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Abstract:
The thesis of this paper is that learning is planful, goal-directed activity — that acquiring knowledge
is intentional action. I present evidence that learning from one’s experiences requires making decisions
about what is worth learning, regardless of the specific mechanisms underlying the learning or of the
degree of consciousness or automaticity or level of effort of the learning. Decisions about what is worth
learning are the expressions of desires about knowledge. 1 then sketch a theory of whence desires for
knowledge arise, how they are represented, and how they are used. A taxonomy of learning actions is
also proposed. This theory has been partially implemented in two computer models, which are briefly
described.

Introduction

The central claim of this paper is that learning is planful, goal-directed activity — that acquiring
knowledge is intentional action. If true, this thesis raises the relevance of both action psychology and
Al planning to theories of learning. Action psychology (e.g. Tolman (1932) or Frese & Sabini (1985)) is
based on the ideas that human behavior is directed towards the accomplishment of goals, that it is
directed by plans, that those plans are hierarchically arranged, and that background knowledge and
the environment interact in the creation and execution of plans for the guidance of action. As Frese &
Sabini observe (p. xxiii) such a view is no doubt a good model of some behaviors and a poor model of
others. Here I will try to demonstrate that this view plays an important role in understanding how
people and machines learn from complex experiences.

Machine learning research has been dominated by the view that learning is a kind of search (see, e.g.,
Langley, Gennari & Iba, 1987). I believe that planning forms a better foundation than search for
learning. In Al, planning is a set of techniques for selecting and combining actions to achieve explicit
goals; see, e.g. Sacerdoti, (1971) or Charniak & McDermott (1985). The Al work originally focused on
decomposing abstract goals into “primitive” actions expected to achieve the goal given specific resource
limitations (such as time and energy). It has since evolved to consider issues such as uncertain
environments, managing complex action over time, revising plans during their execution, taking
advantage of unexpected opportunities, avoiding unexpected dangers (Birnbaum 1986), and “situating”
the planner in the environment generally (Chapman 1985). The goals and actions considered in Al
planning are grounded in the physical world. Domains tackled by Al planners thus far include stacking
blocks, scheduling deliveries, creating recipes, suggesting battle tactics, and many others. Applying
this research to the task of learning requires mapping work on planning in physical domains onto
planning in mental domains. That is, a theory of planning to learn must describe the origins and nature
of goals to learn, the actions that can be taken to learn, the mental and physical resources those actions
contend for, the aspects of the environment that a learner must take into account when planning, and a
process for selecting among and combining actions to accomplish the goals, given limited resources and
the embedding of the learner in its environment. This paper sketches such a theory.

Learning Requires Decision-making

What is the evidence that learning is goal driven? There are several converging lines of
argumentation. The simplest is the widespread use of goal/plan language by people discussing the
acquisition of knowledge. “Inquiring minds want to know,” “prerequisites for courses,” and “research
strategies” are references to goals, action preconditions and plans (respectively) for gaining knowledge.
People can easily enumerate many different kinds of plans for learning, and the situations in which
they are appropriate. Some general examples of common plans to learn include: ask an expert, look it
up in a book, watch for it in the newspaper, try it yourself and see, wait until it happens again, or even
run a scientific experiment. People are also capable of generating a variety of very specific knowledge
acquisition plans for commonly occurring knowledge acquisition goal types. For example, when asked
how to find Marvin Minksy’s home phone number, one person suggested seven different potential plans:
try Boston directory assistance, call MIT and ask in the CS department, ask some other senior Al
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researcher, try the AAAI membership directory, send him email, ask the reporter who interviewed
him for Science recently, or call the publisher of Society of Mind and ask them. He was also able to
rate the likelihood of success of each of these plans, and could suggest general principles about how to
get similar information in various circumstances. The widespread use of goal/plan language in
describing learning, and the ability of people to easily generate plans when given statements of desired
knowledge is, for now, merely anecdotal. A stronger line of argument comes from an analysis of the
combinatorics of inductive learning from complex experience.

