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ABSTRACT 

One important component of learning is the ability to determine the correct conditions un­
der which a rule should be applied. We review a number of systems that discover relevant 
conditions through a generalization process, and discuss some drawbacks of this approach. 
We then review an alternative approach to learning through discrimination, in which overly 
general rules are made more conservative when they lead to errors. Unlike generalization­
based programs, a discrimination-based system is able to learn disjunctive rules, discover 
regularities in errorful data, recover from changes in the environment, and learn useful rules 
despite incomplete representations. We show how our theory of discrimination learning can 
be applied to the domains of concept attainment, strategy learning, first language acquisi­
tion, and cognitive development. Finally, we evaluate the theory along the dimensions of 
simplicity, generality, and fertility. 
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Introduction 

One of the major goals of any science is to develop general theories to explain phe­
nomena, and one may ask what general mechanisms have so far been uncovered to explain 
the nature of intelligent behavior in man and machine. Early research in cognitive science 
and artificial intelligence focused on this issue, and systems like the General Problem Solver 
(Newell, Shaw, and Simon, 1960) were the result. These programs employed techniques like 
heuristic search and means-ends analysis to direct attention down promising paths, and such 
methods have proved to be very general indeed. In contrast to these early efforts, recent 
work has emphasized the importance of domain-specific knowledge (Feigenbaum, Buchanan, 
and Lederberg, 1971; Pople, 1977), and much of the current research focuses on expert 
systems for particular fields of knowledge. While these systems perform admirably in their 
areas of expertise, they fare very poorly on the dimension of generality. 

Hopefully, our final theory of intelligence will consi_st of more than a few basic search 
techniques, along with the statement that domain-specific knowledge can be used to direct 
one's search. In addition, Langley and Simon (1981) have proposed that we look for gener­
ality in the learning mechanisms through which such domain-specific knowledge is acquired. 
They have argued that because learning theories should be able to account for both novice 
and expert behavior, as well as the transition between them, such theories are inherently 
more general than performance theories alone. Moreover, there is the chance that a single 
learning theory can be used to explain the transition process for a number of different do­
mains. Given this generality, learning has a central role to play in any theory of cognition, 
and in this chapter we present a general theory of learning that is stated in the language of 
adaptive production systems. 

We will not attempt to justify our choice of production systems as the formalism in which 
to cast our models oflearning and development, since that issue has been addressed elsewhere 
in this volume. As we have seen, the natural way to model learning in a production system 
framework is by the creation of new condition-action rules or productions. The appropriate 
actions of these new rules can often be determined rather easily, since analogous actions can 
be observed in the environment. However, the conditions under which these actions should be 
applied in seldom so obvious. In this chapter we address the issue of how one determines the 
correct conditions on productions. We review some earlier research that has been concerned 
with condition-finding, and outline a theory of discrimination learning that begins with 
overly general rules and that creates variants of these rules with additional conditions when 
these rules lead to errors. After this, we consider how the theory can be applied to explain 
learning and development in four rather different domains; these include concept attainment, 
strategy learning, first language acquisition, and development on a Piagetian task. Finally, 
we evaluate the theory along a number of dimensions, including its generality. 

Previous Research on Condition-Finding 

The problem of determining the correct conditions on a rule is not limited to the produc­
tion system framework, and much of the research on learning in both artificial intelligence 
and cognitive science has focused on condition-finding methods. Below we review some of 
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the earlier work on this topic. We begin by describing some systems that learn through a 
process of generalization, after which we review some limitations of the generalization-based 
approach. Finally, we consider a number of systems that learn through an alternative process 
of discrimination. 

Learning Concepts through Generalization 

The majority of research on condition-finding has incorporated techniques for general­
ization, and the bulk of work on generalization has focused on the problem of learning the 
definition of a concept from a set of positive and negative examples. In this paradigm, the 
learning system begins by assuming that all aspects of the first positive instance are relevant 
to the concept, and systematically removing conditions as they fail to occur in new examples. 
The basic insight is that one can determine the relevant conditions on a concept by finding 
those features or structures that are held in common by a set of positive examples. Below 
we review a number of systems that learn by generalization, and we will see a few of the 
many variations that are possible within this basic framework. In each case, we describe the 
learning task, and discuss two key features of the particular learning method - the manner 
in which the space of rules is searched, and the use that is made of negative instances. 

Bruner, Goodnow, and Austin (1956) carried out one of the earliest studies of concept 
learning, working with concepts that could be represented in terms of simple attribute-value 
pairs. Although their primary concern was with human behavior on concept learning tasks, 
they completed detailed task analyses that could have been easily cast as running programs. 
Many subjects employed a focusing strategy for determining the conditions defining a con­
cept.* This approach started with a positive example of a concept, such as a large blue 
square, and initially assumed that all features were relevant to the concept's definition. As 
new positive instances were encountered, they were used to eliminate some of the features. 
For example, if a large red square were also an example of the concept, then the color dimen­
sion would be deemed irrelevant. Such comparisons continued until each of the attributes 
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had been varied; those attributes whose alteration led to negative instances were retained, 
and all other were eliminated. Although this strategy works well with conjunctive concepts 
like large and square, it cannot be used to learn disjunctive concepts like large or square. An 
important feature of this strategy was that for concepts defined as conjunctions of attribute­
value pairs, no real search was involved in their determination. Given the current hypothesis 
as to the concept's definition (some features of which were known to be relevant, and others 
still in question) and a new positive instance, only a single generalization could result, lead­
ing io the removal of the varied attribute from the hypothesis. We shall see that in l~arning 
tasks involving more complex representations, life is not so simple, and negative instances 
play a more important role than in Bruner et al's concept attainment tasks. 

* Some of Bruner et al's subjects employed other strategies that did not rely on the "common 
features" approach. We have not discussed these strategies here because we are mainly concerned 
with the origin of ideas on generalization-based learning. 
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Winston (1970) extended this approach to learning structural concepts such as arch. His 
system was given a sequence of structural descriptions, each with an associated classification, 
with the goal of determining the conditions that would allow the proper classification of new 
examples. On first encountering a positive instance of a concept, the program included 
every aspect of the description in its initial definition of the concept. For example, the 
initial definition of arch might state that two standing blocks supported a third block, that 
the two standing blocks were not in contact, and that each block had certain features of its 
own. When the system was given another positive example of the same concept, it would find 
a mapping between the current definition and the new example; this specified the structures 
held in common by the definition and the example, and the concept was redefined in terms 
of these common structures. 

For instance, if the original arch had a brick as its top block, while another arch used a 
pyramid in this position, then the shape of the top block would be removed from the defini­
tion. This approach was very similar to that described by Bruner et al., except that because 
of the more complex representation being used, in some cases more than one generalization 
was possible. Since the program considered only one of these possibilities, it can be vi~wed 
as carrying out a depth-first search through the space of possible concepts. And since there 
was no guarantee that the program would always select the right generalization, it required 
the ability to backtrack through this space as well, and it was in such cases that negative 
instances came into play. When the definition of a concept led the system to incorrectly 
predict that a description was an example of that concept, Winston's program backtracked 
to an earlier, more specific concept definition. The system also used negative instances to 
identify 'emphatic' conditions such as 'must support.' To ensure that the system did not 
also have to search for the conditions it should add, Winston presented it only with near 
misses; these were negative instances that differed from positive exemplars by only a few 
feat_ures. * Although Winston's learning heuristics were potentially very general,· he never 
seems to have extended them beyond his blocks world. 

Hayes-Roth and McDermott {1976) have described SPROUTER, another program that 
learned concepts from a series of exemplars. This system used a technique called interfer­
ence matching that was similar to Winston's method for finding common properties between 
positive examples. However, where Winston used relatively ad hoc rules for selecting the 
appropriate generalization, SPROUTER carried out a systematic beam search through the 
space of possible mappings. This was a version of breadth-first search in which multiple 
mappings were entertained simultaneously; when the number of alternative generalizations 
exceeded a reasonable bound, the search tree was pruned and only the best hypotheses were 
retained. In making this decision, generalizations that contained few nodes but many rela­
tions between them were preferred to generalizations that consisted of less dense structures. 
SPROUTER focused on positive instances, but negative instances also had an important 
role in directing the search process. If a generalization was formed that covered nonexam-

* Thus, one can view Winston's system as relying on a simplistic version of discrimination to 
avoid overgeneralizations. However, since the system's learning method was centered around gen­
eralization, and since its version of discrimination could deal with neither far misses nor disjunctive 
rules, we have chosen to include the work in the present section. 
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ples of the concept in addition to positive examples, then it was considered overly general, 
and that hypothesis was dropped from consideration. As a result whole branches of the 
search tree could be abandoned, and attention focused in more profitable areas. The system 
also searched the space of examples, selecting those most likely to provide new information. 
SPROUTER showed its generality by learning a number of concepts, including the structural 
description for chair. 

One advantage of breadth-first generalization strategies is that they need not retain any 
positive instances of a concept, since they need never backtrack. However, negative instances 
must still be retained if they are to be used in rejecting overly general rules. Mitchell 
(1977) has done away with the need for negative information as well with his version space 
technique. In addition to maintaining a set of generalizations or maximally specific versions 
(MSVs) of a concept, his system maintained a set of maximally general versions (MGVs). 
New positive instances led to more general MSVs with fewer conditions, which corresponded 
to the process of generalization in earlier programs. New negative instances led to more 
specific MGVs with additional conditions.* If a negative instance was encountered that an 
MSV successfully matched, that MSV was removed from further consideration ( mucP, as 
in SPROUTER). Similarly, an MGV was removed from the competition when a negative 
instance was found that it failed to match. The main use of Mitchell's system was within 
the meta-DENDRAL program, in the discovery of conditions for predicting peaks in mass 
spectrograms. However, the learning heuristics were implemented in a very general manner, 
and were applied to Winston's arch-learning task as well. 

The programs described above certainly do not exhaust the generalization learning 
paradigm. The interested reader is directed to Vere (1975) for an excellent formal treat­
ment of breadth-first strategies for generalization. Mitchell (1979) provides an interesting 
overview of work in this area, relating the various approaches and evaluating them in terms of 
their search strategies and memory requirements. Although most work on condition-finding 
has been concerned with concept learning, Hedrick (1976) has employed generalization tech­
niques in modeling language acquisition, Vere (1977) has considered the generalization of 
procedures stated as condition-action rules, and Mitchell, Utgo:ff, and Banerji (1981, 1982) 
have applied the version space method to learning heuristics for directing search. 

Drawbacks of the Generalization Approach 

There is little doubt that progress has been made since the early work of Bruner, Good­
now, and Austin. The most recent generalization learning systems are considerably more 
general than the earliest programs, in that they can deal with structural and relational rep­
resentations as well as attribute-value pairs. In addition, they are more robust than their 
ancestors in that they take advantage of negative information to reduce the search that 
results from more complex representations, and they organize this search more efficiently. 
However, this basic approach has a number of drawbacks that limit its value as a path 

* Although this aspect of Mitchell's system bears some resemblance to the discrimination learn­
ing method, it differs in its continued reliance on finding features held in common by positive 
instances. 



DISCRIMINATION LEARNING PAGE 5 

to knowledge acquisition. First, because they examine features that are held in common 
between examples, generalization-based strategies do not lend themselves to the discovery 
of disjunctive concepts (such as large or red). When confronted with positive examples of 
disjunctive rules, these systems overgeneralize (removing those features not held in com­
mon by the disjuncts) and cannot recover. Iba (1979) has extended Winston's depth-first 
search approach to handle disjunctive concepts, but this method is very costly in terms of 
computation time. 

Second, generalization-based learning systems have difficulty handling errorful data. As 
before, this results from their dependence on finding commonalities in a number of examples. 
If even one of these examples is faulty, then the entire learning sequence is thrown into 
confusion. Again, we are not claiming that one cannot in principle modify generalization­
oriented strategies to respond to noise; rather, we would claim that these strategies do not 
lend themselves to handling noisy environments. For example, Mitchell (1978) has proposed 
an extension to his version-space technique that can deal with isolated errors. However, such 
a system would pay a high price for maintaining the additional hypotheses that would be 
necessary to recover from even a single faulty piece of information. 

One final drawback is closely related to the issue of noise. Any program that learns 
through generalization would have serious difficulty responding to an environment in which 
the conditions predicting an event actually changed over time. For example, if a tutor 
decided to modify the definition of a concept in the middle of a training session, a system 
that searched for common features would rapidly become very confused. Of course, one would 
not expect a learning system to note such a change immediately, since it must gather evidence 
to determine whether its errors were due to random noise or to an actual shift. However, the 
ability to recover gradually from changes in its environment would be a definite advantage 
in .real-world settings, where such changes.are all too common. In summary, generalization­
based approaches to condition-finding have a number of disadvantages. Below we review five . 
systems that learn through discrimination, an approach to knowledge acquisition that has 
the potential to overcome these difficulties. 

