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ABSTRACT OF THE DISSERTATION

Effective Exploration of Web and Social Network Data

by

Shiwen Cheng

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2015

Dr. Vagelis Hristidis, Chairperson

The amount of Internet data is rapidly increasing due to the growth of the Web and the

success of Online Social Networks. However, it is challenging to users to effectively explore

these dynamic and massive data. Search engines offer a convenient way for users to ex-

plore Web and Social data through keyword query interfaces. However it is common that

a keyword search query returns many results not relevant to the user’s information need

in terms of content, time or structure. It is hard for search engines to understand a user’s

information need purely based on the query keywords, especially when the query is ambigu-

ous in nature. In Social Networks, subscription is another common way to consume data in

additional to ad-hoc search, . For example, a user in Facebook and Twitter can subscribe

to other users to have their real-time updates shown in her timeline. However, a user could

be overloaded by the large number of posts in the subscription due to the high post rate.

In this dissertation we develop solutions to help users effectively explore Web

and Social Network data: First, we study the role of the document creation time in Web

search queries in relation to the freshness requirement of a query. Second, we estimate the

vii



hardness of keyword queries over structured data. A search engine can use this technique to

decide when to employ query suggestion and query reformulation techniques to offer better

user experience. Third, we propose context-aware ranking models to improve the search

of medical literature by leveraging user query sessions. The user query session can help to

understand a user’s information need. Finally, we apply novel diversification techniques on

Online Social Network data to alleviate the information overload problem and help users

to more effectively explore social data through search interfaces or a posts timeline.
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Chapter 1

Introduction

1.1 Motivation

Internet data is growing explosively in recent years due to the growth of the Web

and thrive of Online Social Networks. Notable search engines (such as Google and Microsoft

Bing) allow us to search the Web data with ease. Online Social Networks (e.g., Facebook

and Twitter) have become popular where users can publish and consume social data con-

veniently. It was reported that Twitter users from all over the world post over 500 millions

tweets per day to the date of this thesis1.

Search engines evolved in the past decades to be a mature and standard tool to

explore Web and Social data. In early stages of Information Retrieval, which is a core

technique of a search engine, researchers focused on indexing and ranking algorithms that

are only text based. It is now a broad research area that overlaps with Machine Learning,

Data Mining and Natural Language Processing.

1https://about.twitter.com/company
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In a convenient way, a user can issue a keyword query (normally consisting of only

few keywords) to the search engine to retrieve desired information. However, finding desired

information or keeping up with the high velocity of general information is still challenging.

It is common for a keyword search query to return many results not relevant to a user’s

information need. One reason is that it is hard for the search engine to estimate the context

of the query, such as location or time, purely based on the query keywords, especially for

ambiguous queries. This scenario indicates a challenging research direction: understanding

the user’s information need behind a simple keyword query and making use of meta data

of a document and context of a query for better ranking.

Further, in the “big data” era, not only the volume but data presentation also

changes.. We can observe that more and more structured databases are accessible on the

Web. Many domain specific search engines are built to explore these data. For example,

Amazon offers powerful search engine to search products (whose information is in structured

format). In these search engines, users still search with keyword queries, because keyword

queries advantage in freeing users from knowing the schema of underline data. However,

keyword query without schema information specified is ambiguous in nature to search struc-

tured data. Databases contain entities, and entities contain attributes that take attribute

values. Some of the difficulties of answering a keyword query are as follows: First, users

do not specify the desired schema element(s) for each query keyword. For instance, query

Godfather on the IMDB database does not specify if the user is interested in movies whose

title is Godfather or movies distributed by the Godfather company. Thus, a search engine

must find the desired attributes associated with each term in the query. Second, the schema

2



of the output is not specified, i.e., users do not give enough information to single out exactly

their desired entities [83]. For example, this query Godfather may return movies or actors

or producers. It is important for a search engine to recognize such queries and warn the

user or employ alternative techniques like query reformulation or query suggestions [88] or

query results diversification [32]. This brings us another interesting research direction that

is how to accurately and efficiently identify the ambiguous keyword queries over structured

databases.

Exploration on Social Networks such as microblogging systems is facing unique

challenges. Search engine is a popular and powerful tool to explore social data. Online Social

Networks like Twitter, LinkedIn and Facebook provide powerful search engines to explore

their data. Subscription is another common way to ingest social data in addition to search.

A user can subscribe a set of topics or data producers to receive real-time updates from

the social system. If we focus on microblogging systems, timelines (e.g., Twitter timeline)

is a common way of consuming subscription data. Typically, the timeline of a user consists

of all kinds of updates from her friends (definitions vary in different social networks). For

instance, the timeline of a Twitter user is formed by the all tweets posted by the followees

of the user with tweets displayed in time order. Given that user’s social connection keeps

expending, it is now common that user’s timeline is updated very frequently. However, in

microblogging systems, search and timeline share the same issue that users are overloaded

by the high rate of produced microblogging posts. These posts often do not carry any new

information and are redundant to other similar posts. This motivates us to find better

solutions for users to explore social data.

3



1.2 Research Problems

In this thesis, I follow two main directions to help users to effectively explore Web

and Social Network data. First, I studied methods to better understand a keyword query,

which in turn help users to more effectively search Web and Social Network data. Second,

I proposed solutions to overcome the issue that users are overloaded by social posts from

search or subscriptions.

Estimating the Timelineness of Web Search Queries

Follow this first direction, I specifically studied three problems in this work. In the

first problem, I studied the time factor in Web search to better understand the freshness

demand behind a keyword query.

Previous works have shown that timeliness is a key aspect for determining the

relevance of a web document to a search query [77, 64, 41, 31]. For instance, a user who

issues a query for “US elections” in November 2012, is more likely to be interested in

web pages related to the 2012 elections. Although there exist several web pages about

previous elections that are highly topically relevant to the user’s query, it is expected that

boosting the more recent documents will improve the retrieval quality. Previous works have

proposed time-aware retrieval models with particular focus on news queries, where recent

web documents related with a real-world event are generally preferable. These queries

typically exhibit bursts in the volume of published documents or submitted queries.

Different from previous work, we study a class of queries, named timely query, that

have no major spikes in either document or query volumes over time, yet they still favor
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more recently published documents. For example, query credit card overdraft fees is not a

news query and is shown to have steady query and document volume over the time. But

from a user’s perspective, more recent results are more preferable because the user would

not like to see out-of-date bank policies for overdraft fee. Our goal is to accurately estimate

the query timeliness and incorporate query timeliness into the ranking model to promote

recent results in an appropriate degree.

We describe the details of this work in Chapter 2.

Detecting Difficult Keyword Queries over Databases.

In this problem, I focused on database data (or more generally, structured data).

We analyze the properties of ambiguous queries over databases and propose novel methods

to detect such ambiguous (difficult) queries.

To the best of our knowledge, there has not been any work on predicting or ana-

lyzing the difficulties of queries over databases. Researchers have proposed some methods

to detect difficult queries over plain text document collections [115, 131]. However, these

techniques are not applicable to our problem since they ignore the structure of the database.

In particular, as mentioned earlier, a search engine must assign each query term to a schema

element(s) in the database. It must also distinguish the desired result type(s).

As a specific example of how knowledge of the query difficulty may be leveraged,

consider Figure 1.1, which shows the ranking results for query ancient Rome era by one of

our implemented ranking algorithms (details in Section 3.8). Our algorithms determine that

this is a hard (ambiguous) query, which guides the system to generate query reformulation
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Figure 1.1: Results for query ancient Rome era with query suggestions returned.

suggestions. Clarify that the generation of query reformulation technique is beyond our

scope in this work.

The study of this problem is presented in Chapter 3.

Leveraging User Query Sessions to Improve Keyword Query Search.

Further, we studied to leverage query session data to better understand the infor-

mation need behind a query. Specifically, in this problem we focus on searching biomedical

data.

It is reported that millions of queries are issued each day on the PubMed system to

search medical literature [36]. Due to the importance of searching PubMed, a large number

of Web-based applications have been deployed for this [79]. The Text Retrieval Conference

(TREC) has included tracks for this domain of data, e.g., the TREC Genomics Tracks in

2006 and 2007 [58, 57]. One interesting fact is that PubMed users reformulate their queries
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averagely 4.44 times during a query session [36]. However, to the best of our knowledge, no

research has been conducted to utilize query sessions to search biomedical data.

Research in IR community has shown that the past queries in a query session can

help understand the user’s search topic [124]. The context-aware ranking principle indicates

that for two associated (in the same query session) consecutive queries Qk−1 and Qk, the

user is likely to prefer the search results related to both queries, and thus such results

should be promoted for Qk [124]. Thus, a users query session can be used to define the

query context for the current query, and this context can be used to improve the ranking of

the returned results.

In this problem, we utilize the context-aware ranking principle in searching medical

literature. That is, we incorporate the user query session data (as the query context)

to improve the search of medical literature. We aim to build the context-aware search

strategies by extending popular ranking algorithms (such as BM25 and Language Model)

to incorporate query context in principled ways. We give details for the models in Chapter 4.

Multi-Query Diversification in Microblogging Posts

I worked on two problems to help users more effectively consume social posts and

alleviate the data overload issue. In the first one, I applied novel results diversification tech-

niques on microblogging posts. The proposed model can be applied in different applications

in a microblogging system, such as microblogging post search and topic subscription. The

Multi-Query Diversification in Microblogging Posts (MQDP) problem I studied is abstracted

as follows.

Given an input consists of a list of microblogging posts and a set of user queries
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(e.g. news topics), where each query matches a subset of posts. Our objective is to compute

the smallest subset of posts that cover all other posts with respect to a “diversity dimension”

that may represent time or, say, sentiment. Roughly, the solution (cover) has the property

that each covered post has nearby posts in the cover that are collectively related to all

queries relevant to this covered post.

This is distinct from previous single-query diversity problems, as we may have two

nearby posts that are related to intersecting but not nested sets of queries, in which case

none covers the other. Another key difference is that we do not define diversity in terms of

post similarity, since posts are short and thus it is challenging to measure their similarity

effectively; instead, we focus on finding representative posts for ordered diversity dimensions

like time and sentiment, which are critical in microblogging. For example, for time as the

diversity dimension, the selected posts will show how certain news events unfolded over

time.

We introduce formal definition of MQDP and its variation and our solutions for

them in Chapter 5.

Multi-Dimensional Diversification on Social Post Streams

We assume users subscribe several queries (topics) in the MQDP problem. How-

ever, in practice users in a social system are more often subscribing to data producers

instead of topics. For example, people can subscribe news agencies’ RSS feeds to receive

instant news updates. Google Scholar continuously recommends new scientific articles to

its users based on a users profile and publication history. A user in Twitter can subscribe

to other users posts by following them.
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Under this new setting, I studied on the problem of diversifying social post stream:

given a social post stream consisting of all the posts from a user’s subscribed data producers,

our aim is to output in real-time a subset of the stream in which (i) all posts are dissimilar

to each other and (ii) any post in the whole stream will be either included or covered by a

post in the sub-stream. A post covers another post if the two posts are similar in all three

similarity dimensions: (a) content, (b) time and (c) author.

One challenging requirement is that we have to compute the substream in real-

time, i.e., immediately decide whether a post should be included or not at its arrival. That

is, we cannot first view the whole stream and then decide which posts should be included

in the substream.

In this problem, we do not have user inputted queries as in MQDP where the set

of queries are guiding the content diversity. Instead, we have to measure inter-post content

similarity. Given the requirement to make real-time decision at each post’s arrival, we can-

not afford to use traditional content similarity measures such as cosine similarity. Instead,

we turn to hash-based distance measures. The author similarity is a subtle dimension that

to the best of our knowledge has not been used before for computing diversity in social

media. For example, CNN and Fox News, which both have official Twitter accounts, are

dissimilar to each other because they generally have different political views. We compute

the distance between two authors through their social connections.

There has been much work on diversifying search results [97, 7, 19, 32, 39]. How-

ever, none of these works can be applied to our setting where: (i) data is streaming and

an instant decision must be made on whether a post should be pushed to the user, and (ii)
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a multi-dimensional diversity model is adopted. This stream diversification problem also

differs the Twitter stream summarization problem studied in previous work [112, 104, 125].

First, we do not aim to show aggregated tweets to user. Further, we define strict coverage

constraints to guarantee that not even one uncovered posts is missed.

We elaborate the problem and our solutions in Chapter 6.
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Chapter 2

Estimate Query Timeliness for

Web Search Queries

Researchers have recognized the importance of utilizing temporal features for im-

proving the performance of information retrieval systems. Specifically, the timeliness of a

web document can be a significant factor for determining whether it is relevant for a search

query. Previous works have proposed time-aware retrieval models with particular focus on

news queries, where recent web documents related with a real-world event are generally

preferable. These queries typically exhibit bursts in the volume of published documents

or submitted queries. However, no work has studied the role of time in queries such as

“credit card overdraft fees” that have no major spikes in either document or query volumes

over time, yet they still favor more recently published documents. In this work, we focus

on this class of queries that we refer to as “timely queries”. We show that the change in

the terms distribution of results of timely queries over time is strongly correlated with the
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users’ perception of time sensitivity. Based on this observation, we propose a method to

estimate the query timeliness requirements and we propose principled ways to incorporate

document freshness into the ranking model. Our study shows that our method yields a

more accurate estimation of timeliness compared to volume-based approaches. We exper-

imentally compare our ranking strategy with other time-sensitive and non time-sensitive

ranking algorithms and we show that it improves the results’ retrieval quality for timely

queries.

2.1 Introduction

Previous works have shown that timeliness is a key aspect for determining the

relevance of a web document for a search query [77, 64, 41, 31]. For instance, a user who

issues a query for “US elections” in November 2012, is more likely to be interested for web

pages related to the 2012 elections. Although there exist several web pages about previous

elections that are highly topically relevant to the user’s query, it is expected that boosting

the more recent documents will improve the retrieval quality. Under this assumption, several

techniques have been proposed to incorporate the time dimension in the ranking model.

Previous approaches can be broadly categorized into: (i) those that focus on news queries

related with real-world events, favoring recent documents [35, 37, 38, 41], and (ii) those

that target general time-sensitive queries, where the results are preferably published during

a specific time range [64, 31].

For both query types, it has been found that the most relevant time range is

usually associated with spikes in the number of related user queries, or in the volume of
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related documents published during that time frame. Based on this observation, current

approaches analyze the time series of related queries or documents, in order to (i) classify

queries as news queries or not [37] and (ii) to identify important time periods [64, 31].

Thereby, they boost the ranking of documents published around that time frame. For

instance, a user searching for “Boston Marathon” might be looking for information about

the terrorist attack that took place during the marathon on April 15, 2013; then documents

published around that date are promoted.

Figure 2.1: Number of search queries for “fashionable haircuts” over time

For a large number of search queries however, recent studies [71, 96] have shown

that, while freshness of query results is still very important, their query or document time

series are either unclear or misleading. In particular, several queries exhibit no, multiple,

random or periodic spikes in query popularity over a time period [71]. For instance consider

a query like “credit card overdraft fees”. For such a query, the number of published docu-

ments and/or search queries remains more or less constant over time, normalized with the

total query volume. However, more recent documents are clearly more relevant because,

due to policy changes on behalf of banking institutions, information contained in older doc-
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uments might no longer be valid. Other queries, exhibit a seasonal or unpredictable rise in

popularity. A query such as “tax preparation tips” usually has a burst in popularity around

mid April every year; on the other hand a query for “Rihanna new single” follows a more

irregular trend pattern.

In general, for this type of queries, all other things being equal, a fresher document

is probably much more relevant for a user’s search query. However, existing volume-based

techniques cannot be applied for such queries, since the number of published documents

or issued queries cannot be leveraged as an indication of users’ interests. In fact, the

number of published documents or search queries might as well be negatively correlated

with the users’ demands. For instance consider a query such as “long distance phone calls

prices” or “fashionable haircuts”. Figure 2.1 shows the number of queries in a commercial

search engine over years, normalized by the total query traffic during each time period, for

the query “fashionable haircuts”. As depicted, user searches for this query have dropped

during the recent years. At the same time, the keyword “fashionable” indicates that users

are interested on new hairstyles and that web pages related to older ones are no longer

relevant, which indicates that it is a time-sensitive query. For this query, an approach that

focuses only on the query or document volume might instead give higher ranking to older

documents.

Moreover, different queries can have very different degree of freshness requirements.

For example for a query like “smartphone reviews”, users might consider as relevant a

document that is up to 6 months old, whereas for a query like “new movies in theaters”

the time range of interest is much shorter, typically 1-2 weeks. For the reasons mentioned
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above, volume-based approaches will not be able to capture different freshness requirements.

Further, in addition to identifying the timely queries, we must also quantify how timely a

query is.

In this work we will focus on this important type of queries, which we refer to

as timely queries. Timely queries have the following properties: (i) the interest on the

query from document publishers or consumers does not show significant variance over time

(normalized by the total query traffic or document volume respectively), and (ii) more

recently published documents are strongly preferred over older ones. Since, the popularity

of such queries can be steady, previous approaches are not effective.

Motivated by the above challenges, in this work we propose a different approach

to measure the freshness requirements of a user’s query, i.e., the query timeliness. In

particular, we argue that the users’ freshness requirements from search results are strongly

correlated with the degree of content change in the relevant documents. In other words, if the

terms distribution inside the most relevant documents changes significantly over time, this

indicates that older documents become stale shortly, and hence, they should be penalized

with lower relevance scores.

In this work we experimentally confirm this correlation. That is, if we identify

significant content change in the relevant documents across time, then time becomes a

major factor in our proposed ranking. We incorporate the query timeliness in our retrieval

model in a principled manner by extending previous works on time-based language models

[77, 41].

Note that, since our ranking model always favors more recent documents, our
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approach is not meant to handle news queries related with events that took place in the

past. For example, for a query like “Supreme Court healthcare act”, results around June

28th 2012 are more relevant since this is when the Supreme Court ruled.

Contributions. The contributions of this chapter can be summarized as follows:

• We show that the change in the terms distribution of results of timely queries over

time is strongly correlated with the users’ perception of time-sensitivity.

• We propose principled ways to incorporate document freshness into the ranking model.

• We experimentally show that our proposed model improves the quality of the results

for timely queries.

Outline. Section 2.2 presents related work on temporal ranking of search results. In

Section 2.3 we discuss query timeliness and we provide a method to measure timeliness

based on the terms distribution. In Section 2.4 we present our time-aware ranking model

by incorporating the concept of query timeliness. Section 2.5 contains an experimental

evaluation of our methods. In Section 2.6 we discuss how our proposed model can be applied

in practice. Finally, in Section 2.7 we draw conclusions and sketch our future work.

2.2 Related Work

Li and Croft [77] were the first that proposed a time-based language model to

boost the ranking of more recent results. In particular, they introduced an exponential

decay prior to the query likelihood language model, such that more recent documents are

assigned a higher probability. Based on the proposed ranking model, experiments show
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significant improvements in retrieval quality for TREC queries that are related with recent

events.

However, their proposed ranking model treats all recency queries as having the

same freshness requirements from the search results. That is, they boost the ranking of

recent results uniformly for all queries. Efron and Golovchinsky [41] improve upon this

model [77] by proposing a query-specific exponential reranking method. In particular, they

calculate a maximum likelihood estimator per query based on the time distribution of the

most relevant results, as returned by a non time-aware ranking. A significant limitation

with such an approach is that it will boost recent documents, only as long as the document

volume increases over time, i.e., it can be applied mainly on news queries and not generally

on time-sensitive ones. In contrast, in this work, we provide a ranking model that can be

used for different query types, which is not dependent on the distribution of documents

over time or the underline (non time-sensitive) ranking. We experimentally compare to

both methods [41, 77] in Section 2.5 and we show that our method yields better retrieval

quality for timely queries.

Some works [64, 31] focus on more general time-sensitive queries, where the results

are preferably published during a specific time range. Jones and Diaz [64] propose building a

time series on the number of top ranked documents of the query. According to the detected

number of spikes in the time series, they classify queries into three classes: atemporal,

temporally ambiguous and temporally unambiguous, which represent queries that exhibit no

spike, only one spike and more than one spikes in their document volumes, correspondingly.

The class of queries that we study in this work would be classified as atemporal by [64],
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since these queries do not exhibit major volume spikes (see Section 2.5.2). Therefore if we

followed this approach, the freshness of the results would not be considered as important.

Dakka et al. [31] propose alternative methods to learn the most relevant time period for a

query, and present solutions to incorporate temporal relevance into several popular ranking

algorithms. Both [64, 31] rely on the spikes in the distribution of relevant documents.

It has been empirically shown [77, 41] that applying a time-aware ranking model

can generally harm the retrieval quality of non time-sensitive queries. In order to address

this problem, Dai et al. [30] introduce a machine learning framework for simultaneously op-

timize both relevance and freshness of results, by utilizing both temporal and non-temporal

document features.

Another approach is to automatically identify whether a search query is time

sensitive or not. If a query is not time-sensitive, standard relevance methods can be used

instead. Dong et al. [37] use machine learning techniques to classify a query as breaking

news query or not. For this purpose, they measure the difference in the query probabilities

in various time slots in the past, such as the last day, last week and last month. The

probabilities are calculated based on the language model of both the query log and the

document collection. If the query is classified as a breaking news query, the freshness of a

document becomes important in ranking. Similarly to some of the above methods [64, 31],

the underlying intuition is that in a specific time range, the results are much different from a

regular search, for instance due to a burst in the number of relevant documents or due to the

query being popular in the query stream. Similarly, using features such as the probabilities

of the query generated from recent content, Styskin et al. [111] train a linear regression
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model to predict a probability for the query’s freshness preference and they combine fresh

documents with regular ones in order to enhance the temporal diversity of the results.

Assuming a news query, several works deal with how to improve the temporal

relevance of returned results. Dong et al. [38, 20] extend former work [37] by enriching the

results with documents discovered in the Twitter stream. For this purpose, they extract

a set of features from both a regular documents’ corpus and a tweets collection, and they

learn a ranking model in order to merge recent tweets with regular results. Diaz [35] and

König et al. [69] study the utility of showing news results among regular ones by using

click-through data.

Elsas et al. [42] study the temporal factors of navigational queries, where there is

usually a small number of highly relevant documents that are consistently relevant across

time. For this type of queries, they experimentally show that there is a strong positive cor-

relation between the relevance of a document and the frequency of the document’s content

change. However, within the same document, terms that are present across different time

ranges are more important in estimating the overall document’s relevance. Thereby, they

propose the use of a document-specific prior in order to favor more dynamic documents.

Our work has a similar motivation, i.e., to leverage the amount of content change in recency

ranking. However, we focus on more general informational or transactional time-sensitive

queries where more recent (and not necessarily highly dynamic) documents are preferable.

Further, we measure the content change in the query rather than in the document level.
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2.3 Estimating the Query Timeliness

As we already noted, different queries can have very different timeliness degrees,

i.e. requirements on the freshness of the search results. For instance, for a query such as

“top graduate schools”, a user might find results up to two years old as relevant, whereas

for a query such as “Universal Studios coupon”, she would be interested only on search

results of the last few weeks, since older coupon offers will probably have already expired.

Thus, the challenge is how to identify the appropriate timeliness degree for a given search

query.

Previous works have used the query volume and the number of published docu-

ments as an indicator of the timeliness of a query. The most relevant work to our problem

[41] computes a query-specific freshness parameter that is calculated based on the dis-

tribution of the publication times of the top k results that would be returned by a non

time-sensitive ranking function. However, as we will demonstrate in our experiments in

Section 2.5, the proposed approach [41] fails for the class of queries that we study in this

work, i.e., those having a relatively steady document volume, such as the one shown in

Figure 2.1.

In order to overcome this problem for the class of queries (timely query) we study

in this work, we introduce a new method to estimate query timeliness. In particular, we

propose to use the degree of change in the content of the most relevant documents of a

query, as a measure of the timeliness of the query. Kullback-Leibler (KL) divergence [72]

is a popularly used measure to compute the divergence of text documents [85, 60]. In this

work, we apply KL divergence to measure the changes of text documents, i.e. we calculate
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the difference in term probability distributions of text documents using the KL divergence:

KL(P,R) =
∑
t

P (t) log
P (t)

R(t)
(2.1)

where P and R are two probability distributions and P (t), R(t) denote the probability of

term t in distributions P and R, respectively.

For a query Q, we define the degree of content change between two time slots as

the difference in the probability distributions between the sets of documents relevant to Q

in these time slots. For simplicity, hereafter we assume discrete time slots, which might

denote weeks, months etc. Further, let Ti represent the set of documents that are relevant

for query Q, and were published during time slot ti (e.g., during July 2012). We will also

symbolize as LM(Ti) the language model produced by Ti. Then, we define the degree of

content change between two time slots ti, tj as KL(LM(Ti), LM(Tj)).

Assuming n consecutive time slots t1, · · · , tn, we define the terms distribution

change for a query Q, denoted as TDC(Q) as:

TDC(Q) =
1

n− 1

n−1∑
i=1

KL(LM(Ti), LM(Ti+1)) (2.2)

i.e., we take the average KL-divergence acquired from consecutive pairs of time slots. For

calculating LM(Ti) we will apply a unigram language model approach.

Several other measures have been proposed in order to quantify the amount of

content change (the opposite of similarity) between documents, such as the cosine similarity,

Dice similarity, and Jaccard distance.

Previous work [60] evaluated the effectiveness of these measures for computing

the similarity of text documents for document clustering. The results have shown that
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all measures deliver similar results with KL divergence, and that differences depend on the

particular characteristics of the document collection. Potentially, any of this measures could

be used in our model to replace KL divergence.

2.4 Incorporating Freshness into the Ranking Model

In developing our time-aware ranking, we follow the language ranking model [94].

Li and Croft [77] were the first that proposed a ranking that incorporates a temporal dimen-

sion into the language model. According to the query likelihood approach, the probability

that a document d is relevant to a query Q, P (d|Q), is proportional to (i) the probability

of deriving Q based on the language model of d, termed as P (Q|d) and (ii) an apriori

probability of document d that depends on the publication date Td, termed as P (d|Td):

P (d|Q) ∝ P (Q|d) · P (d|Td) (2.3)

In particular, in order to compute P (d|Td), they assume an exponential decay

calculated as:

P (d|Td) = λe−λ·∆td (2.4)

where ∆td is the normalized age of document d, measured as the time distance between Td

and the date of the most recent document in the document collection. Note that Li and

Croft [77] use the same freshness parameter λ for a set of queries that is manually identified

as time-sensitive, regardless of the different degrees of timeliness requirements each query

has. Thus, Efron et al. [41] improve [77] by proposing to use a query-specific λQ that

is calculated based on the time distribution of relevant documents as returned by a non

time-sensitive ranking model.
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In this work we use Equations 2.3 and 2.4 as a starting point, and we modify

them in order to consider the right amount of freshness for each query using the timeliness

requirement estimation method proposed in Section 2.3. Specifically our ranking model

assigns scores based on the following function:

Score(d,Q) = BM25(d,Q) · λQe−λQ·∆td (2.5)

where BM25(d,Q) denotes the ranking score of document d for a query Q by the popular

ranking function Okapi BM25 [93], which is based on the probabilistic model. Based on

our ranking model, λQ depends on the timeliness requirements of each query as measured

by the amount of content change (Section 2.3). Intuitively, we would assign larger values of

λQ for queries having higher timeliness degrees, as predicted by TDC(Q). Larger values for

λQ will result in penalizing the scores for older documents, thus favoring the most recent

ones. We calculate λQ as:

λQ = α · (1− e−TDC(Q)) (2.6)

where α > 0 is a parameter of the ranking model and 1−e−TDC(Q) is the KL divergence score

normalized in (0,1]1. We will assume a constant value of α for all queries. In Section 2.5.3

we provide more details on how we set α for experiments; in Section 2.6 we explain how α

can be set up in practice.

Since the calculation of λQ is based on TDC(Q), we will refer to the ranking model

in Equation 2.5 as the Timeliness-Aware Ranking (TAR). In Section 2.5.3 we experimen-

tally evaluate the retrieval quality of the proposed ranking function with the previously

proposed time-aware ranking models [77, 41].

1We use a normalized KL divergence score since the original KL divergence is unbounded.
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2.5 Experimental Evaluation

In this section, we provide experimental results on the ranking quality of our

methods. We first present the datasets that we used for our experiments in Section 2.5.1.

Sections 2.5.2 and 2.5.3 contain the experimental evaluation of the proposed timeliness

estimation method and timeliness-aware ranking respectively.

2.5.1 Datasets

Query workload. In order to build our query workload we considered the Text REtrieval

Conference (TREC) datasets (e.g. TREC Web Tracks [5]). Unfortunately most of the avail-

able datasets contain only a few timely queries. Thus, we manually created some additional

queries that we considered as timely, following an approach similar to [41]. In particular,

we asked 10 graduate students to suggest queries having diverse timeliness requirements.

The complete query workload consists of 119 queries (taken from TREC or proposed by

students) and is available at [3], in which we specified the queries from TREC.

Documents. For our experimental evaluation we also needed documents published during

different time ranges and relevance judgements that take into account both the topical

and the temporal relevance of results; however these data where not available in TREC

dataset. Hence, we constructed our document collection by submitting each of the queries

to a commercial search engine and we conducted a user relevance study as explained in

Section 2.5.2.

In order to collect documents published at various time ranges, we specified differ-

ent start and end dates in our search, such that the returned results contain only documents
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that were published during the specified time frame. Note that accurately identifying the

publication date of each document is itself a challenging task [8, 37, 18]; moreover often the

publication time and the time associated with the content contained in a document might

differ. The search engine that we used for our experiments tries to estimate the publication

date for each web page by using features such as the date when it was first crawled, or a

byline date or an explicitly specified date of a news article or blog post if such information

is available. For simplicity, hereafter we will assume that all documents returned by the

search engine have been published during the specified time period. Following this method,

we retrieved the top 400 results per year for years 2007-2011 and for the first half of 2012,

i.e., we obtained for each query 2400 documents in total.

2.5.2 Estimation of the Query Timeliness

In the first set of experiments we compare the performance of our proposed method

for estimating the query timeliness with the previous approaches that focused on the doc-

ument [64, 37, 41, 31, 92] and query volume change [37] as discussed in Sections 2.2 and

2.3.

User Survey on Query Timeliness

In order to calculate the degree of correlation between the document volume and

the users’ perception of query timeliness, we set up a user survey to collect judgments

w.r.t. the timeliness demands for each query on behalf of the users. In addition to the

10 graduate students, our survey’s subjects include users recruited through the Amazon

Mechanical Turk [1]. In particular, we forwarded all queries to the graduate students, and
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60 queries to each Amazon Mechanical Turk worker (110 workers in total). For each query,

we asked the users to select among the following five options: no time preference, up to

2 years old, up to 6 months old, up to 1 month old, up to 1 week old the one that best

describes their preferences in terms of freshness of the search results. In order to increase

the quality of the user survey: (i) we disqualified low-quality workers from our experimental

study as explained in the Appendix, and (ii) we filtered out the 5 highest and the 5 lowest

outlier timeliness values for each query.