Inductive inference is limited in at least two ways. First, a recent proof by Deitterich (1989)
demonstrated that learning algorithms, very broadly defined, can evaluate only a small proportion of
the hypotheses compatible with the experiences they have. That is, there are far more hypotheses
consistent with experience than can be distinguished among using that experience. A brief sketch of the
proof is as follows: Consider inferential effort required to learn from experience, even in the drastically
simplified situation assumed in the PAC-learnablity literature (Valient 1984). This simple task used
for computational complexity analyses, involves a learner attempting to induce a subset h of the set of
all Boolean n-tuples by processing m distinct examples, where an example is an n-tuple labelled as to

its membership in h. There are 22"-m) hypotheses that are consistent with the m examples seen so far.
That is, each of the 2"-m possible n-tuples that are not examples could be in h or not. The size of that
hypothesis space grows double exponentially in the complexity of the experiences. Information in the
experiences grows only exponentially in their complexity. Learning by searching a space whose size is
proportional to the space of hypotheses consistent with experience is therefore intractable.

The second problem with inductive algorithms stems from the fact that all known machine learning
algorithms require time proportional to the number of features that can appear in their inputs, that is,
the number of features they can “perceive.” Learning systems that take time dependent on the number of
perceptable features in the universe will be unable to account for human behavior, and are unlikely to
be adequate for applying machine learning to desirable technological tasks (e.g. analyzing data from
the human genome project). This is not to say that these algorithms may not prove to explain a portion
of human learning, but alone they cannot form a sufficient theory.

To see how daunting the problem of learning algorithms that take time proportional to the complexity
of their experiences is, consider the complexity of human experience. An order of magnitude estimate of
the amount of afferent (incoming) information can be sketched easily: approximately 10191012 nerve
cells in the body, conservatively 1% to 10% of them sensory nerves, each capable of carrying between
100 and 1000 bits per second. Combining to find a very conservative lower bound, humans routinely
handle at least 1010 x 102x 102=1010 bits per second at their sensory surfaces over their entire (waking)
lifetimes, and quite possibly as much as 1013 or more bits per second. There is simply more information
available in human-like experience than inductive algorithms can handle.

Machine learning theories of induction are not generally proposed as cognitive models of human
learning generally (although they are sometimes advanced as models of category formation or
categorical perception), and this is one of the reasons. The computational complexity of searching the
hypothesis space generated by experiences anywhere near as complex as human experience would take
computational power far exceeding even generous estimates of the computational power of the human
brain. And since people use extensive background knowledge in learning, the complexity of the search
space of is further increased by the interaction between experiences and all of memory. Schank, Collins
and Hunter (1986) argued that inductive category formation approaches fails on other pragmatic
grounds as well.

It is important to note here that parallelism does not provide a simple solution to these problems. The
number of hypotheses consistent with a set of experiences grows double exponentially in the complexity
of the experiences. Straightforward parallelization of the search through this space would require a
number of processors exponential in the complexity of inputs to make this even an exponential time task.
For comparison, current artificial neural net technology (e.g. Rummelhart, McClelland & the PDP
group, 1986), typically uses a number of processors proportional to the complexity of the inputs; there
are typically far fewer hidden nodes than input nodes in these networks, since too many hidden nodes
reduces the usefulness of the learning these networks do.

Since the hypothesis space generated by human-like experience is far too large to be searched, even
sublinearly, and all induction algorithms take time dependent on the complexity of their inputs, what
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can people be doing when they learn from their experiences? The inescapable conclusion is that they
must somehow drastically restrict the space of hypotheses that they consider during learning. How?

