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Abstract

The Holy Trinity:
Blending Statistics, Machine Learning and Discrete Choice,
with Applications to Strategic Bicycle Planning

by
Timothy Brathwaite
Doctor of Philosophy in Engineering - Civil and Environmental Engineering
University of California, Berkeley

Professor Joan Walker, Chair

Every day, decision-makers make choices among finite and discrete sets of alternatives. For
example, people decide whether to walk, bike, take transit, or drive to work; shoppers
decide which of the available brands of toothpaste to buy; and firms decide which vacant
buildings they will rent for office space. Across these disparate domains, discrete choice
models mathematically represent the procedures that analysts believe decision-makers are
using to make such choices.

Historically, the field of discrete choice modeling grew mainly out of economics, and this
lineage has had long-lasting methodological ramifications. In particular, despite the great
mathematical similarity between discrete choice models and models in statistics, machine
learning, and causal inference, discrete choice research remains mostly siloed, seldom drawing
from or contributing to methods in these related disciplines.

In this dissertation, we help demolish the methodological silo around discrete choice re-
search. Drawing from recent techniques in statistics, machine learning, and causal inference,
we remove substantive limitations on the decision-making processes that could be be repre-
sented and predicted with previously available discrete choice methods. At the same time,
by addressing concerns of discrete choice modelers, we make methodological contributions
to the fields of statistics and machine learning, and we identify future research areas where
discrete choice modelers are well suited to advancing the state of the art in causal inference.

Importantly, the methodological advances described above were not divorced from to-
day’s societal concerns. Given that more and more government agencies are (unsuccessfully)
attempting to raise bicycle commuting rates in their jurisdictions, we guide our interactions
with the statistics, machine learning, and causal inference literatures by trying to more accu-
rately model an individual’s choice of commuting by bicycle. In particular, we use parametric
link functions from statistics to better model the adoption and abandonment of bicycling.
From machine learning, we use decision trees to represent the non-compensatory decision
protocols that individuals appear to follow when deciding whether to commute by bicycle,



and we use diagrams from the causal inference literature to gain insight into how we can bet-
ter model the effects of bike lane investments on bicycle commute mode shares. All together,
we not only make methodological contributions to the fields of discrete choice, statistics,
machine learning, and causal inference, but we contribute to the efforts of transportation
planners and modelers who are trying to make our cities and regions more sustainable and
environmentally friendly. The methods developed in this dissertation have applications to
strategic bicycle planning, helping analysts understand when certain interventions are not
enough to cause people to abandon non-bicycle modes of travel at the desired rates and what
alternative interventions might be more effective.
In total, the specific contributions of this dissertation are the following:

1.

We create a new spatial unit of analysis (the zone of likely travel) for the incorporation
of roadway-level variables such as presence and type of bicycle infrastructure, roadway
slopes, and traffic speeds into mode choice models.

. We propose and demonstrate the novel use decision-tree methods for directly including

roadway-level variables in mode choice models.

. We create a new class of closed-form, finite-parameter, multinomial choice models that

avoid an undesirable symmetry property that we describe in Chapter [3]

. We create a procedure for using this new class of models to extend many existing

binary choice models to the multinomial setting for the first time.

. We create methods for creating new, symmetric and asymmetric, binary choice models.

. We provide a microeconomic framework for interpreting decision trees by showing that

decision trees represent a non-compensatory decision rule known as disjunctions-of-
conjunctions and that such rules generalize many of the non-compensatory rules used
in the discrete choice literature so far.

. We propose and estimate the first bayesian model tree, thereby combining decision

trees and discrete choice models in the first two-stage, semi-compensatory model that
jointly:

a) uses disjunctions-of-conjunctions for the choice-set generation stage,

b) allows for context-dependent preference heterogeneity in the choice stage, and

¢) quantifies analyst uncertainty in the estimated disjunctions-of-conjunctions

. We identify techniques such as the use of causal diagrams that can be borrowed from

the causal inference literature to improve the ability of discrete choice modelers to
predict outcomes under external changes or policy interventions such as investing in
on-street bicycle lanes.



9. We identify areas of the causal inference literature that can be improved through
the incorporation of techniques from discrete choice or through the application of
causal inference techniques that are very relevant to discrete choice modellers yet only
infrequently researched by traditional causal inference researchers.

Through this dissertation, we empirically demonstrate most of our contributions using
commute mode choice data from the San Francisco Bay Area. In every case, we found that
the new models developed as part of this dissertation fit our data better than traditional
discrete choice models. These results were stable across all measures of fit that were used,
whether the measures were in-sample or out-of-sample, frequentist or bayesian. Beyond fit,
all of our new models also proved to be qualitatively different than traditional discrete choice
methods. Our new models provided insights and forecasts that both made more sense and
were more accurate than their traditional counterparts. Finally, our contributions related
to causal inference are the only items from the list above without empirical demonstrations.
Instead, these contributions are bolstered by substantial literature review, discussion, and
thought exercises that show the (general and bicycle specific) benefits of merging discrete
choice and causal inference techniques.
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Chapter 1

Introduction

At the age of fourteen, I began commuting to school by bicycle. Unfortunately, at age
sixteen, I was in a collision with a motor vehicle: T was “doored.” In laymen’s terms, while
commuting with my best friend, a driver suddenly opened their car door into the lane we
were traveling in, striking both of us and causing us to fly off our bicycles into the roadway.
After crashing to the ground, my friend was able to pull me out of the roadway just before I
was crushed by an oncoming van, thus saving my life. Unfortunately, my bicycle was not so
lucky, and it laid mangled beneath the van. In the wake of the destruction of my bicycle and
of my naive belief in the safety of modern streets, I left the scene of the crash with a bevy
of questions. Foremost among these was the question: “what makes people travel by
bicycle?” My thought, then and now, was that if we can figure out what makes people travel
by bicycle, then we can design our cities and regions to maximally divert individuals from
private automobiles to bicycles. Since private automobiles are the largest threat to cyclists,
such a diversion would increase bicycle safety and reduce the chance of anyone suffering a
similar or worse fate than 1.

After the crash, I repeatedly searched the internet for what makes people cycle, and as
a result, bicycling provided my first introduction to the fields of transportation planning
and engineering. Eleven years later, this dissertation’s introduction necessarily begins with
the same motivating question. While the methods presented in the interior chapters of this
dissertation are widely useful beyond the original setting of travel mode choice, to start
with the methods would be putting the proverbial cart-before-the-horse. In other words, to
understand why [ made the methodological advances that I made, one must understand the
problems that these methods were meant to solve.