For each query we collected 10 timeliness judgments from students and 20 valid

timeliness judgments from Amazon Mechanical Turk workers. Next, for each query we

calculated the average Timeliness Requirement in months. For this purpose we mapped

each label to a specific number in months that represents the respective timeliness class.

Since the maximum age of any document in our collection is 5.5 years, we mapped each

label for no time preference to 66 months. Similarly we mapped the other timeliness ranges

to 24, 6, 1 and 0.25 months respectively. Then we took the average over all judgments,

which we will refer to as TR(Q). Figure 2.2 shows some representative queries, along with

the respective average timeliness requirements, as specified by the users. The query ids are

taken from the complete list of the query workload [3].

As shown, users have very low freshness requirement for queries such as “public

speaking tips” and “interview thank you letter”. On the other hand, according to our

user survey, users find the results published in the last 1-2 years for “passport renewal”,

“cancel a new car contract”, or “low income housing” as relevant. Queries such as “retail

sales index” have relevant results published in the last 6 months. Further, results published
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# Query TR(Q) TDC(Q)

Q88 public speaking tips 66.000 0.163

Q56 interview thank you letter 61.800 0.138

Q83 passport renewal 21.050 0.180

Q16 cancel a new car contract 17.158 0.193

Q65 low income housing 12.421 0.217

Q89 reality TV stars 11.158 0.267

Q57 keyboard reviews 8.474 0.306

Q90 retail sales index 6.316 0.287

Q95 smartphone reviews 3.500 0.298

Q15 California state parks jobs 2.842 0.335

Q79 newest tablet 1.670 0.363

Q17 celebrity gossips 0.868 0.326

Q75 NBA game schedule 0.838 0.319

Q76 NBA scores 0.408 0.454

Q14 California lottery results 0.288 0.382

Figure 2.2: TR(Q) and TDC(Q) of example queries

during the last month are considered as relevant for queries such as “newest tablet” or

“celebrity gossips”. Finally, for other queries such as “NBA scores” or “California lottery

results” the relevant documents typically change per week, and users are looking for up-to-

date information, as it is confirmed by the user survey.
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Figure 2.3: TR(Q) vs. TDC(Q) based on timeliness judgments

Timeliness Estimation based on Volume-based Approaches

Studying the Document Volume Change. We first examine to what extent previous

approaches [64, 37, 41, 31, 92] can predict the timeliness of timely queries. For this exper-

iment, for each query in our workload, we issued a web search where we also specified an

one month time range. For each query, we retrieved the number of documents returned by

the search engine for each month range, for each of the last 66 months (5 × 12 months for

years 2007-2011 and 6 months for 2012).

Since the size of the web grows over time, we need to normalize the total number

of documents per month, with the size of the web at the time. Since the total size of the

(visible) web is unknown, we assume that its size can be approximated by a search query

that returns as many relevant documents as possible. In particular, we issued a set of

stopwords queries2 and we calculated the average number of returned documents over all

2Each query consists of one of the following stopwords: a, the, and, to, of
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Figure 2.4: Time series of the number of documents returned for stopwords queries

issued queries. Then, we used this number as an approximation of the size of the web for a

specified time range. Finally, we normalized the document volumes for each query with the

number of results of the stopwords query for this month, as shown in Figure 2.4. Figure 2.5

plots the normalized document volumes for some representative queries.

Anecdotal Examples. The queries “NBA lockout” and “Occupy Wall Street” are news

queries that were not included in our query workload. The other two queries “MySQL

cluster setup” and “Firefox updates” are from our query workload. By comparing the

document volume time series of the news queries with our timely queries, we can observe

that news queries have a peak during the specific time when the news event happened. For

instance, the time series line for “Occupy Wall Street” suddenly hikes during the end of

2011, whereas the time series for “NBA lockout” exhibits an increase on document volume

during the second half of 2011. In contrast, the time series of the document volumes for

timely queries might not have any significant spikes. For instance, “MySQL cluster setup”

query does not have any spikes and “Firefox updates” has spikes with insignificant variance.

Correlation of Timeliness to Document Volume Change. In order to calculate the correla-
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Figure 2.5: Time series of normalized documents number returned for example queries

tion between the document volume change and query timeliness we followed two different

approaches based on how we measure the volume change.

First, we used the number of documents published during each of the 66 monthly

slots that we considered in our experiments. Then, for each consecutive pair of months

we calculated the absolute change in volumes. We also calculated the average number of

documents per month, and we used it in order to normalize the differences between months.

Finally, we calculated the Pearson correlation coefficient between the normalized document

volume changes and TR across all queries in our query workload. The calculated Pearson

correlation coefficient is -0.298. Note that the computed correlation value is negative because
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larger document volume changes result in more rapid change of the relevant information

w.r.t. a query, which means that only the most recent documents should be considered as

relevant. In that case the query would have a lower average timeliness value TR(Q).

As a second measure, for each of the examined 119 queries we calculated the

coefficient of the variation of its monthly time series, as:

CV =
σ

µ
(2.7)

where σ and µ represent the standard deviation and mean of each time series. Similarly,

we calculated the Pearson correlation coefficient between CV and TR across all queries and

we found a correlation equal to -0.281.

Studying the Query Volume Change. Next, we examined the degree of correlation

between the query volume change and the users’ perception of timeliness. We built a time

series of query volumes, by using the service provided by Google Insights [4]. We issued

each query by specifying a date range of 5.5 years. Google Insights could provide monthly

query volumes only for 87 out of the 119 queries issued when we collected these data. The

results provided by Google Insights are already normalized with the size of the query traffic

on Google. Figure 2.6 shows the time series constructed for several representative queries.

Anecdotal Examples. As shown, the query volume time series of “Occupy Wall Street” and

“NBA lockout” have quite different behavior compared with the other two queries taken

from the query workload. Also note that the hikes in query volumes of “Occupy Wall Street”

and “NBA lockout” are consistent with the hikes of their document volumes in Figure 2.5.

Correlation of Timeliness to Query Volume Change. Similarly to how we calculated the

timeliness estimation quality for the documents volume time series, we correlate (i) the

31



Q
ue

ry
 V

ol
um

e

Occupy Wall Street

0

100

200

300

400

Q
ue

ry
 V

ol
um

e

NBA lockout

0

100

200

300

400

Q
ue

ry
 V

ol
um

e

Firefox updates

0

100

200

300

400

Q
ue

ry
 V

ol
um

e

MySQL Cluster setup

0

100

200

300

400

Ja
n−

07

Ju
n−

07

N
ov

−
07

A
pr

−
08

S
ep

−
08

F
eb

−
09

Ju
l−

09

D
ec

−
09

M
ay

−
10

O
ct

−
10

M
ar

−
11

A
ug

−
11

Ja
n−

12

Ju
n−

12

Figure 2.6: Time series of normalized query volume for example queries

normalized query change, and (ii) the coefficient variation of the query volumes time series of

each query with the average timeliness requirement TR. The Pearson correlation coefficient

calculated over the 87 queries was -0.132 using the normalized query volume change, and

-0.130 using the coefficient of the variation.

Discussion. The relatively low correlation of both approaches shows that methods that

leverage the document or query volume change are not suitable for timely queries, such as

“MySQL cluster setup” and “Firefox updates”, but can only be applied on news queries.

Note that in addition to monthly, we also tried other range lengths with similar results.
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Timeliness Estimation based on Terms Distribution Change

We now evaluate our method for estimating the timeliness of a query based on the

terms distribution change in its relevant documents as presented in Section 2.3.

As discussed in Section 2.5.1, we collected 2400 documents per query over a pe-

riod of 5.5 years. We created 6 document collections, where each collection contains all 400

documents retrieved for the corresponding time slot ti. In order to build a language model

for each document collection we concatenated all 400 documents into a single document

Ti. Retrieving the relevant textual content from the HTML body of each document is a

challenging and error-prone task [67]. In order to address this problem, mainly for per-

formance reasons, we only considered the titles and snippets of each retrieved document.3

Finally, when building each language model LM(Ti), we ignored all common stopwords and

all terms occurring fewer than 3 times over different time slots (we assumed that they are

either typos or irrelevant terms). Then, based on the definition of TDC(Q) in Equation 2.2,

we calculated the terms distribution change for a query Q as:

TDC(Q) =
1

5

2011∑
i=2007

KL(LM(Ti), LM(Ti+1)) (2.8)

Finally, we calculated the Pearson correlation coefficient between TDC(Q) and

TR(Q) for all the queries of our workload and we got a correlation score -0.427. This score

indicates that there is a strong correlation between the terms distribution change of the

documents content and the users’ perception of query timeliness. Further, it is much higher

compared to the volume-based approaches that we presented in Section 2.5.2.

3Using the title and snippet instead of the textual content of a document can improve the efficiency
and sometimes also the quality for some applications like search results clustering [127, 128] and
query classification [12].
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Note that instead of using one year as a unit to define the time slots, we also

experimented with different time units. Because of the time range that we specified (5.5

years), there are not sufficient data in order to use a 2-year unit. Thus, we tried to use

1 week, 1 month, and 6 months units to build the language model LM(Ti) for the most

recent 10 time slots, and applied a similar method as above to calculate TDC(Q). The

Pearson correlation coefficients between TDC(Q) and TR(Q) based on 1 week, 1 month,

and 6 months time slots are -0.298, -0.357 and -0.413 respectively, which are all higher than

volume-based approaches in Section 2.5.2. As the TDC(Q) score from yearly time slots

yields the highest prediction quality, we will use the TDC(Q) results from yearly time slots

in the following experiments.

Figure 2.3 plots the TDC(Q) and TR(Q) values for all queries in our workload.

Some representative queries (those shown in Figure 2.2) are labeled with different symbols

and numbers. For instance, for query Q88: “public speaking tips” and Q56: “interview

thank you letter”, the relevant documents do not vary largely over time. Thus, the TDC(Q)

scores computed for these two queries are relatively small. According to our user survey,

users roughly prefer the results published in the last two years for Q83: “passport renewal”

and Q16: “cancel a new car contract”, and last 1 or 2 months for queries such as Q79:

“newest tablet”. The TDC(Q) scores linearly decrease according to their TR(Q). For other

queries such as Q76: “NBA scores” and Q14: “California lottery results”, the relevant

documents change very frequently, usually per week for the latter one or even everyday

during the season time for the former one. This results in getting higher TDC(Q) scores

than other queries. At the same time, users are searching for up-to-date content, as it is
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confirmed by the TR(Q) scores. As shown, the users’ perception of timeliness for all of the

above queries is captured sufficiently using our method.

2.5.3 Improving the Retrieval Performance Using Query Timeliness

In Section 2.4 we proposed a principled way to incorporate timeliness into our

ranking algorithm TAR. In this section, we experimentally evaluate the retrieval perfor-

mance of TAR, compared with other time-aware and non time-aware rankings. We first

describe the experimental setup, which is in addition to the setup described in Section 2.5.1.

Subsequently, we present our experimental results in Section 2.5.3.

Experimental Setup

Datasets. For our retrieval evaluation experiments we used the 2400 documents that we

collected during the timeliness estimation survey. Note that for the performance evaluation

experiments instead of using the results’ titles and snippets, we built an index on the actual

HTML content of each web page.

Effectiveness Metrics. For our retrieval evaluation, we applied two widely used relevance

metrics: precision and Discounted Cumulative Gain (DCG) [63]. In particular, we measured

the precision and DCG on the top-n results, denoted as Prec@n and DCG@n respectively.

Instead of DCG@n, we adopted the Normalized Discounted Cumulative Gain (NDCG),

which is a normalization of DCG in the range [0, 1] and is calculated as:

NDCG@n =
DCG@n

IDCG@n
(2.9)

where IDCG@n is the ideal DCG@n, i.e., the maximum possible DCG value up to the
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ranking position n. DCG@n is calculated as [16]:

DCG@n =
n∑
i=1

2reli − 1

log2(i+ 1)
(2.10)

where reli denotes the binary relevance of the results at ranking position i, i.e., reli is equal

to 1 if the result at position i is valid and 0 otherwise.

In our experiments we set n = 5, i.e., we measured Prec@5 and NDCG@5. In par-

ticular we calculated the average Prec@5 and NDCG@5 across the complete query workload

[3].

Algorithms. In our evaluation we compared our TAR ranking with the following set of

algorithms:

• BM25, the default (non time-aware) ranking provided by Lucene 3.5.0 [2], which uses

BM25 ranking [93];

• BM25-T (Time-sorted BM25), which first retrieves the top-n documents based on

BM25 and then sorts them by decreasing timestamp4;

• EXP (Exponential time-based ranking) [77], which uses a constant exponential re-

ranking rate for all queries, as defined in Equation 2.4;

• BEX (Bayesian EXponential ranking) [41], which calculates a query-specific exponen-

tial re-ranking rate based on the distribution of the top ranked documents obtained

from a non time-aware ranking, as explained in Section 2.3.

Li and Croft [77] experimentally show that EXP achieves the best ranking quality

by setting λ = 0.01. Therefore, we used this value for our experiments. For BEX, we used

4When we study the effectiveness of top-n results for BM25-T, we retrieve and sort top-n results
from BM25.
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the recommended parameter settings as described in [41], i.e., we set k = 500, ρ = 100, and

we calculated σ such that (ρ− 1)/σ = 0.015 (see [41] for more details).

Relevance User Survey. We set up a user study to collect the relevance judgments for

our dataset. For this purpose we applied a pooling method that has been popularly used to

build test collections in TREC [120, 107]. We randomly mixed the top results from each of

the above ranking algorithms and asked a set of workers on the Amazon Mechanical Turk to

label the results that are the most relevant to each query. The workers were asked to make

their judgments considering both the topical and the temporal relevance of the presented

results. The the whole dataset is available at [3].

We retrieved the top-5 results for each ranking algorithm BM25, EXP, BEX and

TAR with different values of α5. After taking the union of the top-5 rankings of all algo-

rithms (duplicate results from different algorithms will only show once), for each query we

got 17 unique document results on average. Note that to compare with other algorithms,

we will report the retrieval quality of TAR based on a single value of α. We split our query

workload into 6 groups of 20 queries each, such that each worker would have to provide

relevance judgments for 20 queries. Thus, each user had to evaluate around 340 (17 × 20)

query-document pairs. A document is considered as relevant to a query if it is labeled by

over 50% of the workers that provided judgments for this query. Again, we disqualified

some low-quality workers from our study as detailed in the Appendix. We finally assumed

as valid only the judgments provided from the 104 most high-quality workers (among the

initial 126 workers). Thereby, each query has been evaluated by 17.3 (high-quality) workers

5We include various values for α as we will study the setting of α for TAR. In addition, this helps
to retrieve results with diverse publication dates to increase the effectiveness of pooling.
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on average. In total, for our experimental evaluation, we considered 35248 query-document

pairs, out of which 11637 are labeled as relevant.

Setting of α: Additionally, we need to set the parameter α in Equation 2.6 for

our TAR ranking. For this purpose we conducted a 5-fold cross-validation to train and test

it. In particular, we split our query workload into 5 sets following a lexicographic order.

Thereby, 4 out of the 5 test sets consist of 24 queries and one consists of 23 queries. We

experimented with the following values for α = 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5,

0.7, 0.9, 1, 3, 5, 7, 9 and 11, which are all included in the above user survey. Each row in

Table 2.1 shows the value of α that achieves the best averaged Prec@5 on each training set,

and the averaged Prec@5 and NDCG@5 scores based on this α for the respective testing

sets. Note that we also conducted experiments using NDCG@5 as our retrieval quality

measurement for training; since it produced similar results with Prec@5, we do not show

the results of this experiment.

As shown in Table 2.1, the values of α that achieve the best Prec@5 are quite stable

on different training sets. Thus, in order to evaluate the overall performance of our TAR

method against the baseline algorithms, we calculated the average Prec@5 and NDCG@5

for all testing queries in our query workload under the setting α = 0.3.

Experimental Results

Measuring the ranking differences. First, we experimentally validate that the time-

aware rankings yield quite different results compared to the BM25 ranking. For this pur-

pose, we measured the normalized Spearman footrule distance [45] between each time-aware
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Table 2.1: Cross-validation experiments for α using Prec@5

training set α Prec@5

(training set)

Prec@5

(testing set)

NDCG@5

(testing set)

1 0.5 0.383 0.325 0.410

2 0.3 0.371 0.383 0.472

3 0.3 0.375 0.367 0.393

4 0.5 0.371 0.375 0.425

5 0.3 0.371 0.383 0.477

ranked list and the BM25 ranking. Figure 2.7 shows the Spearman footrule distance be-

tween BM25 and BM25-T, EXP, BEX and TAR for different values of α, when considering

the top-n results for n = 5, 10, 15 and 20. Larger values for the Spearman footrule indi-

cate more disagreement between two lists. As shown, the ranking of search results changes

largely when applying a time-sensitive ranking algorithm.

Figure 2.7: Spearman footrule between the BM25 and different time-based rankings for
various top-n lists
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Retrieval Quality. Table 2.2 compares the retrieval quality of TAR against the competitor

methods for the complete query workload. As depicted, TAR achieves superior retrieval

quality compared to all four competitor rankings. TAR performs 15% and 11% better

than BEX in terms of average Prec@5 and NDCG@5, respectively. Further, BEX has

better performance than EXP, which is consistent with the experimental findings in the

original paper [41]. BM25-T delivers better NDCG@5 than BM25 because of the property

of timely queries: more recently published relevant documents are preferred. Note that, as

we described before, top-n results of BM25-T is the reranking of top-n results of BM25 based

on time. Thus, for a query the value of Prec@5 will be the same for BM25-T and BM25 but

NDCG@5 may be different. Further, the improvements of TAR are statistically significant

with p-value < 0.01 using the paired Student’s t-test over all competitor methods.

Table 2.2: Retrieval quality for BM25, BM25-T, EXP, BEX and TAR

ranking algorithm AVG Prec@5 AVG NDCG@5

BM25 0.176 0.202

BM25-T 0.176 0.228

EXP 0.277 0.332

BEX 0.324 0.393

TAR 0.373 0.438

Sensitivity of Retrieval Quality wrt. Query Timeliness. Next, we studied the

retrieval quality of all ranking algorithms for queries with different timeliness requirements.
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Figure 2.8: Average Prec@5 of examined algorithms on different timeliness groups

Specifically, we split the query workload into three timeliness groups according to the values

of TR(Q), as specified by the users in the survey described in Section 2.5.2. The three

timeliness groups that we constructed have the following ranges: [0-6 months], [6-24 months]

and [24-66 months] and contain 34, 45 and 40 queries respectively.

Figures 2.8 and 2.9 show the average Prec@5 and NDCG@5 results for each time-

liness group for the different rankings that we examined. The “*” symbol over the TAR

bar denotes that the respective improvements of TAR over all baselines are statistically

significant with p-value < 0.05 using the paired Student’s t-test.

These two figures show that for all timeliness groups, our proposed ranking achieves

better retrieval quality than both BM25 and the other time-aware ranking algorithms. For

the case of the [0-6 months] group, in which queries have the highest timeliness requirement,

the improvements of TAR over all baselines (over 24% better than BEX on both Prec@5

and NDCG@5) are larger compared to the other two groups. This shows that our proposed
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Figure 2.9: Average NDCG@5 of examined algorithms on different timeliness groups

model is especially useful for the queries with very intense timeliness requirements. For

the case of the [6-24 months] group, TAR delivers over 10% improvement than BEX which

is still the best among the baselines. Finally, for the queries in the [24-66 months] group,

where the results freshness is a less important factor than the other two groups, TAR has a

slight improvement over the baselines. Further, compared to the previous timeliness groups

for the queries of this group we notice that BM25 achieves quite better retrieval quality

because the content relevance is becoming the more important factor when the timeliness

requirement drops.

Examples. We examine the retrieval quality for the query examples that we studied in

Section 2.5.2. The Prec@5 and NDCG@5 scores for the example queries are shown in

Tables 2.3 and 2.4 respectively.

Sensitivity of Retrieval Quality wrt. Document Volume Distribution. An in-

teresting observation on our data set is that even if we follow a non time-based ranking
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Table 2.3: Prec@5 for a sample of queries using different rankings.

Queries
Algorithms

BM25 (BM25-T) EXP BEX TAR

Q88 public speaking tips 0.4 0.4 0.4 0.2

Q56 interview thank you letter 0.4 0.4 0.4 0.4

Q83 passport renewal 0 0 0 0.2

Q16 cancel a new car contract 0.4 0.4 0.6 0.6

Q65 low income housing 0 0 0 0.4

Q89 reality TV stars 0 0.2 0.4 0.4

Q57 keyboard reviews 0.2 0.2 0.6 0.6

Q90 retail sales index 0 0.4 0.4 0.6

Q95 smartphone reviews 0.6 0.6 0.6 0.8

Q15 California state parks jobs 0.2 0.4 0.6 0.6

Q79 newest tablet 0 0.2 0.2 0.4

Q17 celebrity gossips 0 0 0.2 0.4

Q75 NBA game schedule 0.2 0.2 0.2 0.6

Q76 NBA scores 0 0.2 0.2 0.6

Q14 California lottery results 0 0 0 0

(e.g., BM25), the time distribution of the most relevant documents is skewed towards the

more recent ones. Specifically, in the top-500 documents of BM25, the average number of

documents per query is: 62, 71, 83, 92, 101, 90 for years 2007-2011 and the first half of

2012 respectively. The distributions for some queries are more skewed than the average;

we identified 44 out of the 119 queries where the top-500 results contain more that 40%

documents that have been published in the last 1.5 year, vs. 60% of documents from 2007-
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Table 2.4: NDCG@5 for a sample of queries using different rankings

Queries
Algorithms

BM25 BM25-T EXP BEX TAR

Q88 public speaking tips 0.360 0.360 0.383 0.301 0.146

Q56 interview thank you letter 0.586 0.319 0.319 0.319 0.319

Q83 passport renewal 0 0 0 0 0.182

Q16 cancel a new car contract 0.316 0.553 0.485 0.684 0.640

Q65 low income housing 0 0 0 0 0.360

Q89 reality TV stars 0 0 0.182 0.531 0.704

Q57 keyboard reviews 0.246 0.390 0.246 0.710 0.805

Q90 retail sales index 0 0 0.301 0.316 0.655

Q95 smartphone reviews 0.699 0.684 0.699 0.699 0.830

Q15 California state parks jobs 0.246 0.390 0.637 0.805 0.805

Q79 newest tablet 0 0 0.202 0.296 0.704

Q17 celebrity gossips 0 0 0 0.146 0.316

Q75 NBA game schedule 0.170 0.146 0.146 0.214 0.616

Q76 NBA scores 0 0 0.131 0.170 0.655

Q14 California lottery results 0 0 0 0 0

2010. One possible explanation for this is that, since the size of the web grows faster over

time, recent documents have a larger number; hence the probability for a recent document

to be relevant is higher. Further, some older relevant web pages are no longer accessible or

might be penalized with lower scores by commercial search engines. Recall that previous

algorithms, especially BEX [41], leverage the time distribution in their rankings and thus
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could benefit from this skewed distribution.

We studied the effect of the document distribution on retrieval quality. In par-

ticular, we computed the retrieval quality for two sets of queries; 75 queries that exhibit

a quite steady time distribution in relevant documents and 44 queries with more skewed

distributions towards recent documents. For the former subset, we got an average Prec@5

equal to 0.296 for BEX and 0.352 for TAR, i.e., TAR outperforms BEX (which is the best

performing competitor) by 18.9%. For the 44 queries with more skewed distributions, the

calculated average Prec@5 for BEX and TAR is 0.373 and 0.409 respectively, which is 9.6%

improvement for TAR. The smaller improvement on this subset is expected, since BEX

performs better for highly skewed time distributions. For both query sets, the improvement

of TAR over BEX is statistically significant with p-value < 0.05.

Summary. All time-sensitive ranking algorithms outperform BM25 with significant im-

provements on both Prec@5 and NDCG@5 for timely queries. Further, consistent with

former research [41], BEX generally exhibits better retrieval quality than EXP.

TAR achieves the best performance among all ranking algorithms. In particular,

TAR improves over 10% in terms of both Prec@5 and NDCG@5 over BEX ranking algo-

rithm on our complete query workload. TAR can satisfy queries with different timeliness

requirements better than other time-sensitive ranking algorithms as shown in the experi-

ments (Figures 2.8 and 2.9). Further, if we remove the effect of the skewness in the time

distribution of the documents, TAR achieves even higher improvement (18.9%) over BEX

(which delivers the best ranking quality among the competitor rankings).

The retrieval quality results on queries from different timeliness groups validate
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our proposed model, i.e., the timeliness requirements can be predicted accurately based on

the degree of content change in relevant documents and it is used in an effective way in our

proposed ranking model.

2.6 Discussion

Limitations. In this work, we focus on timely queries that do not exhibit clear or significant

variance in query or document popularity over time, but where recent results are preferred.

The proposed model is not meant to handle other types of queries such as those targeting

specific events. As a direction for future work, we will study a principled way to combine

our model with previous works that focus on other types of time-sensitive queries, such

as [31] which studies the volume distribution of relevant documents. In other words, we

will study how to propose a unified model which considers different signals to estimate the

temporal requirements for a broader set of queries.

Because of a lack of public benchmarks that provide both the topical and temporal

relevance of results for timely queries, it’s hard to conduct experiments on a very large query

workload; however we believe that 119 queries is a reasonably large workload.

Practical Issues. In a real-world scenario, instead of conducting a user survey, the timeli-

ness requirements of each query (TR(Q)) can be extracted based on clickthrough data, for

instance by observing the timestamps of results that are clicked or not-clicked by the users

after each web search.

If a new query Q for which the timeliness requirement is unknown is issued to the

search engine, we can use the timeliness requirements of similar queries in order to estimate
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a TDC value for Q. Similar queries can be found by considering keyword text similarity,

or based on a query likelihood approach, etc. Further, in terms of implementation, one

alternative approach to estimate TDC(Q) on query time would be to first compute the

top-k results in a time-insensitive way for query Q, then compute TDC(Q) using these k

results, and then rerank them using Equation 2.5.

With regard to learning an optimal value for α parameter, in a practical use case

a search engine can train the model based on user feedback. Different values of α might be

suitable for queries that exhibit different timeliness requirements; this is also an interesting

direction that we aim to explore as our future work.

In a real-world web search system, our model can be applied as a complement to

previous work studying news queries. Previous works have proposed methods to classify

queries as news-related or not news-related [37, 30]. If the query is not news-related, our

proposed TAR algorithm can be used, otherwise a news ranking approach [35, 37, 38, 30]

can be applied.

2.7 Conclusions

In this chapter we studied the freshness factor for a class of queries that we refer

to as timely queries. We show that previous works on news queries cannot be applied

effectively for predicting the timeliness requirement of queries if the query popularity from

document publishers or consumers does not vary significantly over time. We propose a

method to estimate query timeliness with high accuracy using the terms distribution change

of a query’s relevant documents over time. Further, we present a ranking model that

47



incorporates the timeliness factor in order to improve the results freshness for timely queries,

and we experimentally show that our ranking improves upon previous methods over 10%

in terms of both precision and NDCG. In our future work we plan to explore methods to

automatically learn the TDC scores and to combine our proposed ranking model with other

signals in order to support a broader set of queries.
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Chapter 3

Efficient Prediction of Difficult

Keyword Queries over Databases

Keyword queries on databases provide easy access to data, but often suffer from low

ranking quality, i.e., low precision and/or recall, as shown in recent benchmarks. It would

be useful to identify queries that are likely to have low ranking quality to improve the user

satisfaction. For instance, the system may suggest to the user alternative queries for such

hard queries. In this chapter, we analyze the characteristics of hard queries and propose a

novel framework to measure the degree of difficulty for a keyword query over a database,

considering both the structure and the content of the database and the query results.

We evaluate our query difficulty prediction model against two effectiveness benchmarks

for popular keyword search ranking methods. Our empirical results show that our model

predicts the hard queries with high accuracy. Further, we present a suite of optimizations

to minimize the incurred time overhead.
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3.1 Introduction

Keyword query interfaces (KQIs) for databases have attracted much attention in

the last decade due to their flexibility and ease of use in searching and exploring the data

[59, 81, 47, 66, 102]. Since any entity in a data set that contains the query keywords

is a potential answer, keyword queries typically have many possible answers. KQIs must

identify the information needs behind keyword queries and rank the answers so that the

desired answers appear at the top of the list [59, 15]. Unless otherwise noted, we refer to

keyword query as query in the remainder of this chapter.

Databases contain entities, and entities contain attributes that take attribute val-

ues. Some of the difficulties of answering a query are as follows: First, unlike queries in lan-

guages like SQL, users do not normally specify the desired schema element(s) for each query

term. For instance, query Q1: Godfather on the IMDB database (http://www.imdb.com)

does not specify if the user is interested in movies whose title is Godfather or movies dis-

tributed by the Godfather company. Thus, a KQI must find the desired attributes associated

with each term in the query. Second, the schema of the output is not specified, i.e., users do

not give enough information to single out exactly their desired entities [83]. For example,

Q1 may return movies or actors or producers. We present a more complete analysis of the

sources of difficulty and ambiguity in Section 3.4.2.

Recently, there have been collaborative efforts to provide standard benchmarks and

evaluation platforms for keyword search methods over databases. One effort is the data-

centric track of INEX Workshop [118] where KQIs are evaluated over the well-known IMDB

data set that contains structured information about movies and people in show business.
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Queries were provided by participants of the workshop. Another effort is the series of

Semantic Search Challenges (SemSearch) at Semantic Search Workshop [116], where the

data set is the Billion Triple Challenge data set at http://vmlion25.deri.de. It is extracted

from different structured data sources over the Web such as Wikipedia. The queries are

taken from Yahoo! keyword query log. Users have provided relevance judgments for both

benchmarks.

The Mean Average Precision (MAP) of the best performing method(s) in the last

data-centric track in INEX Workshop and Semantic Search Challenge for queries are about

0.36 and 0.2, respectively. The lower MAP values of methods in Semantic Search Challenge

are mainly due to the larger size and more heterogeneity of its data set.

These results indicate that even with structured data, finding the desired answers

to keyword queries is still a hard task. More interestingly, looking closer to the ranking

quality of the best performing methods on both workshops, we notice that they all have

been performing very poorly on a subset of queries. For instance, consider the query ancient

Rome era over the IMDB data set. Users would like to see information about movies that

talk about ancient Rome. For this query, the state-of-the-art XML search methods which

we implemented return rankings of considerably lower quality than their average ranking

quality over all queries. Hence, some queries are more difficult than others. Moreover, no

matter which ranking method is used, we cannot deliver a reasonable ranking for these

queries. Table 3.1 lists a sample of such hard queries from the two benchmarks. Such

a trend has been also observed for keyword queries over text document collections [115].

These queries are usually either under-specified, such as query carolina in Table 3.1, or
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Table 3.1: Some difficult queries from benchmarks.