A key first step is the transformation of inputs to more compact representations of experience, capturing
the “important” aspects and reducing the amount of “irrelevant” information. This process is
hardwired perceptual processing and is likely to be automatic and fast (Fodor, 1985). However, even
the transformed representational space will be quite large in systems capable of human-like behavior.
It is simply the case that people are sensitive to a very large number of potentially relevant stimuli,
and that this large number of “features” is overwhelming to known learning algorithms. So what can be
done to restrict the size of this space to manageable proportions?

Existing machine learning methods have restricted the size of this space by applying inductive biases,
e.g. Utgoff (1986), or by a priori limitations on the structure of the hypothesis space, through, for
example, the use of decision trees or neural networks. These approaches can be considered synfactic, in
that they constrain the form of the hypotheses considered, rather than their content.

I propose that the method of restricting potentially learnable hypotheses for both people and effective
machine learning systems should be content-based. Explicit characterizations of desirable knowledge
provide a principled method for restricting the realm of experience and background knowledge
considered in learning, and thereby the size of the hypothesis space that must be considered. Having
goals specifying what (kind of) knowledge is desirable provides a significant advantage for systems
trying to learn from very complex experience.

Why does having explicit knowledge acquisition goals provide an advantage? The idea is to exert the
broadest effective top-down constraint on the space of possible concepts to learn. Bidirectional
inference, i.e. the ability to use top-down constraints (in this case, goals) as well as bottom-up
information (here, processed perceptual data), is the most effective known technique for reducing the
size of a space that has to be searched to find desired concepts (Birnbaum 1986).

This claim is consistent with a large body of psychological research on goal direction in selection of
focus of attention, particularly from social psychology. Zukier's (1986) review concludes:
“Experimental studies have clearly demonstrated that a person will structure and process information
quite differently, depending on the future use he or she intends to make of it. Information integration
clearly is preceded by future-oriented decision-making processes, which guide data selection and the
choice of an appropriate strategy or mode from among the several that are available,” (p. 495).

Hoffman, et al (1981) demonstrate that different goal orientations (e.g. “form an impression of a person
in the following story” or “remember as much as you can from the following story.”) may influence not
only to the use of different representations, but also the selection and use of different kinds of
information processing. Although the goal orientations tested in that work are quite abstract, they
significantly constrain the space of hypotheses consistent with the experimental materials. Srull &
Wyer’s (1986) results, although divergent in important respects from those of Hoffman, et al, also
provide evidence that different goal orientations have a strong effect on learning. These results bear an
interesting relationship to the one of the implications that Deitterich (1989) draws from his proof
about machine learning algorithms (p. 128):

[Dlifferent classes of learning problems may call for different learning algorithms. An
important problem for future research is to attempt to identify relationships between
types of learning problems... and types of hypothesis spaces....

That is, the combinatorics of learning require the selection of learning methods that are appropriate to
particular kinds of problems, and goal orientation clearly effects the results of learning. This
convergence of evidence from both psychological studies and from computational complexity analysis in
machine learning suggests a hypothesis about the control of learning: Goals about what would be
desirable to learn are central to making required decisions about what and how to learn.

Related Previous Research

Other cognitive theories have also included reference to desires for knowledge, although there are
significant differences between those prior theories and the current claims. For example, consider the
D-KNOW (delta-knowledge) class of goals, which are part of the conceptual dependency
representation proposed by Schank & Abelson (1977). They are goals to “change knowledge state,” i.e.
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to learn something. Examples of D-KNOW goals were to find out the location of food (in order to go to
it and then eat it ) or to find out the price of an item (in order to buy it). The generation of D-KNOW
goals was always tied very specifically to a physical supergoal (e.g. satisfy hunger), and were not
mentioned in the author’s later theories of learning (e.g. Schank, 1982). Other theories, particularly
from the animal learning psychology literature, have proposed general motivations to learn: a “will to
perceive” (Thorpe), a “motivation for learning” (Thacker), and a “search by an information hungry
organism” (Pribram - all reported in Livesey, 1986, p. 20-21), but these theorists did not propose any
specific desires, just diffuse drives. Social psychologists have used various “goal orientations” as
explanatory phenomena in theories of attention, recall and judgement, which are close in spirit to the
goals to learn proposed here. However, social psychologist’s goal orientations are generally specified
at a very abstract level (e.g. “Form an impression,” or “make predictions”), and as Zukier’s (1986)
review notes, “In general, however, little systematic research is available on goal orientation in
inference, and no comprehensive taxonomies of ‘middle-level” or concrete goals have emerged from
these studies.”

