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Abstract

Addressing the Omics Data Explosion: a Comprehensive Reference Genome

Representation and the Democratization of Comparative Genomics and

Immunogenomics

by

Ngan K. Nguyen

Advancements in technologies have resulted in an explosion of data, the vol-

ume of which continues to increase at an exponential rate. The accumulating wealth

of data is enabling numerous new research possibilities and is transforming the world

profoundly. In genomics, new genomes are being regularly sequenced, with a growing

number of individual genomes becoming available for many species. As the ability to

have complete genomic information becomes the norm, the need for a reference genome

that better represents the particular species population intensifies: It becomes impor-

tant to utilize the newly emerged sequences to improve current references and ensure

better quality for future assemblies and experiments. Additionally, the proliferation of

data has necessitated the decentralization of computational resources together with the

empowerment of users to a do-it-yourself system, in which users create their own as-

semblies, alignments, visualizations and analyses. This is because with the accelerating

amount of data, it is impossible and undesirable to maintain the infrastructure model

in which only a number of specialized institutions handle most if not all of the data and

analyses.

xii



Joining many other on-going efforts, the works in this dissertation attempt to

address some of these rising demands. First, I describe the problem of constructing a

pan-genome reference for a population and demonstrate that the resulting pan-genome

reference is more representative of the population than is any individual genome, using

both simulated and real data. Second, I describe a comparative genomic framework that

allows for easy generation of collections of web accessible UCSC genome browsers in-

terrelated by an alignment. The pipeline, named the comparative assembly hub (CAH)

pipeline, is intended to democratize UCSC comparative genomic resources and facilitate

public sharing via the internet. As a demonstration, I create comparative assembly hubs

for 66 Escherichia coli/Shigella genomes and highlight comparative analyses on their

pan-genomic, core genomic and phylogenetic relationships. Last, I report on compre-

hensive assessments of the T cell receptor (TCR) repertoires of the autoimmune disease

Ankylosing Spondylitis and show example comparative analyses for finding evidence

of antigen selection and identifying potential disease-associated clones. In addition, I

describe an open-source software package for profiling and comparing TCR sequencing

data, called the “Adaptive IMmunoSequencing ToolKit”, or the aimseqtk package. The

aimseqtk package is comprised of four main components addressing common analyses

of this type of data: clone tracking, repertoire profiling, public clone identification and

publication mining.
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Chapter 1

Introduction

We are undoubtedly witnessing the dawn of a new era, an era that overwhelms

us with information. New data is being produced rapidly every day in a widespread

number of fields: from consumption habits in marketing to fluctuations in stock mar-

kets, from trends and individual expressions in social media to astronomical data in

the physical sciences, from climate observations in the earth sciences to genomic data

in the life sciences. This immense amount of data has profoundly transformed our

world, touching even the most basic aspects of our lives, as exemplified by targeted

advertisements in media, customized results in internet searches and changes in social

interactions and communications. As we move forward into this era, adaptations are

required, demanding our attention to rethink and restructure the traditional ways of

how everything is operated.
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1.1 Reexamine the Reference Genome

In genomics, new genomes are now regularly sequenced, acceler-

ating the availability of novel sequenced species and individual genomes,

from both extensive public sequencing projects [10k-Community-of Scientists, 2009,

1000-Genomes-Project-Consortium, 2010] and individual efforts. As individual genomes

become increasingly accessible, it is not only critical, but now most practical, to reex-

amine and to reestablish an essential component of the field: the representation of a

species’ reference genome.

The reference genome is typically a high quality individual genome that is used

to represent the species of interest, providing a coordinate system, e.g an origin and a

basis system, for genomes in the population or genomes of closely related subspecies.

Previously sequencing costs were expensive, therefore the reference genome was assumed

to be well represented by (mostly) a single genome. This representation, especially when

the individual was selected partly by serendipity, is rather self-limiting because a single

genome cannot best describe all the variations of an entire population.

It is proposed that a truly comprehensive universal coordinate system for the

population variation must index a graph of aligned, common haplotypes [Li et al., 2010,

Paten et al., 2014]. Given that all existing software (e.g. mapping, assembling and vari-

ation calling tools) heavily depends on a well established linear representation of the

reference genome, I propose an intermediate solution for a linear reference genome that

represents “the median point within the population diversity”, inspired by the pan-
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genome concept used in bacterial genomics. Due to horizontal gene transfer, within

the same bacterial species, genetic content may differ dramatically from one strain to

another. It was therefore apparent that describing a bacterial species by an individ-

ual strain was insufficient and consequently the pan-genome concept was introduced

[Medini et al., 2005]. As traditionally defined in bacterial research, a pan-genome of a

species is the union of genes of all strains within that species. This definition has since

expanded to be the union of all homologous bases (alignment columns) of all individual

genomes. In the first part of this dissertation, I explore the opportunities that arise from

extending our standard definition of what is a reference genome to my novel pan-genome

reference.

1.2 The Decentralization of Comparative Genomic Re-

sources

Because of the increasing abundance of data, it has become impractical for

public data centers to curate and/or manage all the data collections. Instead, a wealth

of powerful tools is emerging to empower users to self-create visualizations and analyses.

Contributing to this shift from a centralized system of computational resources to a user-

oriented model are two software packages, namely, the CAH pipeline and the aimseqtk

package. I created these packages to enable users to generate their own comparative

genomic browser visualizations and perform their own comparative immunogenomic

analyses.
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1.2.1 The Comparative Assembly Hub (CAH) Pipeline

Visualization plays a critical role in research, not only by assisting us in an-

alyzing, understanding and interpreting our data but also by providing us with visual

cues for novel data interpretations as well as facilitating hypothesis formation. For

example, the genome browser is one of the most powerful scientific visualization tools

currently in existence. It incorporates many different annotations, spans different levels

of resolution from whole chromosome to an individual base pair, in addition to being

easily customizable. However, today’s genome browsers are typically a single genome

display, equipped with limited comparative capabilities. The CAH pipeline extends the

single-genome scope of the UCSC browsers to display comparative genomics data, with

multiple novel features incorporated to handle this type of data. The resulting repre-

sentation takes advantage of the powerful features of the UCSC genome browsers, while

at the same time, displays multiple alignments, different types of variations including

structural rearrangements and duplications, and more importantly, provides consistent

views when switching from one genome to another. Given a set of input genomes and

available annotations, the pipeline generates a multiple sequence alignment, infers any

pan-genome or ancestral genomes where appropriate, maps each input annotation from

the original genome to other genomes of interest, and produces all necessary files to

create one browser for each genome, all interconnected by the alignment. When the

process is done, one of the output files is called the “hub.txt” file. Users can paste the

location of this file to the UCSC Browser and the comparative assembly hub containing
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the generated browsers with annotations is ready to use.

1.2.2 The Adaptive Immunosequencing Toolkit (aimseqtk) Pipeline

Immunogenomics is an emerging field that specializes in sequencing and ana-

lyzing genomic data of the immune system, including T cell receptor (TCR) repertoires.

With the immune system directly related to health and diseases, comparative analyses

in immunogenomics data have a large number of applications, benefiting both basic

research and clinical needs [Robins, 2013]. Consequently, there is already an abundant

amount of this new type of data. However, similar to every other field, data analysis

methods have yet to catch up with the speed and amount of the data that is being

generated.

There is no publicly available software for comparative immunogenomics anal-

yses. Research groups either have to write their own code or outsource the analysis

to servicing companies. To facilitate research, I present the aimseqtk package, which

is an open-source software solution for comprehensively profiling and comparing TCR

repertoires.

Looking Forward

In the following chapters, I go into details on the pan-genome reference, the

CAH pipeline and the aimseqtk pipeline, one chapter per topic. Each chapter is orga-

nized into these sections: overview, introduction, results, discussion and methods. The

final chapter is an overall summary of the dissertation.
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Chapter 2

Building a Pan-genome Reference for a

Population1

1This chapter is derived from two manuscripts that Benedict Paten and I created together
[Nguyen et al., 2014b, Nguyen et al., 2014c].
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2.1 Overview

A reference genome is a high quality individual genome that is used as a coor-

dinate system for the genomes of a population, or genomes of closely related subspecies.

Given a set of genomes partitioned by homology into alignment blocks, formalized in

this chapter is the problem of ordering and orienting the blocks such that the resulting

ordering maximally agrees with the underlying genomes’ ordering and orientation, to

create a pan-genome reference ordering. We show that this problem is NP-hard, but

also demonstrate, empirically and within simulations, the performance of heuristic al-

gorithms based upon a cactus graph decomposition to find locally maximal solutions.

We describe an extension of the Cactus software to create a pan-genome reference for

whole genome alignments, and I apply it to construct a pan-genome reference for the

human major histocompatability complex (MHC). I demonstrate that the constructed

MHC pan-genome reference represents the population variants more comprehensively

than individual reference genomes.
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2.2 Introduction

2.2.1 Reference Genome, Utilities and Limitations

A reference genome is a genome assembly used to represent a

species. Reference genomes are indispensable to contemporary research

for several reasons. They provide a coordinate system for consistent de-

scriptions of functional annotations, such as genes and regulatory elements

[Coffey et al., 2011, ENCODE-Project-Consortium et al., 2011], and varia-

tion data, such as single nucleotide variants (SNVs) and structural variants

[Sherry et al., 2001, 1000-Genomes-Project-Consortium, 2010]. Such reference co-

ordinates form the basis of the genome browsers [Fujita et al., 2011, Flicek et al., 2011]

upon which these annotations are shown. Reference genomes are used for mapping

relatively short sequences, such as sequencing reads, to their appropriate place within

the genome [Li and Durbin, 2009, Trapnell et al., 2009]. Such reference-based sequence

mapping forms the basis of an overwhelming number of contemporary functional

assays [Wang et al., 2009, Park, 2009, ENCODE-Project-Consortium et al., 2011].

Inversely to mapping, reference genomes are used in the design of primer sequences,

which are used to target a specific subsequence of a genome, e.g. in a polymer

chain reaction [Bartlett and Stirling, 2003]. Reference genomes are used widely in

comparative genomics, particularly in the construction of genomic sequence alignments

[Miller et al., 2007, Paten et al., 2008]. Finally, once a reference genome for a species

is available it can be used to assist in the assembly of related genomes, e.g. by ordering
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scaffolds [Wheeler et al., 2008, Chimpanzee-Sequencing-Analysis-Consortium, 2005].

Reference genomes are now available for most important

model organisms, including prokaryotes [Blattner et al., 1997], single

cell eukaryotes [Goffeau et al., 1996], invertebrates [Adams et al., 2000,

Consortium et al., 1998], plants [Aradidopsis-Genome-Initiative, 2000]

and vertebrates, including fish [Aparicio et al., 2002], birds

[International-Chicken-Genome-Sequencing-Consortium, 2004], non-avian rep-

tiles [Alföldi et al., 2011], amphibians [Hellsten et al., 2010] and mammals

[Mouse-Genome-Sequencing-Consortium et al., 2002, Lindblad-Toh et al., 2005].

At the time of writing, the UCSC and the Ensembl genome portals each have more

than 50 different eukaryotic reference genome browsers, each based upon a reference

assembly. As the cost of sequencing further declines these numbers will grow ex-

ponentially, with projects such as Genome 10k [10k-Community-of Scientists, 2009]

projecting the sequencing of ten thousand distinct vertebrate species in the coming few

years.

The utility of a reference genome for a species is potentially limited by the

degree to which it represents the population’s genomes. A failure to represent other

intra-species genomes can be caused by variation in the following ways. First, sufficiently

dense SNVs may make it difficult to discern homology between a reference genome

and other genomes, particularly when mapping relatively short subsequences. Second,

insertions and deletions may cause a reference genome to exclude subsequences that are

common in other genomes. Third, nonlinear rearrangements, such as inversions, may
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create breakpoints with respect to a reference genome. Finally, duplications may result

in some genomes having a different copy number of certain subsequences in comparison

with the reference.

Given these potential failures of representation, for a given species it is natu-

ral to ask how well the existing reference genome represents the species. In addition,

whether it is possible to impute a better consensus reference genome from the multi-

ple individual genomes. In this chapter, I explore creating a consensus, pan-genome

reference from a collection of genomes and attempt to answer these two questions em-

pirically for a limited portion of the human genome: the major histocompatability

complex (MHC). The notion of a human pan-genome has been briefly visited by Li

et al. [Li et al., 2010] in 2010. In the study, the authors investigated the “novel” se-

quences, i.e. sequences that were not present in the current human reference, in two

de novo human assemblies, one Asian genome and one African genome. They identi-

fied approximately 5 Mb of such novel sequences and highlighted the needs for more

de novo assemblies of human genomes to obtain a comprehensive understanding of the

human pan-genome. Here, I formalize the problem, which is constructing a pan-genome

reference for a collection of genome assemblies. Additionally, in constructing a novel

reference I impute a complementary, integrated map of the variation within the MHC,

in which every variant is described with respect to the reference and is given context by

alignment within one large multiple sequence alignment (MSA).
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2.2.2 The Human Major Histocompatability Complex Reference

The human genome [International-Human-Genome-Sequencing-Consortium, 2004]

is perhaps the best sequenced vertebrate reference genome at this point, with essentially

one large monoploid scaffold representation of each chromosome and only 20 unlocalized

scaffolds as of GRCh37.p4 [Church et al., 2011]. Due to recent population bottlenecks

[Hey and Harris, 1999, Li and Durbin, 2011], humans have a relatively low degree of

polymorphism with respect to one another [Marth et al., 2004, Traherne, 2008]. The

human reference genome can therefore be considered a reasonable near best case

scenario for the reliance on a single reference genome in mammals.

I choose the MHC primarily because it contains interesting patterns

of mammalian evolution [Belov et al., 2006] and substantial variation within hu-

mans [Traherne, 2008], including regions with extreme haplotype divergence

[Raymond et al., 2005]. Additionally, the MHC is important in human immunology

and disease [Fernando et al., 2008, Traherne, 2008], as highlighted by recent genome

wide association studies (GWAS) [Wellcome-Trust-Case-Control-Consortium, 2007,

Fellay et al., 2007].

The reference sequence as of GRCh37.p4 for the MHC is a single haplotype,

named PGF. It is the largest and most complete haplotype segment available in the

human reference genome [Horton et al., 2008]. It also represents one of the most fre-

quent haplogroups within European populations, a haplogroup being a collection of

similar haplotypes. This is in contrast to most of the remaining human reference, which
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is a chimera of a number of randomly selected genomic samples [Lander et al., 2001],

but deriving mostly from one in particular [Osoegawa et al., 2001]. The MHC has been

designated in the GRCh37 reference genome a “polymorphic region”. As such, seven ad-

ditional alternative, homologous haplotypes, also representing common European hap-

logroups, have been added as supplementary sequences to GRCh37. These haplotypes

are not included within the actual reference sequence, but are included as valid alter-

natives. In spite of being high quality assemblies, the alternative haplotypes are often

excluded by most mapping softwares and processing pipelines (an example is the 1000

Genomes Project or 1KGP). For the MHC region, “mapping to GRCh37” is typically

equivalent to “mapping to PGF”. To avoid confusion and to make it easily identifiable

as the de facto current human reference sequence for the MHC, henceforth I will refer

to the PGF sequence as GRCh37. I will refer to the seven alternative haplotypes by

their specific names and refer to the group of the PGF and the seven haplotypes as the

“GRCh37 haplotypes”.

2.2.3 Background of the Pan-genome Reference Problem

Starting from a set of genomes in a genome alignment [Paten et al., 2011b],

which partitions the genomes’ subsequences into homology sets termed blocks, the prob-

lem is to find an ordering of the blocks that as closely as possible reflects the ordering

of the underlying genome sequences. Such an ordering is called a pan-genome refer-

ence, in that it indexes every block, something that any individual genome within the

population almost certainly does not.
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Closely analogous to the problem of building a pan-genome reference of aligned

input genomes, a great deal of previous work has focused on methods for ancestral

reconstruction. Most relevant to this work is the (rearrangement) median problem.

Informally, the median problem is, given a set of genomes and an edit operation, to find

a median genome whose total pairwise edit distance from each of the other sequences is

minimal [Tannier et al., 2009]. Naively, it might be assumed that good solutions to the

median problem might have utility for finding an intra-species pan-genome reference.

However, in the median problem the edit operations are not necessarily restricted to

maintain sequence colinearity, while during evolution complex selective pressures often

work to achieve exactly this [Kirkpatrick, 2010]. For example, consider the three signed

permutations: (A, d,B, e, C), (A,−e,B,−d,C) and (A,B, e,−d,C). Assume that the

capital letters, A, B and C represent very large subsequences of the genome and the

lower case letters, d and e, represent short subsequences. In each of the sequences

the large subsequences maintain their colinearity with respect to one another. When

ignoring the short subsequences, no edits appear to have occurred. However, when

incorporating the short subsequences, the optimal median sequence under either the

double-cut-and-join (DCJ) or reversal edit operations is (A,−e,−B,−d,C); the other

sequences are each one operation away. This optimal median sequence contains an

inversion of the large sequence B, which may make it biologically implausible to be a

common ancestor, e.g. if there is a single gene with exons spanning A, B and C. This

tendency to lose colinearity has led to the study of ‘perfect’ rearrangement scenarios,

in which common intervals of ordered subsequences present in the input are conserved
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[Berard et al., 2009].

However, current algorithms for finding perfect rearrangement scenarios re-

quire the common intervals to be pre-specified, do not allow copy number variation and

require the common intervals to exist in all the inputs. This makes them inappropriate

when there is no prior expert knowledge to define the intervals, or when representing

large populations, where copy number variation is present and missing data and unusual

variants break many intervals that would otherwise be common.

Methods to derive consensus orderings of sets of total and partial or-

ders have been extensively considered, particularly in the domain of social choice

[Fagin et al., 2002, Kendall, 1938]. In general, the inputs to such problems are sequences

or structures equivalent (in their most general form) to directed acyclic graphs (DAG),

and the output is a consensus (partial) ordering. In such work, algorithms often work

to minimize the consensus’ (weighted) symmetric difference distance or Kemeny tau

distance [Kendall, 1938] (informally, the number of out of order (discordant) pairs).

Recently, such consensus ordering procedures have been adapted to create consensus

genetic maps from sets of individual subpopulation maps [Bertrand et al., 2009]. The

problem formalized here has similarity to such approaches, with the important differ-

ence be that it explicitly models the double stranded nature of DNA, allowing us to

account for the cost of sequences being inverted with respect to one another.

What follow are the formalization of the basic problem, proof of its NP-

hardness, description of a principled heuristic decomposition of the problem using cactus

graphs [Paten et al., 2011a], heuristic algorithms for the problem’s solution, demonstra-
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tion of the algorithms performance using simulation and lastly, description of the MHC

pan-genome reference and its utilities in comparison with the human reference GRCh37.

2.3 Results

2.3.1 The Pan-genome Reference Problem

2.3.1.1 Genome Sequences

Let S = {σ1, σ2, . . . , σk} be the input DNA sequences, with lengths (n1, n2,

. . . , nk). For simplicity it is assumed here that the DNA sequences are linear, though

extensions to allow additional circular sequences are straightforward. Due to the double

stranded nature of DNA, the 5′ and 3′ ends of each sequence element are distinguished.

A tuple (x ∈ {1, 2, . . . , k}, i ∈ (1, 2, . . . , nx), a ∈ {5′, 3′}) is denoted as xai , giving the

coordinate of the a end of the ith element in σx. For any DNA sequence σx the ends

are oriented consistently, so that for all i > 1 the x5
′
i end is adjacent (contiguous) in

the sequence to the x3
′
i−1 end and, for all i < nx the x3

′
i end is adjacent in the sequence

to the x5
′
i+1 end. Signed notation is used to distinguish ends, hence −x5′i = x3

′
i and

x5
′
i = −x3′i . The set of all end coordinates is S.

2.3.1.2 Alignment

The end coordinates in S are partitioned by their alignment relationships.

The alignment relation is defined as ∼ ⊂ S2. The alignment relation is an equivalence

relation, i.e. one that is transitive, symmetric and reflexive. The equivalence classes
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for ∼ are denoted as S/∼, and [xai ] represents an equivalence class containing xai . The

alignment relation is constrained to force the pairing of opposite ends. First, it is

assumed that if xai∼ybj then −xai∼−ybj , termed strand consistency. Second, it is assumed

that if xai∼ybj then neither −xai∼ybj or xai∼ − ybj , termed strand exclusivity. Due to

strand consistency, for all [xai ] in S/∼ there exists [−xai ] = {−ybj : ybj ∈ [xai ]}, the reverse

complement of [xai ]. Due to strand exclusivity, for all xai , [xai ] 6= [−xai ]. Combining

these two statements it follows that |S/∼| is even. The set [−xai ] can be equivalently

denoted −[xai ], so that the reverse complement of X in S/∼ is −X. Each member of

S/∼ is a side, and each pair set of forward and reverse complement sides is a block. Note

that the alignment relation allows for copy number variation, i.e. arbitrary numbers of

coordinates from sequences in the same genome can be present in a block.

2.3.1.3 Sequence Graphs

Let G = (V,E) be a (bidirected) sequence graph. A bidirected graph is a

graph in which each edge is given an independent orientation for each of its endpoints

[Medvedev and Brudno, 2009]. The vertices are the set of blocks, V = {{X,−X} :

X ∈ S/∼}. The edges, E = {{[x3′i ], [x5
′
i+1]} : σx ∈ S ∧ i ∈ (1, 2, . . . , nx − 1)}, encode

the adjacencies (biologically the covalent bonds) between contiguous ends of sequence

elements. Each edge is a pair set of sides rather than a pair set of vertices, therefore

giving each endpoint its orientation, see Fig. 2.1(A). The cardinality and size of G are

clearly at most linear in the size of S.

A sequence of sides (X1, X2, . . . , Xn) is a thread. If the elements in
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{−X1, X2}, {−X2, X3}, . . . , {−Xn−1, Xn} are edges in the graph then the thread is

a thread path. A sequence of sides rather than vertices is used because the sides orient

the vertices, distinguishing forward and reverse complement orientations. For example,

for each sequence σx ∈ S, [x5
′

1 ], [x5
′

2 ], . . . , [x5
′
nx

] is a thread path in G, because for all

i ∈ 1, 2, . . . , nx−1, {[x3
′
i ], [x5

′
i+1]} (equivalently {−[x5

′
i ], [x5

′
i+1]}) is an edge in G.

A transitive sequence graph, Ĝ = (V, Ê = {{[x3′i ], [x5
′
j ]} : σx ∈ S ∧ i < j}),

includes the sequence graph G as a subgraph but additionally includes edges defined by

transitive adjacencies, that is pairs of ends connected by a thread path. The cardinality

(vertex number) of Ĝ is the same as G, but the size (edge number) of Ĝ is worst-case

quadratic in the size of S. A sequence graph encodes input sequences and an align-

ment, a transitive sequence graph models the complete set of ordering and orientation

relationships between the blocks implied by the input sequences (Figure 2.2).

2.3.1.4 Pan-genome References

A pan-genome reference F is a set of non-empty threads such that each block

is visited exactly once, see Fig. 2.1(B). Intuitively, not all pan-genome references are

equally reasonable as a way of summarizing S, because they will not all be equally

“consistent” with the set of adjacencies, Ê. An edge {X,Y } is consistent with a pan-

genome reference F if and only if there exists a thread in F containing the subsequence

−X, . . . , Y , see Fig. 2.1(B). Given a weight function z : Ê → R+, which maps edges to

positive real valued weights, the pan-genome reference problem is to find a pan-genome

reference in F = arg maxF
∑

e∈ÊF
z(e), where ÊF is the subset of Ê consistent with F .
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Figure 2.1: (A) A bidirected graph representing the four ways two blocks can be
connected. The arrowheads on the edges indicate their endpoints: the sides of the
vertices. (B) An example pan-genome reference on a sequence graph. There are
two sequences, indicated by the color of the edges. The red sequence, represented
by the thread A,B,C,D, F,G and the black sequence, represented by the thread
A,−F,−E,−D,−B,G. The red thread visits the edges {−A,B}, {−B,C}, {−C,D},
{−D,F} and {−F,G} and the black thread visits the edges {−A,−F}, {F,−E},
{E,−D}, {D,−B} and {B,G}. Neither thread includes all the blocks. A pan-genome
reference, indicated by the dotted edges, is A,−F,−E,−D,−C,−B,G. The dotted
edges and the edges {−B,D} and {−D,F} are the edges consistent with the given
pan-genome reference.

2.3.1.5 Exponential Weight Function

Although many possible weight functions exist, inspired by the nature of

genetic linkage, z is defined as z({X,Y }) = z′(X,Y ) + z′(Y,X), where z′(X,Y ) =∑
σx∈S

∑
x3

′
i ∈X

∑
x5

′
j ∈Y

(1 − θ)j−iI{i<j}, in which I{i<j} is the indicator function that

is 1 for pairs of i and j for which i < j else 0, and the parameter θ is a real num-

ber in the interval [0, 1). The θ parameter intuitively represents the likelihood that an

adjacency between two directly abutting sequence elements is broken or absent in any

other randomly chosen sequence, and is defined analogously to its use in the LOD score

[Griffiths et al., 1999] used in genetics. For θ > 0, the score given to keeping elements

in a sequence in the same order and orientation in the pan-genome reference declines
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Figure 2.2: An illustration of a transitive sequence graph. (A) A sequence graph of n
sequences of “A d B e C” and n sequences of “A -e B -d C”. (B) A transitive sequence
graph of the same sequences in (A).

exponentially with distance separating them.

To make it clear that an intermediate value of θ is desirable one can look

at what happens at extreme values of the parameter. As θ approaches 1 the weight

function become dependent only on edges in the sequence graph. Fig. 2.3 demonstrates

a limitation with considering only these edges, which is similar to that described for edit

operations in the introduction. At θ = 0 all transitive adjacencies are equally weighted,

however this can lead to longer sequences having undue influence on the solution; Fig.

2.3 also gives an example of this limitation when weighting all adjacencies equally.

One issue not dealt with by the definition of z are the evolutionary interdependencies

between the input sequences. It is possible to adjust the weights given to adjacencies

given a phylogenetic tree that relates the input sequences (or the genomes they derive

from). However, where homologous recombination is present a weighting based upon a

phylogenetic tree is insufficient and yet more complex strategies are needed.
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Figure 2.3: Top: An illustration of why it is not always sufficient to consider only
abutting adjacencies. (A) There are five blocks, A, B, C, d and e, reprising their roles
from the example given in the introduction. The input contains n copies of the sequence
A, d,B, e, C and n copies of the sequence A,−e,B,−d,C. (B) The bidirected graph
representation of this problem, with the number of adjacencies supporting each edge
labeled, the abutting adjacencies shown as solid lines and the non-abutting adjacencies
shown as dotted lines. If only solutions that start with A and end with C are of interest,
there are 4 maximal solutions, shown in (C,D,E,F). Solutions (C) and (D) each have
4n abutting adjacencies and 10n non-abutting adjacencies. Solutions (E) and (F) each
also have 4n abutting adjacencies but only 6n non-abutting ones. For θ <1 the (C) and
(D) solutions are optimal. As θ approaches 1, the weight of non-abutting adjacencies
approaches 0 and all four solutions become equally weighted, despite (E) and (F) having
B in the reverse orientation. Bottom: An illustration of why θ should be greater
than 0. (G) There are m + 2, blocks, the input contains n − 1 copies of the sequence
Am, B, C and 1 copy of the sequence A1, A2, . . . , Am,−B,C. (H) The bidirected graph
representation of the problem, where the sequence of A1, A2, . . . , Am blocks has been
reduced to just a single vertex for convenience. The two maximal solutions are shown
in (I,J), corresponding to the two distinct input sequences. If m > n and θ is 0 then the
solution with B in the reverse orientation (I) is optimal, despite this orientation being
observed only once. By increasing θ the alternative solution with B in the forward
orientation becomes optimal.
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2.3.2 NP-hardness of the Pan-genome Reference Problem

The pan-genome reference problem is NP-hard and can be projected onto the

problem of finding maximum weight subgraphs of a bidirected graph that do not contain

characteristic classes of simple cycle. See Appendix Section A.1 for a full proof of the

problem’s NP-hardness.

2.3.3 Algorithms for the Pan-genome Reference Problem

Having established that the pan-genome reference problem is NP-hard, the

following subsections describe a principled and novel heuristic to decompose the problem

using cactus graphs, and briefly describe two straightforward algorithms to build and

refine a pan-genome reference.

2.3.3.1 Cactus Decomposition of the Pan-genome Reference Problem

A cactus graph of the type introduced in [Paten et al., 2011a] describes a se-

quence graph in a hierarchical form. For a sequence graph G, a pair of sides X and Y

form a chain interval if there exists one or more thread paths of the form −X, . . . , Y ,

but no thread paths of the form −X, . . . ,−Y or X, . . . , Y . Chain intervals represent

intervals that are “fundamental”, in the sense that all the simple threads for all the

sequences in S follow the traversal rules defined above. It is reasonable therefore to

search for reference sequences that preserve all such intervals.

The chain interval relation defines a partition of the vertices into a set of

disjoint chains. A chain is a thread (X1, X2, . . . , Xn) such that all and only pairs of
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Figure 2.4: (A) The bidirected graph from Fig. 2.1(B) redrawn to show the nets as
colored side subgraphs. (B) The cactus graph representation of the blocks and nets in
(A), with the white net containing the highest level chains. The edges represent the
blocks, the vertices the nets. The arrow heads on the edges indicate endpoints that are
links.

form (−Xi, Xj) for which j−i ≥ 1 define a chain interval; each chain interval of the form

(−Xi, Xi+1) is called a link. Chains can be arranged hierarchically, because one child

chain may be contained within the link of a parent chain. Two chains are called siblings

if either they are both children of the same parent chain link or both are not contained

within any parent chain link (i.e. they are at the highest level of the hierarchy). For

a thread (X1, X2, . . . , Xn) the two sides X1 and −Xn are stubs. A net is an induced

subgraph of G defined by the set of stubs for a maximal set of sibling chains and (if they

exist) the pair of sides that define the containing parent link, see Fig. 2.4(A). A graph

in which the nodes are the nets and the edges are the oriented vertices of a sequence

graph forms a cactus graph, see Fig. 2.4(B).

To construct a reference that respects all chain intervals, a pan-genome refer-

ence is created independently for each net, each pair of chain stubs treated as equivalent

to blocks in the previous exposition. Additionally, the pan-genome reference for each
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child net with a parent link must be composed of a single thread whose stubs are the

sides of the parent link. This reduces the maximum size of the pan-genome reference

problem to that of the largest net in the sequence graph, which as the sequence graph

for alignments of variation data is often relatively sparse, has (in experience and in

accordance to elementary random graph theory [Erdos and Rényi, 1960]) size only ap-

proximately logarithmically proportional to the number of vertices in the graph. It also

facilitates parallel execution, because each net can be computed in parallel.

2.3.3.2 Greedy and Iterative Sampling Algorithms for the Pan-genome Ref-

erence Problem

Given the decomposition, a pan-genome reference for each subproblem is built

using an initial greedy algorithm, before iterative refinement that employs simulated

annealing.

In overview (see the source-code for more details), a pan-genome reference F

is composed, starting from the empty set, by greedily adding one member of V to F

at a time, each time picking the combination of insertion point and member of V that

maximizes consistency with elements already in the F . The algorithm is naively |V |3

time (as each insertion is |V |2 time), though by heuristically ignoring weights less than

a specified threshold (the weight declines exponentially with sequence separation), and

using a priority queue to decide which member of V to add next, it can be improved

|V |log(|V |) in practice.

Given an initial reference F the procedure progressively searches through a

23



sequence of neighboring permutations, where for a reference F a neighboring permutation

is created by removing an element from F and then inserting it either in the positive

or negative orientation as a prefix, suffix or coordinate between elements in the reduced

F , potentially including the elements original coordinate. The algorithm incorporates

simulated annealing by using a monotonically decreasing temperature function to control

the likelihood of choosing neighboring, lower scoring permutations. As the temperature

tends to zero the algorithm becomes greedy and a local minima can be searched for,

while as the temperature tends to positive infinity all permutations become equally

probable and the search becomes a random walk. Each iteration of sampling, in which

the repositioning of every block is considered once, is naively |V |2 time, but is improved

to |V |log(|V |) in practice.

2.3.4 Simulation Experiments

To test the algorithms described we use a simple simulation of a rearrangement

median problem. We start with a single linear chromosome, represented as a signed

permutation of 250 elements, which we call the original median. We then simulate either

3, 5 or 10 leaves, treating each leaf with a set number of random edits. For convenience

we simulate only translocations and inversions, which results in each leaf remaining

a single contiguous chromosome, and apply an equal number of translocations and

inversions. Note, for simplicity, we did not assess copy number changes (e.g. duplicative

rearrangements), but doing so would be interesting.

We performed two sets of simulations, in the first we did not constrain the
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length of the subsequence of elements inverted or translocated. In such a scenario only

a few edits are sufficient to radically reorder the genome and break many resulting

ordering relationships. In the second scenario we constrained the lengths of inverted

subsequences to 2 or 1, and constrained the length of translocated subsequences to just

1. In this scenario relatively large numbers of rearrangements are required to breakup

the ordering of the original median.

To find solutions to the pan-genome reference problem we use a combination

of the algorithms described above, first using the greedy algorithm, then refining it

with iterative sampling, performing 1000 iterations of improvement and setting θ = 0.1

(values of theta between 0.5 and 0.001 made little difference to the result). We call

this combination Ref. Alg. in the results that follow. To compare performance of our

solutions we compare them to the original median, and to a median genome inferred

using the AsMedian program [Xu, 2009] (using default parameters), which finds optimal

solutions to the DCJ median problem with three leaves. We assess performance by

looking at three metrics. First, the DCJ distance, which gives the minimum number of

edits needed to translate one genome into another by DCJ edits. Second, viewing the

medians as two signed, partial order relations A and B on the blocks, the symmetric

difference distance, defined as |A4B||(A∪B)| . This gives the proportion of order plus orientation

relationships not common to the two medians. Last, we compare a weighted form of

the symmetric difference distance, in which each ordered pair present in the symmetric

difference of the two order relations is weighted by (1− θ)i, where i is the length of the

elements separation in the sequence the pair is present in. This distance (in common
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with the weight function used for the pan-genome reference problem) therefore gives

exponentially more weight to pairs of elements close together in one of the medians but

not in the same order and orientation in the other median.

The top panel of Fig. 2.5 shows the results of simulating unconstrained, ar-

bitrary translocations and inversions. Unsurprisingly, Ref. Alg. constructs medians

that are substantially farther from the leaves or the original median in terms of DCJ

distance than the results of AsMedian (avg. 44% and 103% more overall than Ref. Alg.

with 3 leaves, respectively, from the leaves and original median). Furthermore, in terms

of weighted and unweighted symmetric difference distance, the AsMedian solutions are

closer to the original median (though not the leaves) than those constructed using Ref.

