UC Berkeley
HVAC Systems

Title
Energy performance of underfloor air distribution systems

Permalink
https://escholarship.org/uc/item/1pm8b025

Authors

Bauman, Fred
Webster, Tom
Linden, Paul

Publication Date
2007-04-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1pm8b02s
https://escholarship.org/uc/item/1pm8b02s#author
https://escholarship.org
http://www.cdlib.org/

Arnold Schwarzenegger
Governor
ENERGY PERFORMANCE OF
UNDERFLOOR AIR DISTRIBUTION
SYSTEMS
|_
e
o
o
LLl
o
|_
O
Ll
™
&
Prepared For: o
California Energy Commission 3:'
Public Interest Energy Research Program =
LL
o
L
o
Prepared By:
Center for the Built Environment,
University of California, Berkeley
Il_Jnlverslty ;f Cl)(alllforrlllla:[.SanI Iilebgo t April 2007
awrence Berkeley National Laboratory CEC-500-2007-XXX

Prepared for the California Energy Commission, April 2007 1 https://escholarship.org/uc/item/1pm8b02s



Prepared for the California Energy Commission, April 2007 2 https://escholarship.org/uc/item/1pm8b02s



O Prepared By:
Center for the Built Environment, University of
California, Berkeley
Fred Bauman and Tom Webster

PUBLIC INTEREST ENERGY RESEARCH Berkeley, California 94720

"Research Powers the Future” Paul Linden

University of California, San Diego

San Diego, CA 92093

Fred Buhl

Lawrence Berkeley National Laboratory
Berkeley, California 94720

Commission Contract No. Insert: 500-01-035
Prepared For:

Public Interest Energy Research (PIER) Program

California Energy Commission

Norman Bourassa
Contract Manager

Ann Peterson
Program Area Lead
Building End-Use Energy Efficiency

Daryl Mills
Office Manager
Energy Efficiency Research Office

Martha Krebs

Deputy Director

ENERGY RESEARCH & DEVELOPMENT
DIVISION

B.B. Blevins
Executive Director

DISCLAIMER

This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent
the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its
employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information
in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This
report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission
passed upon the accuracy or adequacy of the information in this report.

Prepared for the California Energy Commission, April 2007 3 https://escholarship.org/uc/item/1pm8b02s



Prepared for the California Energy Commission, April 2007 4 https://escholarship.org/uc/item/1pm8b02s



Acknowledgments

This work was supported by the California Energy Commission Public Interest Energy
Research (PIER) Buildings Program under Contract 500-01-035. We would like to express our
sincere appreciation to Norman Bourassa and Martha Brook of the Energy Commission PIER
Buildings Team, who expertly served as our current and original Commission Project
Managers, respectively.

Support for the underfloor plenum testing and modeling tasks for this project also provided by
the Center for the Built Environment (CBE) at the University of California, Berkeley (UCB). CBE
is an National Science Foundation (NSF)/Industry/University Cooperative Research Center.
Current CBE sponsors include Armstrong World Industries, Arup, California Energy
Commission, Charles Salter Associates, Inc., CPP, Inc., Flack + Kurtz, Inc.,, HOK, Pacific Gas &
Electric Co., Price Industries, RTKL Associates, Inc., SOM, Stantec, Steelcase, Inc., Syska
Hennessy Group, Tate Access Floors, Inc., the Taylor Team (Taylor Engineering, CTG
Energetics, Guttmann & Blaevoet, Southland Industries, Swinerton Builders), Trane, U.S.
Department of Energy (DOE), U.S. General Services Administration, Webcor Builders, York
International, and the Regents of the University of California.

Additional support was provided by the National Science Foundation under Grant No. EEC-
0225093.

We would also like to thank Dru Crawley, Program Manager for Building Energy Tools, U.S.
Department of Energy, for supporting the EnergyPlus development work conducted by the
Simulation Research Group at Lawrence Berkeley National Laboratory (LBNL). In addition, we
would like to acknowledge Fred Winkelmann for his work on developing a simplified window
radiation module to support the full-scale test chamber validation during the first two years of
the project.

Our research team members from York International, Jack Geortner, Jim Reese, Paul Trauger,
Mike Filler, Michael Zumalis, and Luke Dunton deserve special mention for their contribution
in providing the laboratory facilities and support for testing without which this project would
not have been possible.

In addition we would like to thank Allan Daly of Taylor Engineering for his insights and his
contributions in support of the design tool development and creation of an EnergyPlus input
utility for the chamber model, and Ian Doebber of Arup for his help with the EnergyPlus input
and solar gain analysis.

Prepared for the California Energy Commission, April 2007 5 https://escholarship.org/uc/item/1pm8b02s



Finally, we would like to thank the members of our Project Advisory Committee (PAC), who
provided review and technical advice at our annual PAC Meetings. The original PAC members
included: Dru Crawley (DOE), Dan Fisher (Oklahoma State University), Phil Haves (LBNL),
Blair McCarry and Kevin Hydes (Stantec/Keen Engineering), Mike Scofield (Conservation
Mechanical), Dennis Stanke (Trane), Steve Taylor (Taylor Engineering), and Tom Watson
(Arup).

Please cite this report as follows:

Bauman, Fred, Tom Webster, Hui Jin, Wolfgang Lukaschek, Corinne Benedek, and Edward
Arens, Center for the Built Environment University of California, Berkeley; Paul Linden and
Anna Lui, University of California, San Diego; and Fred Buhl and Darryl Dickerhoff, Lawrence
Berkeley National Laboratory. 2007. Energy Performance of Underfloor Air Distribution Systems.
California Energy Commission, PIER Building End-Use Energy Efficiency Program. CEC-500-
2007-XXX).

ii

Prepared for the California Energy Commission, April 2007 6 https://escholarship.org/uc/item/1pm8b02s



Preface

The Public Interest Energy Research (PIER) Program supports public interest energy research
and development that will help improve the quality of life in California by bringing
environmentally safe, affordable, and reliable energy services and products to the marketplace.

The PIER Program, managed by the California Energy Commission (Energy Commission),
conducts public interest research, development, and demonstration (RD&D) projects to benefit
California.

The PIER Program strives to conduct the most promising public interest energy research by
partnering with RD&D entities, including individuals, businesses, utilities, and public or
private research institutions.

PIER funding efforts are focused on the following RD&D program areas:

e Buildings End-Use Energy Efficiency

Energy Innovations Small Grants

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

¢ Industrial/Agricultural/Water End-Use Energy Efficiency
e Renewable Energy Technologies

e Transportation

Energy Performance of Underfloor Air Distribution Systems is the final report for the Energy
Performance of Underfloor Air Distribution Systems project (contract number 500-01-035)
conducted by the Center for the Built Environment, University of California, Berkeley;
University of California, San Diego; and Lawrence Berkeley National Laboratory. The
information from this project contributes to PIER’s Building End-Use Energy Efficiency
Program.

For more information about the PIER Program, please visit the Energy Commission’s website at
www.energy.ca.gov/pier or contact the Energy Commission at 916-654-5164.
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Abstract

This multi-year project developed EnergyPlus/UFAD, a version the publicly available whole-
building energy simulation program EnergyPlus that adds the capability for modeling
underfloor air distribution systems. The project also developed a practical design tool for
determining the cooling airflow quantity for underfloor air distribution systems.
EnergyPlus/UFAD and the cooling airflow design tool are the first validated underfloor air
distribution system tools of their kind. As such, they represent a significant advance in the state
of the art of the design and energy analysis of such systems. This highly collaborative effort
involved experts and facilities from four organizations, including the Center for the Built
Environment at University of California, Berkeley; University of California, San Diego;
Lawrence Berkeley National Laboratory; and York International.

This final report and seven appendices present experimental testing and analytical and
computational fluid dynamics modeling on room air stratification and underfloor plenum
distribution —critical efforts that informed the development of models for EnergyPlus. Also
discussed are new implementations of heating, ventilation, and air conditioning systems to
support underfloor air distribution system modeling in EnergyPlus and the development of a
practical design tool for such systems.

Keywords: underfloor air distribution, UFAD, EnergyPlus, EnergyPlus/UFAD, energy
modeling, design tool, room air stratification, cooling load, underfloor plenum, full-scale
experiments, salt-tank testing, thermal plumes, thermal comfort
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Executive Summary

Introduction

In 2002, underfloor air distribution (UFAD), an innovative and relatively new space
conditioning technology, was experiencing rapid growth in North America. UFAD uses the
open space between a raised floor and a structural concrete slab to deliver conditioned air
directly into the occupied zone of the building, most commonly through floor-level supply
outlets. UFAD’s growth, which continues today, was driven by the broad range of potential
benefits that well-designed UFAD systems offer over conventional overhead (OH) air
distribution systems:

e Increased flexibility and reduced life-cycle costs through the use of a raised access floor
system

e Improved thermal comfort by allowing individual employees control over nearby floor
diffusers

e Improved ventilation effectiveness and indoor air quality (IAQ) by delivering fresh
supply air through floor diffusers close to occupants

¢ Reduced energy use through a variety of strategies particularly well-suited to mild
California climates

e Improved employee satisfaction and productivity by giving occupants greater control
over their local environment and by improving the quality of indoor environments

However, UFAD systems were being designed and installed even before some of the most
fundamental performance aspects were understood or characterized, and standardized
methods and guidelines for designing these systems or optimizing their performance were not
available.

Purpose

This project produced tools to help designers create energy efficient and effective UFAD
systems and improve understanding in two key areas where important differences exist
between the energy performance of UFAD and that of conventional OH air distribution
systems:

¢ Room air stratification (RAS)—or how the temperature of the air in a conditioned space
stratifies with height

e The thermal performance of underfloor plenums, or the temperature and velocity of air
flowing between the raised floor and the concrete slab

1
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Objectives

Provide a sound theoretical understanding of the behavior of UFAD systems by
conducting laboratory-, bench-, and full-scale experiments.

Develop validated mathematical models of the RAS phenomenon and the thermal
performance of underfloor air supply plenums.

Integrate the RAS and underfloor plenum models, along with other system upgrades,
into the EnergyPlus whole-building energy simulation program, to allow design
professionals and others to simulate UFAD system energy performance.

Develop a practical design procedure for determining the amount of conditioned air
required during cooling operation of a UFAD system.

Significant Findings

The work done under this project generated significant insights into the performance and
operation of UFAD systems. Highlights are described below:

By providing validation-quality data under operating conditions that closely mimicked
real world conditions, full-scale RAS tests were critical to the development of the RAS
model for EnergyPlus/UFAD. These tests also provided an opportunity to investigate a
range of design parameters, develop RAS performance correlations based on these
parameters, and compare results with the more idealized small-scale salt tank tests.

The more limited, yet still extremely valuable, salt tank testing produced two key
findings:
0 Determination of the “interface height” separating the cooler occupied zone and
warmer upper zone —the two zones in the simplified model of a stratified UFAD
environment

0 Characterization of the impact on RAS performance of multiple diffusers,
multiple (point source) plumes representing interior zones, and larger window
plumes representing perimeter zones

An RAS model characterized the difference in temperatures between the floor and the
ceiling by dividing the space into the lower and upper zones described above, each
represented by a single temperature. While oversimplifying real stratification, this
scheme captures first order effects well and is simple enough for use in EnergyPlus.

Underfloor plenum experiments provided validation-quality data under realistic full-
scale conditions to support the development of a computational fluid dynamics (CFD)
plenum model. The plenum tests also demonstrated the complex nature of the airflow
and thermal performance of underfloor plenums. Key design and operating parameters
that can impact plenum performance include inlet velocity, temperature, and direction;
number and location of inlets; total flow rate; air leakage; and the amount of
stratification in spaces above and below plenum.

Despite the complexity of the plenum airflow and heat transfer processes, the plenum
energy balance predicted by CFD work agreed within 10% of the experimental data.

2
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This result supported the approach of using a simplified, well-mixed plenum model to
provide reasonable estimates of overall plenum energy performance. The validated CFD
plenum model simulated a broader range of plenum design and operational parameters,
creating an expanded numerical database that was used to derive the final form of the
simplified underfloor plenum model for use in EnergyPlus.

e During early meetings, the research team discovered that, due to the existence of a cool
underfloor supply plenum in a multi-story building, several new heat transfer pathways
became important considerations in a stratified UFAD environment. A simplified first-
law model was therefore used to estimate and compare the relative magnitudes of the
heat being removed from a room through two primary pathways:

0 Heat extraction via warm return air exiting the room at ceiling level or through
the return plenum

0 Heat entering the underfloor supply plenum either through the slab from the
floor below or through the raised floor panels from the room above

Surprisingly, results for typical multi-story building configurations (raised access floor
on structural slab with or without suspended ceiling) showed that 30—40 percent of the
total room cooling load is transferred into the supply plenum and only about 60-70
percent is accounted for by the return air extraction rate. These findings have important
implications for the design, operation, and energy analysis of UFAD systems.

Results

On the basis of these and other findings, the team added new and enhanced modeling
capabilities to EnergyPlus:

e RAS models for both interior and perimeter zones
e Anunderfloor plenum model

¢ Heating, ventilating, and air conditioning (HVAC) system model upgrades (including a
variable-speed fan terminal unit and return air bypass capability) to allow simulation of
typical UFAD system configurations

The resulting program, EnergyPlus/UFAD, allows designers to calculate the energy use of
UFAD systems and compare the performance of UFAD and conventional systems.
EnergyPlus/UFAD is the first validated whole-building energy simulation program of its kind
and is available from the public EnergyPlus website maintained by U.S. Department of Energy
(DOE): www.energyplus.gov.

