a learning goal, then, a system must also decide

which learning strategy is most appropriate for achieving it.
Meta-AQUA treats the learning task like a traditional plan-
ning problem, creating a learning plan that is composed of a
series of executions of learning algorithms that will achieve
its learning goals (step 2c). However, unlike learning algo-
rithms executed by single-strategy systems, the learner must
dynamically consider possible interactions that may occur
between the learning strategies (Cox & Ram, 1994). A non-
linear planner is thus used to resolve learning-strategy
dependencies and learning-goal interactions.

In this paper, we present extensions to Meta-AQUA that
allow it to reason about memory failures. When reasoning
about a failure such as forgetting, the system must first have
a representation for the processes that preceded the failure.
Having such a representation helps the system reason about
itself, just as having declarative structures about events in
the world assists problem solvers in reasoning about their
environment. As will be seen in the following example,
using these knowledge structures allows Meta-AQUA to
pose questions about its own self-understanding.

Forgetting an Old Explanation

This section demonstrates how Meta-AQUA handles a fail-
ure in which it cannot generate an explanation for an anom-
aly. The explanation is in its memory, but the system does
not have the proper index with which to retrieve it; in effect,
it forgets the explanation. Given a bias for failure, this exam-
ple demonstrates that forgetting represents an opportunity to
learn.

Consider a story in which a police dog barks at luggage in
an airport. This event is anomalous if the system believes
that dogs bark only at animate objects. Meta-AQUA eventu-
ally learns that dogs can bark at any physical object, includ-
ing inanimate ones, and it learns a new explanation: dogs
bark when detecting contraband.

After processing this story, Meta-AQUA’s memory con-
tains knowledge representing two explanations for why dogs
bark: an explanation for dogs that bark because they are
threatened (indexed by dog-barks-at-animate-object) as well
as an explanation for dogs that bark because they detect con-
traband (indexed by dog-barks-at-container).

Meta-AQUA is then given the following new story.

S1: The police officer and his dog enter a suspect’s house.
§2: The dog barks at a pile of dirty clothes.

S3: The police officer looks under the clothes.

S4: He confiscates a large bag of marijuana.

S5: The dog is praised for barking at the occluding object.

The sentence, S1, causes no unusual processing because
Meta-AQUA finds it mundane. But S2 is interesting because
the system has recently changed its concept of dog-bark.
The system therefore poses a question asking why the dog
barked. Unfortunately, because the dog is barking at neither
an animate object nor a container, no XP is retrieved with
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Figure 2: Forgotten Detection Explanation

which to generate an answer. The question-answering pro-
cess is subsequently suspended because of the impasse, and
the question is indexed in memory in the hope that the story
will provide further information.

Next, sentence S3 causes the system to postulate a possi-
ble causal link between S2 and S3 simply because of the
temporal relation; however, no evidence directly supports
this hypothesis. S4 then reminds the system of a case in
which contraband was confiscated. The system thus infers
that the suspect was probably arrested. Finally, S5 causes a
reminding of the earlier question about the dog barking at
the pile of laundry. The reasoning that was associated with
this previous question is then resumed. The system also
infers a possible causal relation from S5. Although the sen-
tence does not explicitly assert it, Meta-AQUA concludes
that the dog’s detection of the marijuana caused it to bark in
the first place. This conclusion answers the original query.

Reviewing the reasoning trace that preceded the conclu-
sion, Meta-AQUA characterizes itself as “baffled” (impasse
during memory retrieval). The system retrieves an IMXP
based on this characterization, which helps it explain its own
reasoning failure.! The structure is unified with the represen-
tation of the original reasoning (stored in a TMXP) which
produces the instantiation partially shown in Figure 2.2 The
knowledge structure shows that memory retrieval produced
no explanation in response to the system’s question. Instead,
a later input caused the system to infer an answer.

The IMXP suggests that a knowledge-expansion goal be

1. The retrieved IMXP is called IMXP-BAFFLED-AND-
RESOLVED and represents an instance of not remembering an
explanation, yet later deriving one. An edited frame definition is

shown in Fig. 3. Equal signs represent frame variable bindings.
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spawned to generalize the inferred explanation. This sugges-
tion comes from a potential learning-goal slot of the IMXP
(see Figure 3). Conditions attached to the knowledge-expan-
sion goal allow it to be posted if the node A was either
acquired from the story or inferred, but not if it was retrieved
from memory. A knowledge-organization goal is also
spawned in order to index the generalized explanation in
memory. These goals can be achieved by performing expla-
nation-based generalization (EBG) on the new explanation
(node A) and then indexing the explanation by the context in
which the system encountered the explanation.