Finding Conditions through Discrimination 

Although the majority of research on condition-finding has employed generalization­
based methods, some research has been carried.out with techniques for discrimination. Mem­
bers of this class of learning methods start with very general rules containing few conditions, 
and introduce new constraints as the need arises. Positive and negative examples are used 
in a quite different manner from the way they are used in generalization-based strategies. 
Rather than looking for features held in common by all positive instances, these methods 
search for differences between positive and negative instances. These differences are then 
used to further specify the conditions under which a concept or rule should apply. Let us 
consider review five systems that learn in this manner. 



l 

PAGE 6 FINDING CONDITIONS 

Feigenbaum (1963) has described EPAM, a computer simulation of verbal learning be­
havior in humans. This model learned to associate pairs of nonsense syllables such as DAX 
and JIR through a process of discrimination; using the same mechanism, it was also able to 
memorize sequences of nonsense syllables. EPAM learned by constructing a discrimination 
net for sorting different stimuli and responses. Tests bifurcated the tree and specified which 
path should be taken, while nonsense syllables were stored at the terminal nodes of the tree. 
This tree was initially very simple, but new branches and their associated tests were inserted 
as new syllables were encountered. For example, JIR would first be stored below a branch 
taken if J were the first letter of a syllable; however, once the syllable JUK was encountered, 
a new branch would be introduced that tested whether the third letter was R, and JIR would 
be restored on this branch. The particular letter EPAM focused on was determined by the 
position that had been most recently found to be useful in discriminating between syllables. 
Associations between stimuli and responses were encoded by storing enough information at a 
stimulus' terminal node to allow retrieval of the associated response. EPAM's discrimination 
process accounted for a number of well-known verbal learning phenomena, including stimu­
lus and response generalization, oscillation and retroactive inhibition, and the forgetting of 
seemingly well-learned responses. 

Hunt, Marin, and Stone (1966) described a set of programs that applied EPAM-related 
ideas to. the task of concept learning. They focused on concepts such as large and red, in 
which instances could be represented as attribute-value pairs. Concepts were represented as 
discrimination nets, with each branch in the tree testing the value of one of the attributes 
and each terminal node stating whether or not the instance was an example of the concept. 
The basic learning strategy was to search for attribute-value pairs common to all positive or 
negative instances. If this failed, then the attribute-value pair occurring most frequently in 
either the positive or negative class was chosen as the test for a new branch in the tree for the 
concept.* The same heuristic was then applied recursively to the instances satisfying this 
test, until a tree was constructed that divided the instances into sets that were exclusively 
positive or exclusively negative. The researchers carried out a number of experiments with 
this approach. For example, they found minimal effects as the number of irrelevant attributes 
and values were increased, but significant effects as the complexity of concepts grew. Limiting 
memory for past instances increased the number of instances required to determine the 
correct rule,, but an overall saving in computation time resulted, since less information had 
to be taken into account in forming the discrimination tree. Another interesting finding was 
that the ability to select instances intelligently did not result in a significant improvement 
over random selection. Because in general the expression not{ A and B) is equivalent to 
the expression not{A) or not{B), Hunt, Marin, and Stone's systems could learn disjunctive 
concepts simply by viewing positive instances as negative instances and vice versa. Since 

* It is not clear whether this work should actually be included as an example of discrimination 
learning, since it differs considerably from the other methods that we will consider under that 
topic. However, the representation of concepts as discrimination nets, combined with the fact that 
common features were not exclusively required, has led us to include the work in this section. 
Quinlan (1983) has recently extended Hunt, Marin, and Stone's method to learning rules for chess 
end games, but we do not have the space to discuss his work in detail here. 
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their approach did not exclusively rely on finding common features, it should also have lent 
itself to dealing with noisy data, but they did not address this issue. 

Langley {1978, 1979) has described BACON.1, a discovery system that operated in the 
domains of concept attainment, sequence extrapolation, and the induction of mathemati­
cal functions. The central heuristic of this program was to search for constant values of 
dependent terms, and then attempt to determine the conditions under which these constan­
cies held. For example, when presented with a standard Bruner et al concept attainment 
task, BACON.1 would systematically v<i.ry the independent attributes (such as color, size, 
and shape) and observe the feedback associated with each combination of values. Upon en­
countering two cases in which the feedback was yes {i.e., two situations that were examples 
of the concept), the system would immediately conclude that all combinations would lead 
to this feedback (i.e., that everything was an example of the concept). However, it would 
continue to gather additional data, and if it came upon a combination with an unpredicted 
feedback {such as no) it would realize that it had overgeneralized and attempt to correct its 
error through a simple discrimination process. BACON.l's recovery heuristic was stated as 
a condition-action rule that searched for some attribute that had the same value in two of 
the correctly predicted situations, but a different value in two of the incorrectly predicted 
cases. When such a difference was discovered, the distinguishing attribute-value pair was 
included as an additional condition on the hypothesis. Since it based its discriminations on 
only two good and bad instances, BACON.1 was able to learn disjunctive concepts like large 
or red as well as conjunctive rules like large and red. 

Brazdil {1978) has discussed ELM, a PROLOG program that learned from sample so­
lutions in the domain of simple algebra and arithmetic. The system began with a set of 
rules for associativity, for adding the same number to both sides, and so forth. It was then 
given a set of practice problems, along with their solution paths. For each problem, ELM 
went through each step of the solution, comparing the step it wouid have made with the 
corresponding step of the known solution. Since the system had no priority ordering for 
its rules at the outset, it tried all rules that were applicable to the current problem state. 
However, only one rule application agreed with the solution trace, so the co_rresponding rule 
was given priority over its competitors; in the future, this rule was selected in preference 
to the others. In this way, ELM established a partial ordering on its rule set. Difficulties 
arose when one problem suggested a certain ordering, and another problem suggested a dif­
ferent one. In such cases, Brazdil's system invoked a discrimination process to create more 
constrained versions of the competing rules with additional conditions on their application. 
The new conditions were selected by finding predicates that were true when the rule should 
have been applied, but false when another rule should have been preferred. The new rules 
were added to the priority ordering above the rules from which they were generated, so the 
more conservative rules would be preferred in the future. 

Anderson, Kline, and Beasley (1978, 1980) have described ACT, a production system 
formalism that has been used to model a wide range of cognitive phenomena. Anderson 
and his colleagues have applied their theory to many aspects of learning, and we cannot 
review all of them here. Instead, we will focus on a paper by Anderson and Kline (1979), in 
which they summarize ACT's learning mechanisms and their use in simulating the process of 
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concept attainment. The authors divided their learning model into three major components. 
The first of these consisted of a generalization process much like those reviewed above, in 
which positive instances of the concept were compared, and more general rules (in this case 
stated as productions) were created with conditions removed or with constants replaced by 
variables. However, Anderson and Kline also recognized the possibility that this process 
could lead to overgeneralizations, and included a discrimination mechanism to direct the 
recovery process. This discrimination technique compared a good application of a rule (when 
the correct classification was made) to a bad application (when an incorrect application 
was made) and, based on the differences it found between these two cases, constructed a 
less general version of the rule by replacing variables with constants.* Finally, the model 
employed a strengthening process that incremented the strength of a production if it was 
applied correctly or if it was relearned. Along with a bias toward more specific productions, 
the strength of a rule was used in deciding which production should be selected at any given 
time. Taken together, the three ACT learning methods accounted for data from various 
concept learning experiments with humans. In addition, the discrimination process let the 
model acquire disjunctive concepts as well as conjunctive ones. 

An Overview of the Discrimination Learning Theory 

In the previous section, we examined a number of systems that learned through gener­
alization. In finding the definition of a concept, these programs initially assumed that all 
conditions were relevant, and systematically removed these conditions when they failed to 
occur in new examples. However, we also saw that an alternative approach to condition­
finding is possible. Instead of starting with all conditions, one initially assumes that none of 
the potential conditions are relevant. If the resulting rule is overly general and leads to errors, 
then one h1serts new conditions that make the rule more conservative. This discrimination 
learning approach provides an interesting alternative to the more traditional generalization 
paradigm. As with generalization-based condition-finding, a discrimination-based strategy 
can be implemented in many different ways. Below we outline a theory of discrimination 
learning that we feel has considerable potential, beginning with a discussion of PRISM, the 
formalism in which the theory is stated. While our approach shares some features with the 
earlier work on discrimination, it has some important differences as well. 

* In another paper, Anderson, Kline, and Beasley (1980) describe a different version of the 
discrimination process in which a new condition was added to lessen the generality of the discrim­
inant production. This approach is very similar to the one taken in the current paper, and not by 
coincidence, since we were involved in early discussions with Anderson and his co-workers about 
discrimination learning. In fact, the initial version of Anderson's discrimination process gener­
ated variants whenever a rule was applied, taking only positive instances into account. Although 
this approach would in principle lead eventually to a rule including all the correct conditions, the 
search for these conditions would be very undirected and could take a very long time. Based on the 
condition-finding heuristic that was then being implemented in BACON.l, we suggested that the 
process instead construct variants based on differences between positive and negative instances, 
and this proposal was later incorporated into ACT. 
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The PRISM Formalism 

Out theory of discrimination learning is implemented in PRISM, a production system 
language that was designed as a tool for exploring different architectures and their relation to 
learning mechanisms. PRISM is a very flexible language through which the user can create 
any of a large class of production system architectures. Thus, the particular architecture in 
which the discrimination learning theory has been implemented is only one of many possible 
PRISM-based schemes. However, since we have found this. particular framework to be the 
most useful for building actual learning systems, we will focus on its characteristics here. 

We will not review the basic production system cycle, since that has been covered else­
where in this volume. However, the PRISM conflict resolution procedure is worth some 
discussion, since it interacts with the various learning mechanisms. On every cycle, PRISM 
applies the following (ordered) sequence of conflict resolution principles: · 

1. Refraction. Eliminate from consideration every instantiation that has already been ap­
plied; this lets the system avoid simple loops by forcing it to focus on new information. 

2. Production strength. From the remaining instantiations, PRISM selects those matched 
by productions with the greatest strength; this serves to focus attentfon on rules that 
have been successful in the past or that have been learned many times (see below). 

3. Recency. From the revised set, PRISM selects those instantiations that match against 
the most recent elements in working memory; this serves to focus attention on recently 
established goals in preference to older ones. 

4. Random selection. If multiple instantiations still remain at this stage, PRISM selects 
one of them at random. Thus, one and only one production instantiation is applied on 
each cycle. 

These particular conflict resolution strategies are far from new. For example, Forgy 
{1979) has used both refraction and recency in his OPS4 production system language, and 
Anderson et al {1980) have relied on strength in their ACT models. The above combination 
of strategies was determined partially by analysis, and partially by trial and error, to be 
the most useful in constructing robust adaptive production systems. Refraction is foremost 
because trivial looping must be avoided. Strength is second in line because some measure of a 
rule's usefulness or success is essential to direct search through the large space of productions 
that could conceivably be constructed. Recency is essential for domains such as strategy 
learning and language acquisition, where the order in which goals have been added to memory 
can be used to order behavior. Finally, random selection is required if one wishes to retain 
the standard assumption of the serial application of productions. 

PRISM also includes a number of mechanisms for modeling learning phenomena. The 
most basic of these is the designation process, which allows the creation of a new production 
as the action of an existing rule. By including the general form of a rule in its action side, a 
designating production matching against a particular situation can carry over variable bind­
ings to its action side, and in this way creates a specific rule based on the general form. A 
second process lets PRISM create generalizations of existing rules when it discovers two pro­
ductions in its memory that have isomorphic structures; the resulting rule includes variables 
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in places that the two specific rules had differing constants, and so it can match in situations 
that the less general versions could not. (The PRISM-based learning systems that we will 
be discussing in later sections do not take advantage of this capability.) PRISM also has the 
ability to strengthen or weaken productions and so affect their order of preference during 
the conflict resolution stage. Rules are strengthened whenever they are recreated by any of 
the learning mechanisms, but they can also be strengthened (or weakened) explicitly by the 
action side of an arbitrary production. Finally, PRISM incorporates a discrimination process 
that can be used to recover from overly general rules; we discuss this learning mechanism in 
some detail below. 

Finding New Conditions 

We will begin our discussion of discrimination learning in terms of a simple example, 
and introduce complexities as we proceed. Consider a concept learning task like that studied 
by Bruner et al, in which we have four potentially relevant attributes - size (either large or 
small), color (blue or red), shape (circle or square), and thickness of the lines making up 
the shape (thick or thin). Also suppose that we start with a rule that predicts that every 
combination of values is an example of the concept: 

If you have a combination of values, 
and you have not yet made a prediction, 

then predict that the combination is an example. 

Clearly, this overly general rule will lead to many errors, but suppose that our concept 
is large and square, and that initially the system is presented with the combination large 
thick red square. In this case, the rule will produce a correct prediction, and this information 
would be stored for future reference. Now suppose that the next combination is large thick 
red circle, which is not an example of the desired concept. In this case our initial rule will 
make a faulty prediction, indicating that it lacks one or more relevant conditions. 

When such an error is noted, the discrimination process is evoked to produce more con­
servative variants on the original rule. To accomplish this, the learning mechanism retrieves 
information about the situation in which the faulty rule was last correctly applied, and 
compares it to the current situation, which led to an incorrect application. The goal is to 
discover differences between the good and bad situations, and in this case only one difference 
is noted: in the good case the shape was square, while in the bad case the shape was circle. 
Accordingly, the discrimination process constructs a variant on the original rule with a new 
condition: 

If you have a combination of values, 
and you have not yet made a prediction, 
and the shape is square, 

then predict that the combination is an example. 

This rule is guaranteed to match in the correct situation, but will fail to match in 
the incorrect one, avoiding the error made by its predecessor. In order to select between 
competing productions, each rule is given an an associated strength. When a variant rule is 
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first created, it may be weaker than the more general one from which it was created, but 
if the same rule is learned many times, it will eventually come to exceed its ancestor. The 
initial strength of a rule is controlled by a user-modifiable parameter, as is the amount by 
which rules are strengthened upon recreation. In addition to strengthening a rule each time 
it is relearned through discrimination, a faulty rule is weakened when it leads to an error. 
Since stronger rules are preferred to their competitors, these strengthening and weakening 
strategies bias the learning system in favor of more successful productions, so that useful 
variants eventually come to mask the rules from which they evolved.* 

Although this second rule is better than the original version, it still does not represent 
the entire concept large and square. Before the complete concept is acquired, another error 
must occur. Suppose our second rule has gained sufficient strength to mask its ancestor, and 
the combination small thick red square is presented. In this case, the variant rule will apply, 
incorrectly predicting that this combination is an example of the concept. Again discrimina­
tion is evoked, this time comparing the combinations large thick red square and small thick 
red square. As before, only a single difference is noted, and a still more conservative rule is 
created: ' 

If you have a combination of values, 
and you have not yet made a prediction, 
and the shape is square, 
and the size is large, 

then predict that the combination is an example. 