Also related to the current claims is the work of Horvitz, et al, (1989). They present a calculus for
deciding when to do more inference (versus when to act) in medical decision making. Although based on
highly idealized functions for estimating the expected value of additional inference (in their model,
inference includes data gathering), it provides an attempt to model content-based decisions about when
it is worthwhile to acquire knowledge. Although their model does not specify what is worth learning,
it may be useful in deciding whether it is worth learning at all, potentially reducing the size of the
potential hypothesis space to zero. Minton (1988) also proposes a model of judging whether it is worth
learning, although his model involves computing the effect of learning on future performance after the
new concept is formed, and is hence not useful for constraining the hypothesis space.

Both failure-driven (e.g. Schank 1982) and success-driven (e.g. DeJong & Mooney, 1986) computer
models of learning posit very direct connections between experiences and (implicit) desires to learn. In
these systems,. the learning always takes place at the time of the failure (or success), and anything can
be learned at that time is learned. A system that plans to learn may generate learning goals as a result
of a success or failure, and may (or may not) be able to achieve those goals at that time. The role of
failure (or success) in planning to learn systems is to identify knowledge that is worth pursuing, not
(necessarily) to signal the time when knowledge can be acquired; they are failure (or success)
motivated, not failure (or success) driven.

In the remainder of this paper, | sketch a theory of the origins and uses of explicit goals about what to
learn. Some aspects of this theory of knowledge acquisition goals and knowledge acquisition planning
are presented in greater detail in Hunter (1989, 1990a and 1990b).

Learning Goals

In order to make learning computationally feasible, learners must have goals specifying what they
wish to learn, which are used to constrain the space of possibly inducible concepts. How are these goals
represented? Where do they come from? How do they influence the learning process?

Desires about knowledge can be represented in at least two distinct ways. The first representational
format is based on a description of the function that the desired knowledge will fulfill. These are
generally stated as “desires to know how,” such as the desire to know how to distinguish between
mushrooms and toadstools, or how to recognize a potential good deal in the real estate ads. The other
representational format is a description of the relationship of the desired knowledge to a set of existing
knowledge; for example, the desire to know the capitols of all 50 states, or the names of your boss’s
children.

The relation-to-other-knowledge representation of learning goals is similar to Lehnert’s (1978) work on
representation of questions in natural language understanding. In her computer model, questions were
represented by the same knowledge structures that held memories, but with some of the unfilled slots in
those structures identified as the subject of a question. It is also possible to use her representational
strategy for the internal representation of knowledge acquisition goals: goals can be represented as
pointers to certain unfilled slots in memory structures. Ram (1989) presented a theory where relation-
to-other-knowledge representations of questions were used to drive natural language understanding.
Many of Ram’s results apply to the design of knowledge acquisition planners generally.
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Where do unfilled slots in memory structures come from? In general terms, they come from the
incomplete instantiation of knowledge schemas. In order to generate relation-to-other-knowledge goal
representations, a learner must have some knowledge of the structure of its knowledge. Consider a
simple example: in order to represent the goal to find the capitols of all 50 states, a learner must know
that states have capitols. That knowledge implics that the representation for each state will have a
“Capitol” slot, and (presumably) the values for some of those slots are unfilled. Those unfilled slots
can be the subject of a desire for knowledge. That is, the relation-to-other-knowledge representation of
a goal to learn is the result of the application of some knowledge about the structure of knowledge to
form a characterization of a gap, which is a representation of desired knowledge. Ram (1989) presents
a much more detailed mechanism for generating these kinds of goals during the process of understanding
natural language.