The system cannot determine a priori whether an abstract
XP (node M) actually exists in memory but could not be
recalled (thus, the failure cause is a missing association, I),
or whether the system lacks the knowledge to produce the
explanation (thus, the cause is that the situation is novel, i.e.,
M is missing). The system thus poses a question about its
own IMXP (c.f., Oehlmann, Edwards & Sleeman, 1994),
“Does M exist in memory?” If M is missing, I is also miss-
ing; thus, the right question to ask is whether M exists, not I.
Note that it cannot be the case that I is erroneous. If it were
true, then some explanation would have been retrieved,
although it may have been inappropriate.

The answer is obtained by performing EBG and then
watching for a similar explanation in memory when it stores

2. Attributes and relations are represented explicitly in this figure. For
example, the ACTOR attribute of an event X with value Y is equivalent
to the relation ACTOR having domain X and co-domain Y. In addi-
tion, references to TRUTH attributes equal to out refer to the domain
being out of the current set of beliefs. The subscript FK refers to it being
out with respect to the foreground knowledge (as opposed to the back-
ground knowledge or BK). Numbers on the causal (double) links specify
orderings.



the new explanation via the indexing algorithm. The system
can detect the presence of similar memories by maintaining a
list of pointers to memory items for each conceptual type. At

(detine-frame IMXP-BAFFLED-AND-RESOLVED

(isa (composite-introspective-meta-xp)) w IMXP Class

(failure-cause (novel-situation 0 missing-assoc.0)) i Which one we do not know

(q (relation w Baffling question
(explanauons (=a)})))

(a(xp .. Actual explanation
(explains =g)})

(e (xp i Missing expectation
(explains =q)))

(i (index (domain =q) (co-domain =m))) w Index wsed to retrieve E

(m (xp)) .+ Forgotten xp.

(truth-value (truth (domain =¢) w E notin set of beliefs wrt FK

(co-domain out-fi.0)))
{equals (equal-relation  (domain =a) w Actual should have been
(co-domain =e))) 1+ equal 1o what was expected
(cf (retneval-fail (inid =truth-value) ;; The memory faiture

(expected-outcome =¢) . explained by the IMXP
(actual-outcome =a)))

(new-input (entity)) ., Story input
(later-process (process)) i Inference in this case
(rc {trace-meta-xp \: Reasoning chain

(identfication =g-1d)
(generauon =hypo-gen)
(link3 =link2)
(link4 (mentally-results (truth out-fk.0))))
(g-id (d-c-node .+ Question identification
(strategy-choice questioning.0)
(strategy-execution pose-guestion.0)
(side-effect (considerations =con (prime-state =k-goal)))
(link4 =link1)))

(k-goal (knowledge-acquisition-goal .. Knowledge goal to answer
(goal-object i the question
(generate (co-domain =q)))))
(hypo-gen (d-c-node .+ Hypothesis generation

(strategy-decision =h-decision)
(main-result (outcome =o (members (=linkd))))
(link4 (mentally-results {co-domain =0)

(truth out-fk.0)))))
(h-decision (decision-process 12 XP rerrieval in this case
(basis-of-decision =h-decision-basis))}
(h-decision-basis
(basis (knowledge .y Existence of I is the basis
(collection . 1o use case-based explanation

{members ((knowledge-state
(co-domain =i)
(believed-item =i))))N))
(links (=link1 =link2 =link3 =link4 =link5 =link6));, Links are in temporal order
(link] (mentally-results (domain pose-question 0)
(co-domain {outcome (members (=q)))))

(link2 ( lly-enables (domain =con)
(co-domain =hypo-gen)))
(link3 (mentally-results  (domain =rc) . and all correspond to the
(co-domain =¢))) .. numbered links in Fig. 2
(link4 ( lly-1 (d in =truth-value)
(co-domain =rf)))

(link5 (mentally-enables (domain =new-input)
(co-domain =later-process)))

(linké (mentally-results  (domain =later-process)
(co-domain =a)))

(explains =rf) w» What the IMXP explains,
(pre-xp-nodes (=a =e =rf)) 11 XP consequents.
(internal-nodes (=q =hypo-gen =later-process =i)) ;. Neither sink nor source nodes
(xp-asserted-nodes (=g-id =m =new-input)) 1 XP antecedents.
(potential-faults (=a =i)) .. Nodes for blame-assignment
(potential-learning-goals .. Corresponding learning goals
((knowledge-expansion-goal
(goal-object =a) v Expand the new explanation
(subgoals =krg)

(priority  (integer-value =pr))