Alg. for moderate numbers of simulated edits (avg. 34% and 52%, respectively, in

terms of symmetric difference and weighted symmetric difference compared to Ref. Alg.

with 3 leaves). This clearly demonstrates that using the Ref. Alg. for sequences whose

ordering have been turned over by large rearrangements produces poor results, and that

ancestral reconstruction algorithms can be used more effectively for moderate numbers

of edits in this scenario, with the caveat that they may construct a multi-chromosomal

ordering of the data.
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Figure 2.5: Top: Simulation results using arbitrary inversion and translocation oper-
ations. Each plot shows the total number of operations (a mixture of 50% inversions
and 50% translocations) vs. either the DCJ distance (top two plots), symmetric dif-
ference distance (middle two plots) or weighted symmetric difference distance (bottom
two plots). The left plots give the average distance from the leaf genomes and the right
plots give the distance from the original “true” median genome. Series shown include
the original median genome (left plots only), the inferred median genome from the As-
Median program [Xu, 2009] using three leaves, and the inferred median genomes using
our combined reference algorithms, using, separately, three, five and ten leaf genomes
as input. Simulations used ten replicates for each fixed number of edits, points give
median result, lines show max and min quartiles. Bottom: Simulation results using
short inversion and translocation operations, laid out as in top panel.

The bottom panel of Fig. 2.5 shows the results of simulating short edits,

demonstrating a striking converse to the unconstrained case. In terms of DCJ distance,

the Ref. Alg. with 5 and 10 leaves is actually able to outperform the AsMedian program

in terms of distance to the original median (Ref. Alg. with 5 leaves requires 20% on

avg. fewer DCJ edits than AsMedian), while in terms of weighted and unweighted

symmetric distance Ref. Alg. with 3 leaves is able to find solutions that are as close to

the leaves as the original median and substantially closer to the original median than

the AsMedian results (Ref. Alg. with 3 leaves is 31% closer on avg. than AsMedian

in terms of symmetric difference distance to the original median). Furthermore, adding

more leaves improves the results substantially (Ref. Alg. with 10 leaves is 52%, 44%

and 55% closer to the original median in terms of avg. DCJ, symmetric difference and

weighted symmetric difference distance than Ref. Alg. with 3 leaves). These results

demonstrate that if edits have largely maintained the linear ordering of the sequences

then, even when the sequences have been subject to substantial numbers of edits, Ref.

Alg. is competitive with an ancestral reconstruction method in terms of DCJ, while
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ensuring that all elements appear in an ordering that is closer, in terms of ordering and

orientation, than an optimal ancestral reconstruction method.

2.3.5 Creating a Pan-genome Reference for the Human Major Histo-

compatibility Complex (MHC)

First, I describe in overview the construction of a pan-genome reference se-

quence for the MHC, which I refer to as C. Ref. (consensus reference) henceforth. I

then detail a series of comprehensive evaluations designed to assess C. Ref., in particular

in contrast to the existing reference genome for this region.

2.3.5.1 Samples and Assemblies

The input data consist of 16 human samples, for full details see Subsection

2.5.1. Eight of these (pgf, apd, cox, dbb, mann, mcf, qbl and ssto) were the GRCh37

haplotypes, all of which were previously assembled [Horton et al., 2008]. Five of the

samples derived from two deeply sequenced trios (parents and child) from the 1000

Genomes Project (1KGP), one trio of African descent and one trio of European descent

[1000-Genomes-Project-Consortium, 2010]. The paternal sample of the European trio,

named NA12891, was excluded from the analysis for data quality reasons. Of these

samples, I assembled four (NA12892, NA19238, NA19239, NA19240) using the Velvet

assembly program [Zerbino and Birney, 2008] and extracted one (NA12878) from a re-

cent human assembly made using the ALLPATHS-LG program [Gnerre et al., 2011].

Additionally, I used the recent Asian (Yh1) [Wang et al., 2008] and African (NA18507)
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de novo genome assemblies [Bentley et al., 2008] and the Venter genome assembly

[Levy et al., 2007]. Finally, as an outgroup I included the chimpanzee reference genome

sequence (panTro3) [Chimpanzee-Sequencing-Analysis-Consortium, 2005], using it to

break ties in decisions about constructing C. Ref.

Apart from the reference mapping step used to isolate scaffolds and reads that

are specific to MHC, all the assemblies may otherwise be considered de novo assemblies,

in that they were assembled without assistance of a reference genome. Although this is

not a requirement of the methods, it helped to avoid reference allele bias, a tendency to

assemble reference alleles in preference to alternatives, influencing the construction of

C. Ref. Another important consideration of the genome assemblies used is that they are

haploid. In the case of the GRCh37 haplotypes this is because the underlying samples

are haploid in the MHC region. The remaining samples are diploid artificially made

haploid by the assembly process. For this reason it is expected that around half the

variants present in these samples will be missed.

2.3.5.2 Alignment and Pan-genome Reference Construction

Given the input assemblies, I construct an MSA using Cactus

[Paten et al., 2011b], partitioning the individual bases (bp) in the input sequences

into sets of homologous bases, called homology sets. A homology set that contains

two or more bases is called a column, in analogy to the representation used in a

traditional 2-dimensional MSA, where the rows are the sequences and the columns are

the homology sets representing the alignment of individual bases. The bases within
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a homology set are oriented, thus each homology set has a forward and a reverse

complement orientation.

Each input sequence defines a sequence of oriented columns, with some poten-

tially interstitial unaligned subsequences. The software constructs C. Ref. by picking

a sequence of these oriented columns, such that each column is present exactly once in

either its forward or reverse complement orientation (this sequence is therefore a signed

permutation), and using the most frequently occurring base in each column to define

the actual base representing the column in C. Ref.

There are two major challenges in the approach. The first challenge is finding

the optimal ordering of the columns, the solution to which is presented in previous

Section. The second challenge is finding an appropriate set of columns. This problem

is approached by modifying the Cactus [Paten et al., 2011b] alignment program: First,

to avoid aligning ancient paralogies, the software works to exclude all homologies that

significantly predate the speciation of humans and the outgroup species chimpanzee.

Second, in cases where copy number variation is present, to ensure that C. Ref contains

all recurrent copies, the aligner first undoes relevant homologies in an initial alignment

(“melting”) and then reanneals the homologies using synteny partition, so that in the

resulting alignment, each column contains at most one base from each sample, i.e.

no self-alignments (Figures 2.6, 2.7). Last, as stated, the columns are required to

include at least two bases. By the previous modification, these two bases must come

from different samples. This prevents rare or erroneously assembled subsequences from

being included in C. Ref. I call the bases within columns recurrent because they have
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Figure 2.6: An example of a synteny partition, used to ensure that when copy number
variation is present, the pan-genome reference contains all recurrent copies. There are n
identical sequences A;B;C;B′;D, such that B and B′ are homologous by a segmental
duplication. (A) A bidirected graph for the example including only direct adjacencies.
(B) After melting the B vertex in (A) (“melting” is undoing the alignment relationship,
or homologies, in the vertex). The rectangles represent interstitial sequence that is
unaligned (not within a column). There are two groups, one containing an end of A
and an end of C, and the other containing an end of C and an end of D. (C ) After
reannealing the homologies, but only between positions in the same group. The graph
now has two copies of B, separated into homologies groups by the segmental duplication.

homologs. Inversely, bases not contained within columns are called non-recurrent.

2.3.5.3 C. Ref. Sample Composition: C. Ref Contains ∼6% of Recurrent

Bases That Are Absent in GRCh37

To understand the contribution of each sample to C. Ref. I analyze the align-

ment of each sample in the MSA. In this work each sample can be considered a set of

contigs. A contig and the bases it contains are covered by the alignment if one or more

bases in the contig is recurrent, and therefore included in C. Ref. Figure 2.8(A) (also

Appendix Table A.1) shows the total length of covered contigs for each sample (grey

color bars), the number of recurrent bases (red color bars, equivalent with the number
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Figure 2.7: An example of the synteny partitioning of a tandem duplication. There
are n identical sequences A;B;B′;C, such that B and B′ are homologous by a tandem
duplication. (A) A bidirected graph for the example including only direct adjacencies.
(B) After melting the B vertex in (A). The rectangles represent interstitial sequence
that is unaligned (not within a column). There is only one group, hence reannealing
will return the graph to its state in (A). Instead, the BAR algorithm is used, which
creates an alignment in which only substitutions and indels are allowed, hence B and
B′ end up in separate columns.

of bases aligning to C. Ref.) and the number of bases in each sample that align to bases

in GRCh37 (blue color bars).

There are substantial differences in the numbers of covered bases between the

samples. These differences are largely explained by the use of different sequencing

technologies: the Venter and the haploid GRCh37 samples were generated using Sanger

sequencing and have larger average numbers of covered bases (avg. 4,162,770 bp) than

the remaining samples (avg. 3,168,268 bp), which all used Illumina short read (avg.

47bp in this study) sequencing technology [Bentley et al., 2008]. However, there are
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two clear exceptions to this pattern. The Sanger sequenced APD sample has noticeably

fewer such bases (2,320,747 total bp). Conversely, the Illumina sequenced NA12878

sample (4,192,579 total bp) has similar coverage with the Sanger sequenced samples,

probably because it had higher sequencing coverage and a greater variety of paired end

libraries than the other Illumina samples [Gnerre et al., 2011]. Related to this, Figure

2.8(B) (see also Appendix Figure A.2) shows the number of bases in selected samples

aligned within homology sets of a given cardinality; the cardinality of a homology set

is the number of different samples having bases aligned in that set. The relationships

for each sample shown are complex and subtly different, but, comparing with Figure

2.8(A), all seem affected by the differing coverage of subsets of the samples.

For a sample, the difference between the number of covered bases and the

number of recurrent bases is the number of non-recurrent bases in the MSA. These are

bases which are either part of relatively rare segregating polymorphisms, or erroneous

due to mis-alignment or mis-assembly. Encouragingly, the Chimpanzee sample has by

far the largest number of non-recurrent bases in the MSA, a total of 185,330 bp (3.31% of

covered bp); in contrast the average human sample has only 19,362 such bases (0.52%

of covered bp). Summing across the human samples, a total of 309,896 bp are non

recurrent (5.54% of all columns and non-recurrent bp).

Given the relatively small number of samples, all recurrent bases are likely

segregating at a reasonable frequency in the population. An important category of

recurrent (segregating) bases are those that GRCh37 fails to represent (i.e, not in GRCh

37). On average each human sample has 68,525 such bases (1.84% of covered bp).
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Summing across the samples, 329,190 recurrent bases in the MSA (5.88% of columns

and non-recurrent bp) do not contain bases in GRCh37.

2.3.5.4 A Comparison of the MSA’s Variation Predictions to the db-

SNP/1KGP Data Confirms the High Accuracy of the MSA

To assess the accuracy of the MSA I compared its SNV and short (≤ 10 bp)

insertion and deletion (collectively indels) predictions made with respect to GRCh37

to the intersection of the dbSNP database [Sherry et al., 2001] and the 1KGP data

[1000-Genomes-Project-Consortium, 2010]. In overview, the MSA made 56,080 distinct

SNV predictions relative to GRCh37, of which 42,584 (76%) were confirmed by dbSNP.

This accounts for 28% of all SNVs currently in the dbSNP/1KGP data. Given that

there were only 15 samples other than GRCh37 used in this study, observing 28% of

the population variation is significant.

One important set of predicted SNVs are those that are present in C. Ref,

as these reflect differences between the pan-genome reference sequence and GRCh37.

Approximately 97% of such SNVs are contained in the dbSNP/1KGP data, leaving 264

total possible “false positives” (false positive with respect to the dbSNP/1KGP). The

majority of these (91% or 241 SNVs) occurred in bases that were labeled as either being

repetitive or proximal to a breakpoint in one or more of the samples. Repetitive regions

and breakpoint vicinities are challenging cases and often result in multiple equivalent

solutions in alignment. Therefore, it is expected to observe disagreements between

the MSA and the dbSNP/1KGP data in these regions. A careful manual analysis of
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the other 23 non-repetitive, non-breakpoint-proximal cases of the 264 false positives

revealed supporting evidence for 21 of them (Method Subsection 2.5.6 and Appendix

Table A.6). Overall, the results confirm the SNVs between C.Ref. and GRCh37 and

validate C.Ref.’s quality.

I see a similar picture with short indels to that with SNVs, but a generally

higher level of disagreement between the MSA predictions and the dbSNP/1KGP data.

Overall, the MSA made 22,360 indel predictions of which 14,575 (65%) were confirmed,

accounting for 34% of all short indels currently in the dbSNP/1KGP data.

False Positive SNVs Likely Resulted From the Assembly Quality of

the Illumina Sequenced Samples and Reduced by the Recurrence Require-

ment

With 76% of the total predicted SNVs confirmed by dbSNP, there were 24%

of false positives. A large proportion of these false positives came from the Illumina

sequenced samples (Figure 2.9 and Supplementary Table A.2). On average, the Sanger

sequenced samples had a 98% true positive rate in comparison to only a 78% rate in

the Illumnia sequenced ones.

To further investigate these false positive SNVs I subdivided the MSA predic-

tions into categories based upon: First, their presence outside of a sequence of GRCh37

annotated as repetitive, and therefore hard to correctly assign homology to; second,

their distance from a breakpoint within the MSA, which might result in misalignment,

and third, whether they were recurrent, i.e. predicted by multiple samples and therefore

37



were less likely to be erroneous (Figure 2.9 and Supplementary Tables A.2, A.3, A.4

and A.5).

Being outside of repetitive sequence and more than 5 bp from a breakpoint

results in a small positive increase in the average true positive rate (2.7% and 3.1%

increase, respectively); combined this effect is even stronger (4.9% increase). SNVs

within repeats and near breakpoints are therefore likely to be genuine candidates for

misalignment and consequent false SNV prediction.

Being recurrent had a small effect on the Sanger samples (avg. 0.6% increase

in true positive rate), but a huge effect on the Illumina sequenced samples (avg. 17%

increase in true positive rate). Looking at only recurrent SNVs, the overall true pos-

itive rate is 95% and is similar between Sanger (avg. 98% per sample) and Illumina

sequenced samples (avg. 96% per sample). Looking only at recurrent SNVs also only

leads to a 13% average reduction in the total number of SNVs called, a much smaller

reduction than that of looking at SNVs only in non-repeat regions (54%) or SNVs not

proximal to a breakpoint (19%). The high accuracy in the SNV predictions of the

Sanger sequenced samples, together with the significant improvement in accuracy of the

Illunima sequenced samples’ SNV predictions when the “recurrent” condition was re-

quired, suggest that most of the false positives may be attributed to sample’s assembly

quality (sequencing or assembling errors) and not alignment errors.

Assessing false negative rates is harder as SNV and indel calls for the indi-

vidual GRCh37 haplotypes were not available. However, given the high true positive

rate, I estimate the false negative rate for each of these samples by assuming the MSA
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predictions are correct and using the total number of previously reported SNV predic-

tions [Horton et al., 2008]. Given this caveat, in the haploid (Sanger) samples I see an

average false negative rate of 2% per sample. In the diploid samples I see an average

false negative rate of 59.5% per sample, which is reasonable given that, as mentioned,

I expect to miss half of all their variants.
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2.3.5.5 Variation Rate Comparisons

Having verified many of the MSA’s SNV and short indel predictions I compare

the rates of these events in each sample with respect to GRCh37 and with respect to

C. Ref; Figure 2.10 shows the rates for SNVs, insertions and deletions.

SNVs: C. Ref. Is Closer to the Input Samples than Is GRCh37

With respect to GRCh37 the SNV rate differs between samples from between

0.0021 to 0.0036 SNVs per bp. With respect to C. Ref. the SNV rate differs between

samples from between 0.0014 to 0.0027 SNVs per bp. In every sample there are fewer

SNVs with respect to C. Ref. than to GRCh37, the difference being 29% on average.

To confirm that the reduction in SNVs was not caused only by a bias in the MSA, I

constructed versions of C. Ref. excluding a 1KGP sample and then compared SNV

calls made with this held out sample using a short read pipeline (see Subsection

2.3.5.9) mapping alternatively to GRCh37 and the held out version of C. Ref. The

results of this experiment are shown in Figure 2.10(B), in every case C. Ref. is closer

to the sample than GRCh37, the difference being 16% on average, despite more reads

mapping to the modified C. Ref. in every case (see Subsection 2.3.5.9).

Indels: C. Ref. Is Inclusive of All Recurrent Segregating Bases and

Has More Deletions as a Trade-off

With respect to GRCh37 the rate of insertions averages 2.8x10−4 per bp overall,
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and is similar to the rate of deletions, averaging 2.6x10−4 per bp overall. Conversely,

the rate of insertions with respect to C. Ref. is much lower, averaging only 0.5x10−4 per

bp overall, while the rate of deletions is much higher, at 5.3x10−4 per bp overall. This

demonstrates a key difference between GRCh37, or likely any existing biological sample,

and C. Ref., in that C. Ref. includes all recurrent segregating bases, while any biological

sample is likely to have approximately equal numbers of insertions and deletions with

respect to any other sample.

2.3.5.6 Contiguity and Non-linear Breakpoints

To create C. Ref. the software chooses an ordering and orientation for the

columns in the MSA. To assess this oriented ordering I investigate two complementary

metrics: first, analyzing the ordering and orientation in C. Ref. of pairs of ordered and

oriented bases within the contigs, and second, by discovering breakpoints implied by

the alignment that lead to nonlinear orderings of the contigs.

Correct Contiguity: Both C. Ref. and GRCh37 Maintain the Order

and Orientation of the Bases of the Input Samples

A pair of bases within a contig of a sample are correctly contiguous

[Earl et al., 2011] in a given reference sample if the pair aligns to a single contig within

the reference that maintains their order and orientation (Figure 2.11, see Appendix Sec-

tion A.3 for a formal definition). Appendix Table A.11 shows the results of this metric

for each sample, comparing C. Ref. to GRCh37. I find that in GRCh37 on average
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3.2% of selected pairs are not correctly contiguous, but in C. Ref. only 1% of selected

pairs are not correctly contiguous. This large difference is accounted for mostly by the

first two requirements of correct contiguity, that the bases in the contigs align to bases

in the reference. Looking only at pairs which do align to the reference, 176 pairs per

million (0.00018%) on average are not correctly contiguous in GRCh37, while 128 pairs

per million (0.00013%) on average are not correctly contiguous in C. Ref. Both C. Ref.

and GRCh37 maintain the order and orientation of the bases in the input samples. This

observation is expected because there are few structural rearrangements present in the

input dataset (as will be discussed in the following section).

In Appendix Figures A.4 and A.5 I analyze correct contiguity, and correct

contiguity given that the pairs align to the reference as a function of the separation

distance between each pair of bases, but find little evidence for a consistent trend. This

is perhaps to be expected given the apparently very small number of pairs that do

align but are not correctly oriented.

Nonlinear Breakpoints: A Segregating Inversion Accounts for All

the Recurrent Nonlinear Breakpoints in the Sample Set

To assess nonlinear breakpoints I analyze subgraphs of the alignment (see

Methods Subsection 2.5.4). In concordance with the correct contiguity analysis, I find

relatively few such breakpoints, the median being 2 with respect to GRCh37 and 1

with respect to C. Ref. (Figure 2.12). Analyzing these breakpoints, I find one recur-

rent inversion segregating in the population that explains all the recurrent nonlinear
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breakpoints (7 across all samples) observed with respect to C. Ref. With respect to

Chimpanzee I find evidence that the segregating inversion is present in GRCh37, the

MANN, the MCF and NA19239 samples, and not present in the remaining samples, ex-

cept for NA19238, where missing information precludes us from knowing. Figures 2.13

and 2.14 show the inversion in the UCSC genome browser, using the MSA as well as in-

dependently generated alignments that confirm it. The inversion was missed by previous

studies of the eight GRCh37 haplotypes [Traherne et al., 2006, Horton et al., 2008], but

a nearby inversion described in the Database of Genomic Variants [Zhang et al., 2006]

may be related (see Appendix Figure 2.14). Figures 2.13 and 2.14 also demonstrate

that for this region, C. Ref. provides a better comparative genomic visualization than

does GRCh37, not only because the majority of the samples do not have the inversion

but also because GRCh37 does not contain the ∼3000 bases surrounding it that the

majority of the samples do.

The remaining breakpoints with respect to C. Ref. (38 across all samples) are,

apart from being non-recurrent, mostly present (35 of them) in the Illumina assemblies,

making it more likely that these are technology related misassemblies.
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2.3.5.7 Large Indels

As would be expected, the frequency of short indels of a given length approxi-

mately exponentially declines with length [Kent et al., 2003] (see Appendix Figures A.6

and A.7). Consequently, the number of bases on average affected by indels of a given

length generally declines with this length (see Appendix Figures A.8 and A.9). How-

ever, I also find exceptions to this trend: a few very large indels (length ≥ 1000 bp)

that contribute disproportionally (60% on average per sample) to the total number of

bases affected by indels (see Appendix Figures A.10 and A.11).

Due to the presence of missing data and the use of only one outgroup, it is

hard to determine if an insertion or deletion with respect to C. Ref. or GRCh37 is truly

the result of the gain of new bases or the loss of previously present bases. However, for

large indels I can search for close homologs to partially characterize them. In brief, I

took the set of predicted insertions with respect to GRCh37 larger than 1000 bp and

aligned them to the whole of GRCh37 (not just the MHC, see Appendix Section A.4).

Table 2.1 shows these results. For a total of 76 insertions, 44 (58%) map best within the

MHC, 9 (12%) apparently resulting in copy number change. I find 18 (24%) map best

outside the MHC and that the remaining 14 (18%) were unmappable. A manual analysis

of these unmappable sequences indicates they are likely true evolutionary deletions in

GRCh37. A large proportion of sequences (68%) have ≥ 50% bases that were labeled

repetitive and a large portion of sequences mapped well to multiple locations (29%),

given their size, this suggests many of these events may have arisen by repeat-related
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Bases % Total bases Events % Total Events

Mapped to MHC 431,154 63.9 44 57.9

Mapped Outside MHC 189,425 28.1 18 23.7

Unmapped 54,263 8.0 14 18.4

Multi-mapping 54,344 8.1 22 28.9

Copy Number Change 31,405 4.7 9 11.8

Tandem Duplications 1,910 0.3 1 1.3

Repeats 495,384 73.4 52 68.4

Total 674,842 100 76 100

Table 2.1: The origin of large (≥ 1000 bp) insertions with respect to GRCh37. Columns:
‘Bases’: Number of bases in insertions. ‘Events’: Number of insertions. ‘% Total bases’:
Proportion of total bases. ‘% Total Events’: Proportion of total events. Rows: ‘Mapped
to MHC’: Events which mapped best within MHC (see Appendix Section A.4). ‘Mapped
Outside MHC’: Events which mapped best outside MHC. ‘Unmapped’: Events which
did not map well anywhere. ‘Multi-mapping’: Events which mapped well to multiple
locations. ‘Copy number change’: Events which resulted in copy number change in
the sample. ‘Tandem duplications’: Events that mapped within 1000 bases of their
insertion location and resulted in copy number change. ‘Repeats’: Number of insertions
with ≥ 50% bases classified by Repeat Masker as repetitive [Smit et al., 2010]. ‘Total’:
Total numbers of bases and events.

mechanisms.
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2.3.5.8 RNA Alignments: C. Ref. Contains All GRCh37’s RefSeq Tran-

scripts that Mapped to the MHC Region as well as Additional Tran-

scripts Missing from GRCh37

Any reference genome must contain a set of representative gene structures for

the species. I took the RefSeq human transcripts [Pruitt et al., 2012] and aligned them

independently to GRCh37 and C. Ref, using stringent identity and coverage parameters

and keeping only the best alignments for each transcript (See Appendix Section A.5).

Requiring 95% of the transcript to be aligned at 95% identity, I find 210 RefSeq genes

whose transcripts all align to both the MHC region of GRCh37 and C. Ref. better than

the remainder of GRCh37 (Appendix Table A.13). I find no transcripts that align to

the GRCh37 MHC region and not to C. Ref., but 3 genes with transcripts that align to

C. Ref. but not to GRCh37. One of these genes, HLA-DQB1, has 3 RefSeq transcripts,

of which only one (NM 001243962) did not map to GRCh37. By reducing the required

identity for this transcript to 90%, I was able to obtain a reduced stringency match.

The HLA-DRB Hypervariable Region: C. Ref. Includes Segregating

HLA-DRB Genes Not in GRCh37

The remaining two genes with transcripts that mapped to C. Ref. but not

to GRCh37 (HLA-DRB3 and HLA-DRB4) both were entirely missing from GRCh37.

Interestingly, both mapped to C. Ref. within large indels contained within a region

that corresponds to the HLA-DRB Hypervariable Region. In C. Ref. the HLA-
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DRB Hypervariable Region [Traherne, 2008] contains a large number (29 events) of

large insertions with respect to GRCh37; Appendix Figure A.14 shows this region

in a prototype C. Ref. genome browser, while Appendix Figure A.12 shows the

entire MHC for C. Ref. All the expected HLA genes in this region are present

(known genes HLA-DRB5, HLA-DRB1 and pseudogenes HLA-DRB9, HLA-DRB6),

as well as the two extra HLA genes (HLA-DRB3, HLA-DRB4) described, and also

pseudogenes (HLA-DRB2, HLA-DRB7, HLA-DRB8) that are recurrent in the in-

put samples and known to be segregating in humans but not present in GRCh37

[Stewart et al., 2004, Traherne et al., 2006, Horton et al., 2008].

One issue with the use of RefSeq transcripts is that they have been constructed

and curated using the existing reference genome, and therefore are potentially biased

against a novel reference based upon a more comprehensive set of samples. To address

this possibility I repeated the described alignment process using all the GenBank

human RNAs. Though these sequences could not all be associated with individual

genes, at a 95% identity and coverage level I found that 236 RNAs (7.6% of all RNAs

that mapped either to C. Ref. or the MHC region of GRCh37) mapped to C. Ref. but

not to GRCh37 and only 22 RNAs (0.7%) mapped to the MHC region of GRCh37 but

not to C. Ref. This large difference indicates that there are potentially further gene

structures missing from GRCh37 that are contained in C. Ref.

The RCCX Module: C. Ref. Is Inclusive of All Recurrent Copies

Converse to a region containing genes within large insertions with respect to
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GRCh37, an interesting region with significant large deletions with respect to GRCh37

is the RCCX module. The RCCX module, typically containing the genes STK19 (RP),

C4A/B, CYP21 and TNXB, may be duplicated or triplicated, resulting in additional

copies of the complement component C4 genes, as well as the additional pseudogenes

CYP21A1P, TNXA, and STK19P [Horton et al., 2008]. The C4 genes of individual hap-

lotypes can be in either or both of two versions, C4A and C4B, and each gene can be

in either long (C4AL, C4BL) or short (C4AS, C4BS) forms. Among the GRCh37 hap-

lotypes, GRCh37 (C4AL, C4BL), SSTO (C4BL, C4BL) and DBB (C4AL, C4BS) have

been previously reported as bimodular; COX (C4BS) and QBL (C4AS) as monomodu-

lar; and the MCF (with evidence of being bimodular), APD and MANN haplotypes as

incomplete in this region, due to sequence gaps [Horton et al., 2008]. C. Ref. contains

the consensus copy number of the input samples, i.e a duplicated RCCX module (see

Appendix Figure A.13). The Cactus MSA confirms previously reported annotations

[Horton et al., 2008], except for the COX and SSTO samples. The MSA predicts that

COX has C4AS instead of the C4BS, with the alignment between the COX sequence

and the C4A gene mapped perfectly without any substitution or indel. The previously

reported annotation appears less parsimonious, as it creates two large deletions instead

of one. The MSA predicts that SSTO has C4AL and C4BL instead of two C4BL genes.
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2.3.5.9 Short Read Mapping: More Reads Map to C. Ref. Than to

GRCh37 But Less Reads Map Uniquely to C. Ref.

In Section 2.3.5.5 I demonstrated that C. Ref. is inclusive, having relatively

few insertions with respect to the input samples. However, the cost of including seg-

regating but potentially rare subsequences in a C. Ref. is the inclusion of potentially

rare breakpoints. Such rare breakpoints could disrupt more common subsequences and

potentially make mapping and annotation more difficult. To assess the tradeoffs made,

I test C. Ref. as a target for mapping experiments. In brief, I constructed versions of C.

Ref. excluding a held out 1KGP sample and then compared mappings made with BWA

[Li and Durbin, 2009] of the held out sample to GRCh37 and the held out C. Ref. (see

Appendix Section A.6). I mapped Illumina unpaired and paired reads. For each paired

read I required that both its ends mapped in the proper orientation given the pairing

constraint and were separated by at most 1000 bases, calling such reads properly paired.

I find that on average 5,958 (0.6%) more unpaired reads and 13,828 (0.5%)

more paired reads map to C. Ref. than to GRCh37 (Figure 2.15 and Appendix Table

A.14). Of note, this is in reasonable agreement with the average proportion of bases in

these samples (0.89%) that are recurrent but which do not map to GRCh37.

Converse to an increase in the numbers of mapping reads, I find on average

per sample 9,656 (0.26%) fewer unpaired reads and 6,413 (0.25%) fewer paired reads

map uniquely to C. Ref. than map uniquely to GRCh37. To analyze this reduction I

investigated reads that map uniquely to GRCh37 but non-uniquely to C. Ref., calling
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such reads GRCh37 mapping discordant. Table 2.2 shows characteristics of these reads;

I find that 73% of the bases to which such reads map are labeled repetitive, which

is 1.4 times the GRCh37 average. I also find that there are 3 fold more SNVs in the

dbSNP/1KGP data called at these bases than on average. I hypothesize this enrichment

for SNVs is due to the absence of a orthologous sequence in GRCh37 that is present

in the sample being mapped (Figure 2.16). This missing ortholog then results in the

appearance of unique mapping to its paralog. In Appendix Table A.16 I turn the

experiment around and look at reads which map uniquely to C. Ref. but non-uniquely

to GRCh37. I see similar effects, but 2.9 fold fewer mapping discordant reads than when

doing the experiment with the references reversed.

In Appendix Figures A.15 and A.16 I compare mapping to C. Ref. vs. the other

GRCh37 haplotype samples, both individually and in combination. Individually they

are all poorer than GRCh37 and therefore substantially poorer than C. Ref. Combined

they could not be used for paired or unique mapping, as a large proportion of reads

then map nonuniquely or between the samples in the case of paired reads. However,

for mapping reads combined they were 1% better than C. Ref, which is expected as

even a consensus sequence is unlikely for this purpose to be superior to a substantial

collection of individual samples. However, mapping to multiple individual references

are computationally costly and are not commonly practiced.

In Appendix Figure A.17 I compare mapping to versions of C. Ref. in which

columns and non-recurrent bases were included or excluded according to a parameter α,

which determines the minimum cardinality of homology sets included in C. Ref. I find
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Figure 2.15: A comparison of short read mapping to C. Ref. and to GRCh37 shows that
C. Ref. has slightly more mapped and properly paired reads and slightly less uniquely
mapped reads. The y-axis is the ratio of the difference between the number of reads
of a sample mapping to a C. Ref. constructed without the sample in question and the
number of reads of the sample mapping to GRCh37 over the number of reads of the
sample mapping to GRCh37. ‘Mapped’: For all reads. ‘Properly Paired’: For paired
reads (see methods for definition of ‘proper pairing’). ‘Uniquely Mapped’: As ‘Mapped’,
but ignoring reads that map to multiple region equally well. ‘Uniquely Mapped and
Properly Paired’: As ‘Properly Paired’, but ignoring reads that map to multiple region
equally well.
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Sample MD Reads Total MD bases % Repeats SNV Rate dbSNP ESR bcftools ESR

NA12878 52,731 354,575 74.08 0.0144 2.6 3.2

NA12892 30,542 264,912 73.63 0.0100 2.7 2.8

NA19238 31,335 249,473 71.34 0.0088 3.0 2.7

NA19239 40,308 266,904 71.77 0.0161 2.8 3.5

NA19240 50,928 327,527 72.71 0.0128 2.7 2.9

average 41,168 292,678 72.70 0.0124 2.7 3.1

Table 2.2: An analysis of GRCh37 mapping discordant reads show that these reads map
mostly to repetitive regions that have an enrich in SNVs called by dbSNP/1KGP. ‘MD
Reads’: Total GRCh37 mapping discordant reads. ‘Total MD bases’: Total mapping
discordant bases in GRCh37. ‘% Repeats’: Proportion of mapping discordant bases
in GRCh37 classified as repetitive. ‘SNV Rate’: Number of SNVs predicted by db-
SNP/1KGP per mapping discordant base in GRCh37. ‘dbSNP ESR’: dbSNP ‘Enriched
SNV Ratio’, ratio of mapping discordant SNV rate (previous column) over overall SNV
rate predicted by dbSNP/1KGP. ‘bcftools ESR’: bcftools ‘Enriched SNV Ratio’, ratio
of mapping discordant SNV rate over overall SNV rate predicted by bcftools.

that including non-recurrent bases in C. Ref. (e.g. α = 1) actually substantially reduces

the number of reads that map, and that α = 2 is optimal for non-unique mapping for

all samples.

2.4 Discussion

In this chapter, I defined a problem useful for creating a pan-genome refer-

ence between closely related genomes, described proofs of its NP-hardness and showed

principled heuristics to find approximate solutions. Simulations showed the tradeoffs

between optimizing for conserved order relationships and minimizing DCJ operations.
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ACGGGTGATGTCCAGTC ACGGTTGACGTCCAGTC

ACGGGTGATGTCCAGTC

C. Ref.

Read 1 Read 2

ACGGTTGACGTCCAGTC

ACGGGTGATGTCCAGTC

ACGGGTGATGTCCAGTC

GRCh37

Read 1 Read 2

ACGGTTGACGTCCAGTC

Figure 2.16: An example scenario of reads mapping to a paralog when the true ortholog
is missing. Here, C. Ref. contains the orthologous sequence of Read 2 and therefore
results in non-unique mapping. GRCh37 does not have orthologous sequence of Read
2 and results in the mis-mapping of Read 2 to the orthologous sequence of Read 1,
resulting in unique-mapping, but higher SNPs.

I applied the methods to construct a pan-genome reference for a limited set of human

MHC sequences. In light of the results, I now try to summarize the arguments for

and against this approach, both in comparison to the existing human reference genome,

GRCh37, and in comparison to any potential genome from a single individual.

The strongest argument for a pan-genome reference is that it has the potential

to be a better ‘median’ genome for a population as a whole than any existing individ-

ual genome. For example, by picking the most frequently occurring nucleotide in each

column it is guaranteed to be as close as possible on aggregate to the genomes in the

sample set in terms of nucleotide substitutions. Here I observed an average 29% reduc-
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tion in SNVs per sample when comparing against C. Ref. rather than GRCh37. I have

demonstrated by contiguity and breakpoint analysis a small but significant improvement

in the order of C. Ref. vs. GRCh37.

Another argument for a computationally derived reference is that it can be

made ‘inclusive’, i.e. missing few subsequences that are segregating within the popu-

lation. In this study, where I have accounted for around 34% of known MHC indels,

I find GRCh37 is missing 2819 deletions that are recurrent in the other samples and

therefore included in C. Ref. These missing sequences, which account for around 6%

of bases in the region, contain important variants that are also segregating within the

population. For example, I find that within the HLA-DRB hypervariable region entire

genes are missing from GRCh37 that are segregating recurrently in the population.

Critics may argue that a pan-genome reference is ‘artificial’, in that it

does not represent a haploid genome in any one individual. However, this is

also true of the current GRCh37 reference, which is a chimera of haplotypes

[International-Human-Genome-Sequencing-Consortium, 2004]. Furthermore, the tech-

nology for completely sequencing and assembling the haplotypes of a human genome

(or a genome of a member of a similarly outbred population of any large mam-

mal) to the ‘finished’ quality of the GRCh37 genome is not yet readily available

[Salzberg et al., 2011, Earl et al., 2011, Gnerre et al., 2011].