Accordingly, this chapter discusses the substantive societal problem and historical prac-
tices that motivate this dissertation’s methodological contributions. Focusing on the pre-

!Note, Chapters 1, 2, and 6 use the pronoun “I” whereas Chapters 3, 4, and 5 use the pronoun “we.”
This discrepancy exists because Chapters 3-5 are based on work that was performed with collaborators, but
Chapters 1, 2, and 6 represent writings that were produced without the vetting or consensus of collaborators.
I thought it best not to wrongly associate any ideas that my collaborators might disagree with, so I have
chosen to use “I” when I am not referring to joint work or opinions.



CHAPTER 1. INTRODUCTION 2

diction of bicycle mode shares in the United States, I describe how my work is motivated
by four particular issues with previous travel demand models. First, I detail issues with
the input data to travel mode choice models that are used to predict bicycle mode shares.
Then, I move on to highlight two overlooked, empirical observations of individuals making
commute mode choices, paying special attention to the ways that traditional travel demand
models might be enhanced by accounting for these observations. Finally, I comment on the
technical requirements that are required for strategic bicycle planning efforts, focusing on the
inferential gulf between these requirements and the intrinsic properties of traditional travel
demand models.

1.1 Motivation

Across all levels of government in the United States (U.S.), transportation and planning
agencies have prioritized encouraging bicycle use. For instance, as stated by the Federal
Highway Administration, “it is federal transportation policy to promote the increased use and
safety of bicycling and walking as transportation modes” (Federal Highway Administration),
2003). Locally, the California State Department of Transportation (Caltrans) shares the
Federal government’s cycling goals. As stated in Caltrans’ 2002 California Blueprint for
Bicycling and Walking, California had statewide goals of a 50% increase in the 0.8% bicycle
commute mode share from the year 2000 to a 1.2% bicycle mode share by the year 2010
(California Department of Transportation) 2002). However, as of 2014—the most recent year
for which U.S. Census data is available-California’s bicycle commute mode share was 1.1%
and the state’s mode share goals for bicycling had still not been met (U.S. Census Bureaul,
2014)). Similarly, at the municipal level, San Francisco set a goal in 2010 to achieve a 20%
bicycle mode share by 2020 (SFMTA| 2012). However, given the 2014 citywide, bicycle
commute mode share of 3.8% (U.S. Census Bureau, 2014) San Francisco does not appear to
be on track to meet its mode share goals either. While unfortunate, this pattern is not unique
to California. There are agencies all across the U.S. and at all levels of U.S. government that
are interested yet unsuccessful in meeting their bicycle commute mode share goals.

In analyzing how city and state transportation agencies might make progress towards
their stated bicycle commuting goals, it is apparent that these agencies primarily affect
the travel behavior and traveling conditions of their constituents through implemented in-
frastructure projects. To fully support their bicycling agenda, it is therefore necessary for
government agencies to judge the extent to which each possible project will increase bicycle
usage. However, despite this clear need, current travel demand models are often unable to
assess the sensitivity of bicycle mode shares to key variables that agencies control (e.g., the
layout of a city’s bicycle network or the motor vehicle speeds on city roadways). Moreover,
even if an agency’s mode choice model is sensitive to the variables of interest, the agency’s
model should accurately predict the probability that an individual travels by bicycle so that
the agency can be as best informed about the potential benefits of each project. In sum,
U.S. transportation agencies need (1) mode choice models that are sensitive to variables of
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interest such as bicycle infrastructure and roadway conditions (vehicle travel speeds, roadway
slopes, etc.) and (2) mode choice models that are as accurate as possible.

1.2 Research Objectives

To address the need for accurate and policy sensitive bicycle demand models, the research
objectives of this dissertation are to:

1. incorporate roadway-level data (such as the location of bicycle lanes and roadway speed
limits) directly into existing mode choice models

2. mitigate the negative impacts of relative class imbalance (i.e low rates of bicycling
relative to other travel modes) on mode choice models

3. account for “alternative” (i.e. non-compensatory) decision protocols that may lead
travelers to exclude bicycles from consideration as a travel mode

4. investigate how travel demand models might be altered or enriched in order to measure
causal as opposed to associational relationships.

Overall, the four aforementioned research objectives serve three goals. First, the objec-
tives aim to increase the practical usefulness of mode choice models by directly incorporating
roadway-level variables into them. Such inclusions will allow mode choice models to answer
questions about infrastructure investment decisions. Secondly, by accounting for overlooked
behavioral features that characterize the bicycle commuting decision, the aforementioned
research objectives aim to increase the accuracy of bicycle demand models. In particular,
I reduce the negative impacts of low-cycling rates on mode choice models by allowing for
differing willingnesses to adopt different travel modes, and I incorporate non-compensatory
protocols into mode choice models to more realistically model both choice set construction
and preference construction. Lastly, my research objectives aim to improve the usefulness
of mode choice models for transportation planning by investigating how such models can
be used to estimate causal as opposed to merely associational relationships. Such a change
would allow practitioners to make more credible inferences about which intervention or set
of interventions will lead to the greatest benefits for a given level of investment.

As noted earlier, while this dissertation’s substantive motivation is the improving bicycle
demand models in particular, the methods developed in the course of this research apply more
broadly to the fields of choice modeling, statistics, machine learning, and causal inference.
A clear example of this is the class-imbalance research mentioned above in point [2| and in
Section[I.4] While useful in the context of mode choice models, choice modeling and statistics
both benefit from our creation of flexible probability functions whose rates of increase and
decrease from 50% (i.e. adoption and abandonment rates) can be estimated to fit one’s
data as best as possible. Likewise, this dissertation’s research on non-compensatory decision
making benefits choice modelling in general by more flexibly relaxing the assumption of
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rational consideration set formation than in previous choice models. At the same time, I
contribute to the field of machine learning by creating a new decision tree variant to represent
these non-compensatory rules, filling a missing rung in the hierarchy of advanced decision
tree methods.