The project also developed a practical and simplified design procedure for determining the
amount of conditioned air required during cooling operation of a UFAD system. In its final
form, this spreadsheet-based calculation procedure will be easy to use by practicing design
engineers. The calculation engine was developed based on empirical correlations derived from
the RAS full-scale testing database, and currently includes three diffuser types. The design tool
predicts a range of acceptable cooling airflows, within which the target comfort criteria are
satisfied for the design input assumptions of the model.

3
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Conclusions

EnergyPlus/UFAD and the UFAD design tool represent a significant advance in the state of the
art of UFAD design and analysis. Further, the coordinated approach has proven to be very
successful, as the EnergyPlus validation studies completed to date have demonstrated good
agreement with experimental and CFD-predicted data. In addition, the large amount of
supporting research conducted has produced a vast amount of new knowledge and improved
understanding of the fundamental principles of UFAD system design, operation, and energy
performance.

Recommendations

In this ground-breaking work, not all model development goals were achieved to a level of
accuracy and validity originally envisioned at project start. Recommended activities to improve
and refine EnergyPlus/UFAD include the following;:

e Complete refinement of interior zone RAS model

e Complete refinement of perimeter zone RAS model

e Complete the validation of both the improved interior and perimeter RAS models using
data from full-scale testing

¢ Implement updated models in EnergyPlus/UFAD
e Update engineering documentation of EnergyPlus/UFAD

Recommended activities to support the cooling airflow design tool include the following:
e To support the development and refinement of supplemental calculations and

assumptions in the design tool, use the improved version of EnergyPlus/UFAD to
simulate a prototype commercial office building.

¢ Add more capabilities to the design tool
e Develop a suitable user interface for the spread-sheet based design tool

e Use available field data collected through ongoing commissioning and energy use case
studies to conduct a comparison and validation of the design tool

Benefits to California
As an example of UFAD’s potential benefits in California, where UFAD use is growing, the
team estimated the HVAC energy savings for UFAD in one sector, large offices, over the next 10
years. For UFAD penetration, the team assumed that the growth rate would continue to reflect
the rates since 1999, as well as the following;:

e Overall new construction growth rate: 2% per year, constant

e Fan energy savings: 22%, based on a previous study of fan savings (Webster 2000)

e Economizer savings: 15% and 30%

The team ignored potential chiller savings, since data are lacking as to the magnitude and since
the proportion of chilled water systems is less than 40% even in large buildings. Economizer

4
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savings of 30% are based on a model that uses Oakland weather data for a typical
meteorological year; less benign climates are assumed to yield 15% savings.

New construction for the estimate includes both retrofit and new buildings, since the team’s
estimate for penetration is based on annual sales of raised floor panels with an unknown
breakdown between the two. However, based on the CBE Case Studies project, the team
estimates that 25% of new UFAD projects are retrofits to existing facilities. The teams used as
the baseline (without escalation) the California commercial end-use energy use intensities for
ventilation and cooling and the aggregate floor areas for large offices, as provided by PIER.

The values shown in Table ES-1 represent the estimated potential energy savings expressed as a
percent of the overall HVAC energy use for all new construction of large offices (based
primarily on a building stock of conventional systems). As shown, UFAD could reduce energy
use in new large office buildings by almost 25% in 2010 and more than 50% by 2015.

Table ES-1. Percent savings in HVAC energy for large office building new construction for
given UFAD market penetrations

% Energy Savings by Year

2005 2010 2015
UFAD projected penetration rates in large new offices | 6% 24% 53%
% of HVAC energy with 15% economizer savings 1% 4% 10%
% of HVAC energy with 30% economizer savings 2% 6% 14%

Additional benefits to California based on the results of this project are listed below:

e Improve the effectiveness of building design and construction practices by providing
validated energy simulation and design tools that optimizes the energy and cost
effectiveness of UFAD systems.

e Help policymakers establish methodologies in future releases of Title-24 that allow
proper receipt of credits on projects that implement UFAD in an energy-conserving
manner by providing an updated and clearer picture of the potential energy use benefits
of UFAD systems.

e Improve the health and safety of building occupants by establishing a database of test
information that could be used to analyze thermal comfort of UFAD systems and assist
with future studies of ventilation effectiveness.

¢ Increase customer choices for efficient operation of buildings by providing standardized
design and analysis tools and technical knowledge that would reduce the risk to
practitioners and owners when choosing to implement UFAD technology.

¢ Encourage the rapid incorporation of research findings into UFAD products by working
closely with UFAD industry leaders, including York International, a partner on this
project, and other major HVAC manufacturers who are members of CBE.

5
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1.0 Introduction

1.1. Background and Overview

Underfloor air distribution (UFAD) is an innovative technology that uses the underfloor
plenum below a raised floor system to deliver space conditioning in offices and other
commercial buildings. The use of UFAD has increased in North America during the past 5-10
years because it offers abroad range of potential benefits over conventional overhead air
distribution systems. Specifically, well-designed UFAD systems can improve thermal comfort,
improve indoor air quality (IAQ), reduce energy use, improve worker satisfaction and
productivity, increase flexibility, and reduce life-cycle costs over conventional practice (Bauman
and Webster 2001; Bauman 2003).

Despite the growing use of UFAD systems, UFAD is still a relatively new and unfamiliar
technology to the building industry at large. In 2002, when this project was starting,
standardized methods and guidelines for designing these systems or optimizing their
performance were not available. Furthermore, UFAD systems were being designed and
installed at an increasingly rapid pace, even before a full understanding and characterization of
some of the most fundamental aspects of UFAD system performance were in place. In the
original proposal for this project, the team identified a strong need for an improved
fundamental understanding of several key energy performance features of UFAD system
design. These issues are described briefly below:

e Room air stratification (RAS). Under cooling operation, properly controlled UFAD
systems produce temperature stratification in the conditioned space. What are the
combinations of supply air temperature and volume, and heat loads for both interior
and perimeter building zones that provide acceptable thermal comfort in the occupied
zone? What impact do the type and number of supply diffusers have on the stratification
performance? An understanding of controlled/optimized thermal stratification is critical
to provide designers with a reliable energy-estimating tool as well as a sound basis for
developing design tools and guidelines. Although some preliminary UFAD cooling
airflow design methods have been described (Loudermilk 1999; Bauman 2003), design
engineers often cite methods for airside design sizing as one of the most important
unanswered questions regarding UFAD system design.

¢ Underfloor air supply plenum. An important difference between conventional and
UFAD system design is that cool supply air flowing through the underfloor plenum is
exposed to heat gain from both the concrete slab (conducted from the warm return air
on the adjacent floor below the slab) and the raised floor panels (conducted from the
warmer room above). The magnitude of this heat gain can be quite high, resulting in
undesirable loss of control of the supply air temperature from the plenum into the
occupied space (sometimes referred to as thermal decay). These warmer supply air
temperatures can make it more difficult to maintain comfort in the occupied space
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1.2.

(without increasing airflow rates), particularly in perimeter zones where cooling loads
reach their highest levels.

Whole-building energy performance. At the time this project was initiated, the industry
lacked a validated whole-building energy simulation program capable of accurately
modeling UFAD systems. In combination with the above described cooling airflow
design tool, such an energy modeling capability was the top technology need widely
identified by system designers and other UFAD technology experts and users.
Furthermore, from the perspective of California Title-24 policymakers, the development
of an energy-modeling capability for UFAD systems would help establish
methodologies to allow proper receipt of credit for projects that implement UFAD in an
energy-conserving manner.

Project Objectives

The goal of this project was to develop UFAD system simulation software to allow design
practitioners to calculate the energy performance of UFAD systems and compare the
performance of UFAD systems with that of conventional systems. The availability of such a tool
would help UFAD technology achieve its full potential by enabling the design of UFAD systems
that are energy efficient, intelligently operated, and effective in their performance.

The objectives of this project were as follows:

1.3.

Provide a sound theoretical understanding of the behavior of UFAD systems by
conducting laboratory-, bench-, and full-scale experiments.

Develop validated mathematical models of the RAS phenomenon and the thermal
performance of underfloor air supply plenums.

Integrate the RAS and underfloor plenum models, along with other system upgrades,
into the EnergyPlus whole-building energy simulation program. The final product will
be a version of EnergyPlus, called EnergyPlus/UFAD that can be used by design
professionals and others to simulate UFAD system energy performance.

Develop a practical design procedure for determining the amount of conditioned air
required during cooling operation of a UFAD system.

Report Organization

The work performed under this project is described in one main report and several appendices,

as outlined below.

Part I: Final Report, Project Summary: This report provides an overview of the project
with shorter summaries of the major project outcomes from each of the other five larger
parts of the final report.

Appendix A. Part II: Room Air Stratification Full-Scale Testing: This report describes
the methodology, results, and analysis of the RAS experiments conducted in the York
full-scale test chamber using commercially available floor diffusers in a realistic office
configuration. These tests provided validation quality data to support the development
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of the RAS Model for EnergyPlus and also allowed the investigation of a wide range of
practical design parameters for UFAD systems.

e Appendix B. Laboratory Layouts and Normalization Room Air Stratification Profiles

e Appendix C. Part III: The Fluid Dynamics of an Underfloor Air Distribution System:
This report represents the PhD thesis for Qing Liu of University of California, San Diego
(UCSD) and describes the methodology, results, and analysis of the RAS experiments
conducted in small-scale salt-water tanks. These tests provided validation quality data
and an improved fundamental understanding of UFAD fluid dynamics to support the
development of an analytical model of RAS performance. This report also describes the
development of a simplified RAS model for implementation in EnergyPlus.

e Appendix D. Part IV: Underfloor Plenum Testing and Modeling: This report describes
the methodology, results, and analysis of experiments conducted in a full-scale
underfloor plenum test facility. These tests provided data for validation of a
computational fluid dynamics (CFD) model of the underfloor plenum. This report also
describes the use of the CFD plenum model to develop a simplified plenum model for
implementation in EnergyPlus.

e Appendix E. Part V: EnergyPlus Module Development and Validation: This report
describes the engineering documentation for the new version of EnergyPlus capable of
modeling UFAD, called EnergyPlus/UFAD. It describes incorporation of the above-
described RAS model and plenum model; new heating, ventilating, and air conditioning
(HVAC) system model upgrades to accommodate UFAD systems; and preliminary
validation results.

e Appendix F. Part VI: UFAD Cooling Airflow Design Tool: This report describes the
development of a practical and simplified design procedure for determining the amount
of conditioned air required during cooling operation of a UFAD system.
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2.0 Project Approach

This project was a coordinated, multi-institutional effort among the following organizations:

e Center for the Built Environment (CBE), University of California, Berkeley (UCB):
Project lead, full-scale testing, RAS model development, underfloor plenum testing and
modeling, model validation.

¢ Department of Mechanical and Aerospace Engineering, University of California, San
Diego (UCSD): Salt tank testing, RAS model development, model validation.

e Lawrence Berkeley National Laboratory (LBNL): System upgrades to EnergyPlus, model
validation, EnergyPlus/UFAD software implementation and engineering
documentation.

e York International, York, Pennsylvania: Full-scale testing.

Figure 1 shows a schematic diagram of the project organization. As shown, development of the
underfloor plenum model was supported by full-scale testing to provide model validation.
Development of the room air stratification model was supported by small-scale salt tank testing
to improve theoretical understanding and full-scale laboratory testing to provide realistic data
for comparison and model validation. These two significant new modeling capabilities were
incorporated into EnergyPlus. In addition, the project made selected upgrades to the HVAC
modeling capabilities in EnergyPlus to accommodate typical HVAC configurations of UFAD
systems. All groups participated in model validation.

UFAD Version of EnergyPlus
(LBNL)

Plenum RAS Model System Model

Model (UCSD/CBE) Upgrades Validation
(CBE) (LBNL) (All)

e )
Full-scale
— Testing

(CBE/York)

Salt Tank
—  Testing
(UCSD)

Plenum
Testing
(CBE)

Figure 1. Schematic diagram of the project organization
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The major technical tasks included in the project work scope are discussed in the subsections
below.

2.1. Task 2.1: RAS Full-Scale Testing

The objective of this task was to characterize the impact of various UFAD technology design
and operating parameters on RAS. To accomplish this goal, researchers conducted experiments
in the York full-scale test chamber using commercially available floor diffusers in a realistic
office configuration. Parameters and issues investigated follow:

o Diffuser type

e Supply air temperature

e Supply air volume

e Performance differences between variable and constant volume system designs
¢ Comparison of UFAD to overhead system airflow requirements

e Comparison of performance in perimeter vs. interior zones

This task provided a sound theoretical understanding of UFAD system performance, developed
empirical correlations that describe stratification performance where possible, and provided
validation quality data under realistic full-scale conditions to support the development of the
RAS Model.

2.2. Task 2.2: Salt Water Tank Testing
This task had two objectives:

e Gain a more accurate understanding of the airflow patterns and temperature
stratification produced by UFAD systems.

e Validate the salt-water tank model, using the full-scale test data collected in Task 2.1
This step is important because the laboratory model is less expensive and more readily
accessible than is the full-scale model and therefore presents an effective means to
further study the fluid mechanics of UFAD systems.

To accomplish these objectives, the researchers conducted salt-water laboratory simulations of
an UFAD system. The laboratory experiments were first used to identify the important physics
to incorporate into the analytical model. This task provided a sound theoretical understanding

of UFAD system performance and validation quality data to support the development of the
RAS Model.