Instead of relying on one reference genome for a species, multiple refer-

ence genomes could instead be used. Indeed this approach is being taken by the

Genome Reference Consortium [Church et al., 2011] in identifying and sequencing al-
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ternative haplotypes in highly polymorphic regions, the MHC being one such example

[Horton et al., 2008]. Given such a set of reference genomes there are two obvious ap-

proaches.

The first approach would identify the best reference genome for a particular

sample being studied from a set of multiple reference genomes and then use it exclusively.

For the limited MHC region, I have shown no sample in the set of GRCh37 haplotypes

and Venter is as good as C.Ref. for mapping paired or unpaired short reads for any of the

1KGP samples studied. The mapping experiments also identified a subtle paralogous

mapping issue present in GRCh37, and likely any single sample, that is much less

apparent in C. Ref due to its inclusiveness. For each 1KGP sample a substantial number

of reads map uniquely to GRCh37 and non-uniquely to C. Ref. I demonstrated that

the sites to which these reads map are substantially enriched for SNVs and repeats,

suggesting that substantial numbers of such SNVs are likely paralogous mappings as a

result of the true ortholog being missing from GRCh37.

The second approach would use a set of multiple reference genomes in com-

bination. This combined approach necessitates a homology map between the multiple

references, to avoid chronic ambiguities in the multiple mapping of both the reads and

annotations. In fact, such a homology map can be fully represented by the genome

MSA described here, but the combination of the MSA and samples leads a more com-

plex data structure than a consensus reference sequence, and is naturally described as

a graph structure. Such a graph is conceptually described in the pan-genome reference

problem above, and in a more sophisticated form elsewhere [Paten et al., 2011a]. It
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is likely that such graphs will play an increasingly important part in reasoning about

population variation, but algorithms that use the reference, such as mappers and those

that reason about functional annotations, will need to be largely rewritten to take ad-

vantage of such structures. This is a laudable long term direction, but for algorithms in

the medium term and probably always for human consumption, there will be a need to

produce an ordering through such graphs that can therefore be considered a consensus

reference.

Ancestral reconstructions that more strongly preserve order relationships may

be preferable, all other things being equal, due to the selective pressure to maintain

chromosomal and reproductive compatibility. Being somewhat analogous to methods

for ancestral reconstruction, this work is also concordant with methods that pursue

perfect rearrangement scenarios. The use of the cactus graph as a novel principled

heuristic method of decomposition for the problem is in this spirit, and may well also

be useful for breaking down rearrangement median problems.

The pan-genome reference problem also has close similarities with sequence

assembly problems, which have variants explicitly described on bidirected graphs

[Medvedev and Brudno, 2009]. In particular, the scaffolding problem given paired reads

involves arranging a set of “scaffold” sequences in a partial order to essentially maxi-

mize the numbers of consistently ordered, oriented and spaced paired reads. Apart from

the additional constraint on spacing, the scaffolding problem with paired reads can be

defined equivalently to the pan-genome reference problem.

Another utility of the pan-genome reference is in visualization of variation data
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as it provides a view of the alignment not typically possible from any input genome.

In addition, pan-genome references, being comprehensive and consensus orderings, are

likely to prove useful for other purposes. Where reference genomes are currently used

for computational convenience, for example in read compression, and are not integral

for biological interpretation, a pan-genome reference may present a useful alternative

to current reference genomes. Additionally, given that (sequence) graphs do not have a

implicit linear decomposition, having a pan-genome coordinate system on such graphs

could prove useful in processing multiple alignments.

2.5 Materials and Methods

2.5.1 Sequence Assemblies

The input samples include 16 human MHC haploid assemblies. In each case

sets of scaffolds were obtained as described below and then converted into sets of con-

tigs. This was done by splitting the scaffolds at scaffold gaps, defined as contiguous

subsequences of 10 or more ‘N’ or ‘n’ characters, resulting in the removal of the scaf-

fold gaps and the replacement of previously contiguous scaffolds with multiple separate

contigs.

Of the assemblies, 8 were the GRCh37 haplotypes [Horton et al., 2008,

Church et al., 2011]. These sequences (chr6:28477754-33448354, chr6 apd hap1,

chr6 cox hap2, chr6 dbb hap3, chr6 mann hap4, chr6 mcf hap5, chr6 qbl hap6,

chr6 ssto hap7) were obtained from the UCSC genome browser GRCh37/hg19 database.
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One assembly was the Venter MHC sequence (chr6:28284180-33170530), which

was extracted by mapping the Venter assembly (September 2007 release, ftp://ftp.

jcvi.org/pub/data/huref/) to the GRCh37 MHC loci. The mapping was done us-

ing LASTZ (http://www.bx.psu.edu/~rsharris/lastz/, version 1.02.00), with the

minimum identity set to 97% and default parameters otherwise.

Two other assemblies came from the ‘African’ (NA18057) [Bentley et al., 2008]

and the ‘Asian’ (Yh1) [Wang et al., 2008] genomes. For these two genomes, I obtained

the scaffolds from the BGI de novo assemblies (see ftp://public.genomics.org.cn/

BGI/yanhuang/Genomeassembly/african2.scafSeq.closure.gz and ftp://public.

genomics.org.cn/BGI/yanhuang/Genomeassembly/asm_yanh.scafSeq.closure.gz,

respectively) and extracted out the sequences that mapped to the GRCh37 MHC loci

as done for the Venter assembly.

The last 5 assemblies were from the 1000 Genomes pilot project trios,

including NA12878, NA12892, NA19238, NA19239 and NA19240. The NA12878

MHC assembly was extracted from the recently de novo assembled NA12878 genome

[Gnerre et al., 2011] (see http://www.ncbi.nlm.nih.gov/nuccore?term=GL582980:

GL586310), again by mapping the scaffolds as described above.

The other 4 assemblies were made using the Velvet de novo assembly program

[Zerbino and Birney, 2008], version 1.1.06. For each assembly, I only used the Illumina

reads http://www.illumina.com/systems/hiseq_2000.ilmn that were mapped to the

GRCh37 MHC main region, using the 1KGP alignments (downloaded from ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/data/NAxxxxx/alignment/, where NAxxxxx
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is replaced with the sample name, e.g. NA12892). The Velvet parameters used were

as follows: kmer 25, exp cov auto, ins length and ins length sd obtained using the perl

script observed-insert-length.pl, which was included in the Velvet package (http://www.

ebi.ac.uk/~zerbino/velvet/Manual.pdf).

In addition, I also added the MHC sequence of the chimpanzee reference as-

sembly as an outgroup. This sequence was extracted from the UCSC genome browser

chimpanzee (assembly panTro3) by mapping the GRCh37 MHC main region to this

assembly using the ‘Covert’ function of the UCSC browser.

2.5.2 Creating Human Haplotype Alignments

To create the alignments (homology relation) I use an adapted version of the

Cactus alignment program [Paten et al., 2011b], with the default parameters and θ =

10−4. The θ values between 10−2 and 10−6 were also tested and produced similar results.

The Cactus program’s CAF algorithm starts by using the LASTZ pairwise

alignment program (http://www.bx.psu.edu/~rsharris/lastz/, version 1.02.00) to

generate a set of pairwise alignments between all the input sequences. It then filters

these pairwise alignments to create a consistent multiple sequence alignment.

In the adapted version of Cactus used for this work the following parame-

ters are passed to LASTZ: –hspthresh=1800 –identity=X, where X = 95 = b100 −

300
4 (1 − e−dβ

4
3 )c is the maximum likelihood identity expected by the Jukes Cantor

model [Cantor and Cantor, 1969], given a liberal estimate of the maximum evolu-

tionary distance between the human and the Chimpanzee outgroup of d = 0.015
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[Patterson et al., 2006], and a conservative factor of β = 3 to allow for regional ac-

celerations in the substitution rate.

Even with this reasonably high identity threshold the resulting Cactus align-

ment contains many intra-haplotype homologies, resulting from recent duplications. The

aim is to construct a “consensus” reference sequence, such that if a column contains n

positions within each reference sample, the resulting reference sequence will also con-

tain n copies of the column. To achieve this, the Cactus CAF algorithm’s annealing and

melting cycles were modified to further partition the columns containing duplications

into multiple columns, such that each of the resulting columns contains at most one

position from each sample.

For a set of sequences and a homology relation, let G′ be a graph whose

nodes are the ends of the columns and whose edges are the direct adjacencies. A group

is a connected component of G′. For a set of columns C a synteny partition is the

removal (melting step in the CAF algorithm) of homologies between positions in C and

then their selective re-addition (annealing step in the CAF algorithm), allowing only

homologies between positions within the same group of the modified graph; Appendix

Figure 2.6 illustrates this process. The process of synteny partitioning is repeated during

each round of annealing and melting in the CAF algorithm, which otherwise remains

unchanged to that described in [Paten et al., 2011b]. To remove tandem duplications,

which survive synteny partitioning, at the end of the CAF algorithm, any columns

containing multiple positions within any single sample are melt (removing homologies

between positions). The Cactus BAR algorithm [Paten et al., 2011b], which models
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only substitutions, insertions and deletions, is then able to rediscover a subset of these

homologies, Figure 2.7 illustrates this. Using the α parameter (by default α = 2),

which only includes columns with a minimum number of positions in the reference, the

process of synteny partitioning can be used to heuristically achieve an approximation

to a consensus copy number in the reference sequence.

2.5.3 MSA Post Processing

Having constructed an initial MSA and C. Ref. for the samples above the

alignment was “trimmed” so that the GRCh37 sample, which is a single contig, was

present in the first and last columns of C. Ref. This trimming resulted in a MSA and

C. Ref. that could then be fairly compared with GRCh37, as no sequence included in

the MSA mapped to before or after the interval defined by GRCh37.

The trimming was achieved by recomputing the MSA and C. Ref. with exactly

the same parameters as in the initial run, but with suffixes and prefixes of contigs that

mapped to columns in C. Ref. that preceded the first column containing positions from

GRCh37 or proceeded the last column containing positions of GRCh37 removed.

2.5.4 Identifying SNVs, Indels and Nonlinear Breakpoints in the MSA

Given the MSA and a designated reference sample, generally either C. Ref. or

GRCh37, variation predictions for each of the other input samples are made. This was

achieved by analyzing columns and subgraphs of the MSA.

66



2.5.4.1 SNVs

For each column containing a position from an input sample and a position

from a chosen reference a SNV is predicted for the sample with respect to the reference

if the oriented bases of the two positions differ. The set of SNVs for a given input

sample and reference is then the set of all such SNVs.

2.5.4.2 Indels

Let G = (V,E) be the bidirected graph for the MSA constructed such that

α = 1. Let G′ = (V ′ ⊂ V,E′ ⊂ E) be the subgraph of G containing only nodes

and direct adjacency edges representing a chosen reference sample R and input sample

T . Due to the synteny partitioning process, any column in G′ represents at most one

position from each of R and T , while because α = 1 every unaligned position is also

represented by a node.

Let C be an M, 2 cycle in G′. C has one positive node, A, and one negative

node, B, and both must contain positions from R and T . C can be subdivided into two

paths P1 and P2 that both include A and B, but are otherwise disjoint. Let xi and xj be

a pair of positions such that [xi] = A, [xj ] = B and P1 represents xi<Sxj . Similarly, let

yk and yl be a pair of positions such that [yk] = A, [yl] = B and P2 represents yk<Syl.

Without loss of generality assume that x is the sequence in R and y is the sequence

in T . If j − i > 1 then a deletion is counted in T with respect to R of length j − i.

Similarly if l−k > 1 then an insertion is counted in T with respect to R of length l−k.
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2.5.4.3 Nonlinear Breakpoints

Adapting the definition given for indels, let C now be an M, 1-cycle such that

M > 1. Let A be the non-balanced node. C represents one non-linear breakpoint if

there exists another node B in C such that the two paths P1 and P2, defined for A, B

and C as before, both represent one or more adjacencies.

2.5.5 dbSNP/1000 Genomes Project Comparisons

I compared the MSA’s SNV and short (≤ 10 bp) indel predic-

tions made with respect to GRCh37 to the intersection of the dbSNP

database (build 134) [Sherry et al., 2001] and the 1KGP data (release 20110521)

[1000-Genomes-Project-Consortium, 2010].

The dbSNP data for the GRCh37 MHC was obtained from the UCSC

Genome Browser ‘snp134’ table (assembly GRCh37/hg19) for the region chr6:28477754-

33448354. The SNVs included were all records classified as ‘single’ or ‘MNP’ (Multiple

Nucleotide Polymorphism). I considered each base of the MNPs as equivalent to one

SNV. The short insertions include records classified as ‘insertion’ or ‘in-del’ with length

≤ 10 bases. Similarly, the short deletions include records classified as ‘deletion’ or

‘in-del’ with length ≤ 10 bp.

The 1KGP data was obtained from ftp://ftp-trace.ncbi.nih.gov/

1000genomes/ftp/release/20110521/, again including all records within the region

chr6:28477754-33448354.

A variant predicted by the Cactus MSA and present in the intersection of the
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dbSNP and the 1KGP datasets was called true positive. In contrast, the false negatives

were defined as variants previously reported for a given sample but not predicted by

the Cactus MSA.

Except for the GRCh37 haplotypes whose sample-specific variants could

not be located, the variants of each other sample were obtained from the corre-

sponding UCSC Genome Browser’s unpublished Personal Genome Variants tables,

assembly GRCh37/hg19. The sample specific data from the 1KGP came from the

March 2010 release ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/

release/2010_03/, ftp://ftp.jcvi.org/pub/data/huref/HuRef.InternalHuRef-

NCBI.gff, http://yh.genomics.org.cn/do.downServlet?file=data/snps/yhsnp_

add.gff, using variants called using MAQ with the sequences from http://trace.

ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP000239.

2.5.6 Manual Analysis of False Positive SNVs

I manually analyzed C. Ref. false positives (not in dbSNP or the 1000

Genomes project data) SNVs with respect to GRCh37 using the UCSC Genome Browser

[Fujita et al., 2011] and the Browser’s unpublished MULTIZ [Miller et al., 2007] multi-

ple sequence alignment of the GRCh37 haplotypes.

I separated the SNVs into five categories: ‘confirmed’, ‘dbSNP bug’, ‘alignment

disagreement’, ‘recurrent’, and ‘single’. SNVs were labeled ‘confirmed’ if they were

observed in the MULTIZ MSA. SNVs that were not in dbSNP build 134 due to a bug

in dbSNP were labeled ‘dbSNP bug’; I reported this bug and it has now been fixed
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in dbSNP build 135. SNVs were labeled ‘alignment disagreement’ when the MULTIZ

alignment opted for indels and the Cactus MSA opted for substitutions. SNVs were

‘recurrent’ if there was no evidence from the MULTIZ MSA (often due to missing data

or non-aligned sequences), but the SNVs were present in two or more samples from the

Cactus MSA. SNVs were ‘single’ if there was no evidence from the MULTIZ MSA and

the SNVs were present in only one sample.

2.5.7 Gene Mapping

To assess how genes mapped to C. Ref. in comparison to GRCh37, I aligned

RefSeq [Pruitt et al., 2012]) transcripts and Genbank RNAs [Benson et al., 2012] to the

GRCh37 assembly (excluding the alternative loci) and to a hybrid GRCh37/C. Ref.

assembly, which was the GRCh37 assembly with the MHC region replaced by the C. Ref.

sequence. The alignments were done using Blat [Kent, 2002], version 34x10. For each

sequence the best alignments were chosen using the pslCDnaFilter program available

in the UCSC Genome Browswer source code. Alignments with less than 95% base

identity were discarded. In addition, two different coverage filterings, 90% and 95%,

were applied, which respectively required that the alignments covered at least 90% and

95% of the RNA’s/transcript’s bases to be kept. RefSeq and Genbank RNAs were

obtained from the UCSC Genome Browser tables, refGene and all mrna, respectively,

GRCh37 assembly.

HLA-DRB pseudogenes genes that were not in the RefSeq database (HLA-

DRB2, HLA-DRB7, HLA-DRB8, HLA-DRB9) were mapped to C. Ref. using Blat with
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identity ≥ 95%. Sequences for these genes were obtained from the UCSC Genome

Browser, using the predicted mRNA sequences generated by Ensembl (HLA-DRB2:

ENST00000419200, HLA-DRB7:ENST00000422566, HLA-DRB8:ENST00000436297,

HLA-DRB9: ENST00000449413).

2.5.8 Short Read Mapping

To test C. Ref. as a target for mapping experiments, I constructed versions

of C. Ref. excluding a held out 1KGP sample and then compared mappings made

with BWA of the held out sample to GRCh37 and the held out C. Ref. The mappings

include Illumina reads that were mapped to the GRCh37 MHC main region and Illumina

unmapped reads (see Appendix Subsection 2.5.1 for the data source). Unpaired and

paired reads were mapped using bwa samse (-n 10000) and bwa sampe (-n 10000 -N

10000 -a 1000), respectively. The bwa version was 0.5.9-r16.

2.5.9 Code Availability

The core code used to build C. Ref. and perform all the evaluations described

can be retrieved from https://github.com/benedictpaten/referenceScripts and

https://github.com/ngannguyen/referenceViz. Dependencies for this project are

described in its documentation and can be retrieved from https://github.com/

benedictpaten/foo, where foo is the name of the dependency. The version of the

project and its dependencies used in this paper have all be tagged with the “refer-

enceMHCProject” tag. For each project the “master” branch of the Git repository
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should be used. Once installed all the evaluations described in the paper may be re-

peated using a simple make based pipeline.

2.5.10 Data Availability

The generated C. Ref sequence, the MSA and the assembled sequences used

to build it can be downloaded from http://compbio.soe.ucsc.edu/reconstruction/

mhcReference/supplement.tar.bz2.
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Chapter 3

Comparative Assembly Hubs: Web

Accessible Browsers for Comparative

Genomics1

1This chapter expands on results from a recent paper that I worked on with Benedict Paten, Glenn
Hickey and Brian Raney [Nguyen et al., 2014a].
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3.1 Overview

Researchers now have access to large volumes of genome sequences for com-

parative analysis, some generated by the plethora of public sequencing projects and,

increasingly, from individual efforts. It is not feasible nor is it most efficient for public

genome browsers attempt to curate all this data. Instead, a wealth of powerful tools is

emerging to empower users to create their own visualizations and browsers.

We develop a pipeline to easily generate collections of web accessible UCSC

genome browsers interrelated by an alignment. The pipeline, named the comparative

assembly hubs (CAH) pipeline, is intended to democratize UCSC comparative genomic

browser resources, serving the broad and growing community of evolutionary genomi-

cists and facilitating easy public sharing via the internet. Using the alignment, all

annotations and the alignment itself can be symmetrically and efficiently viewed with

reference to any genome in the collection. A new, intelligently scaled alignment display

makes it simple to view all changes between the genomes at all levels of resolution, from

substitutions to complex structural rearrangements, including duplications.

To demonstrate this work I create a comparative assembly hub for 57 Es-

cherichia coli and 9 Shigella complete genomes. I report here comparative analyses of

the E. coli/ Shigella genomes, including core genome, pan-genome and phylogenetic re-

lationship analyses. The results recapitulate previous works and show that information

can be gained and/or easily updated utilizing the CAH framework.

The E. coli/ Shigella genome hubs are now public hubs listed on the UCSC
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Browser Public hubs webpage. The hubs contain many important annotation tracks,

with the annotations obtained from both external databases (genes, non-coding RNAs,

genomic islands, antibiotic resistance, pathogenicity) and automatic computations (con-

servation, alignability, repetitive elements, GC content). This is the first and only E.

coli comparative browser resource that has base level resolution and in which the core

genome and pan genome are incorporated and all genomes are interconnected by one

consistent multiple sequence alignment (MSA).

3.2 Introduction

3.2.1 Motivation

Visualization is key to understanding functional and comparative genomic in-

formation. Genome browsers are therefore critical to the study of biology, providing

accessible resources for displaying annotations and alignments. The UCSC Genome

Browser [Karolchik et al., 2014] is one of the most popular, but creating a browser within

it previously required significant resources, since it was necessary to create a mirror site

to separately host the browser or to work with the staff of the genome browser to create

a browser within the main site; this is a process that does not naturally scale due to

limited resources.

Assembly hubs [Karolchik et al., 2014], which build on the successful track hub

model [Raney et al., 2013], make it easy to generate an individual UCSC browser simply

by hosting the data in the form of flat-files on any publicly addressable URL. This frees
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up users from having to install and configure the substantial browser code base on their

machines and using user hosting simplifies the updating process.

Increasingly, users, with access to low cost sequencing technology, and the

wealth of genomes available, will want to be able to create not just a single custom

browser, but sets of genome browsers. Partly this is being driven by large-scale projects

[10k-Community-of Scientists, 2009, i5K Consortium, 2013], and partly by the growth

in individual lab sequencing. This work is intended to meet this growing need. It ex-

tends assembly hubs to allow users to quickly create “comparative assembly hubs”, a

framework of multiple genome browsers and annotations interrelated by an alignment.

Included in this development is a series of novel features intended to improve visualiza-

tion, exploration and community sharing of novel comparative genomics data.

3.2.2 Challenges in Multiple Genome Alignment Visualizations

Displaying multiple genome alignments is extremely challenging due

to both the high dimensionality and volume of the underlying data (see

[Nielsen et al., 2010] for a review). Extensive efforts have been invested in ad-

dressing these challenges. There are three main ways to visualize multiple

genome alignments: dot plots, circle plots and linear, row-oriented representa-

tions. For each method, there are a vast number of softwares available, exam-

ples include DAGChainer [Haas et al., 2004], VISTA-Dot [Mayor et al., 2000], MUM-

mer [S et al., 2004], GenomeMatcher [Ohtsubo, 2008] and MEDEA [Jen et al., 2009]

for dot plots, Circos [Krzywinski et al., 2009], GenomeRing [Herbig et al., 2012],
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CGView [Grant et al., 2012], GenomeViz [Ghai et al., 2004] for circle plots, and

IGV [Waterhouse et al., 2009], Jalview [Thorvaldsdóttir et al., 2013], GenomeView

[Abeel et al., 2012], UCSC [Karolchik et al., 2014] and VISTA [Mayor et al., 2000]

browser conservation tracks for linear, row-oriented representations.

Each of these visualization methods has its clear benefits and weaknesses.

Dots plots, having two dimensions, provide equivalently powerful representations of

two genomes in one graphic, however, they are pairwise and therefore unsuitable for

the display of multiple genome alignments. Circular genomes plots, being organized

around a circle, are typically less visually cluttered than are the linear representations for

globally viewing genomic rearrangements, but are less useful for viewing local multiple

alignments, with a consideration at the gene or base level. In addition, they do not

scale well in displaying structural variations to the number of genomes involved.

Linear representations have the advantage that they fit neatly with the genome

browser displays and tracks, and are flexible, in that they work reasonably at multiple

levels of resolution. However, similar to circular representations, they are limited in dis-

playing structural variations. Typically in an MSA display, each genome is represented

by a row (track) and homologous segments between two genomes (rows) are color coded

and connected by lines from one row to the other (Figure 3.1). With this representation,

structural rearrangements are visible but the display gets crowded quickly as the com-

plexity increases and becomes incomprehensive. Moreover, the display is dependent on

the transitiveness of the rows. Only genomes that are in consecutive rows have their ho-

mologous segments connected. As such, the comparisons of genomes in non-consecutive
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Figure 3.1: An example MSA linear display obtained from Mauve User
Guide [Darling et al., 2004] (http://asap.ahabs.wisc.edu/mauve-aligner/mauve-
user-guide/mauve-screenshots.html). The accompanied caption is as followed: The
screenshot was taken with Mauve 2.0 visualizing an alignment of nine Yersinia genomes.
The screenshot visualizes the global rearrangement structure of the chromosomes.Each
genome is laid out horizontally and homologous segments are shown as colored blocks
that are connected across genomes. Blocks that are shifted downward in any genome
represent segments that are inverted relative to the reference genome (Yersinia pestis
KIM). Clicking in the display will vertically align the homologous segment in each
genome.

rows rely on intermediate comparisons with genomes in the intermediate rows. The

indirect comparisons unavoidably result in the dropping of information.

The popular alternative for displaying structural variations is the UCSC

genome browser chains and nets representation [Kent et al., 2003] (Figure 3.2). A chain

is a sequence of non-overlapping gapless alignment blocks, in which both target and

query coordinates are either increasing or flat. The chains display consists of all possi-

ble chains within the alignment and reflects the many-to-many alignment relationship,
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i.e a query position can be aligned to many target positions and a target position can

be aligned to many query positions. A net is a hierarchial display of chains, with the

highest-scoring non-overlapping chains at the top level and lower scoring chains at the

lower levels, filling in the higher levels’ gaps where possible. The nets display reflects

the one-to-many relationship: a query position can be aligned to many target positions

but each target position can only be aligned to at most one query position. The chains

and nets representation allows users to deduce rearrangement and duplication events.

With query locations shown by mousing-over the display, there are no lines that cross

multiple rows and line congestion ceases to be a problem. The disadvantage of the

chains and nets representation is the loss of visual cues seen in the overall image of

rearrangement events that such lines provide.

In addition to limitations in visualizing possible structural variations, the key

issue for current implementations of MSA displays is that they are reference-dependent.

Restricting visualization to any single reference can restrict the viewer from observ-

ing visualizations of regions in other genomes that do not map to the reference, or

regions that are mapped to an alternate rearrangement with respect to a reference.

Furthermore, separate MSA constructions are often required if different references are

considered. Such additional constructions may be computationally expensive and may

lead to inconsistencies.
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Figure 3.2: An example of the UCSC chain and net display. Figure is Figure 1 extracted
from Kent et. al [Kent et al., 2003]. The accompanied caption is: “Mouse/human align-
ments at Actinin α-3 before and after chaining and netting, as displayed at the genome
browser at http://genome.ucsc.edu. The RefSeq genes track shows the exon/intron
structure of this human gene, which has an ortholog as well as several paralogs and
pseudogenes in the mouse. The all BLASTZ Mouse track shows BLASTZ alignments
colored by mouse chromosome. The orthologous gene is on mouse chromosome 19,
which is colored purple. Although BLASTZ finds the homology in a very sensitive man-
ner, it is fragmented. The chained BLASTZ track shows the alignments after chaining.
The chaining links related fragments. The orthologous genes and paralogs are each in
a single piece. The chaining also merges some redundant alignments and eliminates
a few very low-scoring isolated alignments. The Mouse/Human Alignment Net track
is designed to show only the orthologous alignments. In this case, there has been no
rearrangement other than moderate-sized insertions and deletions, so the net track is
quite simple. Clicking on a chain or net track allows the user to open a new browser on
the corresponding region in the other species.”

3.2.3 Innovative Features of Comparative Assembly Hub

The CAH framework introduces a new linear display representation - the snake

track; I believe this track style to be the first linear representation which gives a repre-

sentation for all variations, including structural rearrangements, duplications, substitu-

tions, insertions and deletions in a single, visually appealing, interactive visualization.

The snake track provides visual cues to possible structural variation events while avoid-
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ing lines that cross multiple genomes. In addition to giving a more complete picture of

the genome of interest, the snake track contains a series of innovative features. Because

the snake employs a novel algorithm which generates procedural levels of detail, the

user is able to zoom in or out of every level of resolution, from complete chromosomes

to individual residues. Being based upon a symmetric, reference independent alignment

format [Hickey et al., 2013], for the first time in an alignment view using the UCSC

Browser, snake tracks are viewable between any set of genomes in the hub and from

any chosen genome, as all genomes in a hub have a generated reference browser. Addi-

tionally, to overcome the limitations of viewing the alignment from the perspective of

single reference genome, along with each generated comparative assembly hub, a pan-

genome reference browser is also given via the algorithm reported in previous chapter

[Nguyen et al., 2014b].

The comparative assembly hubs are also novel from a genome browser per-

spective: The underlying alignment may be used, by a process of “lift-over” (coordinate

conversion between assemblies) [Zhu et al., 2007], to automatically project annotations

to any genome in the hub, even if the annotations were originally mapped to just one

genome. Previously lift-over was employed on a case-by-case basis within the UCSC

genome browser to project tracks between assemblies, for example, when moving to an

updated assembly. Here it is a default, integral feature, making it easy to view puta-

tive genes and functional annotations on any novel genomes by a process of translation

using the underlying alignment. To my knowledge, the CAH framework is also the first

web-based genome browser that permits easy public sharing of comparative data with-

81



out hosting or requiring other users to download data - only a web browser is required.

Finally, separately to the novel features introduced, these user generated browsers are

integrated with many of the existing (powerful) tools of the UCSC browser such as the

Table Browser.

3.2.4 E. coli Comparative Genomic Resources

E. coli is one of the most studied organisms and consequently has been

one of the most sequenced bacterial species. At the time of writing, E. coli has

the second highest number of complete sequence genomes publicly available among

all bacteria (after Salmonella enterica, source: http://www.ebi.ac.uk/genomes/

bacteria.html). E. coli contains substantial intra-species genomic diversity, which

allows for its high versatility including various pathotypes, different antibiotic resis-

tances as well as different lifestyles (see a review at [Leimbach et al., 2013]). Com-

parative genomic analyses of multiple strains of E. coli have proven useful in un-

derstanding the molecular basis of their phenotypic differences [Leimbach et al., 2013,

Ogura et al., 2009, Lukjancenko et al., 2010], and these analyses have been beneficial to

promote practical applications such as diagnostic and antibiotic developments for bac-

terial infectious diseases [Didelot et al., 2012, Rasko et al., 2011, Mellmann et al., 2011,

Rohde et al., 2011].

E. coli comparative genomics paints a familiar picture of the current challenges

faced by the bioinformatics driven scientific community and is a great illustration of the

pressing needs for a robust comparative genomics framework. The rapid speed of data
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generation has challenged scientists to provide the necessary well-tuned data analysis, as

in the case of E. coli comparative genomics. As new data becomes available, not only

are novel analyses required to answer new questions which will inevitably arise, but

previous analyses will also most likely need to be redone to update existing knowledge.

While the prior step is usually accomplished and published in the paper accompanied

each sequencing effort, the latter typically falls to the side. This is a common case in

current E. coli research: each individual sequencing effort usually targets only specific

questions of interest. Meanwhile, the accumulation of many individual efforts results

in a tremendous amount of data, which are much valuable for comparative genomics

opportunities. Unfortunately, this source of information remain untapped and dormant

because considerable efforts are required to carry out the comparative genomics analyses.

Some examples illustrating the importance of having a constant update of

existing knowledge are the analyses which surround the interplay between the core

genome, pan genome, and phylogenetics for E. coli. Over the years, numerous studies

have been written on these topics, yet the results have a tendency to be inconsistent

from one study to another (see Sections 3.3.3.2, 3.3.3.3 and 3.3.4). The inconsistencies

are mostly due to two reasons: different data sets and different methodologies (e.g gene-

based versus genomic-based approaches). Both reasons may be traced to the differences

in both the availability and nonavailability of sequencing data.

I now show the CAH framework offers a procedural, automated solution for

updating such analyses with minimal efforts which helps research to keep pace with the

current deluge of data.
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3.2.4.1 E. coli Comparative Genomic Visualization Resources

Despite E. coli ’s popularity as a model organism, there is currently no cen-

tral resource for visualizations of E. coli comparative genomics. Ensembl (http:

//bacteria.ensembl.org/) offers individual browser for each E. coli genome yet

does not provide comparisons with other genomes. Similarly, the UCSC Archaeal

Genome Browser http://archaea.ucsc.edu/genomes/bacteria/ contains browsers

for a small number of individual strains (eight E. coli and one Shigella) but no

comparative information is provided. Also, the UCSC Archaeal Genome Browser is

not kept up to date. The Microbial Genome Viewer (MGV) [Kerkhoven et al., 2004]

does offer individual browsers equipped with limited comparative functions, such

as links to orthologous genes and gene-context of COGs (cluster of orthologous

groups), but these browsers lack MSA views (Figure 3.3). Various E. coli compar-

ative genomic studies have provided static visualizations (typically in form of fig-

ures) of global MSAs for E. coli sets specific to each studies with limited annotations

[Lukjancenko et al., 2010, Rasko et al., 2011, Grant et al., 2012]. And, these static vi-

sualizations do not display structural variations (Figure 3.4).

Using the CAH pipeline, I built the E. coli comparative assembly hubs for

all E. coli and Shigella spp. complete genomes that were publicly available at the

time of writing. The resulting hubs contain one browser for each input genome plus

one browser for the pan-genome and each browser is accompanied by alignment and

annotation tracks. This resource provides researchers with the ability to explore the
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Figure 3.3: An example of MGV displays. Figure is Figure 2 extracted from Overmars et
al. [Overmars et al., 2013]. A shorten version of the accompanied caption is: “EbgR-like
transcription factors in L. plantarum and other lactobacilli. A) MGcV visualization of a
phylogenetic tree of EbgR-type regulators in some Lactobacilli. B) Comparative context
map of the beta-galactosidase encoding genes lacZ (E. coli), lacLM (L. plantarum) and
lacA (L. plantarum). C) A circular genome map of L. plantarum in which the ORFs on
the plus strand (blue), on the minus stand (grey), the locations of regulator encoding
genes lacR, rafR and galR (green), the GC% (red) and putative binding sites (similarity
to motif >90%; represented by the green dots) are included.”

data and facilitates data analysis tasks. More importantly, such resource can be easily

generated or updated as new data become available.
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Figure 3.4: An example of CGView display. Figure is Figure 1 extracted from Grant
et al. [Grant et al., 2012]. The shorten accompanied caption is: “CCT map comparing
an E. coli reference sequence to other E. coli genomes. Starting from the outermost
ring the feature rings depict: 1. COG functional categories for forward strand coding
sequences; 2. Forward strand sequence features; 3. Reverse strand sequence features; 4.
COG functional categories for reverse strand coding sequences. The next 30 rings show
regions of sequence similarity detected by BLAST comparisons conducted between CDS
translations from the reference genome and 30 E. coli comparison genomes. The last
two rings display the GC content and GC skew.”

3.3 Results

In the following section, I first describe the software pipeline for building com-

parative assembly hubs, following which, I describe the hubs by example using an align-

ment of E. coli genomes. Last, I illustrate an application of the comparative genomics

framework with the E. coli core genome, pan genome and phylogenetic analyses.
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3.3.1 The Comparative Assembly Hubs (CAH) Pipeline

The open-source pipeline, composed three modular components, has

been written to work on UNIX distributions. The Cactus alignment program

[Paten et al., 2011b], its first component, takes as input the user’s set of genome se-

quences and outputs a genome multiple sequence alignment in Hierarchical Align-

ment (HAL) format [Hickey et al., 2013] in return. The second component is HAL

tools, to which there is a series of command line tools and C/C++ APIs for manip-

ulating HAL files and building comparative assembly hubs. The final component is

the snake track display, which is now part of the UCSC Genome Browser code base

[Karolchik et al., 2014], and which provides visualization of alignments directly from

HAL files.

The pipeline is run in three steps (see Methods). Firstly, either Cactus is run

to generate the HAL alignment file directly, or a MAF file, generated separately by an

aligner such as Multiz [Miller et al., 2007], is converted into a HAL file by way of the

maf2hal tool (in the HAL tools package). Secondly, the hal2AssemblyHub script (in the

HAL tools package) builds the comparative assembly hub using the HAL file and any

set of annotation files provided, either in bed or wig format (http://genome.ucsc.edu/

FAQ/FAQformat.html). This script takes care of converting the base annotation files

into the display scaleable bigBed and bigWig formats, and optionally translates these

annotations using a process of alignment lift-over [Zhu et al., 2007], to all the other

genomes. In addition to the provided annotation tracks, for each genome, the script
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is able to compute a number of other useful annotation tracks, such as the gap track,

alignability track, GC-content track, and evolutionary conservation track (using the

phyloP program [Cooper et al., 2005, Siepel et al., 2006]). Finally, a directory is created

containing the necessary files, using compressed formats for minimal space usage. In

the final step, the location of the ‘hub.txt’ file, addressable as a public URL, is pasted

into the UCSC browser hub page to view the browsers.