Once this rule has been learned enough times to mask its predecessors, our system will 
always correctly predict whether a combination is an instance of the concept. Although 
it should have helped to clarify the basic nature of discrimination learning, this exam­
ple oversimplifies the process along a number of dimensions. For example, it assumes an 
attribute-value representation rather than more general (and complex) relational structures. 
Also, we have ignored the possibility of learning negated conditions through discrimination, 
and we have omitted the details of learning from far misses, in which one must consider a 
number of alternative variants. Below we discuss each of these complications on the basic 
discrimination learning method. 

Finding Negated and Complex Conditions 

One extension of the basic method concerns the acquisition of rules with negated con­
ditions. In the above example, including the condition that the size is not small would be 
equivalent to the condition the size is large. However, this results from the fact that each 
attribute took on only two values; if we had allowed the size to take the value medium as 
well, then the two conditions would have quite different meanings. The discrimination learn-

* For those who dislike notions of strength, one may instead view this number as a measure 
of the rate of success for the rule, with bias being given to rules with a more successful history. 
Of course, one might also delete overly general rules, but later we will discuss some reasons for 
retaining them. 
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ing mechanism can be easily extended to allow the discovery of negated conditions. In the 
previous example, if a fact was present during the good application and absent during the 
bad application, then it was included as a positive condition in a new variant rule. But the 
reverse reasoning holds equally well: if a fact was present, during the bad application but 
absent during the good application, then it should be included as a negated condition in a 
new rule. This means that variants with positive and negative conditions may be created in 
response to the same error, but since one cannot distinguish between them on the basis of 
a single example, this is a reasonable decision. If one of the rules is more useful than the 
other, then it should be created more often and eventually come to mask its competitor. 

A second extension allows the discovery of many conditions at the same time. This can 
occur in the context of structural or relational representations, when a single fact is not 
sufficient to distinguish between a good and bad application. As an example, suppose that 
our system is learning the concept uncle, but starts with an overly general rule that believes 
the uncle relation holds between any two people. Suppose further that it correctly predicts 
that Joe is the uncle of Sam, but incorrectly predicts that Jack is the uncle of Steve.· Upon 
examining the information associated with each of these situations, it finds that both' ,Sam 
and Steve have a parent; thus, this condition in itself is not enough to predict the uncle 
relation in one case but not the other. But on continuing its search, the discrimination 
process finds that Joe is the brother of Sam's parent, while Jack is not the brother of Steve's 
parent. Thus, the conjunction of the parent and brother relations is sufficient to tell between 
the two instances, and these two relations would be included as conditions in a variant on 
the original rule. Analogous situations can lead to a conjunction of negated conditions; a 
rule containing such a conjunction will match if any subset of its negated conditions match, 
but not if all of them are true simultaneously. In principle, this approach may be used to 
find variants with an arbitrary number of new conditions; in practice, the search must be 
constrained to a reasonable depth, allowing no more than four or five conditions to be found 
simultaneously. 

Selecting between Alternative Variants 

The reader may have noted the careful crafting of the above examples, so that only 
one difference occurred in each case. This meant that the relevant conditions were obvious, 
and the discrimination mechanism was not forced to consider alternative corrections. Un­
fortunately, one cannot always depend on a benevolent tutor to present an ideal sequence 
of examples. Accordingly, when an error is detected, the discrimination process considers 
all differences between the correct and incorrect situations, and constructs all of the corre­
sponding variants. For example, suppose the good case was large thick blue circle, while the 
bad case was small thin red square. Here four* rules would be created, one with large as a 
new condition, one with thick, one with blue, and one with circle. Some of these differences 
may have nothing to do with the actual concept, but each of the rules is initially given a 
low strength. Only if the same rule is constructed many times will it have a chance to play 
a role in the decision process. 

* Four additional rules would be created as well if we included negated conditions; these would 
include not small, not thin, not red, and not square as conditions. 
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The strengthening process is the key to focusing attention on promising variants. Even if 
a variant rule is still overly general, it will tend to be created more often than other variants in 
which the wrong conditions were inserted. This means that it will be selected in preference 
to its competitors,· and lead to errors of its own. When this occurs, the discrimination 
mechanism will generate variations on this rule with still more conditions, which in turn may 
generate their own errors and lead to even better rules. Thus, though the discrimination 
process may generate many completely spurious rules, these tend to be ignored and only the 
most promising variants are considered further. The entire process may be viewed as a beam 
search through the space of rules, in which only a few nodes are chosen for expansion at any 
given depth. This strategy makes for much slower learning than occurs in generalization­
based approaches, but the strategy is also much more robust than the more traditional 
methods, as we discuss below. 

The Advantages of Discrimination Learning 

In the previous section we discussed some drawbacks of generalization-based lea~ning 
methods. We found that generalization ran into difficulties when confronted with disjunctive 
rules, noisy environments, or rules that change over time. In contrast, a discrimination 
learning technique like the one just outlined responds comparatively well in these situations. 
Because our discrimination process compares only a single good situation to a single bad 
situation, disjunctive concepts can be easily acquired. The disjunct that is learned in a 
particular case depends ori the good situation that is examined, but since the most recent 

. good situation is used, each of the disjuncts will eventually be found. The combination of 
discrimination and strengthening allows learning in noisy environments, since the occurrence 
of occasional errors will have little effect on a learning .algorithm that sums across many 
different examples. Finally, the weakening of faulty variants provides a natural mechanism 
for backing up through the space of rules, should this ever be necessary due to a change in the 
environment. In summary, the proposed discrimination learning theory appears to embody a 
very robust approach to learning that deserves further exploration. In the following section, 
we propose some domains in which to test this approach to knowledge acquisition. 

Relation to Earlier Research on Discrimination 

Although the majority of condition-finding research has been concerned with techniques 
for generalization, we have seen that a few researchers have employed discrimination-based 
learning methods. At least some of these researchers have realized the potential of discrimina­
tion to deal with the issues we have discussed. Hunt, Marin, and Stone used their technique 
to learn disjunctive concepts by viewing positive instances as negative instances and vice 
versa. Anderson and Kline used discrimination to learn disjunctive rules when overgeneral­
izations occurred, and seemed to realize the importance of a strengthening component for 
dealing with noisy environments. However, to our knowledge they have not explored these 
issues in any detail. Thus, our theory should not be viewed as an entirely new approach to 
the task of determining relevant conditions. Rather, it is an attempt to extend a promising 
approach to learning that has received relatively little attention, and to cast this approach 
in sufficiently general terms that it can be applied to a variety of domains. 
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Since our learning method bears a close resemblance to that employed by Anderson and 
Kline, we should spend some time discussing the differences. First, the earlier researchers 
used discrimination mainly to recover from overgeneralizations, while we are exploring dis­
crimination separately from generalization-based approaches. Second, Anderson and Kline's 
version of discrimination created only a single variant whenever it was evoked, while the 
proposed method constructs a different variant for each difference that is found. Thus, the 
earlier technique can be viewed as carrying out a depth-first search through the space of 
possible rules, while our method carries out a beam search that should be able to discover 
all useful variants. Finally, Anderson and Kline's variants differed from their predecessors 
by including only one additional condition.* In contrast, our discrimination mechanism can 
discover more complex differences that lead to the addition of multiple conditions, and to 
the addition of negated conjunctions that constrain the variant in complex ways. This allows 
the discovery of rules that, as far as we can determine, cannot be learned with any of the 
existing generalization-based or discrimination-based methods. Thus, while the new method 
has many similarities to Anderson and Kline's earlier technique, there are some important 
differences as well. 

Learning Concepts through Discrimination 

The majority of research on condition-finding has taken place in the context of concept 
attainment tasks. Therefore, this was a natural area in which to begin our exploration of 
discrimination learning. And because concept attainment tasks deal with condition-finding 
in its purest form (since no additional learning issues are involved), this was an ideal domain 
for testing our major claims about the new approach. Accordingly, we set out to construct 
a general system that could learn a variety of concepts when presented with examples and 
non-examples of those concepts. Below we present an overview of this system, after which 
we discuss some empirical explorations of the program's behavior. 

An Overview of the Program 

The program's task is to learn the conditions that correctly predict all positive instances 
of a concept, without predicting that any negative instances are examples. Since it must have 
data on which to base its learning, the system begins by selecting an example at random from 
user-supplied lists of good and bad instances. (The probability of choosing a good instance 
is 50 percent.) Once an instance is available, the system makes a prediction about whether 
that instance is good or bad. When no other rule is available or preferred, t a default rule 
cautiously decides that the instance is not an example of the concept. Next, the program 

* In some cases, their system also replaced variables with constants; however, this can be sim­
ulated by the addition of a new condition that restricts the symbols that a variable will match 
against. 

t As mentioned before, each rule has an associated strength. When an existing rule is recon­
structed, its strength is incremented. However, until its strength exceeds that of the default rule, 
it will never be selected. Thus, the default rule's strength effectively acts as a threshold which 
other rules must exceed before they are considered. 
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compares its prediction to the correct answer. Errors of omission occur when the program 
fails to correctly predict a positive instance. In such cases, the system designates a new, 
very general rule that predicts any situation to be a positive instance. This will be the first 
learning response of the program, since it can only make negative predictions at the outset. 

When the system correctly predicts a positive instance, it stores the instantiation of 
the rule that made that prediction. This information is used in recovering from errors of 
commission, which occur if the system predicts a positive instance when a negative instance 
actually occurs. When such an error is noted, the program evokes the discrimination process 
in an attempt to generate more conservative variants of the responsible rule (whose strength 
is decreased). As we have seen, this routine compares the bad instantiation of the rule 
that made the faulty prediction to the most recent good instantiation of the same rule. For 
every difference that is found, a variant of the overly general rule is created which includes 
that difference as an extra condition. When a variant is rebuilt, its strength is increased 
so that it has a greater priority. If any of these variants are still too general, they will 
produce their own errors of commission and lead to even more conservative variants. Thus, 
the discrimination process can be viewed as carrying out a breadth-first search through_ the 
space of rules, considering simpler variants before more complex ones. 

To summarize, our concept learning system has six distinct components, each stated as 
a separate PRISM production. These components are: 

• A production that selects an instance at random from the space of possible instances. 

• A production that asks the tutor whether an instance is an example of the concept to 
be learned (i.e., a rule that gathers feedback); 

• A default production that predicts that an instance is not an example of the concept 
·when no other prediction has been made; 

• A designating production that creates a rule for predicting that all instances are examples 
whenever an error of omission occurs; 

• A production that notes when a correct prediction has been made, and that assigns 
credit to the responsible rule; 

• A production that notes errors of commission and evokes the discrimination process in 
an attempt to construct more conservative variants of the responsible rule. 

The production system itself is quite, simple, since the real power of the program lies in the 
discrimination process that is called when overly general rules lead to faulty predictions. In 
the following pages, we see how the overall system learns different concepts under various 
conditions. 

Learning Conjunctive Concepts 

Since most research on concept learning has focused on conjunctive rules, it seemed 
reasonable to first see if the model could acquire such concepts. Rules stated in terms of 
attribute-value pairs are the simplest, so our initial runs were on concepts such as large and 
large-and-thick. The learning path in these runs was much as expected. Since no rule for 
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predicting examples of the concept existed at the outset, errors of omission led the system to 
create such a rule. Once this became strong enough, it led to errors of commission and a call 
on the discrimination process. As a result, variants with single conditions were constructed, 
with those containing useful conditions eventually exceeding threshold after they had been 
built repeatedly. When these overly general rules led to errors, productions containing a 
second condition were generated, again with useful variants eventually exceeding threshold. 
This process continued until the correct rule gained sufficient strength to be selected, after 
which no additional errors were made. 
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Figure 1. Errors in learning a single-condition concept. 

Figure 1 presents the errors made by the system as a function of time, while learning the 
concept blue. As one would expect, errors of omission abound at the beginning of the run, 
but they become fewer as experience is gained (growing again at one point), until eventually 
they disappear entirely. Errors of commission are initially absent, but they grow to a peak 
at the center of the figure as overly general rules become stronger. However, as the dominant 
rules become more specific, such mistakes drop off and finally disappear as well. Figure 2 
presents the trials to criterion (the number of examples until no errors occur) for conjunctive 
concepts of varying complexity. Since the discrimination process moves from general to 
more specific rules, simpler concepts with fewer conditions are mastered more rapidly than 
more complex ones.* Although one might expect a linear relationship, it does not occur. 
This results from the fact that as the system masters more of the conditions in a concept's 
definition, the chance for errors of commission decreases, since the dominant rules are more 
nearly correct. Since variants are created or strengthened only when errors of commission 
occur, the learning process slows down as the correct rule is approached. The effect is more 

* Note that a generalization-based learning system would predict exactly the opposite trend, 
since it starts with very specific rules and removes conditions as it progresses. 
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pronounced when the correct rule includes many conditions, since a larger fraction of the 
instances are correctly classified when the concept is nearly learned than would be the case 
if a simpler concept were nearly learned. One solution to this problem is to let the program 
select its own instances, with a preference for those which it would predict as examples of 
the concept. 
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Figure 2. Learning speeds for conjunctive and disjunctive concepts. 