1.3 Omitted roadway-level variables

The current state of most mode choice models is that they focus on socio-demographic
attributes of the decision makers and “level-of-service” variables such as travel times (e.g. in-
vehicle travel time, waiting time, access time, egress time), travel cost, and travel distances
of various modes (Singleton and Clifton) 2013]). As noted above, variables that describe
individual roadway segments and are of particular interest to policy makers and individual
travelers, such as the presence of bicycle lanes or the speed limit on particular roadways, do
not often appear in mode choice models. Such an exclusion affects transportation engineering
in two major ways. First, the usefulness of current mode choice models for addressing policy
questions, such as whether one proposed bicycle infrastructure plan will have a greater effect
on bicycle demand than another possible plan, is greatly reduced when the relevant variables
being altered do not even appear in one’s model. Secondly, the ability of current models to
accurately represent the choice processes of individuals may be reduced by omitted variable
bias and the spatial autocorrelations that may occur due to the omission of these roadway-
level variables (Goetzke| 2003). As noted in the Section [1.1] this omission indicates a clear
need for methods of integrating roadway segment information into mode choice models.

Thus far, roadway-level variables have been incorporated into mode choice models in three
main ways: through the use of buffer-based methods (as in geographic buffers around a point
in space), through the use of pedestrian/bicycle environment factors, and through the use of
route choice models (Guo et al. [2007; Replogle and Fund} [1995; Nassir et al., [2014). Each of
these methods has their drawbacks. First, buffer-based methods require the arbitrary setting
of a distance to use as the buffer radius around the origin and/or destination. Secondly, it
is not necessarily clear that all of the area around a person’s origin and/or destination is
important to a traveler’s mode choice decision, especially since an individual will be traveling
in a particular direction and only the attributes of the built environment in that direction
are expected to be relevant. Thirdly, if multiple spatial attributes are to be included in
one’s mode choice model, it is not clear whether or how those multiple variables should be
combined for entry into the model.

Arbitrariness or the ad-hoc nature of methods for combining multiple attributes that one
considers important is also a criticism of pedestrian /bicycle environment factors (Ewing and
Cervero, 2001). Such environment factors are often hand-crafted indices that are thought
to measure the “quality” of the built environment for walking and bicycling (Replogle and
Fund, 1995)), but the coefficients used to combine different variables into a single number
are typically chosen through “expert-judgement” as opposed to being chosen through a sys-
tematic method. In contrast, by using route-choice models to measure the quality of various
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routes and then using the logsum in a mode choice model to measure the overall quality of
the bicycling option, one avoids the pitfalls of using ad-hoc methods to quantify the quality
of bicycling for an individual or of considering irrelevant geographies as with buffer based
methods.

However, there are at least three problems with the use of combined route and mode
choice models. First, transportation datasets that are used for mode choice models are
typically travel diaries, and such datasets do not typically collect information on the precise
routes that individuals, particularly cyclists, use. Since these datasets cannot be used to
construct route choice models, the coefficients from route choice models developed on one
set of individuals are then used to represent the sensitivities of different individuals in the
mode choice dataset. Secondly, route choice models are only estimated on those for whom
we have observed route choices—i.e. current cyclists. The sensitivities of current cyclists
are then taken to be the same as the sensitivities of non-cyclists, and this is probably an
inaccurate assumption. Nevertheless, the logsum measure based on cyclists’ sensitivities are
used to represent the overall quality of bicycling for non-cyclists. Lastly, it typically takes
a long time to estimate and forecast with route choice models (Nassir et al. [2014). Both
the initial estimation and the forecasting process of common route choice models depend on
lengthy route generation processes that limit the practical usefulness of such models.

Given the issues with previous approaches seen in the literature, a new method of incorpo-
rating roadway-level variables into mode choice models is desired—a method that combines
the virtues of the extant methods and avoids their problems. Ideally, this new methodology
should

1. minimize the use of “arbitrary” parameters to be set by the analyst (such as the buffer
distance in buffer-based methods or the weighting coefficients in bicycle environment
factors)

2. avoid including “irrelevant” roadways when quantifying roadway conditions for bicy-
cling

3. incorporate variables related to roadways in between an individuals origin and desti-
nation, not just at the origin or destination

4. avoid implying equality of sensitivities between disparate datasets without justification
for such implications

5. avoid applying coefficients estimated solely based on bicyclists to samples of bicyclists
and non-cyclists

6. minimize computing time so that the method can be practically useful.

In Chapter 2] T describe the “zone-of-likely travel” and decision-tree approach to incorpo-
rating roadway level variables into mode choice models. As will be shown, the new method
meets all of the desiderata listed above.
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1.4 Differential adoption and abandonment

Beyond the need for new methods of incorporating roadway-level variables into mode choice
models, bicycle mode choice models should be as accurate as possible. Greater accuracy of
one’s mode choice model enables agencies to more accurately: anticipate the future travel
demands of their constituent populations, understand how the travel behavior of their pop-
ulations are likely to change in response to changes in the transportation system, and quan-
titatively judge which projects will contribute the most towards their regions’ various goals
(e.g. congestion management, air quality, health, sustainability, etc.). The perspective taken
in this dissertation is that one will be most successful in improving the accuracy of bicycle
demand models by taking into account the specific features that characterize choice modeling
in the context of bicycle mode choice. To be concrete, two salient characteristics that are
pertinent to bicycle mode choice modeling are that bicycle demand modeling in the U.S.
often takes place in a significantly class imbalanced setting and that individuals rarely seem
to go through a fully rational, compensatory, utility-maximizing procedure when choosing
whether to commute by bicycle.

Taking the first characteristic mentioned above, class-imbalance is defined in this dis-
sertation as a condition where at least one discrete outcome is over- or under-represented
compared to the other outcomes. In particular, if one is dealing with a cross-sectional dataset
with J discrete outcomes (J > 2), class imbalance is the situation where one or more of the
J outcomes is present in more (or less) than % records in one’s dataset, where N is the
total number of observations in the dataset. Given that bicycle mode shares in large U.S.
cities are typically very low, one might correctly surmise that class-imbalance is typical of
travel mode choice datasets that include bicycling. For instance, the highest bicycle com-
mute mode share is approximately 6% in cities with between 300,000 and 1 million people;
approximately 2% in cities with more than 1 million people; and even lower in the suburbs
surrounding cities. (League of American Bicyclists, 2014)). As a result, household travel
surveys—the main data source for mode choice models—that follow a simple random sampling
protocol will likely result in datasets where the percentage of bicycle commuters is much
lower than the percentage of commuter of other modes (relative class imbalance) and where
the absolute number of bicycle commuters is small (absolute class imbalance). This is evi-
dent, for example, in the travel demand model used by San Francisco County, SF-CHAMP.
The survey used to estimate SF-CHAMP included 10,897 trips, of which only 100 trips were
made by bicycle, leading to a bicycle mode share of approximately 0.92% in their dataset
(Cambridge Systematics, 2002]).