The pipeline builds one browser for each input genome, and, in addition, any

ancestral or pan-genomes that were imputed by Cactus (if used) during the alignment

process [Nguyen et al., 2014b].

3.3.2 E. coli Comparative Assembly Hub

To demonstrate this work I use a collection of 57 E. coli and 9 Shigella complete

genomes and various accompanying annotations, including repetitive elements, genomic

islands, pathogenic genes, non-coding RNAs and antibiotic resistance genes. A total of

67 browsers are built, one browser for each input genome and one pan-genome browser.

Each browser consists of a set of annotation tracks: one for each input annotation

file, one snake track for each of the other 66 genome browsers, and three additional

tracks that are computed automatically by the pipeline, including a conservation track,

a GC-content track, and an alignability track.

As an illustration of a hub browser, Figure 3.5 displays a region of one of the E.

coli reference genomes, K12 MG1655, with snake tracks, bed and wig annotations and

lifted-over bed annotations. The top most tracks are K12 MG1655 annotations, includ-
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ing Alignability (number of genomes mapped to each position), GC%, Antibiotic Resis-

tance Database (ARDB), Genes, Genomic Islands (GI) and non-coding RNAs (rRNA

and tRNA). Below these are snake tracks, showing the alignment of the genome to a

subset of the other genomes and lifted-over ncRNA annotation track (track K12 W3110

RNA) of E. coli K12 W3110.

3.3.2.1 The Snake Track

Each snake track shows the relationship between the chosen browser genome,

termed the reference (genome), and another genome, termed the query (genome). The

snake display is capable of showing all possible types of structural rearrangement.

Stacked together, snake tracks allow flexible view of the multiple genomes.

In full display mode (snake tracks in Figure 3.5), it can be decomposed into

two primitive drawing elements, segments, which are the colored rectangles, and adja-

cencies, which are the lines connecting the segments. Segments represent subsequences

of the query genome aligned to the given portion of the reference genome. Adjacencies

represent the covalent bonds between the aligned subsequences of the query genome.

Segments can be configured to be colored by chromosome, strand (as shown) or kept a

single color. Layout of the segments is described in the methods.

Red tick-marks within segments represent base substitutions as compared with

the reference and by default (user configurable), are displayed up to a 50 kilo-base

resolution (Figure 3.5(b-c)). Zoomed in to the base-level resolution, such substitutions

are labeled by the non-reference base (Figure 3.5(d)). An insertion in the reference
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relative to the query creates a gap between abutting segment sides that is connected by

an adjacency. An insertion in the query relative to the reference is represented by an

orange tick mark that splits a segment at the location where the extra bases may be

inserted, or by coloring an adjacency orange, indicating that there are unaligned bases

between the two segment ends it connects.

More complex structural rearrangements create adjacencies that connect the

sides of non-abutting segments in a natural fashion. An example is shown in Figure 3.5a,

visualizing a known, large inversion in the closely related strain K12 W3110 with respect

to the reference strain K12 MG1655 [Hill and Harnish, 1981, Hayashi et al., 2006]. The

inversion is flanked by the ribosomal RNA operons rrnD and rrnE (RNA tracks in

green), and is the result of homologous recombination between them. Operon rrnD,

consisting of rrsD, ileU, alaU, rrlD, rrfD, thrV, rrfF, and operon rrnE, consisting of

rrsE, gltV, rrlE, rrfE, are homologous segments with opposite directions, as can be seen

by zooming in (Figure 3.5(b, c)). Also shown in Figure 3.5a are two smaller inversions in

KO11FL [Turner et al., 2012] and O26 H111 1368 [Ogura et al., 2009] and a relatively

much smaller inversion in HS.

Duplications within the query genome create extra segments that overlap along

the reference genome axis. For example, Figure 3.6 shows a tandem repeat region of

E. coli KO11FL 162099 displayed along the genome of E. coli KO11FL 52593. E.

coli 52593 was engineered by chromosomal insertion of the Zymomonas mobilis pdc,

adhB and cat genes into the parental strain E. coli W for ethanol production purpose

[Ohta et al., 1991]; 162099 is a derivative of 52593 (after 20 years of serial transfers) and
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contains 20 tandem copies of the inserted pdc-adhB-cat genes[Turner et al., 2012]). To

show regions where the query segments align to multiple locations within the reference,

at the top of each snake track there are colored coded sets of lines along the reference

genome axis that indicate self homologies (intervals of the reference genome that align

to other intervals of the reference genome), and to maintain the semantics of the snake,

query segments that align to these regions are aligned arbitrarily to just one copy of the

reference (Figure 3.6).

There is a large deletion in W as this parent strain does not have the inserted

region. The figure shows 20 tandem copies of a 10kb unit spanning genes (pflA, pflB-L,

cat, adhB, pdc and pdfB-S ) in KO11FL 162099. KO11FL 52593 has two copies of genes

pflA, pflB-L, and pflB-S, i.e. self-alignments, as shown in the figure by the colored lines

on top of each query snake track.

The above examples demonstrate that the browser linear representation with

full -mode snake tracks, annotation tracks and the ability to zoom in and out to any

resolution provide an intuitive way of viewing structural variations and examining and

exploring biological information.

The pack display option can be used to display a snake track in more limited

vertical space. It eliminates the adjacencies from the display and forces the segments

onto as few rows as possible, given the constraint of still showing duplications in the

query sequence (e.g. track W 162099 of Figure 3.6). The dense display further elimi-

nates these duplications so that a snake track is compactly represented along just one

row (e.g. tracks SE11 and IAI1 of Figure 3.6). The dense display is equivalent to
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the popular view generated by many existing comparative genomic visualization tools

[Grant et al., 2012].

Clicking on a segment translates the browser view from the present reference

genome to the corresponding region in the query genome, making it simple to navigate

between references, all of which have equivalent displays. This symmetry frees the user

from investigating the alignment from just one perspective. Various mouseovers are

implemented to display the sizes of display elements, and the snakes and annotations

can be reordered by dragging them.
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Figure 3.5: An example view of the E. coli comparative assembly hub illustrating the
CAH pipeline’s innovative features, which include: a novel MSA visualization that
is able of displaying all types of variation, multiple levels of resolution, and various
annotation tracks generated from input annotations, built-in computations, or lifting-
over (mapping) of input annotations. The E. coli strain K12 MG1655 is the reference
browser. Shown is a subset of genomes of group A (from HS to K12 W3110) and B1
(the rest). The top browser screenshot (a) shows a 900kb region with a known, large
inversion (light red) in the closely related strain K12 W3110. The inversion is flanked
by homologous (with opposite orientations) ribosomal RNA operons rrnD and rrnE
[Hill and Harnish, 1981, Hayashi et al., 2006], and is the result of homologous recombi-
nation between them. Besides snake tracks, from top to bottom: Tracks “Alignabil-
ity” and “GC Percent” are computed by the pipeline using the input sequence in-
formation. Tracks “K12 MG1655 ARGB”, “K12 MG1655 Genes”, “K12 MG1655 GI”
and “K12 MG1655 RNA” are generated from K12 MG1655 input annotations. Track
“panRef.” is the computed pan-genome of E. coli and Shigella. Track “K12 W3110
RNA” is K12 W3110 RNA annotation mapped onto K12 MG1655. (b-c) Zoom-in of
the K12 W3110 inversion left and right boundaries, respectively, showing operon rrnE
of K12 W3110 (‘K12 W3110 RNA’ track, in green, which is K12 W3110 ncRNA an-
notation track lifted-over to K12 MG1655) aligned to operon rrnD of K12 MG1655
(‘K12 MG1655 RNA’ track, also in green) on the left and operon rrnD of K12 W3110
aligned to operon rrnE of K12 MG1655 on the right. Further zoomed in (d), SNPs
and query insertions are visible. The text on the screenshots was adjusted for better
readability.
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3.3.2.2 Procedural Levels of Alignment Detail

The different levels of detail displayed in Figure 3.5(a-d) show the alignment

at megabase, kilobase and base level. To achieve this in a web browser, serving data

across the internet (generally still a relatively slow and high latency connection), we

developed a novel solution. For instance, a chromosome is typically decomposed into

millions of segments in a HAL graph. In Nguyen et al. 2014 [Nguyen et al., 2014a], we

describe detailed methods of pre-generating interpolated HAL graphs that store only

as much information as visible on the screen at different zoom levels, and demonstrate

that we achieve constant load times for webpages at all levels of resolution using the

method.

3.3.2.3 UCSC browser integration

A key benefit of comparative assembly hubs is their integration with the pop-

ular UCSC browser and the tools it provides. For example, export of subregions

of the alignment and track intersections can be made via the UCSC table browser

[Karolchik et al., 2004], and using user sessions, individual browser displays can be

shared (see Methods for links to examples).
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Figure 3.6: A browser screenshot demonstrates the snake visualization of duplications
and the different display modes of the snake track, including full mode (tracks “W
162011” and “KO11FL 162099”), pack mode (track “W 162099”) and squish mode
(tracks “SE11” and “IAI1”). The browser shows the pdc-adhB-cat tandem repeat re-
gion of E. coli KO11FL 162099 [Turner et al., 2012] displayed along the genome of E.
coli KO11FL 52593. The colored horizontal bars on top of each snake track indicate
duplications in KO11FL 52593 (two copies of each gene pflA (dark blue), pflB-L (dark
blue), pflB-S (light green) and KO11 18*** (orange)). There is a large deletion in the
parental strain W 162011 as this strain does not contain the pdc-adhB-cat insert. Fol-
lowing the snake track of KO11FL 162099, there are 20 copies of (pflA, pflB-L, cat,
adhB, pdc, pdfB-S and KO11-18***, where “KO11-18*** ” may be replaced by specific
IDs shown in the figure and listed in Appendix Section B.1). Note that since KO11FL
52593 has two copies of pflA, pflB-L, pflB-S and KO11 18***, the display arbitrarily
picks one copy of each to map corresponding KO11FL 162099 orthologous genes to. The
text on the screenshot was adjusted for better readability.
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3.3.2.4 Managing Alignments and Lifted Annotations

A unique feature of comparative assembly hubs is that all annotations can be

viewed from any genome through the alignment. To make managing the large number of

possible snake and lifted-over annotations easy for each browser, a central configuration

page is provided that uses a grid layout as its basis (Figure 3.7). This configuration page

layout is adapted from the UCSC Encode Browser [Rosenbloom et al., 2010], where,

instead of using it to select tracks from combinations of cell-line and assay types, it is

instead used to select from the available combination of genomes and (lifted-over) tracks,

laid out phylogenetically (if a tree is provided). As with the Encode Browser, the grid

is sufficiently compact to display hundreds of tracks on one page, without moving to a

hierarchical layout that would involve greater user navigation.

3.3.2.5 Clade-exclusive Genomic Regions

The hub browser display with the default phylogenetically ordering of the snake

tracks allows for easy identification of clade-specific or clade-dominant variations. An

example is the small deletions (relative to K12 MG1655) near position 3,450,000 that

is observed in genomes of all other groups except of the A and B2 (except for genome

O127 H6 E234869) groups (Figure 3.5a). Similar clade(s)-specific variations can be

easily spotted out when looking at the browser.

In addition, if a phylogenetic tree is specified, the pipeline has an option to

compute genomic regions that are specific to each clade of the tree. A clade can contain

only an individual leaf node, in which case the regions computed are leaf-specific or
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Figure 3.7: An example portion of a comparative assembly hub configuration webpage,
each browser in the hub has its own such equivalent configuration page. Using the grid
layout (rows represent the genomes, columns the track types) alignments and annota-
tions can be selected regardless of which genome they were originally described upon.
The inset phylogenetic tree is generated automatically by the CAH pipeline. The track
controls above the grid allow quick, overall configuration. Fine grained track controls
(not shown) are provided at the bottom of the page, in a list of the selected tracks.
Tracks not potentially lifted through the alignment, such as GC content, repeat mask-
ing and conservation tracks are configured using the standard drop down menus on each
browser page (not shown).

genome-specific regions, or a group of leaf nodes with a common ancestor. The result is

one annotation track for each node (both ancestral and leaf) in the tree, displaying the

corresponding computed regions. The minimum number of in-group and the maximum

number of out-group genomes can be adjusted by the users.

For E. coli, which has substantial horizontal gene transfers and constant emer-

gence of new (pathogenic, or disease-causing) strains, such tracks are useful for the

identification of new (pathogenic) genetic materials that the new strains acquired. Fig-

ure 3.8 shows a region that is specific to two pathogenic groups of E. coli strains:
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Figure 3.8: An example of an EHEC/EPEC-specific region displayed along the genome
of E. coli O157H7 Sakai. The browser shows all the genomes that have bases aligned to
the region. Except the two O55 H7 strains and the O127 H6 E2348 69 strain which are
EPEC, all other strains are EHEC . This region corresponds to the LEE pathogenetic
genomic island that contains many pathogenic genes [Ogura et al., 2009].

EHEC and EPEC. This region corresponds to the LEE pathogenetic genomic island that

contains many pathogenic genes [Ogura et al., 2009], as shown by the ‘O157 H7 Sakai

PathogenicGenes’ track. Hypothetically, this region is transferred to a commensal E.

coli strain and results in a new pathogenic strain. The new strain, having most of

its genome identical to the parental commensal strain, will likely be phylogenetically

grouped close to that strain. Nevertheless, its pathogenicity can be quickly identified as

one can observe that it aligns to an EHEC/EPEC-specific region, which is accompanied

by the pathogenic gene annotations.
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3.3.3 E. coli Comparative Genomics Analyses

In this section, I first show assessments of the E. coli/Shigella MSA. I then

demonstrate that the CAH pipeline offers a procedural, automated solution for updat-

ing comparative analyses with minimal efforts by recapitulating the pan-genomic, core

genomic and phylogenetic analyses of E. coli.

3.3.3.1 Assessing The Genome Alignment

In a comparative assembly hub all genome comparison and lifted track displays

are driven consistently by a single underlying genome alignment and summaries of it.

This provides great consistency and is likely to lead to less confusion when interpreting

the visualization. For example, high-level views can always be drilled down to reach

the original base-level alignment, and lifted annotations can be easily interrogated via

a snake track that shows the actual alignment used to do the lift-over. Certainly, the

accuracy of the genome alignment is always key and must be kept in mind. Alignments

for assembly hubs can be created by any aligner that can export a MAF file (a simple

flat-file format), however currently the most general solution is the Cactus alignment

program.

Cactus was used to align the E. coli genomes reported here. It has been tested

and has been proved to be highly accurate elsewhere [Paten et al., 2011b]. Here, as an

extra quality assurance step for the constructed hubs, I assessed the E. coli alignment

to see how well orthologous genes of input genomes were aligned to each other. Gene

annotations of each input genome obtained from NCBI and BLAT [Kent, 2002] pairwise
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alignments were used to group genes into orthologous groups (see Methods). For each

pair of genomes I computed the number of orthologous coding gene families that were

aligned in the Cactus alignment. On average each genome contains 4751 gene families

and shares 3374 gene families with another genome (Table 3.3.3.1). Across all possible

pairs of genomes, the vast majority (99%, 3333/3374) of each pair’s orthologous groups

were aligned to each other in the multiple alignment.

Rearrangements and gene gain and gene loss are commonly observed in E. coli

and subsequently result in the gain and loss of operons [Touchon et al., 2009]. However,

if an operon of one genome has all its constituent genes each individually conserved in

another genome, the order and orientation of these genes are often conserved as well

[Rocha, 2008]. As another assessment of the alignment, I analyzed the conservation

of E. coli K12 MG1655 operons when these operons were mapped by the alignment

to other genomes (target genomes, 65 comparisons total). K12 MG1655 is one of the

community selected E. coli reference genomes and its operons are well annotated.

A total of 535 K12 MG1655 operons, each comprised of two or more genes were

analyzed (see Methods). Of these, on average 452 operons were shared with a target

genome. An operon was defined to be shared with a target genome if all its constituent

genes each were individually conserved in the target genome. Conserved was defined

as being mapped by the alignment to the target genome with at least 90% coverage.

Of the shared operons, I found only two cases of operons in which the gene orders and

orientations were disrupted in the two target genomes. In both cases, the disruptions

were due to rearrangements in the target genomes and not to alignment errors. Operon
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Gene and Operon Alignment Assessment

Category Total Shared Conserved %

Gene Families 4751 3374 3333 98.80

Operons 535 452 452 100.00

Table 3.1: The vast majority of orthologous gene families are aligned in the MSA and
on average, 100% of the K12 MG1655 operons that are present in other genomes have
their gene order and orientation conserved. Together, the two assessments show that the
MSA is accurate. ‘Total’ is defined by the average number of gene families each genome
has or the total number of K12 MG1655 operons analyzed. ‘Shared’ is defined by the
average number of gene families each genome shares with another genome (pairwise
comparisons) or the average number of operons with all constituent genes conserved in
another genome (pairwise comparisons). ‘Conserved’ is defined by the average number
of shared gene families that are aligned by the MSA or average number of ‘shared’
operons with the gene order and orientation conserved. ‘%’ is defined by the percentage
of ‘Shared’ that are ‘Conserved’.

envY -ompT was disrupted in five O157 genomes (EC4115, EDL933, Sakai, TW14359

and Xuzhou21) as a result of recombination. Operon fumAC was disrupted in Shigella

sonnei 53G due to an inversion. Besides these two cases, 100% of the shared operons had

their order and orientation conserved in the target genome. This observation, together

with the previous observation of orthologous gene alignments, confirm the quality of the

MSA.

3.3.3.2 Constructing the E. coli/Shigella Core Genome

To demonstrate the flexibility of comparative assembly hubs and the recently

introduced pan-genome displays the software incorporates [Nguyen et al., 2014b], I cre-

ated a comparative assembly hub that represented the E. coli/Shigella core genome.
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The core genome of a collection of organisms (e.g. 66 E. coli and Shigella strains) is

comprised of genomic regions shared by all the organisms. Here, the core genome was

computed using the same algorithm used to impute the pan-genome with an additional

requirement that every alignment block contained sequence from all input genomes (see

Methods).

The core genome represents the genomic material that is essential to

the species. Many studies have investigated the size and content of the E.

coli/Shigella core genome, however the results have been inconsistent, with the

size of the core genome ranging from 1,000 to 3,000 genes [Fukiya et al., 2004,

Kaas et al., 2012, H et al., 2007, Lukjancenko et al., 2010, Chattopadhyay et al., 2009,

Touchon et al., 2009, Vieira et al., 2011]. One obvious reason is the use of different sets

of genomes. However, even when this difference is taken into account, inconsistencies

abound. The main difficulties are the limitations intrinsic to traditional gene-based ap-

proaches employed to compute the core genome. Gene-based methods compute the core

genome by finding the set of genes that are shared by all involved genomes. They de-

pend heavily on clustering algorithms, different methods for prediction of “orthology”,

as well as gene annotation qualities.

These limitations may be circumvented by using the whole genome multiple

alignment approach. This (genomic-based) approach computes the core genome from

the MSA by selecting all genomic regions that are shared by every involved genome. The

approach is becoming more popular as the availability of genomic data increases. Darling

et al. [Darling et al., 2010] reported a 2.9 Mbp core genome for 16 E.coli/Shigella
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strains and Sahl et al. [Sahl et al., 2011] reported a 2.7 Mbp core genome for 44 strains.

In agreement with both studies, the core genome (for 66 strains) computed by the

CAH pipeline is 2.7 Mbp in size. It is expected that the core genome size decreases

as the number of genomes increases, until enough genomes are added, at which point

the core genome size becomes stabilized [Touchon et al., 2009, Lukjancenko et al., 2010,

Leimbach et al., 2013]. This observation is recapitulated here, as shown in Figure 3.9.

The core genome sizes of 2.9 Mbp for 16 genomes and 2.7 Mbp for 44 and 66 genomes

demonstrate a great consistency of the genomic-based approach.

The average size of an E.coli/Shigella genome is about 5 Mbp, of which 86%

code for genes (corresponding to 5000 genes). Assuming that the genes are evenly

distributed across the genome, 2.3 Mbp (86% of 2.7 Mbp) of the core genome is expected

to be genic, and this quantity corresponds to about 2,300 genes. This is consistent with

the average number of genes of each genome I observed to be overlapped with the core

genome (2348 and 2507 genes for 98% and 90% minimum coverage cutoffs, respectively).

For comparison, I have also computed the core genome using the gene-based

approach, which resulted in only 1200 genes at a minimum coverage cutoff of 90%.

Manual analyses of genes included in the core genome via genomic approach but ex-

cluded via the gene based approach revealed two main reasons. The first reason is the

under-annotation of genes in a small number of genomes and consequently, their exclu-

sion out of the core genome. The second reason is the different annotated gene lengths,

resulting in orthologous genes in a small number of genomes not having enough cover-

age to pass the cutoff. Both reasons are likely results of low-quality gene annotations
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Figure 3.9: Pan-genome and core genome sizes, an adaptation of Figure 4 in Lukjancenko
et al. [Lukjancenko et al., 2010], supporting the open pan-genome and the stable core
genome models in E. coli. The x-axis shows the number of bases (in Mb) in the pan-
genome (blue triangle), core genome (red circle) and the number of the new bases added
to the pan-genome (horizontal green bar) as more genomes are added into the analysis.
The y-axis shows the genome that is added each step. Genomes were added in the order
guided by the phylogenetic tree in Figure 3.13.
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Figure 3.10: The E. coli/Shigella core genome browser, showing the highly conserved
ordering relationships between blocks of the E. coli core genome and the less conserved
ordering in Shigella. Most E. coli strains look like the first snake track, with no high-
level rearrangements (for space only one is shown). In contrast, the Shigella strains
have, with respect to Ecoli, a fragmented core genome (again, only one shown for lack
of space).

of a number of genomes or of assembly errors and/or quality (that lead to the gene

under-annotations/truncations).

One remarkable observation is that at a high level (approximately 10kb or

greater block size), the core genome is entirely un-rearranged in the majority of E. coli

genomes, despite the dramatic differences between them in their wider pan-genome. The

consensus ordering generated by the pan-genome display algorithm (even if the blocks

correspond to the core genome) is reflected in the core genome display (see Figures

3.10). The striking converse of the ordering conservation in E. coli is demonstrated by

the Shigella genomes, which (as shown in the figure) are significantly reordered - though

the summary allows a complete, clear tracing of this reordering.
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3.3.3.3 Constructing the E. coli/Shigella Pan-Genome

The pan-genome display is created using the algorithm described in Chapter

2. Briefly, each set of homologous segments, called a block, is arranged into a set of

intervals according to a consensus objective function that uses the weighted set of linkage

relationships between the sides of the blocks. This consensus ordering of the blocks is

then converted into a set of sequences by creating a consensus segment for each block

and concatenating these consensus segments together according to the chosen ordering.

The pan-genome has two attractive properties for visualization, first, it includes every

block, which any single genome very likely does not, making it possible to get a complete

picture of all variations present within a chromosome. Second, as it includes exactly

one copy of each block, it contains no self-alignments, and thus all duplications are

representable within the target genomes.

An example is in Figure 3.11, showing the Shiga toxin (Stx1 and Stx2 ) gene

family displayed along the pan-genome browser, with subunit A on the left and subunit

B on the right. The number of Stx genes as well as which Stx groups (Stx1 or Stx2 )

present vary among the genomes. The pan-genome allows for a clear presentation of

this variation, showing that Sd197 has one Stx1 copy, O157 H7 Sakai has one Stx1 copy

and one Stx2 copy, O104 H4 2011 C3493 has one Stx2 copy, and O157 H7 EC4115 has

two Stx2 copies. Variations (indels and substitutions) between Stx1 and Stx2 are also

shown. (Appendix Figure B.1 shows the same region, with all genomes containing the

Stx genes displayed.)
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Figure 3.9 shows the core and pan-genome sizes of an increasing number of

input genomes. The genomes were added in the order guided by the phylogenetic tree

(see Section 3.3.4 below), with the y-axis in Figure 3.9 showing the genome that is added

each step. The curves contain bumpy regions corresponding to a faster increase in the

number of bases being added to the pan-genome and, conversely, a faster decrease in the

number of bases being removed from the core genome. These regions correspond well

to the boundaries of grouping in the phylogenetic tree, consistent with the idea that

genomes within individual phylogroups (or subgroups) share more bases than genomes

between phylogroups (as further confirmation see also Figure 3.12, which shows the

number of genes shared by each pair of genomes).

High inter-phylogroup sharing may indicate some common phenotypes among

the genomes involved, an example is the sharing between genomes Xuzhou21, O157

H7 Sakai, O157 H7 EDL933, O157 H7 EC4115, O157 H7 TW14359, O55 H7 CB9615

and O55 H7 RM12579 of group E and genomes O103 H2 12009 and O26 H11 11368 of

group B1. The two O55 strains are enteropathogenic E. coli (EPEC) and the others

are Enterohaemorrhagic E. coli (EHEC) and their high inter-group sharing reflects

the EHEC/EPEC-specific genes [Ogura et al., 2009], that can be visualized with the

comparative assembly hub, as in Figure 3.8.

3.3.4 Constructing the E. coli/Shigella Phylogenetic Tree

Based upon the core genome provided by the MSA, I built a maximum-

likelihood based phylogenetic tree for the 66 E. coli/Shigella strains using
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Figure 3.11: The Shiga toxin region displayed along the pangenome browser, showing a
subset of genomes containing the Stx genes. The “O157 H7 Sakai Lifted-over Pathogenic
Genes” track shows the lifted-over pathogenic gene annotations of strain O157 H7 Sakai,
with the Stx subunit A on the left and subunit B on the right. There are two major
groups of Stx, Stx1 and Stx2. Different genomes contain different numbers of Stx genes
as well as different Stx groups. The pangenome view allows for the presentation of
these variations, showing that Sd197 has one copy of Stx1, O157 H7 Sakai has one copy
of Stx1 and one copy of Stx2, O104 H4 2011 C3493 has one copy of Stx2, and O157
H7 EC4115 has two copies of Stx2. As there are more copies of Stx2 than Stx1 (12
versus 7, see Appendix Figure B.1 for the complete browser display of all Stx carrying
genomes), the pangenome, which is a consensus sequence, is more similar to Stx2 than
Stx1, visibly by many SNPS on the Stx1 copies. Variations (SNPs and indels) between
the two groups Stx1 and Stx2 and among different genomes are shown. The texts (the
labels) on the screenshot were minorly adjusted for better readability.

RaXML[Stamatakis, 2006] (see Methods). The resulting tree (Figure 3.13) is con-

sistent with the genomes’ phylogroup annotations (Appendix Table B.2.2) as well as

previously reported trees built using the core genome (for smaller sets of E. coli and

Shigella genomes because there were not as many complete genomes available at the

time of those publications as there are currently) [Touchon et al., 2009, Perna, 2011,

Leimbach et al., 2013, Chaudhuri et al., 2010]. The tree reconfirms 1/ the monophylic

of phylogroups B2, D2, D1, E, A, and B1 with group B2 as the basal lineage, 2/

the spread of similar pathotypes across distinct lineages and 3/ the multiple origins of

Shigella spp.
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Figure 3.12: Heatmap of the number of orthologous gene families shared by all pairs
of genomes. Rows and columns are genomes in phylogenetic order provided by Fig-
ure 3.13, showing higher intra-phylogroup sharing in comparison with inter-phylogroup
sharing. There is, however, a visible relatively high inter-phylogroup sharing among
genomes Xuzhou21, O157 H7 Sakai, O157 H7 EDL933, O157 H7 EC4115 and O157 H7
TW14359 of group E and genomes O103 H2 12009 and O26 H11 11368 of group B1
(boxed in black). These genomes are all Enterohaemorrhagic or Enteropathogenic E.
coli (EHEC/EPEC), which suggests that their high inter-phylogroup sharing reflects
previously reported EHEC/EPEC-specific genes [Ogura et al., 2009].
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Figure 3.13: Maximum-likelihood based phylogenetic tree of 66 E. coli and Shigella spp.
genomes, constructed from their core genome alignment using RAxML. The genomes
are colored by their annotated phylogroups (Appendix Table B.2.2): orange: B2, green:
D2, teal: D1, purple: E, red: A, blue: B1 and black: Shigella.

3.4 Discussion

In this work I have shown how UCSC comparative assembly hubs can be easily

constructed to provide useful, extensible browsers for collections of evolutionarily related

genomes.

The CAH framework is novel in several respects. All the alignments and

lifted over annotations shown are mutually consistent with one another because for

the first time, the annotation lift over and alignment display are symmetrically driven

by one reference free alignment process, rather than a mixture of different pairwise

and reference based multiple alignments. Being reference free, the multiple alignment
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process and HAL format also allow us to make all the browsers equivalently powerful:

all the annotations and alignments can be displayed from any vantage point. The snake

tracks for the first time in the UCSC browser and a linear display format, fully express

all the possible mutation types in one track, while the resolution scaling makes this

useful at all resolution levels. The pan-genome display gives a new view of the data

that for some purposes is more useful for display than any single genome.

I used E. coli and Shigella spp. genomes as a test, and demonstrated that

the alignments were able to accurately align the vast majority of genes correctly, and

automatically reconstruct a core genome of all E. coli/Shigella that recapitulates earlier

results, and visually demonstrates the many rearrangements present in the core genome

of the Shigella phylogroup. The E. coli/Shigella comparative assembly hubs are now

available on the UCSC Browser public assembly hub listing, facilitating data exploration

and analyses. Such resources can be easily generated and updated as new data become

available.

Comparative assembly hubs have been tested with clades of mammalian

genomes (a forthcoming Reptile/Bird comparative of 23-genomes is in the process of

being made public). It is feasible to use for large projects, providing that significant

computational resources are available in the form of compute clusters. To make the

tool practical for vertebrate genomics communities without these resources, one future

aim of the project is to provide a cloud service, where users could buy compute time to

generate their alignments.
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3.5 Methods

3.5.1 Alignment Assembly Hub Pipeline

From a set of input genome sequences (and any available annotations), users

can create the comparative assembly hub using the two following commands:

1. runProgressiveCactus.sh <seqFile> <workDir> <outputHalFile>

2. hal2assemblyHub.py <halFile> <outDir> –bedDirs <annotationDirs> –lod

Command (1) generates the multiple sequence alignment, which is stored in

the HAL format to the specified output file outputHalF ile. seqF ile contains Newick-

formatted phylogenetic tree of the input genomes (optional) and paths to the sequence

FASTA files. workDir specifies the working directory. More details can be found in Pro-

gressive Cactus Manual (https://github.com/glennhickey/progressiveCactus).

Command (2) produces necessary data and files for creating the comparative

assembly hubs through the UCSC genome browser. halF ile is the HAL-formatted MSA

file, which is the output (outputHalF ile) from command (1). outDir is the output di-

rectory where all the generated files are written into. Among the output files is a file

named “hub.txt”, which the users will upload to the UCSC genome browser (simi-

larly to how a track hub is created [Raney et al., 2013], see http://genome.ucsc.edu/

goldenPath/help/hgTrackHubHelp.html for more details) and the comparative assem-

bly hubs will be created. annotationDirs is a comma separated list of directories con-

tainning the annotation files, one directory per annotation type (e.g genes, pathogenic

regions, antiobiotic resistance regions). Option –lod is specified to compute the levels of
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detail, which is recommended for large datasets. For parallelism and job management,

hal2assemblyHub.py uses jobTree (https://github.com/benedictpaten/jobTree),

which is installed as part of Progressive Cactus installation process. Users can specify

different jobTree options to speed up the running time.

In this work, I generated three different E. coli/Shigella comparative

assembly hubs. One with duplications allowed (http://compbio.soe.ucsc.edu/

reconstruction/ecoliComparativeHubs/ecoliWithDups/hub/hub.txt), one with

duplications disallowed

(http://compbio.soe.ucsc.edu/reconstruction/ecoliComparativeHubs/

ecoliNoDups/hub/hub.txt), and one that disallowed duplications and required

all genomes to be present in every block (http://compbio.soe.ucsc.edu/

reconstruction/ecoliComparativeHubs/ecoliCore/hub/hub.txt).

Each of the hubs was generated by the two following commands:

1. runProgressiveCactus.sh –legacy –configFile config.xml –maxThreads 24 –ktType

snapshot seqFile.txt outdir outdir/alignment.hal

2. hal2assemblyHub.py alignment.hal outHubDir –maxThreads 24 –lod –bedDirs

Genes,RNA,GI,PI,PathogenicGenes,ARGB –rmskDir rmskTracks –gcContent –

alignability –conservation conservationRegions.bed –conservationGenomeName

reference –conservationTree tree.nw –tree tree.nw –rename shortnames.txt –hub

ecoliCompHub –shortLabel EcoliCompHub –longLabel “Escherichia coli Comparative

Assembly Hub”

All related files can be found at http://compbio.soe.ucsc.edu/
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reconstruction/ecoliComparativeHubs, under directories “ecoliWithDups”, “ecol-

iNoDups” and “ecoliCore’, respectively. For more details of the options, please see the

hal2assemblyHub documentation at https://github.com/glennhickey/hal.

3.5.2 Genome Sequence and Annotation Data

Nucleotide sequences of 57 E. coli and 9 Shigella spp. complete genomes

were downloaded from the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/

Bacteria/all.fna.tar.gz, January 2013). The sequences were repeat-masked using

RepeatMasker [?] with the ‘-xsmall ’ option and otherwise default settings. The repeat-

masked sequences were used as inputs to construct the MSA. Other outputs of Repeat-

Masker were converted into bigBed format to build the “Repetitive Elements” track for

each genome (http://genomewiki.ucsc.edu/index.php/RepeatMasker). For the 9

genomes ATCC 873, DH1 161951, KO11FL 162099, KO11FL 52593, O104 H4 2009EL

2050, O104 H4 2009EL 2071, O104 H4 2011C 3493, UM146, BL21 Gold DE3 pLysS

AG, I used the reverse complement of their assemblies as the majority portion of those

assemblies aligned to the reverse strand of other (57) genomes.

Gene, protein and non-coding RNA annotations for each genome were also ob-

tained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gff.tar.

gz, ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.faa.tar.gz and ftp://

ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.rnt.tar.gz, respectively).

In a number of genomes, I observed and corrected obvious errors (Appendix

Section B.2), such as genes with positions that were out of range of the sequence length
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(Appendix Table B.2.2) and genes with multiple exons that overlapped with each other

(self-overlapped, Appendix Table B.2.2).

3.5.3 Gene and Operon Analyses

Paralogous and orthologous annotated coding genes were identified by BLAT

amino acid sequence pairwise alignments. For each genome, genes were grouped into a

single gene family if they shared at least 90% amino acid identity over at least 90% of

the length of the longest gene.

To identify orthologous gene families shared among the genomes, I used the

divide and conquer approach. Briefly, I started by breaking the input set of genomes

into pairs. For each pair of genomes, I computed their union list of gene families by

grouping orthologous gene families together. The resulted union gene family lists of all

pairs were recursively treated as a new set of genomes and the process of finding union

lists was repeated until orthologous gene families of all genomes were grouped together

and one union gene family list was obtained. Two gene families of two genomes was

identified as orthologous if at least one gene of one family had a reciprocal match with

at least one gene of the other family. A match was defined as having at least 90% amino

acid identity and 90% coverage.