INEX SemSearch

ancient Rome era Austin Texas

Movies Klaus Kinski actor good rating Carolina

true story drugs addiction Earl May

Lynchburg Virginia

San Antonio

overspecified, such as query Movies Klaus Kinski actor good rating in Table 3.1.

It is important for a KQI to recognize such queries and warn the user or employ

alternative techniques like query reformulation or query suggestions [88]. It may also use

techniques such as query results diversification [32]. On the other hand, if a KQI would

employ these techniques for queries with high-quality results, it may hurt their quality

and/or waste computational resources (such as CPU cycle) and the time of users. Hence,

it is important that a KQI distinguishes difficult from easy queries and act upon them

accordingly (the latter is out of the scope of this work).

In this work, we analyze the characteristics of difficult queries over databases and

propose a novel method to detect such queries. We take advantage of the structure of the

data to gain insight about the degree of the difficulty of a query given the database. We have

implemented some of the most popular and representative algorithms for keyword search

on databases and used them to evaluate our techniques on both the INEX and SemSearch

benchmarks. The results show that our method predicts the degree of the difficulty of a
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query efficiently and effectively.

We make the following contributions:

• We introduce the problem of predicting the degree of the difficulty for queries over

databases. We also analyze the reasons that make a query difficult to answer by KQIs

(Section 3.4).

• We propose the Structured Robustness (SR) score, which measures the difficulty of

a query based on the differences between the rankings of the same query over the

original and noisy (corrupted) versions of the same database, where the noise spans

on both the content and the structure of the result entities (Section 3.5).

• We present an algorithm to compute the SR score, and parameters to tune its perfor-

mance (Section 3.6).

• We introduce efficient approximate algorithms to estimate the SR score, given that

such a measure is only useful when it can be computed with a small time overhead

compared to the query execution time (Section 3.7).

• We show the results of extensive experiments using two standard data sets and query

workloads: INEX and SemSearch. Our results show that the SR score effectively

predicts the ranking quality of representative ranking algorithms, and outperforms

non-trivial baselines, introduced in this chapter. Also, the time spent to compute the

SR score is negligible compared to the query execution time (Section 3.8).

Section 3.2 discusses related work and Section 3.3 presents basic definitions. Sec-

tion 3.9 concludes the chapter and presents future directions.
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3.2 Related Work

Researchers have proposed methods to predict hard queries over unstructured text

documents [115, 131, 56, 29, 105, 132]. We can broadly categorize these methods into two

groups: pre-retrieval and post-retrieval methods.

Pre-retrieval methods [130, 56] predict the difficulty of a query without computing

its results. These methods usually use the statistical properties of the terms in the query to

measure specificity, ambiguity, or term-relatedness of the query to predict its difficulty [53].

Examples of these statistical characteristics are average inverse document frequency of the

query terms or the number of documents that contain at least one query term [56]. These

methods generally assume that the more discriminative the query terms are, the easier

the query will be. Empirical studies indicate that these methods have limited prediction

accuracies [115, 55].

Post-retrieval methods utilize the results of a query to predict its difficulty and

generally fall into one of the following categories.

Clarity-score-based : The methods based on the concept of clarity score assume

that users are interested in a very few topics, so they deem a query easy if its results

belong to very few topic(s) and therefore, sufficiently distinguishable from other documents

in the collection [115, 56, 29, 55]. Researchers have shown that this approach predicts the

difficulty of a query more accurately than pre-retrieval based methods for text documents

[115]. Some systems measure the distinguishability of the queries results from the documents

in the collection by comparing the probability distribution of terms in the results with the

probability distribution of terms in the whole collection. If these probability distributions
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are relatively similar, the query results contain information about almost as many topics as

the whole collection, thus, the query is considered difficult [115]. Several successors propose

methods to improve the efficiency and effectiveness of clarity score [56, 29, 55].

However, one requires domain knowledge about the data sets to extend idea of

clarity score for queries over databases. Each topic in a database contains the entities

that are about a similar subject. It is generally hard to define a formula that partitions

entities into topics as it requires finding an effective similarity function between entities.

Such similarity function depends mainly on the domain knowledge and understanding users’

preferences [52]. For instance, different attributes may have different impacts on the degree

of the similarity between entities. Assume movies A and B in IMDB share some terms

in their genre attributes, which explain the subjects of the movies. Also, let movies A

and C share the same number of terms in their distributor attributes, which describe the

distribution company of the movies. Given other attributes of A, B, and C do not contain

any common term, movies A and B are more likely to be about the same subject and

satisfy the same information need than movies A and C. Our empirical results in Section 3.8

confirms this argument and shows that the straightforward extension of clarity score predicts

difficulties of queries over databases poorly.

Some systems use a pre-computed set of topics and assign each document to at least

one topic in the set in order to compute the clarity score [29]. They compare the probability

distribution of topics in the top ranked documents with the probability distribution of topics

of the whole collection to predict the degree of the difficulty of the query. One requires

domain knowledge about the data sets and its users to create a set of useful topics for the
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tuples in the database. We like to find an effective and domain independent approach to

predict the difficulties of queries.

Ranking-score-based: The ranking score of a document returned by the retrieval

systems for an input query may estimate the similarity of the query and the document.

Some recent methods measure the difficulty of a query based on the score distribution of

its results [105, 132]. Zhou and Croft argue that the information gained from a desired list

of documents should be much more than the information gained from typical documents

in the collection for an easy query. They measure the degree of the difficulty of a query

by computing the difference between the weighted entropy of the top ranked results’ scores

and the weighted entropy of other documents’ scores in the collection [132]. Shtok et

al. argue that the amount of non-query-related information in the top ranked results is

negatively correlated with the deviation of their retrieval scores [105]. Using language

modeling techniques, they show that the standard deviation of ranking scores of top-k

results estimates the quality of the top ranked results effectively. We examine the query

difficulty prediction accuracy of this set of methods on databases in Section 3.8, and show

that our model outperforms these methods over databases.

Robustness-based : Another group of post-retrieval methods argue that the results

of an easy query are relatively stable against the perturbation of queries [126], documents

[131] or ranking algorithms [11]. Our proposed query difficulty prediction model falls in this

category. More details of some related work will be given in Section 3.4, where we discuss

the difference of applying these techniques on text collection and database.

Some methods use machine learning techniques to learn the properties of difficult
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queries and predict their hardness [126]. They have similar limitations as the other ap-

proaches when applied to structured data. Moreover, their success depends on the amount

and quality of their available training data. Sufficient and high quality training data is not

normally available for many databases. Some researchers propose frameworks that theoret-

ically explain existing predictors and combine them to achieve higher prediction accuracy

[74, 73].

3.3 Data and Query Models

We model a database as a set of entity sets. Each entity set S is a collection of

entities E. For instance, movies and people are two entity sets in IMDB. Figure 3.1 depicts

a fragment of a data set where each subtree whose root’s label is movie represents an entity.

Each entity E has a set of attribute values Ai, 1 ≤ i ≤ |E|. Each attribute value is a bag of

terms. Following current unstructured and (semi-) structure retrieval approaches, we ignore

stop words that appear in attribute values, although this is not necessary for our methods.

Every attribute value A belongs to an attribute T written as A ∈ T . For instance, Godfather

and Mafia are two attribute values in the movie entity shown in the subtree rooted at node

1 in Figure 3.1. Node 2 depicts the attribute of Godfather, which is title.

The above is an abstract data model. We ignore the physical representation of

data in this work. That is, an entity could be stored in an XML file or a set of normalized

relational tables. The above model has been widely used in works on entity search [102, 47]

and data-centric XML retrieval [118], and has the advantage that it can be easily mapped

to both XML and relational data. Further, if a KQI method relies on the intricacies of the

57



0 imdb

1 movie

2 
title

3 
keyword

4 
keyword 5 

director

Godfather

Godfather Mafia
Coppola

6 
year

1970

7 movie

8 
title 9 

keyword

10 
keyword 11 

director

Crime 
Family

Godfather
1970

Johnson

12 
year

1982

14 
distributor

Godfather 
Inc.

15 
soundtrack

Godfather 
Attacks

Figure 3.1: IMDB database fragment

database design (e.g. deep syntactic nesting), it will not be robust and will have considerably

different degrees of effectiveness over different databases [114]. Hence, since our goal is to

develop principled formal models that cover reasonably well all databases and data formats,

we do not consider the intricacies of the database design or data format in our models.

A keyword query is a set Q = {q1 · · · q|Q|} of terms, where |Q| is the number of

terms in Q. An entity E is an answer to Q iff at least one of its attribute values A contains

a term qi in Q, written qi ∈ A1. Given database DB and query Q, retrieval function

g(E,Q,DB) returns a real number that reflects the relevance of entity E ∈ DB to Q.

Given database DB and query Q, a keyword search system returns a ranked list of entities

in DB called L(Q, g,DB) where entities E are placed in decreasing order of the value of

g(E,Q,DB).

1Some works on keyword search in databases [59] use conjunctive semantics, where all query keywords
must appear in a result.
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3.4 Ranking Robustness Principle for Structured Data

In this section we present the Ranking Robustness Principle, which argues that

there is a (negative) correlation between the difficulty of a query and its ranking robustness

in the presence of noise in the data. Section 3.4.1 discusses how this principle has been

applied to unstructured text data. Section 3.4.2 presents the factors that make a keyword

query on structured data difficult, which explain why we cannot apply the techniques de-

veloped for unstructured data. The latter observation is also supported by our experiments

in Section 3.8.2 on the Unstructured Robustness Method [131], which is a direct adaptation

of the Ranking Robustness Principle for unstructured data.

3.4.1 Background: Unstructured Data

Mittendorf has shown that if a text retrieval method effectively ranks the answers

to a query in a collection of text documents, it will also perform well for that query over

the version of the collection that contains some errors such as repeated terms [86]. In other

words, the degree of the difficulty of a query is positively correlated with the robustness

of its ranking over the original and the corrupted versions of the collection. We call this

observation the Ranking Robustness Principle. Zhou and Croft [131] have applied this

principle to predict the degree of the difficulty of a query over free text documents. They

compute the similarity between the rankings of the query over the original and the artificially

corrupted versions of a collection to predict the difficulty of the query over the collection.

They deem a query to be more difficult if its rankings over the original and the corrupted

versions of the data are less similar. They have empirically shown their claim to be valid.
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They have also shown that this approach is generally more effective than using methods

based on the similarities of probability distributions, that we reviewed in Section 3.2. This

result is especially important for ranking over databases. As we explained in Section 3.2,

it is generally hard to define an effective and domain independent categorization function

for entities in a database. Hence, we can use Ranking Robustness Principle as a domain

independent proxy metric to measure the degree of the difficulties of queries.

3.4.2 Properties of Hard Queries on Databases

As discussed in Section 3.2, it is well established that the more diverse the candidate

answers of a query are, the more difficult the query is over a collection of the text documents.

We extend this idea for queries over databases and propose three sources of difficulty for

answering a query over a database as follows:

1. The more entities match the terms in a query, the less specificity of this query and

it is harder to answer properly. For example, there are more than one person called

Ford in the IMDB data set. If a user submits query Q2: Ford, a KQI must resolve the

desired Ford that satisfy the user’s information need. As opposed to Q2, Q3: Spielberg

matches smaller number of people in IMDB, so it is easier for the KQI to return its

relevant results.

2. Each attribute describes a different aspect of an entity and defines the context of

terms in attribute values of it. If a query matches different attributes in its candidate

answers, it will have a more diverse set of potential answers in database, and hence it

has higher attribute level ambiguity. For instance, some candidate answers for query
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Q4: Godfather in IMDB contain its term in their title and some contain its term in

their distributor. For the sake of this example, we ignore other attributes in IMDB.

A KQI must identify the desired matching attribute for Godfather to find its relevant

answers. As opposed to Q4, query Q5: taxi driver does not match any instance of

attribute distributor. Hence, a KQI already knows the desired matching attribute for

Q5 and has an easier task to perform. Assume that Q4 and Q5 have almost equal

number of answers. Some of the movies whose titles match Q5 are related, e.g., there

are three documentaries in IMDB whose titles match taxi driver, which are about

making the well-known movie taxi driver directed by Martin Scorsese. They may

partially or fully satisfy the information need behind Q5. However, the candidate

answers whose title attribute match Q4 and the candidate answers whose distributor

attribute match Q4 are not generally related.

3. Each entity set contains the information about a different type of entities and defines

another level of context (in addition to the context defined by attributes) for terms.

Hence, if a query matches entities from more entity sets, it will have higher entity

set level ambiguity. For instance, IMDB contains the information about movies in

an entity set called movie and the information about the people involved in making

movies in another entity set called person. Consider query Q6: divorce over IMDB

data set whose candidate answers come from both entity sets. However, movies about

divorce and people who get divorced cannot both satisfy information need of query

Q6. A KQI has a difficult task to do as it has to identify if the information need behind

this query is to find people who got divorced or movies about divorce. In contrast
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to Q6, Q7: romantic comedy divorce matches only entities from movie entity set. It

is less difficult for a KQI to answer Q7 than Q6 as Q7 has only one possible desired

entity set. Given Q6 and Q7 have almost the same number of candidate answers and

matching attributes, it is likely that more candidate answers of Q6 are relevant to its

users’ information need than the candidate answers to Q7.

The aforementioned observations show that we may use the statistical properties of the

query terms in the database to compute the diversity of its candidate answers and predict

its difficulty, like the pre-retrieval predictors introduced in Section 3.2. One idea is to count

the number of possible attributes, entities, and entity sets that contain the query terms

to estimate the query specificity and ambiguity and use them to predict the difficulty of

the query. The larger this value is the more difficult the query will be. We have shown

empirically in Section 3.8.2 that such approach predicts the difficulty of queries quite poorly.

This is because the distribution of query terms over attributes and entity sets may also

impact the difficulty of the query. For instance, assume database DB1 contains two entity

sets book and movie and database DB2 contains entity sets book and article. Let term

database appear in both entity sets in DB1 and DB2. Assume that there are far fewer

movies that contain term database compared to books and articles. A KQI can leverage

this property and rank books higher than movies when answering query Q8: database over

DB1. However, it will be much harder to decide the desired entity set in DB2 for Q8.

Hence, a difficulty metric must take in to account the skewness of the distributions of the

query term in the database as well. In Section 3.5 we use these ideas to create a concrete

noise generation framework that consider attribute values, attributes and entity sets.
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3.5 A Framework to Measure Structured Robustness

In Section 3.4 we presented the Ranking Robustness Principle and discussed the

specific challenges in applying this principle to structured data. In this section we present

concretely how this principle is quantified in structured data. Section 3.5.1 discusses the

role of the structure and content of the database in the corruption process, and presents the

robustness computation formula given corrupted database instances. Section 3.5.2 provides

the details of how we generate corrupted instances of the database. Section 3.5.3 suggests

methods to compute the parameters of our model. In Section 3.5.4 we show real examples

of how our method corrupts the database and predicts the difficulty of queries.

3.5.1 Structured Robustness

Corruption of structured data. The first challenge in using the Ranking Robustness

Principle for databases is to define data corruption for structured data. For that, we model

a database DB using a generative probabilistic model based on its building blocks, which

are terms, attribute values, attributes, and entity sets. A corrupted version of DB can be

seen as a random sample of such a probabilistic model. Given a query Q and a retrieval

function g, we rank the candidate answers in DB and its corrupted versions DB′, DB′′, · · ·

to get ranked lists L and L′, L′′, · · · , respectively. The less similar L is to L′, L′′, · · · , the

more difficult Q will be.

According to the definitions in Section 3.3, we model database DB as a triplet

(S, T ,A), where S, T , and A denote the sets of entity sets, attributes, and attribute values

in DB, respectively. |A|, |T |, |S| denote the number of attribute values, attributes, and
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entity sets in the database, respectively. Let V be the number of distinct terms in database

DB. Each attribute value Aa ∈ A, 1 ≤ a ≤ |A|, can be modeled using a V-dimensional

multivariate distribution Xa = (Xa,1, · · · , Xa,V ), where Xa,j ∈ Xa is a random variable that

represents the frequency of term wj in Aa. The probability mass function of Xa is:

fXa(~xa) = Pr(Xa,1 = xa,1, · · · , Xa,V = xa,V ) (3.1)

where ~xa = xa,1, · · · , xa,V and xa,j ∈ ~xa are non-negative integers.

Random variable XA = (X1, · · · , X|A|) models attribute value set A, where Xa ∈

XA is a vector of size V that denotes the frequencies of terms in Aa. Hence, XA is a |A|×

V matrix. The probability mass function for XA is:

fXA(~x) = fXA( ~x1, · · · , ~x|A|) = Pr(X1 = ~x1, · · · , X|A| = ~x|A|) (3.2)

where ~xa ∈ ~x are vectors of size V that contain non-negative integers. The domain of ~x is

all |A|× V matrices that contain non-negative integers, i.e. M(|A|× V ).

We can similarly define XT and XS that model the set of attributes T and the set

of entity sets S, respectively. The random variable XDB = (XA, XT , XS) models corrupted

versions of database DB. In this work, we focus only on the noise introduced in the content

(values) of the database. In other words, we do not consider other types of noise such

as changing the attribute or entity set of an attribute value in the database. Since the

membership of attribute values to their attributes and entity sets remains the same across

the original and the corrupted versions of the database, we can derive XT and XS from XA.

Thus, a corrupted version of the database will be a sample from XA; note that the attributes

and entity sets play a key role in the computation of XA as we discuss in Section 3.5.2.
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Therefore, we use only XA to generate the noisy versions of DB, i.e. we assume that

XDB = XA. In Section 3.5.2 we present in detail how XDB is computed.

Structured Robustness calculation. We compute the similarity of the answer lists

using Spearman rank correlation [49]. It ranges between 1 and -1, where 1, -1, and 0

indicate perfect positive correlation, perfect negative correlation, and almost no correlation,

respectively. Equation 3.3 computes the Structured Robustness score (SR score), for query

Q over database DB given retrieval function g:

SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

=
∑
~x

Sim(L(Q, g,DB), L(Q, g, ~x))fXDB (~x) (3.3)

where ~x ∈ M(|A|× V ) and Sim denotes the Spearman rank correlation between

the ranked answer lists.

3.5.2 Noise Generation in Databases

In order to compute Equation 3.3, we need to define the noise generation model

fXDB (M) for database DB. We will show that each attribute value is corrupted by a com-

bination of three corruption levels: on the value itself, its attribute and its entity set. Now

the details: Since the ranking methods for queries over structured data do not generally

consider the terms in V that do not belong to query Q [59, 66], we consider their frequencies

to be the same across the original and noisy versions of DB. Given query Q, let ~x be a

vector that contains term frequencies for terms w ∈ Q ∩ V . Similarly to [131], we simplify

our model by assuming the attribute values in DB and the terms in Q∩V are independent.
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Hence, we have:

fXA(~x) =
∏
xa∈~x

fXa( ~xa). (3.4)

and

fXa(~xa) =
∏

xa,j∈~xa

fXa,j (xa,j). (3.5)

where xj ∈ ~xi depicts the number of times wj appears in a noisy version of attribute

value Ai and fXi,j (xj) computes the probability of term wj to appear in Ai xj times.

The corruption model must reflect the challenges discussed in Section 3.4.2 about

search on structured data, where we showed that it is important to capture the statistical

properties of the query keywords in the attribute values, attributes and entity sets. We

must introduce content noise (recall that we do not corrupt the attributes or entity sets but

only the values of attribute values) to the attributes and entity sets, which will propagate

down to the attribute values. For instance, if an attribute value of attribute title contains

keyword Godfather, then Godfather may appear in any attribute value of attribute title

in a corrupted database instance. Similarly, if Godfather appears in an attribute value of

entity set movie, then Godfather may appear in any attribute value of entity set movie in a

corrupted instance.

Since the noise introduced in attribute values will propagate up to their attributes

and entity sets, one may question the need to introduce additional noise in attribute and

entity set levels. The following example illustrates the necessity to generate such noises.

Let T1 be an attribute whose attribute values are A1 and A2, where A1 contains term w1

and A2 does not contain w1. A possible noisy version of T1 will be a version where A1 and

A2 both contain w1. However, the aforementioned noise generation model will not produce
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such a version. Similarly, a noisy version of entity set S must introduce or remove terms

from its attributes and attribute values. According to our discussion in Section 3.4, we

must use a model that generates all possible types of noise in the data.

Hence, we model the noise in a DB as a mixture of the noises generated in attribute

value, attribute, and entity set levels. Mixture models are typically used to model how the

combination of multiple probability distributions generates the data. Let Yt,j be the random

variable that represents the frequency of term wj in attribute Tt. Probability mass function

fYt,j (yt,j) computes the probability of wj to appear yt,j times in Tt. Similarly, Zs,j is the

random variable that denotes the frequency of term wj in entity set Ss and probability mass

function fZs,j (zs,j) computes the probability of wj to appear zs,j times in Ss. Hence, the

noise generation models attribute value Ai whose attribute is Tt and entity set is Ss:

f̂Xa,j (xa,j) = γAfXa,j (xa,j) + γT fYt,j (xt,j) + γSfZs,j (xs,j). (3.6)

where 0 ≤ γA, γT , γS ≤ 1 and γA + γT + γS = 1. fXa,j , fYt,j , and fYs,j model the noise

in attribute value, attribute, and entity set levels, respectively. Parameters γA, γT and γS

have the same values for all terms w ∈ Q ∩ V and are set empirically.

Since each attribute value Aa is a small document, we model fXi,j as a Poisson

distribution:

fXa,j (xa,j) =
e−λa,jλ

xa,j
a,j

xa,j !
. (3.7)

Similarly, we model each attribute Tt, 1 ≤ t ≤ |T |, as a bag of words and use Poisson

distribution to model the noise generation in the attribute level:

fYt,j (xt,j) =
e−λt,jλ

xt,j
t,j

xt,j !
. (3.8)
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Using similar assumptions, we model the changes in the frequencies of the terms in entity

set Ss, 1 ≤ s ≤ |S|, using Poisson distribution:

fZs,j (xs,j) =
e−λs,jλ

xs,j
s,j

xs,j !
. (3.9)

In order to use the model in Equation 3.6, we have to estimate λA,w, λT,w, and

λS,w for every w ∈ Q∩ V , attribute value A, attribute T and entity set S in DB. We treat

the original database as an observed value of the space of all possible noisy versions of the

database. Thus, using the maximum likelihood estimation method, we set the value of λA,w

to the frequency of w in attribute value A. Assuming that w are distributed uniformly over

the attribute values of attribute T , we can set the value of λT,w to the average frequency of

w in T . Similarly, we set the value of λS,w as the average frequency of w in S. Using these

estimations, we can generate noisy versions of a database according to Equation 3.6.

3.5.3 Smoothing The Noise Generation Model

Equation 3.6 overestimates the frequency of the terms of the original database

in the noisy versions of the database. For example, assume a bibliographic database of

computer science publications that contains attribute T2 = abstract which constitutes the

abstract of a paper. Apparently, many abstracts contain term w2 = algorithm, therefore,

this term will appear very frequently with high probability in fT2,w2 model. On the other

hand, a term such as w3 = Dirichlet is very likely to have very low frequency in fT2,w3 model.

Let attribute value A2 be of attribute abstract in the bibliographic DB that contains both

w2 and w3. Most likely, term algorithm will appear more frequently than Dirichlet in A2.

Hence, the mean for fA2,w2 will be also larger than the mean of fA2,w3 . Thus, a mixture
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model of fT2,w2 and fA2,w2 will have much larger mean than a mixture model of fT2,w3 and

fA2,w3 . The same phenomenon occurs if a term is relatively frequent in an entity set. Hence,

a mixture model such as Equation 3.6 overestimates the frequency of the terms that are

relatively frequent in an attribute or entity set. Researchers have faced a similar issue in

language model smoothing for speech recognition [65]. We use a similar approach to resolve

this issue. If term w appear in attribute value A, we use only the first term in Equation 3.6

to model the frequency of w in the noisy version of database. Otherwise, we use the second

or third terms if w belongs to T and S, respectively. Hence, the noise generation model is:

f̂Xa,j (xa,j) =



γAfXa,j (xa,j) if wj ∈ Aa

γT fYt,j (xt,j) if wj /∈ Aa, wj ∈ Tt

γSfZs,j (xs,j) if wj /∈ Aa, Tt, wj ∈ Ss

(3.10)

where we remove the condition γA + γT + γS = 1.

3.5.4 Examples

We illustrate the corruption process and the relationship between the robustness

of the ranking of a query and its difficulty using INEX queries Q9: mulan hua animation

and Q11: ancient rome era, over the IMDB dataset. We set γA = 1, γT = 0.9, γS = 0.8 in

Equation 3.10. We use the XML ranking method proposed in [66], called PRMS, which we

explain in more detail in Section 3.6. Given query Q, PRMS computes the relevance score

of entity E based on the weighted linear combination of the relevance scores the attribute

values of E.

Example of calculation of λt,j for term t =ancient and attribute Tj =plot in Equa-

tion 3.8: In the IMDB dataset, ancient occurs in attribute plot 2132 times in total, and
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total number of attribute values under attribute plot is 184,731, λt,j = 2132/184731 which

is 0.0115. Then, since γT = 0.9, the probability that ancient occurs k times in a corrupted

plot attribute is 0.9e−0.0115(0.0115)k

k! .

Q11: Figure 3.2a depicts two of the top results (ranked as 1st and 12nd respec-

tively) for query Q11 over IMDB. We omit most attributes (shown as elements in XML

lingo in Figure 3.2a) that do not contain any query keywords due to space consideration.

Figure 3.2b illustrates a corrupted version of the entities shown in Figure 3.2a. The new

keyword instances are underlined. Note that the ordering changed according to PRMS. The

reason is that PRMS believes that title is an important attribute for rome (for attribute

weighing in PRMS see Section 3.8.1) and hence having a query keyword (rome) there is im-

portant. However, after corruption, query word rome also appears in the title of the other

entity, which now ranks higher, because it contains the query words in more attributes.

Word rome was added to the title attribute of the originally second result through

the second level (attribute-based, second branch in Equation 3.10) of corruption, because

rome appears in the title attribute of other entities in the database. If no title attribute

contained rome, then it could have been added through the third level corruption (entity

set-based, third branch in Equation 3.10) since it appears in attribute values of other movie

entities.

The second and third levels corruptions typically have much smaller probability of

adding a word than the first level, because they have much smaller λ; specifically λT is the

average frequency of the term in attribute T . However, in hard queries like Q11, the query

terms are frequent in the database, and also appear in various entities and attributes, and
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<movie id= “1025102”>

<title>rome ...</title>

<keyword>ancient-world</keyword>

<keyword>ancient-art</keyword>

<keyword>ancient-rome</keyword>

<keyword>christian-era</keyword>

</movie>

<movie id=“1149602”>

<title>Gladiator</title>

<keyword>ancient-rome</keyword>

<character>Rome ...</character>

<person>... Rome/UK)</person>

<trivia>”Rome of the imagination... </trivia>

<goof>Rome vs. Carthage ...</goof>

<quote>... enters Rome like a ... Rome ... </quote>

</movie>

(a) Original ranking

<movie id=“1149602”>

<title> Gladiator rome</title>

<keyword>ancient-rome rome</keyword>

<character>Rome ...</character>

<person> ... Rome/UK)</person>

<trivia>of the imagination...</trivia>

<goof>Rome vs. Carthage ...</goof>

<quote>... enters Rome like a ... Rome ...</quote>

</movie>

<movie id= “1025102”>

<title>rome ...</title>

<keyword>ancient-world ancient</keyword>

<keyword>-art</keyword>

<keyword>ancient ancient</keyword>

<keyword>christian-</keyword>

</movie>

(b) Corrupted ranking

Figure 3.2: Original and corrupted results of Q11

hence λT and λS are larger.

In the first keyword attribute of the top result in Figure 3.2b, rome is added by the

first level of corruption, whereas in the trivia attribute rome is removed by the first level of

corruption.

To summarize, Q11 is difficult because its keywords are spread over a large number

of attribute values, attributes and entities in the original database, and also most of the top

results have a similar number of occurrences of the keywords. Thus, when the corruption

process adds even a small number of query keywords to the attribute values of the entities
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<movie id=“1492260”>

<title>The Legend of Mulan (1998)</title>

<genre>Animation</genre>

<link>Hua Mu Lan (1964)</link>

<link>Hua Mulan cong jun</link>

<link>Mulan (1998)</link>

<link>Mulan (1999)</link>

<link>The Secret of Mulan (1998)</link>

</movie>

<movie id=“1180849”>

<title>Hua Mulan (2009)</title>

<character>Hua Hu (Mulan’s father)</character>

<character>Young Hua Mulan</character>

<character>Hua Mulan</character>

</movie>

(a) Original ranking

<movie id=“1492260”>

<title>The Legend of Mulan (1998) mulan

mulan</title>

<genre> </genre>

<link>Hua Mu Lan (1964)</link>

<link>Hua Mulan cong jun</link>

<link>Mulan (1998) mulan</link>

<link> (1999)</link>

<link>The Secret of Mulan (1998) mulan </link>

</movie>

<movie id=“1180849”>

<title>Hua (2009) hua</title>

<character>Hua Hu (Mulan’s father)</character>

<character>Young Hua Mulan mulan mulan

hua</character>

<character>Mulan</character>

</movie>

(b) Corrupted ranking

Figure 3.3: Original and corrupted results of Q9

in the original database, it drastically changes the ranking positions of these entities.

Q9: Q9 (mulan hua animation) is an easy query because most its keywords are

quite infrequent in the database. Only term animation is relatively frequent in the IMDB

dataset, but almost all its occurrences are in attribute genre. Figures 3.3a and 3.3b present

two ordered top answers for Q9 over the original and corrupted versions of IMDB, respec-

tively. The two results are originally ranked as 4th and 10th. The attribute values of these

two entities contain many query keywords in the original database. Hence, adding and/or
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removing some query keyword instances in these results, does not considerably change their

relevance score and they preserve their ordering after corruption.

Since keywords mulan and hua appear in a small number of attribute values and

attributes, the value of λ for these terms in the second and the third level of corruption is

very small. Similarly, since keyword animation only appears in the genre attribute, the value

of λ for all other attributes (second level corruption) is zero. The value of λ for animation

in the third level is reasonable, 0.0007 for movie entity set, but the noise generated in this

level alone is not considerable.

3.6 Efficient Computation of SR Score

A key requirement for this work to be useful in practice is that the computation

of the SR score incurs a minimal time overhead compared to the query execution time. In

this section we present efficient SR score computation techniques.

3.6.1 Basic Estimation Techniques

Top-K results: Generally, the basic information units in structured data sets,

attribute values, are much shorter than text documents. Thus, a structured data set con-

tains a larger number of information units than an unstructured data set of the same size.