The reader will recall that the discrimination process is not restricted to learning con­
cepts based on attribute-value pairs. In addition, it can discover rules incorporating complex 
structures, such as uncle-by-marriage (i.e., the husband of a parent's sister). Rather than 
applying to a single object, this concept concerns a relationship between two people. More­
over, this concept cannot be described in terms of a simple conjunction of features; these 
features must be related to one another in certain ways as well. This means that the discrim­
ination process will sometimes be required to discover complex differences between good and 
bad instances. We do not have the space to trace the system's evolution on such concepts, 
though it has successfully learned them. 

Learning Disjunctive Concepts 

In addition to learning conjunctive concepts, discrimination can also master disjunctive 
rules. This results from the breadth-first nature of the mechanism's search through the space 
of possible conditions. Let us trace the system's progress on a simple disjunct like large or 
red. Suppose the program first encounters a positive exemplar that is large and blue (along 
with a number of other features), and later encounters a negative instance that is small 
and blue instead. Upon noting the differences, the discrimination mechanism will construct 
a variant with large in its condition side (and perhaps others as well). Now suppose the 
system meets with another positive instance containing the features small and red, followed 
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by a negative example that is small and blue. In this case discrimination will create a variant 
with red as an extra condition. In summary, the method is capable of learning disjunctive 
rules because it focuses on a single positive and a single negative instance at a time. The 
particular pair it examines will determine which of the disjuncts will be found in that case. 
This is in sharp contrast to generalization-based approaches, which rely on finding features 
common to all positive instances to determine the appropriate conditions. 

Besides summarizing the system's behavior on conjunctive rules, Figure 2 also graphs the 
complexity of disjunctive concepts against their learning time. This curve is also nonlinear, 
but it is considerably less steep than its conjunctive counterpart. The reason for this lies in 
the strategy used to search the space of concepts. Because disjunctive concepts are stated as 
separate rules, and because the space. is searched in a breadth-first manner, disjunctive rules 
can be found more or less in parallel. However, since generally only one of the disjuncts can 
be strengthened when an error of commission occurs,* one might expect a linear relationship. 
But as with conjunctive concepts, fewer useful negative instances occur in later stages of the 
learning process. Of course, the system can also discover disjunctive relational concepts like 
uncle, which can be restated as uncle-by-marriage or uncle-by-birth. The complexity of~uch 
disjunctions cannot be treated as strictly cumulative, since they share some conditions, such 
as the fact that the uncle must be male. 

Dealing with Noise 

The strengthening process has proved very useful in directing search through the space 
of concepts, but one can imagine a discrimination-based learning system that makes no use 
of strength and is still capable of learning conjunctive and disjunctive rules. However, when 
one introduces noise into the environment, ordering rules along some measure of success 
becomes much more important. On reflection, it becomes apparent that two forms of noise 
are possible: a positive instance may be marked as .a negative instance (positive noise), or 
a negative instance may be marked as a positive instance (negative noise). The effects on 
discrimination learning are different in these two situations. In the case of positive noise, a 
positive prediction is incorrectly marked as an error of commission; discrimination will be 
evoked, and since two positive instances are being compared, any variants are guaranteed to 
be spurious. A negative prediction in this case is less serious, since the system will simply 
fail to note an error of omission, and the general rule normally designated in such situations 
will not be strengthened. In the negative noise case, a negative prediction is incorrectly 
marked as an error of omission. The resulting construction of an overly general rule will 
in itself do little harm, but the "good" instantiation stored with it will actually be a bad 
instantiation. Accordingly, when the next error of commission occurs, two bad instantiations 
will be compared for differences, and again any resulting variants will be incorrect. Since a 
good instantiation remains with a production until it is replaced by another, this second type 
of noise may have cumulative effects. If instead the system makes a positive prediction, it will 
not be detected as an error of commission, and an opportunity for creating or strengthening 
useful variants will be lost. 

* Occasionally more than one of the disjuncts is present during a positive instance; in such cases, 
variants containing each of the disjuncts are constructed following an error of commission. 
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Figure 3 presents the trials to criterion for a two-condition conjunctive concept with 
varying levels of noise. A noise level of zero represents no noise, while a noise level of 
0.5 represents maximum noise or perfect randomness.* Separate curves are shown for the 
two types of noise. The system was never presented with both forms of error in the same 
run. One would expect the system's performance to degrade gracefully as more noise was 
introduced, but this does not appear to be the case. Instead, the program's behavior was 
largely unaffected by noise in the 0 to 30 percent range, and then was affected drastically 
when the noise rose above this level. Whether these results are due to the chance order in 
which the data were presented in these runs, or whether this is a basic characteristic of the 
system, can only be determined by further experiments with the program. Still, it is clear 
that the discrimination learning approach, combined with a strengthening mechanism to 
focus attention on promising variants, is capable of discovering concepts despite significant 
amounts of noise. 
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Figure 3. Effect of noise on learning a two-condition concept. 

Adapting to a Change in the Concept 

The strengthening mechanism has not only proved useful for learning concepts in the 
presence of noise, but also in the process of recovering from a change to a well-learned concept. 
Any intelligent system must be capable of revising its prediction rules as change occurs in the 
environment. For example, suppose that tomorrow our traffic laws were changed so that the 
color of stop lights became blue instead of red. Presumably we would learn to stop when the 
light turned blue. The concept learning program has succeeded on a similar task in which 
it must alter the conditions under which it predicts an example of a concept. The system is 

* A noise level of 1.0 would lead to complete regularity, though the system would learn the 
negation of the rule it was intended to learn. 
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presented with instances of one concept until it achieves criterion performance at predicting 
that concept. Then the concept is changed and the program must revise its prediction rules 
in order to regain its previous level of success. 

Figure 4 describes the program's performance on this task, mapping the percentage of 
errors of omission and commission made against the number of trials. For the first forty trials, 
the learning system is presented with positive and negative examples of the concept blue. 
This process is similar to that described earlier in reference to simple conjunctive concept 
learning. The criterion of perfect performance is reached by trial 30, and the subsequent 
ten trials are predicted correctly. At this point the system's strongest rule states that if 
the color of a token is blue, then the token is an example of the concept. This rule fires on 
all positive instances so that no errors of omission are made. The next to strongest rule is 
the default rule, which makes negative predictions. This production fires on all the negative 
instances, so no errors of commission are made, either. A number of weaker rules created in 
the process of learning the concept blue are also present, but they are not strong enough to 
compete with the other two and do not fire. 
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Figure 4. Errors with a change of concept on trial 40. 

At trial 41, the concept is changed to ;quare and the program's current set of rules 
becomes insufficient for continued perfect performance. Errors of commission are made in 
response to instances that are blue but not square, causing the blue rule to be weakened and 
variants to be created. Errors of omission are made when the program is presented with 
examples which are square but not blue, resulting in the strengthening of the most general 
prediction rule by designation. Note that errors of both types increase rapidly following 
the change of the concept, with omission errors reaching a peak at trial 50. Errors of 
commission rise even higher after the overly general rule becomes strong enough to fire. 
This rule consistently makes commission errors, and variants, including the square rule, 
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are created (or strengthened, if they were created while learning the concept blue). Errors 
decrease gradually as the system revises its rules, until by trial 80 both types of errors have 
diminished to nothing, and perfect predictive power has been achieved again. 

Summary 

In conclusion, the discrimination-based approach to condition-finding provides a viable 
alternative to the more traditional generalization-based paradigm. Discrimination can be 
used to learn conjunctive concepts, including those composed of complex relational terms. 
And because it compares a single good instantiation to a single bad instantiation, the tech­
nique can discover disjunctive concepts as well. Finally, when combined with a strengthening 
process, discrimination can successfully learn the desired conditions in the presence of noise, 
and can recover from changes in the environment. One limitation of the program revolved 
around its inability to intelligently select instances that might lead to errors of commission, 
and this is an obvious direction in which the concept learning system should be extended. 
Although we do not wish to detract from the excellent work on generalization, we believe 
that the discrimination learning approach offers some distinct advantages, which w~-will 
explore further in the following sections. 

Learning Search Strategies through Discrimination 

Upon first encountering a problem-solving situation, humans engage in search; however, 
once they have gained experience in an area, their search is much more directed, and in 
some cases may disappear entirely. The domain of strategy learning is another field in which 
discrimination learning techniques can be applied. This results from the fact that search can 
be cast as the successive application of operators that transform one state into another, in the 
hopes of achieving some goal. The novice may possess the legal conditions for applying the 
operators in some task, but may lack the heuristically useful conditions under which those 
operators should be applied. The discovery of such useful conditions can be cast in a form 
analogous to that for finding the conditions on concepts. However, while the assignment of 
blame and credit is trivial in the concept learning paradigm, it becomes considerably more 
complex when search is involved. . 

Sleeman, Langley, and Mitchell (1982) have discussed an apparently general solution to 
the credit assignment in the context of strategy learning. If one is willing to find the solution 
to some problem by trial and error, or if a sample solution is provided by a tutor, then one 
can use the known solution path to determine the appropriateness of an operator as soon 
as it has been applied. Thus, one can easily distinguish between good and bad instances of 
an operator, and the task of learning the heuristically useful conditions under which these 
operators should be applied is reduced to a task very like that of learning concepts. Brazdil 
(1978) has employed this approach, along with a discrimination-like learning mechanism, to 
discover strategies from sample solutions, while Mitchell, Utgoff, and Banerji (1981) have 
explored strategy learning from self-generated solution paths, using Mitchell's (1977) version 
space technique. Langley (1982, 1983) has described these systems and their approach to 
strategy learning in greater detail. 
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Below we describe SAGE, an adaptive production system that operates in a similar 
fashion. The system that starts with legal operators for some task (stated as productions), 
finds a solution path by trial and error, and then attempts to learn from this solution path. 
Upon trying the same problem a second time, it can tell immediately when it has applied 
the incorrect operator. Such an error implies that the responsible rule is overly general, and 
discrimination is used to generate more conservative variants. This process continues (with 
relearned variants being strengthened) until the problem can be solved without errors. SAGE 
has many similarities to Brazdil's ELM and Mitchell, Utgoff, and Banerji's LEX, but there 
are some important differences as well. Like the concept learning program described in the 
previous section, SAGE is not intended as a detailed model of human strategy acquisition. 
Let us consider the system's behavior on a simple puzzle known as slide-jump.* 

Table 1 

Solution path for the four-coin slide-jump puzzle 

QQ_ NN 
Q_ QNN 
QNQ_ N 
QNQN_ 
QN _ NQ 
_ NQNQ 
N _ QNQ 
NNQ_ Q 
NN _ QQ 

The Slide-Jump Puzzle 

initial state 
slide a quarter from 2 to 3 
jump a nickel from 4 to 2 
slide a nickel from 5 to 4 
jump a quarter from 3 to 5 
jump a quarter from 1 to 3 
slide a nickel from 2 to 1 
jump a nickel from 4 to 2 
slide a quarter from 3 to 4 

Like many puzzles, the slide-jump task appears deceptively simple on the surface, but 
is fairly difficult for humans to solve. In this puzzle, one starts with equal-numbers of two 
types of coins (e.g., quarters and nickels) set in a row. All quarters are on the left, all nickels 
are on the right, and the two sets are separated by a blank space. The goal is to interchange 
the positions of the quarters and nickels. However, quarters can move only to the right, 
while nickels can move only to the left. Two basic moves are allowed: a coin can slide from 
its current position into an adjacent blank space, or it can jump over a coin of the opposite 
type into a blank space. t Table 1 presents one solution path for the four-coin problem. 

* SAGE has also learned useful heuristics for solving algebra problems in one variable, and for a 
seriation task in which blocks must be ordered according to their lengths. The system's behavior 
in these domains is discussed in Langley (1982, 1983); however, we will be using slide-jump as our 
main example in this disc~ssion. 

t A more complex version of the task allows one to jump over coins of the same type. Although 
this results in a larger search space, such moves always lead to dead ends, and we will consider 
only the simpler version of the task. 
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Figure 5 shows one half of the state space for the four-coin puzzle (the other half is simply 
a mirror image of that shown). Dead end states are represented by squares, and the solution 
path is shown in bold lines. We will refer to the numbers on the states later in the section. 
SAGE starts this task with one condition-action rule for sliding and one for jumping, as well 
as some additional rules which support the search for a solution. The initial rules are correct 
in that they propose only legal moves, but they lack conditions for distinguishing good moves 
from bad moves. As a result, the program makes many poor moves on its first pass, and is 
forced to back up whenever it reaches a dead end. 

Figure 5. State space for the four-coin slide-jump puzzle. 

However, SAGE does eventually solve the problem in this trial-and-error way. At this 
point, it attempts a second solution, but this time it has the initial solution to guide its 
search. When one of the move-proposing rules is incorrectly applied, the system knows its 
mistake immediately. If such an error occurs, SAGE calls on the discrimination process to 
compare the last correct application of the offending production to the current incorrect 
application. The resulting variants contain additional conditions that prevent them from 
firing in the undesired case. The program continues to learn in this fashion, constructing more 
conservative rules when errors are made and strengthening rules when they are relearned, 
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until it traverses the entire solution path with no mistakes. 

The reader may wonder why the program should bother to improve its rules once it 
knows the solution to the puzzle. The reason is simple: there is a chance that these revised 
productions will also be useful in related problems for which the solution path is not available. 
As we shall see later, the heuristics SAGE learns on the four-coin puzzle let it solve the six­
coin puzzle immediately, without backtracking. 

Representing Problem States and Operators 

Any problem solver must have some representation to work upon, as well as operators for 
transforming the initial state into the goal state. Although SAGE necessarily uses different 
representations for the different tasks it attempts, they all have one major feature in common: 
each problem state is represented as a number of distinct elements in working memory. 
SAGE's operators are implemented in such a way that they affect only some of these elements, 
so the entire problem state need not be respecified each time a move is made. Instead; .those 
elements that have become true are added to memory, while those that are no longer true are 
removed. Also, this composite representation allows partial information about the problem ' 
state to be included as conditions on a move-proposing rule to the exclusion of less relevant / 
information. 