(backptr  (plan))

{conditions ((inferred.0 acquired 0)))
(knowledge-reorganization-goal =krg

(goal-object =i) 1+ Reorganize memory to hold

(priority (integer-value (less-than =pr)))))))))

Figure 3: IMXP Frame Definition

228

storage time, Meta-AQUA traverses the list, checking each
to see if it can unify the new memory with any of the older
ones.® Meta-AQUA thus finds the explanation produced by
the previous story at storage time,

Merging the two explanations produces a better explana-
tion: Dogs may bark at objects that hide contraband, not just
at containers that hold contraband. The algorithm that
indexes the generalization searches for the common ancestor
of the object slots of both explanations; that is, objects that
contain other objects and objects that cover other objects.
This common ancestor is the type hiding-place. Thus,
so that these types of explanations will not be forgotten
again, the system indexes the explanation by “dogs that bark
at potential hiding places™ and places a pointer to the merged
explanation on the memory list for the symbol causal-
relation.

As a result of its learning, Meta-AQUA not only detects
no anomalies in the following story, but predicts the correct
explanation.

S1: A person is outside a house.

$2: The policeman approaches the suspect.

S3: His dog follows.

S4: The policeman sees that the person is near a compost pile.
S5: The dog barks at the compost pile.

S6: The authorities arrest the suspect for drug possession.

S7: The dog barked because he detected drugs.

Computational and Psychological Explanations
of Forgetting

Early psychological theories of forgetting were based on the
notion of the decay of a memory trace (e.g., Ebbinghaus,
1885/1964).* Many computational systems that model for-
getting use a simple notion of decay or memory amortization
to grossly simulate the phenomenon. Neural-net models of
memory” implement forgetting by decreasing the weights on
the connections between nodes in the system (for example,
see Scalettar & Zee, 1988, for an explicit discussion of for-

3. This mechanism simulates a memory such as that of DMAP
(Martin, 1990), whereby memory items map to areas that con-
tain similar memories. Although Meta-AQUA’s mechanism is
only a crude approximation to such architectures, the emphasis
of Meta-XP theory is on the reasoning about memory (or other
reasoning processes), rather than on a representation of the
memory architecture per se. A more realistic mechanism would
be for Meta-AQUA to use the generalized XP as a probe to
memory to see if it is now reminded of the old XP. The current
method suffers from the fact that it always finds the old XP at an
unacceptable search cost.

4. The most notable contemporary decay-theory of forgetting is

Wickelgren's (1974) single-trace fragility theory of memory.
The theory has been influential, not only in the psychological
community, but also, for example, has been an inspiration for the
forgetting mechanism in the user model of EUROHELP
(Winkels, 1990), an intelligent help system.



getting in neural nets). However, forgetting itself is not a
process; rather, it is a by-product of computation, The decay
theory of forgetting is descriptive rather than explanatory.
Jenkins and Dallenbach (1924) introduced the concept of
interference. Because learned information conflicts with
similar memories, retrieval of these similar memories is
interfered with. Forgetting is viewed as a competition
between similar memories trying to associate with the cur-
rent cue context®. The general search of associative memory
(SAM) theory (Mensink & Raaijmakers, 1988) represents a
current psychological model of forgetting and interference.
Forgetting is represented as a lower probability of retrieving
an item at time t+i than at time t. The SAM model assumes
that the strength of a context cue during the retrieval of a
particular memory item is determined by the overlap
between the contexts at storage and retrieval times. Two fac-
tors explain forgetting in SAM. First, the cues used at time t
may be more strongly associated with the memory item than
those used at t+i. Second, the strength and number of com-
peting items associated with the cues may be greater at t+i
than at t. Although probability models cover the data, they
do not explain the phenomena well; rather, like the notion of
decay, they describe the phenomena. Moreover, the role of
knowledge in memory retrieval is absent in such models.
Using a knowledge-intensive approach, CYRUS (Kolod-
ner, 1984) models a dynamic memory (Schank, 1982) con-
taining experiences from past US Secretary of State Cyrus
Vance. Its memory contains knowledge of meetings concern-
ing both the SALT Accords and Egypt-Israeli peace talks.
But as CYRUS experiences more meetings between Egyp-
tian and Israeli diplomats, the features that apply to the
SALT talks are removed from the norms of the concept
diplomatic-meetings. The SALT details are still in
memory and retrievable if provided SALT-specific cues;
however, the information concerning the Camp David
Accords come to dominate the restructured concept. So
when CYRUS is questioned about general diplomatic meet-
ings, it forgets about SALT because of interference from the
Camp David details. But CYRUS does not learn from its
memory failures, nor does it have a representation of forget-
ting from which it can reason. As shown by the example in
the previous section, Meta-AQUA learns to adjust its mem-

5. A symbolic (as opposed to sub-symbolic) memory system that
uses decay is ACT* (Anderson, 1983). Although ACT* uses a
decay mechanism, Anderson has shown that ACT* covers much
of the interference data in the literature. See the next paragraph
for the interference explanation of forgetting.