2.3. Task 2.3: Underfloor Plenum Testing

The objective of this task was to provide improved understanding of how supply air
temperature varies with plenum configuration and distance traveled through the plenum. To
this end, researchers investigated energy performance issues by conducting experiments in the
CBE full-scale underfloor air supply plenum test facility. These experiments studied the heat
exchange between the exposed concrete structural slab, raised floor panels, and the supply air
as it flows through the underfloor plenum. This task provided a sound theoretical
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understanding of the airflow and thermal performance of underfloor air supply plenums and
validation quality data under realistic full-scale conditions to support the development of the
underfloor plenum model.

24. Task 2.4: RAS Model Development

The objective of this task was to provide a method to calculate the room air flow and
temperature stratification resulting from UFAD system designs. To this end, researchers
developed a RAS Model for the UFAD system based on a simplified zonal model suitable for
implementation into EnergyPlus. The two-zone model was deemed appropriate, as it was
readily implemented and captured the essential features of the stratification. The model was
developed using insights gained from the salt-water tests (Task 2.2), CFD, and full-scale testing
results (Task 2.1).

2.5. Task 2.5: Underfloor Plenum Model Development

The objective of this task was to provide a method to calculate the thermal performance of
underfloor air supply plenums. The model developed used a simplified approach suitable for
implementation into EnergyPlus. The model was developed using the generated databases as
well as insights gained from both the full-scale Underfloor Plenum Model Testing (Task 2.3)
and the associated CFD analysis.

2.6. Task 2.6: EnergyPlus Module Development and Validation

The objective of this task was to produce UFAD system simulation software to enable design
practitioners to calculate the energy use of UFAD systems and compare the performance of
UFAD systems with conventional systems. To this end, the researchers incorporated the RAS
Model developed in Task 2.4 and the underfloor plenum model developed in Task 2.5 into
EnergyPlus, and upgraded the EnergyPlus HVAC system model as needed to allow simulation
of typical UFAD system configurations. The resulting EnergyPlus RAS and underfloor plenum
modules were validated against RAS measurements made in Task 2.1 in the York full-scale test
chamber and against plenum measurements made in Task 2.3 in the CBE Underfloor Air
Supply Plenum test facility.

2.7. Task 2.9: Cooling Airflow Design Tool Development

The objective of this task was to develop a practical and simplified design procedure for
determining the amount of conditioned air required during cooling operation of a UFAD
system in both interior and perimeter zones. To this end, the researchers carefully analyzed the
RAS full-scale testing database from Task 2.1, the salt water tank testing database from Task 2.2,
and the underfloor plenum testing database from Task 2.3. The design tool was reviewed and
evaluated by practicing engineers to ensure its usefulness and validated to the extent possible
by comparison with experimental results from Task 2.1 and EnergyPlus simulation results from
Task 2.6.
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3.0 Project Outcomes

3.1. RAS Full-Scale Testing

This section summarizes the results of full-scale RAS testing conducted to provide a detailed
understanding of how room air stratification is influenced by various design and operating
conditions in typical office arrangements. These experiments were designed and conducted by
CBE in a laboratory facility provided by York International in York, Pennsylvania.

3.1.1. Facility Layout and Construction

The facility consists of a test chamber, an adjoining conference room, and an environmental
chamber (EC). Air handling equipment is located inside the warehouse adjacent to the EC;
chillers are located outside on the east side of the test room. Most walls are inside a warehouse.
However, one wall of the test room and two walls of the conference room are outside walls.

The EC is attached to the west side of the test room and is separated from it by a curtain wall
with double glazed clear glass window. The purpose of this chamber is to allow simulation of a
wide range of outdoor temperatures. The EC also contains an array of lamps that simulate solar
radiation to investigate the impact of solar radiation under summer cooling conditions.

The test facility is supported by a 150-channel data acquisition system that measures a large
number of temperatures as well as airflow and underfloor pressure in sufficient details to allow
detailed calculation of the heat balance of the chamber. The project team developed a data
processing system to reduce the results of all experiments, which are summarized in Appendix
A.

Occupied Space/Test Room

As shown in Figure 2, the test room is a 7.9-meter (m) (26-foot [ft]) square with an area of 63
meters squared (m?) (676 feet squared [{t?]) and a height of 2.7 m (9 ft) where all room air
stratification experiments were conducted. Temperature sensors, thermal manikins, personal
computers, desk lamps, and other equipment were placed in this room to simulate typical office
arrangements. Interior spaces were simulated by placing foam insulating panels on the west
window wall and over the windows on the south conference room wall. The west panels were
removed when perimeter spaces were simulated.
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Figure 2. Test chamber layout

3.1.2. Findings Based on Interior Zone Tests
Diffuser Type

The project team investigated the performance of three diffuser types (four including perimeter
zones) with distinctly different characteristics that provide a good representation of the range of

characteristics expected in practice. Figure 3 shows a comparison between typical stratification
profiles for these diffusers.
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Figure 3. Comparison of standard swirl, horizontal discharge, and variable area diffusers under
peak design conditions

To summarize briefly:

e Swirl diffusers come in two varieties.

0 ‘Standard’ designs, which are the most prevalent; are passive (not physically
controlled, although variants are actively controlled in some manner); and have
discharge patterns that impart a swirl motion to the vertically discharged
airflow.

0 Low throw or, as referred to in this report, horizontal discharge (HD) swirls,

which impart a swirl in a horizontal, rather than vertical, discharge pattern.

e Variable area diffusers (VA) represented best by York’s MIT diffusers, for which the
outlet area is modulated by a moving damper.!

Overall conclusions relative to diffuser type follow:

e Standard swirl diffusers can produce large differences in stratification depending on
design and operating conditions. HD swirls and VA diffusers, on the other hand, show a
relatively narrow range of stratification performance. In other words, variation in throw
drives the performance of standard swirl, but not HD and VA, diffusers. VA diffusers

! The testing reported here used York’s original design, which has been largely replaced by the newer
MIT 2. In this device, the moving damper is replaced by a time-modulated damper and fixed outlet area.
Due to this and other design changes, the performance of the MIT 2 may differ from the results shown
here.
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produce a very consistent profile over a broad range of design and operating conditions.
HD swirls are also likely to produce a consistent profile over a broad range of
conditions. However, this expectation could not be confirmed because HD swirls were
tested on a limited range of conditions. See Table 1 for a summary of characteristics
for the diffusers tested.

e Attypical diffuser design conditions, both standard swirl and VA diffusers produce the
same profile shape and stratification for a given load and thermostat setting.

e Airflow requirements are nominally the same for standard swirl and VA diffusers,
regardless of the degree of stratification for the same load condition. However, when
comfort effects are factored in and compared at equivalent average occupied zone
temperatures, swirl diffusers will operate with less airflow in proportion to the amount
of stratification created, which depends on the number of diffusers used. Equivalent
comfort can be realized by increasing the number of swirl diffusers so that they operate
below their design airflow and then increasing the setpoint relative to the VA setpoint.

Table 1: Diffuser characteristics summary

Nominal
design airflow,
Discharge area  Vertical throw (cfm)
Standard swirl Constant Variable 80
HD swirl Constant Nearly constant 60
Variable area Variable Constant 150
Linear Constant Variable 250 (48")

Diffusers Tests

Design Conditions

As pointed out above, swirl diffusers have a greater potential for managing stratification
because of the variation of throw with operating conditions. Test results presented in ~ Figure
4 show the extent that changing the number of diffusers can change the stratification in the
occupied zone under the same load conditions and setpoint.

Other results indicate that swirl diffusers produce the same profile independent of load
conditions when the throw height is the same. This result is useful for design but not for
operations, because the throw varies as load changes in variable air volume (VAV) systems. For
constant-volume systems, the profile would stay the same with load (at its design condition),
only the supply air temperature (SAT) varies to maintain the thermostat setpoint (Webster et al.
2002b). When the throw height is changed (by increasing diffusers or changing airflow, for
example, changing the load or setpoint) for the same number of diffusers, changes in the
stratification appear.
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Figure 4. Results of diffuser throw height study for standard swirl diffusers

These results, combined with the preliminary analysis comparing airflow requirements based
on equivalent comfort conditions, suggest that swirl diffusers offer designers the flexibility to
optimize stratification (reduce airflow while maintaining comfort) in a way that VA and HD
swirl diffusers do not. For HD swirls, despite the fact that stratification is somewhat fixed, the
stratification is maximized, which results in minimizing the airflow. However, in some cases
this can result in occupied-zone temperature differences that exceed the American Society of
Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 55 criteria.

Operating Conditions, Load Variation

The results (shown in Figure 5) obtained by the load variation study are somewhat mixed, and
further research is needed to corroborate the researchers’ overall impression that the profile
shape does not change as load is varied. If true, it result will have very interesting and
important implications on practice: It would mean that during design practitioners could “dial
in” the stratification level they feel is appropriate and expect that it would remain consistent
during load variations, producing a reliable comfort environment. It also would allow
optimization of stratification during commissioning at reduced loads, thereby saving cost and
effort.
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Figure 5. Results of load variation study for standard swirl diffusers

Floor Leakage Impacts on Swirl and VA Diffusers
This testing produced important results that should prove helpful to design, commissioning,

and operations. For this, the team defined different leakage categories:
e Category 1 leakage: air leaving the system, which represents airflow loss
o Category 2 leakage: air enters the conditioned space
The primary impact of floor leakage occurs with Category 2 leakage.
The team generally used leakage rates greater than would be expected in real systems (ranging

from 0.12 to 0.3 cfm/ft? over all the leakage tests). However, the ranges were not outside of the
realm of possibility based on reports received from commissioning studies on real buildings.

The effect of floor leakage on stratification appears to be different for swirl vs. VA diffusers, as
shown in Figure 6. For pressure modulated swirl systems, stratification is increased due to two
effects:

e The leakage itself, which created a displacement-like component in the airflow

¢ A reduction in airflow through the diffusers, which decreases diffuser throw
Additional findings for swirl diffusers follow:

e Leakage is proportional to the airflow reduction, such that the ratio to total room airflow

is constant.

e As the plenum pressure is reduced the amount of Category 1 leakage is reduced.
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For VA systems using constant pressure plenums, a similar increase in stratification was
observed. However, in this case the effect appears to be due to leakage alone, since the diffusers
are insensitive to airflow changes because they modulate. However, because the pressure is
constant, the relative proportion of leakage airflow increases as load decreases. This increase
can lead to a loss of control at low load conditions.

Designers typically consider all leakage as undesirable. However, these results suggest that
such concern may be misplaced. Floor leakage may not be particularity deleterious in pressure-
controlled swirl systems if it increases stratification, reduces Category 1 leakage, and does not
create local comfort problems. This finding is also somewhat true for constant-pressure VA
systems, except that as the system is throttled, the percentage of leakage gets greater, potentially
leading to loss of control at low loads and no reduction in Category 1 leakage.
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Figure 6. Results of leakage study for swirl (left) and VA diffusers under high and low load
conditions

3.1.3. Findings from Perimeter Zone Testing

For perimeter testing, results fall into three categories of studies:
e The effect on stratification performance of diffuser throw
o Diffuser type
e The impact of blinds closed vs. blinds open

Results are discussed below.

Diffuser Throw

Perimeter loads derived from peak solar gain can be larger than interior loads by a factor of
two, and the type of thermal plume is different than for internal loads. However, the perimeter
load stratification performance appears to be dominated by diffuser characteristics, much as it is
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for interior zones. To study this impact, the team tested linear bar grilles, the predominate type
of perimeter diffuser used today in most UFAD buildings (except of coarse, those with the York
MIT system). In peak solar tests (which involve two banks of simulator lights), the team
decreased the throw characteristics by both increasing the number of diffusers and decreasing
the (sideways from horizontal) angle of discharge of internal “flow-spreading” vanes. Although
the team was unable to conduct enough tests to definitively determine the effect of vanes,
results clearly show that stratification is increased and airflow is reduced as throw is reduced
(See Figure 7). For example, airflow required for a load condition of about 10 watts (W)/ft? and
10 diffusers with 53° discharge, versus 8 diffusers with vertical (90°) discharge is reduced by
about 23%.

Room Temperature [°C]

20.0 211 222 23.3 244 25.6 26.7 27.8 28.9
10 I I } } : } | 3.0
Peak solar, 2 banks, blinds open !

r2.7

Height [ft]
Height [m]

Room Temperature [°F]

|=#—=PER 8-19 (8 LI, 90°) =~PER 8-21 (8 LI, 53°) ==PER 8-22 (10 L, 53°)

Figure 7. Linear bar grille performance comparing throw heights

Diffuser Type

To compare the performance of different diffuser types, researchers included the known
diffuser types of VA and linear bar grille and added a test using swirl diffusers located only in
the interior so there were no diffusers at the window. This last case represents the ultimate
possibility for reducing the interaction between the diffuser flow and the window thermal
plume.

Results from these tests (shown in Figure 8) indicate that linear bar grilles and VA
diffusers performed comparably. However, researcher observed a large increase in stratification
for the case with no window diffusers. In fact, so the increase was so high that it exceeded the
ASHRAE Standard 55 recommended limits. The project team estimates that this larger
stratification results in a nominal 12% lower airflow requirement under the conditions tested.