(quarter one) 
(quarter two) 
(blank three) 
(nick el four) 
(nickel five) 

Table 2 

Initial state for the four-coin slide-jump task 

(one is left of two) 
(two is left of three) 
(three is left of four) 
(four is left of five) 
(nickel moves left) 

(five is right of four) 
(four is right of three) 
(three is right of two) 
(two is right of one) 
(quarter moves right) 

For example, consider the representation for the four-coin slide-jump puzzle. Table 2 
. presents the initial state for this task. The first column states that a quarter is in position 
one, another quarter is in position two, a -blank is in position three, and so forth. Note 
that each of these facts is stored as a separate element. Thus, if SAGE slides a quarter 
from two to three, it simply removes the elements (quarter two) and (blank three), and adds 
the elements (blank two) and (quarter three); nothing else must be altered. The remaining 
columns state the spatial relations between the positions, along with the directions in which 
each coin may move; these facts remain unchanged throughout the problem. 

The composite representation SAGE uses for problem states leads naturally to the rules 
for proposing moves between those states. These rules incorporate the legal conditions for 
applying an operator in their left hand sides, and include a proposal to apply that operator 
in their action sides. When one of these productions is selected, it inserts a goal to apply the 
associated operator; when this operator is applied, it removes some elements from working 
memory and adds others. For example, the basic slide production can be stated: 
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SLIDE-1 
If a coin is in position1, 

and position2 is to the direction of position1, 
and position2 is blank, 
and that coin can move to the direction, 

then consider sliding that coin from position1 to position2. 
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This production will match* whenever a coin is next to the blank space and the coin is 
allowed to move in that direction; it will work for either coin and for any pair of adjacent 
positions. Once a goal has been set, another production is responsible for updating the 
problem state by actually adding an_d deleting elements from memory. This division of labor 
simplifies matters in later runs when the solution path is known, for an incorrect goal may 
be caught before it is implemented. Also, the goals provide a trace of what has been done, 
which can prove useful in stating more heuristics for directing the search process. 

Controlling the Search 

Before SAGE can learn from its mistakes, it must be able to identify those mistakes. The 
most obvious way to distinguish good moves from bad moves is by examining the correct 
solution path to a given problem. t And to find a solution using the very weak move-proposing 
rules it has at the outset, the system must search. In addition to rules for suggesting moves, 
effective search requires the ability to eventually recognize a fruitless path, and the ability 
to backtrack once such a path is recognized. SAGE carries out a form of depth-first search 
in each of the tasks it attempts, and learning consists of constructing more specific move­
generating rules that direct the search down fruitful paths. 

When SAGE decides it has reached a bad state or dead end, it backtracks to the previous 
state. This is possible only because the system keeps a trace of all previous moves made 
along the current path. This trace serves a second purpose in that it provides a record of 
the solution path once the goal has been reached. During the initial search, SAGE also 
remembers bad moves it has made along the current path, so that it can avoid making these 
moves a second time. However, this negative information is removed once the solution is 
reached. 

* Note that although this rule proposes legal moves, there is no guarantee that these will be 
good moves. AB stated, the slide-1 rule will generate many bad moves, and learning must occur 
before only useful actions are suggested. Also note that the variable coin will match against the 
symbol quarter or nickel, rather than against a particular coin. 

t One can imagine other means of determining good instances of a rule from bad instances, such 
as Anzai's (1978a, 1978b) loop move and shorter path heuristics, and these certainly have a role 
to play in domains where search alone is prohibitive. However, in the current version of SAGE we 
have chosen to focus on techniques that rely on knowledge of the complete solution path. 
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SAGE employs a single production for recognizing the solution state. The rule for slide­
jump may be paraphrased: 

SOLVED 
If a coin1 moves to the direction1, 

and a coin2 moves to the direction2, 
and position is blank, 
and no coin1 is to the direction2 of position, 
and no coin2 is to the direction1 of position, 

then you are finished. 

The goal-recognizing rules for other tasks are necessarily different, but they are always stated 
as single productions in much the same spirit as the above rule. Below we trace the details 
of SAGE's improvement on the slide-jump puzzle. 

Learning Search Heuristics 

SAGE was initially presented with the four-coin slide-jump task. After finding the so­
lution path by depth-first search, a second attempt was made to solve the same problem. 
SAGE's first proposal was to slide a quarter from 2 to 3; this move is represented by the 
line connecting states A and B in Figure 5, where A stands for the initial state and B for 
the resulting state. Since this move lay upon the known solution path, the system imple­
mented its plan and stored the latest instantiation of slide-1 as a good instance of that rule.* 
However, this was immediately followed by a proposal to slide a quarter from 1 to 2, which 
would have led to state C in the figure. Since this move lay off the known solution path, it 
was deemed an error and the discrimination routine was called to compare the instantiation 
of slide-1 that proposed this action to the good instantiation that had just been stored. In 
this case, the discrimination process discovered two differences, and so two variants of the 
slide-1 production were created. One of these was based on the fact that the correct move 
was the first that was made, while the incorrect one occurred in the context of an earlier 
move. The result was a production that would apply only on the first move of every task 
(the discriminant condition is shown in bold italics): 

SLIDE-2 
If a coin is in position1, 

and position2 is to the direction of position1, 
and position2 is blank, 
and that coin can move to the direction, 
and you have not made any previous moves, 

then consider sliding that coin from position1 to position2. 

* The slide-jump task has two optimal solution paths which are "mirror images" of each other; 
the particular path is determined entirely by the initial move. To ensure that SAGE made the 
same first move on every run, a special production was included that increased the activation of 
part of the problem description. This was sufficient to focus the system's attention on the relevant 
coin and to avoid the effort of trying to distinguish between two equally good moves. 
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· Unfortunately, this rule contains no information in its conditions to direct the search 
down useful paths, since only slide moves are possible from the initial state. The second 
variant was based on information about the particular type of move that had occurred 
before the bad slide move; the resulting production included more specific information in its 
new negated condition: 

SLIDE-3 
If a coin is in position1, 

and position2 is to the direct,ion of position1, 
and position2 is blank, 
and that coin can move to the direction, 
and you did not just slide a coin from position2 to position3, 

then consider sliding that coin from position1 to position2. 

This second variant is more selective than slide-2; it would not have proposed moving a 
coin from position 1 to 2, provided that coin had just been moved from 2 to 3, and so it 
would have avoided the error produced by slide-1. In general, it would not slide a coin ,into 
a position which had just been vacated by another slide. 

Still at state B, SAGE next considered jumping a nickel from 4 to 2; this agreed with 
its previous experience, so the suggestion was carried out, leading to the state labeled D in 
Figure 5. On the following move, slide-1 (which was still stronger than the two variants) 
proposed sliding a quarter from 3 to 4, which would have led off the path to state E. Again, 
the program decided it had made an error, and the responsible instantiation of slide-! was 
compared to the same good instantiation that was used earlier (since no new good instances 
of the rule had occurred in the meantime). This time discrimination reproduced the variants 
slide-2 and slide-3, causing them to be strengthened; in addition, a new production was 
constructed, based on the jump that had just been made: 

SLIDE-4 
If a coin is in position1, 

and position2 is to the direction of position1, 
and position2 is blank, 
and that coin can move to the direction, 
and you did not just jump the other coin from position2 to position3, 

then consider sliding that coin from position1 to position2. 

This rule states that one should not slide a coin into a position from which one has just 
jumped the other brand of coin. Note that this production may still propose those moves 
avoided by slide-3 variant, while the earlier version may still propose this type of sliding 
move. In their current forms, both rules are overly general. 

At this point SAGE considered. sliding a nickel from 5 to 4 (still via the original rule 
slide-1), which w~uld have led to state Fin the figure. Since this agreed with the known path, 
the proposal was implemented, giving the system a new good instantiation of the responsible 
production to consider in subsequent discriminations. Next the system correctly jumped a 
quarter from 3 to 5 (leading to state G), but this was followed by a proposal to slide a nickel 



PAGE 28 HEURISTICS LEARNING 

from 4 to 3. This would have led off the solution path to state H, and so discrimination 
again searched for differences, this time generating a fourth variant: 

SLIDE-5 
If a coin is in position1, 

and position2 is to the direction of position1, 
and position2 is blank, 
and that coin can move to the direction, 
and you have just jumped a coin from position2 to positions, 

then consider sliding that coin from position1 to position2. 

Here we have a positive condition included in the variant, suggesting that slides should 
occur after a jumping spree has been completed, and in the same direction. In addition, 
discrimination produced four other less useful variants that made reference to moves earlier 
in the problem. By now SAGE had reached the halfway point for the problem. Since only one 
move was possible* at each step from this point onward, the program finished with no more 
mistakes. However, earlier errors had been made, so the system tried the problem a tJiird 
time. In this run, identical mistakes occurred, and each of the variants was strengthened. 

The program continued along these lines, until during the fifth run the second variant, 
slide-3, came to surpass the original rule in strength. After this, the more conservative 
production was applied whenever possible. When slide-3 proposed sliding a quarter from 
3 to 4 while the system was at state D (recall that slide-1 made this same mistake earlier, 
leading slide-4 to be learned), discrimination resulted in a variant of slide-3 that contained 
yet another condition (shown in bold italics) for directing search down fruitful paths: 

SLIDE-6 
If a coin is in position1, 

and position2 is to the direction of position1, 
and position2 is blank, 
and that coin can move to the direction, 
and you did not just slide a coin from position2 to positions, 
and you did not just jump the other coin from position1 to position3, 

then consider sliding that coin from position1 to position2. 

This rule includes the negated conditions ·of both slide-3 and slide-4, stating that one 
should not propose a slide if either condition is met. Other variantst were created as well, 
but never gained sufficient strength to have any effect on the system's performance. After 
five more runs, the slide-6 rule acquired more strength than its precursor, and on its eleventh 
run, SAGE reached the goal state (marked Lin the figure) without error. In addition, when 

* Note that the variants slide-4 and slide-5 are not true on the slides required for the last half of 
the problem. For this reason, it is essential that the original slide rule remain available, and that 
the variants simply come to be preferred when competition occurs. 

t Altogether, SAGE generated some 18 variants on the initial slide rule, but only 4 of these 
can be considered useful; fortunately, the strategy of giving variants low initial strengths and 
strengthening upon recreation was sufficient to focus attention on the more promising rules. 
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the system was presented with the six-coin task, the system successfully applied its heuristics· 
to direct search, so that it solved the problem on its first attempt with no backtracking. 
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LEARNING TRIALS 

Figure 6. Learning curve for the slide-jump task. 

Figure 6 presents SAGE's learning curve on the four-coin slide-jump task. The graph 
plots the number of moves that were considered before the solution was reached, against the 
order in which each run occurred. The drop between the first and second trials results from 
knowledge of the solution path, and so does not reflect the system's progress is developing 
useful heuristics. However, the slow improvement from the second trial onward shows that 
the system was gradually narrowing its search. And since the solution path was not needed 
in the eleventh and final run, it is appropriate to compare the number of moves on this trial 
to that on the first run. This comparison reveals that the variants on the slide-1 production, 
with their heuristically useful conditions, reduced the number of moves from the initial 15 
to the optimum number 8. 

Summary 

In summary, SAGE is an adaptive production system that improves its search behavior by 
adding heuristically useful conditions to rules that initially contain only the legal conditions 
for applying operators. Presented with the slide-jump task, it solves the problem first by trial 
and error, and then attempts to learn from the solution sequence using the discrimination 
process. The system learns a number of useful variants, including one that allowed it to 
solve the four-coin and six-coin tasks with no errors. SAGE has also learned heuristics for 
solving algebra problems in one variable, and for ordering blocks according to their lengths. 
Although the performance rules for these cases differ, all versions of the system share a 
common core of adaptive productions that direct the learning process. Although SAGE is 
not intended as a model of human learning, it does shed light on one important way in which 
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strategies can be improved. 

Future research with SAGE should concentrate on testing the system in additional do­
mains. These tasks should include other puzzles for which the problem spaces are well 
understood, such as Tower of Hanoi or Missionaries and Cannibals. However, it is also im­
portant to test the learning system in domains involving many operators and large search 
spaces, such as symbolic integration or geometry theorem proving. The first of these is es­
pecially attractive, since it would allow direct comparison of SAGE's behavior to Mitchell, 
Utgo:ff, and Banerji's LEX system. In addition to further testing the program's generality, 
other methods should be explored for solving the cr_edit assignment problem without resort­
ing to complete solution paths. For example, one should be able to modify Anzai's loop move 
and shorter path heuristics so as to determine good and bad applications of an operator, 
and so allow discrimination learning to occur before a complete solution is found. Such an 
approach would be particularly useful for learning in domains with large problem spaces, 
where the search involved in finding a solution by trial and error would be prohibitive. 

A Model of First Language Acquisition 

Children do not learn language in an all-or-none fashion. They begin their linguistic 
careers uttering one word at a time, and slowly evolve through a number of stages, each con­
taining more adult-like speech than the one before. In this section, we present a model that 
attempts to explain the regularities in children's early syntactic development. The model is 
called AMBER, an acronym for Acquisition Model Based on Error Recovery. AMBER learns 
a grammar by comparing its own utterances to those of adults and attempting to correct 
any errors, and discrimination plays an important role in the system's learning scheme. The 
model focuses on the omission of content words, the occurrence of telegraphic speech, and 
the order in which function words are mastered. Before considering AMBER in detail, let us 
first review some major features of child language, along with some earlier models of these 
phenomena. 