To assess the multiple sequence alignment, for each pair of genomes, I com-

puted the number of orthologous gene families that were aligned in the MSA and re-

ported the average statistics of all pairs. Two orthologous gene families were considered

as aligned in the MSA if at least one gene of one family was aligned to one gene of the
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other family by the MSA with a minimum coverage of 90% of the longer gene.

As another assessment of the MSA, I analyzed the gene order and orientation

conservation of the well-annotated E. coli K12 MG1655’s operons that were also present

in other genomes. Operons (or more accurately, transcription units) of K12 MG1655

were downloaded from RegulonDB (see Section 3.5.2). As the orders and orientations

of the genes were of interest, only operons with two or more genes (and no pseudogene)

were included in the analysis. In addition, I filtered out annotations without strong

evidences, which I defined as operons with no other evidence than one of the following:

“Inferred by computational analysis” (ICA), “Inferred computationally without human

oversight” (ICWHO), “Non-traceable author statement” (NTAS) and “Polar mutation”

(PM). After filtering, there were 535 operons total. For each genome other than K12

MG1655 (called target genome, 65 genomes total), I calculated the number of K12

MG1655 operons that had all their constituent genes present (having an ortholog) in

the target genome and the percentage of these operons with the gene order and oriention

conserved by the MSA. I reported the average statistics in Table 3.3.3.1.
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Chapter 4

Comprehensive assessment of T-cell

receptor repertoires
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4.1 Overview

Advancements in high-throughput sequencing have enabled deep and quantita-

tive analyses of the adaptive immune system. The emerging field of immunosequencing,

based on the ability to read millions of B and T-cell receptor sequences in parallel for

each sample, comprises of a large collection of immunological and clinical applications.

As a result, many large datasets have been generated and many more are underway. This

rapid production of data has necessitated the developments of new computational tools

and algorithms to process and analyze this data. While there have been extensive tool

developments for read mapping, gene calling, sequencing error corrections and individ-

ual repertoire assessments, very limited (if any) efforts have been invested in large-scale

comparative analysis software. Here, I report on an open-source software package for

comprehensive assessments and comparative analyses of T-cell receptor (TCR) reper-

toires, called the “Adaptive IMmunoSequencing ToolKit” or aimseqtk. The aimseqtk

package comprises of four main components: The first three components address the

three common applications of TCR sequencing: clone tracking across multiple reper-

toires (multiple tissues/conditions/time points), repertoire signature profiling (including

individual and comparative analyses of diversity, similarity, gene-segment usage, CDR3

length distribution, clone size distribution and recombination model) and public clones

identification. The fourth and last component, publication mining, utilizes the UCSC

genome browser publication mining pipeline to identify previously published clones that

are homologous to user-specified clones. The previously published clones are compared
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with the user-specified clones for exploration of context, literature validations and as-

sessments, and/or potential correlations. All four components are incorporated into

an easily executed single pipeline for systematically and comprehensively analyzing the

data at hand.

I applied the aimseqtk package to study TCR repertoires of the autoimmune

disease Ankylosing Spondylitis (AS). The results show that in comparison with healthy

repertoires, AS T-cell repertoires have higher diversity and similar CDR3 length distri-

butions and gene-segment usage. Given the limited set of samples, the results presented

here are preliminary, however, they demonstrate that with a sufficiently large set of

samples, similar analyses can be conducted using the aimseqtk package to find evidence

for antigen selection (if existed) in AS TCRβ repertoires and to identify potential au-

toreactive clones that may be involved in the disease development.

4.2 Introduction

Two main players of the adaptive immune system are B-cells and T-cells. The

scope of this chapter and of the aimseqtk package will only focus on T-cells and TCR

sequencing.

4.2.1 T-cell Receptor

The main players of the cell-mediated immunity are T lymphocytes, or T-cells.

T-cells recognize foreign antigens that are presented by major histocompatability com-

plex (MHC) molecules, and trigger appropriate immune responses to protect the body.
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Which specific antigen that each T-cell responds to depends on the structure of the T-cell

receptor expressed on its surface. The T-cell receptor, or TCR, is a membrane-bound

molecule that is responsible for recognizing and binding to MHC-antigen complexes

[Krogsgaard and Davis, 2005]. Each TCR is composed of two chains, α and β, or γ

and δ. About 95% of T-cells in the body are αβ T-cells, and only 5% are γδ T-cells

[Kindt et al., 2007]. The domain structures of TCRs are very similar to those of the

immunoglobulins, and thus they belong to the immunoglobulin superfamily. Each chain

in a TCR has two domains, one variable (V) and one constant (C). The constant region

is anchored in the cell membrane, while the variable region faces outward and binds to

the MHC-antigen complex. C domains stay constant across different TCRs, while V do-

mains of both chains exhibit sequence variation. There are three hypervariable regions

found in the V domains, called the complementarity-determining regions, or CDRs.

Among these CDRs (CDR1, CDR2, and CDR3), CDR3 displays the greatest variabil-

ity. In the interaction between TCRs with antigens, CDR3 provides the primary contact

with the antigenic peptide. CDR1 and CDR2 interact with conserved surface features

of the MHC molecules. Variations in the CDRs contribute to the diversity of TCRs,

and allow for a vast repertoire of antigens that the TCRs recognize [Kindt et al., 2007].

The genes that encode the T-cell receptor are expressed only in cells of the T-

cell lineage. In germlines, TCR loci are organized into multigene families corresponding

to the α, β, γ, and δ chains. Each family contains multiple segments of genes called V

(Variable), D (Diversity, D segments are only in β- and δ-, and not in α- and γ- chain

families), and J (Joining). Functional TCR genes are produced by rearrangements of V
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and J segments in the α-chain and γ-chain families and V, D, J segments in the β-chain

and γ-chain families. V segments of the α-chain are called Vα, and similarly for Vβ,

Jα, etc. In human, the numbers of functional segments are: 79 Vα, and 38 Jα; 21 Vβ,

2 Dβ, and 11 Jβ; 7 Vγ , and 3 Jγ ; 6 Vδ, 2 Dδ, and 2 Jδ[Kindt et al., 2007].

During the development of the T lymphocyte, the T-cell receptor chains un-

dergo V(D)J recombination, also known as somatic recombination. This process gen-

erates a diverse repertoire of TCRs that are necessary for the recognition of diverse

antigens. In the β chain of the TCR, the first recombination event is between one D

and one J gene segment. This can involve either the joining the Dβ1 gene segment

to any of the Jβ1 segments or the joining of the Dβ2 gene segment to any of the Jβ2

segments. This D-J recombination is followed by the joining of one V gene, forming

a rearranged VDJ gene. Any DNA between the selected V, D, and J is deleted. The

rearrangement of the α-chain loci is similar to the β-chain process, except there is no D

segment involved. One V gene joins with one J gene, and forms a VJ segment (Figure

4.1). The segments of V and J that get selected during recombination are random. Each

combination of Vα, Jα and Vβ, Dβ, and Jβ results in a unique antigen receptor. With

more than 106 of possible combinations, somatic recombination provides the body with

a rich repertoire of TCRs to protect against the variety of antigens [Kindt et al., 2007].

During the somatic recombination process, additional diversity is introduced

by random deletions and insertions of nucleotides at the recombined junctions. In partic-

ular, random numbers of nucleotides (≥ 0) are deleted from the 3’ end of V genes, both

5’ and 3’ ends of D genes and 5’ end of J genes when these genes get rearranged. Ran-
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Figure 4.1: VDJ recombinations of the TCR. Figure is from Janeway et al., 2004
[Janeway et al., 2004]

dom nucleotides are also inserted to the junctional regions [Kindt et al., 2007]. CDR1

and CDR2 are encoded within the V gene, while CDR3 encompasses the junction of Vα

with Jα and Vβ with Dβ and Dβ with Jβ. The diversity is greater in CDR3, due to the

junctional diversity and the addition and deletion of nucleotides at the junctions of the

gene segments.
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4.2.2 T-cell Development and Clonal Expansion

Progenitor T-cells arise from hematopoietic stem cells in the bone marrow. In

human, progenitor T-cells begin to migrate to the thymus in the eighth or ninth week

of gestation, and generate a large population of immature T-cells, called thymocytes.

In the thymus, thymocytes proliferate and differentiate into functionally distinct sub-

populations of mature T-cells. The maturation of T-cells involves rearrangements of

the germline TCR genes and the expression of various membrane markers. This results

in a diversity of T-cells, for which each produces a specific type of TCR. This diversity

is shaped into an effective primary T-cell repertoire by two selection processes: one

positive and one negative. The positive selection permits only T-cells whose TCRs can

recognize self-MHC molecules, while the negative selection makes sure that T-cells that

have too strong an affinity to self MHC or self MHC plus self peptides got eliminated.

These processes ensure that only MHC-restricted and nonself-reactive T-cells mature

[Kindt et al., 2007].

There are two subpopulations of T-cells: CD4+ and CD8+. CD4+ T-cells rec-

ognize antigen presented by class II MHC molecules and generally function as helper

T-cells. CD8+ T-cells recognize antigen presented by class I MHC molecules and gener-

ally function as cytotoxic T-cells. CD4+ and CD8+ T-cells leave the thymus and enter

the circulation as resting cells in the cell cycle G0 stage. Näıve T-cells, T-cells that have

not yet encountered antigen, continually recirculate between the blood and the lymph

systems. Once an antigenic peptide is presented by the MHC molecules, the MHC-
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peptide complex is scanned by the millions of circulating T-cells [Kindt et al., 2007].

If a näıve T-cell recognizes an antigen-MHC complex, it will be activated,

initiating a primary response. The activated T-cell is induced to proliferate and differ-

entiate. Each T-cell divides two to three times per day for four to five days, generating

a clone of progeny cells, which differentiate into memory or effector T-cells. Effector

T-cells are short-lived cells, and various effector cells have different functions to fight

against the pathogen: help to B-cells, cytokine secretion, and cytotoxic killing activity.

Effector cells are derived from both näıve and memory cells after antigen activation. The

memory T-cell population is derived from both näıve cells and effector cells. Memory

cells are long-lived cells that provide a heightened immune response to the subsequent

attacks of the same antigen, generating a secondary response. Both primary and sec-

ondary responses enable a significant increase in the number of T-cells that recognize

the attacking antigen, which is known as clonal expansion [Kindt et al., 2007].

4.2.3 Immunosequencing: Challenges and Applications

4.2.3.1 Challenges

Somatic recombination makes high-throughput sequencing (HTS) of the adap-

tive immune receptors (BCRs and TCRs) challenging. The rearranged receptor se-

quences are highly diverse and differ significantly from the (known) germline templates,

making it difficult to design the primers for PCR amplification, currently a required

step for targeted sequencing.

For cDNA, or reverse transcribed mRNA, in which the intron between the
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recombined exon and the constant exon is spliced out, only two reverse primers specific

to the constant region are required [Freeman et al., 2009]. Although amplification of

receptor sequences is simplified with cDNA, quantitative interpretation of the data is

difficult. The amount of TCR or BCR mRNAs being expressed varies across different

T or B-cells as well as different developmental stages that they are in. It is therefore

difficult to accurately quantify clone counts and analyze clonal expansion and contrac-

tion, which are important for studying adaptive immune functions [Robins, 2013]. For

genomic DNA (gDNA), in which there is typically one copy of a productive TCR recom-

bination per cell [Kindt et al., 2007], the aforementioned quantitative problem does not

apply. However, the presence of the intron between the J and the constant region (Fig-

ure 4.1) distances the constant region from the junctional region and necessitates a large

number of degenerate J-specific reverse primers, each with slightly different annealing

efficiency.

4.2.3.2 Target Enrichment Solutions and Recent Developments

Recent developments have made HTS of the TCR repertoire possible. Vari-

ous groups have been able to design a mixture of V and J primers that are inclusive

of all V and J segments with high specificity [Robins et al., 2009, Wang et al., 2010].

Using the primer mixture, multiplex PCR is used to amplify the full set of potential

recombinations.

The next challenge, expected from multiplex PCR, is amplification bias. When

designed, the primers are computationally designed and selected for similar annealing
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temperatures. This optimization, however, is not robust and significant amplification

biases are still observed in practice [Robins et al., 2009]. To address this problem, two

different solutions have been carried out and proved to sufficiently remove the majority of

amplification bias. The first solution is to sequence a synthetic set of T-cells with known

clonal frequencies, and to adjust the amount of each input primer (up or down) based on

the differences between the expected and the observed frequencies [Carlson et al., 2013].

The process is then repeated until achieving minimal discordances, which are then re-

moved computationally. The second approach is to use nested PCR in which a universal

synthetic sequence is attached to the 5’ end or 3’ end of each V or J primer, respectively

[Wang et al., 2010]. In the first few rounds of the PCR process, the V and J specific

primers are used. However, in all subsequent rounds, the universal primer is used. The

idea is that since a universal primer is used in most amplification rounds, the strategy

avoids most of the amplification bias.

These approaches address the underlying challenges and allow for reading and

accurately quantifying millions of BCRs and TCRs of each sample. The new field im-

munosequencing has emerged, which specializes in HTS of the adaptive immune reper-

toires (BCRs and TCRs) and expansive associated applications.

It is important to note that current technologies only allow for high-throughput

investigation of either TCRβ chains or, less common, TCRα chains of the TCR

molecules. Therefore, in the current context, a “clone” reflects only part of the TCR

molecule. Tremendous efforts are invested in sequencing pairs of TCRα-TCRβ of the

TCR molecules.
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4.2.3.3 Immunological and Clinical Applications

The ability to sequence the adaptive immune receptor repertoires at high res-

olution has opened a door to countless immunological and clinical applications. The

three main utilities most popular are repertoire profiling, clone tracking and public

clone identification.

Repertoire profiling includes assessing various properties of the repertoires such

as diversity, clonality, CDR3 length distribution, gene-segment usage, amino acid usage,

nucleotide insertions and deletions. This has proved fruitful in many immunological ba-

sic research studies [Robins et al., 2009, Freeman et al., 2009, Klarenbeek et al., 2010,

Wang et al., 2010, Robins et al., 2010]. For example, by using HTS, it has been found

that the average diversity (≥ one million clones) of the human TCRβ repertoire is

discovered to be many times higher than previously estimated [Robins et al., 2009,

Warren et al., 2011] and the number of clones shared among different individuals are

7000-fold higher than predicted [Robins et al., 2010]. In another example, the CD4+ T-

cell subset has been shown to have different repertoire signatures compared with CD8+

T-cell subset, based on which a heuristic algorithm is developed to computationally

estimate the ratio of CD4+/CD8+ T-cells in a mixture sample [Emerson et al., 2013].

Similarly, repertoire profiling can be applied to find signatures, if they exist, that are rep-

resentative of specific diseases. A number of such studies are underway (see the Reper-

toire 10K (R10K) project http://www.r10k.org/R10K/Projects/Projects.html).

Comparative analyses of repertoires of different conditions, such as different ages
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[Rudd et al., 2011, Jiang et al., 2011], different tissues [Klarenbeek et al., 2012], or be-

fore and after treatments (such as transplantation or vaccination [Muraro et al., 2014])

help to study the dynamics of the adaptive immune system in response to or in corre-

lation with the variables of interest.

Clone tracking is monitoring the presence or absence and the clonality (size/

frequency) of one or more specific clones across different time points or different condi-

tions. It has been applied robustly in lymphoid malignancies to track the cancerous B

or T-cell clones that present predominantly (in many cases ≥ 90%) in the blood, bone

marrow, or lymph node of the patients. In fact, the first clinical application of TCR

HTS, thanks to the technology’s extreme sensitivity, is the tracking of MRD (minimal

residue disease) before and after chemotherapy to detect the complete removal or re-

occurrence of cancer clones [Wu et al., 2012]. Another common use of clone tracking

is studying the dynamics of näıve, effector and memory T-cells, especially in the con-

text of exposure to pathogens or vaccinations [Wang et al., 2010, Warren et al., 2011,

Burrows et al., 2013]. In autoimmune diseases, the technique is used to look for auto-

reactive clones that are enriched in effected tissues/organs rather than in the other

body regions [Maecker et al., 2012, Klarenbeek et al., 2012]. In immunotherapy, the set

of infused clones can be monitored in vivo if HTS is applied to patient blood samples

overtime [Grupp et al., 2013].

Public clones are present in repertoires of multiple individuals in the pop-

ulation. In contrast, private clones are present only in a single individual. Since

the set of all possible TCR sequences is extremely large (e.g. ∼5 x 1011 possible
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TCRβ sequences), the theoretical probability that a clone is shared by more than

one individual is extremely low [Robins et al., 2010]. In practice, unexpectedly high

clonal overlaps have been observed in many healthy individuals. Possible explana-

tions of this phenomenon have been attributed to MHC selection and antigen selection

[Robins et al., 2010, Rudd et al., 2011, Koning et al., 2013]. As individuals are likely

to be exposed to similar pathogens in the environment, similar TCRs are likely to be

selected. The same concept is found in diseases involving sets of common antigens, pre-

suming there exists a set of disease-specific clones, selected for targeting such antigens,

commonly observed in patient repertoires but absent in others. Identifying such clones

potentially accelerates the development of targeted therapeutic treatments, which may

be less invasive and may be important medical advancements.

4.2.3.4 Software Developments

The broad scope of applications has yielded copious amounts of immunose-

quencing data. Followed this is the materialization of an active subfield which special-

izes in computational method and tool developments for handling this new of type data.

Three main areas that have been concentrated on are: read mapping and gene calling,

sequencing error correction, and individual repertoire assessment. Read mapping and

gene calling involve efficiently aligning a large set of reads to the most likely V, D and J

for each read, and characterizing other recombination information such as the number

of deletion and insertion bases within a junction. Sequencing error correction typically

involves collapsing identical reads into clones, clustering clones with high identity to
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each other, and using read quality (and/or high-frequency clones of the same clusters)

to either correct or filter out clones with low frequencies (low read counts). Individual

repertoire assessment includes basic analyses of an individual repertoire such as calcu-

lating proportions of productive clones, diversity, clonality, gene-segment usage, amino

acid usage and CDR3 length distribution.

Publicly available software for read mapping and gene calling of TCR data

includes HighV-QUEST [Li et al., 2013] and Decombinator [Thomas et al., 2013], both

of which employ the deterministic approach, and Murugan et al. [Murugan et al., 2012],

which uses the probability approach utilizing expectation maximization. Decombina-

tor also handles sequencing error correction, as does the recently published competitive

software MiTCR [Bolotin et al., 2013]. For repertoire assessment, the only publicly

available software, to my knowledge, is our local resource called the UCSC Immuno-

browser [Kim et al., 2014]. As for private resources, the three main commercial com-

panies that provide immunosequencing services (Adaptive Biotechnologies, iRepertoire

and Sequenta) also provide similar computational analyses.

While the field has rapidly developed in the aforementioned areas, one emerg-

ing research area remains to be explored: comparative immunogenomics resources.

While small-scale (ranging from 1 to < 50 samples) comparative analyses have been

published in various studies, there has yet to exist a standard software to perform such

analyses, especially at a large scale. Typically, each group needs to write its own scripts

that are customized to the specific study of interest, or to purchase customized compu-

tational services. The importance of such comparative analyses in immunosequencing
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applications calls for the development of such software.

4.2.4 Autoimmune Diseases

Autoimmune diseases arise when the host’s immune system inappropriately

reacts against self cells and organs. There are two main mechanisms that protect the

body from self-reactivity. The first mechanism, termed central tolerance, eliminates

immature B and T-cells when their affinity to self-antigens is higher than a specified

threshold. The second mechanism, termed peripheral tolerance, inactivates self-reactive

B and T lymphocytes that survive the initial screening process of central tolerance.

Failure of these tolerance processes results in attacks against self components, and the

possible onset of autoimmune disease [Goodnow et al., 2005, Hogquist et al., 2005].

The current understanding of autoimmunity consists of several themes. First,

autoimmune disorders have a complex genetic basis that involves multiple causally re-

lated genes, each with a generally modest effect. Second, some genetic variants are

clearly predisposed to multiple autoimmune diseases, implicating common pathways of

pathogenesis. At the same time, the lack of such overlap for some diseases indicates

that distinct mechanisms also exist [Gregersen and Olsson, 2009]. In addition, environ-

mental component has been reported to be involved in the development of autoimmune

diseases.
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4.2.5 Ankylosing Spondylitis

Ankylosing Spondylitis (AS) is an autoimmune disease affecting approxi-

mately 350,000 persons in the US, 600,000 in Europe, and 0.1-1.0% of the world

population. AS, a form of Spondyloarthritis, is a chronic, progressive, connec-

tive tissue disorder that is characterized by inflammation of the spinal and sacroil-

iac joints. AS can cause an eventual fusion, and may lead to a complete rigid-

ity, of the spine. AS has a strong genetic predisposition: 95% affected individuals

carry a specific allele of an MHC I gene, HLA-B27, which presents in only 9% of

the general population [Märker-Hermann and Höhler, 1998, Khan, 2000]. Although

the disease’s major risk factor, HLA-B27, has been discovered for almost 40 years

[Brewerton et al., 1973, Schlosstein et al., 1973], the etiology of AS is not yet clearly

understood.

4.2.5.1 The Role of CD8+ T-cells in AS Etiology

CD8+ cytotoxic T-cells are thought to play an important role in AS pathogene-

sis. The rationale for their involvement comes from the disease’s strong association with

the MHC class I molecule HLA-B27, whose canonical function is peptide presentation

to CD8+ T-cells [Brewerton et al., 1973, Schlosstein et al., 1973]. This strong associ-

ation has led to the long-standing arthritogenic hypothesis, which postulates that AS

resulting from the ability of HLA-B27 to bind and present unique arthritogenic peptides

to CD8+ T-cells, with a response that cross-reacts with self-antigens and triggers the

disease onset [Tam et al., 2010].
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This arthritogenic hypothesis, which suggests a direct involvement of CD8+

T-cells in AS, is supported by the increased number of circulating CD8+ T-cells in

an AS patient’s blood [Schirmer et al., 2002] and of CD8+ T-cell clonal expansions in

their synovial fluid and peripheral blood [Dulphy et al., 1999, Duchmann et al., 2001,

Mamedov et al., 2009]. Autoreactive T-cells, including B27-restricted CD8+ T-cells

with specificity for self-peptides and bacterially infected autologous cells, have been

observed in AS and a closely related autoimmune disease, Reactive Arthritis (ReA)

[Hermann et al., 1993, Duchmann et al., 1996, Appel et al., 2004, Fiorillo et al., 2000,

Atagunduz et al., 2005]. Lastly, persistent [Mamedov et al., 2009] and shared clonal

expansions [Dulphy et al., 1999, Mamedov et al., 2009] occur among AS patients.

This evidence suggests that CD8+ T-cells participate in the development of AS.

Understanding their etiology and functions will help to understand the disease mech-

anism. Identification of pathogenic auto-reactive CD8+ T-cells may lead to successful

selective suppression of these clones as in other diseases, through antibody therapy or

immunization by TCR protein, peptide, or DNA [Mamedov et al., 2009].

4.2.5.2 AS TCR Repertoire Studies

At the time of the AS study reported in this chapter, the most (and

only) mass sequencing published studies of AS T-cell repertoires were Mamedov

et al. 2009 [Mamedov et al., 2009] and its follow-up study Britanova et al. 2012

[Britanova et al., 2012]. The first study used Sanger sequencing and generated TCR

sequences for two patients, 2400 sequences per patient. The later study used 454 se-
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quencing and generated between 11,000 and 19,500 TCR sequences for a single patient.

Both studies assessed the changes of the AS T-cell repertoires over time. The studies

were limited by the absence of healthy controls. Furthermore, current technologies us-

ing Illumia sequencing allow for yet higher throughput and provide a better resolution,

which is at least two orders of magnitude greater than has been achieved in Britanova

et al. 2012 [Britanova et al., 2012].

In collaboration with the Zuniga lab, the Pourmand lab and doctor Brent

Culver, I applied Illumina sequencing to investigate the CD8+ TCRβ repertoires of

AS patients at high resolution, and compared them with CD8+ TCRβ repertoires of

healthy individuals. From the peripheral blood of 5 patients and 2 healthy controls,

more than 28 million TCRβ sequences were generated. I comprehensively profiled and

performed comparative analyses for these repertoires. The number of patient samples

was too small to allow us to distinguish TCRβ sequences that were enriched in patients

versus controls, but the work does demonstrate the use of the aimseqtk package in an

actual research setting.

Of note, we are currently collaborating with Faham et al. (at Sequenta) to

analyze a larger dataset of AS TCR repertoires (140 donors). However, the results of

this collaboration will be reported elsewhere.
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4.3 Results

In this section, I describe an open-source software package for comprehensive

assessments and comparative analyses of TCR repertoires called “Adaptive IMmunoSe-

quencing ToolKit” or aimseqtk. Given an input set of TCR sequencing data samples

and accompanied meta information (e.g disease status), the aimseqtk package provides

a thorough collection of analyses covering all major applications of the field: repertoire

signature profiling and comparison, clone tracking, and public (or condition-associated)

clone identification. In addition, the aimseqtk package offers a unique function that

searches existing publications for homologous clones of any set of clones of interest.

This function is especially applicable to condition-associated clones, aiming to assist the

exploration for literature context and consistency of the identified association. Users

choose which analyses to perform and the aimseqtk package returns the appropriate

summary statistic tables and figures, and statistical test results when relevant. In the

following subsections, I use the TCR sequencing data of 5 AS patients and 2 healthy

donors as demonstration to describe in details the various functions of the software.

4.3.1 Sample Information

A summary of the sample information and sequencing results is listed in Table

4.1. Except for one patient (AS5), all donors carried HLA-B27. CD8+ T-cells were

purified from the peripheral blood of each sample (see Methods), then the DNA was

extracted and TCRβ genes were amplified and sequenced by Adaptive Biotechnologies
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Sample Sex Age
HLA-B27 ERAP1 ERAP1

BASDAI
Disease

Treatment Sequences Clones
Status rs30187 rs10050860 Duration

AS1 M 25 + −+ −+ 2.6 5 Enbrel 132,970 5,673,480

AS2 M 17 + −+ ++ 3 5 NSAIDS 181,611 4,310,157

AS3 M 55 + −− ++ 4 5 Humira 150,496 5,834,002

AS4 M 24 + −+ ++ 2.3 2 NSAIDS 12,407 261,775

AS5 M 20 − ++ ++ 4.6 13 NSAIDS 20,112 2,861,525

H1 M 58 + −− −− N/A N/A N/A 56,018 6,019,470

H2 F 59 + −+ ++ N/A N/A N/A 51,657 3,842,153

Table 4.1: Sample summary. Rows: samples. Columns: ‘Sample’: sample ID, ‘Gen-
der’: ‘M’ for male and ‘F’ for female, ‘Age’: number of years old, ‘HLA-B27 Status’:
‘+’: sample is from B27+ donor, ‘−’: sample is from B27− donor, ‘ERAP1 rs30187’:
‘++’, ‘−+’ and ‘−−’: sample is from donor carrying two risked alleles, one risked al-
lele, and no risked allele at ERAP1 AS-associated SNP rs30187 [Evans et al., 2011a],
respectively, ‘ERAP rs10050860’: similarly to‘ERAP1 rs30187’ but for ERAP1 AS-
associated SNP rs10050860 [Evans et al., 2011a] (see Appendix Section C.2 for ERAP1
allele calling methods), ‘BASDI’: Bath Ankylosing Spondylitis Disease Activity Index,
‘Disease Duration’: number of years since the onset of the disease, ‘Sequences’: number
of total productive sequences, ‘Clones’: number of total productive clones. ‘N/A’: not
applicable. ‘.’: missing information.

Corporation.

4.3.2 Preprocessing: Input Formats, Data Filtering and Down-

sampling

The standard practice for handling TCR sequencing data is to run the raw data

produced by the sequencing machines through the error correction and mapping soft-

ware. This software takes care of mapping reads, merging reads into clones, correcting

potential sequencing errors and amplification bias and inferring junctional information.

This step is essential and the available software has proven to be sufficient and robust
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(see Section 4.2.3.4). The outputs of this step are typically files in a delimited format

that is specific to the software used. The aimseqtk package is designed to take in these

files as inputs and currently supports all the major formats: Adaptive Biotechnologies,

Sequenta, iRepertoire, miTCR and its own format.

The example dataset used in this chapter was mapped and error-corrected

using Adaptive Biotechnologies’ ImmunoSeq standard procedure [Robins et al., 2010].

The gene names and CDR3 regions were defined following the IMGT nomenclature

[Lefranc et al., 2009]. A distinct TCRβ amino acid sequence is referred to as a clone,

and the number of copies of that particular sequence is its size or abundance.

The first stage of the aimseqtk package is preprocessing input data. Productive

and non-productive clones are separated. Depending on their study design, users have

the option to filter out clones based on the minimum and/or maximum clone frequencies

and/or clone size (number of reads). For comparative analyses, ideally the experiment

should be designed and carefully executed such that each sample has the same amount

of starting cells and that the sequencing coverage is consistent across all samples. In

practice however, due to various factors, these conditions are often not met, which

results in sample size differences. To avoid biases introduced by these differences, larger

samples can be reduced to be comparable with the smaller ones via the down-sampling

function.

Normally, down-sampling involves reducing all the samples to the size of the

smallest one. However, if there are more reads than needed to exhaustively sequence a

sample, this approach does not account for the effect of sequencing saturation, or over-
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sequencing. For example, in Figure 4.2, sample B has a total of nine million reads, but

approximately only one million reads are needed to detect all sequences present in the

sample. Sample A is smaller than B, with a total of five million reads, and has yet to

reach its saturation. Comparing these two samples at five million reads, which is the size

of the smaller sample A, sample A appears to be more diverse than sample B, with many

more clones. That comparison, however, is inaccurate as it compares a well saturated

sample B with an unsaturated sample A. The more appropriate comparison is at one

million reads, before either sample passes its saturation point. In that comparison,

sample B is less diverse than A.

Therefore, it is important to examine the data before determining the standard

size to which the samples are normalized to. The standard size should be chosen based

on the sample saturation points instead of the smallest sample size. To assist this,

the rarefaction analysis function, which randomly resamples each repertoire over an

increasing set of sizes (x-axis) and counts the number of unique clones each sampling

contains (y-axis), produces an overview look of the data (Figure 4.2).

Figure 4.3 shows the rarefaction analyses of the AS and healthy repertoires.

Based on this I pick two sampling sizes for this dataset: ten thousand sequences, the

point before any of the samples saturated, and one million sequences, the point before all

but the two smallest samples (AS4 and AS5) saturated. The aimseqtk package randomly

selects ten thousand or one million sequences from each sample, performs analyses, and

repeats the process 100 times. The average statistics of these samplings are reported in

following sections. Of note, samplings of larger sizes than one million are also analyzed
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Figure 4.2: An illustration of sequencing saturation. Samples A and B are healthy
samples obtained from Adaptive Biotechnologies

and found to yield similar results to those that obtained with one million sequences.

Users may adjust the sampling sizes, the default setting is no sampling.

4.3.3 Repertoire Properties Profiling and Comparisons

The aimseqtk package provides comprehensive assessments of individual reper-

toires as well as comparative analyses of different repertoire groups. The list of incor-

porated assessments includes diversity, similarity, clonality, CDR3 length distribution,

gene-segment usage and junctional insertions and deletions, each of which is described
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Figure 4.3: Rarefaction analyses of all samples.

in further detail below.

4.3.3.1 Diversity

Repertoire diversity (number of distinct clones and distribution of clone sizes)

is important to the immune system’s ability to protect the body against the vast number

of antigens present in surrounding environments. For each repertoire, the aimseqtk

package computes various diversity indices (Table 4.2) and performs Wilcoxon signed-

rank (or Wilcoxon rank-sum or Mann-Whitney U) tests to compare groups of matched
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(or unmatched) samples (Figure 4.4).

Table 4.2 and Appendix Table C.1 show that consistently across all the indices,

the AS repertoires are more diverse than the controls. The number of clones and the

Fisher Alpha index measure the species richness (number of distinct clones) while the

Simpson and the Shannon indices measure species richness integrated together with

species abundance (clone size). Out of one million sequences, all the AS repertoires

have more than 110,000 clones, which is more than double the numbers of clones in

the controls, 46,408 and 50,854. Similarly, Fisher Alpha, Simpson, and Shannon indices

all indicate higher diversity in the AS samples than in the controls. The order of the

samples from largest to smallest diversity is: AS2, AS3, AS1, AS4, AS5, followed by

the controls H1 and H2, which closely resemble each other’s diversity.

Since the dataset here is small, it is straightforward to investigate each sample

individually. For larger datasets with many more samples, diversity differences among

groups may be better summarized by the box plots as in Figure 4.4, one box plot per

group showing the diversity distribution of samples in the group. Figure 4.4 shows the

apparent higher number of distinct clones in the AS group compared with the Healthy

group. Similar plots may be generated for other indices (one plot each) and statistical

significances are reported (e.g Table 4.3).

4.3.3.2 Similarity

When comparing different groups of TCR repertoires, two common questions

are whether within-group repertoires are more similar than between-group repertoires or
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Sample Unique Clones Simpson Shannon Fisher Alpha

AS1 117,158 ± 100 0.999 ± 0.000 9.806 ± 0.002 34,431 ± 41

AS2 162,600 ± 102 1.000 ± 0.000 11.101 ± 0.001 55,066 ± 50

AS3 137,117 ± 87 0.999 ± 0.000 10.609 ± 0.002 43,002 ± 39

H1 50,849 ± 63 0.988 ± 0.000 7.190 ± 0.003 11,318 ± 17

H2 46,414 ± 55 0.985 ± 0.000 7.223 ± 0.003 10,072 ± 15

Table 4.2: Sample diversity indices of one million sequence samplings show that the
AS repertoires are more diverse than the healthy repertoires. The rows represent the
samples. The columns include: ‘Sample’ is the sample ID, ‘Unique Clones’ is the number
of unique clones, ‘Simpson’, ‘Shannon’, ‘Fisher Alpha’ are the Simpson, the Shannon
and the Fisher Alpha indices. Each cell contains the average and standard deviation of
100 samplings.

Diversity Index Group 1 Group 2 p value Mean 1 ± Std 1 Mean 2 ± Std 2

Fisher Alpha Healthy AS 0.017 14900.499 ± 980.063 62423.224 ± 10815.586

Unique Clones Healthy AS 0.009 62866.000 ± 3172.000 176098.667 ± 20483.268

Shannon Healthy AS 0.005 7.427 ± 0.010 10.715 ± 0.498

Simpson Healthy AS 0.004 0.988 ± 0.002 0.999 ± 4.08e-04

Table 4.3: Diversity index group comparisons show that the AS samples are more diverse
than the healthy samples.

whether repertoire similarity correlates with an attribute of interest. There exist differ-

ent measurements of similarity, among which I selected three popular ones to incorporate

into the aimseqtk package: number of common clones, chao index [Chao et al., 2006]

and horn index [Horn, 1966]. The software computes the similarity indices of choice

for all pairs of input samples and returns a matrix table as well as a heatmap plot

(Appendix Figure C.6) for each index.
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Figure 4.4: AS samples have more number of distinct clones (one million sequence
samplings). ‘Numclone’ is the number of distinct clones each sample has. The red
horizontal line marks the group median while the box’s bottom and top boundaries
mark the group 25th and 75th quartiles.