The other form of knowledge goal representation, based on the function of the desired knowledge, arise
from inferences about knowledge useful for particular tasks. The knowledge underlying these inferences
provide mappings from desired performance to desired knowledge. The resulting representations
specify the processes in which the knowledge will be used, and the role that it will play in those
processes. Another simple example: in order to do diagnosis, one must know (a) the kinds of things that
can effect the behavior of a system and (b) methods for distinguishing among alternative potential
causes of the to-be diagnosed behavior. When the need to diagnose, say, computer disk-drive failures
arises, that high level knowledge can be used to generate goals to find out about the ways disk drives
can fail and how to distinguish among them. The general knowledge must identify where in the
diagnostic process the desired information will be used and for what, so that when it is found the
information can be stored in the appropriate place for later use. See Hunter (1989) for detailed
examples of the generation and representation of this kind of knowledge goal in a diagnosis domain.

Planning to Learn

The generation and representation of goals to learn is only the beginning of the learning process. The
theoretical justification for generating them depends on their effectiveness at constraining
combinatorics of learning from complex experience. I indicated briefly that learning should involve
bidirectional inference: top-down, from learning goals and bottom-up, from experiential data. How can
this be accomplished?

The idea is to use Al planning techniques for making decisions about which learning actions should be
taken in what order to achieve the knowledge goals of an actor situated in the world. Generally
speaking, these decisions are based on knowledge about available resources, knowledge about actions
and knowledge about the current state of the world (including the actor’s current knowledge state).
Planning to learn is much like other kinds of planning, so here I will just try to describe the kinds of
knowledge about resources, actions and states of the world that are necessary for planning about
learning, rather than describe the process itself. The source of following characterizations are the
computer models IVY and INVESTIGATOR. IVY was primarily an exploration in deciding what was
worth learning, and INVESTIGATOR focuses on how to learn given a set of learning goals. They are
described in detail in Hunter (1989) and (1990a), respectively.

Learning Actions

The actions that people take to acquire knowledge span a tremendous range, from looking up an answer
in a reference book to designing and running scientific experiments. In order for a planner to select actions
appropriate to goals, the actions must be annotated with the resources that they require, preconditions
to executing the actions and expected outcomes of the actions (and perhaps information about possible
alternative outcomes and relative probabilities of the alternatives). Here we will consider some of
those actions and their representations.

In a system capable of taking a large number of possible actions, hierarchies of action classes can
improve the combinatorics of the planning process. Classes of knowledge acquisition actions are, in
effect, hypotheses about the component cognitive processes involved in learning. IVY and
INVESTIGATOR, two computer models of planning to learn, use very different actions and learn from
very different sorts of data, but their actions can nvertheless be grouped into four clearly defined
classes:

* Finding examples of specified phenomena. This class of actions maps abstract characterizations
(phenomena) to specific instances (examples). In IVY and INVESTIGATOR, these actions fall into two
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subclasses: explicit data gathering and perceptual processing. INVESTIGATOR maps
characterizations to instances by doing various kinds of database lookups. IVY works “perceptually,”
checking for inputs that match a desired characterization while doing its main task of diagnosis. Both
subclasses require as preconditions representations of the desired phenomena that can be used to acquire
or recognize examples. In addition, the data gathering actions require access to the sources of data.
Each particular action further specifies the general preconditions; e.g. to look up bibliographic records

from Medline!™, INVESTIGATOR must form a query in the Elhill retrieval language and be able to

open a network connection to the Medline!™ server. The resources consumed by this class of actions (see
below for a discussion of learning resources) are the time it takes to find the desired example, and the
memory required to store the found examples. The expected time to find examples perceptually can be
large (i.e. you do not know when you will find what you are looking for). The expected amount of
memory required for some database searches can also be large.