Around the age of one year, the child begins to produce words in isolation, and continues 
this strategy for some months. At approximately 18 months, he starts to combine words 
into meaningful sequences. In order-based languages such as English, the child usually 
follows the adult order. Initially only pairs of words are produced, but these are followed 
by three-word and later by four-word utterances. The simple sentences occurring in this 
stage consist almost entirely of content words, while grammatical morphemes such as tense 
endings and prepositions are largely absent. During the period from about 24 to 40 months, 
the child masters the grammatical morphemes that were absent during the previous stage. 
These "function words" are learned gradually; the time between the initial production of 
a morpheme and its mastery may be as long as 16 months. Brown (1973) has examined 
the order in which 14 English morphemes are acquired, finding the order of acquisition 
to be remarkably consistent across children. In addition, those morphemes with simpler 
meanings and involved in fewer transformations were learned earlier than more complex ones. 
These findings place some strong constraints on the learning mechanisms one postulates for 
morpheme acquisition. 
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Although language learning has been a popular topic in artificial intelligence, only a few 
researchers have attempted to construct plausible models of the child's learning process. For 
example, Kelley (1967) has reported on a system that modeled the omission of content 
words and the gradual lengthening of utterances. However, in order to move between stages, 
the program had be told about new syntactic classes by the programmer, making it less than 
satisfactory as a model of first language learning. Selfridge's CHILD (1981) was much more 
robust than Kelley's program, and is unique in modeling children's use of nonlinguistic cues 
for understanding. However, CHILD's explanation of the omission of content words - that 
those words are not yet known - was implausible, since children often omit words that they 
have used in previous utterances. Reeker's PST (1976) explained this phenomenon through 
a limited memory hypothesis, which is consistent with our knowledge of children's memory 
skills. Still, PST included no model of the process through which memory improved;. in order 
to let the system master more complex constructions, Reeker would have had to increase the 
system's memory size himself. Both CHILD and PST learned relatively slowly, and made 
mistakes of the general type observed with children. Both systems learned through a process 
of error recovery, starting off as abominable language users, but getting progressively l{etter 
with time. This is a promising approach, and in this section we develop it in its extreme 
form. 

An Overview of AMBER 

Although Reeker's PST and Selfridge's CHILD address the transition from one-word to 
multi-word utterances, problems exist with both accounts. Neither of these programs focus 
on the acquisition of function words, and their explanations of content word omissions leave 
something to be desired. In response to these limitations, the goals of the current research 
are: 

• Account for the omission of content words, and the eventual recovery from such omis­
sions. 

• Account for the omission of function words, and the order in which these morphemes are 
mastered. 

• Account for the gradual nature of both these linguistic developments. 

In this section we provide an overview of AMBER, a model that provides one set of answers 
to these questions. Since more is known about children's utterances than their ability to 
understand the utterances of others, AMBER models the learning of generation strategies, 
rather than strategies for understanding language. 

Like both Selfridge's and Reeker's models, AMBER learns through a process of error 
recovery.* The model is presented with three pieces of information: a legal sentence, an 
event to be expressed, and a main goal or topic of the sentence. An event is represented 

* In spirit, AMBER is very similar to Reeker's model, though they differ in many details. His­
torically, PST had no impact on the development of AMBER. The initial plans for AMBER arose 
from discussions with John R. Anderson in the fall of 1979, while we did not become aware of 
Reeker's work until the fall of 1980. 
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as a semantic network, using relations like agent, action, object, size, color, and type. The 
specification of one of the nodes as the main topic allows the system to restate the network as 
a tree structure, and it is from this tree that AMBER generates a sentence. If this sentence 
is identical to the sample sentence, no learning is required. If a disagreement between the 
two sentences is found, AMBER modifies its set of rules in an attempt to avoid similar errors 
in the future, and the system moves on to the next example. 

AMBER's performance system is stated as a set of productions that operates on the 
goal tree to produce utterances. Although the model starts with the potential for producing 
(unordered) telegraphic sentences, it can initially generate only one word at a time. To 
see why this occurs, we must consider the three productions that make up AMBER's initial 
performance system. The first of these (the start rule) is responsible for establishing subgoals. 
Matching first against the main goal node, it selects one of the nodes below it in the tree 
and creates a subgoal to describe that node. This rule continues to establish lower level 
goals until a terminal node is reached. At this point, a second production (the speaking rule) 
retrieves the word for the concept to be described, and actually says the word. Once this has 
been done, a third rule (the stop rule) marks the terminal goal as satisfied. Moreover, sjnce 
the stop rule is stronger than the start rule (which would like to create another subgoal), it 
marks each of the active goals as satisfied, and AMBER halts after uttering a single word. 
Thus, although the model starts with the potential for producing multi-word utterances, 
it must learn additional rules (and make them stronger than the stop rule) before it can 
generate multiple content words in the correct order. 

In general, AMBER learns by comparing adult sentences to the sentences it would pro­
duce in the same situations. These predictions reveal two types of mistakes - errors of 
omission and errors of commission. Below we discuss AMBER's response to errors of omis­
sion, since these are the first to occur and thus lead to the system's first steps beyond the 
one-word stage. We consider the omission of content words first, and then the omission 
of grammatical morphemes. Finally, we discuss the importance of errors of commission in 
discovering conditions on the production of morphemes, and it is here that our theory of 
discrimination will be required. 

Learning Preferences and Orders 

AMBER's initial self-modifications result. from the failure to predict content words. 
Given its initial ability to say one word at a time, the system can make two types of content 
word omissions - it can fail to predict a word before a correctly predicted one, or it can omit 
a word. after a_correctly predicted one. Rather different rules are created in each case. For 
example, imagine that Daddy is bouncing a ball, and suppose that AMBER predicted only 
the word "ball", while hearing the sentence "Daddy is bounce ing the ball". In this case, 
the system notes that it omitted the content word "Daddy" before the content word "ball", 
and an agent production is created: 
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AGENT 
If you want to describe event1, 

and agen~1 is the agent of event1, 
then describe agent1. 

A similar rule for describing actions results from the omitted "bounce". Note that the above 
production does not give AMBER the ability to say more than one word at a time. It merely 
increases the likelihood that the program will describe the agent of an event instead of the 
action or the object. 

However, as AMBER begins to prefer agents to actions and actions to objects, the 
probability of the second type of error (omitting a word after a correctly predicted one) 
increases. For example, suppose that Daddy is again bouncing a ball, and the system says 
"Daddy" while it hears "Daddy is bounce ing the ball". In this case, a slightly different 
production is created that is responsible for ordering the creation of goals. Since the agent 
relation was described but the object was omitted, an agent-object rule is constructed: 

AGENT-OBJECT 
If you want to describe event1, 

and agent1 is the agent of event1, 
and you have described agent1, 
and object1 is the object of event1, 

then describe object1. 

Together with the agent rule shown above, this production lets AMBER produce utterances 
such as "Daddy ball". Thus, the model provides a simple explanation of why children omit 
some content word in their early multi-word utterances. Such rules must be constructed 
many times before they become strong enough to have an effect, but eventually they let the 
system produce sentences containing all relevant content words in the standard order and 
lacking only grammatical morphemes. 

Learning Suffixes and Prefixes 

Once AMBER begins to correctly predict content words, it can learn rules for saying 
grammatical morphemes as well. As with content words, such rules are created when the 
system hears a morpheme but fails to predict it in that position. For example, suppose the 
program hears "Daddy * is bounce ing * the ball",* but predicts only "Daddy bounce ball". 
In this case, the following rule is generated: 

* Asterisks represent pauses in the adult sentence. These cues are necessary for AMBER to 
decide that a morpheme like "is" is a prefix for "bounce" instead of a suffix for "Daddy". Although 
adults tend to speak slowly when addressing children, it is probably too much to assume that pause 
information is actually available to children learning their first language. Thus, AMBER's reliance 
on pauses must be viewed as a limitation of the current system that should be overcome in future 
versions. 
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ING-1 
If you have described action1, 

and action1 is the action of event1, 
then say ING. 

LANGUAGE ACQUISITION 

As stated, this production is overly general and will lead to errors of commission. We consider 
AMBER's response to such errors in the following section. 

The omission of prefixes leads to very similar rules. In the above example, the morpheme 
"is" was omitted before "bounce", leading to the creation of a prefix rule: 

IS-1 
If you want to describe action1, 

and actiont is the action of eventt, 
then say IS. 

Note that this rule will fire before the action has been described, while the rule ing-1 can apply 
only after the goal to describe the action has been satisfied. AMBER uses such conditions 
to control the order in which morphemes are produced. , 
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Figure 7. Mean length of AMBER's utterances. 

Figure 7 shows AMBER's mean length of utterance as a function of the number of 
sample sentences (taken in groups of five) seen by the program. As one would expect, 
the system starts with an average of around one word per utterance, and the length slowly 
increases with time. AMBER moves through a two-word and then a three-word stage, until it 
eventually produces sentences lacking only grammatical morphemes. Finally, the morphemes 
are included, and adult-like sentences are produced. The temporal positions of these three 
stages are shown by the successive regions in the figure; although the stage boundaries are 
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not so distinct as indicated, the regions should give some of idea of the relative time the 
model spends in mastering various aspects of syntax. The incremental nature of the learning 
curve results from the piecemeal way in which AMBER learns rules for producing sentences, 
and from the system's reliance on strengthening. 

Recovering from Errors of Commission 

Errors of commission occur when AMBER predicts a morpheme that does not occur in 
the adult sentence. These errors result from the overly general prefix and suffix rules that 
we saw in the last section. In response to such errors, AMBER calls on the discrimination 
routine in an attempt to generate more conservative productio-ns with additional conditions.* 
Earlier, we considered a rule (is-1) for producing "is" before the action of an event. As 
stated, this rule would apply in inappropriate situations as well as correct ones. Suppose 
that AMBER learned this rule in the context of the sentence "Daddy is bounce ing the ball". 
Now suppose the system later uses this rule to predict the same sentence, but that it instead 
hears the sentence "Daddy was bounce ing the ball". 

At this point, AMBER retrieves the rule responsible for predicting "is" and lower~ its 
strength; it also retrieves the situation that led to the faulty application, passing this infor­
mation to the discrimination routine. Comparing the earlier good case to the current bad 
case, the discrimination mechanism finds only one difference - in the good example, the ac­
tion node was marked present, while no such marker occurred during the faulty application. 
The result is a new production that is identical to the original rule, except that a present 
condition has been included: 

IS-2 
If you want to describe actiont, 

and actiont is the action of eventt, 
and actiont is in the present, 

then say IS. 

This new condition will let the variant rule fire only when the action is marked as occurring 
in the present. When first created, the is-2 production is too weak to be seriously considered. 
However, as it is learned again and again, it will eventually come to mask its predecessor. 
This transition is aided by the weakening of the faulty is-1 rule each time it leads to an error. 

Once the variant production has gained enough strength to apply, it will produce its 
own errors of commission. For example, suppose AMBER uses the is-2 rule to predict "The 
boy s is bounce ing the ball", while the system hears "The boy s are bounce ing the ball". 
This time the difference is more complicated. The fact that the action had an agent in 
the good situation is no help, since an agent was present during the faulty firing as well. 
However, the agent was singular in the first case but not during the second. Accordingly, 

* Anderson's ALAS (1981) system uses a very similar process to recover from overly general 
morpheme rules. AMBER and ALAS have much in common, both having grown out of discus­
sions between Anderson and the author. Although there is considerable overlap, ALAS generally 
accounts for later developments in children's speech than does AMBER. 
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the discrimination mechanism creates a second variant: 

IS-3 
If you want to describe action1, 

and action1 is the action of event1, 
and action1 is in the present, 
and agent1 is the agent of event1, 
and agent1 is singular, 

then say IS. 

LANGUAGE ACQUISITION 

The resulting rule contains two additional conditions, since the learning process was forced 
to chain through two elements to find a difference. Together, these conditions keep the 
production from saying the morpheme "is" unless the agent of the current action ~s singular 
in number. 
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Figure 8. AMBER's learning curve for the morpheme "ing". 

Note that since the discrimination process must learn these sets of conditions separately, 
an important prediction results: the more complex the conditions on a morpheme's use, the 
longer it will take to master. For example, multiple conditions are required for the "is" 
rule, while only one condition is needed for the "ing" production. As a result, the former is 
mastered after the latter, just as found in children's speech. Thus, the discrimination process 
provides an 'elegant explanation for the observed correlation between a morpheme's semantic 
complexity and its order of acquisition. As we noted earlier, a generalization-based learning 
system would master more complex rules before learning simpler ones, and so would predict 
exactly the opposite of the observed correlation. 

Unfortunately, parents seldom present sentences in an ideal order, so that the relevant 
conditions are obvious to the child. In order to more closely model the environment in which 
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children learn language, AMBER was presented with randomly generated sentence/meaning 
pairs. Thus, it was usually impossible to determine the correct discrimination that should 
be made from a single pair of good and bad situations. As in other domains, the strategy of 
strengthening relearned rules and weakening faulty versions was sufficient to. focus attention 
on useful variants. Figure 8 presents the learning curves for the "ing" morpheme. Since 
AMBER initially lacks an "ing" rule, errors of omission abound at the outset, but as the 
"ing" rule and its variants are strengthened, these errors decrease. In contrast, errors of 
commission are absent at the beginning, since AMBER lacks an "ing" rule to make false 
predictions. As the morpheme rule becomes stronger, errors of commission grow to a peak, 
but they disappear as discrimination takes effect. 

Summary 

In conclusion, AMBER provides explanations for several important phenomena observed 
in children's early speech. The system accounts for the one-word stage and the child's tran­
sition to the telegraphic stage. Although AMBER and children eventually learn to prqduce 
all relevant content words, both pass through a stage where some are omitted. Because it 
learns sets of conditions one at a time, the discrimination process explains the order in which 
grammatical morphemes are mastered. Finally, AMBER learns gradually enough to provide 
a plausible explanation of the incremental nature of first language acquisition. Thus the 
system constitutes a significant addition to our knowledge of syntactic development. 