Far from being an innocuous quality, class imbalance is often mentioned as causing se-
rious problems for analysts. Absolute class imbalance, where one simply has a low number
of observations of one or more outcomes is claimed by travel demand modelers (Parsons
Brinckerhoff Quade & Douglas et al., 2005), academic statisticians (Chen et al., 2004]), and
computer scientists (Weiss, 2004; He and Garcia, 2009) alike as making it hard to build
common models and degrading the performance of such models. In general, absolute class
imbalance is thought to lead to a situation where one cannot adequately “learn a concept”
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due to a scarcity of observations from which one builds a model (Weiss| 2004; He and Gar-
cia, [2009). Likewise, relative class imbalance, where one has a relatively lower amount of
observations from one or more outcomes as compared to other categories, is also thought to
degrade an analyst’s ability to model the probability of the “rare class(es)” (Cramer, |1999;
King and Zeng, [2001; |Japkowiczl, 2000; Wallace et al., |2011). There are a number of rea-
sons why this degradation is thought to take place, but in the context of standard discrete
choice models, the explanations offered so far depend on whether the standard logit model
is thought to be the correct probability model.

If the logit model is the correct probability model, then relative class imbalance is thought
to cause problems by increasing the finite sample bias in one’s estimated utility function
coefficients, in such a way that one’s probability estimates of the “rare” class are downward
biased more than they would be in the case of balanced class observations (King and Zeng),
2001). In both this case, and in the case of absolute class imbalance, collecting choice-based
samples and using relevant estimation techniques such as weighted-exogenous maximum
likelihood can eliminate the problems caused by class imbalance (Manski and Lerman, 1977
Breslow et al., [1987; |King and Zeng, [2001). However, since analysts often lack control
over the data collection process, post-data-collection methods of mitigating the negative
effects of class-imbalance are still useful. Additionally, there are many statisticians in fields
such as marketing (Wang and Dey, 2010)), finance (Calabrese and Osmetti, |2011), insurance
(Bermudez et al., 2008; |Pérez-Sanchez et al., 2014), biology (Jiang et al.,2013), and medicine
(Saez-Castillo et al., 2010) who believe that relative class imbalance may be indicative of
a situation where the true probability function is asymmetrid¥, unlike the standard logit
or probit model that are both symmetric (Chen et al., [1999)). Such asymmetric models
imply that individuals have rates of adoption and abandonment that differ by alternative. If
the true probability function is choices in actually asymmetric, then using a logit or probit
model (the typical transportation mode choice models) to predict the probability a particular
outcome occurring will result in link-function mis-specification: a condition known to result
in inconsistent coefficient estimates (Czado and Santner, [1992)) and in probability estimates
which can be far from the truth (Koenker and Yoon, [2009).

To guard against link function mis-specification, one would ideally estimate a single-
index model where one performs a non-parametric estimation of the probability function,
along with a parametric estimation of the coefficients of one’s utility functions (Héardle et al.,
1997; [Horowitz, 2010)). While ideal, such a procedure can be computationally intensive and
may require a very large number of observations to obtain an adequate estimate of the
probability function. As a compromise between doing nothing or performing a complete
non-parametric estimation, some statisticians (Czado, [1994; Koenker and Yoon| 2009) have
suggested “embedding” the standard logit and probit models in a wider class of “parametric
link-functions” where a vector of parameters can be estimated according to one’s data to
allow varying types and degrees of asymmetry in one’s probability function to fit one’s data
best.

2See Chapter 3| for a detailed definition of symmetric and asymmetric probability functions.
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Motivated by the aforementioned literature, a large number of asymmetric probability
functions have been introduced for binary outcomes. For example, there have been nu-
merous, distinct one parameter generalizations of the logit model: (Aranda-Ordaz, 1981}
Guerrero and Johnsonl 1982} |Czado, [1992; Nagler, [1994; |Chen et al.l [1999; Masnadi-shirazi
and Vasconcelos|, [2010; Nakayama and Chikaraishi, 2015; Komori et al., 2015)). Additionally,
a number of two parameter generalizations of the binary logit model have been created:
(Prentice, 1976; Pregibon, 1980} [Stukel, 1988; |Czado, [1994; Vijverberg, 2000; Vijverberg
and Vijverberg, |2012). Beyond generalizations of the logit model, many other other binary
probability functions have been put forth over the years based on distributions such as the
student’s ¢ distribution, the cauchy distribution, the generalized extreme value distribution,
the weibull distribution, the skew-normal distributions, and so on: (Kim) [2002; Liu, 2004}
Castillo et al., [2008; Kim et al., |2008; Koenker and Yoon, 2009; Wang and Dey, 2010} Li,
2011; Jiang et al., [2013]).

Despite the work mentioned above, to be useful in addressing relative class-imbalance
problems in the context of bicycle mode choice modeling, the proposed parametric link-
functions must be capable of handling multinomial outcomes such as “bicycle, walk, drive
alone, bus, train” and so on. Unfortunately, besides the function’s created in this dissertation,
only three multinomial, parametric link-functions have been proposed and estimated so far:
the link family originally introduced by Czado for binary regression (Das and Mukhopadhyay),
2014), the weibit model (Castillo et al., [2008; Fosgerau and Bierlaire, 2009), and the q-
generalized logit model (Nakayama and Chikaraishi, 2015). These functions have never been
applied in the context of bicycle travel, and they are either complex or too restrictive for
general use. One reason for the paucity of multinomial, parametric link-functions may be
the fact that no unified approach for the generation of these various probability functions has
been provided in the literature so far. If the research on binary, parametric link-functions is
to be built upon and be brought to bear on the problem of class imbalance in bicycle mode
choice modeling, then we need (1) a systematic way of generating multinomial, parametric
link-functions and (2) a demonstration of whether such functions can appreciably increase
the accuracy of standard models of bicycle mode choice.

In Chapter 3 I present methods for generating new asymmetric choice models, I show
that these new models can fit one’s data much better than traditional mode choice models,
and I demonstrate how these asymmetric models lead to new insights that are missing from
traditional methods.