For instance, each XML document in the INEX data centric collection constitutes hundreds

of elements with textual contents. Hence, computing Equation 3.3 for a large DB is so

inefficient as to be impractical. Hence, similar to [131], we corrupt only the top-K entity

results of the original data set. We re-rank these results and shift them up to be the top-K
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answers for the corrupted versions of DB. In addition to the time savings, our empirical re-

sults in Section 3.8.2 show that relatively small values for K predict the difficulty of queries

better than large values. For instance, we found that K = 20 delivers the best performance

prediction quality in our datasets. We discuss the impact of different values of K in the

query difficulty prediction quality more in Section 3.8.2.

Number of corruption iterations (N): Computing the expectation in Equa-

tion 3.3 for all possible values of ~x is very inefficient. Hence, we estimate the expectation

using N > 0 samples over M(|A|× V ). That is, we use N corrupted copies of the data.

Obviously, smaller N is preferred for the sake of efficiency. However, if we choose very small

values for N the corruption model becomes unstable. We further analyze how to choose

the value of N in Section 3.8.2.

We can limit the values of K or N in any of the algorithms described below.

3.6.2 Structured Robustness Algorithm

Algorithm 1 shows the Structured Robustness Algorithm (SR Algorithm), which

computes the exact SR score based on the top K result entities. Each ranking algorithm

uses some statistics about query terms or attributes values over the whole content of DB.

Some examples of such statistics are the number of occurrences of a query term in all

attributes values of the DB or total number of attribute values in each attribute and entity

set. These global statistics are stored in M (metadata) and I (inverted indexes) in the SR

Algorithm pseudocode.

SR Algorithm generates the noise in the DB on-the-fly during query processing.
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Algorithm 1 CorruptTopResults(Q,L,M, I,N)

Input: Query Q, Top-K result list L of Q by ranking function g, Metadata M , Inverted indexes I,
Number of corruption iterations N .

Output: SR score for Q.
1: SR← 0; C ← {}; //C caches λT , λS for keywords in Q
2: FOR i = 1→ N DO
3: I ′ ← I; M ′ ←M ; L′ ← L; //Corrupted copy of I, M and L
4: FOR each result R in L DO
5: FOR each attribute value A in R DO
6: A′ ← A; //Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation 3.10; //If λT,w, λS,w needed but not in C, calculate

and cache them
9: IF # of w varies in A′ and A THEN

10: Update A′, M ′ and entry of w in I ′;
11: Add A′ to R′;
12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I ′, M ′;
14: SR += Sim(L,L′); //Sim computes Spearman correlation
15: RETURN SR← SR/N ; //AVG score over N rounds

Since it corrupts only the top K entities, which are anyways returned by the ranking module,

it does not perform any extra I/O access to the DB, except to lookup some statistics.

Moreover, it uses the information which is already computed and stored in inverted indexes

and does not require any extra index.

Nevertheless, our empirical results, reported in Section 3.8.2, show that SR Al-

gorithm increases the query processing time considerably. Some of the reasons for SR

Algorithm inefficiency are the following: First, Line 5 in SR Algorithm loops every at-

tribute value in each top-K result and tests whether it must be corrupted. As noted before,

one entity may have hundreds of attribute values. We must note that the attribute values

that do not contain any query term still must be corrupted (Line 8-10 in SR Algorithm)

for the second and third levels of corruption defined in Equation 3.10. This is because their

attributes or entity sets may contain some query keywords. This will largely increase the
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number of attribute values to be corrupted. For instance, for IMDB which has only two

entity sets, SR Algorithm corrupts all attribute values in the top-K results for all query

keywords. Second, ranking algorithms for DBs are relatively slow. SR Algorithm has to

re-rank the top K entities N times which is time consuming.

3.7 Approximation Algorithms

In this section, we propose approximation algorithms to improve the efficiency of

SR Algorithm. Our methods are independent of the underlying ranking algorithm.

Query-specific Attribute values Only Approximation (QAO-Approx): QAO-Approx

corrupts only the attribute values that match at least one query term. This approximation

algorithm leverages the following observations:

Observation 1: The noise in the attribute values that contain query terms domi-

nates the corruption effect.

Observation 2: The number of attribute values that contain at least one query

term is much smaller than the number of all attribute values in each entity.

Hence, we can significantly decrease the time spent on corruption if we corrupt

only the attribute values that contain query terms. We add a check before Line 7 in SR

Algorithm to test if A contains any term in Q. Hence, we skip the loop in Line 7. The

second and third levels of corruption (on attributes, entity sets, respectively) corrupt a

smaller number of attribute values so the time spent on corruption becomes shorter.

Static Global Stats Approximation (SGS-Approx): SGS-Approx uses the following

observation:

76



Observation 3: Given that only the top-K result entities are corrupted, the global

DB statistics do not change much.

Figure 3.4a shows the execution flow of SR Algorithm. Once we get the ranked

list of top K entities for Q, the corruption module produces corrupted entities and updates

the global statistics of DB. Then, SR Algorithm passes the corrupted results and updated

global statistics to the ranking module to compute the corrupted ranking list.

(a) SR Algorithm (b) SGS-Approx

Figure 3.4: Execution flows of SR Algorithm and SGS-Approx

SR Algorithm spends a large portion of the robustness calculation time on the

loop that re-ranks the corrupted results (Line 13 in SR Algorithm), by taking into account

the updated global statistics. Since the value of K (e.g., 10 or 20) is much smaller than the

number of entities in the DB, the top K entities constitute a very small portion of the DB.

Thus, the global statistics largely remain unchanged or change very little. Hence, we use

the global statistics of the original version of the DB to re-rank the corrupted entities. If

we refrain from updating the global statistics, we can combine the corruption and ranking

module together. This way re-ranking is done on-the-fly during corruption. SGS-Approx
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algorithm is illustrated in Figure 3.4b.

We use the ranking algorithm proposed in [66], called PRMS, to better illus-

trate the details of our approximation algorithm. PRMS employs a language model ap-

proach to search over structured data. It computes the language model of each attribute

value smoothed by the language model of its attribute. It assigns each attribute a query

keyword-specific weight, which specifies its contribution in the ranking score. It computes

the keyword-specific weight µj(q) for attribute values whose attributes are Tj and query q

as µj(q) =
P (q|Tj)∑

T∈DB P (q|T ) . The ranking score of entity E for query Q, P (Q|E) is:

P (Q|E) =
∏
q∈Q

P (q|E) =
∏
q∈Q

n∑
j=1

[µj(q)((1− λ)P (q|Aj) + λP (q|Tj))] (3.11)

where Aj is an attribute value of E, Tj is the attribute of Aj , 0 ≤ λ ≤ 1 is the smoothing

parameter for the language model of Aj , and n is the number of attribute values in E. If

we ignore the change of global statistics of DB, then µj and P (q|Tj) parts will not change

when calculating the score of corrupted version of E, E′, for q. Hence, the score of E′ will

depend only on P (q|A′j), where A′j is the corrupted version of Aj . We compute the value of

P (q|A′j) using only the information of A′j as (# of q in A′j / # of words in A′j). SGS-Approx

uses the global statistics of the original DB to compute µj and P (q|Tj) in order to calculate

the value of P (q|E). It re-uses them to compute the score of the corrupted versions of E.

However, SR Algorithm has to finish all corruption on all attribute values in top results

to update the global statistics and re-rank the corrupted results. Similarly, we can modify

other keyword query ranking algorithms over DBs that use query term statistics to score

entities.
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Combination of QAO-Approx and SGS-Approx: QAO-Approx and SGS-Approx

improve the efficiency of robustness calculation by approximating different parts of the

corruption and re-ranking process. Hence, we combine these two algorithms to further

improve the efficiency of the query difficulty predication.

3.8 Experiments

3.8.1 Experimental Setting

Data sets: Table 3.2 shows the characteristics of two data sets used in our exper-

iments. The INEX data set is from the INEX 2010 Data Centric Track [118] discussed in

Section 3.1. The INEX data set contains two entity sets: movie and person. Each entity in

the movie entity set represents one movie with attributes like title, keywords, and year. The

person entity set contains attributes like name, nickname, and biography. The SemSearch

data set is a subset of the data set used in Semantic Search 2010 challenge [116]. The

original data set contains 116 files with about one billion RDF triplets. Since the size of

this data set is extremely large, it takes a very long time to index and run queries over this

data set. Hence, we have used a subset of the original data set in our experiments. We

first removed duplicate RDF triplets. Then, for each file in SemSearch data set, we cal-

culated the total number of distinct query terms in SemSearch query workload in the file.

We selected the 20, out of the 116, files that contain the largest number of query keywords

for our experiments. We converted each distinct RDF subject in this data set to an entity

whose identifier is the subject identifier. The RDF properties are mapped to attributes

in our model. The values of RDF properties that end with substring “#type” indicates
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the type of a subject. Hence, we set the entity set of each entity to the concatenation of

the values of RDF properties of its RDF subject that end with substring “#type”. If the

subject of an entity does not have any property that ends with substring “#type”, we set

its entity set to “UndefinedType”. We have added the values of other RDF properties for

the subject as attributes of its entity. We stored the information about each entity in a

separate XML file. We have removed the relevance judgment information for the subjects

that do not reside in these 20 files. The sizes of the two data sets are quite close; however,

SemSearch is more heterogeneous than INEX as it contains a larger number of attributes

and entity sets. The size of both data sets are about 10GB, which is reasonably large for

highly structured data sets, especially given that most empirical studies on keyword query

processing over databases have been conducted on much smaller datasets [47, 81, 66]. We

should note that structured data sets contain many more finer grained data items than

unstructured data sets of the same size. Hence, KQIs over a database must process many

more candidate answers than retrieval algorithms over an unstructured set of documents

with the same size, and require much more time and resources. Thus, the databases used in

evaluating KQIs are generally smaller than typical document collections used in studying

document retrieval algorithms.

Query Workloads: Since we use a subset of the dataset from SemSearch, some

queries in its query workload may not contain enough candidate answers. We picked the 55

queries from the 92 in the query workload that have at least 50 candidate answers in our

dataset. Because the number of entries for each query in the relevance judgment file has

also been reduced, we discarded another two queries (Q6 and Q92) without any relevant
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Table 3.2: INEX and SemSearch datasets characteristics

INEX SemSearch

Size 9.85 GB 9.64 GB

Number of Entities 4,418,081 7,170,445

Number of Entity Sets 2 419,610

Number of Attributes 77 7,869,986

Number of Attribute values 113,603,013 114,056,158

answers in our dataset, according to the relevance judgment file. Hence, our experiments is

done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31, 33-34, 37-39, 41-42, 45, 47, 49, 52-54,

56-58, 60, 65, 68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch query workload. 26

query topics are provided with relevance judgments in the INEX 2010 Data Centric Track.

Some query topics contain characters “+” and “-” to indicate the conjunctive and exclusive

conditions. In our experiments, we do not use these conditions and remove the keywords

after character “-”. Some searching systems use these operators to improve search quality.

Similar to other efforts in predicting query difficulty, we left supporting these operators to

the future work. Generally, KQIs over DBs return candidate answers that contain all terms

in the query [15, 59, 114]. However, queries in the INEX query workload are relatively long

(normally over four distinct keywords). If we retrieve only the entities that contain all query

terms, there will not be sufficient number of (in some cases none) candidate answers for

many queries in the data. Hence, for every query Q, we use the following procedure to get

at least 1,000 candidate answers for each query. First, we retrieve the entities that contain
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|Q| distinct terms in query Q. If they are not sufficient, we retrieve the entities that contain

at least |Q| − 1 distinct query keywords, and so on until we get 1000 candidate answers.

Ranking Algorithms: To evaluate the effectiveness of our model for different

ranking algorithms, we have evaluated the query performance prediction model with two

representative ranking algorithms: PRMS [66] and IR-Style [59]. Many other algorithms

are extensions of these two methods (e.g., [81, 32]).

PRMS: We explained the idea behind PRMS algorithm in Section 3.6.

We adjust parameter λ in PRMS in our experiments to get the best MAP and

then use this value of λ for query performance prediction evaluations. Varying λ from 0.1

to 0.9 with 0.1 as the test step, we have found that different values of λ change MAP very

slightly on both datasets, and generally smaller λs deliver better MAP. We use λ = 0.1 on

INEX and 0.2 on SemSearch.

IR-Style: We use a variation of the ranking model proposed in [59] for relational data

model, referred as IR-Style ranking. Given a query, IR-Style returns a minimal join tree

that connects the tuples from different tables in the DB that contain the query terms, called

MTNJT . However, our datasets are not in relational format and the answers in their

relevance judgments files are entities and not MTNJT s. Hence, we extend the definition

of MTNJT as the minimal subtree that connects the attribute values containing the query

keywords in an entity. The root of this subtree is the root of the entity in its XML file. If

an entity has multiple MTNJT s, we choose the one with the maximum score as explained

below. Let M be a MTNJT tree of entity E and AM be the attribute values in M . The

score of M for query Q is: IRScore(M,Q)
size(M) , where IRScore(M,Q) is the score of M for query
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Q based on some IR ranking formula. If we use a vector space model ranking formula

as in [59] to compute the IRScore(M,Q), we get very low MAP (less than 0.1) for both

datasets. Hence, we compute it using a language model ranking formula with Jelink-Mercer

smoothing [129] which is shown in equation 3.12. We set the value of smoothing parameter

α to 0.2 as it returns the highest MAP for our datasets.

IRScore(M,Q) =
∏
q∈Q

∑
A∈AM

((1− α)P (q|A) + αP (q|T )) (3.12)

Configuration: We have performed our experiments on an AMD Phenom II X6

2.8 GHz machine with 8 GB of main memory that runs on 64-bit Windows 7. We use

Berkeley DB 5.1.25 to store and index the XML files and implement all algorithms in Java.

3.8.2 Quality results

In this section, we evaluate the effectiveness of the query quality prediction model.

We use both Pearson’s correlation and Spearman’s correlation between the SR score and

the average precision of a query to evaluate the prediction quality.

Setting the value of N : Let L and L′ be the original and corrupted top-K

entities for query Q, respectively. The SR score of Q in each corruption iteration is the

Spearman’s correlation between L and L′. We corrupt the results N times to get the average

SR score for Q. In order to get a stable SR score, the value of N should be sufficiently

large, but this increases the computation time of the SR score. We chose the following

strategy to find the appropriate value of N : We progressively corrupt L 50 iterations at a

time and calculate the average SR score over all iterations. If the last 50 iterations do not

change the average SR score over 1%, we terminate. N may vary for different queries in
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query workloads. Thus, we set it to the maximum number of iterations over all queries.

According to our experiments, the value of N varies very slightly for different value of K.

Therefore, we set the value of N to 300 on INEX and 250 on SemSearch for all values of K.

Different Values for K: The number of interesting results for a keyword query

is normally small [83]. For example, the average number of relevant results is 9.6 for the

SemSearch query workload. In this setting, many low ranked answers may not be relevant

and have quite close scores, which makes their relative ranking positions very sensitive to

noise. If we use large values for K, the SR score will be dominated by the low ranked non-

relevant results and the SR score may deem all queries almost equally difficult. Hence, it is

reasonable to use small values of K for query performance prediction. We empirically show

that our model prefers smaller K on these two datasets. We conduct our experiments on

K=10, 20 and 50. All these values deliver reasonable prediction quality (i.e. the robustness

of a query is strongly correlated with its effectiveness). However, on both datasets, K=10

and 20 deliver better prediction quality than K=50, given other parameters are the same.

For instance, the value of Pearson’s correlation on SemSearch is 0.398 for K=50 but 0.471

for K=10 and 0.556 for K=20. We have achieved the best prediction quality using K=20 for

both datasets with various combinations of γA, γT , and γS . We present these experiments

in details later in this Section.

Training of γA, γT , and γS: We denote the coefficients combination in Equa-

tion 3.10 as (γA, γT , γS) for brevity.

We train (γA, γT , γS) using 5-fold cross validation. We get two settings on each

dataset by using Spearman’s correlation and Pearson’s correlation, respectively, to measure
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the prediction quality. After some preliminary experiments, we found that large γA is

effective. Hence, to reduce the number of possible combinations, we fix γA as 1, and vary

the other two during the training process to find the highest Pearson’s correlation between

average precision and SR score. We computed the SR score for γT and γS from 0 to 3 with

step 0.1 for different values of K. We found that the value of (γA, γT , γS) that leads to the

best correlation score, is quite stable on different training sets. In the rest of the chapter,

we report the results of Pearson’s correlation and Spearman’s correlation over INEX using

the values of (1, 0.9, 0.8) and (1, 0.3, 0.5) for (γA, γT , γS), respectively. We also present the

values of Pearson’s correlation and Spearman’s correlation on SemSearch that are achieved

by the setting (γA, γT , γS) to (1, 0.1, 0.6).

Figures 3.5 and 3.6 depict the plot of average precision and SR score for all queries

in our query workload on INEX and SemSearch, respectively. In Figure 3.5, we see that Q9

is easy (has high average precision) and Q11 is relatively hard, as discussed in Section 3.5.4.

As shown in Figure 3.6, query Q78: sharp-pc is easy (has high average precision), because

its keywords appear together in few results, which explains its high SR score. On the other

hand, Q19: carl lewis and Q90: university of phoenix have a very low average precision as

their keywords appear in many attributes and entity sets. Figure 3.6 shows that the SR

scores of these queries are very small, which confirms our model.

Baseline Prediction Methods: We use Clarity score (CR) [115], Unstructured

Robustness Method (URM) [131], Weighted Information Gain (WIG) [132], normalized-

query-commitment (NQC) [105], and prevalence of query keywords as baseline query diffi-
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Figure 3.5: Average precision versus SR score for queries on INEX using PRMS, K=20.

Figure 3.6: Average precision versus SR score for queries on SemSearch using PRMS, K=20.

Table 3.3: Pearson’s correlation of average precision against each metric.

K 10 20

Method SR WIG NQC URM CR iAA iAES iAE iAS SR WIG NQC URM CR iAA iAES iAE iAS

INEX 0.486 0.176 0.302 0.093 0.266 0.299 n/a 0.111 0.143 0.564 0.187 0.262 0.177 0.257 0.370 n/a 0.255 0.292

SemSearch 0.471 0.107 -0.083 0.247 0.111 0.066 0.052 0.040 -0.043 0.556 0.109 -0.079 0.311 0.119 0.082 0.068 0.056 -0.046

culty prediction algorithms in databases. CR, URM are two popular post-retrieval query

difficulty prediction techniques over text documents. WIG and NQC are also post-retrieval

predictors that have been proposed recently and are shown to achieve better query difficulty

prediction accuracy than CR and URM [132, 105].
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Table 3.4: Spearman’s correlation of average precision against each metric.

K 10 20

Method SR WIG NQC URM CR iAA iAES iAE iAS SR WIG NQC URM CR iAA iAES iAE iAS

INEX 0.303 0.242 0.381 0.196 0.199 0.409 n/a -0.167 0.187 0.475 0.218 0.319 0.270 0.202 0.448 n/a -0.154 0.174

SemSearch 0.519 0.270 0.287 -0.012 0.182 0.334 0.282 0.289 0.306 0.576 0.253 0.271 0.074 0.179 0.348 0.302 0.310 0.326

To implement CR, URM, WIG, and NQC, we concatenate the XML elements

and tags of each entity into a text document and assume all entities (now text documents)

belong to one entity set. The values of all µj in PRMS ranking formula are set to 1 for every

query term. Hence, PRMS becomes a language model retrieval method for text documents

[83]. We have separately trained the parameters of these method on each dataset using the

whole query workload as the training data to get the optimal settings for these methods.

URM and CR: For URM on both datasets, we corrupted each ranking list 1000

times such that robustness score becomes stable. For CR, we trained three parameters: the

number of results (k), the vocabulary size (v) used in computing query language model,

and the background language model smoothing factor (λ). We report the results for CR

using k=100 and λ=0.7 for INEX and k=500 and λ=0.3 for SemSearch. We have use the

whole vocabulary to compute the query language model in both datasets.

WIG and NQC: In order to make a reasonable comparison, we have used the

implementations of WIG and NQC from [105]. We trained the number of of top results, k,

for both methods . For WIG, we set k=5 on SemSearch and k=10 on INEX. For NQC, we

set k=10 on SemSearch and k=150 on INEX. We think smaller k is prefered on SemSearch

for both methods because its query workload has smaller average number of relevant results

per query.
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Prevalence of Query Keywords: As we argued in Section 3.4.2, if the query key-

words appear in many entities, attributes, or entity sets, it is harder for a ranking algorithm

to locate the desired entities. Given query Q, we compute the average number of attributes

(AA(Q)), average number of entity sets (AES(Q)), and the average number of entities

(AE(Q)) where each keyword in Q occurs. We consider each of these three values as an

individual baseline difficulty prediction metric. We also multiply these three metrics (to

avoid normalization issues that summation would have) and create another baseline metric,

denoted as AS(Q). Intuitively, if these metrics for query Q have higher values, Q must be

harder and have lower average precision. Thus, we use the inverse of these values, denoted

as iAA(Q), iAES(Q), iAE(Q), and iAS(Q), respectively.

Comparison to Baseline Methods: Tables 3.3 and 3.4 show Pearson’s and Spear-

man’s correlation values between average precision and the metrics for SR, NQC, WIG,

URM, CR, iAA(Q), iAES(Q), iAE(Q), and iAS(Q) methods for different values of K over

both datasets, respectively. These results are based on all queries in the query workloads

without distinguishing between training and testing sets. The n/a value appears in Ta-

ble 3.3 because all query keywords in our query workloads occur in both entity sets in

INEX.

The Pearson’s and Spearman’s correlation scores for SR Algorithm are significantly

higher than those of URM, CR and WIG on both datasets for both cases of K = 10 and K

= 20. SR Algorithm delivers a higher Pearson’s and Spearman’s correlation than NQC over

both data sets for both values cases of K = 20, and higher Pearson’s correlation over both

data sets for the case of K = 10. SR algorithm also provides a higher Pearson’s correlation
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than NQC over SemSearch for K = 10. This shows that our prediction model is generally

more effective than other methods over databases. Especially, the large improvement over

URM confirms that our corruption model better captures the properties of difficult queries

on databases. iAA provides a more accurate prediction than all other baseline methods

over INEX but slightly worse than NQC in terms of Spearman’s correlation for K=10.

This indicates that one of the main causes of the difficulties for the queries over the INEX

dataset is to find their desired attributes, which confirms our analysis in Section 3.4.2. SR

also delivers far better prediction qualities than iAA(Q), iAES(Q), iAE(Q), and iAS(Q)

metrics over both data sets. Hence, SR effectively considers all causes of the difficulties for

queries over databases.

IR-style ranking algorithm: The best value of MAP for the IR-Style ranking

algorithm over INEX is 0.134 for K=20, which is very low. Note that we tried both

Equation 3.12 as well as the vector space model originally used in [59]. Thus, we do not

study the quality performance prediction for IR-Style ranking algorithm over INEX. On

the other hand, the IR-Style ranking algorithm using Equation 3.12 delivers larger MAP

value than PRMS on the SemSearch dataset. Hence, we only present results on SemSearch.

Table 3.5 shows Pearson’s correlation of SR score with the average precision for different

values of K, for N=250 and (γA, γT , γS) = (1, 0.1, 0.6). Figure 3.7 plots SR score against

the average precision when K=20.

Discussion: Without combining with other predictors, all state-of-the-art predic-

tors on text collections achieve linear/non-linear correlation between average precision and

prediction metrics up to 0.65 depending on corpus and query workload [54, 115, 131, 56,

89



Figure 3.7: Average precision versus SR score using IR-Style over SemSearch with K=20.

Table 3.5: Correlation of average precision and SR score using IR-Style over SemSearch.

K 10 20

Pearson’s correlation score 0.565 0.544

Spearman’s correlation score 0.502 0.507

29, 105, 132, 55, 74, 73]. As the first work in query difficulty prediction on database, we

believe our prediction quality is reasonably high.

Impact of database schema complexity: On one hand, increasing the com-

plexity of the schema (e.g., increasing nesting or number attributes) makes it harder to

locate the user-desired results. On the other hand, a richer structure may improve the

quality of search if the system is able to locate the right attribute types, e.g., when the

keywords only appear in a single attribute type. For the same reasons we believe there is

no general rule on the effect of the schema complexity on the effectiveness of SR score.

Using SR Algorithm: Similar to other difficulty metrics, given the result of SR

Algorithm for an input query, a KQI may apply a thresholding approach to categorize an

input query as “easy” or “hard” [115]. This thresholding approach defines a reasonable
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threshold t for a query difficulty metric. If the difficulty metric of the query is below t,

it will be considered a “hard” query, and the KQI will apply further treatments like the

ones discussed in Section 3.1 to it. One may apply the kernel density estimation technique

proposed in [115] to find the value of t for a database. This technique computes the SR

score for a large number of syntactic keyword queries that are randomly sampled from the

database. It then sets the value of t to the SR score that is estimated to be less than the

SR values of 80% of queries. Readers can find more information on the justification and

implementation of this approach in [115].

3.8.3 Performance Study

In this section we study the efficiency of our SR score computation algorithms.

SR Algorithm: We report the average computation time of SR score (SR-time)

using SR Algorithm and compare it to the average query processing time (Q-time) using

PRMS for the queries in our query workloads. These times are presented in Table 3.6 for

K=20. SR-time mainly consists of two parts: the time spent on corruptingK results and the

time to re-rank the K corrupted results. We have reported SR-time using (corruption time

+ re-rank time) format. We see that SR Algorithm incurs a considerable time overhead on

the query processing. This overhead is higher for queries over the INEX dataset, because

there are only two entity sets, (person and movie), in the INEX dataset, and all query

keywords in the query load occur in both entity sets. Hence, according to Equation 3.10,

every attribute value in top K entities will be corrupted due to the third level of corruption.

Since SemSearch contains far more entity sets and attributes than INEX, this process does
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Table 3.6: Average query processing time and average robustness computation for K=20.

Avg Q-time (ms) Avg SR-time (ms)

INEX (N=250) 24,177 (88,271 + 29,585)

SemSearch (N=300) 46,726 (11,121 + 12,110)

not happen for SemSearch.

QAO-Approx: Figures 3.8a and 3.9a show the results of using QAO-Approx

on INEX and SemSearch, respectively. We measure the prediction effectiveness for smaller

values of N using average correlation score. The QAO-Approx algorithm delivers acceptable

correlation scores and the corruption times of about 2 seconds for N=10 on INEX and N=20

on SemSearch. Comparing to the results of SR Algorithm for N=250 on SemSearch and

N=300 on INEX, the Pearson’s correlation score drops, because less noise is added by

second and third level corruption. These results show the importance of these two levels of

corruption.

SGS-Approx: Figures 3.8b and 3.9b depict the results of applying SGS-Approx

on INEX and SemSearch, respectively. Since re-ranking is done on-the-fly during the corrup-

tion, SR-time is reported as corruption time only. As shown in Figure 3.8b, the efficiency

improvement on the INEX dataset is slightly worse than QAO-Approx, but the quality

(correlation score) remains high. SGS-Approx outperforms QAO-Apporx in terms of both

efficiency and effectiveness on the SemSearch dataset.

Combination of QAO-Approx and SGS-Approx: As noted in Section 3.6,

we can combine QAO-Approx and SGS-Approx algorithms to achieve better performance.
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(a) QAO-Approx (b) SGS-Approx

(c) Combination of QAO and SGS

Figure 3.8: Approximations on INEX.

Figures 3.8c and 3.9c present the results of the combined algorithm for INEX and SemSearch

databases, respectively. Since we use SGS-Approx, the SR-time consists only of corruption

time. Our results show that the combination of two algorithms works more efficiently than

either of them with the same value for N .

Summary of the Performance Results: According to our performance study

of QAO-Approx, SGS-Approx, and the combined algorithm over both datasets, the com-

bined algorithm delivers the best balance of improvement in efficiency and reduction in

effectiveness for both datasets. On both datasets, the combined algorithm achieves high

prediction accuracy (the Pearson’s correlation score about 0.5) with SR-time around 1 sec-
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(a) QAO-Approx (b) SGS-Approx

(c) Combination of QAO and SGS

Figure 3.9: Approximations on SemSearch.

ond. Using the combined algorithm over INEX when the value of N is set to 20, the the

Pearson’s and Spearman’s correlation scores are 0.513 an 0.396 respectively and the time

decreases to about 1 second. For SR Algorithm on INEX, when N decreases to 10, the

Pearson’s correlation is 0.537, but SR-time is over 9.8 seconds, which is not ideal. If we use

the combined algorithm on SemSearch, the Pearson’s and Spearman’s correlation scores are

0.495 and 0.587 respectively and SR-time is about 1.1 seconds when N=50. However, to

achieve a similar running time, SGS-Approx needs to decrease N to 10, with the SR-time

of 1.2 seconds, the Pearson’s correlation of 0.49 and the Spearman’s correlation of 0.581.

Thus, the combined algorithm is the best choice to predict the difficulties of queries both

efficiently and effectively.
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Discussion: The time to compute the SR score only depends on the top-K results,

since only the top-K results are corrupted and reranked (see Section 3.6). Increasing the

data set size will only increase the query processing time, which is not the focus of this

work.

The complexity of data schema could have impact on the efficiency of our model.

A simpler schema may not mean shorter SR computation time, since more attribute values

need to be corrupted, since more attribute values of the same attribute type of interest

exists. The latter is supported by the longer corruption times incurred by INEX, which has

simpler schema than SemSearch, as shown in Table 3.6.

3.9 Conclusion and Future Work

We introduced the novel problem of predicting the effectiveness of keyword queries

over DBs. We showed that the current prediction methods for queries over unstructured

data sources cannot be effectively used to solve this problem. We set forth a principled

framework and proposed novel algorithms to measure the degree of the difficulty of a query

over a DB, using the ranking robustness principle. Based on our framework, we propose

novel algorithms that efficiently predict the effectiveness of a keyword query. Our extensive

experiments show that the algorithms predict the difficulty of a query with relatively low

errors and negligible time overheads.

An interesting future work is to extend this framework to estimate the query

difficulty on other top K ranking problems in DBs such as ranking underspecified SQL

statements or keyword queries with exclusion operations or supporting phrases. Another
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direction is to experiment with ranking functions that may not fall under the two function

classes used in this work. Finally, we will extend our robustness framework for semi-

structured queries, where the user specifies both structured conditions and keywords.
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Chapter 4

Leveraging User Query Sessions to

Improve Searching of Medical

Literature

Published reports about searching medical literature do not refer to leveraging

the query context, as expressed by previous queries in a session. We aimed to assess novel

strategies for context-aware searching, hypothesizing that this would be better than base-

line. Building upon methods using term frequency-inverse document frequency, we added

extensions such as a function incorporating search results and terms of previous queries,

with higher weights for more recent queries. Among 60 medical students generating queries

against the TREC 9 benchmark dataset, we assessed recall and mean average precision.

For difficult queries, we achieved improvement (27%) in average precision over baseline.

Improvements in recall were also seen. Our methods outperformed baseline by 4% to 14%
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on average. Furthermore, the effectiveness of context-aware search was greater for longer

query sessions, which are typically more challenging. In conclusion, leveraging the previous

queries in a session improved overall search quality with this biomedical database.