® Grouping examples. The actions in this class create collections of related examples. Subclasses of
these actions include finding similar examples (using various metrics), clustering examples into
equivalence classes, and building hierarchical clusters. The precondition to this class of actions is a
collection of examples. For example, given a genetic sequence (say, retrieved from a database)
INVESTIGATOR can use sequence matching algorithms to find other genetic sequences it knows about
that are similar to it. Very few resources are required for this action. INVESTIGATOR can also use
Cheeseman’s (1989) Bayesian classification program Autoclass II to divide a collection of objects into
clusters. That action requires significant amounts of time and CPU cycles. Some other grouping actions
(e.g. hierarchical clustering) also require an applicable distance metric as a precondition.

* Generating Abstract Characterizations of Groups. This diverse class of learning actions includes many
of the techniques traditionally associated with machine learning: concept formation, statistical
analyses of collections of examples, and forming explanations of phenomena. This class of actions maps
from a collection of examples and a collection of existing abstractions to a new abstract characterization
of the collection of examples. INVESTIGATOR’s abstraction actions so far include an inductive
category formation algorithm (which generates conjunctive definitions from groups of positive and
negative examples) and ANOVA algorithms for determining the statistical features of collections of
examples. These actions do not use existing characterizations: they map directly from a set of
examples to an abstract characterization. Any learning method that uses domain knowledge uses both
examples and existing abstractions (the domain knowledge) to form new abstractions (e.g. explanations
of the examples). Although the actions in this class vary a great deal, their preconditions and
expected results are similar enough so that it is possible to formulate useful planning knowledge that
refers to this general class.

» Mapping Abstract Characterizations from One Group to Another. This class of learning actions
transfers characterizations from one group to another. INVESTIGATOR currently has only one action
in this class: a marker passing method for mapping a distinction in one hierarchy into another. The
preconditions are two hierarchies, a distinction in one, and a mapping between the leaves of the
hierarchies. This action was used to map a distinction in a taxonomy hierarchy (grouping organisms
into classes) into a protein family hierarchy. The individual proteins were labelled with the organism
that they came from, i.e. there was a map from the leaves of the protein hierarchy to leaves of the
taxonomy hierarchy. Executing the action found protein families that were associated with specific
taxa. Although not implemented in either program, this class also contains all of the learning actions
involving analogy, as well as methods for mapping knowledge across dissimilar groups of examples
(e.g. intersection search).

Individual learning actions are rarely able to satisfy knowledge acquisition goals; they must be
assembled into sequences of actions — into plans to learn. In INVESTIGATOR, the generation of learning
plans is done by top-down subgoal decomposition. Decomposition rules embody knowledge about what
the various knowledge acquisition actions and classes of actions are good for. Knowledge acquisition
goals are transformed into subgoals, and the subgoals are further decomposed until the process bottoms
out in specific knowledge acquisition actions whose total resource consumption does not exceed preset
limits, and all of whose preconditions can be satisfied. IVY did not do its own subgoal decomposition,
but used programmer assembled stereotypical plans. However, INVESTIGATOR is strictly top-down,
and cannot currently take advantage of unexpected opportunities, whereas IVY was able to select among
potential knowledge acquisition plans based on opportunities detected during routine performance.
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Work is currently underway to make INVESTIGATOR’s planning more sensitive to its situation,
creating a mechanism for exploring data and partial results in a more bottom-up, opportunistic fashion.

Learning Resources

With unlimited resources, planning is trivial. Unfortunately, there are always limits. Physical
planners have to manage resources like energy, money and time. Planning to learn is similarly
constrained, although the resources are different. In particular, learners have limitations on the
amount of memory they have and on the amount of time they can spend on inference. Programs like
INVESTIGATOR may also have limits on the amount of network traffic they generate. Traditional
physical planning resources may also come into play, e.g. database access may cost money. Planners
may have strict limits on resource consumption, or may merely try to avoid waste. INVESTIGATOR
has estimates of the resources each of its actions will consume, and selects among alternative plans for
accomplishing a goal by minimizing the resources consumed. It can also reject plans that exceed preset
limits, e.g. would take thousands of CPU hours or gigabytes of storage.