This configuration deserves more study, since optimizing the competing elements of occupied
zone difference and average temperature (i.e., equivalent comfort) would likely alter the
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conclusions from this single test. For example, to increase the occupied zone temperature, the
setpoint could be increased thus lowering the airflow, but the number of diffusers would have
to be increased to reduce the stratification which may increase the airflow requirements.
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Figure 8. Diffuser type comparison for perimeter zones

Impact of Blinds

Lowering blinds is a common practice in real buildings, especially under peak load conditions
when direct solar gain and glare become intolerable. Tests conducted for the peak solar
conditions revealed that lowering the blinds dramatically increases the stratification even
though the total gain is reduced, as shown in Figure 9. Under peak solar conditions,
lowering the blinds showed the following impacts:

o Total heat gain (solar plus internal loads) decreased by about 15%

e Room temperature difference increased by almost 50% (less heat transferred to the
plenum)

¢ Occupied-zone temperature remained virtually unchanged
e Estimated airflow (on equal heat gain basis) decreased by about 25%

These results indicate that lowered blinds has a substantial impact on the performance of
perimeter zones. This impact should be studied in more detail to develop a better
understanding of its implications on design and energy performance and its demand response
possibilities.
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Figure 9. Linear bar grille performance with and without blinds

3.2. Salt Water Tank Testing and RAS Model Development
3.2.1. Introduction

The objective of the salt water experiments and RAS model development is to generate
algorithms for the interface height and temperatures of the occupied zone and the upper zone
for implementation in a UFAD module in EnergyPlus. This approach is predicated on the idea
representation of the stratification in the space generated by the UFAD flow is needed to
provide accurate estimates of heat transfer and comfort calculation. Further, this representation
must be sufficiently simple to enable incorporation into EnergyPlus without adding
significantly to the computational overhead.

The simplest representation of stratification that captures difference in temperatures between
the floor and the ceiling is to divide the space into two zones—a lower occupied zone and an
upper zone—and characterize each by a single temperature. The transition height between the
two zones is an unknown and depends on the parameters of the UFAD system. It is recognized
that this representation oversimplifies the real stratification produced by a real UFAD system.
In practice, the zones are not uniform in temperature and the transition height is often difficult
to define from measured temperature profiles. However, a two-zone representation captures
the first-order effects of the stratification in a way that is simple enough for implementation
within EnergyPlus.

Zonal models of this type exist in the literature, but all arbitrarily assign the location of the
zones. Thus the modeler must allocate zones arbitrarily. In contrast, this project developed a
model of the flow that allows calculation of the heights of the zones and their temperatures
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based on the input parameters of the system. The model is based on a physical description of
the flow as determined from laboratory experiments. These laboratory experiments and the
model are, in turn, compared with full-scale measurements.

Thus the model and, consequently, the implementation in EnergyPlus are based on a
description of the physics as they are currently understood. Because the approximations and
assumptions behind this description of the physics are clearly stated, it is possible to develop a
rational methodology —based on improving these approximations and extending the ranges of
validity of the assumptions—for enhancing the model.

The basic assumption is that the internal gains within the space are from discrete sources that
produce turbulent plumes. These plumes are either point-source for isolated heat sources, such
as people or equipment, or area-sources caused by solar radiation at a window, for example.
The heat generated by these sources rises in the plumes to the upper zone of the space. The
UFAD system delivers cool air through diffusers located in the raised floor in the form of an
upward-directed turbulent flow. Since this cool air is dense compared with the air in the space
it rises a finite height and then reverses direction and falls back towards the floor. As it falls, the
diffuser flow also brings warm air down from the upper part of the space.

The height that the diffuser flow reaches is called the diffuser throw, and this height can be
varied by increasing the flow through the diffuser (by increasing the plenum pressure). The
stratification within the room is determined by this combination of the diffuser flow and the
plumes. In a given space these are, in turn, determined by the type and number of diffusers
(represented by n), the number of the plumes (represented by m) and bulk properties, such as
the ventilation flow rate and the total heat load.

Depending on whether the number of diffusers exceeds the number of plumes or vice-versa, the
team uses either a multi-diffuser (n > m) or a multi-plume (n <m) approach. For example, for
the multi-diffuser case, the space is divided into sub-spaces, each containing a single plume and
n/m diffusers. Thus the problem reduces to developing models for a single plume with a
number of diffusers or a single diffuser with several plumes. These can, in turn, both be related
to the basic model derived for a single plume and a single diffuser. This approach is shown
schematically in Figure 10 and applies to the interior zone with point sources and the
exterior zone with area sources. It is also possible to include additional effects—such as the
effects of elevated sources and leakage from the plenum into the space—as submodels.
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Figure 10. Modeling process schematic

This project studied the multi-diffuser and multi-plume cases separately in specific laboratory
experiments and developed models for the resulting stratification. These interior zone
experiments are compared with full-scale tests in Appenidix C. Based on these comparisons,
scaling laws for the stratification were determined and implemented in EnergyPlus.

3.2.2. Laboratory Experiments and Theoretical Model

The experiments were carried out in a water tank. Plumes of dense salt water were used to
represent heat sources and jets of fresh water were used to simulate the diffuser flows. As a
result, the model is inverted with respect to reality and the return is placed at the base of the
tank. In the discussion of the results, the usual room orientation is used. (See Appendix C for
completed details of the methodology.)

Measurements of the stratification were made by both using digital image processing and
removing samples for analysis. Results provided the basic data for comparison with the
theoretical models.

The theoretical model is based on representing the flow in a plume using standard plume
equations for conservation of mass, momentum, and buoyancy. Turbulence in the plume causes
surrounding air to be entrained into the plume and carried upwards. This entrainment and the
increase in volume flux in the plume with height are represented by an entrainment constant.
Similarly, the flow from the diffuser is represented as a negatively buoyant jet, and again
entrainment into the jet is characterized using a (different) entrainment constant.

When the diffuser flow impinges on the upper warm zone it mixes with the warm air and then
brings this warm air down as it reverses direction. This penetrative entrainment is characterized
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by an entrainment rate E, which is a function of the stability of the stratification. Comparison of
the model and experiments was used to determine E.

The model is then based on the assumption that the stratification consists of two layers each of
uniform temperature separated by a sharp interface. Volume conservation and a heat balance
are applied to each layer, and the resulting equations are solved numerically. The predicted
profiles were compared with those measured in the experiments.

3.2.3. Interior Zone Modeling

Multi-Diffuser Model

In the case where the number of diffusers n exceeds the number of plumes m, the space is
divided into zones each with one plume and n/m diffusers. Figure 11 shows false color
images of the stratification for a single plume and two diffusers and also for an elevated plume.
The warm upper zone is clearly visible, and elevating the heat source makes this zone warmer.
A comparison of the measured profiles and the model results is shown on Figure 12. These
results indicate that the model is in agreement with the measured profiles and that both the
model and the measured profiles exhibit the same trends. The trend in this case involves
maintaining same heat load and ventilation rate, which is equivalent to reducing the plenum
pressure as the number of diffusers is increased. Increasing the number of diffusers lowers the
height of the lower zone and decreases its temperature. The return temperature remains
unchanged.

Figure 11. Photo image of stratification layers
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Figure 12. Comparison of salt tank and modeling results

On the other hand, if the plenum pressure is maintained while the number of open diffusers is
increased, the ventilation rate increases. In this case, the lower zone increases in height, and the
return temperature decreases. Again good agreement is found between the model and the
experiments (Figure 13).
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Figure 13. Multi-diffuser model results
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Multi-Plume Model

When the number of diffusers n is less than the number of plumes, the space is divided into n
zones each with m/n plumes. This situation is more complicated than the multi-diffuser flow,
since in contrast to that case, the plumes do not necessarily have the same strength.

When the plumes are of equal strength, a two-zone stratification is expected, and the theoretical
model is easily adapted for that case. Figure 14 shows the comparison between the model and
the experimental measurements. The two-zone stratification is observed and well predicted by
the model.

051

1.5 2

g'/(B/Q)

Figure 14. Multi-plume comparison of experimental and modeling results

In the case where the plumes have different strengths the situation becomes much more
complicated. For example, for two unequal plumes, a three layer stratification is expected, as
the weaker plume will not have sufficient buoyancy to reach the ceiling. Further, it is no longer
clear that the diffuser flow will penetrate to the upper zone or where the warm air entrained
from that layer will be distributed. As a result, the model is much more complicated and has a
number of other unknowns that make it difficult to compare with the experiments.

One result from the model is that the middle zone is likely either to be thin or to have a small
temperature difference from the upper zone. The project team conducted extensive experiments
but never observed this middle layer. Nonetheless, the model gives reasonable comparisons
with the experiments (Figure 15).

29

Prepared for the California Energy Commission, April 2007 43 https://escholarship.org/uc/item/1pm8b02s



s b=0.25
‘== b=0.5 |
337 == b=0.75
- b=l
3H * exp.datal
* exp.data2
s} 25 i 7
a
& 2r
Q
N 15 = oo
l L -
051 .
0 1 a 1
0 0.5 2 2.5

g/(B/Q)

Figure 15. Unequal strength plumes experimental and modeling results

Plumes of unequal strength remain a concern in the analysis and lead to significant uncertainty
in the implementation in EnergyPlus. This uncertainty manifests itself in the apportionment of
the gains to the occupied and upper zones. Further research is needed to address this important
issue.

3.2.4. Perimeter Zone

The exterior zone differs from the interior in that the plume is an area plume, which results
from heating the fagade. In these experiments, the area plume was represented using a line
plume extending across the width of the tank. Figure 16 shows a shadowgraph image of the
flow with the wall plume generated by the line source. The theoretical model was modified by
using plume equations for a line plume, which primarily increases the volume flux in the plume
with height.
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Figure 16. Shadow graph showing perimeter zone (line plume) experiment
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Figure 17. Perimeter zone modeling and experimental results comparison
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Figure 17 shows the comparison between the new model and the line plume experiments. The
agreement is not as good as for a point-source plume, mainly due to uncertainties in the
entrainment rate for the line plume. Nevertheless, the model captures the main behavior.

3.2.5. Comparison with Full-Scale Tests and Implementation in EnergyPlus

The experiments and the agreement with the theoretical models provided confidence that the
basic physics of the UFAD flows have been captured. Two further steps remained in providing
a valid implementation in EnergyPlus. The first step was to show that agreement between the
laboratory experiments and the full-scale tests. This was shown qualitatively by comparing
smoke visualizations in the room and dye tests in the laboratory. As Figure 18 illustrates, the
same flow regimes were observed. Quantitatively, the team checked that the model, using the
full-scale test parameters, reproduces the measured temperature profiles. This is confirmed in

Figure 19.
3 I 1 T T
#* Real Room Test data
— Theoretical Prediction f
25 - N A
A
25 % g
*
Bzl ]
E 15 "
*
1F * g
*
0.5¢F * N
_*%
0 1 1 f‘ﬁ L 1 1
0 0.2 0.4 0.6 0.8 1 1.2

1-f=(T-Ts)/(Tr-Ts)

Figure 18. Comparison of modeling and full scale results
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Figure 19. Full scale testing results

The second step is to provide algorithms for the temperature stratification and the occupied
zone depths in terms of the external parameters—the ventilation flow rate, the total heat load,
the number and area of the diffusers, and the number of plumes. Previous work by the team
confirms that these are the parameters that govern the physics of the flow. For example, the
team’s work has shown that the room height is not a governing parameter for the steady-state
stratification. Figure 20 shows the results in non-dimensional form for stratification strength
and the occupied zone stratification height for the interior zone experiments. These data include
both laboratory and the test room data. The fact that these data collapse onto single lines shows
that the team has captured the physics correctly and that the laboratory results scale up to full
scale.
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Figure 20. Experimental results for interior zones
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Figure 21 shows similar results of bench-scale experiments for the perimeter zone.
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Figure 21. Experimental results for perimeter zones showing regression line fitted to salt tank
experimental results

These results helped to inform the development of algorithms used in EnergyPlus.

3.3. Underfloor Plenum Testing and Modeling

This section summarizes the work performed in support of Task 2.3 (Underfloor Plenum
Testing) and Task 2.5 (Underfloor Plenum Model Development). The ultimate goal of these
tasks was to develop a model capable of calculating the thermal performance of underfloor air
supply plenums and suitable for implementation in EnergyPlus. A secondary goal was to
conduct fundamental research that provides a sound theoretical and practical understanding of
underfloor plenum energy performance in terms of heat transfer entering the plenum and the
resulting airflow and temperature distributions.

The work is summarized in three sections below. Section 4.1 describes full-scale experiments in
CBE’s underfloor plenum test facility development of a computational fluid dynamics (CFD)
model of underfloor plenums validation of the CFD plenum model by comparison with the full-
scale experimental database. Section 3.3.1 describes use of the validated CFD plenum model to
conduct simulations of a broader range of plenum design and operational parameters
development of a simplified underfloor plenum model based on the CFD database for
implementation into EnergyPlus.

Preliminary validation of the underfloor plenum model in EnergyPlus is described in Section
4.4.3.3. In Section 4.3.3, provides a summary of the results of the simplified heat balance
modeling study of heat transfer pathways in UFAD systems. Full details of all the work on
underfloor plenum testing and modeling are presented in Part IV of this final report, as well as
in attached publications (Jin et al. 2005, 2006; Bauman et al. 2006).
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3.3.1. Testing and CFD Modeling of Underfloor Air Supply Plenums

This section describes the development and validation of a CFD model for predicting the
airflow and thermal performance of underfloor air supply plenums. To provide validation data
for comparison with the CFD model, a series of experiments in a full-scale underfloor plenum
test facility were carried out.