4.1 Introduction

Millions of queries are issued each day on the PubMed system [36]. Due to the

importance of searching PubMed, a large number of Web-based applications have been

deployed for this [79]. The Text Retrieval Conference (TREC) has included tracks for this

domain of data, e.g., the TREC Genomics Tracks in 2006 and 2007 [58, 57]. An ideal query

session would contain only a single query, which would always generate the most relevant

results. Much work has proposed methods to improve searching of PubMed [76, 14, 79]:

term frequency-inverse document frequency (TF-IDF) ranking, which reflects differences

in the frequency of search terms among documents in a corpus of documents, has been

shown to outperform binary search, which simply returns all documents that match all

search terms [76]. Further, citation data have been used to increase the score of highly-

cited publications, similarly to Googles PageRank algorithm6, which has been successful in

Web Search, for searching PubMed [14]. More recently, a semantic network was constructed

using domain concepts in a document to improve the PubMed data searching [89]. Despite

enhancements from these methods, many users must generate more than one query to yield

desired results. Improving the methods for searching may increase the chance that relevant

documents will be seen, and may decrease the time required to conduct a search.

We propose a new approach to improve searching of biomedical literature, by
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identifying the context of a query, which is orthogonal to these previous solutions, and

hence could complement them. With a search topic in mind, users start a query session

by submitting a query to the search engine (e.g., PubMed) to find relevant documents.

While trying to satisfy their information need on the search topic, at each step they either

browse more of the returned results (e.g., viewing the next page of results), or they choose

to modify (reformulate) their query to convey their search topic more effectively, given the

results they have seen so far. To the best of our knowledge, there has not been any study on

how to leverage the query session to improve the ranking of results in biomedical literature.

That is, the state-of-the-art biomedical search engines handle each query in a query session

independently, i.e., a query does not affect the results of any subsequent query.

We believe this is an important direction, as research on other domains in Infor-

mation Retrieval (IR), like general Web searches by consumers, has shown that the past

queries in a query session can help understand the user’s search topic [124]; hence, a search

engine can compute the ranking not only based on the current query, but also considering

the past queries in the same query session. However, to the best of our knowledge, this

technique has not been applied to search biomedical data. Motivated by such research, we

propose novel methods to perform context-aware search in biomedical data. We postulate

that PubMed is an ideal setting for this research, since PubMed users reformulate their

queries 4.44 times, on average, in a query session [36].

Objective: In this work, we study the context-aware searching of PubMed data.

Our hypothesis is that a user’s query session can be used to define the query context for the

current query, and this context can be used to improve the ranking of the returned results.
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4.2 Methods of Leveraging User Query Sessions

For the purpose of this work, we assume that the user progressively submits re-

lated queries, based on the top results of the previous queries. The context-aware ranking

principle (CRP) indicates that for two associated (in the same query session) consecutive

queries Qk−1 and Qk, the user is likely to prefer the search results related to both queries,

and thus such results should be promoted for Qk [124]. That is, if two results of Qk have

about the same score with respect to Qk, the user likely prefers the result that is also rel-

evant to Qk−1, since Qk−1 is also related to the users search topic. We incorporate this

principle in our model.

We propose context-aware search strategies that build upon the two most popular

ranking techniques in IR: TF-IDF-based BM25 and Language Models, which are described

below. Note that our methods assume that we know when a query session starts and ends,

that is, when the user switches to an entirely different search (i.e., different topic). Detecting

the start and end of a query session is outside the scope of this work. To handle this, we

can use existing query-session detection techniques [51, 80].

4.2.1 Incorporate context-aware search in TF-IDF ranking

We built our ranking strategy on top of the Lucene [2] system, which is a popular,

open-source, high-performance text-based search engine. The ranking function of Lucene

is based on the well-accepted Okapi BM25 ranking formula [93], which is a state-of-the-art

TF-IDF retrieval function and is widely used. Lucene supports weighted queries, i.e., each

query term can be assigned a different importance weight.
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BaselineBM25: The baseline TF-IDF search method applies the Lucene ranking function

and treats each user query independently of the previous queries in the query session. We

denote this ranking as BaselineBM25.

M1: We used previous research in IR to represent the query context based on the past

queries [103, 110]. We adopted the following ranking function, which incorporates the

terms of all past queries in the query session. In particular, the probability of query term

w appearing in the current query, given query sequence Q1, Q2, ..., Qn (Qn is the current

query) is:

P (w|Q1, Q2, ...Qn) =
1

n

∑
i=1

n
c(w,Qi)

|Qi|
γ(1− γ)(n−1) (4.1)

where, c(w,Qi) is the number of occurrences of term w in query Qi, and |Qi| is the

number of terms in Qi. In this work we do not consider phrases as terms, but only single

words, excluding stopwords. γ is the decay factor to reflect that older queries in the query

session are less important; we set γ = 0.6 in our experiments (we found no considerable

difference in the results for values of γ around 0.5). We build a context-aware query Q′ that

includes all terms in the query session Q1, Q2, ..., Qn. Each term is assigned an importance

weight equal to its probability as computed in Equation 4.1. We refer to this context-

aware ranking method as M1. We submit Q′ to Lucene, which supports term weighing as

mentioned above.
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4.2.2 Incorporate context aware-search in Language Model ranking

A popular alternative to TF-IDF ranking is Language Model (LM)-based rank-

ing [108], where the score of a document is the probability that the document will generate

the query. In particular, a document R is viewed as a bag of words, and the probability of

each word is its frequency in the document over the total number of words in the document.

Then, the score Score(R,Q) of a result R for query Q is the probability Prob(Q|R) that a

generative model, which at each step picks a term from R according to its frequency-based

probability, will generate Q. More details are available in the paper of Song and Croft [108].

BaselineLM: The baseline is to consider each query separately and use the LM ranking

formula [108].

Let L1, L2, ..., Ln be the ranked results lists for Q1, Q2, ..., Qn (Qn is the current

query) respectively. According to CRP mentioned above, if two ranked lists Li and Lj from

the same query session are similar to each other, the results that appear in both Li and Lj

have a higher chance of being relevant to the users search topic.

Based on the key principle of LM-based ranking [108], for each result R we com-

pute a context-aware score according to the likelihood of generating the query session

Q1, Q2, ..., Qn given R. Making the assumption that queries are independent of each other,

which is common in IR, the context-aware score of R can be computed using Equation 4.2,

which expresses a standard method to combine independent pieces of evidence using a

weighted average combination [28].

P (Q1, Q2, ...Qn|R) = a1P (Q1|R) + a2P (Q2|R) + ...+ anP (Qn|R) (4.2)
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where ai is the weight (importance) of Qi. We can compute each of the P (Qi|Rn)

terms using the well-studied LM ranking formula [108]. Thus, the key challenge is how to

estimate weights ai, 1 ≤ i ≤ n, based on the context-aware ranking principle. We propose

to calculate ai as follows:

ai =
1

n− i+ 1
·
∑n

j=1,j 6=i Sim(Li, Lj)

n− 1
(4.3)

Where Sim(Li, Lj) measures the similarity between two ranked results lists Li and Lj .

The first factor in Equation 4.3 assigns higher weight to more recent queries. Several

standard measurements can compute the similarity of ranked results lists [45]. We consider

three strategies to compute Sim(Li, Lj), which correspond to three proposed context-aware

ranking strategies:

• M2: Sim(Li, Lj) is the Jaccard similarity, that is, Sim(Li, Lj) =
|Li∩Lj |
|Li∪Lj | .

• M3: Sim(Li, Lj) is one minus the normalized Spearman’s Footrule [34] between the

ranked results lists. Spearman’s Footrule measures the ranking disarray. Two identical

lists have Spearman’s Footrule equal to 0, and two lists ranked inversely from each

other have Spearman’s Footrule 1. To compute the Spearman Footrule on two partial

lists, where not all elements from the one list appear in the other, we used the formula

by Fagin et al [45]. In this variant, two lists have Spearman’s Footrule 1 if they have

no common items.

• M4: We measured the difference between the term distributions of the concatena-

tion of title, abstract, and MeSH terms of the top results of the two lists. For that,

we use the Kullback-Leibler distance [72], which is a standard measure for this pur-
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pose. Kullback-Leibler distance is non-negative and unbounded. To normalize it, we

used normKL = e(−kl) where kl is the original Kullback-Leibler distance, such that

normKL is bounded to (0, 1]. When two term distributions are identical, kl is 0,

thus normKL is set to 1. If the kl is large, then normKL is close to 0.

In all methods, we use the top-K results from each list in our experiments to measure the

lists’ similarity, with K = 100.

4.3 Related Work

Some ranking models consider the result clicks of the user [124, 103, 110]. Our

approach, however, assumes that this information is not available, and only the sequence of

user queries is available. For instance, user clicks may be difficult to collect given the query

interface, or perhaps the result snippets provide enough information so that the user will

not click on results. Further, reports of result clicks have not targeted biomedical data.

Related to how we extent TF-IDF ranking for context search, previous work has

been proposed to apply query expansion in biomedical data search. Among them, some

work uses domain knowledge to support the expansion [61, 34], using domain knowledge

source such as Unified Medical Language System (UMLS) [78]. Relevance feedback has

also been used for this purpose [27, 89]. However, this needs the user to explicitly rate the

relevance of top ranked results which could be inconvenient for the users. These works are

complementary to our approach.
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4.4 Experimental Evaluation

4.4.1 Experimental Setting

Data Set. We used a standard benchmark dataset, TREC 9 filtering data [117], in our

experiments. TREC 9 filtering contains a set of 348,566 references from MEDLINE con-

sisting of titles and abstracts from 270 medical journals [117]. The original dataset is split

into test and training sets. We used the training data set which is from year 1988 to 1991,

and contains 293,856 files. Examples of documents are shown in Figure 4.1. The training

set contains 63 search topics where, for each search topic, the set of relevant documents

is provided. Each search topic comes with a title and description. For example, a search

topic is show in Figure 4.1. Given the title and description of the search topic, users enter

keyword queries to identify relevant documents in the corpus. Each page contains at most

10 search results. At most 50 unique results will be shown to the user for a search topic.

Given the high cost of recruiting domain experts to evaluate our methods, we lim-

ited the number of search topics. We want to avoid “easy” topics, where it is straightforward

to formulate a keyword query that will retrieve many relevant results, and also avoid topics

with a relatively low number of relevant results. We used the following selection criteria:

for each topic, we created three keyword queries, the title, the description and the concate-

nation of title and description, and submitted these queries to Lucene to get the top-50

results. We selected a search topic if all three of the queries return fewer than 21 relevant

results. Further, we required that the total number of relevant results for each selected

search topic is over 40. The parameters 21 and 40 were manually selected by progressively
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Figure 4.1: User survey interface

changing them until we keep 20-25 search topics. This led to a subset of 22 search topics.

User Study Setting. For each search topic, we display to the user the description of

the topic and an empty search textbox, and ask the user to enter a keyword query (see

Figure 4.1). We then display the top-10 results. We then ask the user to modify the query

if the results do not look relevant enough. This process continues until 5 pages of results

are displayed. We do not ask users to mark the relevant results, since we already have this

information from the TREC benchmark. We do not display duplicate results across queries

of a query session. The key output of the user study is a set of query sessions (sequences of

queries) for each search topic.

We recruited medical students from the Indiana University School of Medicine,

after receiving approval from the Indiana University Institutional Review Board. We divided
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the 22 search topics into 4 groups of 5 or 6 topics per group, such that each group of search

topics can be finished in about 20 minutes, which is a reasonable workload. Each user

was asked to complete one set of queries, and received a $15 gift card as a reward. Sixty

participants (users) completed the survey. The study generated 323 search tasks, i.e. topic-

user pairs. That is, each search topic was completed by about 15 users (323 / 22 = 14.7).

4.4.2 Experimental Results

In 86 of the search tasks, the user did not modify her initial query to get the top-30

results (3 pages of 10 results each), and in 58 the user did not modify the initial query to

get the top-50 results (5 pages of 10 results each). On average, in the 323 search tasks, 2

queries (i.e., the query session has 2.36 queries on average) are used for top 30 results, and

3 queries (query session has 3.47 on average) are used for top-50 results. Out of the 323

tasks, Figure 4.1 shows the distribution of query session length (the number of queries used

in a query session) for top-50 (30) results.

(a) top-30 (b) top-50

Figure 4.2: Distribution of query session lengths to get top-50 results and top-30 results.
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Evaluation Measures. We measured the search quality using Precision, Recall, Average

Precision, and Normalized Discounted Cumulative Gain (NDCG) [83]. Average Precision

and NDCG take into consideration the ranking positions of the returned relevant results.

The Average Precision for the top-K results is calculated as follows:

AveP@K =

∑K
i=1 (p(i) · rel(i))

number of relevant documents
(4.4)

where p(i) is the precision at cut-off i in the ranking list, and rel(i) is 1 if the item at rank i

is a relevant document, and 0 otherwise. Mean Average Precision (MAP) is used to measure

the average value of Average Precision for a set of queries. NDCG is a normalization of

Discounted Cumulative Gain (DCG) in the range [0, 1] and is calculated as:

NDCG@K =
DCG@K

IDCG@K
(4.5)

where IDCG@K is the ideal DCG@K, i.e., the maximum possible DCG value up to the

ranking position K. DCG@K is calculated as:

DCG@K = rel(1) +
K∑
i=2

rel(i)

log2(i)
(4.6)

Table 4.1 shows the quality measures for each strategy, averaged over all 22 search

topics. Note that our main goal is not to compare BM25 to LM (although this is a side

product of our study), but to evaluate the context-aware search strategies for BM25 and

LM against the corresponding baseline, that is, compare M1 against BaselineBM25, and M2

- M4 against BaselineLM. In Table 4.1, * indicates the improvement over baseline (shown

in previous row) is with p-value < 0.05, and ** indicates the improvement is with p-value

< 0.01.
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Table 4.1: Search results quality for top-30 and top-50 from different search algorithms.

Top-30 Top-50

MAP NDCG Precision Recall MAP NDCG Precision Recall

BaselineBM25 0.07 0.26 0.26 0.14 0.09 0.26 0.22 0.20

M1 0.08 0.28∗ 0.29∗ 0.16∗ 0.10∗∗ 0.27∗∗ 0.24∗∗ 0.22∗∗

BaselineLM 0.08 0.27 0.28 0.15 0.10 0.26 0.24 0.21

M2, M3, M4 0.08 0.27 0.28 0.15 0.10 0.27∗ 0.25∗ 0.22∗

In Table 4.1, we observe a 4% to 14% improvement over the BaselineBM25 on

different measurements for M1, e.g., M1 has MAP 0.08 on top-30 results while BaselineBM25

has 0.07, that is, the improvement is 0.08−0.07
0.07 = 14%. We observe up to 5% improvement

on different measurements for M1, M2 and M3 in Table 4.1 over BaselineLM. For the rest

of this chapter, we will present results for M1 and M2, since M3 and M4 strategies perform

very similarly to M2.

Figures 4.3 and 4.4 show the average improvement over their corresponding base-

lines for M1 and M2 with respect to the number of query modifications for a search topic

(distribution of query session lengths is shown in Figure 4.2). Note that here we do not first

average for each search topic, but each search task is treated independently, since the same

search topic may have tasks with different numbers of modifications (by different users).

The improvements of M1 over BaselineBM25 are with p-value < 0.01 on groups where query

session length > 2 and M2 over BaselineLM are with p-value < 0.01 on groups where query

session length > 3. We also observe that the improvement over the baseline is increasing

for longer query sessions, as more context information can be leveraged.
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(a) M1 vs. BaselineBM25 on top-50 results (b) M2 vs. BaselineLM on top-50 results

Figure 4.3: Search quality improvement on top-50 results over baseline for M1 and M2 with
respect to the number of query modifications for a search task.

(a) M1 vs. BaselineBM25 on top-30 results (b) M2 vs. BaselineLM on top-30 results

Figure 4.4: Search quality improvement on top-30 results over baseline for M1 and M2 with
respect to the number of query modifications for a search task.

Next, we study how the effectiveness of context-aware ranking varies with the

difficulty of the query. We split the 22 queries into three categories: “easy”,“medium” and

“difficult”. We use Precision@30 (Precision@50) of baseline as the splitting criterion: the 7

queries with highest Precision@30 (Precision@50) are defined as“easy” queries, the 7 queries
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with lowest Precision@30 (Precision@50) are defined as difficult queries, and the remaining

8 queries are “medium”. Figures 4.5 and 4.6 show the improvement of the context-aware

methods for the three query categories, for top-50 (top-30) results respectively.

In Figures 4.5 and 4.6, we observe that the improvement of context-aware search

(M1 and M2) over baselines is generally larger for more difficult queries. Thus, context-

aware search is more useful for more difficult queries. An exception is M2 for top-30 results

(Figure 4.6b), where we see a larger improvement for medium queries and even a decrease

in performance for some easy queries. This shows that the BaselineLM ranking is more

effective when we examine only the top-30 results as opposed to examining the top-50

results (Figure 4.5b).

(a) M1 vs. BaselineBM25 on top-50 results (b) M2 vs. BaselineLM on top-50 results

Figure 4.5: Search quality improvement on top-50 results over baseline for M1 and M2 on
the three categories of queries.

Figure 4.7 presents the Recall@50 and Figure 4.8 depicts the AvgP@50 for the 22

search tasks for BaselineBM25, M1, BaselineLM and M2. In Figure 4.7, we observe that for

21 out of the 22 queries M1 performs better than BaselineBM25 and for 18 M2 performs
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(a) M1 vs. BaselineBM25 on top-30 results (b) M2 vs. BaselineLM on top-30 results

Figure 4.6: Search quality improvement on top-30 results over baseline for M1 and M2 on
the three categories of queries.

better than BaselineLM. In Figure 4.8, we observe that for 21 out of the 22 queries, M1

outperforms BaselineBM25, and for 17, M2 outperforms BaselineLM.

Figure 4.7: Recall@50 for all 22 queries. Recall of each query is averaged over all search
tasks for that query.
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Figure 4.8: AvgP@50 for all 22 queries. Average Precision of each query is averaged over
all search tasks for that query.

4.5 Discussion

Motivated by recent research in the IR community, in this work we propose and

evaluate the first context-aware ranking strategies in biomedical literature, by leveraging

the user query session. Our methods leverage both the search results of the queries in a

query session and the terms in the queries, as evidence of a user’s search context. We

tested multiple strategies to incorporate the context information into state-of-the-art rank-

ing algorithms. The experimental results confirm our hypothesis. We observe that the

context-aware ranking strategies improve the quality of PubMed data search by 4% to 14%

over the BM25 baseline. Our context-aware search strategies for LM-based search also

outperform the baseline.

A key finding is that the improvement over the baseline methods is much higher

for more difficult queries, a finding that increases the impact of our results. In particular,

for more difficult queries, we achieve 27% improvement in Average Precision over the BM25

ranking baseline. Our context-aware search methods have a smaller improvement for LM-
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based ranking, where we observe 8% to 19% improvement for difficult queries for top-50

results. A possible explanation is that for easier topics the users often generate accurate

queries to convey the search topic from the beginning, thus the evidence inferred from past

queries will not help as much as with difficult topics to remove the disambiguation of the

current query. We also found that the effectiveness of context-aware search is greater for

longer query sessions, which are typically more challenging, since users modify their query

when they do not like the returned results.

A limitation of our experimental method is that we do not ask users to generate

separate query sessions for each of the six evaluated ranking methods, but use the same

query sessions to evaluate all methods. The reason is that otherwise this would require

a six-fold increase in the number of subjects, which are difficult and expensive to recruit.

In particular, to record the query sessions we use a TF-IDF ranking for half and an LM

ranking for the other half search topics. Another limitation is that the used benchmark

TREC 9 filtering dataset is relatively old, but there is no newer dataset that has the user

relevance judgments needed in this project.

Our methods can be readily incorporated into existing search systems. Such a

system must cache a short history of user queries to apply our methods. To define the

query session, a simple but possibly cumbersome (for the user) solution is to let the user

define or mark explicitly when a new query session begins. Alternatively, the system could

automatically detect the start of a query session [51, 80]. In summary, based on our results,

leveraging the previous queries in a query session comes closer to the ideal of one query per

session, thereby improving the search quality in a biomedical search engine.
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Chapter 5

Multi-Query Diversification in

Microblogging Posts

Effectively exploring data generated by microblogging services is challenging due

to its high volume and production rate. To address this issue, we propose a solution

that helps users effectively consume information from a microblogging stream, by filtering

out redundant data. We formalize our approach as a novel optimization problem termed

Multi-Query Diversification Problem (MQDP). In MQDP, the input consists of a list of

microblogging posts and a set of user queries (e.g. news topics), where each query matches

a subset of posts. The objective is to compute the smallest subset of posts that cover all other

posts with respect to a “diversity dimension” that may represent time or, say, sentiment.

Roughly, the solution (cover) has the property that each covered post has nearby posts in

the cover that are collectively related to all queries relevant to this covered post.

115



5.1 Introduction

User are overloaded by the high rate of produced microblogging posts, which often

carry no new information with respect to other similar posts. Our work aims at developing

a method for efficiently extracting diversified and representative posts from microblogging

data. Here are some examples of applications that motivate our approach: (i) A user

would like to subscribe to several queries (or topics or hashtags) in order to receive real-

time posts relevant to her interests. For example a journalist that is interested in politics

might follow a set of topics such as ‘White House’, ‘senate’ or ‘Barack Obama’, which can

be represented as hashtags in a microblogging service like Twitter. Or, an investor might

subscribe to a monitoring service that provides real time information relevant to terms such

as ‘GOOG’, ‘MSFT’, or ‘NASDAQ’. (ii) Alternatively, a user may search a microblogging

site by submitting a set of queries instead of individual queries; this has been shown to

improve the quality of search on documents [13].

In all these scenarios many microblogging posts will be relevant to the query

topics, but the complete data set is likely to include multiple redundant posts with respect

to dimensions such as time or sentiment. Sifting through such data would be overwhelming.

There has been work on building efficient indexes and search techniques for real-

time search on microblogging data, such as EarlyBird [17], TI [21], and LSII [122]. However,

these works do not address the information overload problem. There has been also extensive

work on query results diversification [7, 10, 95, 39], where the key idea is to select a small

set of posts that are sufficiently dissimilar, according to an appropriate similarity metrics.

For a number of reasons these diversity models are not quite adequate for multi-
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query searching or filtering applications as those described above: (i) Microblogging posts

are too short for text distance functions to be effective – instead, we eliminate near-duplicate

posts using existing duplicate detection methods like SimHash [99]. (ii) The query set is

effectively guiding the content-based diversity, that is, the user expects to see some results

for each of the query. (iii) Users may want to explore the data according to different

diversity dimensions. Two such dimensions, especially relevant in microblogging, are time

and sentiment, but other dimensions may also be useful in summarization of microblogging

data.

In summary, our problem setting is fundamentally different from previous works

on query results diversification in two ways: (i) In contrast to previous works that focus on

results diversification for a single query, we study diversification with respect to multiple

queries. In our setting, the user expresses her information need through a set of queries,

for instance, by subscribing to a set of topics, like “Obama” or “economy.” Since each

post could be relevant to several queries, a post can be covered by a post in the results

with respect to one query but not with respect to another. This motivates a multiple-

query definition of diversity coverage where a post is covered only if it is covered with

respect to all user-specified queries. (ii) Our diversity model does not use any inter-post

similarity metric; instead, in our approach each post is assigned a value (e.g., timestamp)

on the selected diversity dimension, and our method produces a subset of posts that covers

the whole dimension range. As explained earlier, this model is more appropriate for the

applications we are targeting.

To model this novel definition of diversity, we introduce an optimization problem
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called the Multi-Query Diversification Problem (MQDP), defined as follows: Given a set of

user queries, we aim to identify the minimum representative subset of microblogging posts

such that (i) posts are diverse to each other (e.g., avoid posts matching the same query with

similar sentiment, or publication time), and (ii) all posts that are relevant to at least one

query are “covered” by a selected post. We define a diversity threshold λ on the diversity

dimension, such that two posts at distance at most λ apart may cover each other (assuming

they are associated to the same queries). E.g., the threshold can be 1 hour if the time

dimension is selected.

We study two variations of MQDP. In the offline (static) version of MQDP, for a

given dataset of microblogging posts, we seek to identify the minimum number of represen-

tative posts that cover every post in this dataset that is related to a set of queries (e.g.,

represented as hashtags). We show that MQDP is NP-hard, and we propose approximate

algorithms to produce the representative results efficiently. In the streaming version of

MQDP, we consider the scenario where posts arrive in a streaming fashion. The objective

is to extract a small subset of posts that covers all the posts in the data stream, with the

selected posts produced with a bounded delay.

A key challenge is that coverage is defined both on the diversity dimension and

on the queries matched, that is, two posts relevant to different queries cannot cover each

other, even if they have the same value on the diversity dimension. For example, a post

that only matches query ‘Obama’ does not cover a post that only matches query ‘economy’,

even if they have the same timestamp (assuming that time has been selected as the diversity

dimension). Further, in the streaming variant, a key challenge is how to minimize the length
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Figure 5.1: System Architecture. In this work, we focus on the Diversified and Representa-
tive Post Generation part.

of the returned diversified sub-stream, while at the same time incur a small delay in deciding

if a new post should be returned or not. The naive approach would be to wait a long time

after a post is published to be able to make a decision given its subsequent posts, but

this would be unacceptable, as users expect very short delays when viewing microblogging

data. We study these tradeoffs both theoretically and experimentally. Finally, we propose

a principled approach to achieve proportional diversity, where we want to display to the

user more posts from the more popular topics (queries), while at the same time maintaining

diversity.

The system architecture is depicted in Figure 5.1, where time is selected as the

diversity dimension. There are two options of providing input to the system. The first

option, which corresponds to the Multi-Query Diversification problem, is by issuing a search

query against an inverted index of microblogging posts. In the second option, corresponding

to the Streaming Multi-Query Diversification problem, the matching module works directly

on a stream of posts (e.g., Twitter stream).

Our contributions in this chapter can be summarized as follows:

• We introduce and formalize the Multi-Query Diversification problem and its streaming
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variant (Section 5.2).

• We show that the Multi-Query Diversification problem is NP-hard (Section 5.3).

• We propose exact and approximation algorithms with provable approximation bounds

for the Multi-Query Diversification problem and its streaming variant. We also study

the tradeoff between the result size and the acceptable delay in returning a post for

the streaming variant (Sections 5.4 and 5.5).

• We show a principled approach to achieve proportional diversity, where the popularity

of topics (queries) is reflected in the result. For that, we show how a dynamic post-

specific diversity threshold can be defined (Section 5.6).

• We conduct thorough experiments on real Twitter data and show that our proposed

approximation algorithms can compute the solution efficiently and effectively (Sec-

tion 5.7).

Section 5.8 presents related work, and we conclude and present future directions

in Section 5.9.

5.2 Problem Formulation

Definitions. Let L be a finite set of labels that can represent queries (such as hashtags

or news articles) and LP (a) be the list of microblogging posts that are relevant to a label

a ∈ L. Let P be the set of all posts.

We consider a diversity dimension F that defines a total order on the posts. We

represent each post Pi ∈ P as a pair (F (Pi), label(Pi)) where F (Pi) is the value of the post
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Pi in dimension F (for example, F (Pi) can be the timestamp, or the sentiment polarity of

post Pi) and label(Pi) ⊆ L is the set of labels that Pi is relevant to.

For ease of presentation and without harming the generality, in the remainder of

this work we will assume that F represents the publication time of a post, i.e. F (Pi) =

time(Pi). Hence, we represent each post as a Pi = (ti, label(Pi)) where ti = time(Pi) is the

timestamp. If ti ≤ tj , i.e., Pi is older than Pj we represent it as Pi ≺time Pj . If both Pi and

Pj are relevant to a label a and |ti − tj | ≤ λ, then we will write that Pi λ-covers a ∈ Pj .

Example 1. Consider the posts illustrated in Figure 5.2. If we define the threshold λ = ∆t

then P2 λ-covers a ∈ P1 and a ∈ P3, P1 λ-covers a ∈ P2, P3 λ-covers a ∈ P2, P3 λ-covers

c ∈ P4, and P4 λ-covers c ∈ P3.

All the above coverage examples are with respect to a single label. For our problem

definition, we further define the λ-cover for a post and a set of posts as follows.

Definition 1. (Post λ-cover) A post Pi is λ-covered by a set of posts Z if ∀a ∈ label(Pi):

∃Pj ∈ Z such that Pj λ-covers a ∈ Pi.

Definition 2. (Set λ-cover) Let P be a finite set of posts. Z ⊆ P is a λ-cover of P if

∀Pi ∈ P: Pi is λ-covered by Z.

Based on the above definitions, we formalize our Multi-Query Diversification Prob-

lem as follows:

Problem 1. Multi-Query Diversification Problem (MQDP) Given an instance 〈P, λ〉: a

collection of posts P and a distance threshold λ, compute the minimum cardinality subset of

posts Z ⊆ P that λ-covers P.
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Example 2. Consider the posts depicted in Figure 5.2. Let P = {P1, P2, P3, P4}. The time

distances between each consecutive pair of posts are all ∆t. Again, assume λ = ∆t. If we

select P2 and P4 then a ∈ P1 is λ-covered by P2, a ∈ P3 is λ-covered by P2, and c ∈ P3 is

λ-covered by P4. All posts have been λ-covered by P2 or P4, hence the set {P2, P4} λ-covers

P .

Figure 5.2: Example for coverage relations between posts.

In practice, posts might be arriving constantly. Hence, we also need to progres-

sively report representative posts within a small time window from their publication times-

tamp.

Problem 2. Streaming Multi-Query Diversification Problem (StreamMQDP) Given a set

of labels (e.g. queries) L, a set P of incoming posts where each post Pj arrives at timestamp

tj, and a distance threshold λ, progressively report a small cardinality Z ⊆ P that λ-covers

P, with the constraint that each post Pi ∈ Z needs to be reported within time τ from time(Pi).

In general we might want to diversify incoming posts based on a function other

than their publication time, e.g. based on their sentiment polarity or distance from a user’s

location. The above definition of the problem can accommodate this scenario. However
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in this setting post coverage will be computed based on the respective distance function

defined on sentiment polarity or geolocation.

5.3 NP-Hardness of MQDP

If all posts in an instance of MQDP are issued at exactly the same time, then this

instance is in essence an instance of the set cover problem, where the sets are the queries

(represented as sets of labels). This immediately implies NP-hardness of MQDP; in fact,

it also implies that MQDP cannot be approximated within ratio better than ln |L| [46]

(under appropriate complexity-theoretic assumptions). However, the instances needed for

this hardness proof require queries with arbitrary number of labels and such instances would

not appear in realistic data sets. In this section we show that MQDP remains NP-hard even

for instances with few labels per post.

Lemma 1. MQDP is NP-hard, even for instances with at most two labels per post.