Of course, AMBER has a number of limitations that should be addressed in future 
research. For example, the current model cannot master irregular constructions like "ate" 
and "feet", and this is another area where discrimination would seem to have an important 
role to play in recovering from overgeneralizations. Another application of this learning 
mechanism lies in the acquisition of word order, since there is no reason in principle why 
the conditions on rules such as the agent-object production could not be learned through 
a discrimination-like process. The solutions to other limitations are not so apparent. For 
instance, the existing program models only the earliest stages of language acquisition, and 
major extensions may be necessary to replicate later developments. As it stands, AMBER 
says nothing about the relation between generation and comprehension, and the model's 
strategies for error recovery have only been used to learn rules for generation. Finally, the 
system has been tested only on English, and it is not clear how relevant the model's learning 
mechanisms will be for languages in which word order plays a less important role. But 
despite these limitations, AMBER has helped to clarify the incremental nature of language 
acquisition, and future versions should further our understanding of this complex process. 

Modeling Cognitive Development 

A final area of application lies in the domain of cognitive development. Most researchers 
in this field have been strongly influenced by the early work of Piaget (1969). Although 
the majority of research in cognitive development has been experimentally oriented, recent 
efforts have been made to explain some developmental trends in information processing 
terms. Production systems have been a popular framework for modeling behavior at different 
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stages, partially because their modularity allows the statement of successive models that 
differ by only one or two productions. For example, Baylor, Gascon, Lemoyne, and ~other 
(1973) have constructed production system models of children at various stages on Piaget's 
weight seriation task, and Young (1976) has devised similar models for the related length 
seriation task. The most comprehensive work along thes_e lines has been carried out by Klahr 
and Wallace (1976), who have proposed production system models of children's behavior 
at various stages on tasks ranging from quantification to class inclusion. The next step is 
to construct models of the transition process that account for the movement between these 
stages. These models can be stated as adaptive production systems, and it is here that our 
theory of discrimination learning has an important role to play. 

Table 3 

Klahr and Siegler's model of behavior on the balance scale task 

STAGE 1 

Pl 
If you have a balance with side, 

and the weights are equal, 
then predict the sides will balance. 

STAGE 2 

P3 
If you have a balance with side, 

and the weights are equal, 
and side has the greater distance, 

then predict side will go down. 

STAGE 3 

P4 
If you have a balance with side, 

and side has the greater weight, 
and side has the lesser distance, 

then muddle through. 

The Balance Scale Task 

P2 
If you have a balance with side, 

and side has the greater weight, 
then predict side will go down. 

PS 
If you have a balance with side, 
·.and side has the greater weight, 

and side has the greater distance, 
then predict side will go down. 

Klahr and Siegler (1978) have studied children's development on a variant of Piaget's 
balance scale task. In this task, the child is presented with a two-arm balance, with several 
pegs spaced evenly along each arm. Small disks of equal weight are placed on the pegs (only 
one peg on each side has weights), and the child is asked to predict the direction in which 
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the scale will move when released. The standard method for correctly making this prediction 
involves the notion of torque. The number of weights on a peg is multiplied by that peg's 
distance from the center. If one side has the greater product, that side will go down; if the 
products are equal, the scale will remain balanced. 

Despite the apparent simplicity of this rule, Klahr and Siegler found their subjects using 
quite different prediction schemes. Also, these schemes differed systematically with the age 
of the child. Four basic stages appeared to exist, and the researchers successfully modeled 
each stage as a simple production system. Table 3 presents the productions used to model 
the first three stages, paraphrased in English. Since each successive stage differs from the 
previous model by the inclusion of only one or two new productions, we have grouped the 
rules according to the stage at which they were introduced. We have omitted the produc­
tions required for the final stage, which include rules for computing torque and responding 
appropriately. 

The model of the initial stage consists of two simple productions. The first rule, Pl, 
predicts that the scales will balance if the weights are the same on both sides. Similarly, P2 
predicts that if the weights are different, the side with the greater weight will go down. ·The 
model of the second stage requires only one new production, P3, which predicts that if the 
weights are equal but the distances differ, the side with the greater distance will descend. 
Since Klahr and Siegler were assuming that conflicts between productions would be decided 
in favor of specific rules over more general ones, the new production would be preferred to 
Pl whenever both matched. However, Pl would still be selected in cases where both weights 
and distances were equal (since P3 would not match in this situation), correctly predicting 
a balance. Modeling third stage behavior required two new rules, labeled P4 and P5 in the 
table.* The first of these applies only when the weight and distance cues conflict. Klahr and 
Siegler called these "conflict problems", and they were especially difficult for the subjects. 
Accordingly, the action associated with this rule is to "muddle through", which seemed to be 
a way of incorporating random behavior into the model. The final rule, P5, applied whenever 
the weight and distance cues were greater on the same side, and predicted that side would 
go down. 

Although Klahr and Siegler's models were very simple, they accounted for much of 
the variance observed in children's behavior on the balance scale task. As we have noted, 
successive models differed by only one or two productions. Thus, while the authors did not 
propose a mechanism to account for the transition between these stages, their analysis must 
be viewed as taking us a major step in that direction. Below we present a slightly revised 
stage model that brings us even closer to that goal. 

* Actually, it is not clear that the second of these was necessary, since P2 would still make the 
correct prediction if PS were absent. 
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Table 4 

Revised model of behavior on the balance scale task 

RANDOM STAGE 

BALANCE-1 
If you have a balance with side, 
then predict the sides will balance. 

STAGE 1 

BALANCE-2 
If you have a balance with side, 

and the weights are equal, 
then predict the sides will balance. 

STAGE 2 

BALANCE-3 
If you have a balance with side, 

and the weights are equal, 
and the distances are equal, 

then predict the sides will balance. 

STAGE 3 

DOWN-4 
If you have a balance with side, 

and side has the greater weight, 
and the distances are equal, 

then predict side will go down. 

A Revised Stage Model 

DOWN-1 
If you have a balance with side, 
then predict side will go down. 

DOWN-2 
If you have a balance with side, 

and side has the greater weight, 
then predict side will go down. 

DOWN-3 
If you have a balance with side, 

and the weights are equal, 
and side has the greater distance, 

then predict side will go down. 

DOWN-5 
If you have a balance with side, 

and side has the greater weight, 
and side has the greater distance, 

then predict side will go down. 

Table 4 summarizes our revised model of successive stages on the balance scale task. In 
addition to the three stages shown in Table 3, we have also included a random stage. Taken 
together, the first pair of productions (BALANCE-1 and DOWN-1) randomly predict that 
one of the two sides will go down, or that the sides are balanced.* Klahr and Siegler found 
no evidence for this stage, presumably because their subjects had moved beyond the random 

* Since both productions can match the variable side against either side, they will each be 
selected half the time (on the average) during the random stage. Thus, the system would predict 
that the left side would go down a quarter of the trials, and would predict that the right side would 
descend the same fraction of the time. 
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strategy at an earlier age. When the second pair of rules (BALANCE-2 and DOWN-2) is 
added to the first pair, the resulting system behaves exactly as Klahr and Siegler's model 
of Stage 1, provided the new rules are stronger than the first pair (and so will al ways be 
preferred, since we are assuming PRISM's conflict resolution principles). Upon adding the 
third pair of productions (BALANCE-3 and DOWN-3), we have a model of Stage 2 behavior, 
provided that both of these rules are stronger than the production BALANCE-2. Finally, 
when the productions DOWN-4 and DOWN-5 are inserted (and made stronger than DOWN-
2), we have a partial model of Klahr and Siegler's Stage 3. -

To complete the model of this stage, the system must have some way of "muddling 
through" on conflict problems. Klahr and Siegler have made a useful distinction between 
three types of conflict problems. For conflict situations in which the side with greater weight 
descended, they used the term "conflict weight" problems. Similarly, conflict problems in 
which the side with greater distance went down were labeled "conflict distance" problems, 
and conflicts that resulted in a balance were called "conflict balance" problems. This analysis 
suggests that we can model "muddling" behavior by the introduction of three additional 
rules: 

DOWN-6 
If you have a balance with side, 

and side has the greater weight, 
and side has the lesser distance, 

then predict side will go down. 

DOWN-7 
If you have a balance with side, 

and side has the greater distance, 
and side has the lesser weight, 

then predict side will go down. 

BALANCE-4 
If you have a balance with side, 

and side has the greater weight, 
and side has the lesser distance, 

then predict the sides will balance. 

The condition sides of each of these rules are functionally equivalent, since they will 
each match on all three types of conflict problem. However, DOWN-6 will make correct 
predictions only on conflict weight problems, and will make the wrong prediction in the 
other two situations. Similarly, DOWN-7 will be correct only on conflict distance problems, 
and BALANCE-4 will be correct only on conflict balance tasks. If we assume that these 
three productions have equal strengths, then none will be preferred over another and one 
will be selected at random, giving "muddling through" behavior. This explanation provides 
a more detailed account of the subjects' uncertainty on conflict problems than that given by 
Klahr and Siegler's single P4 rule with its "muddle through" action. 
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It is worthwhile to examine the relations between these two sets of models. The pro­
ductions included in both models of Stage 1 are equivalent except for insignificant represen­
tational differences. However, Klahr and Siegler's model of Stage 2 behavior requires the 
addition of only one production, while our version includes two rules. One of these rules, 
DOWN-3, is equivalent to P3, and fulfills a similar function in our model to that served by 
P3 in the other system. However, Klahr and Siegler's model of Stage 3 requires no analog to 
our BALANCE-3, since Pl handles all situations in which the weights are the same (except 
for those covered by P3). Although our conflict resolution scheme relies on strength rather 
than specificity, we could make DOWN-3 stronger than BALANCE-2 to achieve a similar 
effect, but it will shortly become apparent why we have chosen to include the BALANCE-
3 production. A similar relationship holds between Klahr and Siegler's PS and our rules 
DOWN-4 and DOWN-S for Stage 3; as before, they managed to get by with one rule where 
we have used two, again through use of their specificity principle for conflict resolution. In 
this case, PS corresponds to DOWN-S, while situations matched by DOWN-4 are handled 
by P2. Finally, the "muddle through" production P4 in the earlier model is replaced in our 
model by three rules with identical conditions but different actions; this is simply a more 
detailed way to describe the system's uncertainty on conflict problems. ' 

At first glance, one is tempted to judge Klahr and Siegler's approach as more elegant 
than ours, since their model of Stage 3 contains only five productions and ours contains 
eleven. Even if we replace our three conflict rules with a single production analogous to P4, 
our final model would still consist of nine productions. However, our revised models have 
one characteristic that is lacking in Klahr and Siegler's set: rules occurring in later stages 
are always discriminant versions of rules that have occurred in an earlier stage. This feature 
lets us employ our theory of discrimination learning to account for the transition process 
from the random to the final stage shown in Table 4, since this mechanism generates just 
such discriminant versions in its attempt to recover from errors. Although this feature held 
for some of Klahr and Siegler's rules (e.g., PS is a variant on P2), it was by no means true of 
them all, and this is perhaps one reason why they never proposed a model of the transition 
process. Note that when we say that one rule is a "discriminant version" of another, we 
mean more than just the fact that the first rule has conditions that are a special case of 
the second; we also mean that the action sides of the two rules are the same. Thus, P3 is a 
special case of Pl in the earlier model, but it is not a discriminant version of Pl.* 

* The goal of stating all successive rules as discriminants of earlier rules was one of the reasons for 
including an initial random stage (in addition to its intrinsic plausibility). While the productions 
BALANCE-3, DOWN-4, and DOWN-S are all direct variants on the two rules from Stage 1, the 
DOWN-3 rule is not. In order to account for its origin, and for the origin of the Stage 1 rules, a 
random stage had to be included. 
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A Model of the Transition Process 

As we have noted, each of the rules in our revised stage model is a variant on one of 
the rules occurring at some earlier stage, and we have implemented an adaptive production 
system model of learning on the balance scale task that takes advantage of this insight.* 
The model begins with the rules BALANCE-1 and DOWN-1, which provide the initial 
behavior on which the learning is based. In addition, the system contains a production for 
comparing the sides of the balance scale on dimensions like weight and distance, since the 
relative weights and distances must be present in memory if discrimination is to discover 
conditions referring to such relations. Finally, the model includes a production for noting 
when a correct prediction has been made and storing credit with the responsible rule, and 
a similar production for evoking the discrimination process when an incorrect prediction is 
made. Thus, this learning program is nearly identical to the concept learning system we 
described in an earlier section. One difference is that the current model does not require a 
designating production to create new rules, since errors of omission never occur. Also, no 
default rule is required to make negative predictions, since some sort of positive act1~m is 
always appropriate. 
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Figure 9. Learning curve for the balance scale task. 

The program was presented with problems selected randomly from seven basic prob­
lem types. These included problems in which only the weights differed, in which only the 

* The reason we have not attempted to model Stage 4 behavior should now be apparent. The 
acquisition of a torque rule requires the introduction of an entirely new concept, while the discrim­
ination process can only be used to find conditions on existing concepts. At least in its current 
form, our discrimination theory cannot account for the manner in which the torque concept is 
acquired. 