6. Although Levy (1988) contends that neural nets model forgetting
as interference, it is unclear from his discussion how they imple-
ment this. Neural nets use decay explanations as well as decay
implementations. However, French (1994) discusses a more ana-
lytic evaluation of catastrophic interference phenomena in neu-
ral nets, whereby the addition of new memories in a net causes
the system to completely forget association of older similar
memories.
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ory indexes in response to forgetting.

Rather than characterizing forgetting as to whether it
results from interference or decay, a more useful strategy is
to analyze the possible types of forgetting. Cox and Ram
(1992) argue that the forgetting results from failure at vari-
ous nodes in the structural representation of forgetting (as in
Figure 1). As shown, the index, I, could be missing or the
item, M, in memory could be missing. Alternatively, the sys-
tem may never have generated the question, Q, in the first
place. When confronted with later information, a system
might realize in hindsight that it should have asked a ques-
tion; therefore, Meta-AQUA can be surprised. Finally, an
opportunistic reasoner might form a goal, but, because it
cannot achieve that goal, may suspend the processing. Later
it might forget to resume the goal. For example, if a planner
forms the goal to fill its car with gas before leaving for vaca-
tion, the planner suspends the goal until arriving at the gas
station. If the planner also has a goal to purchase supplies,
then while at the gas station it may buy the supplies but for-
get to fill up the tank of the car. It is reminded of the forgot-
ten goal when it runs out of gas while driving to its
destination.” The failure occurred because it did not index
the suspended goal with the features that would match con-
texts in which it would be appropriate to achieve the goal.s
At this level, reasoning about forgetting appears useful, both
for theorists and the reasoner itself.

Conclusion

Although not a formal memory model, the treatment of for-
getting in this paper has shown that forgetting can be turned
into an opportunity to learn. The lessons from the psycholog-
ical literature suggest that to reason about forgetting it is
important to consider the conditions upon which memories
are retrieved (i.e., the relationship between the indexes used
to store a memory and the cues available at retrieval time),
rather than about decay.

Moreover, forgetting may be useful in additional ways,
instead of being treated as a simple failure. Markovitch and
Scott (1988) demonstrate that forgetting (as random dele-
tions of memory items) may be useful in speeding up perfor-
mance systems that use brute-force search techniques.
Tambe, Newell, & Rosenbloom (1988) show how systems
can decide whether or not to store an item based on the
expected utility of the concept. Thus, an item in memory
may be missing because it was never stored, or because it
was stored and later deleted. However, a performance trade-
off exists between leaving an item in memory in the hope
that it may be useful later and removing it to reduce storage
space and speedup searching, with the additional cost of

7. Suspended questions (knowledge goals) may also fail to be
retrieved (e.g., forgetting to ask a question at the end of a lec-
ture). Such a scenario is similar to forgetting to get gas.

8. Another explanation is that the reasoner might not have attended
to the proper stimuli when at the store.



computing some criteria such as expected utility.

One of the problems with this paper’s treatment of forget-
ting is that it concentrates on the encoding (storage) side of
forgetting. Yet, Mensink and Raaijmakers (1988) assert that
contemporary memory theories hold that forgetting is a
retrieval effect, rather than an encoding effect. Deliberate
elaboration and focus of attention during learning do control
the storage context, and therefore affect encoding, so the
storage issues are nonetheless important in any theory. More
must be addressed in our theory, however, for effects of cue
availability and selection during retrieval.

The solution to the problem of forgetting is to provide sys-
tems with the capability to notice when a reasoning failure is
due to their memories along with the ability to associate
these failures with abstract patterns that represent the prob-
lem. Systems can then reason about the representations and
associate them with specific learning goals. When encoun-
tering memories with poor indexing, systems should reorga-
nize the memory by learning better indexes; in response to
surprises, systems need to learn when to ask the right ques-
tions; and when systems forget to remember their previous
goals, they should learn to associate the goals with the right
circumstances or learn to pay attention to the right cues in
their environment. Like the stranded vacationer who forgot
to fill up with gas and in response develops a habit of check-
ing the gas gauge before going on long trips, we want com-
puters to develop the right habits in their own domains.
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