Proof. We show that CNF (the satisfiability problem for conjunctive normal form formulas)

reduces to MQDP in polynomial time. Let α = C1∧...∧Cm be a CNF formula with variables

x1, ..., xn, where C1, ..., Cm are clauses. We transform α into an instance 〈P, λ〉 of MQDP

such that α is satisfiable if and only if P has a λ-cover of cardinality at most n(2m+ 3).

We now describe this construction. We will take λ = 1, and the set of labels will

be L = {wi, ui, ūi}i=1,...,n ∪ {cj}j=1,...,m. We will have posts issued at all integral times

1, ..., 2m+ 3. Specifically, for each i = 1, ..., n, P will contain the following posts:

(i) (1, {ui, wi}), (1, {ūi, wi}),
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(ii) (2m+ 3, {ui, wi}), (2m+ 3, {ūi, wi}), and

(iii) (2j, {ui}), (2j, {ūi}), for all j = 1, ...,m+ 1.

Also, for each i = 1, ..., n and j = 1, ...,m, we include posts (2j + 1, Uij) and (2j + 1, Ūij),

whose label sets Uij and Ūij depend on whether clause Cj contains variable xi or its negation:

(iv) If xi ∈ Cj then Uij = {ui, cj}, else Uij = {ui}.

(v) If x̄i ∈ Cj then Ūij = {ūi, cj}, else Ūij = {ūi}.

There are no other posts in P. (See Figure 5.3 for an example.)

1 2 3 4 5 6 7 8 9

u5,w5u5

u5

u5,c1

u5

u5

u5

u5

u5

u5

u5

u5

u5

u5,w5

u5,w5

u5

u5,c3 u5,w5

Figure 5.3: An illustration of the construction where m = 3, showing the posts for i = 5.
Only the label sets are shown, to avoid clutter. The example assumes that x5 ∈ C1, x̄5 ∈ C3,
and that these are the only occurrences of x5 in α.

This reduction clearly runs in polynomial time. So to complete the proof it is

sufficient to show the following claim: α is satisfiable if and only if P has a λ-cover of

cardinality at most n(2m+3). To prove this claim, we consider both implications separately.

(⇒) Suppose that α is satisfiable by some truth assignment f(). The corresponding

1-cover Z for P is constructed as follows. If f(xi) = 1, we include the following posts in Z;

(1, {ui, wi}), (2m + 3, {ui, wi}), (2j, {ūi}) for all j = 1, ...,m + 1, and (2j + 1, Uij) for all

j = 1, ...,m. If f(xi) = 0, we include the following posts in Z: (1, {ūi, wi}), (2m+3, {ūi, wi}),

(2j, {ui}) for all j = 1, ...,m + 1, and (2j + 1, Ūij) for all j = 1, ...,m. For each i we thus

include 2+m+1+m = 2m+3 posts, for the total of n(2m+3). All labels wi, ui, and ūi are
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easily seen to be covered. We claim that all labels cj are covered as well. Consider any label

cj . Since α is satisfied by f(), at least one literal in the corresponding clause Cj is true.

Suppose that xi ∈ Cj satisfies Cj , that is f(xi) = 1. (If Cj is satisfied by x̄i, the argument

is similar.) Then, by the definition of Z, post (2j + 1, Ui) is in Z and Ui = {ui, cj}. All

occurrences of cj are at time 2j + 1, so cj is covered by Z, as claimed.

(⇐) Now suppose that P has a 1-cover Z of cardinality n(2m + 3). Consider a

subset Zi of Z consisting of all posts that contain labels wi, ui or ūi, that is Zi contains all

posts from Z of the following form:

• (1, {ui, wi}), (1, {ūi, wi}),

• (2m+ 3, {ui, wi}), (2m+ 3, {ūi, wi}),

• (2j, {ui}), (2j, {ūi}), for j = 1, ...,m+ 1, and

• (2j + 1, Uij), (2j + 1, Ūij), for j = 1, ...,m.

We claim that |Zi| ≥ 2m + 3. There are 2m + 3 posts with ui, at times 1, 2, ..., 2m + 3,

so to cover them all we need at least m + 1 posts, and the only way to cover them with

m+ 1 posts is by choosing posts (2j, {ui}), for j = 1, ...,m+ 1. Similarly, we need at least

m + 1 posts to cover all ūi’s, and the only way to do that with m + 1 posts would be to

choose posts (2j, {ūi}), for j = 1, ...,m + 1. Note that these two sets of posts are disjoint

and together they have 2m+ 2 posts, with all wi’s are still uncovered. Thus Zi must indeed

contain at least 2m+ 3 posts.

Since |Zi| ≥ 2m + 3 for all i = 1, ..., n and our budget for posts is n(2m + 3),

we must have that in fact |Zi| = 2m + 3 for all i. Consider any i. To cover all wi’s, Zi
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must include at least one of (1, {ui, wi}), (1, {ūi, wi}) and at least one of (2m+ 3, {ui, wi}),

(2m + 3, {ūi, wi}). As covering all ui’s requires m + 1 posts and covering all ūi’s required

m+ 1 different posts, So Zi must have m+ 1 posts covering one of ui, ūi and m+ 2 posts

covering the other, with these other posts covering also all wi’s. We thus obtain that there

are only two choices for Zi:

{(1, {ui, wi}), (2m+ 3, {ui, wi})}

∪ {(2j + 1, Uij)}mj=1 ∪ {(2j, ūi)}
m+1
j=1 or

{(1, {ūi, wi}), (2m+ 3, {ūi, wi})}

∪
{

(2j + 1, Ūij)
}m
j=1
∪ {(2j, ui)}m+1

j=1 .

With the above in mind, we show that α must be satisfiable. If Zi is of the first

type, we set f(xi) = 1, and if Zi is of the second type then we set f(xi) = 0. Let Cj be any

clause. We need to show that Cj is satisfied. In Z the corresponding label cj is covered,

which means that Z contains some post (2j + 1, Uij) or (2j + 1, Ūij) which contains cj . By

symmetry, we can assume that cj ∈ Uij . By the form of Zi, as described above, that means

that xi ∈ Cj . The correspondence between f() and Z implies also that f(xi) = 1. Thus xi

satisfies clause Cj .

5.4 Algorithms for MQDP

A naive, exhaustive search algorithm to optimally solve MQDP would run in time

exponential in |P|, the number of posts. We first show that the computational complexity

of this algorithm can be significantly reduced using dynamic programming, to running time

that is exponential only in |L|, the number of labels, which in practice is a small integer.
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To reduce the running time even further, we present two polynomial-time algorithms that

produce approximate solutions. The first one is inspired by solutions to the set cover prob-

lem, which has an approximation bound of ln(|P||L|). The second one is a novel algorithm

based on a traversal of the ordered (by the diversity dimension) list of input posts, which

has a tighter approximation bound of s, where s is the maximum number of labels (queries)

that a post may be associated with.

5.4.1 Algorithm OPT

We now propose an exact algorithm based on dynamic programming, which we

refer to as OPT. We start with several definitions.

Definitions. Number the posts P1, P2, ..., Pn ordered by their timestamps. Letting tj =

time(Pj) for all j, we then have t1 < t2 < ... < tn. (We assume all posts timestamps are

different, for simplicity.) To simplify the description of the algorithm, we further assume

that we have an additional initial post P0 that contains all the labels, i.e., label(P0) = L.

Any instance can be modified to have this property, by adding a new post with all labels

and ε > λ time unit before the first post. This new post will have to belong to any solution,

and it increases the optimum solution by exactly one post element.

We need a few other definitions. Let f(j) = max
{
j′ ≥ j : tj′ ≤ tj + λ

}
for any

j = 1, ..., n. Define a (λ, j)-cover to be a set of posts Z ⊆
{
P1, ..., Pf(j)

}
that covers all

posts P1, ..., Pj . Note that we do not need to include any posts after time tf(j), because

they cannot cover any posts P1, ..., Pj .

The end-pattern of a (λ, j)-cover Z is defined as a function ξ : L→ {1, 2, ..., f(j)}

that to each a ∈ L assigns the index ξ(a) of the latest post Pξ(a) in Z that contains a. More
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Figure 5.4: An example of an end-pattern. The label set is L = {1, 2, 3, 4, 5, 6, 7}. A (λ, 15)-
cover Z = {..., P10, P12, P13, P16, P19} is marked with squares. The 15-end-pattern of Z is
ξ(1, 2, 3, 4, 5, 6, 7) = (12, 16, 19, 19, 10, 13, 10).

precisely, we have a ∈ label(Pξ(a)), Pξ(a) ∈ Z and a /∈ label(Pi) for each Pi ∈ Z such that

i > ξ(a).

If ξ is the end-pattern of some (λ, j)-cover then we will refer to ξ as a j-end-pattern.

It is easy to see that a function ξ : L → {1, 2, ..., f(j)} is a j-end-pattern if and only

if it satisfies the following conditions for each label a ∈ L:

(i) For any b ∈ L, if ξ(b) > ξ(a) then a /∈ label(Pξ(b)).

(ii) if tξ(a) + λ < ti ≤ tj then a /∈ label(Pi).

We will denote by Ξj the set of all j-end-patterns. An example illustrating the definition

of end-patterns is shown in Figure 5.4.

The algorithm proceeds from left to right, one post at a time. When processing

each Pj , the algorithm will keep track of a set of partial solutions that cover the first j

posts P1, ..., Pj . This set of partial solutions is chosen so that at least one of them can be

extended to a global optimal solution. On the other hand, we need to make this set small

to obtain good running time.

Specifically, for each j and each ξ ∈ Ξj we will compute the cardinality hj,ξ of
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the optimal (λ, j)-cover with end-pattern equal ξ. Initially, by our assumption about post

P0, the only 0-end-pattern in Ξ0 is ξ defined by ξ(a) = 0 for all a ∈ L. For this ξ, we set

h0,ξ = 1.

Next, suppose that j ≥ 1 and that we have all values hj−1,η, for η ∈ Ξj−1, already

computed. Then, for each ξ ∈ Ξj , hj,ξ is computed according to the following formula:

hj,ξ = min
η∈Ξj−1

η�ξ

{hj−1,η + ∆(η, ξ)}. (5.1)

We now explain the notations used in this formula:

• η � ξ means that η is consistent with ξ, that is, for any a ∈ L, if ξ(a) ≤ f(j − 1) then

ξ(a) = η(a).

• ∆(η, ξ) = |
{
Pξ(a) : ξ(a) > f(j − 1)

}
| is the number of posts in ξ that are not in η.

When the above iteration completes, the algorithm outputs minξ∈Ξn
hn,ξ as the optimum

value.

Implementation. We present the algorithm in pseudocode as Algorithm 2, where we return

the minimum cardinality instead of the final posts list for simplicity. Algorithm 2 can be

easily modified to return the final posts if we maintain all j-end-patterns for each j such

that we get the final list of posts by backtracking.

Algorithm 2 starts from the first post P1. At step j (working on post Pj) we

already have Ξj−1, and we first generate all candidate j-end-patterns, denoted Ξ̂j (lines 4 -

9). For this, we only need to check the posts in the range [tj −λ, tj +λ] as posts before this

range cannot cover Pj nor later posts, so they do not affect the subsequent computation.

For each candidate end-pattern ξ̂ in Ξ̂j , ∀a ∈ label(Pj) : Pξ̂(a)λ-covers a ∈ label(Pj), and for
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a label a /∈ label(Pj), ξ̂(a) could be 0 (which means that we do not have to select any post

for the labels not in label(Pj) to λ-covers Pj), or any i that a ∈ label(Pi) with |ti − tj | ≤ λ

(lines 7 - 9). This case (ξ̂(a) = 0) will be fixed during the computation of the cardinality

of a j-end-pattern based on Ξj−1, where we only considers η ∈ Ξj−1 that η � ξ (lines 13 -

14 ensure this) and we update the ξ(a) to η(a) where ξ(a) = 0 (lines 19 - 20). We put the

updated end-pattern into Ξj , and save or update its cardinality hj,ξ in Hj (lines 24 - 28)

where Hj(ξ) is the optimal cardinality of each end-pattern ξ in Ξj .

Correctness. To prove correctness, we first show feasibility, namely that for each j and

ξ ∈ Ξj there is a (λ, j)-cover with end-pattern equal to ξ and cardinality hj,ξ. This can be

shown by simple induction on j. Suppose that the claim holds for j−1. Fix any ξ ∈ Ξj . For

this ξ, let η ∈ Ξj−1 be the end-pattern that realizes the minimum in (5.1). By the inductive

assumption, there is a (λ, j − 1)-cover Y with end-pattern η and cardinality hj−1,η. By

adding to Y the posts Pξ(a) for a ∈ L such that ξ(a) > f(j − 1), we obtain a (λ, j)-cover

Z with end-pattern ξ and hj−1,η + ∆(η, ξ) = hj,ξ posts. Note that Z is indeed a correct

(λ, j)-cover, since all posts P1, ..., Pj−1 are covered by Y and Pj is covered by Z, by the

definition of ξ.

Next, we argue that the final solution is indeed optimal. It is sufficient to prove

that for each j and ξ ∈ Ξj the value of hj,ξ is optimal. We again proceed by induction on

j. Assume the claim holds for j − 1. Fix any ξ ∈ Ξj and define Z∗ to be an optimal (λ, j)-

cover with end-pattern ξ. Let Y ∗ be obtained from Z∗ by removing the posts (strictly)

after tf(j−1) and let η be the end-pattern for Y ∗. Then η � ξ and Y ∗ must be an optimal

(λ, j − 1)-cover with end-pattern η, since otherwise, if a smaller (λ, j − 1)-cover with end-
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Algorithm 2 Algorithm OPT

Input: A list of microblogging posts P sorted by timestamp, each post Pj ∈ P with a set of labels
label(Pj), a threshold λ.

Output: The minimum cardinality of a λ-cover P.
1: Ξ0 = {(0, ..., 0)}
2: H0((0, ..., 0)) = 1
3: FOR j = 1→ |P| DO
4: ppl← {} //posts per label
5: FOR a ∈ |L| DO
6: ppl[a]← posts in LP (a) in [tj − λ, tj + λ]
7: IF a 6∈ label(Pj) THEN
8: ppl[a].add(0)
9: Generate j-end-patterns: for each label a get one item from ppl[a], then form an end-pattern

with these |L| items. If it is valid (see conditions of j-end-pattern), add it to Ξ̂j .

10: FOR ξ̂ ∈ Ξ̂j DO
11: FOR η ∈ Ξj−1 DO

12: ξ ← ξ̂
13: IF ∃a ∈ L : η(a) 6= ξ(a) ∧ 0 < ξ(a) ≤ f(j − 1) THEN
14: next //in this case, it is impossible that η � ξ
15: ∆← ∅
16: FOR a ∈ L DO
17: IF η(a) 6= ξ(a) ∧ ξ(a) 6= 0 ∧ ξ(a) 6∈ ∆ THEN
18: ∆.add(ξ(a))
19: IF ξ(a) 6= η(a) ∧ ξ(a) == 0 THEN
20: ξ(a)← η(a) //handle the 0 items in ξ
21: IF ξ is not valid THEN
22: next //see conditions of j-end-pattern
23: card(ξ) = Hj−1(η) + |∆|
24: IF ξ ∈ Ξj THEN
25: Hj(ξ)← min{card(ξ), Hj(ξ)}
26: else
27: Ξj .add(ξ)
28: Hj(ξ)← card(ξ)
29: RETURN min

ξ∈Ξ|P|
H|P|(ξ)− 1

pattern η existed, we could add to it the posts of ξ after tf(j−1) and obtain a (λ, j)-cover

with end-pattern ξ with smaller cardinality than Z∗. Thus Y ∗ has cardinality hj−1,η, by

the inductive assumption. Consequently, the cardinality of Z∗ is hj−1,η + ∆(η, ξ).

Time Complexity. The number of all end-patterns is O(|P||L|), so the loop on j and ξ will

iterate O(|P||L|+1) times. Computing the minimum in (5.1) takes time O(|P||L|) as well, so

the time complexity will be O(|P|2|L|+1).
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Space Complexity. The most expensive part in terms of required space is on saving all

end-patterns at each position. In order to compute the minimum cardinality, we only

need to maintain the patterns for the current position and the previous position, as shown

in Algorithm 2. So the space complexity will be O(|P||L|). Finally we want to get the

minimum set of posts, so we need to keep the end-patterns at every position to be used for

backtracking. Thus, the space complexity will be O(|P||L|+1).

5.4.2 Algorithm GreedySC

With running time O(|P||2L|+1), Algorithm OPT may still be impractical for large

data sets. Thus we propose approximation algorithms to solve this problem more efficiently.

The first approach is to transform an MQDP instance 〈P, λ〉 to a set cover problem

instance and then apply the greedy set-cover algorithm. Each element of thus constructed

set cover problem instance is a pair of a post Pi ∈ P and a label a: 〈Pi, a〉 where a ∈ label(Pi).

Thus, the universe of the set cover instance is U = {〈Pi, a〉}i=1,...,|P|,a∈label(Pi). We have |P|

sets in the set cover problem (one set for each post). The k-th set Sk contains the set of pairs

that are λ-covered by picking Pk, i.e. Sk =
⋃
a∈label(Pk) {〈Pi, a〉 : a ∈ label(Pi), |tk − ti| ≤ λ}.

Algorithm 3 depicts this approach. For ease of presentation we refer this algorithm

as GreedySC in the remainder of this chapter. At each iteration, GreedySC selects the set

that contains the largest number of yet uncovered elements.

Approximation bound. This algorithm has an approximation ratio of ln k, where k is the

maximum set size [46]. In our case, k ≤ |P||L|, so |SGreedySC | ≤ (ln |P| + ln |L|)|Sopt|. In

practice, |P| is much larger than |L| and hence the error bound is essentially ln |P|.
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Algorithm 3 Algorithm GreedySC

Input: A list of microblogging posts P sorted by timestamp, a set of labels L, each label a ∈ L with
a list of relevant posts LP (a) ⊆ P sorted by timestamp, a threshold λ.

Output: A subset of posts Z ⊆ P, such that Z λ-covers P.
1: S = {S1, S2, ..., S|P|}, initiate each set Si ∈ S as ∅
2: Z = ∅
3: FOR a ∈ L DO
4: FOR j = 1→ |LP (a)| DO
5: FOR i = j → |LP (a)| DO
6: IF |time(LP (a)[j])− time(LP (a)[i])| > λ THEN
7: break
8: x← index of LP (a)[i] in P
9: y ← index of LP (a)[j] in P

10: Sx.add(〈LP (a)[j], a〉)
11: Sy.add(〈LP (a)[i], a〉)
12: while true DO
13: i← arg max

x
(|Sx|)

14: IF |Si| == 0 THEN
15: break
16: Z.add(Pi)
17: FOR j = 1→ |P| DO
18: Sj = Sj − Si
19: RETURN Z

5.4.3 Algorithm Scan

We now propose another algorithm with a provable approximation bound and

better running time. The algorithm process the relevant posts of each label separately. It

scans each sorted list LP (a) to find the optimal solution Sa in terms of label a, and it

outputs Sscan =
⋃
a∈L Sa as its final solution.

For each label a, the scan starts from the first post in LP (a). During the scan, we

keep track of the most recent uncovered post Px. Thus, initially Px is the first post. We

scan forward until finding a post Py such that |tx − ty| > λ. Then we pick the post Pz that

is right before Py and add it to Sa. Then the posts from Px to Pz can be all marked as

covered (in terms of label a). With the scan continues, we mark the posts within distance

of λ to Pz as covered (in terms of label a) and we reset Px to be the first post that has
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Algorithm 4 Algorithm Scan

Input: A set of labels L, each label a ∈ L with a list of relevant posts LP (a) sorted by timestamp,
a threshold λ.

Output: A subset of posts Z ⊆ P, such that Z λ-covers P.
1: Z = ∅
2: FOR a ∈ L DO
3: IF |P (a)| == 0 THEN
4: next
5: j ← 1
6: left← LP (a)[j]
7: picked← null
8: while j ≤ |LP (a)| DO
9: IF |time(LP (a)[j])− time(left)| ≤ λ THEN

10: j ← j + 1
11: else
12: picked← LP (a)[j − 1]
13: Z.add(picked)
14: while j ≤ |LP (a)| DO
15: IF |time(LP (a)[j])− time(picked)| ≤ λ THEN
16: j ← j + 1
17: else
18: left← LP (a)[j]
19: break
20: last← the last post in LP (a)
21: IF picked == null ∨ |time(last)− time(picked)| > λ THEN
22: Z.add(last)
23: RETURN Z

distance larger than λ to Pz. The algorithm continues with the above procedure until it

reaches the end of the list, then if the last post is not λ-covered by a selected post, then we

add it to Sa. The pseudocode is presented in Algorithm 4.

Correctness. For each post Pi in LP (a) there must exist a post in Sa that λ-covers a ∈ Pi

with Algorithm Scan. Since Sscan is the union of Sa for all a ∈ L, then Sscanλ-covers each

Pi ∈ P. Thus Sscan is a λ-cover of P.

Approximation bound. Assume that each post is relevant with at most s ≤ |L| labels. Then

the approximation bound of Algorithm Scan is s, i.e. |Sscan| ≤ s|Sopt|.

Proof. It is routine to prove that Sa is an optimal λ-cover of LP (a). Thus, we have |LP (a)∩
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Sopt| ≥ |Sa|. Hence
∑

a∈L |LP (a) ∩ Sopt| ≥
∑

a∈L |Sa|. Since each post relates with at most

s ≤ |L| labels, thus s|Sopt| ≥
∑

a∈L |LP (a) ∩ Sopt| ≥
∑

a∈L |Sa|. Further it holds that∑
a∈L |Sa| ≥

⋃
a∈L |Sa| = |Sscan|. It follows that |Sscan| ≤ s|Sopt|.

Time Complexity. Algorithm Scan examines each post in LP (a) only once, thus the running

time is
∑

a∈L |LP (a)|, which is O(s|P|).

Optimizations of Algorithm Scan. Algorithm Scan processes each label separately, which

results in some inefficiency, because the posts selected for one label may also cover posts

from other labels. We consider an improvement to address this inefficiency. When selecting

a post Pi for a label a, we remove all posts covered by Pi from all subsequent lists LP (b).

The effectiveness of this optimization depends on the ordering of the labels processed by

Scan. We refer to this variant of Scan as Scan+.

5.5 Algorithms for StreamMQDP

For StreamMDQP, the posts/label matching module works directly on the stream

of microblogging posts instead of a collection of posts that have been indexed. The algorithm

selects a subset stream of the posts to λ-cover the whole stream. For a new relevant post,

the algorithm waits a small time τ to make the decision whether output this new post or

not. On one hand, to minimize the delay, we want to make a decision as soon as possible on

whether a post should be outputted or not. On the other hand, a longer delay increases the

probability of finding a smaller cover. Ideally, we should decide if a post should be output

immediately, that is, with delay τ = 0. However, as we show, this leads to an increased

total number of output posts.
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We show how Algorithm GreedySC and Algorithm Scan can be adapted for a

streaming setting.

5.5.1 Streaming Scan

We show that when we make an instant decision (τ = 0), we incur an error of up

to 2s, whereas if we have a delay of τ ≥ λ then we have the original Algorithm Scan error

bound of s.

Delayed ouput of a new post. As we process the stream in chronological order, we keep

the list of posts that have been already outputted. New posts can be added to the output

if they are not λ-covered by the previously selected ones. In order to decide whether a new

post has to be included in the results we can apply Algorithm Scan, which is natural for

streaming environments, since it processes the posts in order.

The algorithm, for each label a ∈ L, keeps track of the following posts: the

oldest and the latest uncovered relevant posts, denoted as P ou(a) and P lu(a) respec-

tively, and the latest outputted relevant post P lc(a). And the algorithm waits until time

min{time(P lu(a)) + τ, time(P ou(a)) + λ} to output P lu(a), at the same time set P lc(a) to

P lu(a) and both P ou(a) and P lu(a) to null. When a new post Px arrives, for each label

a ∈ label(Px), if P lc(a) λ-covers a ∈ Px, the algorithm doesn’t update anything for label a.

Or else the algorithm sets P lu(a), as well as P ou(a) if it is originally null, to Px. We denote

this algorithm as StreamScan.

Similar to the improvement of Algorithm Scan by Scan+, we can apply the same

idea to StreamScan as StreamScan+.

Approximation bound. This algorithm outputs posts exactly as Algorithm Scan when τ ≥ λ,
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Figure 5.5: An example with approximation ratio 2, for 0 < τ < λ

thus they have the same approximation error bound, i.e. s.

Instant output of a new post. Instead of waiting up to τ before a post to be outputted,

we can directly decide whether to output a post or not right after it arrives. For this, we

use a small cache that keeps track of the most recently selected posts for each label a ∈ L.

When a new relevant post Px arrives, if Px is not covered, we output Px and update the

cache appropriately.

Approximation bound. We can show that the above algorithm achieves a 2s approximation

bound if each post is relevant to at most s labels when 0 ≤ τ < λ. In order to prove this,

we will firstly consider the case when there is only one label. Assume that the results from

Algorithm StreamingScan consists of posts Pi1 , Pi2 , ..., Pin with timestamps ti1 < ti2 < ... <

tin . For 1 ≤ j < n, the distance between tij and tij+1 is larger than λ (otherwise they will

cover each other and the algorithm will not pick both of them). Then tij+2 − tij > 2λ thus

no post can λ-cover both Pij and Pij+2 . Hence, an optimal solution must contain no less

than n/2 posts. Thus the size of solution from this algorithm for label a, Sa ≤ 2Sopta , where

Sopta denotes the optimal solution size for the single label a.

We show an example in Figure 5.5 for 0 < τ < λ, where the optimal solution

consists of the posts presented by red squares, and the algorithm will return the posts

presented as blue dots. Thus the error factor is 2.
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Recall the analysis of approximation bound of Algorithm Scan, the sum of optimal

solution size from each single label is less than s times of global optimal solution size, i.e.∑
a∈L
|Sopta | ≤ sSopt, where Sopt is the global optimal solution. Thus StreamingScan has a 2s

approximation bound in the case of 0 < τ < λ.

5.5.2 Streaming Version of GreedySC

Delayed ouput of a new post. If we can tolerate a delay of τ > 0, then the streaming

Set-cover-based algorithm works as follows: Assume P ′ is the oldest post that has not been

covered yet, and assume its timestamp is time(P ′). Then, we wait until time time(P ′) + τ ;

let Z be the set of posts with timestamp between time(P ′) and time(P ′) + τ . We execute

the GreedySC algorithm in Z selecting posts to output, until posts in Z are all covered. We

pass the ones that are already covered and set again time(P ′) to be the oldest uncovered

post (the first post in subsequent stream that is not λ-covered by selected posts), and we

repeat the same procedure. We denoted this algorithm as StreamGreedySC.

We can have a variation of StreamGreedySC, referred as StreamGreedySC+: in-

stead of executing GreedySC on Z until all posts are covered, we can stop GreedySC on Z

once P ′ is covered and then update the oldest uncovered post P ′ (which is possibly in Z).

Instant ouput of a new post. If we want to instantly make a decision on whether to

output a post, i.e. τ = 0, then the streaming version of the Set-cover-based algorithm is the

same as the one for Algorithm Scan, which has worst case error bound of 2s, as explained

above.
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5.6 Proportional Diversity Through Variable λ

In the previous sections, we studied the Multi-Query Diversification problem as-

suming that the coverage parameter λ is applied uniformly for the whole range. However,

this does not address the problem of representativeness of the results. For example, if many

posts are posted in the morning but few in the afternoon, it may be desirable to return more

morning posts in the diversified result. Similarly, if we focus on the sentiment diversity, the

selected posts must reflect the distribution of the public’s sentiment. For example, news

about a decrease in the national unemployment rate would receive more positive posts, and

hence we want to display more positive posts.

We propose to consider a different λ for each post, such that λ is larger in sparse

areas and smaller in dense areas. The intuition is that if there are many say negative posts,

then a negative post should cover another negative post only if they are very close to each

other in terms of sentiment score. This will lead to displaying more negative posts, to better

represent the complete set of posts.

More specifically, we define a λ value for each pair of post and label that this post

matches, i.e., for each post Pi ∈ P and label a ∈ label(Pi) we define λa(Pi), proportional to

the density of posts around Pi that match label a.

However, we don’t want the variation of λ to be too drastic, because then rare

perspectives would not get represented. For example, if there are 20 negative posts and 2

positive, and we only show 3 to the user, it would make sense to also show one positive

one. For this reason, it makes sense to choose λ to be a non-linear function of post density.

We propose here a smooth diversity formula, inspired by the work in [123] on single-query
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searches, with λa(Pi) defined by:

λa(Pi) = λ0e
1− densitya(ti−λ0,ti+λ0)

density0 , (5.2)

where λ0 is a constant threshold set by a domain expert, densitya(ti − λ0, ti + λ0) is the

density of posts that match label a in the time range [ti − λ0, ti + λ0] (i.e., the number of

posts per minute matching label a in this time range) and density0 is the average density

of posts in a 2λ0 time interval across all labels (i.e., the average number of posts per minute

relevant to any label a ∈ L).

By applying Equation 5.2, we achieve proportional diversity in terms of both

(i) labels, i.e., the output will contain more posts from the labels with larger number of

matching posts, and (ii) the diversity dimension, e.g., the output will contain more posts

from the time intervals with more posts.

The astute reader will notice that in contrast to the fixed λ setting, when λ is

post-specific, the post coverage relation becomes directional. That is, it is possible that

Pi λ-covers a ∈ Pj but not Pj λ-covers a ∈ Pi. Nevertheless, all proposed algorithms

can be easily adapted to incorporate this property. It does not fundamentally change

the implementation of these algorithms except computing λ for each post per label. For

Algorithm GreedySC and Algorithm Scan, it is straightforward to apply post and label-

specific λs. For Algorithm OPT, one detail is that when processing post Pj we need to

generate j-end-patterns and hence we need to find all the posts Pi λ-covers a ∈ Pj , where

|ti− tj | may be larger than λa(Pj) as there might be λa(Pi) > λa(Pj) s.t. Pi λ-covers a ∈ Pj

but not Pj λ-covers a ∈ Pi. This could potentially reduce the efficiency of OPT.
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5.7 Experimental Evaluation

In this section we study the effectiveness and efficiency of the proposed algorithms

for MQDP and StreamMQDP. We describe the experimental setting in Section 5.7.1. Sec-

tions 5.7.2 and 5.7.3 study the effectiveness and efficiency of the algorithms, respectively.

5.7.1 Experimental Setting

Datasets. We conduct our experiments on Twitter data, that is, each document is a tweet.

We use topic modeling to extract a set of topics, which we use as queries (labels), that is,

each topic is mapped to a query,

Posts dataset. We used the Twitter Streaming API through which we can collect a random

sample of up to 1% of the whole public Twitter stream. We ran the streaming API for 24

hours, on June 12th, 2013, and collected about 4.3 million tweets.