PAGE 44 COGNITIVE DEVELOPMENT 

distances differed, in which both weights and distances were equal, in which the two cues 
agreed, and the three types of conflict problems discussed above. Figure 9 summarizes the 
model's errors as a function of time {in units of 10 trials). Since the system begins with the 
two random rules BALANCE-1 and DOWN-1, and since there are three basic predictions 
to choose from {left down, balance, and right down), one would expect about 33 percent of 
the initial predictions to be correct, and this is approximately what we find.* By trial 100, 
the system has learned (and sufficiently strengthened) the Stage 2 and Stage 3 rules shown 
in Table 4, so that it makes correct predictions on all but the three conflict problems, giving 
a success rate of approximately 60 percent. In the case of conflict problems, the model's 
representation of the environment {consisting only of information about relative weights and 
distances) is incapable of even stating the torque rule that would correctly predict results in a 
consistent manner. In other words, the program's representation of the problem is inherently 
incomplete. However, the discrimination process is sufficiently robust to learn useful rules 
despite this limitation, and the system arrives at a set of rules that make correct predictions 
much of the time, just as children do before they are taught the torque rule. 

This brings another important feature of of our theory to light: discrimination learµing 
allows one to learn useful rules even if one's representation is ultimately inadequate. Since 
our system has no notion of torque, it can never fully understand the balance scale task, yet it 
does learn rules that lead to correct predictions in many cases. Since one can never guarantee 
that a representation is optimal, this is a powerful feature that would be advantageous to 
any learning system. This capability to learn useful rules despite incomplete representations 
is as fully important a characteristic of the discrimination process as its ability to learn in 
the presence of noise, and we are unaware of any other approach to learning that has this 
capability. 

Let us trace the transition model's behavior on the troublesome conflict problems, since it 
reveals some interesting details about the discrimination process. The program begins by in­
voking either BALANCE-lor DOWN-1 on these problems, sometimes predicting the correct 
outcome and sometimes making an error. When errors occur, the discrimination mechanism 
is called in an attempt to determine the conditions under which the faulty prediction should 
be made. If the system bases its learning on a correct prediction made by DOWN-1 that 
was made on a conflict weight problem (in which the side with greater weight goes down), 
the discrimination process would construct as a variant the DOWN-2 rule shown in Table 
4 {though this is learned in other contexts as well). For correct applications of DOWN-1 
on conflict distance problems, the system would create the variant DOWN-2.5 {shown be­
low),-and for conflict balance problems, it would construct a variant of BALANCE-1 that 
contained either a greater weight or a greater distance constraint in its condition side. 

* Actually, calculation of the initial probabilities is more complicated than this. One reason for 
this is that the system initially predicts a balance response 50 percent of the time, while it predicts 
right down and left down each 25 percent of the time. Another complication is that only two of 
the problem types lead to balanced scales, while five lead to one side or the other descending. 
However, the overall probabilities are close enough to 33 percent initially correct responses that 
we will not consider them further. 
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However, none of these variants will consistently be correct, and soon after they gain 
sufficient strength, these rules will lead to errors and generate variants of their own. The 
result will be the three productions included in our stage model - DOWN-6, DOWN-7, and 
BALANCE-4 - each containing conditions that match when one side has greater weight and 
the other has greater distance, but differing as to the predictions they make. One of these 
will always be correct on conflict weight problems, another on conflict distance problems, 
and the third on conflict balance problems, but none will be correct on all three. Thus, 
they will continually be weakened and then strengthened, and the system's preference on 
conflict problems will oscillate between them. This effect is very similar to behavior that 
Klahr and Siegler observed in one of their subjects, who seemed to switch back and forth 
between weight and distance cues whenever the use of one led to an incorrect prediction on a 
conflict problem. However, their detailed model of the subject included a somewhat ad hoc 
mechanism for explaining this shift, while our model reacts in a similar fashion (though not 
in exactly the same manner) purely as a byproduct of learning through discrimination. The 
long-term result is "muddle through" behavior, in which different cues are used to make the 
decision at different times. 

What is the exact relation between the stage model shown in Table 4 and the transition 
model's learning path? Although the system creates all the variants given in the table* in 
the specified order, it also learns other rules, and so does not follow the exact stage sequence 
observed by the earlier researchers. For example, at approximately the same time that it 
constructs DOWN-2, the model also creates the following production: 

DOWN-2.5 
If you have a balance with side, 

and side has the greater distance, 
then predict side will go down. 

This rule is identical to DOWN-2, but includes a condition about greater distances in­
stead of relying on greater weights. As it is implemented, there is no reason for the discrim­
ination mechanism to prefer conditions about the weight to conditions about the distance. 
Unfortunately, Klahr and Siegler found evidence for DOWN-2 (or P2, its equivalent), but no 
evidence for the above rule. Apparently, children tend to focus more on weights than on dis­
tances, and our theory of discrimination learning has no way to account for such trends. One 
can imagine introducing preferences into the model to focus attention on some attributes in 
favor of others, but unless one can explain where these preferences originated, they would 
provide no more explanation than labeling one dimension as more "salient" than another. 
Thus, our transition model does not account for the details of Klahr and Siegler's results, 
though it does provide a plausible initial explanation of the transition between the observed 
stages. 

* The reader may have noticed that the rules DOWN-3, DOWN-4, and DOWN-5 are all correct 
in the sense that they never lead to errors, and are all varia:nts of the original DOWN-1 produc­
tion. Thus, the balance scale task provides an example of another domain where the learning 
of disjunctive rules is required, and which our approach to discrimination learning can handle 
adequately. 
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Two additional drawbacks of the model are closely intertwined. One of these is the speed 
with which the system achieves maximum predictive power. The program arrives at Stage 3 
behavior within a hundred trials, and using only 32 CPU seconds on a PDP-10 computer. In 
contrast, children take years to move from Stage 1 to Stage 3 behavior. A second difficulty 
is that by presenting the system only with information about weights and distances, we 
are telling it much about the space of rules it should search during the learning process. 
However, these two limitations tend to cancel each other out. Clearly, the model learns so 
quickly precisely because we have presented it with so few alternatives to consider. Other 
idealizations of the task environment contribute further to the rapid learning. For example, 
the child is certain to be distracted by other events in his environment, while the model has 
no analogous attention stealers. 

Idealizations of this type have a long and respectable history in science, dating from the 
time Galileo decided to ignore such annoying factors as air resistance. Thus, the model can 
be viewed as a useful approximation of the actual situation, which we could complicate to 
achieve more accurate results if this were deemed worth the effort that would be involved. 
One might question whether the discrimination theory would still be useful in a more det~led 
model that.had to deal -with many irrelevant dimensions. However, we have seen in earlier 
sections that the dis~rimination process is very robust in the face of such irrelevant features. 
By including additional features to the representation of balance scale problems, we would 
slow down the system's progress, but would not halt it, and this is precisely what we would 
desire in a more realistic model. In summary, while our model makes some important 
simplifications, it does provide an initial account of the transition process on the balance 
scale task, and it suggests that the discrimination learning theory may provide a useful 
framework for describing other aspects of cognitive development as well. 

Evaluating the Theory 

Now that we have examined the theory of discrimination learning, along with its appli­
cations to a number of domains, it is appropriate to attempt an initial evaluation. Scientific 
theories can be evaluated along a number of dimensions. One of these is simplicity, and the 
discrimination theory fares well on this criterion. Our implementation of the discrimination 
method required some 6 pages of LISP code, and the learning components of the systems 
discussed above ranged from 6 to 19 PRISM productions. Of course, these measures ignore 
the much more complex implementations of LISP and PRISM, since our models exist within 
these more basic frameworks. However, it seems reasonable to assume that the usefulness of 
list processing and production system languages has already been proven in other domains. 
We are discussing here the simplicity of a learning theory that accounts for phenomena 
beyond the normal range of these more basic approaches to intelligence. 

Another important criterion for any scientific theory concerns its generality. We have 
applied our theory of discrimination learning to the domains of concept attainment, strategy 
learning, language acquisition, and cognitive development, and we feel that this provides 
strong evidence for the generality of the theory. However, it is better still if one can predict 
new areas to which a theory can be applied. In this case, the prediction process is straight­
forward: the discrimination theory can be applied to any domain that involves the discovery 
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of useful conditions on rules. Thus, one can imagine applications ranging from scientific 
discovery to motor learning. The current version of the theory is useful only in symbolic 
domains, but in principle it could be extended to numeric situations as well. 

Another aspect of the generality dimension involves the types of rules that can be learned, 
and the conditions under which this is possible. We have seen that the discrimination theory 
can discover disjunctive rules, unlike most earlier condition-finding schemes. Moreover, it 
can learn in noisy situations, recover from changes in its environment, and learn partially 
useful rules based on inadequate representations. Of course, the method pays for this ability 
in searching a larger space than earlier approaches, and tends to learn more slowly as a result. 
However, this is the traditional price one must pay with weak, general methods that make 
few assumptions about the world in which they work. And from a psychological perspective, 
this slowness is quite plausible, since humans are generally slow learners as well. 

In addition to employing the discrimination technique, the four learning systems de­
scribed in previous sections share a number of other general characteristics. One stich fea­
ture is that each of the models contained a critic that was responsible for noting errqrs of 
commission, and for invoking the discrimination mechanism. Second, all of the programs 
included a rule that noted correct predictions and stored the correct instantiation with the 
responsible production.* Finally, all of the systems represented information in very small 
chunks, such as (move-1 before move-2) and (event-1 agent agent-1). This was necessary to 
let the discrimination process discover and include relevant information to the exclusion of 
irrelevant knowledge. 

Despite the similarities of SAGE, AMBER, and the other two learning systems, differ­
ences between the programs do exist. Given this situation, one may legitimately ask why a 
single, more general system could not be used for all of the domains. Now it is understand­
able that each domain would require its own performance rules, but why should there not 
be a common core of adaptive productions responsible for directing the learning process? In 
fact, this is precisely what we find with SAGE, a model of strategy acquisition that learns in 
three separate domains. One problem is that there are differences in the nature of the tasks 
that make some learning techniques inappropriate. For example, in concept-attainment, it is 
reasonable to start with a default production that says "no" whenever no stronger rule exists 
for saying yes. This strategy leads to errors of omission, and a learning rule for dealing with 
such cases must be included. One could use an identical strategy for learning balance scale 
rules, except that a "no" response makes no sense in this context; the child either predicts 
that one side will go down or that the sides will balance. In this case it is more plausible to 
assume that down and balance rules already exist, and that errors of omission never occur. 
Second, in some cases a concern with modeling psychological data prevented us from using 
completely general approaches. For example, since children never say "ing" after an agent, 
we felt it appropriate to have the designating production include the relevant semantic role 
when constructing a morpheme rule. Even though such a condition could be learned through 

* The concept learner and AMBER also incorporated a rule that detected errors of omission, 
and designated entirely new productions that would correct such errors in the future. This was 
not necessary in the strategy learning and balance scale tasks, though one can imagine variants in 
which it would be necessary. 
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discrimination, our concern with the data led us to introduce domain-specific knowledge into 
the learning process. 

A final criterion for scientific theories is fertility, or the number of new and fruitful ideas 
that the theory generates. Our theory also fares well on this dimension, since it leads to two 
possible extensions that promise to deepen our understanding of learning and intelligence. 
The first of these concerns the formation of higher level concepts that help to describe 
information succintly. Recall that in some cases, the discrimination method is capable of 
discovering sets of conditions based on the comparison of a. single good and bad instantiation. 
Suppose that in such cases, rather than including the set of conditions in a new variant, the 
routine instead created an entirely new production. This rule would contain the new set as 
its entire condition side, and would have a new predicate in its action side (with arguments 
taken from the predicates in the condition) which acts as shorthand notation for the set 
of relations. Once it was sufficiently strong, this rule would fire whenever the combination 
of conditions was present, rewriting this set of relations in a more compact form. This 
restatement would have two advantages. First, in the future the discrimination process need 
only look for a. single difference rather than .a conjunction of differences, so that its se~rch 
process could be simplified considerably. Second, if the same set of conditions proved useful 
for other overly general rules, the speedup in discrimination would transfer to these cases as 
well. In fact, what we a.re proposing is a way of changing representations so that they more 
compactly describe the world. 

A second extension concerns the generality, and thus weakness, of the discrimination 
process. Proponents of the knowledge engineering approach to Artificial Intelligence would 
no doubt suggest that we alter the discrimination technique to let it draw on domain-specific 
knowledge to direct its search for conditions. We have no objection to such an extension, 
provided it can be accomplished in a general manner. However, we would prefer to address 
the more challenging problem of devising a system that begins with a very weak but general 
discrimination learning mechanism, and modifies this method so that it is more efficient 
for the domain at hand. Such learning to learn has been proposed by a few researchers 
(Langley, Neches, Neves, and Anzai, 1980; Lenat, Sutherland, and Gibbons, 1982), and 
is clearly an order of magnitude more difficult than the work we have described to date. 
One clear prerequisite for such an approach, at least within the adaptive production systems 
framework, is the restatement of the learning theory as productions instead of LISP code. 
This will be necessary if the learning mechanisms are to change over time according to the 
same laws that the performance rules obey. This leads to the very tempting notion that the 
discrimination process can be applied to itself to generate more domain-specific and powerful 
versions of itself. Unfortunately, our ideas on this approach remain vague; and we cannot 
yet construct any examples of such a magical bootstrapping process. 

In this chapter we have described a theory of discrimination learning that is capable 
of discovering appropriate conditions on production rules. We compared this theory to the 
more traditional generalization-based approaches, and found the discrimination method able 
to learn in situations where it was awkward or impossible for generalization to succeed. We 
examined implementations of the theory in four rather different domains, and found that it 
led to robust learning in each case. The theory appears to be simple, general, and amenable 
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to at least two promising extensions. Of course, many other processes have an equally 
important role to play in learning and development, and we have seen examples of some 
of them in other chapters of this book. However, we hope to have convinced the reader 
that the discrimination method is an important approach to learning that deserves increased 
attention in future research efforts. 
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