For INVESTIGATOR, memory and CPU cycles are the constraining resources. Some of its knowledge
acquisition actions are directly annotated with a formula for estimating the resources consumed. The
resources consumed by others can be inferred from generalizations associated the class of which the
action is a member. For example, grouping examples is assumed to take time and memory proportional
to the number of examples. The Autoclass II grouping method overrides those defaults, specifying that
it takes a large amount of time initially, plus time proportional to the number of examples times times
the complexity of the examples times the number of expected classes). Because INVESTIGATOR tries
to conserve resource consumption, Autoclass is not used unless the other grouping methods fail or unless
its particular kind of output is a prerequisite for some other action.

The question of managing resources in learning raises the issue of learning over time. Existing machine
learning research has focused on learning from a particular dataset. Conversely, human-like learning
occurs over an entire lifetime. Learners need to decide not only whether and what to learn, but when to
learn. IVY is able to keep “questions in the back of its mind,” in the form of pending learning plans,
which are executed as opportunities arise. A more sophisticated planner might manage a complex and
interacting set of learning goals, making decisions about when to pursue a particular goal, based on its
relationship to the program'’s other learning and performance goals and on on the current state of the
world.

Conclusion: Decision-making in Learning

The space of possible lessons from experience is so large that it is combinatorically implausible to learn
them all. A learner situated in a complex world must therefore make decisions about what is worth
learning. The results of these decisions are explicit (although not necessarily conscious) goals about the
knowledge a learner desires. Learning is not a passive process: learners act in order to learn. Their
goals can be used to direct the selection of the actions taken.

Planning is decision-making based on expectations about the outcomes of actions. Effective learning
decisions require knowledge about the kinds of actions that can be taken to acquire and transform
knowledge, and the resources that those actions consume. Knowledge about learning actions used in
planning includes information about the prerequisites for taking an action and about its expected results.
Algorithms modeled on Al planners in physical domains can be used to select courses of action that can
be expected to yield the desired results under resource constraints. Unlike physical planning domains,
the limiting resources in learning are often inferential effort (CPU cycles for computer systems) and
memory capacities.

The evidence for viewing learning as a planning process comes from both combinatoric arguments and
empirical results in action psychology. This view raises a variety of issues not traditionally dealt
with in the machine learning or cognitive psychology literature: How do learners come to have specific
desires about knowledge? What kinds of desires to people have about knowledge? For example, can
they fear specific kinds of knowledge? How do large numbers of goals to acquire knowledge interact?
Can they interfere with each other the way physical goals can? How are they prioritized? The
planning process raises questions of its own: How can learners recognize unexpected opportunities to
learn? What are the actions that people take to learn? How are those actions organized and selected
among? What do people know about the learning actions themselves, and can new actions be learned?
Answers to these questions await future research.

267



References

Birnbaum, L. (1986). Integrated Processing in Planning and Understanding. PhD. thesis, Yale
University, New Haven, CT. (Technical Report YALEU/CSD/RR#489)

Chapman, D. (1985). Planning for Conjunctive Goals. (Technical Report 802). Boston, MA: MIT Al
Laboratory.

Charniak, E., & McDermott, D. (1985). Introduction to Artificial Intelligence. Reading, MA: Addision-
Wesley.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W. & Freeman, D. (1988). AutoClass: A Bayesian
Classification System. in Proceedings of the Fifth International Conference on Machine Learning.
University of Michigan, Ann Arbor. : Morgan Kaufman.

Deitterich, T. (1989). Limitations on Inductive Learning. in Proceedings of the Sixth International
Workshop on Machine Learning. Cornell University, Ithica NY. (pp. 125-128). San Mateo, CA:
Morgan Kaufman

DeJong, J., & Mooney, R. (1986). Explanation-based Learning: An Alternative View. Machine Learning,
1(2), pp. 145-176.