Queries. Recall that a key motivation of our work is to monitor posts related to a user

profile, represented as a set of keyword queries. Given the lack of public profile datasets,

and the fact that a large ratio of tweets are commenting or referring to news articles [75],

we generate a query set by viewing each news topic as a query.

We use a news articles collection to extract topics, instead of using the tweets

dataset, because we expect that the topics quality will be higher and also we want to avoid

any bias to the algorithms from selecting queries directly based on the documents dataset.

In particular, we collected news articles from several popular news websites, such as CNN,

BBC, NY Times, LA Times etc., through their RSS feeds during the first half year in

2013 (until Jun 15th). This news collection consists of over 1 million articles. We applied
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unsupervised Latent Dirichlet Allocation (LDA) using an open source implementation by

Mallet1 to generate 300 topics on this news collection (the number of topics is an input

parameter). Each trained topic is a set of keywords with corresponding weights. We keep

the top 40 highest-weight keywords for each topic.

To generate label sets L (user profiles), we assume that each user is interested in

a broad topic like politics or sports, and specifies queries inside this broad topic. The 300

extracted topics are grouped into 10 broad topics by three researchers in our lab (if some

researcher thought a topic was too ambiguous we discarded the topic, thus we have 215

topics left). Then, to generate a label set L, we first randomly pick a broad topic and then

randomly pick |L| topics within the broad topic. Table 5.1 shows some example topics.

Topic Keywords

Sports

woods tiger golf masters championship mcilroy

garcia pga augusta rory mickelson

nfl super bowl blog draft ravens ers football baltimore

patriots jets quarterback giants eagles

Politics

obama president barack michelle inauguration house

administration congress presidential republicans

election vote poll presidential party president political

race candidate campaign electoral coalition

Table 5.1: Example topics with their highest weight keywords.

1http://mallet.cs.umass.edu/
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|L| number of posts

2 136

5 308

20 1180

Table 5.2: Number of matching posts per minute, for a label set for various label set sizes.

We create label sets with different sizes (|L|). For each |L|, we create 100 label sets.

Table 5.2 shows the average number of unique tweets matching at least one label set per

minute, where matching is defined as containing at least one keyword of the topic (label).

Implementation and Platform. The tweets inverted index shown in Figure 5.1 was

implemented using Apache Lucene2. Other real-time indexing systems are also possible,

such as EarlyBird [17] or LSII [122], although indexing is out of the scope of this work. Note

that an index is only used for the MQDP and not for the streaming problem variants. We

have implemented all algorithms in Java, and we conducted our experiment on a Windows

7 machine with Intel i5 3.0GHz CPU and 8 GB RAM.

5.7.2 Effectiveness Study

MQDP. Given that our exact dynamic programming algorithm OPT can only be executed

on small problem instances, when evaluating the error of approximation algorithms, we only

use a 10 minutes subset of our Twitter dataset, which starts at 12pm on Jun 13, and use

small values for λ and |L|, such that the number of j-end-patterns in OPT is not excessively

large.

2http://lucene.apache.org/

143



A key factor that may affect the effectiveness of the approximation algorithms is the

overlap among tweets with respect to the labels of a label set. That is, if many tweets match

multiple labels, then the problem is more challenging and hence the algorithms may have

higher error bounds. We define the post overlap rate as the average number of labels a post is

related to. Figure 5.6 shows the relative solution size error (|estimated−optimal|/optimal)

of the approximation algorithms for various post overlap rates, for |L| = 3. Each point in

Figures 5.6a, 5.6b and 5.6c represents a label set. GreedySC generally has better (smaller)

error than Scan and Scan+ except when the overlap rate is very close to 1; recall that Scan

and Scan+ are optimal for a single label (|L| = 1), and hence are also optimal for multiple

labels if the posts have no overlap (no post is related to multiple labels); this is not the case

for GreedySC. Figure 5.6d shows that the solution sizes in all algorithms drops when post

overlap rate increases, as they can pick posts that cover posts matching multiple labels.

Figure 5.7 depicts the relative solution size error of the approximation algorithms

for various λ values. We see that all approximation algorithms have higher error with larger

λ values, because there are more possible choices and hence the problem becomes harder.

Figure 5.8 shows the solution sizes of the approximation algorithms on larger

instances for varying number of labels, using the whole 1-day dataset. We see that the

solution size of Scan is linear on |L| since it handles each label separately. GreedySC

outperforms the other algorithms, especially as |L| increases.

StreamMQDP. In the streaming setting, it is tricky to define what the optimal solution

is because an algorithm has to make a decision about outputting a post before knowing
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(a) Scan (b) Scan+

(c) GreedySC (d) Absolute solution size

Figure 5.6: Solution size errors and absolute solution sizes for |L| = 3 and λ=5 seconds on
a 10 minute interval, for varying overlap.

what will follow. To avoid this confusion, we consider as optimal the solution of an optimal

algorithm that has full knowledge of the future posts. That is, the optimal streaming

solution for a time interval is the same as the optimal static solution for the same interval.

We again use a 10-minute time interval when the optimal solution is required.

Figure 5.9 presents the relative error for various λ values, given a fixed decision

delay τ . We see that the relative errors generally increase as λ increases, since more coverage

combinations are possible and hence the problem is harder; this is consistent with the
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Figure 5.7: Relative solution size error for |L| = 2 for varying λ on a 10 minute interval.

(a) λ = 10 minutes (b) λ = 30 minutes

Figure 5.8: Solution sizes on 1 day of tweets, for various label set sizes (|L|).

analysis we did for MQDP. We also see that StreamGreedySC+ is consistently slightly

better than StreamGreedySC.

Figure 5.10 shows the relative error for different τ values, given a fixed λ. We see

that the Scan-based algorithms have stable error when τ > λ because then the streaming

Scan algorithms generate the same solution as their non-streaming counterparts as discussed

in Section 5.5.1.

A surprising and interesting observation for the greedy algorithms in both Fig-

146



(a) τ = 5 seconds (b) τ = 10 seconds (c) τ = 15 seconds

Figure 5.9: Relative solution size errors on 10-minute interval for varying λ when |L| = 2.

(a) λ = 10 seconds (b) λ = 15 seconds (c) λ = 20 seconds

Figure 5.10: Relative solution size errors from approximation algorithms with respect to τ
when |L| = 2.

ures 5.9 and 5.10 is that the error has a local peak when τ is slightly larger than 2λ and

the smallest error is achieved when λ = τ . We can explain the behavior based on the

“in-between” posts, that is, short (<< λ) ranges of uncovered posts that are between al-

ready covered ranges, and to cover them, we incur big overlap with what is already covered.

Hence: (a) We have a minimum at τ = λ because we are making sure that there are no

“in-between” posts. (b) When τ >= λ we have a maximum at τ slightly bigger than 2λ

because this maximizes the effect of “in-between” posts. The algorithm has a relatively

high probability of using two (or three) posts to cover the posts of a label in this τ interval.

147



Figure 5.11: Absolute solution size when |L| = 2 for a 10-minute interval for various overlap
rate ranges.

Figure 5.11 shows the effect of the overlap rate on the solution sizes for λ = 10

seconds and τ = 5 seconds. We see that the approximation algorithms follow the same

trend as their static versions, that is, the greedy algorithms are better for higher overlap,

whereas the Scan algorithms are better for small overlap (recall that Scan is optimal for

overlap = 1).

Similarly to Figure 5.8 for MQDP, Figure 5.12 shows the solution sizes of the

approximation algorithms for StreamMQDP on one day of tweets. It shows that Stream-

GreedySC is better than StreamGreedySC+ on large λ.

5.7.3 Efficiency Study

We conduct our experiments on the one-day dataset. We measure the execution

time of the algorithms on in-memory data, that is, we do not account for the I/O of loading

the inverted indexes into memory.

Since different queries (labels) may return quite different number of relevant posts,

we compute the execution time per post, which is what is important to understand the
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(a) λ = 10 minutes (b) λ = 30 minutes

Figure 5.12: Solution sizes of approximation algorithms for 1-day of posts for various |L|,
for τ = 30 seconds.

(a) |L| = 2 (b) |L| = 5 (c) |L| = 20

Figure 5.13: Execution time for MQDP on one day of tweets, for varying λ.

throughput of posts that our algorithms can handle. We measure the execution times of

each algorithm for |L| = 2, 5, and 20.

MQDP. Figure 5.13 shows the efficiency results for varying λ on logarithmic axis. We

generally see that Scan algorithms are orders of magnitude faster than the greedy ones,

since they only make a sequential pass on the data. The running time of Scan and Scan+

is quite stable for different λs, whereas the efficiency of GreedySC increases sharply when λ
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(a) |L| = 2 (b) |L| = 5 (c) |L| = 20

Figure 5.14: Execution time for StreamMQDP on one day of tweets, for varying λ with
fixed τ = 300 seconds.

(a) |L| = 2 (b) |L| = 5 (c) |L| = 20

Figure 5.15: Execution time for StreamMQDP on one day of tweets, for varying τ with
fixed λ = 300 seconds.

increases, because the solution size is smaller with larger λ and hence GreedySC will have

smaller number of rounds to pick posts and update the covered range of left posts.

Another observation is that for larger label set size |L|, the running time of Scan

and Scan+ decreases, since the same post may cover more other posts. However, GreedySC

becomes slower with larger |L|, since we need to execute more iterations to find the post

with maximum cover range and to update other posts’ cover ranges.

To better understand this behavior, we provide more details on our implementation

of the greedy algorithms. We could maintain a heap (PriorityQueue in Java) in order to
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find the set with the maximum size at each step. Every time we select a post (a set in the

set cover problem instance), we need to update other posts’ cover range. For this, we need

to delete the original set from the heap and insert the set back with updated weight (set

size). When there are lots of relevant posts in a short time, this leads to big overhead of

updating this heap. Thus we don’t apply this in our implementation. Instead, we iterate

all sets to find the set with maximum size, which is experimentally shown to have better

performance on our data set.

StreamMQDP. Figure 5.14 evaluates the execution time of the approximation algorithms

by varying λ with a fixed τ value, and Figure 5.15 shows the results by varying τ given a λ.

Like Scan and Scan+ on MQDP, the efficiency of StreamScan and StreamScan+ for Stream-

MQDP is stable with respect to λ and τ . Given a λ, the efficiency of StreamGreedySC and

StreamGreedySC+ decreases slightly with the increases of τ , and given a τ their execution

time generally decreases with larger λ, because of smaller number of iterations of execution

of set cover algorithm.

5.7.4 Discussion

Our experiments show that the two classes of presented approximate algorithms,

Scan and GreedySC (including their variants), offer good relative errors ranging from 0.01

to 0.5 (except the extremely small τs in the streaming setting).

GreedySC has lower error than Scan in most settings; its maximum improvement

is about 60% (see difference between GreedySC and Scan+ for λ = 20 seconds in Figure 5.7)

for the static problem setting, whereas in the streaming setting GreedySC’s error is unstable,

and is often larger than that of Scan (see Figures 5.9 and 5.10).
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In addition to the instability, a potentially more serious shortcoming of GreedySC

is that it is 1 to 3 orders of magnitude slower than Scan, which makes Scan more desirable

for setting of high throughput and especially when the algorithm has to be executed for

millions of users (as in Twitter).

Finally, we show that our proposed exact dynamic programming algorithm is fea-

sible for small problem instances, where the number of queries is up to 2-3 and λ is less

than a minute.

5.8 Related Work

Vertical and federal search. Previous works in aggregated search argue that a user’s

intent can be captured in a better way if the web search retrieves and integrates results from

different vertical domains. Verticals can include for example microblogging sites (such as

Twitter or Google+), user comments, blog feeds or breaking news. Additional information

found in those verticals can be used in various ways.

Diaz [35] proposes principled ways to integrate news content into web search re-

sults. In [38] the authors rerank the web documents based on a set of social network features,

such as the number of tweets that refer to each document, the number of retweets of these

posts, etc. Similarly, [106] applies a vector space model technique in order to rerank web

results based on their similarity with tweet posts published in a user’s social circle. Our

approach in this work is different since we do not aim to merge microblogging posts with

web search results.

Linking microblogging posts with news articles. With a similar motivation, several
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works have focused on the relation between news articles and microblogging posts such

as those commenting on, referring to, or directly related through links to a news article

or specific event [62, 100, 119, 6, 48, 70]. These works can be considered complementary

to our approach. That is, instead of treating a news article as a query to retrieve related

microblogging posts, we can apply these works in order to build the relation between articles

and posts. However, efficiency could be a potential issue in such a scenario.

Diversity. Query results diversification is a well-studied problem in the field of information

retrieval [7, 97] as well as in data management [95, 39]. Because of the ambiguity of queries,

results diversification is very helpful to satisfy the search intent of different users. In this

work, we take a different definition of diversification from these works, which is based on

multiple queries. Further, similarly to [39], we put more focus on results coverage. Santos et

al. [101] work on diversification on explicit sub-queries of the original query. They maximize

the semantic coverage with respect to different aspects of the original query.

Giannopoulos et al. [48] address the problem of diversifying user comments found

on news articles such that the selected comments cover different aspects of the article.

Compared to [48], our work focuses on identifying microblogging posts that refer to multiple

news articles, whereas [48] provides a solution only for one article. Further, instead of

maximizing diversity, we use a coverage-based optimization goal. Finally, we mainly focus

on the efficiency of the proposed methods, whereas [48] do not consider this aspect.

Publish/subscribe. Different variations of Publish/Subscribe systems have been proposed

such as Topic-Based, Content-Based, and Type-Based [44]. However, to the best of our

knowledge, there has not been considerable work on building publish/subscribe systems on
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microblogging services. The authors in [33] suggest a publish/subscribe infrastructure for

microblogging services to better support crowdsourced sensing and collaboration applica-

tions.

5.9 Conclusions and Future Work

In this chapter we introduced and formalized the Multi-Query Diversification Prob-

lem (MQDP). We proved MQDP is NP-hard and we proposed several algorithms for solving

it: an exact dynamic programming algorithm, two efficient approximation algorithms, as

well as some algorithms for the streaming variant. We confirmed the effectiveness of our

approach through extensive experiments on real Twitter data set.

In the future we will study how our solutions can be adapted for more diversity

dimensions. In particular, we would like to extend them to the spatiotemporal space, where

the selected posts need to cover both the time and geospatial dimension. Incorporating

geographical information is likely to become more important as, increasingly, more posts

are geotagged.

Further, we will study how content-based intra-result diversity methods [7, 10, 95,

39] can be effectively applied to short posts [84] – for instance through context expansion –

and then how this content-based diversity can be represented in our multi-query diversity

framework.
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Chapter 6

Multi-Dimensional Diversification

on Social Post Streams

Web 2.0 users conveniently consume content through subscribing to content gen-

erators such as Twitter users or news agencies. However, given the number of subscriptions

and the rate of the subscription streams, users suffer from the information overload prob-

lem. To address this issue, we propose a novel and flexible diversification paradigm to prune

redundant posts from a collection of streams. A key novelty of our diversification model

is that it holistically incorporates three important dimensions of social posts, namely con-

tent, time and author. We show how different applications, such as microblogging, news or

bibliographic services, require different settings for these three dimensions. Further, each

dimension poses unique performance challenges towards scaling the diversification model for

many users and many high-throughput streams. We show that hash-based content distance

measures and graph-based author distance measures are both effective and efficient for so-
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cial posts. We propose scalable real-time stream processing algorithms leveraging efficient

indexes that input a social post stream and output a diversified version of the stream, di-

versified across all three dimensions. Next, we show how these techniques can be extended

to serve multiple users by appropriately reusing indexing and computation where possible.

Through extensive experiments on real Twitter data, we show that our diversification model

is effective and our solutions are scalable. We show that different algorithms perform best

for different application settings.

6.1 Introduction

Tremendous amounts of online social data are generated every day. For instance,

Twitter has reported over 280 million monthly active users in its microblogging service and

500 million Tweets posted per day1. One common way to consume social data is through

implicit or explicit subscription. For example, almost all news agencies offer RSS feeds for

people to subscribe. Google Scholar continuously recommends new publications to its users

based on a user’s profile and publication history. In a microblogging system like Twitter,

one can subscribe to other users’ posts by following them.

All posts matching a user’s subscriptions are typically displayed in a convenient

central place, such as the user’s timeline in Twitter or Facebook. These timelines are

updated in real time. A key challenge is that a user could be easily overwhelmed by the

number of posts in the timeline, especially if the user is subscribed to many post producers.

Further, a user’s timeline often contains lots of posts that carry no new information with

1https://about.twitter.com/company
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respect to other similar posts. This data overload issue also happens in other applications

with smaller data throughput such as news and research papers. For instance, it has been

shown that a primary care physician should read hundreds of medical publications per day

to keep up with the medical literature [9].

To alleviate the data overload problem, in this work we propose a novel way to

efficiently and effectively diversify social post streams by pruning redundant posts. By

social post streams we mean a broad class of content generated by services where each post,

in addition to its textual content, has a unique author and a unique timestamp, and where

authors are associated through various social relationships. For instance, in Google Scholar

authors are connected by relations such as co-authorship or overlapping research interests.

In microblogging sites users are connected by follower/followee relations.

Given a stream consisting of all the posts from a user’s subscriptions, our goal is to

output in real-time a subset of the stream in which (i) all posts are dissimilar to each other

and (ii) any post in the whole stream will be either included or covered by a post in the

sub-stream. A post covers another post if the two posts are similar in all three similarity

dimensions: (a) content, (b) time and (c) author.

Two posts have similar content if their text components are similar. Intuitively, all

other dimensions being equal, users want to avoid seeing two posts with very similar content.

Similarly, the timestamp distance of two posts is important in social post diversification.

Two posts that have similar content but are far away in terms of post time, may both

be of interest to the user. Note that time is widely used for diversifying search results in

microblogging systems [68, 91, 22].
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The author similarity is a more subtle dimension that to the best of our knowledge

has not been used before for computing diversity in social media. For example, CNN and

Fox News, which both have official Twitter accounts, are dissimilar to each other because

they generally have different political views. We compute the distance between two authors

through their social connections. In particular, we compare the sets of friends (or followers

in the case of Twitter) of the two authors, which has been shown to be a good author

similarity measure in social networks [113, 50].

Challenges: To summarize, in our model two posts are redundant with respect

to each other if they are similar in all of the three dimensions. It is challenging to apply the

proposed diversification model in a large scale social service with high posts throughput.

First, we must efficiently compare the content of a new post to the content of all previous

posts (within a time window). For this, we apply Hash-based techniques to measure the

content similarity between social posts. Hash-based techniques have been applied before to

Web documents [82], but not to social posts, which are generally shorter and may heavily

rely on abbreviations or URLs.

Second, handling the author dimension is challenging. A naive approach is to

check if the author of each new post is similar to the author of each existing post (within

a time window). However, we show that depending on the setting (similarity thresholds

across the three dimensions), a different indexing data structure is more efficient to achieve

real-time posts processing.

Third, the three diversity dimensions offer an opportunity to use the results of the

one dimension to prune the work needed for the other dimension. For instance, if I know
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that posts P1 and P2 have high content similarity, then I don’t need to check if their authors

or time are similar.

Fourth, if we move from one user to many users, where each user has a collection of

subscriptions, the challenge is how to reuse the computation performed for diversifying one

user’s stream to diversify streams of other users. We show that we can reuse computation

across users only if their shared subscriptions meet a strict condition.

Previous work on diversity: There has been much work on diversifying results

for documents [97, 7, 19], social posts [68, 91, 22] and database records [32, 39]. However,

none of these works can be applied to our setting where: (i) data is streaming and an

instant decision must be made on whether a post should be pushed to the user, and (ii) a

multi-dimensional diversity model is adopted. In contrast, most previous works focus on

the search setting, where a user submits a query and the set of results must be diversified

based on content, including work on social posts [68, 91].

The problem studied in this work is also fundamentally different from previous

work on stream summarization [112, 104, 98, 125], because: (i) we do not aim to generate

an aggregation of documents, but instead select a subset of posts, and (ii) we define strict

coverage constraints to guarantee that not even one uncovered posts is missed.

Contributions: In this work, we make following contributions:

• We propose a new paradigm to define diversity on social posts, by incorporating

three important dimensions – content, time and author – and we define corresponding

optimization problems (Section 6.2).

• We study how content similarity can be efficiently applied to social posts, which are
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generally short and contain abbreviations (Section 6.3).

• We propose efficient data structures and algorithms to solve the social posts stream

diversification problem (Section 6.4).

• We show how the single-user algorithm can be extended to handle many users, by

reusing computation across users (Section 6.5).

• We perform a comprehensive experimental evaluation, where we focus on microblog-

ging data, which poses the most serious scalability challenges. We show how different

algorithms perform better for different diversity needs (Section 6.6).

Section 6.7 reviews related work. We conclude in Section 6.8.

6.2 Framework and Problem Definition

Let P represent a stream (ordered set) of social posts. Each post Pi in P has an

author author(Pi), textual content text(Pi) and a timestamp time(Pi) (also referred as ti).

We define the distance measures across the three diversity dimensions as follows.

• Content Distance. We represent the content distance between two posts Pi and

Pj as distc(Pi, Pj). Cosine similarity is a possible way to define the distance, but

for efficiency purposes we employ the hash-based simhash measure as explained in

Section 6.3, where we show that simhash is effective for social posts.

• Time Distance. The time distance between two posts Pi and Pj is denoted as

distt(Pi, Pj) = |ti − tj |.
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• Author Distance. We denote the author distance between Pi and Pj as dista(Pi, Pj).

For social data, we define the similarity between two authors as the cosine similarity

between their friends’ vectors, which has been successfully used in previous work

to measure the user similarity in Twitter [113, 50]. The author distance is (1 −

similarity). For other domains other distance measures may be more appropriate.

Next, we define the coverage semantics between posts.

Definition 3. (Post Coverage) Given a content diversity threshold λc, a time diversity

threshold λt and an author diversity threshold λa, two social posts Pi and Pj cover each

other if:

• distc(Pi, Pj) ≤ λc and

• distt(Pi, Pj) ≤ λt and

• dista(Pi, Pj) ≤ λa.

Note that the coverage semantics between two posts is symmetric. The three

thresholds may vary according to the characteristics of a social system as we discuss below.

The primary focus of this work is to study the efficient processing of a posts stream and

not to set these threshold values.

We next define the Social Post Stream Diversification (SPSD) problem.

Problem 3. Social Post Stream Diversification (SPSD) Given a social post stream P, and

diversity thresholds λc, λt and λa, compute a sub-stream of posts Z ⊆ P that covers P, that

is, ∀Pi ∈ P ∃Pj ∈ Z, such that Pj covers Pi.
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(a) SPSD
(b) M-SPSD

Figure 6.1: Settings of SPDP and M-SPDP.

Note we have to compute Z in real-time, i.e., immediately decide whether a post

Pi should be included in Z at its arrival. That is, we cannot first view the whole stream

and then decide which posts should be included in the substream.

In SPSD, there is a single user who consumes the stream and many authors who

generate the posts of the stream (a user may also be an author and vice versa). That is,

a solution to SPSD should be deployed for each user, for example, as part of the Twitter

app of a user. On the other hand, a social network service would rather have a central

diversification engine that diversifies the posts for each of its users, so that no client side

post processing is required. We refer to this version of SPSD as Multiple-Users SPSD

(M-SPSD). Another difference between SPSD and M-SPSD is that in SPSD we can easily

support user customized diversity thresholds. Figure 6.1 shows how SPSD and M-SPSD

differ in terms of the setting and deployment.

Problem 4. Multiple-Users Social Post Stream Diversification (M-SPSD) Given a social

post stream P, diversity thresholds λc, λt and λa, and a set of users where each user is

subscribed to a subset of the authors, compute a diversified sub-stream for each user.
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6.3 Content Distance Estimation for Microblogging Posts

Among the three diversity dimensions, the content distance is the most expensive

to compute, because it must be computed for each new post. This is especially true given

our real-time decision semantics described above. In contrast, the author similarity between

each pair of authors may be precomputed (e.g., once every week), as it changes slowly over

time. For that reason, we cannot afford to use traditional content similarity measures such

as cosine similarity. Instead, we turn to hash-based distance measures. In this section we

present the details of the employed content distance technique along with an analysis of its

effectiveness for microblogging data.

We define the content distance between two posts Pi and Pj as the Hamming

distance of their SimHash [99] fingerprints. Previous work has applied SimHash on web

documents [82] and showed that it is efficient and effective. We represent the SimHash

of text(Pi) as Si, which is a 64-bit fingerprint. The Hamming distance of two SimHash

fingerprints is the number of different bits between them. According to the experimental

analysis in [109], the cosine distance between two texts positively correlates to the Hamming

distance of their corresponding SimHash fingerprints.

Distribution of SimHash distances in Twitter

First, we study the distribution of SimHash distances on Twitter data. We col-

lected a dataset of 200 thousand tweets from the Twitter Streaming API, which returns

a stream of randomly selected substream of Twitter ([87] showed that the stream is not

exactly random but this is not too important for our problem). The distribution of the

Hamming distances for these tweets is depicted in Figure 6.2, which shows a perfect normal
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Figure 6.2: Hamming distance distribution

distribution with mean value 32, as expected, and with most of the distances between 24

to 40.

User Study

To further evaluate the effectiveness of SimHash for social posts, we conducted a

user study to learn the relationship between the SimHash distance between two posts and

the perceived dissimilarity between the posts. A second goal of the study is to learn what is a

good SimHash distance threshold (e.g., a threshold of 3 bits was chosen to define redundant

Web pages [82]) and if any preprocessing of the tweet text (e.g., expand shortened URLs)

may improve the effectiveness of SimHash.

Setup and Methods: In particular, we collected a dataset of 2000 pairs of tweets

randomly selected from the 200,000 tweets returned by the Twitter Streaming API, with

SimHash distances between 3 and 22 – 100 tweets from each distance value. We chose 3 to

22 because this is the range where we expect to find posts that are very similar (redundant

with respect to each other). This range choice is supported by our results below. We
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recruited 12 undergraduate and graduate students.

We evenly divided these 2000 pairs into 4 groups and distributed them to the 12

students for labeling. The author and timestamp of the posts are hidden. Some examples

of these pairs are shown in Table 6.1. Each group of tweets is labeled by 3 students. The

students were asked to mark whether the two tweets in a pair are redundant with respect

to each other.

Table 6.1: Example tweet pairs and their Hamming distances

Tweet pair Hamming distance
Over 300 people missing after South Korean ferry sinks. (Reuters)
Story: http://t.co/9w2JrurhKm

Over 300 people missing after South Korean ferry sinks. (Reuters)
Story: http://t.co/E1vKp9JJfe

3

“In order to succeed, your desire for success should be greater than
your fear of failure” Bill Cosby

In order to succeed, your desire for success should be greater
than your fear of failure. #quote #success - Bill Cosby

8

Alibaba’s growth accelerates, U.S. IPO filing expected next week
http://t.co/mUcmLJ4cpc #Technology #Reuters

Alibaba’s growth accelerates, U.S. IPO filing expected next
week: SAN FRANCISCO (Reuters) - Alibaba Group Hold...
http://t.co/aLAV8w4gWF

13

To help the users more accurately label the similarity between two posts, we showed

the expanded URL (instead of the shortened one shown in Table 6.1). We used a majority

vote, that is, if at least 2 out of the 3 students labelled a pair as redundant, we labelled the

pair as near-duplicates.

Results: Out of the 2000 pairs, the users marked 949 pairs as redundant. Figure 6.3

shows the precision and recall achieved by various SimHash distance values. For each
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Hamming distance h, the precision is defined as the fraction of pairs with Hamming distance

no more than h that are true near-duplicates. Recall is the fraction of the total number of

near-duplicate pairs that are detected with Hamming distance at most h. This graph shows

that SimHash distance is an effective measure to identify similar posts.

Figure 6.3: Precision and Recall for Hamming distance. SimHash fingerprints are generated

from raw texts of tweets

Next, we study if various text preprocessing methods may improve the precision

or recall of SimHash distance measure for microblogs. We first normalize the text by

(a) changing all text to lowercase, (b) removing extra white spaces between words, and

(c) removing non-alphanumeric characters (such as ∗,,−,+, /, etc.). Figure 6.4 plots the

precision and recall after we apply the normalization. We see that this graph achieves higher

precision and recall values than the original analysis in Figure 6.3. We also see that the the

two lines cross for distance = 18, which achieves precision = 0.96 and recall = 0.95.Hence,

we use λc = 18 as the default content distance threshold in the experiments in Section 6.6.

We also tried other methods of text preprocessing such as expanding shortened

URLs (URLs in tweets are shortened by Twitter), varying the weights of user mentions
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Figure 6.4: Precision and Recall for Hamming distance. SimHash fingerprints are generated

from normalized texts of tweets

and hashtags (by creating artificial copies), and expanding abbreviations. However, these

methods had no significant impact to the precision and recall.

For completeness, we compared the effectiveness of SimHash to that of cosine

similarity (which is much slower as discussed above) in terms of detecting posts with near-

duplicate content (redundant). We tried different cosine threshold values and found that

the precision and recall lines across at cosine similarity 0.7, where all posts with cosine

similarity above 0.7 are marked as redundant. This achieves precision and recall of 0.96

and 0.95 respectively, which is the same as what we achieved using SimHash above. This

means that, for detecting near-duplicate in our dataset, SimHash achieves effectiveness

similar to cosine similarity. Hence, given the time performance advantage of SimHash, it is

the best choice for our problem.

The high threshold value of λc = 18 for SimHash precludes the use of the efficient

SimHash index proposed in [82] which relies on building several copies of the SimHash values

table for several permutations of the bits, since the number of these copies is exponential
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in λc (which was only 3 in [82]). Hence, as we discuss in Section 6.4, other indexing and

searching techniques are required.

6.4 Algorithms for SPSD

In this section, we describe our algorithmic solutions for the SPSD problem. As

explained earlier in Section 6.3, due to the high Hamming distance threshold we are unable

to use existing SimHash indexing techniques, and we must rely on comparing the SimHash

value of each new post with those of all the previous ones, leading inevitably to linear time

complexity per post in the worst case. We reduce the number of these comparisons by

leveraging the other two dimensions, time and author. We first discuss how we handle time

diversity, which is simpler, and then we present various approaches for handling author

diversity.

Handling Time Diversity. According to the diversity model, at the arrival of a post Pi

it can only be covered by the previous posts within a λt time distance. Thus, it is sufficient

to store only the posts from previous λt time in memory for checking the coverage of a new

post. One possible implementation is that we could store the posts in a circular array. We

track two post indices for the oldest post within a λt distance to current time (a) and the

most recent post (b). At the arrival of each post Pi, we compare it to the posts from most

recent post to the oldest (i.e., from index b to a). If we encouter a post Pj with ti− tj > λt,

we update a to be index of the post right after Pj . And we insert a non-redundant post to

the array with index (b+ 1) and update b = b+ 1.