For any two groups A and B, statistical significances are reported if differences

in similarity exist (Figure 4.5 and Table 4.4). Pairs of samples are separated into

three categories: within-group pairs for group A, within-group pairs for group B, and

between-group pairs. If pairs of samples within group A are observed to have higher

similarity than do pairs belonging to the other two categories, the observation can be

an indication/evidence of some common factors that are the results of, or have resulted

in, the condition of group A, such as similar immune exposures, similar abnormalities
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Figure 4.5: The Chao similarity index summary shows no significant differences among
different groups. The x-axis shows the sample pair categories. The y-axis shows the
Chao similarity index. The ‘Healthy AS’ category contains all pairs of one Healthy
sample and one AS sample. The ‘AS’ category contains all AS pairs. ‘Category 1’ and
‘Category 2’ are the two categories being compared.

in the recombination process or similar abnormalities in the tolerance system.

High clonal overlap of the repertoires can be an indication of similar immune

experiences, such as common infections or immune experiences that are involved with

a specific disease. To assess whether or not the AS repertoires have high overlaps with

each other, I compare the overlaps of the AS repertoires with the overlaps of the control

repertoires. An overlap is defined as the number of clones that the repertoires shared.
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Category 1 Category 2 p value Mean 1 ± Std 1 Mean 2 ± Std 2

Healthy Healthy AS -0.292 0.010 +/- 0.000 0.014 +/- 0.012

Healthy AS AS 0.270 0.014 +/- 0.012 0.012 +/- 0.003

Healthy AS -0.408 0.010 +/- 0.000 0.012 +/- 0.003

Table 4.4: The Chao similarity index comparisons show no significant differences among
different groups. Each row represents a pairwise comparison the group categories. The
‘Healthy’ category contains all sample pairs within the Healthy group. The ‘Healthy AS’
category contains all pairs of one Healthy sample and one AS sample. The ‘AS’ cate-
gory contains all AS pairs. ‘Category 1’ and ‘Category 2’ are the two categories being
compared. ‘p-value’ shows the significance of the comparison. ‘Mean 1’ and ‘Mean 2’
are the average Chao similarity index of categories 1 and 2, respectively. ‘Std 1’ and
‘Std 2’ are the standard deviations of each category.

A clone is defined to be shared by two or more samples if it is observed in all of those

samples.

To avoid biases introduced by differences in sample diversity (higher diversity,

or more clones, increases the chance of clone sharing), I normalize the samples so that all

samples have an equal number of clones (see Methods). Figure 4.6 shows the numbers

of shared clones of all pairs of samples. Pairs of patients do not share more clones than

pairs of controls or pairs of a patient and a control. However, B27+ samples have more

overlaps with each other than with the B27− sample.

4.3.3.3 Clonality

Clonality is important for understanding repertoire clonal dominance. The

aimseqtk package computes two types of clone size distribution: the proportion of total

clones as a function of clone size and the proportion of total sequences as a function of

146



Healthy Healthy - AS AS

Figure 4.6: Sample pairwise overlaps, 12,000 clone samplings, show no higher overlaps
among B27+ AS repertoires in comparison with B27+ healthy repertoires but higher
overlaps among B27+ repertoires in comparison with the B27− repertoire. ‘B27+,
B27+’: both samples are B27+ (red), ‘B27+/-, B27-’: at least one sample is B27-
(blue). Each circle shows the sampling average (of 100 samplings total) and the cor-
responding vertical bar shows the sampling standard deviation. ‘B27+, B27+ Avr’:
average of all ‘B27+, B27+’ pairs within the category, ‘B27+/-, B27- Avr’: Average
of all ‘B27+/-, B27-’ pairs within the category. The vertical bar of the triangles show
the standard deviations of all pairwise overlap within the category. ‘Healthy’: pairs of
two healthy control samples. ‘Healthy - AS’: pairs of one healthy control and one AS
patient samples. ‘AS - AS’: pairs of two AS patient samples.
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clone size (Figure 4.7 a, b). Additionally, an abundance summary of the largest clones

of each sample helps to quickly assess how dominant the clonal expansions are in the

sample (Figure 4.7 c). The size, or abundance, of a clone is defined as the percentage

of total sequences belonging to that clone.

The healthy H1 and H2 clone size distributions are highly concentrated, with

many highly dominant clonal expansions, while the B27+ AS repertoires AS1, AS2, AS3

and AS4 are spread out and did not have highly dominant expansions (Figure 4.7 and

Appendix Figures C.1, C.2, C.3). Figure 4.7A and Appendix Figure C.1A show the

distributions of clones across different sizes of the samples. These distributions follow

the expected negative exponential distribution [Sepúlveda et al., 2010]. The majority

of clones (> 70%) of each sample have very low frequencies (< 10 sequences or 0.001%

for one million sequence samplings).

Relative to the AS samples, H1 and H2 have high proportions of large clones.

In particular, out of one million sequences, H1 and H2 each had 0.024% clones with

frequencies of ≥ 1%, 20 times larger than did AS1 (0.0009%), AS2 (0%), AS3 (0.0015%).

In H1 and H2, the larger clones, even though exponentially less in number than the

smaller ones, account for an equal if not a higher proportion of total sequences (Figure

4.7B). The 0.024% clones with frequencies ≥ 1% account for 30% of the total sequences.

In contrast, in the AS samples AS1 (1.68%), AS2 (0%), AS3 (4.66%) and AS4 (11.31%),

large clones contribute significantly less to each repertoire. The B27− AS sample AS5,

unlike the other ones, is neither spread out nor does it have many highly expanded

clones. Instead, it has a hybrid state with two highly expanded clones followed by a

148



relatively even distribution. Multiple clonal expansions in H1 and H2 explain the lower

diversity of these repertoires, while the absence of extremely dominant clones in the AS

samples reflects the evenness of these repertoires and explained the higher diversity.

4.3.3.4 CDR3 Length Distribution

CDR3 length distribution is a standard analysis reported in most TCR studies,

with preferential length usage often mentioned in traditional (spectra-type) autoimmune

TCR comparative works [Miles et al., 2011]. The aimseqtk package computes and com-

pares CDR3 length distributions of total clones and of total sequences of the samples

(Figure 4.8 and Appendix Figure C.5, respectively). For each length, statistical sig-

nificance (after Bonferroni correction) is reported if there exists preferential usage in a

specific group over another. The median lengths of different groups are also compared

and significant shifts in the distribution are reported.

The length distributions of clones are highly similar for all samples, there

is no preferential length usage in the AS repertoires (Figure 4.8). The distribu-

tions follow the Gaussian distribution and are similar to CDR3 length distributions of

healthy T-cell repertoires previously reported [Wang et al., 2010, Robins et al., 2009,

Warren et al., 2011]. The length distributions of total sequences, however, are different

in different samples and reflect the sample clonal expansions (Appendix Figure C.5).
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Figure 4.7: Cumulative clone size distributions of one million sequence samplings show
no highly dominant clonal expansions in B27+ AS repertoires. (A) Cumulative distribu-
tion of clones. (B) Cumulative distribution of sequences. (C) Cumulative distribution
of sample 50 largest clones. AS samples are in red and healthy samples are in blue. In
(A) and (B), each data point represents the proportion of total clones (A) or sequences
(B) with frequencies ≥ 0%, 0.001%, 0.01%, 0.1% or 1%.
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Figure 4.8: CDR3 length distributions of distinct clones.

4.3.3.5 Recombination Model: Gene-segment Usage and Junctional Inser-

tions and Deletions

Let Rθ be the recombination event that results in a TCR nucleotide sequence

θ, Rθ involves: the selected gene segments (Vθ, Dθ and Jθ), the number of deleted

nucleotides of each gene segment (delVθ, del5Dθ, del3Dθ, delJθ), and the inserted nu-

cleotides at the VD (insV Dθ) and DJ (insDJθ) junctions. The generative probability
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PG of a recombination event Rθ is [Murugan et al., 2012]:

PG(Rθ) =P (Vθ) ∗ P (Dθ, Jθ)∗

P (delVθ|Vθ) ∗ P (del5Dθ, del3Dθ|Dθ) ∗ P (delJθ|J)∗

P (insV Dθ) ∗ P (insDJθ)

Joint or conditional probabilities are used respectively when the involved variables

are correlated or dependent [Murugan et al., 2012]. P (Vθ) is the probability that Vθ

gets selected for recombination among all possible V genes. P (Dθ, Jθ) is the joint

probability that Dθ and Jθ get selected among all possible D and J pairs. P (delVθ|Vθ)

is the conditional probability that delVθ nucleotides get deleted given that V is Vθ.

P (del5Dθ, del3Dθ|Dθ) and P (delJθ|J) are similar, but for D and J. P (insV Dθ)

(P (insDJθ)) is the probability that the nucleotide sequence insV Dθ (insDJθ) get

inserted at the V D (D J) junction:

P (insV Dθ) = P (L(insV D)) ∗
L(insV D)∏

i=1
PV D(xi|xi−1)

P (insDJθ) = P (L(insDJ)) ∗
L(insDJ)∏

i=1
PDJ(yi|yi+1)

PV D and PDJ are conditional probabilities of inserting a specific nucleotide (xi or yi)

given the immediately 5’ or 3’ nucleotide (xi−1 or yi+1). L(insV D) and L(insDJ) are

lengths of inserted sequences at VD and DJ junctions.

The various distributions account for different aspects of the recombination

process and together, influence the shape of the repertoire. The aimseqtk package

computes each of these usage distributions for each sample and checks for differences (if
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they exist) in each distribution among different groups. The software provides two types

of usage profiles: the sequence profile, in which the usage (frequency) of each attribute

(e.g each gene segment or each recombination) is based on the number of sequences

carrying that attribute (e.g gene or recombination), and the clone profile, in which the

usage is computed using the number of clones. Sampling effect aside, the clone profile

is expected to reflect the antigen-näıve state of the repertoire while the sequence profile

reflects its immune encounters and expansions of clones. In the following examples, the

clone profile is used.

For the current dataset, the overall variable region gene-segment usage of the

samples is consistent with previously reported healthy repertoires [Robins et al., 2010]

(Appendix Tables C.2, C.3, C.4). The repertoires use both Ds, all Js, all possible

D-J combinations, 86-88% of total Vs, 83-93% of all possible V-J and 80-91% V-D-J

recombinations. Figures 4.9 and 4.10 show the usage of J and V genes in the two groups

AS and Healthy. There is no significant differential usage in V, D, J, D-J or V-J detected

between AS and healthy repertoires. Principal component analyses are also performed

for each attribute, an example is shown in Figure 4.11.

Figure 4.12 shows the distribution of the number of nucleotides inserted at

the DJ junction represented by box plots. In comparison with the healthy repertoires,

the AS repertoires show slightly higher proportions of longer inserted lengths (>= 4

nucleotides) and lower proportions of shorter lengths (< 4).
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Figure 4.9: No significant preferential TRBJ usage is detected between AS and Healthy
repertoires.

4.3.4 Clone Tracking

The aimseqtk package tracks abundances of clones across different samples

and groups (e.g different time points, tissues, or conditions). Users can specify a list of

specific clones to track, examples are cancerous clones, autologous clones, clones injected

into hosts, or clones known to be associated with certain bacteria or disease of interest.

In addition, the software identifies highly expanded clones in each sample (the default
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Figure 4.10: No significant preferential TRBV usage is detected between AS and Healthy
repertoires.

minimum frequency is 1%) and tracks their abundances in other samples (Table 4.5,

Figure 4.13).

Table 4.5 shows a summary of the abundances of each sample’s most expanded

clones across all samples of both groups AS and Healthy. In this limited set of samples,

there is no common clonal expansion that is shared by two or more samples. Figure

4.13 shows an example box plot that tracks the abundance of one of sample H2’s highly
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Figure 4.11: Principal component analysis of VJ usage shows no discrimination between
AS and Healthy repertoires.

expanded clone TRBV11-1 CASSLFYSPYNEQFF TRBJ2-1 (2.77%), which is either

absent, or present with a very low abundance, in other samples. With large dataset,

this type of plot is useful to visualize differential abundance of a specific clone between

different groups, such as abundance of a cancerous clone before (typically >= 90%) and

after treatment (very small or if successful, absent).

4.3.5 Public Clones

The aimseqtk package helps to identify clones that are dominantly present

in a particular group of samples (in-group) compared with other groups (out-groups).
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V Sequence J AS Healthy

TRBV2 CASNTRLPNTEAFF TRBJ1-1 Absent 1.3170

TRBV4-1 CASSQEGSSYNEQFF TRBJ2-1 Absent 1.3836

TRBV4-3 CASSQDEGTGANVLTF TRBJ2-6 1.6722,0.0008 Absent

TRBV4-3 CASSQDSGSGANVLTF TRBJ2-6 2.429 0.0006

TRBV6-4 CASSDTLAADSNEQFF TRBJ2-1 Absent 7.6397

TRBV6-5 CASKGTGDTDTQYF TRBJ2-3 5.1687e-05 4.5018

TRBV6-5 CASRQGRGAFF TRBJ1-1 Absent 3.884

TRBV7-2 CASSLTLGSEQFF TRBJ2-1 Absent 1.4139

TRBV7-8 CASSLWSDYPYEQYF TRBJ2-7 0.0002 5.1564,0.0003

TRBV7-9 CASTLSGMNTEAFF TRBJ1-1 Absent 7.1387,0.0002

TRBV9 CASSPSPKLAAHEQYF TRBJ2-7 0.0003 1.1028

TRBV10-3 CAIRPGLAGIQETQYF TRBJ2-5 Absent 1.4114

TRBV10-3 CATIPQGQNEQFF TRBJ2-1 Absent 2.3883

TRBV11-1 CASSLFYSPYNEQFF TRBJ2-1 8.8578e-05 2.7687,0.0002

TRBV14 CASSHLYTEAFF TRBJ1-1 Absent 5.9167

TRBV15 CATSRERTGGGEKLFF TRBJ1-4 2.2664 0.0007

TRBV19 CASSISVSQPQHF TRBJ1-5 Absent 1.3011

TRBV19 CASSITSGAYNEQFF TRBJ2-1 Absent 0.0054

TRBV20-1 CSASRQGGGEQFF TRBJ2-1 Absent 3.003

TRBV29-1 CSARILDHEQFF TRBJ2-1 0.0001 2.7582

TRBV29-1 CSLEWGNNEQFF TRBJ2-1 Absent 1.6535

TRBV29-1 CSVEDNRGPYEQYF TRBJ2-7 Absent 1.1608

TRBV30 CAWGGDDSYEQYF TRBJ2-7 3.4457e-05 1.0409

Table 4.5: Tracking abundances of each sample’s most expanded clones (frequency >=
1%) shows that there is no common clonal expansions shared by the samples of both
groups. Columns “AS” and “Healthy” show the (comma separated) abundances of each
clone (in percentage) in samples of group AS and group Healthy, respectively. Zero
frequencies are not reported unless the clone is absent in all samples of a specific group,
then it is marked as ‘Absent’ in that group.
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Figure 4.12: Length distributions of DJ inserted nucleotide sequences show slightly
higher proportions of longer lengths in AS repertoires.

Users can adjust the minimum proportion of the in-group samples and the maximum

proportion of the out-group samples that contain each clone. Fisher’s Exact test and

multiple testing correction are used to filter for clones that are significantly associated

with the in-group. There were 34 clones that were present in at least 75% of the AS (4

samples) and absent in all the healthy samples. None of these clones was significantly

associated with AS. This was expected because the number of studied samples was
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Figure 4.13: Tracking abundances of one of the expanded clones, clone TRBV11-
1 CASSLFYSPYNEQFF TRBJ2-1, of sample H2. The clone is absent in all AS samples.

small.

4.3.6 Publication Mining

The UCSC Browser publication mining tool [Haeussler et al., 2011] is incor-

porated into the aimseqtk package to assist researchers in investigating the published

literature for information on the set of clones that they are interested in. This tool

collects sequences from databases like IMGT and the full text of published research

articles and runs BLAST [McGinnis and Madden, 2004] to compare these to the CDR3
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sequences of the input samples. Homologous sequences together with information of

the studies in which they are included are reported. The aimseqtk package includes

various filtering criteria, such as sequence identity and keywords, to help narrowing

down to relevant studies, of which users can conduct further exploration for literature

context and/or literature validation. In the following subsections, I demonstrate the

tool’s utilization in inquiring information for 1/ expanded clones of each sample and 2/

AS-public clones.

4.3.6.1 Expanded Clones of AS Patients are Reported in Previous Studies

on Autoimmune Diseases

BLAST is used to search the 10 most expanded clones of each sample (70

clones total) in databases and published articles. A larger proportion of the AS clones

(12%) have autoimmune-related (‘relevant’) matches than of the healthy clones (5%)

(Table 4.6). Of the 12% (6) patient clones with relevant matches, four are from sam-

ple AS5, one from AS1 and one from AS4 (Table 4.7). The matches in the literature

come from patients with Rheumatoid Arthritis (RA), Reactive Arthritis (ReA) and

Multiple Sclerosis (MS). Repeating the search with the 10 most expanded clones of 10

healthy samples from published high-throughput sequencing studies (100 clones total)

(Appendix Section C.1) confirms this observation. 6% of these clones have relevant

matches, which is consistent with the 5% and is half of the 12%. This suggests the hy-

pothesis that patient expanded clones are more similar to clones of related autoimmune

diseases than are expanded clones from healthy individuals. However, a larger patient
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cohort and set of matched normals would be required to check this.

4.3.6.2 Clones Shared Among AS Patients are Reported in Previous Stud-

ies on Autoimmune Diseases

BLAST search of clones that are shared by four or more patients and and that

are absent in the controls results in relevant matches for 13 of those clones (Table 4.8).

Out of the 13 clones, there are four that have high similarity to sequences previously

observed in AS or Spondyloarthropathy (SpA). The other clones with matches include

two in ReA, two in RA, six in MS and one autoreactive clone specific to melanoma

tumor antigen glycoprotein 100. These autoimmune diseases, especially SpA, which is a

group of joint diseases including AS (and RA), and ReA, which is HLA-B27 associated,

are related to AS. The three clones with matches in SpA (CASSMGQGYEQYF,

CASSIGQGAYEQYF and CASSLGQGAYEQYF) are similar to each other. In

Section 4.3.5, I pointed out that these clones were not significantly associated with AS,

which was expected given the small sample size. I show here, as an example that if they

were, their sequence similarity with each other and with previously reported SpA clones

would provide further support of their involvements in SpA disease mechanisms.

4.3.7 Clustering

Clustering analyses help to assess sequence homology of clones within a sample

and across different samples. Using a greedy algorithm, the software clusters together

clones of all samples that have identical V and J genes and the same CDR3 length, and
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Group Total Matches % Matches/Total

AS 50 6 12

Healthy 20 1 5

Healthy, published 100 6 6

Table 4.6: Literature search summary of 10 most expanded clones from each sample:
larger proportion of the AS expanded clones have high sequence similarity with clones
previously reported in related autoimmune diseases than of the healthy expanded clones.
Columns: ‘Group’: sample group, ‘Total’: total number of clones included in the analy-
sis, ‘Matches’: number of clones with matches of ≥ 85% identity from previous autoim-
munity studies, ‘% Matches/Total’: the percentage of the total clones with matches.
‘Healthy’: healthy samples H1 and H2,‘AS’: AS samples AS1-AS5, ‘Healthy, published’:
healthy samples from previously published TCRβ high-throughput sequencing studies.

shared at least 85% (approximately ≤ 2 amino acids difference, this cutoff is adjustable)

CDR3 sequence identity (see Methods). For the AS dataset, a total of 605,271 clones

results in 481,148 clusters, 77.8% (374,388) of which are singletons (clones that do not

cluster with any other clone).

A clone is labeled ‘expanded’ if its frequency is 0.1% or greater (this cutoff is

adjustable as well). There are 382 expanded clones total. I classify clusters with mul-

tiple expanded clones as confident candidates for further analyses to identify potential

disease-associated clones. I require a confident cluster to have at least three expanded

clones. Out of more than 100 thousand non-singleton clusters, one is identified as con-

fident.

Further analyses of this confident cluster shows a strong indication of

antigen selection. The cluster includes 18 clones carrying the motif TRBV4-3 -

CASSQD*G*GANVLTF - TRBJ2-6 (Table 4.9). The 18 clones consist of 7 abun-
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Clones Samples Matches

V CDR3 J AS1 AS2 AS3 AS4 AS5 H1 H2 CDR3 Alignment Disease

5-1 CASSLGGGYEQYF 2-7 19 7 62 24 CASSLGRGYEQYF CASSLG GYEQYF MS

5-1 CASSLAGGPYNEQFF 2-1 53 31 33 4 CASRLAGGPFNEQFF CAS LAGGP+NEQFF MS

5-6 CASSLGQGAYEQYF 2-7 10 30 39 108 CASSV-QGAYEQYF CASS+ QGAYEQYF SpA

5-6 CASSLGGSSYEQYF 2-7 9 10 245 15 CASSLGSSSYEQYF CASSLG SSYEQYF ReA

6-3 CASSSYNEQFF 2-1 28 28 17 8 CASSSVNEQFF CASSS NEQFF AS

6-5,6-6 CASSYSGGNTEAFF 1-1 26 17 46 2
CASSYSRKNTEAFF CASSYS NTEAFF MS

CASSLRGGNTEAFF CASS GGNTEAFF MS

6-5,6-6 CASSYGDSSYEQYF 2-7 3 42 50 16 CASSLGSSSYEQYF CASS G SSYEQYF ReA

7-9 CASSLGGDEQFF 2-1 101 12 158 9
CASSLRGDEQFF CASSL GDEQFF RA

CASSLRGDEQFF CASSL GDEQFF RA

12-4 CASSLGGNEQFF 2-1 17 71 82 17 CASSPGGNEQFF CASS GGNEQFF HER2369

13 CASSLGRGTYEQYF 2-7 2 10 37 31 CASSLGRG-YEQYF CASSLGRG YEQYF MS

19 CASSMGQGYEQYF 2-7 12 6 23 7 CASSFGQGYEQYF CASS GQGYEQYF SpA

19 CASSIGQGAYEQYF 2-7 34 26 17 34

CASSV-QGAYEQYF CASS+ QGAYEQYF SpA

CASSIGQENYEQYF CASSIGQ YEQYF RA

CASSIGTGAHEQYF CASSIG GA+EQYF MS

20-1 CSAR-GTASYEQYF 2-7 9 11 14 243 CSARAGGASYEQYF CSAR G ASYEQYF MS

Table 4.8: A summary of clones that are shared by at least four patients and absent or
present with low frequencies (≤ 10 sequences) in the controls and have high sequence
similarity (≥85% identity, approximately ≤ 2 amino acids difference) with previously
reported CDR3 sequences of autoimmune diseases. ‘Clones’: TRBV, CDR3 and TRBJ
information of the clone. ‘Samples’: number of sequences of a specific clone each sam-
ple has, an empty cell indicates the absence of the clone. ‘Matches’: CDR3 sequences
reported by previous autoimmune disease studies: ‘CDR3’: the CDR3 amino acid se-
quence, ‘Alignment’: alignment of the matched CDR3 sequence with the clone CDR3
sequence (the residue is shown if it is conserved, ‘+’ indicates a positive score for the
match, ‘-’ indicates a gap, and a space indicates a mismatch), ‘Disease’: the disease of
the host of the match. ‘AS’: Ankylosing Spondylitis [Duchmann et al., 2001], ‘SpA’:
Spondyloarthropathy (IMGT, unpublished, Genbank accession numbers AY145777,
AY145767), ‘ReA’: Reactive Arthritis (IMGT, unpublished, Genbank accession num-
ber AJ296361), ‘RA’: Rheumatoid Arthritis [Striebich et al., 1998, Li et al., 1994],
‘MS’: Multiple Sclerosis [Biegler et al., 2006, Babbe et al., 2000, Ristori et al., 2000],
‘HER2369’: allorestricted TCR with specificity for the HER2/neu-derived peptide 369
[Liang et al., 2010].
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dant clones (with frequencies ranging from 0.01% to 2.42%) followed by 11 smaller ones.

All 7 abundant clones are from two patient samples, AS1 and AS3, including the most

expanded clone of AS1 (CASSQDEGTGANVLTF, 1.66%, 94,393 sequences) and the

most expanded clone of AS3 (CASSQDSGSGANVLTF, 2.42%, 141,012 sequences).

There are 3 clones in this confident cluster that are also present in the healthy sam-

ples, however only at very low frequencies (0.0006% - 0.002%). Multiple clonal expan-

sions from two different patients sharing the same motif (CASSQD*G*GANVLTF)

suggests that there may have been independent selection for this motif in the two

patient repertoires and it may be AS-associated. If this result is confirmed in

a sufficiently large dataset, then the two most expanded clones of AS1 and AS3,

CASSQDEGTGANVLTF and CASSQDSGSGANVLTF, are potential candidates

for further study.

4.4 Discussion

In this chapter, I described an open-source software package named aimseqtk

for performing comprehensive assessments and comparative analyses of TCR repertoires.

The aimseqtk package contains a comprehensive list of analyses, including normalization

(downsampling), repertoire signature profiling and comparisons, clone tracking, public

clones identification and publication mining. In the following, I will discuss the results

obtained from applying the aimseqtk package to study the TCR data of AS patients

and healthy individuals.
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V CDR3 J Sample Count Frequency (%)

4-3 CASSQDSGSGANVLTF 2-6
AS3 141012 2.417

H1 36 0.0006

4-3 CASSQDEGTGANVLTF 2-6
AS1 94393 1.664

AS2 36 0.0008

4-3 CASSQDGGSGANVLTF 2-6 AS1 9677 0.171

4-3 CASSQDQGTGANVLTF 2-6 AS1 5199 0.092

4-3 CASSQDGGAGANVLTF 2-6 AS1 2599 0.046

4-3 CASSQDEGSGANVLTF 2-6 AS1 1336 0.024

4-3 CASSQDPGSGANVLTF 2-6
AS1 1101 0.019

AS3 108 0.002

4-3 CASSQDAGAGANVLTF 2-6
AS1 397 0.007

AS2 162 0.004

4-3 CASSQDRGSGANVLTF 2-6

AS2 180 0.004

H2 90 0.002

AS1 54 0.001

4-3 CASSQDRGTGANVLTF 2-6 AS1 162 0.003

4-3 CASSQDLGAGANVLTF 2-6 AS3 90 0.0015

4-3 CASSQDMGAGANVLTF 2-6 AS1 54 0.001

4-3 CASSQDLGTGANVLTF 2-6 AS1 54 0.001

4-3 CASSQDIGGGANVLTF 2-6 H2 36 0.001

4-3 CASSQDGGRGANVLTF 2-6 AS2 36 0.0008

4-3 CASSQDRGNGANVLTF 2-6 AS1 36 0.0006

4-3 CASSQDNGSGANVLTF 2-6 AS1 36 0.0006

4-3 CASSQDTGYGANVLTF 2-6 AS3 36 0.0006

Table 4.9: Cluster of homologous clones from multiple patients carrying the motif
TRBV4-3 - CASSQD*G*GANVLTF - TRBJ2-6 (‘*’ can be replaced by different amino
acids). Rows: clones in descending order of frequencies. The top two clones are the
most expanded clones of two AS samples AS3 and AS1. Columns: ‘V’: TRBV gene,
‘CDR3’: the CDR3 amino acid sequence, ‘J’: TRBJ gene, ‘Sample’: sample(s) carrying
the corresponding clone, ‘Count’: number of sequences of the corresponding clone each
sample has, ‘Frequency’: frequency of the corresponding clone in each sample. Bolded
are expanded clones with frequencies ≥ 0.01%.
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AS predominantly affects the joints. Previous studies of AS and re-

lated autoimmune diseases suggest that the patient synovial fluid yields stronger

disease-implicating signals than does peripheral blood [Atagunduz et al., 2005,

Striebich et al., 1998]. However, detection of disease-associated signals in blood is de-

sirable since obtaining synovial fluid is an invasive procedure. Thus, future diagnostic

and prognostic applications of sequence analysis of disease-associated repertoires in pa-

tient blood are more likely to become widely used. There have been reports of clonal

expansions and HLA-B27-restricted auto-reactive CD8+ T-cells in blood samples from

AS patients [Duchmann et al., 2001, Atagunduz et al., 2005]. However, these studies

were limited by low-throughput methods with low sensitivity. With immunosqeuencing

providing a sensitivity better than 0.001%, I reinvestigated the AS peripheral blood

CD8+ TCR repertoires to search for AS-associated signatures.

For the first time, high resolution snapshots of AS TCR repertoires are profiled

and compared. The preliminary results show that except for having a higher diversity,

AS peripheral blood CD8+ TCR repertoires are overall similar to healthy ones. In par-

ticular, AS repertoires have similar CDR3 length distribution and similar gene-segment

usage. They do not share more clones with each other than they do with healthy

repertoires. No clone is detected to be significantly associated with AS. The lack of dif-

ferentiation between AS and healthy repertoires may be attributed to the small sample

size and consequently, the low statistical power. It is therefore critical to repeat the

analyses with a larger dataset.

The higher diversity in AS is consistent with the absence of highly dominant
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clonal expansions in the AS repertoires. In contrast, the repertoires of the two healthy

samples had multiple highly dominant clonal expansions. Neither of the healthy donors

had a known infection at the time of the blood draw. A previous blood draw of healthy

donor H1 two years prior to the current blood draw had similar clonal expansions.

10 of 12 high frequency (≥ 1%) clones of the current blood draw were present in the

previous blood sample: 4 with frequencies ≥ 1% and 6 with frequencies ≥ 0.1%). This

consistency of expanded clones confirmed that the highly dominant clonal expansions

observed in the healthy samples were not the result of acute infection or other short-

term antigen exposure. My analysis (Figure C.4) of the healthy repertoires from other

high-throughput TCR sequencing studies showed that multiple highly dominant clonal

expansions are not uncommon in healthy individuals. These clonal expansions in healthy

individuals might reflect previous common infections. However, since only TCRβ chains

are investigated (TCRα chains are missing), it is possible that these expansions reflect

the host’s preferential usage of the particular TCRβ chains that got expanded, regardless

of the specificities of the T cells. It is an open, interesting scientific question awaiting

to be answered once pair sequencing of TCR chains becomes successful.

Only one of the AS patients, AS5, had highly dominant clonal expansions.

Patient AS5’s repertoire had two extremely dominant expansions. These two expansions

had much higher abundances (20.75% and 13.85%) than did the largest clones (≤ 7.62%)

in the healthy patient repertoires. These aberrant expansions might be related to the

fact that at the time of the blood draw AS5 was experiencing an active flare-up and

had a large swelling of the knee. The extreme frequencies suggest the possibility that
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the two dominant clones in AS5 are disease-related.

Evidence of antigen selection was observed in the clonal expansions of the AS

repertoires. I identified a cluster of homologous expanded clones from two different

patients, including each patient’s most expanded clone, sharing the motif TRBV4-3

- CASSQD*G*GANVLTF - TRBJ2-6. Being shared by multiple clonal expansions

suggests a selective advantage of the motif. One possible scenario is that TCRs of the

two most expanded clones (CASSQDSGSGANVLTF and CASSQDEGTGANVLTF)

have the best fit for a particular peptide-MHC complex while less expanded clones have

less-fit TCRs. The peptide that is involved may either belong to a common antigen in

the environment or may be disease-associated. More samples are needed to clarify this.

The results of the AS-healthy TCR repertoire comparative analyses are pre-

liminary due to the small dataset. However, they help demonstrating the variety of

applications of the aimseqtk package. With a sufficiently large dataset, similar analyses

can be repeated to search for evidence of antigen selection and/or identify potential

disease-associated clones if exist.

The aimseqtk package has been tested with a larger dataset of ∼250 samples

(from 140 donors), each sample having an average size of two million sequences and

200,000 clones. The most computationally expensive analyses are the pair-wise analyses

for all pairs of samples, which in this example, involve approximately 12.5 billion (250

x 250 x 200,000) comparisons. To scale with such intensive analyses, the aimseqtk

package optionally parallelizes all analyses, as well as takes advantage of the natural

decomposition of the sequences by their gene-segment information. In light of the
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Repertoire 10K project, which aims to sequence the TCR repertoires of 100 different

diseases, 100 patients per disease, an abundance of TCR data will soon be available.

In the near future, I plan to further scale the aimseqtk package to sufficiently handle

analyses of thousands of TCR repertoires. In addition, for normalization purposes

(down-sampling), currently the software provides rarefaction analyses to guide the users

to pick an appropriate normalized size. I plan to incorporate mathematical models to

improve this normalization process. Finally, I plan to integrate the aimseqtk package

with the UCSC Immunobrowser to make the software more accessible to users without

them having to download and run the software via command-lines.

4.5 Material and Methods

4.5.1 Implementation

The code is written in Python and available at https://github.com/

ngannguyen/aimseqtk.git. The pipeline includes analyses on repertoire properties,

such as diversity, clone size distribution, CDR3 length distribution, gene-segment usage,

junctional insertion, junctional deletion and amino acid usage. Comparative analyses

include monitoring changes of an individual repertoire over different time points or dif-

ferent conditions, comparing multiple repertoires for differences in any of the repertoire

properties, and analyses of shared or persistent clones. In addition, the pipeline has

the sampling option that performs the sampling process as described in the previous

section. Multiple analyses can be run in parallel for efficiency.
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4.5.2 Statistics

Diversity indices are calculated using the R vegan [Oksanen et al., 2012] pack-

age. Differences between groups are analyzed using the Wilcoxon signed-rank test for

groups of matched samples and the Wilcoxon rank-sum (or Mann-Whitney U) for groups

of unmatched samples. Alternatively, users can choose to use the Student’s t test. All

tests are computed using the python scipy package [Jones et al., 01 ].

4.5.3 Clustering

Clones are clustered using a greedy algorithm as described in [Edgar, 2010].

The default identity threshold is 85% and is adjustable. Gaps are not allowed in the

alignments (only sequences of equal length are clustered together).

4.5.4 Publication mining

UCSC obtained permission from the publishers Elsevier (http://www.

elsevier.com/) and the American Association of Immunology (http://www.aai.

org/) to download more than 2 million research articles. We added more than

250,000 articles from the open-access archive PubmedCentral (http://www.ncbi.nlm.

nih.gov/pmc/). The UCSC Browser publication mining pipeline is an automated

pipeline that parses these articles in various formats, like PDF and XML, to raw

text and then extracts the DNA or protein sequences in them [Haeussler et al., 2011].

We added sequences from databases such as IMGT [Lefranc, 2003] and Genbank

[Benson et al., 2012]. DNA and protein sequences were then compared with BLAST
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[McGinnis and Madden, 2004] against our sample CDR3 sequences.

In this study, I required a match to have 85% or higher identity (approximately

≤ 2 amino acids different) with the query. To focus on relevant matches to AS, I

searched for matches from studies that had titles or abstracts containing one or more of

the following keywords: arthritis, ankylosing, spondy, autoreactive, autoantigen, reactive

arthritis, rheumatoid arthritis, multiple sclerosis, self, cross-reactive, mimicry, synovial,

crohn, psoriasis, inflammatory bowel disease, ibd, ulcerative colitis, uveitis. I classified

these matches as matches of previous autoimmunity studies. To reduce noise, I excluded

high-throughput studies (≥ 1000 sequences) in the search.