Full-Scale Underfloor Plenum Test Facility

The underfloor air supply plenum test facility was installed in December 2000 in a university
warehouse building with an exposed concrete slab floor (see Figure 22). The plenum is 6.7
m (22 ft) by 22.6 m (74 ft ) and 0.305-m (1-ft ) high. The raised floor system was constructed from
commercially available floor panels and included 16 VAV floor diffusers. An HVAC system
delivers supply air at a controlled temperature and volume into the underfloor plenum. The
HVAC system has 2,330 cfm (1100 liters per second [L/s]) as the maximum supply airflow and
13-32°C (55-90°F) as the operable temperature control. The plenum inlet was installed at the
middle of the side wall next to the HVAC system.

Figure 22. Photo of underfloor air supply plenum test facility

Preliminary calculations showed that the inlet configuration can have a significant impact on
the plenum air temperature variation and heat gain. Two different inlet configurations were
installed and tested to provide validation data for the CFD model:

e Single focused jet, representative of the most basic plenum inlet design

e Two jets, which is a simplified version of an inlet vane configuration that produces
multiple jets to spread out the incoming air

To record the boundary and test conditions for each of the two inlet configurations, a data
acquisition system with associated sensors (at multiple locations) was installed in the test
facility. The following test conditions were measured:

o Inlet temperature, velocity, and direction
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¢ Plenum air temperature and velocity

e Slab surface temperature, heat flux, and temperature to a depth of 4"
¢ Surface temperature of underside of floor panels

e Room air temperature

¢ Room ceiling surface temperature

For comparison with the CFD plenum model, the team conducted two steady-state
experiments, one for each inlet configuration. In the experiments, the team delivered a constant
temperature and volume of air for at least 72 hours before taking measurements. All of the
transient behaviors were minimized after such a relatively long time. Data showed that the
variation of temperature and heat flux was negligible during the short period of time (typically
15 minutes) used for the data collection period.

CFD Plenum Model

CFD programs provide a detailed analysis of the thermal fluid phenomena, producing
simulation results that include qualitative values—such as airflow pattern—and quantitative
values—such as air velocity, temperature, turbulence kinetic energy, Reynolds stress, and
surface heat flux. The parameters reported by the CFD code can be compared with the
experimental data. A commercially available CFD computer program was used to develop an
exact model of the full-scale plenum test facility. The CFD code solves the unsteady Navier-
Stokes equations in their conservation form and also includes a standard k-¢ turbulence model.
Full details of the CFD plenum model are presented in Appendix D and elsewhere (Jin et al.
2006).

Comparison of CFD Model Predictions with Experimental Data

Generally, the comparison of CFD results with the experimental data is the most important part
of the reporting process for an indoor environment CFD analysis. The quantitative comparison
between CFD predictions and experimental data included the following;:

e Temperature at each diffuser.

e Air velocity and slab heat flux at selected locations in the plenum. The plenum heat gain
was calculated based on the measured inlet/outlet temperature difference (where the
outlet temperature represents the average of all measured diffuser temperatures) in
combination with the airflow volume in the experiment. It can also be computed from
CFD results using the same approach.

e Heat transfer into the plenum from above the floor and under the slab. These
measurements were obtained from the CFD results. It was compared against the heat
gain of the plenum using temperature and air volume approach (above) to check the
convergence of the CFD calculations.

As an example, Figure 23 presents one comparison of the CFD model predictions to measured
data. The figure shows a contour plot of the predicted temperature distribution at mid-height of
the plenum for the focused jet inlet configuration. Each number in the contour plot represents
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the average air temperature over the indicated area. In addition, the measured and computed
temperatures at each of the ten diffusers are shown.

The overall plenum temperature plot in Figure 23 is consistent with the flow pattern. The first
diffuser directly impacted by the inlet jet diffuser has the lowest temperature of all diffusers.
The diffuser with the highest temperature is the last impacted by the expanded airflow pattern,
which traveled to the far end of the plenum before recirculating back to the nearby diffuser.
This analysis helps to explain observations made in many underfloor supply plenum
applications. The diffusers closest to the plenum inlet do not necessarily have the lowest
temperatures. The temperature rise depends upon the distance that the inlet air travels before
reaching the particular diffuser. Due to the complexity of the airflow pattern for a given plenum
shape and inlet configuration, the traveled distance is not necessarily the same as the “straight-
line” distance between the inlet and diffuser under many conditions.
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Figure 23. Comparison of measured and CFD-predicted diffuser temperatures for single-
focused jet inlet configuration (inch-pound [IP] units)

Table 2 shows the comparison of the total heat gain of the plenum between experiment and
CFD prediction. The test facility does not allow the split of total heat gain into heat transfer
through the raised floor and concrete slab; the CFD model is capable of providing this relatively
detailed information. Agreement for the total heat gain into the plenum is within 7% for the
single focused jet and within 5% for the two jets inlet configuration.
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Table 2. Comparison of heat gain into the plenum between test and CFD prediction

One Jet Two Jets
Measured Predicted Measured Predicted
W (Btu/h) W (Btu/h) W (Btu/h) W (Btu/h)
Floor N/A 1,322 (4510) N/A 1612 (5500)
Slab N/A 1,753 (5981) N/A 1379 (4705)
Total 3305 (11,276) 3075 (10,491) 2851 (9727) 2991 (10,205)

Conclusions

The CFD model for the underfloor supply plenum of a UFAD system developed can predict the
airflow patterns, air temperature and velocity distributions, and heat flux from the structural
slab and the raised floor into the plenum for a variety of thermal and airflow boundary
conditions. The model was validated using experimental data collected in a full-scale plenum
test facility. The computed air temperature, velocity, and heat flux generally agree well with the
measured data. More important, the discrepancies between computed and measured total heat
gain of the plenum were less than 10%.

3.3.2. Development of Underfloor Plenum Model for EnergyPlus

This section describes the development of a simplified underfloor plenum model suitable for
implementation into EnergyPlus. To this end, the team used the validated CFD plenum model
(described in Section 3.3.1) to conduct a larger number of numerical experiments to investigate
the energy performance of underfloor plenums over a wide range of realistic plenum
configurations and operating conditions. The goal of these CFD simulations was to generate a
numerical database to serve as the basis for constructing and testing a simplified plenum model.

CFD Sensitivity Study

Using the validated CFD model, the team simulated nine different plenum configurations to
investigate the impact of inlet locations, inlet velocity, total airflow rate, inlet jet direction, and
plenum shape on the plenum heat gain and temperature distribution. For most of the cases the
modeled plenum had the dimensions of 100 ft by 200 ft by 1 ft high (30.5m x 60.9 x 0.3 m),
representing a 20,000 ft? (1860 m?) floor plate of a building.

Figure 24 shows an example schematic diagram of one of the plenum configurations with
internal plenum inlet locations, positioned to model two HVAC supply shafts on each end of a
building core region. For these simulations, there were 60 diffusers in total, 28 in the perimeter
zone and 32 in the interior zone. The primary boundary conditions used for most of the
sensitivity analysis cases were as follows:

e Inlet air temperature 16.7°C (62°F)

e Airflow rate = 0.00508 m3/s-m? (1 cfm/ft?) or 9.44 m3/s (20,000 cfm) total

e Ceiling temperature = 25.6°C (78°F)

¢ Ceiling emissivity = 0.9, view factor = 0.5
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e Temperature under slab = 26.7°C (80°F)

Simulations were made to investigate the impact of variations in the following parameters:

¢ Plenum configuration and geometry

e Supply location (e.g., internal, external) and direction
e Airflow rate

e Plenum inlet velocity and temperature

e Ceiling temperature

e Return temperature on the floor below
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Figure 24. Simulated plenum configuration with internal inlets: square diffusers =
interior; round diffusers = perimeter

Results

Table 3 summarizes the results for selected cases with internal inlets simulated with the
validated CFD plenum model. The predicted heat transfer variables include the total heat gain
to the plenum (through both the concrete slab and raised floor panels), the average surface
convection coefficients for each of these two primary surfaces, and the average plenum
temperature in both the perimeter and interior zones. The convection coefficients allow
calculation of the average heat flux based on the temperature difference between these
parameters:

e The average plenum air temperature (assuming a simple well-mixed plenum and
calculated as the average of all diffuser temperatures)

e The average surface temperature of either of the two heat transfer surfaces (the
underside of the floor panels and the top surface of the slab)

The convection coefficients are based on the detailed CFD results, but were put in simple terms
in preparation for implementation into EnergyPlus as described below.
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Table 3. Simulated plenum heat gain, convection coefficients and diffuser temperature distribution

for internal plenum inlet configurations

Case | Description Inlet Heat Slab Floor Average | Average
with Velocity Gain Convection | Convection | Perimeter | Interior
Internal ft/min Btu/h- | Coefficient | Coefficient Temp Temp
Inlets (m/s) ft? Btu/h-ft>°F | Btu/h-ft>°F | °F (°C) °F (°C)
(Wim?) | (WIm*-K) (W/m?-K)
1200 fpm 3.67 0.34 0.35 69.0 68.6
12 N
4a 0.5 cfm/ft? 00(6.1) (11.6) (1.93) (1.99) (20.5) (20.4)
600 fpm 5.03 0.45 0.47 65.4 68.1
4 .
b 1 cfm/ft® 600 (3.0) (15.9) (2.57) (2.67) (18.6) (20.1)
1200 fpm 5.25 0.50 0.58 66.8 67.3
4 1200 (6.1
© 1 cfm/ft® (6.1) (16.6) (2.82) (3.30) (19.3) (19.6)
600 fpm 6.05 0.54 0.69 64.8 66.8
4d 1.5 cofm/ft? 600 (3.0) (19.1) (3.09) (3.89) (18.2) (19.3)
1200 fpm 6.14 0.57 0.70 64.9 66.6
12 N
de 1.5 cfm/ft® 00(6.1) (19.4) (3.25) (3.96) (18.3) (19.2)
1200 fpm 6.80 0.65 0.83 64.2 66.0
4f 12 N
2 cfm/ft? 00(6.1) (21.4) (3.67) (4.73) (17.9) (18.9)

Underfloor Plenum Model for EnergyPlus

Figure 25 presents a schematic diagram of the configuration of the simplified plenum model
within EnergyPlus:

¢ Conditioned air from the air handler enters the underfloor plenum (Plenum 1) at the
desired flow rate and plenum inlet temperature (Tin1).

e As with other conditioned zones, EnergyPlus performs an energy balance on the
plenum, producing a single well-mixed temperature (Tpienumi). To calculate the energy
balance, recommended surface convection coefficients, described below, are specified
for the slab (hs1) and raised floor (hs).

e The well-mixed plenum temperature (Tplenum1) serves as the average diffuser discharge
air temperature (Tout) entering the conditioned space (Zone 1).

Note that more than one thermal zone can be served by a single underfloor plenum. In fact,
unless the user has more detailed information about the expected temperature distribution in
the underfloor plenum across the entire floor plate, a single underfloor plenum is the preferred
configuration for each floor of the building. However, if desired, one or more additional
plenum zones may be added in series to the first plenum zone.

In this case, as shown in Figure 25, Toun is equal to the plenum inlet temperature (Tin2) for the
second plenum zone (Plenum 2). This permits the possibility of simulating an interior plenum
zone with a cooler supply air temperature and a perimeter plenum zone with a warmer supply
air temperature due to thermal decay in the plenum. Note that in this case, the airflow entering
the second plenum will be reduced by the volume of air delivered into Zone 1. Due to the
complexity of most underfloor plenum airflow and temperature distributions (see
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Table 3), until more guidance is available, it is recommended that the user specify a single
underfloor plenum per floor

Zone 1 Zone 2
Toutl(Tplenuml) ToutZ(TplenumZ)
Tinl / J , Toutl = TinZ / ) } ToutZ
h I: / h /
|:> hs\ Tplenuml |:> |:> hs\ TplenumZ |:>
Plenum 1 Plenum 2

Figure 25. Schematic diagram of EnergyPlus plenum model structure

Full details of the derivation of the final version of the EnergyPlus underfloor plenum model
are provided in Appendix D. The final specification of the underfloor plenum model consists of
Equations (1) and (2), as listed below, one for the top surface of the slab and one for the
underside surface of the raised floor panels.

Bottom surface of underfloor plenum zone (top surface of slab):

h,., =0.1333Q° — 0.58Q? + 0.9567 Q — 0.01 (1)
Top surface of underfloor plenum zone (underside surface of raised floor panels):
Ny, =0.16Q° —0.70% +1.230 - 0.11 )
where:
hslab = average convection coefficient for top surface of slab (British thermal unit
[Btu]/hr-ft>-°F)
h floor — average convection coefficient for underside of raised floor panels (Btu/hr-ft>-°F)
Q = total airflow rate entering underfloor plenum zone (cfm/ft?
& p

The above equations represent a very simplified and approximate model of a very complex
airflow configuration resulting in heat exchange with the top and bottom surfaces of an
underfloor plenum. Further, underfloor plenum designs will rarely, if ever, conform exactly to
the geometric and airflow assumptions upon which this model is based. However, the team
believes that in the majority of EnergyPlus simulations, the overall energy balance of an
underfloor plenum will be relatively insensitive to all parameters except the total rate of airflow

41

Prepared for the California Energy Commission, April 2007 55 https://escholarship.org/uc/item/1pm8b02s



entering the underfloor plenum and will demonstrate reasonable agreement with the
predictions of this simplified model. Clearly, further research may provide updated information
on this topic in the future.