1.5 Non-compensatory bicycle mode choices

Returning to the second characteristic of bicycle commuting mentioned above, it is not
known a-priori that individuals make completely rational choices of whether to commute
by bicycle. Indeed, it is not clear that individuals perform a comprehensive, weighted com-
parison of all of the attributes of each of their possible commuting alternatives and then
select the alternative that maximizes their individual utility. It is possible that individu-
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als may use heuristic decision rules to shrink the set of alternatives that they subject to a
utility maximizing procedure, i.e. before using utility maximization to make a final choice
from their consideration sets, individuals may use other decision rules to first narrow their
consideration set from their overall choice sets. Critically, individuals may (for a variety of
reasons) exclude bicycling from consideration, thereby removing all possibility that they will
use a bicycle to commute to work/school. If one does not account for the fact that such indi-
viduals do not even consider bicycling, then one will make incorrect inferences regarding the
amount by which any project can be expected to increase the expected number of cyclists.
In other words, one must be sure that an individual is considering bicycling as a commuting
option before trying to judge the ability of an intervention to increase the probability that
the individual actually bikes.

To allow for heterogenous consideration sets in a population, mode choice models have
been operationalized based on assumptions regarding: the existence of latent market seg-
ments that each have their own consideration sets and utility coefficients (Vij et al., 2013; |Vij
and Walker, 2014)), the existence of individuals that are either completely rational or who
irrationally only consider a single travel mode (Swait and Ben-Akiva, [1987b) or whether
alternatives are independently chosen for inclusion in one’s consideration set (Swait and
Ben-Akivaj, [1987a; Swait, 2001al 2009). With these formulations, researchers have already
found support for the hypothesis that, beyond deterministic differences in the travel modes
which are available to a given person, individuals differ in whether they consider bicycling
as a commuting option (Swait|, 2009; [Vij and Walker] 2014; Mahmoud et al.| 2015)).

In all the modeling efforts just described, the probability of an individual considering
a particular mode was always based on a compensatory model where one variable with a
positive effect on a mode’s probability of being considered could make up for a variable with
a negative effect on a mode’s probability of being considered. The compensatory nature of
the aforementioned models is curious in light of the fact that when asked about why they
don’t commute by bicycle, individuals do not state that the issues which make them avoid
bicycling to work can be compensated for by other commonly used variables in mode choice
models. Individuals commonly state that they live too far away to commute by bicycle,
that roadway conditions are too dangerous for them to commute by bike, that cycling would
require too much physical exertion, that they have to drop-off children some place, and so
on (Goldsmith, 1992 Cleland and Walton, 2004). It is not clear a-priori that these type
of concerns can be incrementally compensated for by changes in sociodemographic variables
or level-of-service variables for the various travel modes. As a result, it is reasonable to
think that non-compensatory models of consideration set formation may be better able to
emulate the actual decision making process of individuals, thereby achieving greater model
accuracy, more realistic model forecasts, and/or qualitatively different model forecasts than
the compensatory models which have been used in the mode choice setting thus far.

In contexts other than travel mode choice, multiple models that combine non-compensatory
decision rules for consideration set construction with compensatory utility-maximization for
choosing from within that consideration set have already been designed and estimated. Non-
compensatory decision rules that have been used include conjunctive rules (Swait, 2001bj
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Elrod et al| 2004} Gilbride and Allenby| [2004)), subset conjunctive rules (Jedidi and Kohli
2005)), disjunctive rules (Swait, [2001b; Elrod et al., |2004; |Gilbride and Allenbyl, 2004)), “dis-
junctions of conjunctions” (Hauser et al., 2010), dominance (Cascetta and Papolal 2009),
elimination by aspects (Gilbride and Allenby, 2006), economic screening (Gilbride and Al-
lenby, 2006), lexicographic rules (Kohli and Jedidi, 2007, and satisficing (Stiittgen et al.,
2012) to name a few. Given this existing literature, what is now needed is an application
of the various models based on non-compensatory decision rules to the context of consid-
eration set formation in bicycle mode choice models, and a comparison with the prevailing
compensatory approaches to choice set formation.

Beyond the purely pragmatic concerns over which type of model will most accurately
represent the bicycle mode choice process, there are at least two theoretical contributions
to be made by combining non-compensatory models of consideration set formation with
compensatory models of the conditional choice made by each individual. First, a wide
variety of methods have been used to estimate the various non-compensatory decision rules
for different datasets. However, despite the eclectic set of estimation methods, and despite
the fact that a subset of these rules—namely conjunctive rules, subset conjunctive rules,
disjunctive rules, and “disjunctions of conjunctions™can be represented as decision trees
(Hauser et al., 2010)), tree-induction algorithms from computer science and statistics have
not been used to estimate these non-compensatory decision rules. Similar to how McFadden
(1972) used random utility maximization to bring economic meaning and theory to the
long-used logistic regression model, I use non-compensatory decision rules to bring economic
meaning and theory to classification trees.

Additionally, disjunctions-of-conjunctions and its various special cases can be thought
of as describing distinct situations. These situations are then used to characterize whether
an alternative is available to a decision maker or not. Typically, the choice is then modeled
using a probability model whose coefficients do not differ according to the situation associated
with the decision maker. This procedure implicitly throws away information since we know
the shares of each alternative chosen by individuals in each alternative, and we could use
this information to infer individual preferences in each situation. Hybrid decision-tree logit
models (Steinberg and Cardell, [1998)) or similar types of “model trees” present one way to
formalize such influence, but we still lack methods to perform joint (as opposed to sequential),
probabilistically motivated estimations for models that (1) use tree-like models to model an
individual’s consideration set and (2) use information from the shares of each alternative
in a given situation to infer individual preferences in the compensatory, utility maximizing
choice model used to make the final choice given one’s consideration set. The development
of such methods would allow analysts to make greater use of the data that they already have
in order to more accurately predict the probability that an individual considers and then
chooses bicycling as a commute mode.

In Chapter [5] I present the general framework for interpreting decision trees through the
lens of microeconomic theories, and I present methods for jointly estimating bayesian model
trees. These are new hybrids of decision trees and discrete choice models that allow for non-
compensatory consideration set formation, analyst uncertainty over the non-compensatory
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rules, and context-dependent preference heterogeneity. By applying such models to disag-
gregate bicycle mode choice data in the San Francisco Bay area, we are able to form much
better fitting models of bicycle mode choice, we generate predictions that are far more plau-
sible than traditional mode choice models, and we gain qualitative insights into the way
individuals are likely to react to bicycle infrastructure investments.