4.5.5 Sample collection, preparation and sequencing

4.5.5.1 Human subjects

Patients with definite AS were defined by the modified New York criteria

for diagnosis of ankylosing spondylitis [van der Linden et al., 1984]. The two healthy

control samples free of inflammatory disease were included in the study. Human subject

characteristics are provided in Table 4.1. Subjects were recruited according to the Palo

Alto Medical Foundation Institutional Review Board guidelines (Protocol #09-49) with

an informed consent agreement.

4.5.5.2 CD8+ T-cell isolation

PBMCs were isolated from freshly collected blood samples by Ficoll density

centrifugation using Ficoll-PaqueTM PREMIUM from GE Healthcare Bio-Sciences AB
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(Uppsala, Sweden). Cells were washed in calcium-free, magnesium-free DPBS (Medi-

atech, Inc., Manassas, VA) containing 2% fetal calf serum (Thermo Scientific Hyclone,

Santa Clara, CA). CD8+ T-cells were isolated with anti-human CD8 IMagTM (Becton

Dickinson, San Jose, CA) according to the manufacturers instructions. Purity of CD8+

T-cells was determined by flow cytometric analysis using monoclonal antibodies specific

for CD8 (clone 32-M4, labeled with PE) and CD3 (clone HIT3a, labeled with FITC) ob-

tained from Santa Cruz Biotechnology (Santa Cruz, CA). Flow cytometric analysis was

performed on a BD LSR II flow cytometer (Becton Dickinson, San Jose, CA). Flow cy-

tometry data analysis was performed with FlowJo data cytometric analysis tools (Tree

Star, Inc., Ashland, OR).

4.5.5.3 DNA Isolation from CD8+ T-cell

DNA was extracted from 3-4 x 106 cells using an Invitrogen Purelink gDNA

mini kit (Lot: 1089136, Catalogue #: K1820-01) following manufacturers specific pro-

tocols. Samples were eluted in 100 µl of supplied elution buffer for a total yield of

0.5-3 µg of purified DNA. Extracted DNA samples were frozen and shipped to Adaptive

Biotechnologies Corporation (Seattle, WA) for sequencing.

4.5.6 Sample samplings

4.5.6.1 Standardizing sample sizes

Except for the publication mining analyses, all analyses were done using the

normalized samples. I picked two sizes for normalization: ten thousand sequences and
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one million sequences. The analyses using samples normalized to one million sequences

consisted of donors AS1, AS2, AS3, H1, and H2. The analyses using samples normalized

to ten thousand sequences consisted of all donors (AS1-AS5, H1 and H2). The aimseqtk

package randomly selected ten thousand or one million sequences from each sample,

performed the analyses and computed the statistics, and this process was repeated 100

times. The average statistics of these samplings are reported in this study.

4.5.6.2 Samplings of clones

To normalize a sample to a subset of clones, we randomly selected that many

clones from the sample using each clone’s frequency as its probability to get selected.

Similarly as in the above, we computed the statistics for the samplings, repeated the

process 100 times, and reported the average and standard deviation of the results.
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Chapter 5

Conclusion

In this dissertation, I presented three extensive efforts that aimed to enhance

and facilitate genomic research: the construction of a pan-genome reference, the com-

parative assembly hub pipeline and the adaptive immunosequencing toolkit pipeline.

In each respective effort, I illustrated the resulting algorithms and software by build-

ing and assessing the pan-genome reference for the human major histocompatibility

complex region, constructing the E. coli comparative assembly hubs and updating the

E. coli pan-genome, core genome and phylogenies, and comprehensively profiling and

comparing CD8+ TCR repertoires of AS patients to ones of healthy individuals.

It is inspiring and fascinating to reflect on the constant evolving of the world

in general and on human capabilities in particular. To send a letter from one town to

another, we have transitioned from depending on a messenger traveling on foot for many

months to the convenience and instant delivery of electronic mails. To make a phone

call, we have moved from depending on switchboard operators to simply getting out
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the mobile phone from our pockets. To comprehend a human’s genome, we have pro-

gressed from the sequencing efforts of an international collaboration between multiple

research institutions, fifteen years and three billion dollars to those sequencing efforts

of one individual, a few days and one thousand dollars. It is therefore not surprising

that one day, going to space will just be another field trip, and most likely before then,

our young scientists will be able to investigate the genome and biology of the organisms

in their backyard. In fact, in recent years, the media has featured fascinating headlines

on high-school students devising potential cures for cancer [Hartman, 2012] and making

a genetic discovery of their own rare disease [Honeyman et al., 2014, Naggiar, 2014].

With sequencing costs continuing to decrease, we are moving forward into the direc-

tion of individualizing genomic research. I envision the day when an average family

is able to reconstruct their pan-genome reference or ancestral reference, generate the

browser collection of their genomes, exploring and performing comparative genomic and

immunogenomic analyses on their own data as well as against publicly available data

to understand their own digital footprint, health and diseases. Until that happens, I

hope that the tools presented here help to enable researchers to analyze their data and

to test their hypotheses and to facilitate research, from well-funded, human-oriented,

medical-driven projects to basic research of less well investigated species, such as the

common ant.

As brilliantly illustrated by Matt Might (Figure 5.1), I hope that the works in

this dissertation have contributed a “dent” to the continuous quest of expanding human

knowledge.
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Figure 5.1: Matt Might’s illustration of what a Ph.D. is (http://matt.might.net/
articles/phd-school-in-pictures/).
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B. B., zum Büschenfelde, K. H. K. M., and Märker-Hermann, E. E., 1996. HLA-

B27-restricted cytotoxic T lymphocyte responses to arthritogenic enterobacteria or

self-antigens are dominated by closely related TCRBV gene segments. A study in

patients with reactive arthritis. Scandinavian Journal of Immunology, 43(1):101–

108.

[Dulphy et al., 1999] Dulphy, N. N., Peyrat, M. A. M., Tieng, V. V., Douay, C. C.,

Rabian, C. C., Tamouza, R. R., Laoussadi, S. S., Berenbaum, F. F., Chabot, A. A.,

Bonneville, M. M., et al., 1999. Common intra-articular T cell expansions in patients

with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity

toward HLA-B27. Journal of Immunology, 162(7):3830–3839.

184



[Earl et al., 2011] Earl, D., Bradnam, K., John, J. S., Darling, A., Lin, D., Fass, J.,

Yu, H. O. K., Buffalo, V., Zerbino, D. R., Diekhans, M., et al., 2011. Assemblathon

1: A competitive assessment of de novo short read assembly methods. Genome Res,

21(12):2224–41.

[Edgar, 2010] Edgar, R. C., 2010. Search and clustering orders of magnitude faster than

BLAST. Bioinformatics, 26(19):2460–2461.

[Emerson et al., 2013] Emerson, R., Sherwood, A., Desmarais, C., Malhotra, S., Phip-

pard, D., and Robins, H., 2013. Estimating the ratio of CD4+ to CD8+ T cells using

high-throughput sequence data. Journal of Immunological Methods, 391(1-2):14–21.

[ENCODE-Project-Consortium et al., 2011] ENCODE-Project-Consortium, Myers,

R. M., Stamatoyannopoulos, J., Snyder, M., Dunham, I., Hardison, R. C., Bernstein,

B. E., Gingeras, T. R., Kent, W. J., Birney, E., et al., 2011. A user’s guide to the

encyclopedia of dna elements (encode). PLoS Biol, 9(4):e1001046.
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[Thorvaldsdóttir et al., 2013] Thorvaldsdóttir, H. H., Robinson, J. T. J., and Mesirov,

J. P. J., 2013. Integrative Genomics Viewer (IGV): high-performance genomics data

visualization and exploration. Briefings in Bioinformatics, 14(2):178–192.

[Touchon et al., 2009] Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S.,

Bidet, P., Bingen, E., Bonacorsi, S., Bouchier, C., Bouvet, O., et al., 2009. Organised

genome dynamics in the Escherichia coli species results in highly diverse adaptive

paths. PLoS Genetics, 5(1):e1000344.

[Traherne, 2008] Traherne, J. A., 2008. Human mhc architecture and evolution: impli-

cations for disease association studies. Int J Immunogenet, 35(3):179–92.

[Traherne et al., 2006] Traherne, J. A., Horton, R., Roberts, A. N., Miretti, M. M.,

Hurles, M. E., Stewart, C. A., Ashurst, J. L., Atrazhev, A. M., Coggill, P., Palmer,

S., et al., 2006. Genetic analysis of completely sequenced disease-associated mhc

haplotypes identifies shuffling of segments in recent human history. PLoS Genet,

2(1):e9.

[Trapnell et al., 2009] Trapnell, C., Pachter, L., and Salzberg, S. L., 2009. Tophat:

discovering splice junctions with rna-seq. Bioinformatics, 25(9):1105–11.

207



[Turner et al., 2012] Turner, P. C. P., Yomano, L. P. L., Jarboe, L. R. L., York, S.

W. S., Baggett, C. L. C., Moritz, B. E. B., Zentz, E. B. E., Shanmugam, K. T. K., and

Ingram, L. O. L., 2012. Optical mapping and sequencing of the Escherichia coli KO11

genome reveal extensive chromosomal rearrangements, and multiple tandem copies

of the Zymomonas mobilis pdc and adhB genes. Journal of Industrial Microbiology

& Biotechnology, 39(4):629–639.

[van der Linden et al., 1984] van der Linden, S. S., Valkenburg, H. A. H., and Cats,

A. A., 1984. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal

for modification of the New York criteria. Arthritis & Rheumatism, 27(4):361–368.

[Vieira et al., 2011] Vieira, G., Sabarly, V., Bourguignon, P.-Y., Durot, M., Le Fevre,

F., Mornico, D., Vallenet, D., Bouvet, O., Denamur, E., Schachter, V., et al., 2011.

Core and panmetabolism in Escherichia coli. Journal of Bacteriology, 193(6):1461–

1472.

[Wang et al., 2010] Wang, C., Sanders, C. M., Yang, Q., Schroeder, H. W., Wang,

E., Babrzadeh, F., Gharizadeh, B., Myers, R. M., Hudson, J. R., Davis, R. W.,

et al., 2010. High throughput sequencing reveals a complex pattern of dynamic

interrelationships among human T cell subsets. Proceedings of the National Academy

of Sciences, 107(4):1518–1523.

[Wang et al., 2008] Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., Fan,

W., Zhang, J., Li, J., Zhang, J., et al., 2008. The diploid genome sequence of an asian

individual. Nature, 456(7218):60–5.

208



[Wang et al., 2009] Wang, Z., Gerstein, M., and Snyder, M., 2009. Rna-seq: a revolu-

tionary tool for transcriptomics. Nat Rev Genet, 10(1):57–63.

[Warren et al., 2011] Warren, R. L., Freeman, J. D., Zeng, T., Choe, G., Munro, S.,

Moore, R., Webb, J. R., and Holt, R. A., 2011. Exhaustive T-cell repertoire sequenc-

ing of human peripheral blood samples reveals signatures of antigen selection and a

directly measured repertoire size of at least 1 million clonotypes. Genome research,

21(5):790–797.

[Waterhouse et al., 2009] Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp,

M., and Barton, G. J., 2009. Jalview Version 2–a multiple sequence alignment editor

and analysis workbench. Bioinformatics, 25(9):1189–1191.

[Wellcome-Trust-Case-Control-Consortium, 2007] Wellcome-Trust-Case-Control-

Consortium, 2007. Genome-wide association study of 14,000 cases of seven common

diseases and 3,000 shared controls. Nature, 447(7145):661–78.

[Wheeler et al., 2008] Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen,

L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., Roth, G. T., et al., 2008.

The complete genome of an individual by massively parallel dna sequencing. Nature,

452(7189):872–6.

[Wu et al., 2012] Wu, D. D., Sherwood, A. A., Fromm, J. R. J., Winter, S. S. S., Dun-

smore, K. P. K., Loh, M. L. M., Greisman, H. A. H., Sabath, D. E. D., Wood, B.

L. B., and Robins, H. H., et al., 2012. High-throughput sequencing detects minimal

209



residual disease in acute T lymphoblastic leukemia. Science Translational Medicine,

4(134):134ra63–134ra63.

[Xu, 2009] Xu, A. W., 2009. A fast and exact algorithm for the median of three problem:

a graph decomposition approach. J Comput Biol, 16(10):1369–81.

[Zerbino and Birney, 2008] Zerbino, D. R. and Birney, E., 2008. Velvet: algorithms for

de novo short read assembly using de bruijn graphs. Genome Res, 18(5):821–9.

[Zhang et al., 2006] Zhang, J., Feuk, L., Duggan, G. E., Khaja, R., and Scherer, S. W.,

2006. Development of bioinformatics resources for display and analysis of copy number

and other structural variants in the human genome. Cytogenet Genome Res, 115(3-

4):205–14.

[Zhu et al., 2007] Zhu, J., Sanborn, J. Z., Diekhans, M., Lowe, C. B., Pringle, T. H.,

and Haussler, D., 2007. Comparative genomics search for losses of long-established

genes on the human lineage. PLoS Computational Biology, 3(12):e247–e247.

210



Appendix A

Supplement for: “Building a

Pan-genome Reference for a Population”

A.1 NP-hardness of the Pan-genome Reference Problem

The pan-genome reference problem is NP-hard and can be projected onto the

problem of finding maximum weight subgraphs of a bidirected graph that do not contain

characteristic classes of simple cycle. See Appendix Section A.1 for a full proof of the

problem’s NP-hardness.

A M,N bidirected simple cycle, henceforth abbreviated to a M,N -cycle, is a

simple cycle in a bidirected graph containing M vertices such that M ≥ N , M − N

of the vertices have both their sides incident with an edge in the cycle (called balanced

vertices) and the other N vertices have only one side incident with edges in the cycle

(called unbalanced vertices). A M,N -cycle is odd if N is odd, else it is called even. A

211



bidirected graph is strongly acyclic if it contains no M, 0-cycles or odd M,N -cycles. Let

Ĝ be the set of all strongly acyclic subgraphs of Ĝ of maximum weight. The following

lemma shows the relationship between maximum weight strongly acyclic subgraphs and

maximum weight pan-genome references.

Lemma 1 There exists a surjection f : F � Ĝ, such that for all F in F, f(F ) =

(V, ÊF ).

Proof 1 Let F ∈ F, the threads in F orient all the vertices, partitioning the sides

into two sets according to if they appear in a pan-genome reference thread or not. By

definition, the consistent edges and this bipartition of the sides form a bipartite graph.

If there exists an odd M,N -cycle in f(R), then it defines an odd cycle in this bipartite

graph (a contradiction), hence f(R) contains no odd M,N -cycles.

A pan-genome reference induces a partial <F order on the vertices. If there

exists a M, 0-cycle {{X1,−X2}, {X2,−X3}, . . . , {Xn,−X1}} ∈ f(R), as these edges are

consistent with F , this implies that both {X1,−X1} <F {Xn,−Xn} and {Xn,−Xn} <F

{X1,−X1}, but a partial order is asymmetric (a contradiction), therefore f(R) contains

no M, 0− cycles.

As f(F ) is strongly acyclic, if it is not in Ĝ then it must be possible to add an

edge to f(F ) without creating a M, 0-cycle or odd M,N -cycle. Assume therefore that

f(F ) is a subgraph of some Ĝ′ ∈ Ĝ. Let {X,Y } be an edge in Ĝ′ but not in f(F ). By

definition, {X,Y } has non-zero weight. Between {X,−X} and {Y,−Y } of the three

other possible edges, {{X,−Y }, {−X,Y }, {−X,−Y }}, one must be in ÊF , else F is not
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a maximum weight solution to the pan-genome reference problem, because in this case

there must exist two threads in F , one that contains X or −X and one that contains Y

or −Y , and these two threads can be concatenated together to create a new pan-genome

reference additionally consistent with one of the four possible edges between {X,−X}

and {Y,−Y }. If {X,−Y } ∈ ÊF then Ĝ′ contains a 2, 1-cycle {{X,−Y }, {Y,X}}, if

{−X,−Y } then Ĝ′ contains a 2, 0-cycle {{−X,−Y }, {Y,X}} and if {−X,Y } then Ĝ′

contains a 2, 1-cycle {{−X,Y }, {Y,X}}. A contradiction is derived in all cases, there-

fore f(R) ∈ Ĝ.

It remains to prove that for every member of Ĝ′ in Ĝ there exists F such that

f(F ) = Ĝ′. For Ĝ′ = (V̂ ′, Ê′) ∈ Ĝ a side bicolouring is a labelling function colour,

such that each vertex and edge’s sides are coloured such that one is black and the other

is red, i.e. it creates a bipartition of the sides of the graph.

To construct such a colouring for Ĝ′ use a depth first search. In each connected

component of Ĝ′ pick an unlabeled vertex and colour one of it sides red and the other

black. The depth first search then recurses from this vertex such that for each edge of

the form {X,Y } if X is coloured red and Y is unlabeled then Y is coloured black and

−Y is coloured red and vice versa if X is coloured black. If during this recursion an

edge is encountered such that both sides are already labeled then the depth first search

has traversed a M,N -cycle. Further, if the sides of this edge are labeled with the same

colour then the depth first search has failed to produce a side bicolouring. Suppose

such a cycle is encountered in Ĝ′, either there are two excess black sides or two excess

red sides, as only the last edge encountered does not have sides of distinct colours.
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Figure A.1: (A) A bidirected graph with three vertices A, B and C. (B) A subgraph of
(A) containing no M, 0-cycles or odd M,N -cycles. (C) A side bicolouring of (B). (D)
A digraph for (C).

Each balanced vertex contributes a black and a red side while each unbalanced vertex

contributes either two black sides or two red sides, therefore N ≥ 1. Furthermore, as

there are only two excess vertices of one colour N must be odd, implying Ĝ′ is not strongly

acyclic, therefore there exists a side bicolouring of Ĝ′. Given a side bicolouring of Ĝ′

let Ĝ′′ = (V̂ ′′, Ê′′) be a digraph, such that V̂ ′′ = {X : {X,−X} ∈ V̂ ′ ∧ colour(X) = red}

and Ê′′ = {(X,Y ) : {X,−Y } ∈ Ê′ ∧ colour(X) = red ∧ colour(−Y ) = black}, where

(a, b) is a directed edge from a to b. The graph Ĝ′′ is isomorphic to Ĝ′, except that the

arbitrary orientations of the sides within the vertices have been reassigned so that there

is only one type of edge in the graph (Fig. A.1). A directed cycle in Ĝ′′ would be a

M, 0-cycle, but as Ĝ′′ is strongly acyclic it must contain no directed cycles, therefore

Ĝ′′ is a DAG. Any topological sort F = {X1, X2, . . . , Xn} of the vertices of Ĝ′′ is a

pan-genome reference for which f(F ) = Ĝ′. �

Theorem 1 The pan-genome reference problem is NP-hard.

Proof 2 The problem of finding a maximum weight strongly acyclic subgraph of a bidi-

rected graph is polynomial-time reducible to the pan-genome reference problem, because,

by the previous lemma, the consistent subgraph of any solution to the pan-genome ref-
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erence problem is a maximum weight strongly acyclic subgraph. It remains to prove

that the problem of finding a maximum weight strongly acyclic subgraph of a bidirected

graph is NP-hard. This is proved here by reduction of the minimum feedback arc set

problem [Karp, 1972], which is to find the smallest set of edges in a directed graph that

when removed result in a graph containing no directed cycles. Using the demonstration

in the previous lemma, a digraph can be equivalently represented as a side bicoloured

bidirected graph. An unbalanced vertex in an M,N -cycle is red if the endpoints of the

edges incident with it in the cycle are colored red, else it is black. Suppose there exists an

M,N -cycle in a side bicoloured bidirected graph with i balanced vertices, j unbalanced

red vertices and k unbalanced black vertices. As in a side bicoloured bidirected graph

each edge has one red endpoint and one black endpoint the total number of red and black

endpoints is equal, therefore i+2j = i+2k, thus k = j and therefore it is not possible to

construct an odd M,N -cycle in a side bicoloured bidirected graph. As a directed cycle in

a digraph corresponds to an M, 0-cycle in the equivalent side bicoloured bidirected graph,

the minimum feedback arc set problem is thus polynomial-time reducible to the problem

of finding a maximum weight strongly acyclic subgraph of a side bicolored bidirected

graph (i.e. eliminating M, 0-cycles). �

An alternative, similarly simple proof of NP-hardness uses the elimination of

odd M,N -cycles rather than the M, 0-cycles, reducing the maximum bipartite subgraph

problem[Newman, 2008].
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A.2 C. Ref. Sample Composition
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Sample Repeat GRCh37 C. Ref. Total

venter 2,520,085 (52.40 %) 4,719,450 (98.13 %) 4,782,784 (99.45 %) 4,809,387

cox 2,520,556 (52.56 %) 4,687,818 (97.76 %) 4,790,727 (99.90 %) 4,795,371

qbl 2,252,520 (52.44 %) 4,200,985 (97.80 %) 4,294,505 (99.98 %) 4,295,325

dbb 2,192,556 (52.15 %) 4,089,233 (97.26 %) 4,202,262 (99.95 %) 4,204,302

NA12878 1,952,189 (46.56 %) 3,997,156 (95.34 %) 4,127,361 (98.44 %) 4,192,579

ssto 2,229,126 (53.41 %) 3,953,873 (94.74 %) 4,152,690 (99.50 %) 4,173,551

mann 2,215,801 (54.03 %) 3,877,792 (94.56 %) 4,090,561 (99.75 %) 4,100,741

MCF 1,939,138 (51.10 %) 3,706,922 (97.68 %) 3,794,583 (99.99 %) 3,794,911

YH1 1,190,870 (36.07 %) 3,260,622 (98.77 %) 3,282,982 (99.45 %) 3,301,296

NA19240 1,068,403 (32.86 %) 3,209,465 (98.72 %) 3,213,608 (98.85 %) 3,251,154

NA19239 905,038 (29.48 %) 3,024,497 (98.52 %) 3,032,949 (98.80 %) 3,069,926

NA12892 955,690 (31.22 %) 3,033,815 (99.11 %) 3,039,870 (99.31 %) 3,061,138

NA18507 1,019,209 (33.49 %) 2,991,861 (98.30 %) 3,016,172 (99.09 %) 3,043,745

apd 1,222,215 (52.66 %) 2,293,261 (98.82 %) 2,320,668 (100.00 %) 2,320,747

NA19238 461,000 (20.42 %) 2,233,579 (98.92 %) 2,234,998 (98.98 %) 2,258,041

average 1,704,147 (43.98 %) 3,639,782 (97.64 %) 3,708,307 (99.48 %) 3,727,669

all NA 4,970,600 (88.84 %) 5,285,388 (94.46 %) 5,595,284

panTro3 2,499,545 (52.01 %) 4,517,719 (94.01 %) 4,620,359 (96.14 %) 4,805,689

Table A.1: The number of bases from each sample classified as repetitive by repeat
masker (Repeat column), aligned to GRCh37 (GRCh37 column), aligned to C. Ref. (C.
Ref. column) and covered by the Cactus MSA (Total column). The ‘average’ category
gives the average over all human samples. The ‘all’ category considers all columns and
unaligned bases in all the human samples, e.g. as 1 base per homology set.
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A.2.1 Manual Analysis of False Positive SNVs
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dbSNP Validation of Single Nucleotide Variations

Sample
All Recurrent

T# TP STP SFN T# TP STP SFN

NA12878 12351 90 57 53 10700 97 63 55

NA12892 8949 77 63 57 6660 95 79 60

NA19238 5370 67 58 77 3475 95 83 78

NA19239 9116 72 59 64 6574 94 77 66

NA19240 10315 73 59 58 7346 94 77 61

apd 4726 99 NA NA 4555 99 NA NA

cox 15028 98 NA NA 14148 98 NA NA

dbb 13329 98 NA NA 12840 99 NA NA

mann 14144 97 NA NA 13099 98 NA NA

mcf 12012 98 NA NA 11359 98 NA NA

nigerian 7199 90 72 67 6089 98 78 70

qbl 14336 97 NA NA 13127 97 NA NA

ssto 14173 98 NA NA 12938 98 NA NA

venter 14322 95 67 34 12885 98 70 38

yanhuang 8394 78 63 67 6291 98 79 69

panTro3 65877 25 NA NA 12965 96 NA NA

aggregate 56080 76 NA NA 34402 95 NA NA

C. Ref. 10461 97 NA NA 10461 97 NA NA

Table A.2: All: all SNVs detected in each sample with respect to GRCh37. Recurrent:
as All, but excluding SNVs not present in at least two samples, including chimp. T#:
Total number of SNVs. TP: Percentage true positives, as validated by a matching SNV
in dbSNP. STP: Percentage (sample) true positives, as validated by those reported
for the sample in question. SFN: Percentage (sample) false negatives, as validated by
those reported for the sample in question. An NA entry denotes that the data was not
available. Aggregate row: gives the total SNVs in human samples (excluding chimp).
C. Ref. row: gives SNVs in C. Ref. with respect to GRCh37
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dbSNP Validation of Filtered Single Nucleotide Variations

Sample
All Recurrent

T# TP STP SFN T# TP STP SFN

NA12878 10252 92 60 59 8952 99 66 61

NA12892 6668 83 71 64 5303 96 83 67

NA19238 3730 78 70 80 2744 96 88 82

NA19239 6494 81 68 71 5165 95 81 72

NA19240 7731 79 65 65 5851 95 80 68

apd 3987 100 NA NA 3832 100 NA NA

cox 12639 99 NA NA 11901 99 NA NA

dbb 11235 99 NA NA 10825 100 NA NA

mann 11926 99 NA NA 11037 99 NA NA

mcf 10109 99 NA NA 9552 99 NA NA

nigerian 5630 94 77 72 4897 99 82 75

qbl 11946 98 NA NA 10920 98 NA NA

ssto 11939 99 NA NA 10900 99 NA NA

venter 12017 97 69 43 10878 99 72 46

yanhuang 6646 80 66 72 5051 98 81 74

panTro3 57001 25 NA NA 10908 97 NA NA

aggregate 43485 82 NA NA 28344 97 NA NA

C. Ref. 8843 98 NA NA 8843 98 NA NA

Table A.3: Experiment and format same as in Table A.2, but only for ‘Filtered SNVs’,
as defined in Supplementary Figure 2.9
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dbSNP Validation of Non-Repetitive Single Nucleotide Variations

Sample
All Recurrent

T# TP STP SFN T# TP STP SFN

NA12878 5684 97 69 49 5316 98 71 51

NA12892 5180 84 71 72 4126 97 83 74

NA19238 3677 71 64 82 2474 96 88 84

NA19239 5116 84 71 76 4253 95 81 77

NA19240 5256 86 73 73 4377 95 82 75

apd 1798 99 NA NA 1739 100 NA NA

cox 6183 98 NA NA 5945 98 NA NA

dbb 5239 99 NA NA 5062 99 NA NA

mann 5752 98 NA NA 5417 98 NA NA

mcf 5094 98 NA NA 4817 98 NA NA

nigerian 4429 92 77 78 3795 99 82 80

qbl 6168 98 NA NA 5765 98 NA NA

ssto 5938 98 NA NA 5541 98 NA NA

venter 5330 97 70 74 4903 99 72 76

yanhuang 4138 92 79 80 3682 98 83 81

panTro3 28036 25 NA NA 5657 97 NA NA

aggregate 22505 81 NA NA 14735 96 NA NA

C. Ref. 4359 99 NA NA 4359 99 NA NA

Table A.4: Experiment and format same as in Table A.2, but only for SNVs at bases
not defined as repetitive in GRCh37.
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dbSNP Validation of Filtered, Non-Repetitive Single Nucleotide Variations

Sample
All Recurrent

T# TP STP SFN T# TP STP SFN

NA12878 4658 98 71 57 4351 99 73 59

NA12892 3966 88 76 77 3292 98 85 79

NA19238 2638 80 74 85 1994 96 90 86

NA19239 3899 87 75 80 3347 96 83 81

NA19240 4128 87 75 79 3448 96 84 80

apd 1461 100 NA NA 1412 100 NA NA

cox 5022 99 NA NA 4832 99 NA NA

dbb 4223 100 NA NA 4070 100 NA NA

mann 4694 99 NA NA 4400 99 NA NA

mcf 4149 99 NA NA 3911 99 NA NA

nigerian 3448 96 82 82 3038 99 85 83

qbl 4943 99 NA NA 4626 99 NA NA

ssto 4855 99 NA NA 4532 99 NA NA

venter 4298 98 72 79 3965 100 74 80

yanhuang 3236 94 81 84 2920 98 84 85

panTro3 23916 24 NA NA 4607 98 NA NA

aggregate 17342 87 NA NA 11862 97 NA NA

C. Ref. 3564 99 NA NA 3564 99 NA NA

Table A.5: Experiment and format same as in Table A.2, but only for filtered SNVs at
bases not defined as repetitive in GRCh37.
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A.2.2 Indels

To allow for some alignment uncertainty I permit up to a 5 bp disagreement

in the exact location of the indel, in Supplementary Figure A.3 I analyze the effect

of allowing location disagreement, notably without it the true positive rate falls to

23%. Manual analysis of the MSA and our previous work demonstrating the accuracy

of the Cactus MSA program [Paten et al., 2011b] lead us to conclude that this large

discrepancy relates to alignment uncertainty [Holmes and Durbin, 1998] rather than a

source of systematic error in our alignments.

The overall false negative rate for short indels was 35% in haploid samples

and 81% in diploid samples, which is substantially higher than the SNV rate. This is

probably partially explainable by the lower true positive rate, i.e. there is likely not an

undercalling of indels in the MSA, rather a larger number of indels that are possibly false

positives. Looking only at short indels not deemed repetitive, the overall true positive

rate increases to 80%, but this accounts for only 31% of all indels. Supplementary Tables

A.7, A.8, A.9 and A.10 analyse short insertions (sequences present in the sample, but

not in the reference) and short deletions (sequences present in the reference, but not in

the sample) separately. For these short indels I do not see substantial differences in the

level of agreement with the dbSNP/1000 Genomes Project data, e.g. I observe a 64%

overall true positive rate for insertions and a 66% overall true positive rate for deletions.
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Chrom Start C.Ref. Allele GRCh37 Allele Annotation

chr6 30463203 T G C

chr6 30463204 T G C

chr6 32535163 C G C

chr6 32535165 G C C

chr6 32535237 A G C

chr6 32536032 A T C

chr6 32536033 C A C

chr6 32536034 C T C

chr6 32536962 C T B

chr6 32547908 G A ID

chr6 32548727 C G S

chr6 32550935 G A B

chr6 32551306 G A R

chr6 32551307 A G R

chr6 32551852 C G S

chr6 32553317 A C B

chr6 32570019 T C C

chr6 32633098 A C B

chr6 32633101 T C B

chr6 32633906 T C B

chr6 32689731 G C C

chr6 32689732 C T ID

chr6 32689733 A T ID

Table A.6: A manual analysis of C.Ref. non-repetitive and filtered SNVs with respect
to GRCh37 that were not in dbSNP or 1000 Genome Project data. These SNVs were
neither within the repetitive regions (non-repetitive) nor proximal to a breakpoint (fil-
tered). ‘Chrom’, ‘Start’: location of each SNV relative to the positive strand of GRCh37.
Annotation: ‘C’: SNVs were confirmed by an independent MULTIZ multiple sequence
alignment (see Supplementary Section 2.5.6). ‘B’: a bug in dbSNP build 134 that had
been fixed in build 135, SNVs were indeed in dbSNP. ‘ID’: disaggreement between Cac-
tus MSA and other alignments, in which Cactus MSA called substitutions while other
alignments called indels. ‘R’: SNVs were not confirmed by MULTIZ MSA but recurrent
within the input samples. ‘S’: SNVs were not confirmed by MULTIZ MSA and not
reccurent (single).
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A.3 Correct Contiguity

Formally, two positions xi and xj such that i < j are contiguous in a sequence

y if there exists two positions yk and yl such that (1) k < l, (2) [xi] = [yk] and (3)

[xj ] = [yl]. For a reference (either a chosen input sample or C. Ref.), which is represented

as a set of one or more contigs, x and y are correctly contiguous (similarly defined in

[Earl et al., 2011]) if they are contiguous in the forward or reverse complement of a

contig in the reference.

For each contig of length n there are
(
n
2

)
possible pairs of positions, to avoid

testing them all 100 million pairs were sampled from each sample with respect to each

tested reference. For a contig x = x1, x2 . . . xn a pair xi, xj is selected at random such

that a distance j − i is selected with probability proportional to log10(j − i)/log10(n).
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dbSNP Validation of Short Insertion Variations

Sample T#
All No wobble

TP STP SFN TP STP SFN

NA12878 796 65 19 63 30 4 93

NA12892 480 60 9 87 30 1 98

NA19238 250 61 14 90 30 3 98

NA19239 526 57 15 79 29 3 96

NA19240 493 62 9 84 31 2 96

apd 353 68 NA NA 27 NA NA

cox 1020 66 NA NA 26 NA NA

dbb 878 68 NA NA 30 NA NA

mann 853 69 NA NA 31 NA NA

mcf 781 68 NA NA 27 NA NA

nigerian 562 57 12 79 25 2 96

qbl 1025 65 NA NA 25 NA NA

ssto 965 69 NA NA 28 NA NA

venter 1005 64 0 98 26 0 100

yanhuang 635 56 NA NA 24 NA NA

panTro3 3621 25 NA NA 10 NA NA

aggregate 10622 64 NA NA 28 NA NA

C. Ref. 2469 57 NA NA 21 NA NA

Table A.7: All: insertions detected in each sample with respect to GRCh37, allowing
a match to an insertion within 5 bases of its location in dbSNP. No wobble: as All,
matched precisely to insertions in dbSNP (location and length) T#: Total number of
insertions. TP: Percentage true positives, as validated by a match in dbSNP. STP:
Percentage (sample) true positives, as validated by those reported for the sample in
question. SFN: Percentage (sample) false negatives, as validated by those reported for
the sample in question. An NA entry denotes that the data was not available. Aggregate
row: gives the total insertions in human samples (excluding chimp). C. Ref. row: gives
insertions in C. Ref. with respect to GRCh37
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dbSNP Validation of Short Deletion Variations

Sample T#
All No wobble

TP STP SFN TP STP SFN

NA12878 902 59 17 79 15 4 95

NA12892 627 59 21 81 18 6 94

NA19238 387 49 19 88 12 6 96

NA19239 680 50 18 83 13 5 95

NA19240 736 51 18 77 15 5 93

apd 321 78 NA NA 25 NA NA

cox 1087 73 NA NA 21 NA NA

dbb 884 75 NA NA 24 NA NA

mann 903 74 NA NA 22 NA NA

mcf 845 74 NA NA 23 NA NA

nigerian 700 48 25 77 13 6 94

qbl 1001 73 NA NA 22 NA NA

ssto 979 76 NA NA 21 NA NA

venter 1048 72 0 99 22 0 100

yanhuang 638 56 NA NA 16 NA NA

panTro3 3677 21 NA NA 4 NA NA

aggregate 11738 66 NA NA 19 NA NA

C. Ref. 168 50 NA NA 8 NA NA

Table A.8: All: deletions detected in each sample with respect to GRCh37, allowing a
match to an deletion within 5 bases of its location in dbSNP. No wobble: as All, matched
precisely to insertions in dbSNP (location and length) T#: Total number of deletions.
TP: Percentage true positives, as validated by a match in dbSNP. STP: Percentage
(sample) true positives, as validated by those reported for the sample in question. SFN:
Percentage (sample) false negatives, as validated by those reported for the sample in
question. An NA entry denotes that the data was not available. Aggregate row: gives
the total deletions in human samples (excluding chimp). C. Ref. row: gives deletions
in C. Ref. with respect to GRCh37

229



dbSNP Validation of Short Non-Repetitive Insertion Variations

Sample T#
All No wobble

TP STP SFN TP STP SFN

NA12878 298 85 29 51 48 6 90

NA12892 199 77 9 95 46 1 100

NA19238 122 75 24 91 48 6 98

NA19239 215 78 24 86 46 6 97

NA19240 185 86 17 88 49 4 97

apd 80 94 NA NA 48 NA NA

cox 272 87 NA NA 44 NA NA

dbb 228 89 NA NA 48 NA NA

mann 259 85 NA NA 47 NA NA

mcf 222 86 NA NA 44 NA NA

nigerian 248 62 18 86 32 4 97

qbl 277 86 NA NA 45 NA NA

ssto 263 89 NA NA 48 NA NA

venter 250 80 0 100 41 0 100

yanhuang 210 77 NA NA 41 NA NA

panTro3 1281 26 NA NA 14 NA NA

aggregate 3328 82 NA NA 45 NA NA

C. Ref. 649 79 NA NA 37 NA NA

Table A.9: Experiment and format same as in Table A.7, but only for short insertions
at bases not defined as repetitive in GRCh37.
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dbSNP Validation of Short Non-Repetitive Deletion Variations

Sample T#
All No wobble

TP STP SFN TP STP SFN

NA12878 227 82 30 79 29 8 94

NA12892 222 81 34 89 30 13 96

NA19238 182 52 27 92 19 10 97

NA19239 219 74 33 90 24 11 96

NA19240 233 77 36 86 26 12 95

apd 89 92 NA NA 37 NA NA

cox 275 90 NA NA 33 NA NA

dbb 218 92 NA NA 39 NA NA

mann 248 89 NA NA 32 NA NA

mcf 243 88 NA NA 36 NA NA

nigerian 340 44 33 85 15 8 96

qbl 291 89 NA NA 36 NA NA

ssto 276 91 NA NA 33 NA NA

venter 265 84 0 100 34 0 100

yanhuang 227 63 NA NA 23 NA NA

panTro3 1236 19 NA NA 6 NA NA

aggregate 3555 78 NA NA 30 NA NA

C. Ref. 29 90 NA NA 31 NA NA

Table A.10: Experiment and format same as in Table A.8, but only for short deletions
at bases not defined as repetitive in GRCh37.
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Contiguity Statistics I

Samples Reference % M. % M. & C. % C. w. M.