3.3.3. Simplified Analysis of Heat Transfer Pathways in UFAD Systems

This section reports on a modeling study to investigate the primary pathways for heat removal
from a room with UFAD under cooling operation. Compared to the standard assumption of a
well-mixed room air condition, stratification produces higher temperatures at the ceiling level
that change the dynamics of heat transfer within a room, as well as between floors of a multi-
story building. A simplified first-law model was used to estimate and compare the relative
magnitudes of the heat being removed from a room through two primary pathways:

e Heat extraction via warm return air exiting the room at ceiling level or through the
return plenum

e Heat entering the underfloor supply plenum either through the slab from the floor
below or through the raised floor panels from the room above

The goal of the study was to seek evidence that supports two surprising and widely observed

thermal phenomena in UFAD systems:

¢ The return air extraction rate based on the temperature difference between the room
return and diffuser supply air temperatures is almost always noticeably less than the
total room cooling load based on the sum of all space heat gains.

e Temperature gain (thermal decay) in open underfloor supply plenums is often larger
than expected.

The modeling results were consistent with these observations and also provided guidance to
the research team towards development of the new version of EnergyPlus/UFAD, described in
the Appendix D.

Description of Simplified Model

The simplified first law model was configured to calculate (or use assumed values for) inlet and
outlet air temperatures for two control volumes:

e The room, bounded by the top of the raised floor and the underside of the slab (with or
without insulation)

¢ The underfloor plenum, bounded by the top surface of the slab and the underside of the
floor panels

For the room/return plenum, the model performs a steady state heat balance on each of the
three major architectural layers of the heat transfer system:

o Top surface of raised floor (carpet)

e Bottom surface of slab (or slab insulation, if present)

e Suspended ceiling (if present—assumed to be a uniform temperature (infinite
conductivity))
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In addition, heat balances are also performed on the top and bottom surfaces of the supply

plenum, representing the bottom surface of the raised floor panels and the top surface of the
slab, respectively.
representing one floor of a multi-story building.

Figure 26 shows a schematic diagram of the modeled configuration,

Slab-supply plenum conduction/convection
Slab Insulation
(none, R-10)
R . #~ Return-slab
eturn Plenum Tslabbottom » Treturn - eturn-sla
/ Ceiling-slab E — Return-ceiling convection
Suspended * Treturn
Ceiling T .
(e=0.9,0.1) ceiling :
i/ Ceiling-floor radiation
Room o
Raised S Trvom (near the floor)
Floor \ Tearpet . #&—— Floor-room convection
> <
l— Floor-supply plenum
Supply Plenum Tolenum
Slab-supply plenum conduction/convection
Return Plenum Tslabbottom Treturn

Figure 26. Schematic diagram of heat transfer pathways in room with UFAD and hung

ceiling

As indicated in the Figure 26, the calculations by the simplified model consider the

following heat transfer processes:

¢ Conduction through the slab and floor panels, as well as into the supply plenum via

convection.

e Radiation from the ceiling to the raised floor (and from the top of the hung ceiling to the

underside of the slab).

e Convection between the return air and the suspended ceiling and/or the ceiling/slab.
(The return temperature, after losing heat to the slab, is assumed to be the same as the
temperature within the well-mixed ceiling plenum (when present), as well as near the

top of the room (with or without suspended ceiling)).

e Convection between the room air near the floor and the raised floor panels (carpet

surface).

To investigate possible strategies for reducing the magnitude of energy transferred into the

underfloor plenum, the model was configured to include different combinations of a low
emissivity ceiling and slab insulation. These ceiling thermal properties were applied to both a
suspended ceiling and an open, exposed slab (no hung ceiling), as outlined for Cases 1-3 in
Table 4 below.
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Table 4. Properties of ceiling configurations investigated with simplified model

Ceiling Condition Baseline Case 1 Case 2 Case 3
Emissivity (g¢) = 0.9 X X
No slab insulation X X
Emissivity(e;) =0.1 X X
Slab insulation = R-10 X X

To conduct the model simulations, initial air temperatures, representing baseline conditions,
were selected to provide a typical vertical temperature profile for a well-stratified interior zone
of a building, such as those described by Webster et al. (Webster et al. 2002a, 2002b). For this
profile, the temperature near the ceiling, representing the return air temperature, was assumed
to be 25.6°C (78.0°F) and the temperature near the floor was assumed to be 22.2°C (72.0°F),
producing a 3.4°C-(6.0°F-) temperature gradient from floor to ceiling. In addition, the average
supply air temperature leaving the underfloor plenum was 18.3°C (65.0°F), and the room
airflow rate was 3.05 L/s-m?2 (0.6 cfm/ft?).

Results

Figure 27 presents a summary of the room cooling load distribution with hung ceiling, as
predicted by the model. The figure allows easy comparison of the relative proportions of energy
leaving the room through the two primary pathways:

e Heat extraction via warm return air exiting the room at ceiling level or through the
return plenum

o Total heat transferred to the underfloor supply plenum (through the slab and raised
floor panels)

Note that in Figure 27, 100% represents the heat gain to the room (i.e., the source of the loads)
that leaves via return air extraction and heat transfer to the plenum. It is synonymous with the
total energy leaving the system comprising the room and supply plenum. As shown for the
baseline case, representing standard construction practice, 42% of the total room cooling load
leaving the space exits into the supply plenum and only 58% is accounted for by the return air
extraction rate. These findings demonstrate why temperature gain in supply plenums can be a
problem. Of the energy entering the underfloor plenum, twice as much (28%) is calculated to
enter through the slab compared to the raised floor (14%). The results for Cases 1-3 demonstrate
that use of two ceiling thermal treatment strategies—an R-10 insulation layer on the underside
of the structural slab and low-emissivity (e=0.1) coating applied to the top and bottom surface
of a hung ceiling—can reduce the magnitude of energy transferred into the underfloor plenum.
Further results and sensitivity analysis of the model assumptions are discussed in Appendix D..
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Figure 27. Predicted percentage of total room cooling load and amount (W/m2 of energy
flows leaving room with UFAD and hung ceiling; room airflow rate = 3.1 L/s-m? (0.6 cfm/ft?)

Conclusions

A simplified heat balance model was used to estimate and compare the amount of energy being
removed from a stratified room with a UFAD under cooling operation. Surprisingly, for the
range of cases studied, findings show that for typical multi-story building configurations (raised
access floor on structural slab with or without suspended ceiling), 30-40% of the total room
cooling load is transferred into the supply plenum and only about 60-70% is accounted for by
the return air extraction rate. These findings have important implications for the design,
operation, and energy analysis of UFAD systems.

In a stratified UFAD system, the return air extraction rate based on the temperature difference
between the room return and diffuser supply air temperatures will always be significantly less
than the total room cooling load based on the sum of all space heat gains.

Cooling airflow design calculations must account for the distribution of room cooling load
between the underfloor supply plenum and the room. The results of this study were directly
used in the team’s subsequent development of a new UFAD cooling airflow design tool, as
described in Appendix F.

The amount and distribution of temperature variations in the underfloor supply plenum can
significantly impact the cooling operation of a UFAD system. This finding is especially true in
perimeter zones, where increased diffuser supply temperatures can make it more difficult to
satisfy peak cooling loads.
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Slab insulation proved to be the most effective strategy among those investigated for reducing
supply plenum heat gain in a multi-story building.

Simulations at higher airflow rates demonstrated reduced temperature gain in the plenum and
stratification in the room, albeit at the cost of higher fan energy use. Future research is needed
to address some of the control strategy trade-offs suggested by this result. For example,
optimizing performance may involve trading-off fan energy savings from reduced airflow vs.
economizer savings (in suitable climates) from increased airflow and greater coil leaving air
temperatures. This will be the subject of future research with the new version of
EnergyPlus/UFAD described in this final report.

3.4. EnergyPlus Module Development and Validation

EnergyPlus additions and enhancements for the UFAD project consist of 3 major pieces:

e Upgrades to HVAC system simulation capabilities
e Interior and exterior non-uniform zone models
e Supply plenum modeling

Each of these pieces needs to be available before a complete UFAD system can be simulated.
UFAD systems are not just systems with a funny air supply. They are equipped with their own
specialized types of equipment, HVAC configuration, and control. This section of the report
describes the EnergyPlus upgrades made as a result of this project.

3.4.1. HVAC System Upgrades

At the start of the UFAD project, two HVAC modeling capabilities not yet in EnergyPlus were
identified as vital for UFAD simulation: a variable-speed fan terminal unit and return air bypass
capability.

At project inception, EnergyPlus had a variety of terminal unit component models. None had
the capability of simulating a VAV terminal unit with a variable speed fan (and heating coil)—a
unit often used to supply UFAD exterior zones. Both core project members (Tom Webster) and
by advisory team members (Taylor Engineering) determined that this component was critically
important to simulating realistic UFAD systems. T

EnergyPlus has theoretically general HVAC duct configuration capability, but the allowed
configurations have been limited in practice. At project startup, EnergyPlus could simulate
single splitters on the air-system supply side: basically single and dual duct systems. No
provision existed for a mixer and splitter, as would be needed for a return air bypass (RAB)
system or any means for controlling such a system. The ability to model RAB configurations
was identified as a key feature for UFAD systems. Such systems have higher than normal
supply air temperatures. As a consequence, a conventional single duct setup would have
difficulty removing sufficient moisture from the mixed air to maintain comfortable zone
humidity levels. RAB configurations are often used in UFAD systems to mitigate this problem.

The following sections describe work done in the above two areas. A full Users Description and
Engineering Documentation, as well as example files, can be found in Appendix E.
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Variable Speed Fan Terminal Unit Model

The variable speed fan terminal unit in EnergyPlus exhibits a number of features not available
in the other terminal unit models. It contains a variable speed fan that can control the flow of
cool or reheated supply air to the zone. It also has separate maximum cooling and heating air
flow rates. And the model is fully iterative —it makes no assumptions about the linearity of its
subcomponent models. The model inputs and calculations are fully described in Appendix D.
An example of the model’s use is contained in example input 5ZoneSupRetPlenVSATU.idf. This
model was released with EnergyPlus 1.2.1 in October 2004.

Return Air Bypass Capability

Creating the capability to model RAB duct configurations in EnergyPlus required a number of
new components and upgrades:

e Air primary loops needed the capability to contain mixers. Accordingly, programmers
added mixers to the data structures, input, and initialization code written, and added
the ability to simulate mixers.

¢ The air side simulation needed to be able to simulate bypass branches, or branches with
no functional component. To enable this the pass-through component, duct was created,
analogous to the pipe component in plant.

¢ The flow rate through the bypass branch needed to be controlled. To do this the new
setpoint manager, SET POINT MANAGER:RETURN AIR BYPASS FLOW, was created.
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Figure 28. Simple RAB Configuration showing mixer, splitter, and duct
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The complete RAB simulation capability was released with EnergyPlus version 1.2.3 in October
2005. An example input illustrating the capability is 5ZoneSupRetPlenRAB.idf. The individual
components used for RAB are described in Appendix E.

3.4.2. New UFAD Models in EnergyPlus

EnergyPlus is based upon the heat balance method within a single zone. The basic zone model
convectively couples all the surfaces to a single room air node. Further development of the
program has led to the introduction of multiple air node zone models. The available models are
divided into two primary types:

e Models with user-specified predefined nodes

e The UCSD models, which divide the zone vertically into sub-zones with thicknesses
depending on load and air flow rate

For the UFAD project, two new room air models have been developed: interior UFAD and
exterior UFAD. Both are tow-node (two sub—zone) models similar to the UCSD Displacement
Ventilation model. The two models are described below and in the E.

A major barrier to modeling UFAD systems has been the inability to model supply air plenums.
In the early phases of the UFAD project, EnergyPlus was enhanced to permit the a general
configuration of supply plenums in the supply air path. This enhancement gave the program
the capability of trying various series and parallel supply plenum configurations. The plenums
were still modeled as well-mixed zones with a single average air temperature. Temperature
decay could be modeled by concatenating plenums in series. It was believed that treating
supply plenums as normal zones would prove to be inadequate. However EnergyPlus
simulations compared to measurements and CFD simulations (carried out by CBE) showed that
simply varying the convection coefficients at the upper and lower surfaces produced good
agreement. The EnergyPlus supply plenum modeling capabilities are described below and in
Appendix E.

UFAD Interior Room Air Model

In EnergyPlus the default zone model is a uniform, well-mixed zone. To specify such a zone, the
user needs only to enter a Zone object in the input file. In order to choose a nonuniform zone
model, a RoomAirModel object needs to be specified. This object allows the user to choose from
among a variety of nonuniform models: well mixed, user defined nodal model, Mundt nodal air
model, UCSD three-node displacement ventilation model, UCSD two-zone cross ventilation
model, UCSD 2-node UFAD model for interior zones, and UCSD 2-node UFAD model for
exterior zones. Each choice requires further input specific to the model chosen. For UCSD
UFAD Interior the additional input is specified in a UCSD UFAD Interior Model Controls
object. This input is described in Appendix E.

Modeling UFAD interior zones required a number of changes and enhancements to EnergyPlus.
simulation of nonuniform zones in EnergyPlus is centralized in the module
RoomAirModelManager. This module handles obtaining the room model input data, model
initialization, and calling the individual model management routines. For the UCSD UFAD
interior zone model, a new “get input” routine GetUFADZoneData was written (which also
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processes the exterior zone model input), initializations for the interior zone model were added
to subroutine Shared DVCVUFDatalnit , and a call to the model manager ManageUCSDUFModels
added.

The data structures and arrays for UCSD UFAD interior model controls and UCSD UFAD
exterior model controls are contained in the data-only module DataRoomAir. The relevant arrays
are ZonelUCSDUI and ZoneUCSDUE.