1.6 Causes versus associations

In an ideal setting, transportation professionals would look at the budget they have available
to spend on bicycle infrastructure projects, and then they would proactively solve an op-
timization problem to determine where new infrastructure should be installed to maximize
the bicycle mode share in their jurisdiction. However, in order to have such optimization
problems be meaningful, the mode choice model that is used to predict the bicycle mode
shares must be measuring causal as opposed to associational relationships. The distinction
between the two types of relationships is that causal inferences will be valid under external
policy interventions (such as a transportation agency installing new bicycle lanes), whereas
an associational inference will not necessarily be accurate under external intervention.

The academic discipline of causal inference is exclusively devoted to determining when
and how such causal relationships can be estimated. However, travel demand modeling and
causal inference research have largely remained separate from each other. Though travel
demand modelers expect that their models will be accurate under external intervention, the
relevant techniques from the causal inference literature are almost never used to verify and
guide the creation of traditional travel demand models.

In Chapter [5] I examine the similarities and disconnects between the fields of causal
inference and travel demand modeling. Though the two fields share similar objectives, I
explore the striking differences between the methods employed by each discipline. Moreover,
at a more general level, I step back to review the expected benefits that will likely come
from a cross-pollination of techniques between travel demand modelers and causal inference
researchers. Using bicycling as a case study, I examine how travel demand modeling practices
might change in order to incorporate insights from causal inference research, and I detail
challenges to such a methodological merger, i.e. the kind of merger that is needed for
transportation planners and engineers to make strategic investments in bicycle infrastructure.

1.7 Contributions

Synthesizing the information presented above, this dissertation makes contributions to the
classical discrete choice literature in transportation and also to statistics and machine learn-
ing more broadly. From a ‘big picture’ perspective, these contributions can be viewed as
either substantive or methodological. Substantively, I built new bicycle demand models.
Methodologically, I forged deeper connections between discrete choice models and the larger
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fields of statistics, machine learning, and causal inference. I adopted techniques from these
larger fields, and I extended them to the benefit of all disciplines involved. In the process, I
also satisfied the four research objectives described in Section Specifically, my research
contributions are as follows.

First, I develop a new decision-tree based method for incorporating roadway-level vari-
ables into discrete choice models. This new method uses a novel concept called the “zone
of likely travel.” In doing so, I build upon previous GPS-based research that characterizes
the way cyclists travel. By combining the zone of likely travel with decision trees, my new
method combines the strengths of buffer-based approaches and bicycle environment factors.
Importantly, my new method avoids many drawbacks of these earlier methods and of route-
choice based methods for incorporating roadway level variables into mode choice models.

Secondly, motivated by the fact that bicycle demand models are almost always estimated
on class-imbalanced datasets, I make three methodological contributions related to the issue
of class imbalance. First, I introduce a new class of closed-form, finite-parameter multinomial
choice models. This new class generalizes many existing models from discrete choice and
statistics. Additionally, these new models can capture differential rates of adoption and
abandonment between alternatives. It is this asymmetry in adoption and abandonment
rates that enables these models to better explain why class-imbalance is occurring.

Beyond the mere creation of a new class of models. I develop two procedures for creating
new models within this class. These procedures fill two existing gaps in the statistical and
discrete choice literature. The first procedure provides a way for researchers to create new
binary choice models, either symmetric or asymmetric. In contrast to the hitherto ad-hoc
(and often undocumented) methods used to create new binary choice models, this new proce-
dure allows researchers to systematically derive new choice models with particular properties
such as whether the model is symmetric or not. The second procedure provides a systematic
way to extend binary choice models to the multinomial setting using my newly created class
of multinomial choice models. Together with the first procedure, this advancement allows
for the standardized creation of new, possibly asymmetric, multinomial choice models. Fur-
thermore, the second procedure allows for the creation of multinomial extensions to existing
statistical models, theereby making these models vastly more useful to researchers in fields
such as marketing, transportation, etc.

Thirdly, I make two contributions related to the incorporation of non-compensatory deci-
sion rules into discrete choice and bicycle demand models. First, I develop a microeconomic
framework for the interpretation of decision trees and their many generalizations. In do-
ing so, I show (1) how decision trees represent a class of non-compensatory decision rules
known as disjunctions-of-conjunctions and (2) how decision trees increase the flexibility of
the non-compensatory behaviors that can be empirically estimated in discrete choice settings.
Secondly, I make methodological contributions to both machine learning and the existing
literature of two-stage, semi-compensatory choice models. By developing the first bayesian
model tree for discrete choice settings, I allow for estimation uncertainty in the estimated
decision tree, and I allow for the joint estimation of the trees and discrete choice models
at the output nodes of the decision trees. Such a model represents a notion of context-
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dependent preference heterogeneity where the parameters of one’s choice model can differ
across output nodes, thereby making the choice model parameters a function of the variables
used to construct the decision tree.

Finally, because strategic bicycle planning would be best supported by mode choice
models that measure causal relationships, I make two contributions that try to bridge the
gap between the fields of travel demand modeling and causal inference. First, I identify
causal inference techniques that can be used by travel demand modelers to improve our
ability to make causally valid inferences. Secondly, I identify areas of the causal inference
literature that can benefit (either methodologically or in application) from the engagement
of travel demand modelers.

Together, these contributions represent significant methodological advances in discrete
choice, statistics, machine learning. Moreover, these contributions solve practical problems
related to the use of discrete choice models for bicycle planning. And lastly, these contribu-
tions establish critical connections with the field of causal inference, thereby paving the way
towards more useful demand models—for bicyclists and for all.