NA12878
C. Ref. 98.13 98.13 100.00

GRCh37 94.88 94.87 99.99

NA12892
C. Ref. 99.17 99.10 99.93

GRCh37 98.95 98.88 99.93

NA19238
C. Ref. 98.84 98.84 99.99

GRCh37 98.76 98.76 99.99

NA19239
C. Ref. 98.40 98.38 99.97

GRCh37 98.08 98.06 99.98

NA19240
C. Ref. 98.44 98.42 99.98

GRCh37 98.27 98.25 99.98

apd
C. Ref. 99.99 99.99 100.00

GRCh37 98.64 98.61 99.97

cox
C. Ref. 99.84 99.84 100.00

GRCh37 96.80 96.78 99.98

dbb
C. Ref. 99.92 99.92 100.00

GRCh37 96.56 96.54 99.98

mann
C. Ref. 99.63 99.61 99.98

GRCh37 93.47 93.47 100.00

Table A.11: Statistics on correct contiguity, comparing mapping through the Cactus
alignment to either GRCh37 or C. Ref. (part I). ‘% M.’: The proportion of randomly
selected pairs that mapped to the reference. ‘% M. & C.’: The proportion of all randomly
selected pairs that mapped to the reference and were correctly contiguous. ‘% C. w.
M.‘: The proportion of randomly selected pairs which mapped to the reference that
were correctly contiguous. ‘aggregate’ row gives average over all samples.
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Contiguity Statistics II

Samples Reference % M. % M. & C. % C. w. M.

mcf
C. Ref. 99.98 99.96 99.97

GRCh37 97.04 97.04 100.00

nigerian
C. Ref. 98.96 98.96 100.00

GRCh37 98.12 98.11 99.99

panTro3
C. Ref. 95.14 95.14 100.00

GRCh37 92.80 92.78 99.99

qbl
C. Ref. 99.97 99.97 100.00

GRCh37 97.08 97.06 99.98

ssto
C. Ref. 99.28 99.28 100.00

GRCh37 93.49 93.47 99.98

venter
C. Ref. 99.34 99.34 100.00

GRCh37 97.79 97.78 99.99

yanhuang
C. Ref. 99.25 99.24 99.99

GRCh37 98.51 98.51 99.99

aggregate
C. Ref. 99.02 99.01 99.99

GRCh37 96.83 96.81 99.98

Table A.12: Statistics on correct contiguity, comparing mapping through the Cactus
alignment to either GRCh37 or C. Ref. (part II). ‘% M.’: The proportion of randomly
selected pairs that mapped to the reference. ‘% M. & C.’: The proportion of all randomly
selected pairs that mapped to the reference and were correctly contiguous. ‘% C. w.
M.‘: The proportion of randomly selected pairs which mapped to the reference that
were correctly contiguous. ‘aggregate’ row gives average over all samples.
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A.4 Mapping Large Indels

Predicted insertions with respect to GRCh37 larger than 1000 bases were

aligned to the GRCh37 reference assembly (obtained from the UCSC Genome Browser

database, excluding the alternative loci) using LASTZ. The LASTZ parameters used

were –identity=90 –chain and both the query and target were set as [unmask].

An insertion was labelled ‘Mapped’ if ≥ 50% of its bases mapped and ‘Un-

mapped’ otherwise. A mapped insertion was classified as ‘Mapped to MHC’ if it mapped

best within the MHC region and ‘Mapped Outside MHC’ vice versa. An insertion was

marked as ‘Multi-mapping’ if ≥ 50% of its bases mapped to multiple locations, ‘Repeats’

if ≥ 50% of its bases classified by Repeat Masker as repetitive [Smit et al., 2010].

Predicted insertions of each sample were also aligned to the sample’s sequence

to assess the copy number changes, using the same alignment program and settings as

described above. A ‘copy number change’ was recorded when ≥ 90% of an insertion’s

bases mapped to multiple locations.
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Figure A.6: Length distributions of insertion and deletion events with respect to C. Ref.
The top two panels show insertion lengths for each sample and the bottom two panels
show deletion lengths for each sample.
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Figure A.7: Length distributions of insertion and deletion events with respect to
GRCh37. The top two panels show insertion lengths for each sample and the bottom
two panels show deletion lengths for each sample.
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Figure A.8: The number of bases per sample effected by insertions and deletions of a
given length as a function insertion/deletion length. Insertions and deletions are with
respect to C. Ref. The top two panels show results for insertions and the bottom two
panels show results for deletions.
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Figure A.9: The number of bases per sample effected by insertions and deletions of a
given length as a function insertion/deletion length. Insertions and deletions are with
respect to GRCh37. The top two panels show results for insertions and the bottom two
panels show results for deletions.
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Figure A.10: The cumulative total length of insertion and deletions events as a function
of indel event length, with respect to C. Ref. The top two panels show cumulative
insertion lengths for each sample and the bottom two panels show cumulative deletion
lengths for each sample.
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Figure A.11: The cumulative total length of insertion and deletions events as a function
of indel event length, with respect to GRCh37. The top two panels show cumulative
insertion lengths for each sample and the bottom two panels show cumulative deletion
lengths for each sample.
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90% 95%

C. Ref. GRCh37 C. Ref. GRCh37

Genbank RNA 3209 2986 3095 2881

RefSeq transcript 371 368 370 367

RefSeq genes all tx mapped 213 210 212 209

RefSeq genes ≥ 1 tx mapped 213 211 212 210

Table A.13: Statistics on RNAs and RefSeq transcripts mapping to either references,
GRCh37 or C. Ref. Columns: ‘90%’: RNAs must have at least 90% bases aligned to the
reference, ‘95%’: RNAs must have at least 95% bases aligned to the reference, ‘C. Ref.
’: the reference is C. Ref., ‘GRCh37’: the reference is GRCh37 MHC main locus. Rows:
‘Genbank RNA’: number of Genbank RNAs mapped best to the appropriate reference
with the appropriate base coverage. ‘RefSeq transcript’: similar to ‘Genbank RNAs’
but for RefSeq transcripts instead of Genbank RNAs. ‘RefSeq genes all tx mapped’:
number of RefSeq genes that have all the transcripts mapped best to the appropriate
reference with the appropriate base coverage. ‘RefSeq genes ≥ 1 tx mapped’: number of
RefSeq genes that have at least one transcript mapped best to the appropriate reference
with the appropriate base coverage.

A.5 Gene Mapping
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A.6 Short Read Mapping
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Figure A.14: A UCSC Browser display [Fujita et al., 2011] of the MHC HLA-DRB hy-
pervariable region in a prototype C. Ref. MHC reference browser. Self Align tracks:
Alignment of the region against itself with a 90% and 95% minimum identity threshold.
It demonstrates that much of the region is homologous to itself at 90% identity, but
very little at 95%, which is substantially below the threshold required in the MSA to
create homology. Gene tracks: Genes identified by alignment and using RefSeq anno-
tations (see Supplementary Section A.5). Snake tracks: Subsequences of contiguous
bases aligned to the reference are shown as rectangles. SNVs with respect to the refer-
ence are coloured red, otherwise bases are coloured light blue. The lines connecting the
rectangles show adjacencies between the bases. In addition to genes that are presnt in
GRCh37 (known genes HLA-DRB5, HLA-DRB1 and pseudogenes HLA-DRB9, HLA-
DRB6), C. Ref. also contains genes that are recurrent in the input samples (HLA-DRB3,
HLA-DRB4 and pseudogenes HLA-DRB2, HLA-DRB7, HLA-DRB8). The MSA shows
clearly the relationship of the samples in the region, e.g COX and QBL have the same
DRB group and are grouped together. Lines coloured orange indicate adjacencies that
contain unaligned bases only present in one sample.
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Mapability of C. Ref. in Comparison to GRCh37 haplotypes

Figure A.16: Comparing mapping to C. Ref. against mapping to all 8 haplotypes in
GRCh37. Figure as described in Figure 2.15 of the main text, but only showing the
overall mapping (‘Mapped’) of the reads.
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DC

BA

Figure A.17: Comparing mapping to GRCh37 against mapping to consensus references
with different α values. The panels represent experiments as described in Figure 2.15 of
the main text, but the experiment is rerun separately with multiple different consensus
references each constructed with a different α parameter (see Supplementary Methods
for α definition).
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Mapping Stats I

Sample Ref Mapped UniqMapped PropPaired UniqPropPaired Snp

NA12878

C. Ref. 1 4,964,962 4,458,844 3,811,844 3,299,812 25,571

C. Ref. 2 5,020,181 4,555,066 3,882,466 3,395,542 18,523

C. Ref. 3 5,008,893 4,564,653 3,876,196 3,408,160 18,880

C. Ref. 4 5,000,528 4,581,964 3,873,002 3,426,090 18,949

C. Ref. 5 4,972,288 4,582,196 3,850,758 3,431,382 18,707

C. Ref. 6 4,926,976 4,548,921 3,809,922 3,406,056 18,221

C. Ref. 7 4,874,187 4,500,244 3,760,360 3,369,542 18,399

GRCh37 4,994,346 4,568,699 3,868,460 3,414,600 22,137

NA12892

C. Ref. 1 2,923,764 2,575,580 1,738,820 1,472,756 19,252

C. Ref. 2 2,954,688 2,651,991 1,763,542 1,520,720 15,664

C. Ref. 3 2,939,156 2,644,708 1,755,224 1,518,000 15,640

C. Ref. 4 2,933,959 2,657,935 1,753,834 1,528,358 16,304

C. Ref. 5 2,929,642 2,670,457 1,752,836 1,537,422 16,615

C. Ref. 6 2,897,518 2,654,008 1,733,200 1,530,522 16,206

C. Ref. 7 2,868,441 2,629,738 1,713,216 1,518,590 15,823

GRCh37 2,935,739 2,655,709 1,756,452 1,527,884 17,907

NA19238

C. Ref. 1 2,522,686 2,188,623 1,405,436 1,170,794 18,095

C. Ref. 2 2,545,061 2,249,935 1,430,686 1,214,496 15,490

C. Ref. 3 2,531,437 2,243,349 1,423,710 1,213,366 15,735

C. Ref. 4 2,524,981 2,251,325 1,421,518 1,219,496 16,085

C. Ref. 5 2,519,049 2,265,111 1,420,232 1,229,462 16,425

C. Ref. 6 2,495,696 2,256,519 1,406,498 1,226,752 16,381

C. Ref. 7 2,473,352 2,237,964 1,390,130 1,216,742 15,939

GRCh37 2,538,112 2,266,716 1,433,142 1,230,378 16,378

Table A.14: Comparing mapping to GRCh37 against mapping to consensus references
with different α values (part 1). The panels represent experiments as described in
Figure 2.15 of the main text, but the experiment is rerun separately with multiple
different consensus references each constructed with a different α parameter.
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Mapping Stats II

Sample Ref Mapped UniqMapped PropPaired UniqPropPaired Snp

NA19239

C. Ref. 1 3,665,300 3,159,440 2,609,902 2,115,094 21,220

C. Ref. 2 3,693,064 3,242,893 2,651,538 2,193,666 16,631

C. Ref. 3 3,685,454 3,243,577 2,647,064 2,196,286 16,629

C. Ref. 4 3,679,201 3,257,217 2,644,056 2,208,004 17,081

C. Ref. 5 3,672,312 3,281,159 2,640,758 2,229,518 17,580

C. Ref. 6 3,642,797 3,271,596 2,615,962 2,225,512 17,899

C. Ref. 7 3,610,092 3,247,236 2,582,716 2,210,470 17,533

GRCh37 3,664,690 3,243,169 2,637,162 2,203,484 22,409

NA19240

C. Ref. 1 4,648,881 4,031,496 3,816,132 3,125,620 25,579

C. Ref. 2 4,679,817 4,135,223 3,873,576 3,242,018 19,293

C. Ref. 3 4,662,098 4,127,718 3,857,512 3,239,130 19,712

C. Ref. 4 4,650,728 4,139,751 3,849,304 3,252,728 20,118

C. Ref. 5 4,643,662 4,179,960 3,847,652 3,293,806 20,540

C. Ref. 6 4,604,785 4,174,124 3,809,620 3,294,794 20,273

C. Ref. 7 4,565,070 4,140,714 3,762,602 3,267,200 19,486

GRCh37 4,660,996 4,149,095 3,863,974 3,261,942 21,676

average

C. Ref. 1 3,745,118 3,282,796 2,676,426 2,236,815 25,571

C. Ref. 2 3,778,562 3,367,021 2,720,361 2,313,288 18,523

C. Ref. 3 3,765,407 3,364,801 2,711,941 2,314,988 18,880

C. Ref. 4 3,757,879 3,377,638 2,708,342 2,326,935 18,949

C. Ref. 5 3,747,390 3,395,776 2,702,447 2,344,318 18,707

C. Ref. 6 3,713,554 3,381,033 2,675,040 2,336,727 18,221

C. Ref. 7 3,678,228 3,351,179 2,641,804 2,316,508 18,399

GRCh37 3,758,776 3,376,677 2,711,838 2,327,657 22,137

Table A.15: Comparing mapping to GRCh37 against mapping to consensus references
with different α values (part 2). The panels represent experiments as described in
Figure 2.15 of the main text, but the experiment is rerun separately with multiple
different consensus references each constructed with a different α parameter.
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Sample MD Reads Total MD BP % Repeats SNV Rate bcftools ESR

NA12878 16,914 212,110 71.61 0.0080 2.1992

NA12892 10,049 140,475 72.42 0.0071 2.3092

NA19238 8,867 120,511 72.29 0.0068 2.2446

NA19239 15,285 158,813 70.18 0.0067 2.0362

NA19240 20,016 198,664 72.27 0.0076 2.0203

average 14,226 166,114 71.75 0.0072 2.1557

Table A.16: An analysis of reads that mapped uniquely to C. Ref. but non-uniquely to
GRCh37. Table has same format as Table 2.2 in the main text.
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Appendix B

Supplement for: “Comparative assembly

hubs: web accessible browsers for

comparative genomics”

B.1 E. coli KO11FL 162099 KO11 ***** genes

List of the KO11 ***** genes in Figure 3.6:

KO11 18970, KO11 18930, KO11 18890, KO11 18850, KO11 18810, KO11 18770,

KO11 18730, KO11 18690, KO11 18650, KO11 18610, KO11 18570, KO11 18530,

KO11 18490, KO11 18450, KO11 18410, KO11 18370, KO11 18330, KO11 18290,

KO11 18250.
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B.2 Gene annotation corrections

In a number of genomes, I observed and corrected obvious errors, such as genes

with positions that were out of range of the sequence length and genes with multiple

exons that overlapped with each other (self-overlapped). The corrections are listed

below.

B.2.1 Out of range genes

There are a number of genes that have the annotated start and end positions

lying out of range of the corresponding genome assembly (Sup. Table B.2.2). I removed

those genes out of the genome gene annotations.

B.2.2 Self-folded genes

I have noticed and reported here a list of coding genes with multiple exons

that overlapped with each other (Sup. Table B.2.2). For example, gene NP 288053.1

of genome O157 H7 EDL933, sequence NC 002655, has two CDS entries: one ranges

from 2369166 to 2370296, and one ranges from 2370296 to 2370979. These two regions

overlap with each other by one base (2370296). The concatenated sequence of these two

regions (with base 2370296 appearring 2 times) has a length of 1815 bp and translates

into the correct protein sequence. I suspect that this error is likely an error of the

assembly. There are 6 genomes with this type of self-folded error.
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E. coli and Shigella spp. Genome Information (Part I)

NCBI Genome Name Genome Short Name Phylogroup Pathotype

EscherichiaColiSe15Uid161939 SE15 B2 Commensal

EscherichiaColiNa114Uid162139 NA114 B2 UPEC

EscherichiaColiEd1aUid59379 ED1a B2 Commensal

EscherichiaColiO83H1Nrg857cUid161987 O83 H1 NRG 857C B2 AIEC

EscherichiaColiLf82Uid161965 LF82 B2 AIEC

EscherichiaColiAbu83972Uid161975 ABU 83972 B2 ABU

EscherichiaColiCft073Uid57915 CFT073 B2 UPEC

EscherichiaColiCloneDI14Uid162049 D i14 B2 UPEC

EscherichiaColiCloneDI2Uid162047 D i2 B2 UPEC

EscherichiaColi536Uid58531 536 B2 UPEC

EscherichiaColiUti89Uid58541 UTI89 B2 UPEC

EscherichiaColiUm146Uid162043 UM146 B2 AIEC

EscherichiaColiIhe3034Uid162007 IHE3034 B2 ExPEC

EscherichiaColiS88Uid62979 S88 B2 ExPEC

EscherichiaColiApecO1Uid58623 APEC O1 B2 APEC

EscherichiaColiO127H6E234869Uid59343 O127 H6 E2348 69 B2 EPEC

EscherichiaColiSms35Uid58919 SMS 3 5 D2 ExPEC

EscherichiaColiO7K1Ce10Uid162115 O7 K1 CE10 D2 NMEC

EscherichiaColiIai39Uid59381 IAI39 D2 ExPEC

EscherichiaColi042Uid161985 042 D1 EAEC

EscherichiaColiUmn026Uid62981 UMN026 D1 ExPEC

ShigellaDysenteriaeSd197Uid58213 Sd197 S S

Table B.1: Summary information of E. coli and Shigella spp. genomes (part I).
‘NCBI Genome Name’: the genome name as they appeared on the NCBI ftp website
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/ in January 2013. ‘Genome Short Name’:
genome names used in this report. ‘Phylogroup’ and ‘Pathotype’: annotated genome
phylogroup and pathotype from literature.
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E. coli and Shigella spp. Genome Information (Part II)

NCBI Genome Name Genome Short Name Phylogroup Pathotype

EscherichiaColiXuzhou21Uid163995 Xuzhou21 E EHEC

EscherichiaColiO157H7SakaiUid57781 O157 H7 Sakai E EHEC

EscherichiaColiO157H7Edl933Uid57831 O157 H7 EDL933 E EHEC

EscherichiaColiO157H7Ec4115Uid59091 O157 H7 EC4115 E EHEC

EscherichiaColiO157H7Tw14359Uid59235 O157 H7 TW14359 E EHEC

EscherichiaColiO55H7Cb9615Uid46655 O55 H7 CB9615 E EPEC

EscherichiaColiO55H7Rm12579Uid162153 O55 H7 RM12579 E EPEC

EscherichiaColiAtcc8739Uid58783 ATCC 8739 A Commensal

EscherichiaColiHsUid58393 HS A Commensal

EscherichiaColiUmnk88Uid161991 UMNK88 A ETEC

EscherichiaColiEtecH10407Uid161993 ETEC H10407 A ETEC

EscherichiaColiP12bUid162061 P12b A Lab

EscherichiaColiBw2952Uid59391 BW2952 A Commensal

EscherichiaColiK12SubstrDh10bUid58979 K12 DH10B A Commensal

EscherichiaColiK12SubstrMg1655Uid57779 K12 MG1655 A Commensal

EscherichiaColiK12SubstrW3110Uid161931 K12 W3110 A Commensal

EscherichiaColiDh1Uid161951 DH1 161951 A Lab

EscherichiaColiDh1Uid162051 DH1 162051 A Lab

EscherichiaColiBRel606Uid58803 B REL606 A Commensal

EscherichiaColiBl21De3Uid161947 BL21 DE3 161947 A Commensal

EscherichiaColiBl21De3Uid161949 BL21 DE3 161949 A Commensal

EscherichiaColiBl21GoldDe3PlyssAgUid59245 BL21 Gold DE3 pLysS AG A Commensal

Table B.2: Summary information of E. coli and Shigella spp. genomes (part II).
‘NCBI Genome Name’: the genome name as they appeared on the NCBI ftp website
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/ in January 2013. ‘Genome Short Name’:
genome names used in this report. ‘Phylogroup’ and ‘Pathotype’: annotated genome
phylogroup and pathotype from literature.
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E. coli and Shigella spp. Genome Information (Part III)

NCBI Genome Name Genome Short Name Phylogroup Pathotype

EscherichiaColiWUid162011 W B1 Commensal

EscherichiaColiWUid162101 W B1 Commensal

EscherichiaColiKo11flUid162099 KO11FL 162099 B1 Commensal

EscherichiaColiKo11flUid52593 KO11FL 52593 B1 Commensal

EscherichiaColiSe11Uid59425 SE11 B1 Commensal

EscherichiaColiIai1Uid59377 IAI1 B1 Commensal

EscherichiaColi55989Uid59383 55989 B1 EAEC

EscherichiaColiO104H42009el2050Uid175905 O104 H4 2009EL 2050 B1 EAEC

EscherichiaColiO104H42009el2071Uid176128 O104 H4 2009EL 2071 B1 EAEC

EscherichiaColiO104H42011c3493Uid176127 O104 H4 2011C 3493 B1 EAEC

EscherichiaColiO103H212009Uid41013 O103 H2 12009 B1 EHEC

EscherichiaColiE24377aUid58395 E24377A B1 ETEC

EscherichiaColiO111H11128Uid41023 O111 H 11128 B1 EHEC

EscherichiaColiO26H1111368Uid41021 O26 H11 11368 B1 EHEC

ShigellaBoydiiCdc308394Uid58415 SbCDC 3083 94 S S

ShigellaBoydiiSb227Uid58215 Sb227 S S

ShigellaSonnei53gUid84383 Ss53G S S

ShigellaSonneiSs046Uid58217 Ss046 S S

ShigellaFlexneri2002017Uid159233 Sf2002017 S S

ShigellaFlexneri2a2457tUid57991 Sf2a 2457T S S

ShigellaFlexneri2a301Uid62907 Sf2a 301 S S

ShigellaFlexneri58401Uid58583 Sf5 8401 S S

Table B.3: Summary information of E. coli and Shigella spp. genomes (part III).
‘NCBI Genome Name’: the genome name as they appeared on the NCBI ftp website
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/ in January 2013. ‘Genome Short Name’:
genome names used in this report. ‘Phylogroup’ and ‘Pathotype’: annotated genome
phylogroup and pathotype from literature.
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Figure B.1: The Shiga toxin region displayed along the pangenome browser, showing
all genomes containining the Stx genes. The “O157 H7 Sakai Lifted-over Pathogenic
Genes” track shows the lifted-over pathogenic gene annotations of strain O157 H7 Sakai,
corresponding to the Stx subunit A on the left and subunit B on the right. There are two
major groups of Stx, Stx1 and Stx2. Different genomes contain different numbers of Stx
genes as well as different Stx groups. The pangenome view allows for the presentation
of these variations, showing that Sd197 and O26 H11 11368 have one copy of Stx1,
Xuzhou21, O157 H7 Sakai, O157 H7 EDL933, O103 H2 12009 and O111 H11 128 have
one copy of Stx1 and one copy of Stx2, O104 H4 2009 EL2050, O104 H4 2009 EL2071
and O104 H4 2011 C3493 have one copy of Stx2, and O157 H7 EC4115 and O157 H7
TW14359 have two copies ofStx2. As there are more copies of Stx2 than Stx1 (12 versus
7), the pangenome, which is a consensus sequence, is more similar to Stx2 than Stx1,
visibly by many SNPS on the Stx1 copies. Variations (SNPs and indels) between the
two groups Stx1 and Stx2 and among different genomes are shown. The texts (the
labels) on the screenshot were adjusted for better readability.
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Figure B.2: A zoomed-in, base-level browser screenshoot of the Shiga toxin region.
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Figure B.3: A browser screenshot showing the pdc-adhB-cat tandem repeat region of E.
coli KO11FL 162099. Here I show another view (with KO11FL 162099 as the reference)
of the same region as in Figure 3.6 (with KO11FL 52593 as the reference).
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Out of Range Genes

Genome Sequence Sequence Length Gene Name Gene Start Gene End Status

ETEC H10407 NC 017722.1 66681 YP 006203743.1 66646 66897 Removed

ETEC H10407 NC 017724.1 94797 YP 006203823.1 93910 95481 Removed

O104 H4 2009EL 2050 NC 018651.1 109274 YP 006772656.1 108212 112774 Removed

O104 H4 2009EL 2050 NC 018654.1 74213 YP 006772784.1 73478 74284 Removed

O104 H4 2011C 3493 NC 018659.1 88544 YP 006781712.1 86977 90021 Removed

O104 H4 2011C 3493 NC 018660.1 1549 YP 006781806.1 1313 1789 Removed

O157 H7 Sakai NC 002128.1 92721 NP 052607.1 92527 95223 Removed

Xuzhou21 NC 017907.1 92728 YP 006315901.1 92534 95230 Removed

Table B.4: Genes that had the annotated start and end positions lying out of range of
the corresponding genome assembly.
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Self-foled Genes

Genome Sequence Genes

042 NC 017626 YP 006096541.1, YP 006098554.1, YP 006098853.1, YP 006099007.1

APEC O1 NC 009837 YP 001481211.1

ATCC 8739 NC 010468

YP 001723276.1, YP 001723852.1, YP 001723974.1, YP 001724556.1,

YP 001724597.1, YP 001724792.1, YP 001725165.1, YP 001725413.1,

YP 001725669.1, YP 001725826.1, YP 001725837.1, YP 001726120.1,

YP 001726121.1, YP 001726135.1, YP 001726293.1, YP 001726572.1,

YP 001726810.1, YP 001726822.1

BL21 DE3 161949 NC 012892

YP 006094151.1, YP 006094155.1, YP 006094156.1, YP 006094162.1,

YP 006094165.1, YP 006094170.1, YP 006094174.1, YP 006094175.1,

YP 006094176.1, YP 006094180.1, YP 002998455.2, YP 006094196.1,

YP 006094200.1, YP 006094206.1, YP 006094214.1, YP 006094218.1,

YP 006094226.1, YP 006094239.1, YP 006094241.1, YP 006094247.1,

YP 006094249.1, YP 006094256.1, YP 006094259.1, YP 006094260.1,

YP 006094264.1, YP 006094266.1, YP 006094269.1, YP 006094273.1,

YP 006094276.1, YP 003000422.2, YP 006094277.1, YP 006094286.1,

YP 006094298.1, YP 006094307.1, YP 003001107.2, YP 006094309.1,

YP 006094314.1, YP 003001318.2, YP 006094328.1, YP 006094329.1,

YP 006094330.1, YP 006094331.1, YP 006094333.1

ETEC H10407 NC 017722 YP 006203795.1, YP 006203796.1, YP 006203807.1

O157 H7 EDL933 NC 002655
NP 286815.1, NP 286819.1, NP 287133.1, NP 287666.1,

NP 287879.1, NP 288941.1, NP 290110.1, NP 290960.1

Table B.5: Coding genes with multiple exons that overlapped with each other.
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Genes Present in the Core Genome

MinCoverage Total Core % Core/Total

100% 4872 1879 38.57

99% 4872 2253 46.24

98% 4872 2348 48.19

95% 4872 2433 49.94

90% 4872 2507 51.46

Table B.6: The average number of genes of each genome that are present in the core
genome. “MinCoverage”: minimum proportion of a gene that overlaps with the core
genome to be counted. “Total”: average number of total genes of an E. coliShigella
genome. “Core”: average number of genes of an E. coliShigella genome that are present
in the core genome (core genes). “%CoreTotal”: average percentage of total genes that
are core genes. Note that reported numbers are average number of 66 genomes.
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Appendix C

Supplement for: “Comprehensive

assessment of T-cell receptor

repertoires”

C.1 Clonal expansions of healthy samples in published

high-throughput TCR sequencing studies

To confirm our results of the literature search for the sample clonal expan-

sions (Section 4.3.6.1), we repeated the search for clonal expansions of healthy sam-

ples of previously published high-throughput TCR sequencing studies. The healthy

samples included in the analyses consisted of three samples from Warren et al.

[Warren et al., 2011], one sample from Wang et al. [Wang et al., 2010], one sample

from Robins et al. [Robins et al., 2012], five samples from unpublished data provided
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by Adaptive Biotechnologies.

The Warren et al. data were obtained from ftp://ftp.bcgsc.

ca/supplementary/TCRb2010. The samples included were male1 blooddraw1,

male2 and female. The Wang et al. data were downloaded from

NCBI SRA archive ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/

ByStudy/litesra/SRP/SRP001/SRP001441. The Robins et al. and the Adaptive

Biotechnologies data were provided by Adaptive Biotechnologies.

C.2 Identification of ERAP1 risk allele status

The sample ERAP1 alleles were extracted from the exome sequencing results

of the samples. The two ERAP1 AS-associated SNPs were rs30187 and rs10050860

[Evans et al., 2011b]. The exome sequencing methods were as followed: DNA was ex-

tracted from approximately 4x106 CD8 depleted PBMCs using a Purelink Genome DNA

Extraction Kit (Invitrogen Kit# K1820-01). 5 ug of genomic DNA was submitted to

Otogenetics (Atlanta, Georgia, USA) for exome sequencing with Agilent Sure Select

V4. Resulting data was submitted to DNANexus (Mountain View, California, USA)

for SNV calling.
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Figure C.1: Clone size distributions of one million sequence samplings. (A) Distribution
of clones. (B) Distribution of sequences. (C) Distribution of sample 50 largest clones.
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Sample Unique Clones Simpson Shannon Fisher Alpha

AS1 6,544 ± 41 0.999 ± 0.000 8.174 ± 0.018 8,230 ± 168

AS2 8,446 ± 35 1.000 ± 0.000 8.939 ± 0.008 25,722 ± 740

AS3 7,900 ± 39 0.999 ± 0.000 8.582 ± 0.017 17,403 ± 441

AS4 4,531 ± 38 0.997 ± 0.000 7.563 ± 0.020 3,196 ± 58

AS5 4,500 ± 37 0.939 ± 0.002 6.169 ± 0.036 3,148 ± 55

H1 3,413 ± 42 0.988 ± 0.000 6.431 ± 0.026 1,828 ± 41

H2 3,815 ± 45 0.985 ± 0.000 6.415 ± 0.029 2,253 ± 51

Table C.1: Sample diversity indices of ten thousand sequence samplings. Rows and
columns are similar to Supplemental Table 4.2
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Sample
D J V D-J V-J V-D-J

Count % Count % Count % Count % Count % Count %

Total 2 100.00 13 100.00 59 100.00 26 100.00 767 100.00 1534 100.00

AS1 2 100.00 13 100.00 52 88.14 26 100.00 709 92.44 1367 89.11

AS2 2 100.00 13 100.00 52 88.14 26 100.00 716 93.35 1401 91.33

AS3 2 100.00 13 100.00 51 86.44 26 100.00 709 92.44 1372 89.44

H1 2 100.00 13 100.00 51 86.44 26 100.00 699 91.13 1328 86.57

H2 2 100.00 13 100.00 51 86.44 26 100.00 701 91.40 1308 85.27

Table C.2: Summary of the sample total TRBV, TRBJ, TRBD genes and their recom-
binations of one million sequence samplings. ‘Total’: the numbers of human germ line
TRBV, TRBD, TRBJ genes [Lefranc et al., 2009] and the numbers of all possible D-J,
V-J and V-D-J recombinations. ‘Count’: number of genes or recombinations observed
in the samples. ‘%’: ‘Count’/‘Total’.

Sample
D J V D-J V-J V-D-J

Count % Count % Count % Count % Count % Count %

Total 2 100.00 13 100.00 59 100.00 26 100.00 767 100.00 1534 100.00

AS1 2 100.00 13 100.00 52 88.14 26 100.00 700 91.26 1311 85.46

AS2 2 100.00 13 100.00 52 88.14 26 100.00 710 92.57 1364 88.92

AS3 2 100.00 13 100.00 51 86.44 26 100.00 699 91.13 1326 86.44

AS4 2 100.00 13 100.00 52 88.14 26 100.00 587 76.53 1019 66.43

AS5 2 100.00 13 100.00 52 88.14 26 100.00 631 82.27 1149 74.90

H1 2 100.00 13 100.00 51 86.44 26 100.00 674 87.87 1240 80.83

H2 2 100.00 13 100.00 51 86.44 26 100.00 673 87.74 1227 79.99

Table C.3: Summary of the sample total TRBV, TRBJ, TRBD genes and their re-
combinations of ten thousand sequence samplings. Rows and columns are similar to
Supplemental Table C.2.

273



Sample
D J V D-J V-J V-D-J

Count % Count % Count % Count % Count % Count %

Total 2 100.00 13 100.00 59 100.00 26 100.00 767 100.00 1534 100.00

AS1 2 100.00 13 100.00 52 88.14 26 100.00 709 92.44 1367 89.11

AS2 2 100.00 13 100.00 52 88.14 26 100.00 716 93.35 1401 91.33

AS3 2 100.00 13 100.00 51 86.44 26 100.00 709 92.44 1372 89.44

AS4 2 100.00 13 100.00 52 88.14 26 100.00 590 76.92 1023 66.69

AS5 2 100.00 13 100.00 52 88.14 26 100.00 641 83.57 1176 76.66

H1 2 100.00 13 100.00 51 86.44 26 100.00 699 91.13 1328 86.57

H2 2 100.00 13 100.00 51 86.44 26 100.00 701 91.40 1308 85.27

Table C.4: Summary of the sample total TRBV, TRBJ, TRBD genes and their recom-
binations, no sampling. Rows and columns are similar to Supplemental Table C.2.
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