For modeling the UFAD zones an entirely new module was created: UFADManager. This
module contains the routines ManageUCSDUFModels, InitUCSDUF, SizeUCSDUF, HcUCSDUF,
CalcUCSDUI, and CalcUCSDUE. These routines accomplish the following tasks:

e ManageUCSDUFModels: acts as the access point to the module. It is the only Public
routine in the module. Calls Init~UCSDUF and CalcUCSDUI or CalcUCSDUE.

e InitUCSDUEF: does local, module initialization. Most of the initialization is done at the
higher level in RoomAirModelManager. Calls SizeUCSDUF.

e SizeUCSDUEF: sets input defaults depending on the zone model and diffuser type. See
code in Appendix 4 for specifics.

e HcUCSDUF: sets the convection coefficients for the room surfaces — basically uses free
convection values.

e CalcUCSDUI: calculation of UFAD interior zone subzone boundary height and subzone
temperatures. The calculation is well described in the Engineering Reference section in
Appendix D.

Although most of the changes made to EnergyPlus in order to model UFAD interior and
exterior zones are well encapsulated in the modules RoomAirModelManager and
ManageUCSDUFModels, some changes to other parts of the code were needed as well.

UFAD Exterior Room Air Model

In terms of software, the UFAD exterior zone is modeled in a similar manner to the interior
zone. The input and most of the initialization occurs in RoomAirModelManager. Defaulting of
inputs is done in RoomAirModelManager, subroutine SizeUCSDUEF. Convection coefficients are
calculated in RoomAirModelManager, subroutine HcUCSDUF. Calculation of subzone boundary
height and subzone temperatures is done in RoomAirModel Manager, subroutine CalcUCSDUE.

In terms of physical processes, the situation in the exterior zone is more complex (plumes
coming from window surfaces as well as workstations). And the equipment used may be
different (linear bar grille diffusers for instance). As a result the input and calculations are
slightly different from the interior zone case bit the overall scheme is the same.

Underfloor Plenum Model

As a result of the work done by CBE in measuring conditions in a test plenum and in simulating
various plenum configurations using CFD, the supply air plenums are treated as normal well-
mixed zones in EnergyPlus. Depending on the supply air flow rate, different convection
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coefficients should be used on the plenum upper and lower surfaces. These convection
coefficients will need to be input using the ConvectionCoefficients object.

In summary, to describing an underfloor plenum in EnergyPlus requires the following steps:

e The plenum needs to be described geometrically as a zone in the overall geometric
description of the building. This means there should be a Zone object for each plenum
and there should be appropriate associated Surface:HeatTransfer objects describing the
shape of the plenum and how it connects to the other zones in the building.

e The plenum should be treated as a well-mixed zone. There should be no RoomAir
Model associated with the plenum zone.

e There must be a Zone Supply Plenum object for each supply plenum. It must reference
the relevant zone and be referenced in the Zone Supply Air Path for the system. The
Zone Supply Air Path can contain any number of Zone Supply Plenums and Zone
Splitters. This enables a general branching configuration in the supply air path. The
connectivity is defined direct inlet/outlet node connections. The program does check for
correct connectivity.

e ConvectionCoefficients object values should be entered with recommended values for
the supply plenum upper and lower surfaces.

The capability to link Zone Supply Plenums and Zone Splitters in a general configuration in the
Zone Supply Air Path was added to EnergyPlus as part of this project.

3.4.3. Validation of New Models in EnergyPlus

Interior RAS model

Validation was attempted by comparing EnergyPlus results with extensive measurements made
at the York test facility by York and CBE. The effort is described in Appendix E. The first step
was to match test chamber results with EnergyPlus for the well-mixed case. These runs were
made by Alan Daly of Taylor Engineering (who wrote a custom interface for EnergyPlus to
facilitate the runs) and were eventually successful. Then comparisons were made with various
UFAD test runs at the York test chamber. These comparisons are not completely successful;
there is generally good agreement in supply and return temperatures, but often difficulty
matching the occupied subzone temperatures. Reasonable agreement in the occupied subzone
comes only when the “fraction of the occupied subzone gains that remain in the subzone”
parameter is between 0.75 and 1.0.

Exterior RAS model

Validation for the exterior model is incomplete. It should be noted that the artificial
sun/window setup at the York test facility introduced a major modeling issue into this
validation effort. Early on in the project, it was decided to avoid modeling the window by using
test chamber interior glass temperature measurements and interior surface radiation flux
measurements directly in EnergyPlus. A modified version of EnergyPlus was created to enable
direct use of these measurements. Two new objects were created: MeasuredUFADWindowData
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and Measured UFADSolarFraction. The modifications and new objects are described in Appendix
E.

Underfloor Plenum Model

Blind comparisons were done between EnergyPlus runs performed at LBNL and CFX
simulations and measurements performed by CBE. Two main configurations were tested:

1. A 22 by 48 foot floor plan with a single 1 foot high supply plenum. This is basically the
layout of the CBE plenum test facility.

2. A 50 by 100 foot floor plan divided into 2 zones: 35 x 100 (south) and 15 x 100 (north). In this
case the larger zone represents an interior zone and the smaller zone an exterior zone. Air is
supplied first to the interior zone, then to the exterior zone. Hence the supply air
temperature will be higher for the exterior zone. This is a test of EnergyPlus’ capability to
model temperature rise in a supply air plenum.

For case 1, the team can provide the following results. The comparison is between measured,
CFX and 3 EnergyPlus runs. EnergyPlus run 4 has radiative exchange between the supply
plenum ceiling and floor turned ON, and uses hcceiing = 4.01 (W/m?K), hefor=3.52. Run 5 has the
same h.’s, but turns the radiative exchange between the ceiling and floor OFF (to match the CFX
simulations). Run 6 has the radiation exchange OFF and uses he,iing=7.66, hefioor=4.72. The results
from these the 3 EnergyPlus runs are shown in Table 5 and give some idea of the sensitivity of
the results.

Table 5: Plenum sensitivity study, Case 1

Supply Plenum Plenum
Plenum Ceiling Plenum Ceiling Plenum Floor
Supply Plenum heat gain | Heat Gain | Floor Heat | Temperature | Temperature
Temperature (°C) (W) (W) Gain (W) (W) (W)
CFX1 16.7 3075
CFX2 2996 1243 1753
Measured 17 3305
Eplus4 16.85 3187 1589 1597 20.89 21.48
Eplus5 16.82 3159 1426 1733 20.45 21.83
Eplus6 17.25 3553 1649 1904 19.45 21.37
Table 6: Plenum sensitivity study, Case 2
Interior Supply | Exterior Supply | Interior Supply | Exterior Supply
Plenum Plenum Plenum Heat Plenum Heat
Temperature Temperature Gain Gain
(°C) (°C) (W) (W)
CFX 19.2 20.3 7063 1560
EnergyPlus 19.3 20.3 7415 1599

The EnergyPlus inputs for these comparisons are given in Appendix E.
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3.5. Cooling Airflow Design Tool

Design engineers often cite methods for airside design sizing as one of the most important
unanswered questions regarding UFAD system design. The determination of design cooling air
quantities must take into account key differences between a thermally stratified space and a
conventional well-mixed space. The following report on the cooling airflow design tool
describes:

¢ The development of the calculation methods that form the basis for the modeling engine
e User inputs and outputs
¢ Preliminary validation by comparison to full-scale experimental data

e Example results to demonstrate the behavior and sensitivity of the design tool to
different user inputs and assumptions

e Comparison to overhead system airflow quantities for equivalent comfort conditions
¢ Future work needed to improve and refine the design tool

For the full report, see Part VI of the Final Report.

3.5.1. Development of Design Tool

A design tool developed is a spreadsheet-based calculation procedure that in its final form will
be easy to use by practicing design engineers. Figure 29 shows the current scheme for the
design tool process. Inputs include the standard output from a load calculation tool and a
number of room description parameters. The model can then determine cooling airflow,
thermostat setting to achieve a given comfort condition, the air temperature to be supplied to
the underfloor plenum, and the airflow to be used for a conventional overhead system given the
same load conditions.

Standard overhead
load calculation

|

Example UFAD User

Inputs Example Outputs
Room Cooling Modeling .
IR Load Ratio Engine AT
Number diffusers p Thermostat setting
. (UFAD/OH) (Empirical g
Diffuser type (Lookup tables) correlations) Plen.um et tem.p
Diffuser supply temp Equivalent OH airflow
Desired Toz_avg

Figure 29. Design tool schematic
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Figure 30 shows an example of the simplified temperature profile calculated by the design tool
compared to full-scale measured data. The vertical temperature difference between head height
(170 centimeter [cm] or 67") and ankle height (10 cm or 4"), AT, should not exceed 2.7°C (5°F),
as specified by ASHRAE Standard 55-2004 (ASHRAE 2004). The average temperature in the
occupied zone, Tayg oz, is determined based on the temperature profile between 10-170 cm (4-
67").

Measured

Height [ft]
(4]

——

68 70 72 74 76 78 80

Room Temperature [°F]

Figure 30. Simplified temperature stratification profile

3.5.2. Model Behavior

As the design tool development has progressed, the team compared the tool’s performance to
the current understanding of UFAD systems when subjected to a variety of conditions to ensure
that the tool was producing intuitive and accurate results.

Sensitivity studies
Variation of Load

One of the user inputs to the design tool will be the cooling load as derived from a standard
load calculation procedure. Assume that the goal of the designer is to use an airflow that would
yield an average occupied zone temperature (To, ag) of 22.7°C-23.8°C (73°F-75°F) and an
occupied zone stratification (ATo,) of 1.6°C-2.7°C (3°F-5°F), then the model can be used to
explore a range of load conditions to determine airflows that will satisfy these comfort criteria.
In Figure 31-33, , Ty, avg and AT, are plotted against airflow (cfm/ft?) for three different load
conditions in the space based on design tool results assuming a swirl diffuser, one diffuser per
workstation, and an 18.3°C (65°F) diffuser discharge temperature (Ts).

The blue shaded region is the range of airflows that satisfy the T, ay design condition (22.7°C-
23.8°C or 73°F-75°F) and the red shaded region is the range of airflows that satisfy the AT,
design condition (1.6°C-2.7°C or 3°F-5°F). Where the two overlap is the range of airflows that
satisfy both design conditions. The model incorporates a room cooling load ratio, R, defined as
the percentage of the overhead (OH) cooling load that is to be assigned to the room in the
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UFAD airflow calculation. Since research has shown that about one third of the load is
transferred into the underfloor plenum (Bauman et al. 2006), this has the effect of reducing the
amount of load that must be removed by the room airflow quantity. The team used a value for

R of 70% for all of these
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Figure 31. Design conditions vs. airflow, at a cooling load of 1.5 W/ft2
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Figure 32. Design conditions vs. airflow, at a cooling load of 2.0 W/ft2
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Figure 33. design conditions vs. airflow, at a cooling load of 2.5 W/ft2

Raising the load in the space alters the location of the Ty, ayq line, indicating that as the load is
raised, more air is needed to maintain the average occupied zone temperature at the same level.
Figure 31 shows that at a load of 1.5 W/ft?, an airflow of approximately 0.3 cfm/ft> would be
needed to satisfy the design conditions, whereas Figure 33 shows a situation where
approximately 0.4-0.5 cfm/ft> would be required to meet design conditions. As the load is
increased (from 1.5 W/ft?in Figure 31 to 2.5 W/ft? in Figure 33), more air is needed to keep the
Toz, avg Within design limits. However, the temperature stratification is less affected by the higher
loads, as indicated by the relatively lesser movement of the red column with respect to the blue
column. Horizontal discharge and variable area systems show the same pattern.

Variation of Number of Diffusers

The design tool also allows the user to input the number of diffusers per workstation in the
space. As more diffusers are added for the same total room airflow, each diffuser delivers less
air, thereby reducing the diffuser throw and amount of mixing in the room. For most UFAD
installations it would be expected that one diffuser/workstation, plus a few more for corridors
and other open use spaces, would result in values between 1-1.5 diffusers/workstation.

Using the model to generate similar plots (see Appendix F) to those in the previous section, as
more diffusers are added to the space, the model predicts that less airflow will be needed to
maintain the desired average temperature in the occupied zone, but more airflow is needed to
maintain the stratification desired. Again, this pattern is the same for the horizontal discharge
and variable area conditions, though the values vary.

Variation of Supply Air Temperature

The current version of the design tool assumes that the average air temperature leaving the
supply plenum (at the diffusers, Ts) is set at 18°C (65°F). Using the model to generate similar
plots to those shown in the Variation of Load section (see Appendix F), as the supply
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temperature is increased, the stratification curve is unaffected and more airflow is required to
satisfy the average temperature design condition. If the supply air temperature is raised much
more, it is again impossible to satisfy both design conditions. Additionally, as the supply air
temperature is increased, the sensitivity of average temperature to changing airflow decreases.

Figure 34 shows variations in the supply plenum entering temperature (Tsplenum) as a
function of changes in the diffuser discharge temperature (Ts) and airflow rate. Altogether, the
design tool leads to the conclusion that satisfying design conditions requires use of either a
supply temperature (diffuser discharge temperature, Ts) of 18°C (65°F) at an airflow of 0.42
cfm/ft>-0.53 cfm/ft? or a supply temperature of 19.4°C (67°F) at an airflow of 0.53 cfm/ft>-0.55
cfm/ft2.