Now that we have discussed how to handle time diversity, we focus on the author
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diversity among the posts in the last λt time units. The author similarity relations between

all authors form an author similarity graph G, which as we discussed above may be period-

ically precomputed. There is an edge between two authors in G if their distance is below

the threshold λa. For each user ui who subscribes to a set A of authors, we define Gi as the

subgraph of G that contains all the A authors and the edges among them. In this section,

we assume there is only one user (hence, one Gi) and in Section 6.5 we assume multiple

users (and Gi’s).

6.4.1 UniBin

Our first method to solve SPSD, which we refer as UniBin, works as follows: At

the arrival of each post Pi in P, we sequentially (from the most recent post to the older

ones) compare Pi to each post in the past λt time range in the diversified sub-stream Z.

For each post Pj , we check whether Pj meets both: (1) Hamming distance between Si and

Sj (SimHash fingerprints of Pi and Pj , respectively) ≤ λc, and (2) dista(Pi, Pj) ≤ λa, which

can be achieved by checking whether author(Pi) and author(Pj) are the same or neighbors

in G. If no post from the past λt time range meets the above two conditions (i.e., Pi is not

covered by Z), then we add Pi to Z. Otherwise we do not include Pi in Z.

We denote this method as UniBin indicating that the posts from all authors

are stored in a single post bin (e.g., a circular array as described earlier). We illustrate

UniBin with an example. In Figure 6.5a, each node represents an author. Two authors

are connected by an edge if they are similar to each other (i.e., the author distance ≤ λa).

Figure 6.5b shows the posts from these authors with post distance information in terms of

169



(a) Author similarity graph Gi (b) Social Posts

Figure 6.5: Example of author similarity graph and posts

all three diversity dimensions.

We show the update of a post bin for UniBin in Figure 6.6a. When P1 arrives,

there is no posts in the bin yet. Thus P1 is not covered hence is added to the bin. P2 is also

added as it is not covered by P1 (the Hamming distance between S1 and S2, distc(P1, P2),

is larger than the threshold λc). For P3, the algorithm first compares it to P2 which does

not cover P3 (because distc(P2, P3) > λc). However, it is covered by P1 because in all three

diversity dimensions they are within the distance thresholds (or above similarity threshold).

Thus, P3 is not added. So forth, P4 is not covered by either P1 and P2 and is included in

the bin. However, we note that P4 and P3 cover each other. Finally, P5 is covered by P4.

6.4.2 NeighborBin

UniBin has to compare a new post (both its author and content SimHash) to all

posts in the last λt time units. This aggregated time may be considerable given the high

frequency of posts, even if the author similarity graph Gi and the post bin are maintained

in memory.

170



(a) UniBin (b) NeighborBin (c) CliqueBin

Figure 6.6: Running example for the three algorithms for SPSD.

To improve this, we partition the posts by their authors such that for a new post Pi

we only check its coverage by comparing with the posts from author(Pi) or from author(Pi)’s

similar authors. Specifically, we create a post bin for each author.and when a new post Pi

comes, the algorithm sequentially checks posts in the bin identified by author(Pi) but not

other posts. However, we must note that posts from the authors that are neighbors of

author(Pi) in Gi can potentially cover Pi. Hence, the post bin of an author also includes

the posts of similar authors (neighbors in Gi). Thus, we add Pi to all bins of author(Pi)’s

neighbors in addition to the bin of author(Pi), if Pi is detected as a non-redundant post.

We denote this method as NeighborBin.

Figure 6.6b depicts the execution of NeighborBin for the data shown in Figure 6.5.

P1 is added not only to the bin of its author a1, but also to the bins of a2 and a3, because

they are neighbors of a1, as shown in Figure 6.5a. To check the coverage of P2, only the

post bin of a2 is accessed where P1 does not cover P2. After that, P2 is also added to the
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post bins of a1, a2 and a3. NeighborBin checks the coverage of P3 by iterating posts in

the bin of a3 where P1 covers P3. When P4 comes, a4’s post bin is blank and thus P4 is

added to the post bins of a3 and a4 without incurring any post comparisons. Finally, P5 is

detected as redundant by checking the bin of a3 (author(P5) = a3) where P4 covers P5.

6.4.3 CliqueBin

In NeighborBin, we index the posts by author aiming to reduce the pairwise post

comparisons. But the tradeoff is memory consumption: we have multiple copies of a post

in different authors’ post bins.

To reduce the overhead on memory consumption incurred by NeighborBin, we

identify groups (cliques) of authors that are similar to each other and assign a single bin

to them, such that a post generated by any of these authors is only stored in that bin.

Specifically we find a clique edge cover of Gi, that is a collection of cliques whose union

contains all edges of Gi. We maintain a post bin per clique (e.g., a map from clique

ID to a list of posts). Only the posts from authors in a same clique as author(Pi) can

possibly cover post Pi. Thus, at the arrival of post Pi, we check whether it is covered by

sequentially comparing it to the posts from only the cliques that contain author(Pi). Thus

a post Pi in Z is stored once for every clique that contains author(Pi) – instead of once for

each neighbor of author(Pi) in NeighborBin. Note that this approach guarantees that the

coverage requirement for posts is satisfied: when a new post Pi authored by aj appears, and

Pi is not similar to earlier posts of aj or its neighbors then Pi will be added to the cliques

involving aj , because aj ’s edges are covered by the cliques.

Considering the space consumption, our objective should be to minimize the sum
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of the sizes of cliques, i.e., the average number of cliques per author is minimized and thus

number of copies per post is reduced. This is an NP-hard problem, and hence we have

decided to use a simple greedy heuristic. It starts by picking an edge in Gi to form an

initial clique. Then it extends the clique by adding nodes that are neighbors to all the

nodes in the clique. When there is no such node, the clique is saved and the algorithm picks

another edge not yet included in any found cliques and repeats the above process. We stop

when all edges are covered.

Upon a new post Pi, we use a hashmap (Author2Cliques) to get all the cliques that

contains author(Pi), and then we check the posts in the corresponding bins. Recall that

NeighborBin and UniBin load the author similarity graph Gi in memory. We can make the

same assumption that Author2Cliques is loaded in memory for applying CliqueBin. Similar

to the computation of author similarity graph, we assume the clique partition of Gi and the

Author2Cliques mapping are computed offline. We denote this algorithm as CliqueBin.

The update of a post bin by CliqueBin is depicted in Figure 6.6c. Cliques C0 and

C1 together cover all the edges in the graph. We can see that P1 is only stored once in C0’s

bin (because a1 is in C0) instead of saving 3 copies in NeighborBin as Figure 6.6b. The

same applies to P2. Since a3 is in both C0 and C1, during the processing of P3 CliqueBin

may check both bins of C0 and C1. P4 will only be compared with the bin of C1 because a4

belongs to only C1. Again, CliqueBin checks the coverage of P5 by iterating both bins of C0

and C1. This example illustrates how CliqueBin can reduce space requirements compared

to NeighborBin.

We note that in some cases CliqueBin may have to do a larger number of pairwise
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post comparisons than NeighborBin. Suppose that after P5 in the above example author

a3 posts P6 and then author a4 posts P7. If P6 and P7 are not redundant to any other

posts, then P6 should be added to all four post bins in NeighborBin, and to both post bins

in CliqueBin. For P7, NeighborBin only accesses the bin of a4 and thus only needs to do

two comparisons (with P4 and P6). In contrast, CliqueBin has to do 5 comparisons: with

P1, P2, P4 and twice with P6 (once in post bin of each clique). We study this experimentally

in Section 6.6.

6.4.4 Performance Analysis

In this section we show an estimate of the time and space complexity of our

algorithms, attempting to capture their performance on realistic data, rather than the

worst-case performance. Rigorous derivation of such estimates is challenging, because the

behavior of these algorithms heavily depends on the specifics of the data sets, including the

topology of the social network. Instead, we provide informal derivations based on several

reasonable assumptions about the data set and the graph’s topology.

Suppose there are m subscribed authors, and the total number of posts from

these m authors in a λt time range is n. We assume a ratio of r (≤ 1) posts left after

diversification, that is, r ·n non-redundant posts per λt time. We also assume that the each

author generates the same number of n
m posts with r·n

m left after diversification. Further

we assume in the author similarity graph, each author has d neighbors and is in c (≤ d)

cliques. We denote s as the average number of authors in a clique.

Note that cliques may have overlaps. If we define q as the number of edges in G

over the total number of edges in c cliques from G, we have m·c
s = m·d

s·(s−1)·q , where both
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sides compute the number of distinct cliques. Thus we can expect c · (s − 1) · q = d with

0 ≤ q ≤ 1.

Recall that UniBin puts posts from all authors in Z into a single post bin. Thus,

the total bin size is r ·n in UniBin. Each new post is sequentially compared to each post in

the bin and thus the number of post comparisons per new post is r ·n. Each non-redundant

post incurs one insertion into the bin.

NeighborBin maintains a set of per-author bins with each bin storing posts from

an author and her similar authors. Roughly, each per-author bin stores d+1
m · r · n posts.

Thus the total number of post copies stored in memory is (d+ 1) · r · n. At the arrival of a

new post Pi, the number of post comparisons made by NeighborBin is d+1
m · r · n (compare

Pi to all posts in author(Pi)’s post bin). Each non-redundant post incurs a total of (d+ 1)

insertions into the bins.

In CliqueBin, for each non-redundant post Pi we store its c copies: one copy in

the bin of each clique containing author(Pi). Thus, the total size of the clique bins is

c · r · n. CliqueBin compares each new post Pi to posts in the bins of c cliques that contain

author(Pi), which leads to a total of s·c
m · r ·n comparisons. Each non-redundant post incurs

a total of c insertions into the bins.

Table 6.2 summarizes the performance analysis. We can see that all these results

contain the same component r · n. Obviously, all three diversity thresholds effects the ratio

of non-redundant post r. The value of n is affected by several factors, such as the frequency

of the post stream P and the setting of time diversity threshold λt.

An important factor that affects the performance of the algorithms, especially
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Table 6.2: Performance estimation of the algorithms for SPSD

UniBin NeighborBin CliqueBin

RAM r · n (d+ 1) · r · n c · r · n

Comparisons in λt r · n2 d+1
m · r · n

2 s·c
m · r · n

2

Insertions in λt r · n (d+ 1) · r · n c · r · n

NeighborBin and CliqueBin, is the topology of the author similarity graph G. In the above

estimates, we use parameters d, c, s and m to capture the topology properties. We note

that the values of the ratios of d, c, s to m are functions of the author diversity threshold

λa. Given a set of subscribed authors (i.e., with m fixed), the larger λa the denser G is

(in terms of the number of edges). Thus, the number of neighbors per author (d) increases

with λa, which means the performance of NeighborBin will drop if all other settings remain

unchanged. We also argue that c and c · s increase with the graph’s density, and hence we

expect CliqueBin to perform better for smaller λas. We confirm this through experiments

on real data set in Section 6.6, where we will summarize the use cases for each algorithm

based on this theoretical analysis combined with our experimental results.

6.4.5 Summary

We summarize the characteristics of the three algorithms in Table 6.3. In terms of

data structure, UniBin and NeighborBin need the author similarity graph, while CliqueBin

needs the mapping of each author to the set of cliques containing the author. As we

mentioned, we assume that all these data structures are maintained in memory.
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Table 6.3: Differences between the three algorithms for SPSD

UniBin NeighborBin CliqueBin

Data Structures

(1) Author similarity

graph

(2) A single post bin

storing posts from

all authors.

(1) Author similarity

graph

(2) A post bin per

author storing posts

from the author and

her neighbors.

(1) Author clique

mapping

(2) A post bin per

clique storing posts

from all the authors

in the clique.

Properties

RAM Low High Moderate

Comparisons High Low Moderate

Insertions Low High Moderate

We can see that UniBin requires the least RAM. NeighborBin reduces the post

comparisons compared to UniBin, but has high RAM consumption because it maintains

multiple copies of a post. CliqueBin outperforms NieghborBin in terms of RAM consump-

tion, by reducing the number of copies per post (and thus insertions per post), but it incurs

more post comparisons. Since CliqueBin still maintains multiple copies of a post, it requires

more insertions and higher RAM consumption than UniBin. Also, since CliqueBin does not

compare posts from non-similar authors, we expect the number of comparisons in CliqueBin

to be lower than in UniBin.

6.5 Algorithms for Multiple-Users SPSD (M-SPSD)

In this section, we extend our ideas to solving M-SPSD. When we move from

applying the diversity model for one user to multiple users, the crucial question is whether
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it is possible to reuse the computation performed for diversifying one user’s stream to

diversify the other users’ streams.

A simple way to solve M-SPSD is to process the post stream for each user individ-

ually. That is, we can apply the algorithm for SPSD on each user’s post stream separately.

We denote the corresponding algorithms for M-SPSD as M UniBin, M NeighborBin

and M CliqueBin respectively, to distinguish them from the algorithms for SPSD. In this

section, we present variations of these algorithms to optimize the diversification process by

reusing computations for multiple users who share subscriptions.

If two users do not share any common subscriptions, then their post streams

are disjoint and thus the computation of diversifying one’s stream cannot be reused for

diversifying the other users’ post streams. Hence we only consider the cases for optimization

when users share the same subset of subscriptions.

(a) G1 (b) G2

Figure 6.7: Author similarity graphs of two users u1 and u2.

However, we notice several limitations to reusing the diversification computation

across multiple users, even if they share some subscriptions. We use examples to illustrate
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this. Figure 6.7 shows two users, u1 and u2, sharing a set of subscriptions {a1, a2, a4, a6}.

We notice that after diversification u1 may see a different subset of the posts from

a4 as u2. u2 subscribes to a5 which is a similar author to a4. Thus, it is possible that some

posts from a4 are shown to u1 but not to u2 if they are covered by a5’s posts.

However, the same diversified set of posts from {a1, a2, a6} will be shown to u1

and u2. The three authors form a connected component (denoted as g1 in Figure 6.7) in

both G1 and G2. That is, in both G1 and G2 there are no other authors similar to any

author in {a1, a2, a6}. Hence, posts from other subscribed authors can not cover the posts

from {a1, a2, a6}. Thus, the diversification processes on the posts from {a1, a2, a6} are

exactly the same for u1 and u2. This means that we can reuse the data structures and

computation across u1 and u2 for diversifying the post stream from {a1, a2, a6}.

Based on these observations, we can optimize the diversification process for mul-

tiple users if they subscribe to a same set of authors that form a connected component. We

can then consider a post stream (a subset of P) of each connected component separately,

apply the diversification algorithm on it, and then merge the diversified post streams to-

gether.

For this, we first process the author similarity graph Gi of each user ui to compute

all connected components of all Gis. (Since different Gis may overlap, some nodes may

appear in several components.) For each distinct connected component gi, we run one of

the proposed algorithms for SPSD on the post stream by the authors in gi. User ui’s post

stream consists of the union of the diversified post streams from all connected components

in Gi.

179



(a) M UniBin (b) S UniBin

Figure 6.8: Example of M UniBin and S UniBin.

For example, as shown in Figure 6.8b, we can apply the UniBin algorithm for three

distinct connected components (g1, g2 and g3), that is, we maintain a single post bin for

each of the three components. Then the posts shown to u1 is the union of the two diversified

post streams from g1 and g2. We refer this algorithm as S UniBin. For comparison, we

show the example for M UniBin in Figure 6.8a. M UniBin maintains a post bin for each

user seperately. To extend NeighborBin, we maintain a per-author post bin for each author

in a distinct connected component gi. To extend CliqueBin, we do the clique partition for

each gi, then maintain a per-clique post bin as described earlier.

The three algorithms with the above optimization are denoted as S UniBin,

S NeighborBin and S CliqueBin respectively.

6.6 Experimental Evaluation

6.6.1 Data Set and Experimental Settings

We conducted our experiments on Twitter data. The authors in [121] published a

Twitter social graph dataset consisting of more than 660,000 Twitter authors (accounts).

Computing the author similarity graph for the whole data set would be prohibitive, as it
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requires comparing all pairs of authors. Instead, we used a subgraph of 20,150 authors

obtained by randomly picking an initial author, and adding authors that are reachable

through Breadth First Search on the follower-followee graph.

We computed all pairwise author similarity for these 20,150 Twitter authors. The

author similarity distribution is depicted in Figure 6.9, where the x-axis shows the author

similarity value and y-axis shows the fraction of author pairs with similarity values larger

than the value indicated by x-axis. It shows that 2.3% author pairs are with similarity

≥ 0.2 and 0.6% pairs are with similarity ≥ 0.3.

Figure 6.9: Author similarity distribution in our data set

Further, we crawled the tweets of these twitter authors using Twitter REST API2

for one day. The tweets data set contains 233,311 tweets, which means these Twitter authors

post slightly over 10 tweets per author per day. After we removed some short tweets that

have less than two words or only contain meaningless tokens, there are 213,175 tweets left.

We implemented all algorithms in Java. We ran our experiments on machines with

Quad Core Intel(R) Xeon(R) E3-1230 v2@3.30GHz CPU and 16GB RAM.

2https://dev.twitter.com/overview/documentation
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6.6.2 Performance of the algorithms for SPSD

In this section, we evaluate the performance of the three algorithms for SPSD. We

assume that a user follows all the Twitter authors in our dataset, and we run the algorithms

on the user’s post stream which consists of 213,175 posts in one day.

First, we study the effect of the three diversity dimensions: time, content and

author. Figure 6.10 shows the number of tweets left after diversification under different

settings by removing diversity dimensions and varying diversity thresholds. Incorporating

all three diversity dimensions with reasonable diversity thresholds, the diversification model

prunes about 10% redundant posts. We notice that incorporating only some of these dimen-

sions will largely change the size of diversified stream. It means that all three dimensions

play an important role in diversifying tweet data.

Figure 6.10: Number of tweets left after applying diversification in our data set

Performance of the algorithms under different diversity settings

The analysis in Section 6.4.4 indicates that the performance of the three algorithms

for SPSD is effected by several factors such as the diversity thresholds and the post stream
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throughput. These diversity settings could change the relative performance between the

three algorithms. In this section, we study the performance of each algorithm under different

settings and we experimentally show that each algorithm outperforms the other two in

certain settings. Supported by former analysis and experimental results, we will summarize

use cases for each algorithm.

Varying time diversity threshold λt. In Figure 6.11, we present the performance of

UniBin, NeighborBin and CliqueBin under different time diversity thresholds (λt). In this

experiment, we set λc = 18 (according to the results in Figure 6.4) and λa = 0.7 (i.e.,

we consider two authors are similar if the cosine similarity between their followee vector

is ≥ 0.3 and thus distance is ≤ 0.7). The running time shows the execution time for an

algorithm to ingest the 213,175 posts.

In Figure 6.11a we can see that the running time of all three algorithms decreases

with smaller λts. The reason is that with a smaller λt, the algorithms perform fewer pair-

wise post comparisons (depicted in Figure 6.11c). NeighborBin and CliqueBin outperforms

UniBin in terms of running time. We also notice that CliqueBin is more efficient than Neigh-

borBin when λt is small (e.g., ≤ 10 minutes). This gives us evidence for the summarization

of use cases in Table 6.4 for NeighborBin and CliqueBin.

Smaller λt also reduces the RAM consumption because the algorithms store shorter

history of Z in post bins. As expected, NeighborBin requires more memory than UniBin

and CliqueBin.

Varying content diversity threshold λc. We also study the performance of the three

algorithms by varying λc. For this, we set λt = 30 mins and λa = 0.7 and we vary the λc
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.11: Performance of the algorithms under different time diversity thresholds.

from 9 to 18. Figure 6.12 depicts the results. It shows that, for all the three algorithms,

the change of content diversity threshold only slightly affects the performance. The reason

is that SimHash can effectively detect tweets with near-duplicate content for λc ≥ 9 as we

can see in Figure 6.4. With λc changing from 9 to 18, the precision is already stable. The

recall is lower with smaller λc, which means more posts will be detected as non-redundant.

But this increase in number of non-redundant posts is slight, and thus the increase in the

number of comparisons and insertions does not affect the overall efficiency significantly.

Varying author diversity threshold λa. Further, we study the performance by varying
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.12: Performance of the algorithms under different content diversity thresholds.

λa. The results are presented in Figure 6.13 where we set λt = 30 mins and λc = 18.

We observe that the author diversity threshold λa significantly affects the overall

performance of NeighborBin and CliqueBin but not UniBin. When λa increases, the author

similarity graph gets denser and thus the number of neighbors per author and the number

of cliques per author both increase. For instance, when λa = 0.7 the number of neighbors

per author (d) is 113.7, the number of cliques per author (c) is 29 and the average size of

a clique (s) is 20 in our data set. They change to 437.3, 106 and 38 correspondingly with

λa = 0.8. Hence, the number of copies per post in NeighborBin and CliqueBin increases.

This explains that in Figure 6.13 the memory consumption by NeighborBin and CliqueBin
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.13: Performance of the algorithms under different author diversity thresholds.

increases sharply with larger λas. However, the number of non-duplicate posts does not

vary much with different λas in our data set; thus the performance of UniBin is stable.

We note that when λa is large the performance of NeighborBin and CliqueBin (in

terms of both memory consumption and running time) is significantly worse than UniBin.

Hence, we expect UniBin is the best choice among these three algorithms in use cases where

λa is large, as we summarize in Table 6.4.

Varying post stream throughputs. We also study the performance of the algorithms

under different post stream throughputs. We test this in two ways: (i) varying subscriptions’

post rate, and (ii) varying the number of subscriptions. For both, we keep λt = 30 mins,
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λa = 0.7 and λc = 18.

Varying post generation rate. For this, we randomly sample the posts from the

21,050 authors and solve SPSD on the sampled post stream. We conduct experiments for

the sample ratio 25%, 5% and 1% and present the results in Figure 6.14. The results show

that when the throughput is low (the same ratio is low) UniBin outperforms the other

two algorithms. We can also see that CliqueBin performs better than NeighborBin with a

moderate or small post generation rate.

Varying the number of subscribed authors. The results shown above are for the case

of one user subscribing (following) all Twitter authors in our dataset. In this experiment,

we randomly sample Twitter authors in our dataset with different sample sizes. We assume

that a user subscribes to all authors in one sample and we run the algorithms on the user’s

post stream. The results in Figure 6.15 show that UniBin slightly outperforms the other

two when the number of subscriptions is small.

To summarize, UniBin delivers better performance than NeighborBin and Clique-

Bin when the stream throughput is low. This is consistent with our analysis in Section 6.4.4

– see also Table 6.4.

Discussion

Through extensive experiments, we observe that each algorithm outperforms the

other two in certain cases. In Table 6.4 we summarize the best choice of algorithm in

different use cases based on our analysis and experimental study.
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.14: Performance of the three algorithms under different post rates.

UniBin is the most memory efficient among the three algorithms. Thus in applica-

tions with limited RAM UniBin should be considered. Further, when the stream throughput

is low (we tested it with small number of subscriptions and low post generation rate), UniBin

performs better than the other two. According to the analysis in Table 6.2, we expect that

the number of comparisons increases super-linearly with n (the number of posts in a λt time

range), however the number of insertions increases sub-linearly with n. With a lower stream

throughput (smaller n) the overhead of insertions in NeighborBin and CliqueBin is a large

contribution to the total running time. When n is small enough, the overhead on insertions

becomes larger than the saving on comparisons for NeighborBin and CliqueBin compared
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.15: Performance of the three algorithms varying the number of subscribed authors.

with UniBin. The similar reasoning can be applied to explain why UniBin is the best choice

when λt is very small. To clarify, in Figure 6.11 we did not include the results by setting

λt = 1 min where UniBin performs best among the three algorithms. We argued that with

a larger λa both d (number of neighbors per author) and c (number of cliques per author)

increase and thus NeighborBin and CliqueBin both have higher number of comparisons and

insertions. Thus we can see UniBin is preferable when λa is set large. One example use case

for UniBin is News RSS Feed reader, where the author similarity graph is dense. Generally,

news agents form clusters (e.g., by their political views) such that in each cluster the news

agents are similar to each other from a user’s perspective. Another use case could be Google
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Table 6.4: Use cases of the three algorithms for SPSD

Conditions Algorithm choice Example use case
Very small λt
OR low stream throughput
OR large λa (dense G)
OR RAM is a critical limitation

UniBin News RSS Feed, Google Scholar

Large λt
AND small λa (sparse G)
AND high stream throughput

NeighborBin Twitch

Moderate λt
AND small λa (sparse G)
AND high stream throughput

CliqueBin Twitter

Scholar where the post (scientific publication) throughput is low.

In other cases, CliqueBin or NeighborBin will be the better choice. They both

perform well in cases with a high or moderate stream throughput, which is very common

for online social networks. The tie breaker between them is the time diversity threshold

λt, as we analyzed λt determines the tradeoffs between costs of comparisons and insertions.

CliqueBin is a better choice if λt is set moderately. For example, in Twitter information is

time sensitive and thus people may be interested in reading posts with related content but

with time distance larger than, say, minutes. For applications where the value of λt could

be in hours or even days, NeighborBin can be applied. For example, Twitch3 is a platform

on which people can watch and share video game shows. Users may not be interested in

watching the video record of the same match that posted at different time. Even in Twitter

some users may prefer to customize the λt to a larger value, in order to reduce the post

volume if they follow a large number of authors.

3http://www.twitch.tv/
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6.6.3 Performance of the algorithms for M-SPSD

We consider now the scenario where each Twitter author is also a user. Each user

subscribes to (follows) a set of authors which we can get from the original follower-followee

social graph. Then we run the algorithms solving M-SPSD for these 21,050 users in our

data set. For the experiments in this section, we set λt = 30 mins, λa = 0.7 and λc = 18.

The average number of subscriptions in our sampled user data set is 443.6 and the

median is 187. Since we only crawled the posts and computed the author similarity graph

for the set of 21,050 authors, we ignored the subscriptions that are not in this set. Then

the average number of subscriptions per user drops to 130 and the median is 20. We should

note that this reduces the probability of different users sharing common subscriptions.

Figure 6.16 presents the performance of the algorithms. It shows that the proposed

optimization (reusing computation and data structure across multiple users described in Sec-

tion 6.5) improves time efficiency as well as memory consumption. Specifically, S UniBin

uses 43% less running time and 27% less memory than M UniBin. In the S UniBin method,

posts are stored separately by connected components. This reduces the number of com-

parisons significantly over M UniBin. We also observe tthat S NeighborBin reduces the

running time of M NeighborBin by 8% while S CliqueBin improves M NeighborBin by 4%

in running time.

S UniBin achieves superior performance. We also notice that S NeighborBin re-

quires fewer post comparisons than S UniBin but many more insertions. We think that

S UniBin outperforms S NeighborBin and S CliqueBin also because its post access pattern

is sequential while in the other two are not (each post bin is a map).
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(a) Running Time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 6.16: Performance of the algorithms for M-SPSD.

6.7 Related Work

Time Aware Diversity. The authors of [40] solve the problem of maintaining

the k most diverse results in a sliding window over a stream. MaxMin semantics is used.

They maintain a data structure called the cover tree and show how to incrementally add

new and remove expired results from this tree. The cover tree cannot be used for our

diversity semantics because it cannot handle simultaneous similarity in three dimensions:

time, content and author.

Diversification on Microblogging Posts. The work of [22] studies the problem
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of diversifying posts in microblogging systems. In their problem setting, users subscribe

several queries (topics). However, in practice users are more often subscribing to authors,

which is the setting of the problem we studied in this work. In [22] they apply strict

coverage semantics similar to ours, but limited only to time and content diversity. Unlike in

our model, in [22] the content diversity is guided by the inputted queries where no inter-post

content similarity is considered. They also studied the stream variation of their problem

in which they allow a lag upon a new post to decide whether it should be outputted. Our

diversity model is required to make the decision immediately at the arrival of a post.

Document Stream Summarization. The authors of [112] work on the prob-

lem of summarizing a Twitter stream. They model the summarization problem as a facility

location problem. Give a budget of k, they aim to select k tweets that maximize the simi-

larity to the whole tweets set. They incorporate the time factor to measure the document

similarity of two posts. But unlike in our problem, instead of using a hard (boolean) thresh-

old, they consider an exponential decay to the content similarity based on their timestamp

difference. In the work of [90], the authors apply clustering techniques for Twitter stream

summarization. Tweets are clustered according to content similarity. For each cluster, they

build a word graph or phrase graph and pick frequent sentences (“paths” in the graph) to

construct a summary. The sentences in the summary may not be in any original tweet. The

authors of [104] propose a one-pass online clustering algorithm to cluster tweets, and then

they generate online summaries by selecting k tweets (one from each cluster) that have high

LexRank [43] score. In [98], the authors apply topic modeling for personalized time-aware

tweet summarization. However, all these work do not consider author similarity to measure
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the similarity between tweets.

Detecting Duplicate Tweets. In [113], the authors propose to use machine

learning methods to detect near-duplicates in tweets. For this, they construct a rich set

of syntactic, semantic and contextual features. They aim to distinguish different levels of

near-duplicates, e.g. exact copy, strong near-duplicate, or weak near-duplicate.

6.8 Conclusion

In this work, we studied the novel problem of diversifying social post streams

by incorporating diversity in three dimensions: content, time and author. We illustrated

the challenges of solving the problem and proposed various algorithms to efficiently handle

these challenges. We show the tradeoffs between our proposed algorithms and argue the

use cases for them. We also studied the problem of applying the proposed diversification

model for multiple users in a social system. Extensive experiments prove the effectiveness

of our model and efficiency of proposed algorithms.
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Chapter 7

Conclusions

In this thesis, we studied several problems to help users effectively explore Web

and Social Network data.

In Chapter 2, we showed that the change in the terms distribution of results of

timely queries over time is strongly correlated with the users’ perception of time-sensitivity.

We proposed principled ways to incorporate document freshness into the ranking model [23].

In Chapter 3, we proposed a method to estimate the difficulty of a query over

structured data. The proposed method is based on the differences between the rankings of

the same query over the original and noisy (corrupted) versions of the same database, where

the noise spans on both the content and the structure of the result entities. To improve

the efficiency of the prediction model, we introduced efficient approximate algorithms with

controlled quality trade-offs [25, 26].

In Chapter 4, we proposed context-aware query ranking models by leveraging

the user query session [24]. Specifically, we proposed context-aware search strategies that
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build upon two popular ranking algorithms: BM25 and Language Model. Our results on

biomedical data show that the context-aware query ranking can significantly improve the

search results.

In Chapter 5, we introduced and formalized the MQDP problem and its stream-

ing variant. We showed that MQDP is NP-hard and proposed exact and approximation

algorithms with provable approximation bounds for MQDP and its stream variant. We also

showed a principled approach to achieve proportional diversity, where the popularity of

topics (queries) is reflected in the result. For that, we showed how a dynamic post-specific

diversity threshold can be defined [22].

In Chapter 6, we formalized the SPSD problem. To solve SPSD in a system with

high post throughput, we studied how content similarity can be efficiently applied to social

posts. Further, we proposed efficient data structures and algorithms to solve SPSD and

showed how different algorithms perform better for different diversity needs. We extended

the proposed algorithms to handle many users in a social system, by reusing diversification

computation across users.
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