1.8 Dissertation Outline

This dissertation is structured as follows. Chapter [2incorporates roadway level variables into
mode choice models using decision trees and a novel concept called the zone of likely travel.
Chapter [3| uses asymmetric mode choice models to capture differential rates of adoption and
abandonment of alternative travel modes, thereby allowing the models to better explain the
observed levels of class imbalance (e.g. the relatively low levels of cycling). In Chapter , [ use
bayesian model trees to account for “if-then” methods of decision making that are likely to be
used by individuals that are deciding whether or not to commute by bike. Next, in Chapter
(] I reflect on the state of the union between causal inference and travel demand modeling.
I review the benefits to each community that may come from a stronger link between the
two fields; I examine why causal inference techniques have not been incorporated into travel
demand models so far; and I take first steps at sketching how one might incorporate causal
inference techniques into travel demand modeling overall and bicycle demand modeling in
particular. Finally in Chapter [6] I recap what has been accomplished, what next steps are
ready to be taken now, and what issues remain to be addressed in the indeterminate future.
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Chapter 2

Incorporating Roadway-Level Variables
in Bicycle Demand Models

Abstract
In this chapter, I describe a new approach for incorporating roadway-level variables into bicycle
demand models. The approach is based on a novel concept called the “zone of likely travel” and
on the combination of decision trees from computer science with traditional discrete choice models.
Both of these facets of the new approach will be described in detail. Beyond descriptions, this
chapter includes an empirical application of the proposed techniques. The application demonstrates
the feasibility and the utility of the new approach, showing in-sample and out-of-sample model
improvements as well as policy-relevant levels of sensitivity to roadway-level variables. Finally, I
present theoretical comparisons between the new approach and existing methods for using roadway-
level variables in bicycle demand models. The approaches that are compared include analyses based
on geographic buffers, bicycle environment factors, and combined bicycle route and mode choice
models. The proposed approach is shown to inherit major benefits of these previous methods while
avoiding many of their drawbacks.

2.1 Introduction

As noted in Chapter 1, agencies at every level of the United States (U.S.) government have
begun to prioritize encouraging bicycle use. However, despite good intentions, these agen-
cies still operate in a funding constrained environment. As such, agencies try to garner the
greatest total benefit, subject to their budget constraints, by judiciously choosing projects
to increase bicycling. One important class of projects is the installation of on-street bicycle
infrastructure such as bicycle lanes, “cycle tracks” (i.e. protected bicycle lanes), bicycle boule-
vards, and “protected intersections.” In this context, agencies may want to get the greatest
increase in bicycle usage out of a given budget for installing new on-street infrastructure.
Now, to determine the optimal bundle of installations (e.g. set of bike lanes), one needs
to know how much a particular installation bundle will raise the bicycle mode share. This
means that one requires a travel demand model with at least two features. First, ‘bicycle’
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must be explicitly modeled as an available alternative for at least some members of one’s
dataset. A travel demand model with this trait will henceforth be called a “bicycle demand
model.” Secondly, one’s model must be differentially sensitive to on-street infrastructure
installations on different streets. This will allow agencies to meaningfully compare one set
of proposed on-street infrastructure installations against another and select the installation
bundles that will lead to the greatest increase in bicycle usage.

Although the two aforementioned requirements can be quickly conceived, few travel de-
mand models meet these criteria. Amongst those travel demand models that do include
bicycling as an explicitly modeled alternative, few models incorporate roadway-level vari-
ables such as bicycle lanes, traffic speeds, traffic volumes, and roadway slopes. The exclu-
sion of such variables that are clearly relevant for the choice of bicycling leads to not only
biased and inconsistent parameter estimates, but it leads to a lack of policy relevance for
decision-makers that need to choose amongst projects that affect these roadway-level vari-
ables. Finally, amongst the precious few bicycle demand models that do incorporate these
roadway-level variables, there remain striking theoretical drawbacks in the way that these
variables are incorporated.

This chapter is a response to the aforementioned omissions and challenges of incorporat-
ing roadway-level variables into bicycle demand models. In the upcoming sections, I make
the following contributions to the travel demand modeling literature. First, I present a novel
methodology for incorporating roadway-level variables such as bicycle infrastructure into
travel mode choice models. To do so, I (1) develop a new representation for the spatial envi-
ronment between a person’s origin and destination, and (2) I draw upon algorithmic methods
(decision trees) that complement the traditional, linear-in-parameters travel demand model.
The proposed techniques offer the potential for improved model accuracy compared to cur-
rent modeling approaches based on geographic buffers around one’s origin and /or destination
or “pedestrian /bicycle environment factors.” Relative to route choice models, the new pro-
cedure has two advantages. It is far less computationally demanding than a route choice
model, and the new procedure avoids the theoretical drawbacks of applying a route choice
model estimated solely on cyclists to a mixed population of cyclists and non-cyclists. Sec-
ondly, I present an empirical application and policy forecast using the proposed method. In
doing so, I demonstrate the feasibility of the new approach and the benefits of accounting
for roadway-level variables rather than omitting them.

The rest of the chapter is organized as follows. First, I review the current approaches for
incorporating roadway-level variables into mode choice models in Section [3.2] This review
is largely the same as in Chapter 1, except for an additional discussion of how this chapter’s
methodology addresses the issues with previous approaches. Secondly, I present the details
and theoretical benefits of the proposed methodology in Section [2.3] Third, I present an
empirical application of the new techniques in Section where | analyze the commute
mode choices of residents in the San Francisco Bay Ared]l] I estimate the proposed model,

IBecause this chapter is oriented towards practice as opposed to research, the empirical comparisons are
against a travel demand model without roadway-level variables. A comprehensive, quantitative comparison
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and I use it to forecast the effects of a planned, Bay Area bicycle infrastructure investment.

Finally, Section [.7] concludes.

2.2 Literature Review

The current state of most mode choice models is that they focus on socio-demographic
attributes of the decision makers and “level-of-service” variables such as travel times (e.g. in-
vehicle travel time, waiting time, access time, egress time), travel cost, and travel distances
of various modes (Singleton and Clifton) 2013]). As noted above, mode choice models often
omit variables that describe individual roadway segments and are of particular interest to
policy makers and individual travelers: variables such as the presence of bicycle lanes or the
speed limit on particular roadways. Such an exclusion affects transportation engineering in
two major ways. First, the usefulness of current mode choice models for addressing policy
questions, such as whether one proposed bicycle infrastructure plan will have a greater effect
on bicycle demand than another possible plan, is greatly reduced when the relevant variables
being altered do not even appear in one’s model. Secondly, the ability of current models to
accurately represent the choice processes of individuals may be reduced by omitted variable
bias and the spatial autocorrelations that may occur due to the omission of these roadway-
level variables (Goetzkel |2003). As noted in the introduction, this omission indicates a clear
need for methods of integrating roadway segment information into mode choice models.

Thus far, roadway-level variables have been incorporated into mode choice models in three
main ways: through the use of buffer-based (as in geographic buffers around a point in space)
methods, through the use of pedestrian /bicycle environment factors, and through the use of
route choice models (Guo et al [2007; Replogle and Fund, [1995; Nassir et al., [2014). Each of
these methods has their drawbacks. First, buffer-based methods require the arbitrary setting
of a distance to use as the buffer length around the origin and/or destination. Secondly, it
is not necessarily clear that all of the area around a person’s origin and/or destination is
important to a traveler’s mode choice decision, especially since an individual will be traveling
in a particular direction and only the attributes of the built environment in that direction
are expected to be relevant. Thirdly, if multiple spatial attributes are to be included in
one’s mode choice model, it is not clear whether or how those multiple variables should be
combined for entry into the model.