Taking this information to Figure 34, the 18°C (65°F) condition requires that the air temperature
entering the plenum (Tsplenum) be between 15.2°C-15.8°C (59.5°F-60.5°F) whereas a 19.4°C
(67°F) condition requires a Tsplenum between approximately 16.7°C-16.9°C (62.2°F to 62.5°F).
In short, the design tool shows that one can meet the design conditions by either using a smaller
quantity of cooler air, or a larger quantity of warmer air. For the complete set of figures, see
Appendix F.
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Figure 34. Air temperature entering supply plenum (Tsplenum) vs. airflow for
different diffuser discharge temperatures

Comparison to Overhead Airflow

The design tool will also be capable of calculating the range of airflows that would be used in a
comparable OH system subject to the same loads and attempting to meet the same average
temperatures as that of the occupied zone in the UFAD case. Initial studies have shown that this
airflow range is close to the predicted airflow required to meet the design conditions for UFAD
and often overlaps when one uses an overhead supply air temperature between 12.7°C-13.8°C
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(55°F-57°F). One example is shown below in Figure 35. In this figure, the dashed box represents
the overhead airflow needed to achieve an average temperature in the room of 22.7°C-23.8°C
(73°F-75°F) assuming a supply air temperature of 12.7°C-13.8°C (55°F-57°F) and a load of 2
W/ft2. The UFAD case assumes a diffuser discharge (Ts) temperature of 65°F. Although difficult
to read in the figure, the zones of acceptable airflow are as follows:

e UFAD system: 0.35-0.41 cfm/ft?
e OH system: 0.31-0.39 cfm/ft?
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Figure 35. Example of comparison to overhead airflow

3.5.3. Further Explorations

A number of other explorations of the design tool are shown in the extended report in Part VI of

The Final Report, including the following:

e Room cooling load ratio

e Comparison of Tozavg t0 Tet

e Comparison of model calculations to test data

Prepared for the California Energy Commission, April 2007

57

71

https://escholarship.org/uc/item/1pm8b02s



58

Prepared for the California Energy Commission, April 2007 72 https://escholarship.org/uc/item/1pm8b02s



4.0 Conclusions and Recommendations

This final report described the results and deliverables from a multi-year research project,
sponsored primarily by the CEC PIER Buildings Team, to develop a version of the publicly
available whole-building energy simulation program, EnergyPlus, capable of modeling
underfloor air distribution systems. A second major deliverable from this project was the
development of a practical design tool for determining the cooling airflow quantity for UFAD
systems. With the completion of this project, the new version of EnergyPlus, called
EnergyPlus/UFAD, and the cooling airflow design tool are the first validated UFAD tools of
their kind and represent a significant advancement in the state-of-the-art of UFAD system
design and energy analysis.

As part of the effort to develop EnergyPlus/UFAD, members of the research team have focused
their efforts on two key issues (room air stratification and underfloor plenums) in the design
and cooling operation of a UFAD system in a multi-story building. Both represent areas where
UFAD differs from conventional overhead systems, with important implications for designing,
operating, and modeling UFAD systems, as summarized below.

¢ Room air stratification: Under cooling operation, properly controlled UFAD systems
produce temperature stratification in the conditioned space resulting in higher
temperatures at the ceiling level than at the floor. In contrast to the well mixed
conditions provided by OH systems, stratification requires a new approaches for the
following:

0 Modeling the space temperature, as a single temperature node is no longer valid.

0 Defining comfort in the occupied zone, as a single 4-ft thermostat temperature is
no longer representative of average comfort conditions (see below).

0 Modeling heat transfer pathways in UFAD systems with underfloor plenums, as
stratification leads to a significant amount of energy entering the underfloor
plenum (see below).

e Thermal performance of underfloor plenums: Cool supply air flowing through the
underfloor plenum is exposed to heat gain from both the concrete slab and the raised
floor panels. The magnitude of this heat gain can be quite high, resulting in undesirable
loss of control of the supply air temperature from the plenum into the occupied space
(sometimes referred to as thermal decay). Under cooling operation in a multi-story
building, heat leaves the room through two primary pathways:

0 Heat extraction via warm return air exiting the room at ceiling level or through
the return plenum

0 Heat entering the underfloor supply plenum either through the slab from the
floor below or through the raised floor panels from the room above

Surprisingly it was shown that 30-40% of the total room cooling load is transferred into
the supply plenum and only about 60-70% is accounted for by the return air extraction
rate, or cooling airflow quantity.
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e Equivalent comfort conditions: For purposes of allowing a comparison between energy
simulations or cooling airflow calculations for a stratified system with UFAD vs. OH
systems, it is important to define an equivalent comfort condition for a stratified room as
follows:

0 The average occupied zone temperature (Toz, avg), calculated as the average of the
measured temperature profile from foot level (10 cm or 4 in.) to head level (170
cm or 67 in.), is equal to the desired setpoint temperature (as measured in a well-
mixed OH system).

0 The occupied zone temperature difference (AT.z), calculated as the head-foot
temperature difference, does not exceed the maximum limit specified by
ASHRAE Standard 55 of 2.7°C (5°F).

In a coordinated effort, the research team conducted extensive experimental and modeling
studies to form a solid foundation for the development and validation of the two new
simplified models for implementation into EnergyPlus, one for room air stratification and one
for underfloor plenums. The RAS model was supported by small-scale salt tank testing, an
analytical model to improve theoretical understanding, and full-scale laboratory testing to
provide realistic data for comparison and model validation. The underfloor plenum model was
supported by full-scale testing and a CFD plenum model, which was validated by comparison
with the full-scale testing database. This coordinated approach has proven to be very successful,
as the EnergyPlus validation studies completed to date have demonstrated good agreement
with experimental and CFD-predicted data. In addition, the large amount of supporting
research has produced a vast amount of new knowledge and improved understanding of the
fundamental principles of UFAD system design, operation, and energy performance.

4.1. Commercialization Potential

Both of the major deliverables from this project, EnergyPlus/UFAD and UFAD Cooling Airflow
Design Tool, do not represent products suitable for commercialization efforts. EnergyPlus is a
publicly available computer program (www.energyplus.gov), whose development and
maintenance is supported by the U.S. Department of Energy. Similarly, the design tool has been
developed at a public institution, UCB, with public PIER funding, and will be made available to
the public through subsequent publications in the engineering literature (e.g., ASHRAE).

4.2. Recommendations

As expected in a challenging and groundbreaking research project of this kind, not all model
development goals were achieved to a level of accuracy and validity originally envisioned when
the project was started. A list of recommended refinements and improvements to both
EnergyPlus/UFAD and the Cooling Airflow Design Tool are identified below.

The recommended activities in support of improving and refining EnergyPlus/UFAD include
the following;:

¢ Complete improvement and refinement of interior zone RAS model. This work includes
consideration of what portion of the room heat gain is assigned to the thermal plume
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model, specification of the lower (occupied) and upper zone temperatures,
determination of room thermostat control temperature, determination of appropriate
stratification height separating the lower and upper zones, and determination of
representative comfort conditions (average occupied zone temperature and head-foot
temperature difference).

e Complete improvement and refinement of perimeter zone RAS model. In addition to the
RAS model efforts recommended above, this work must consider the window plume
model when solar loads are dominant, as well as the distribution of the transmitted solar
radiation through perimeter windows.

e Complete the validation of both the improved interior and perimeter RAS models by
comparison with full-scale data from the York test chamber.

e Implement updated models in EnergyPlus/UFAD (by LBNL).
¢ Update engineering documentation of EnergyPlus/UFAD (by LBNL).
The recommended activities in support of improving and refining the Cooling Airflow Design

Tool include the following;:

e To support the development and refinement of supplemental calculations and
assumptions in the design tool, the improved version of EnergyPlus/UFAD will be used
to conduct simulations of a prototype commercial office building. This will require the
following work:

0 Develop a working EnergyPlus input model of a prototype office building with
UFAD.

0 Conduct energy simulations with the prototype office building to evaluate the
range of expected room load ratios defining the portion of the room cooling load
assigned to the room and to the underfloor plenum.

e Add additional refinements and capabilities to the design tool, including:

0 Develop room load ratio for different building and plenum construction
specifications.

0 Incorporate a factor to account for Category II room air leakage and provide
guidance to users on what value to input to design tool.

0 If possible, include design guidance for a wider number of commercially
available diffusers.

0 If possible, include design guidance for occupancy and room load distributions
that differ from office buildings.

e Develop a suitable user interface for the spread-sheet based design tool.

e Use available field data collected through ongoing commissioning and energy use case
studies to conduct a comparison and validation of the design tool.
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4.3. Benefits to California

The newly developed EnergyPlus/UFAD is capable of conducting energy and demand
sensitivity studies for a wide range of design, operating, and climate conditions. Awaiting the
completion of this energy sensitivity study, the team has estimated the potential energy impact
of UFAD technology on California as described below.

California—which is estimated to include about 10-15% of all national projects—likely offers
greater potential for UFAD than do other areas of the country because of the state’s mild
climates, high use of raised floor systems, and high percentage of builder/designers inclined to
be “early adopters.” Industry sources indicate that UFAD is currently accounts for 50% of all
California raised floor projects—a percentage that is growing —and that the rate of increase in
raised floor projects in California is 1-2% greater than the rate of the overall construction.

To date, UFAD has seen greater application in the office building sector than other sectors.
However, UFAD use is growing in public buildings, such as libraries, and has become more
popular with commercial retail developers. Further, within the office sector, various subsectors
are increasing UFAD use, including financial institutions, university administration and student
centers, and credit card centers. Such trends are difficult to predict, much less to quantify. As an
example of potential, the team estimated the HVAC energy savings for UFAD in one sector,
large offices, over the next 10 years. For UFAD penetration, the team assumed that the growth
rate would continue to reflect the rates since 1999, as well as the following:

e Opverall new construction growth rate: 2% per year, constant
e Fan energy savings: 22%, based on a previous study of fan savings (Webster 2000)
e Economizer savings: 15% and 30%

The team ignored potential chiller savings, since data are lacking as to the magnitude and since
the proportion of chilled water systems is less than 40% even in large buildings. Economizer
savings of 30% are based on a model that uses Oakland weather data for a typical
meteorological year; less benign climates are assumed to yield 15% savings.

New construction for the estimate includes both retrofit and new buildings, since the team’s
estimate for penetration is based on annual sales of raised floor panels with an unknown
breakdown between the two. However, based on the CBE Case Studies project, the team
estimates that 25% of new UFAD projects are retrofits to existing facilities. The teams used as
the baseline (without escalation) the California commercial end-use energy use intensities for
ventilation and cooling and the aggregate floor areas for large offices, as provided by PIER.

The values shown in Table 7represent the estimated potential energy savings expressed as a
percent of the overall HVAC energy use for all new construction of large offices (based
primarily on a building stock of conventional systems). As shown, UFAD could reduce energy
use in new large office buildings by almost 25% in 2010 and more than 50% by 2015.
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Table 7. Percent savings in HVAC energy for large office building new construction for
given UFAD market penetrations

% Energy Savings by Year

2005 2010 2015
UFAD projected penetration rates in large new offices | 6% 24% 53%
% of HVAC energy with 15% economizer savings 1% 4% 10%
% of HVAC energy with 30% economizer savings 2% 6% 14%

Additional benefits to California based on the results of this project are listed below:

Improve the effectiveness of building design and construction practices by providing
validated energy simulation and design tools that optimizes the energy and cost
effectiveness of UFAD systems.

Help policymakers establish methodologies in future releases of Title-24 that allow
proper receipt of credits on projects that implement UFAD in an energy-conserving
manner by providing an updated and clearer picture of the potential energy use benefits
of UFAD systems.

Improve the health and safety of building occupants by establishing a database of test
information that could be used to analyze thermal comfort of UFAD systems and assist
with future studies of ventilation effectiveness.

Increase customer choices for efficient operation of buildings by providing standardized
design and analysis tools and technical knowledge that would reduce the risk to
practitioners and owners when choosing to implement UFAD technology.

Encourage the rapid incorporation of research findings into UFAD products by working
closely with UFAD industry leaders, including York International, a partner on this
project, and other major HVAC manufacturers who are members of CBE.
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6.0 Glossary

Acronym
ASHRAE
Btu

CBE

CFD

cm

cfm

DOE

EC

ft

ft2

HD
HVAC
IAQ

IEQ

P

LBNL

OH
PAC
PEC
PIER
RAB
RAS
SAT
UCB

Definition

American Society of Heating, Refrigerating, and Air-Conditioning Engineers

British thermal unit

Center for the Built Environment
computational fluid dynamics
centimeter

cubic feet per minute

U.S. Department of Energy
environmental chamber

foot

foot square

horizontal discharge

heating, ventilating and air conditioning
indoor air quality

indoor environmental quality
inch-pound

Lawrence Berkeley National Laboratory
meter

meter squared

overhead air

Project Advisory Committee for this PIER contract

Pacific Energy Center

Public Interest Energy Research
return air bypass

room air stratification

supply air temperature

University of California, Berkeley
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UCSD
UFAD
VA
VAV

York

University of California, San Diego
underfloor air distribution
variable area

variable air volume

York International

watt
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Appendices

Appendix A. Part II: Room Air Stratification Full Scale Testing CEC-500-2007-XXX-APA

Appendix B. Part II: Laboratory Layouts and Normalization of CEC-500-2007-XXX-APB
Room Air Stratification Profiles

Appendix C. Part III: The Fluid Dynamics of a UFAD System CEC-500-2007-XXX-APC

Appendix D. Part IV: Underfloor Plenum Testing and Modeling | CEC-500-2007-XXX-APD

Appendix E. Part V: EnergyPlus Development CEC-500-2007-XXX-APE

Appendix F. Part VI: UFAD Cooling Airflow Design Tool CEC-500-2007-XXX-APF
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