Fodor, J. (1985). The Modularity of Mind. Boston, MA: MIT Press.

Frese, M., & Sabini, J. (1985). Goal Directed Behavior: The Concept of Action in Psychology. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Hoffman, C., Mischel, W., & Mazze, K. (1981). The Role of Purpose in the Organization of Information
About Behavior: Trait-based Versus Goal-based Categories in Person Cognition. Journal of
Personality and Social Psychology, 39, 211-255.

Horvitz, E., Cooper, G., & Heckerman, D. (1989). Reflection and Action Under Scarce Resources:
Theoretical Principles and Empirical Study. (Knowledge Systems Laboratory Working Paper No.
KSL-89-1). Stanford University, Stanford, CA

Hunter, L. (1989). Knowledge Acquisition Planning: Gaining Expertise Through Experience. PhD. thesis,
Yale University, New Haven, CT. (Technical Report YALEU/DCS/TR-678)

Hunter, L. (1990a). Knowledge Acquisition Planning for Inference from Large Datasets. in Proceedings of
the 23rd annual Hawaii International Conference on System Sciences, Software Track. Vol. 2 Kona,
Hawaii. (pp. 35-44). Washington, DC: IEEE Press.

Hunter, L. (1990b). Deciding What to Learn. Submitted to the Seventh International Conference on
Machine Learning. Austin, TX.

Langley, P., Gennari, J., & Iba, W. (1987). Hill Climbing Theories of Learning. Proceedings of the Fourth
International Workshop on Machine Learning. Irvine, CA. (pp. 312-323). : Morgan-Kaufman.

Lehnert, W. (1978). The Process of Question Answering. Hillsdale, NJ: Lawrence Erlbaum Associates.

Livesey, P. (1986). Learning and Emotion: A Biological Synthesis. Volume 1, Evolutionary Processes.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Ram, A. (1989). Question-driven Understanding: An Integrated Theory of Story Understanding, Memory
and Learning. PhD. thesis, Yale University, New Haven, CT. (Tech report YALEU/CSD/RR#710)

Rumelhart, D., McClelland, J., & the PDP Group (1986). Parallel Distributed Processing: Explorations
in the Microstructure of Cognition (Volumes 1, 2 & 3). Cambridge, MA: MIT Press.

Sacerdoti, E. (1971). A Structure for Plans and Behavior. New York, NY: American Elsvier.

Schank, R. (1982). Dynamic Memory: A Theory of Reminding and Learning in Computers and People.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Schank, R., & Abelson, R. (1977). Scripts, Plans, Goals and Understanding. Hillsdale, NJ: Lawrence
Erlbaum Associates

Schank, R., Collins, G., & Hunter, L. (1986). Transcending Inductive Category Formation In Learning.
Behavioral and Brain Sciences, 9(4), pp. 639-687.

Srull, T., & Wyer, R. (1986). The Role of Chronic and Temporary Goals in Social Information Processing.
in R. Sorrentino, & E. Higgins (eds.), Handbook of Motivation and Cognition: Foundations of Social
Behavior. (pp. 503-549). Guilford, CT: The Guilford Press.

Tolman, E. (1932). Purposive Behavior in Animals and Men. New York: Century Press.

Utgoff, P. (1986). Shift of Bias for Inductive Concept Learning. in R. Michalski, ]J. Carbonell, & T.
Mitchell (editors.), Machine Learning 2 Los Altos, CA: Morgan Kaufmann.

Valient, L. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.

Zukier, H. (1986). The Paradigmatic and Narrative Modes in Goal-Guided Inference. in R. Sorrentino,
& E. Higgins (eds.), Handbook of Motivation and Cognition: Foundations of Social Behavior. (pp.
465-502). Guilford, CT: Guilford Press.

Medline is a trademark of the National Library of Medicine.

268



	cogsci_1990_261-268