Arbitrariness or the ad-hoc nature of methods for combining multiple attributes that one
considers important is also a criticism of pedestrian/bicycle environment factors (Ewing and
Cervero, 2001). Such environment factors are often hand-crafted indices that are thought to
measure the “quality” of the built environment for walking and bicycling (Replogle and Fund),
1995), but the coefficients used to combine different variables into a single score are typically
chosen through “expert-judgement” as opposed to being chosen through a systematic method.
Systematic methods of combination (such as using principle components analysis or factor

with the existing approaches for using roadway-level variables in bicycle demand models is left for future
research.
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analysis) exist, but the results of using such techniques are often considered difficult to
interpret.

In contrast to the buffer-based and bicycle environment factor methods, an approach that
may seem promising is to combine bicycle route-choice models and mode choice models. This
approach uses a bicycle route-choice model to measure the quality of various routes, and then
uses the log-sum of the route-choice model to measure the overall quality of the bicycling
option. The log-sum measure is then used as the explanatory variable for the bicycling
alternative within a mode choice model. This approach avoids the pitfalls of using (1) ad-
hoc or difficult-to-interpret methods to quantify the quality of bicycling for an individual or
(2) of considering irrelevant geographies as with buffer based methods.

However, there are at least three problems with the use of combined route and mode
choice models. First, transportation datasets that are used for mode choice models are
typically travel diaries, and such datasets do not typically collect information on the precise
routes that individuals, particularly cyclists, use. Since these datasets cannot be used to
construct route choice models, the coefficients from route choice models developed on one
set of individuals are then used to represent the sensitivities of different individuals in the
mode choice dataset. Secondly, route choice models are often only estimated on those for
whom one has observed route choices-i.e. on current cyclists. The sensitivities of current
cyclists are then taken to be the same as the sensitivities of non-cyclists, and this is probably
an inaccurate assumption. Nevertheless, the log-sum measure based on cyclists’ sensitivities
are used to represent the overall quality of bicycling for non-cyclists. Lastly, it typically
takes a long time to estimate and forecast with route choice models (Nassir et al. 2014]).
This is because both the initial estimation and the forecasting procedures of route choice
models used in practice depend on lengthy route generation processes that limit the practical
usefulness of such models.

Summary

To summarize, there are currently three major techniques for incorporating roadway-level
variables into mode choice models: buffer-based methods, “pedestrian/bicycle environment
factors,” and route-choice models. Each of these three methods has their drawbacks. The
main issues with these methods are as follows.

1. Buffer-based methods include streets that are likely to have low impact one’s decision
of whether or not to cycle, and they simultaneously exclude streets that are likely to
be influential in one’s decision making process.

2. Bicycle environment factors lack a systematic and easily-interpreted method for com-
bining the various variables of importance into a single measure of the quality of one’s
environment for bicycling.

3. Route choice models are based solely on the decisions of one non-representative sub-
population—cyclists, and then they are applied to a completely different sub-population
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(i.e. non-cyclists), even though the preferences of these sub-populations may greatly

differ.

4. The choice set generation processes commonly used in route choice models lead to
long computation times, thereby reducing the immediate usefulness of such models for
practitioners.

In the next section, I will detail the proposed methodology for including previously omit-
ted roadway-level variables into mode choice models and addressing the four issues listed
above.

2.3 Methodology

The proposed methodology for making mode choice models sensitive to roadway-level vari-
ables is comprised of three main parts.

First, I create a novel representation of the built-environment between one’s origin and
destination called the “zone of likely travel.” The new representation aims to better capture
relevant roadways and areas than traditional buffer-based methods. Conceptually, instead
of forming buffers around a person’s origin and/or destination, the zone of likely travel can
be conceived of as a buffer around the shortest path between an individual’s origin and
destination.

Secondly, I propose the use of decision-trees as a supervised dimensionality-reduction
technique. After building the decision tree using the decision to commute by bicycle or not
as the dependent variable, the series of conjunctive statements that comprise its output are
taken as discrete interactions that describe a person’s cycling environment. Unlike “objective”
bicycle environment-factors, these discrete interactions are easily interpreted combinations of
the extracted roadway-level variables such as the percentage of roadways with various types
of bicycle infrastructure on them and the deciles of roadway slopes in a person’s zone of likely
travel. Moreover, unlike subjective bicycle environment-factors, these variable combinations
are systematically created and (by construction) highly predictive of whether a person chose
to commute by bicycle.

Thirdly, I propose the use of the hybrid decision-tree logit model, as described by [Stein-
berg and Cardell (1998)), to integrate the variable combinations that describe the environment
that a person travels through with traditional mode choice models. In this step, one merely
places the set of discrete interactions into the bicycle utility of one’s mode choice model as
dummy variables and conducts one’s usual model estimation procedure.

In the three subsections that follow, Sections - I provide motivation, intuition,
and implementation details for each of the three steps in the methodology.
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Zone of Likely Travel

In attempting to alleviate the issues of omitted roadway-level variables described in the
introduction, there were essentially two options. First, I could have taken an approach that
was similar in spirit to current buffer-based and bicycle environment factor methods. These
methods directly operate at spatial levels of aggregation that are based on areas as opposed
to being based on precise travel routes. Alternatively, I could have taken an approach that
is similar to that of route choice models. In doing so, one would judge the quality of specific
routes that an individual could use to travel from his/her origin to his/her destination and
then aggregate those judgements in some way to describe the quality of the environment
between one’s origin and destination. Given the aforementioned data, generalization, and
computational issues of route choice models, I decided to sidestep those problems and use
an approach similar to buffer-based and bicycle environment factor methods. The first step
in such a procedure was to determine the spatial area(s) for each person that would be used
to judge the quality of that person’s bicycling environment.

In particular, I introduced the concept of a “zone of likely travel” as the spatial area to be
used in or modeling efforts. The “zone of likely travel” is a polygon between an person’s origin
and destination that aims to include the roadways that an individual is thought to be likely
to travel on. Conceptually, it can be thought as a buffer around the straight line between an
individual’s origin and destination. The main motivation for such zones was twofold. First,
I wished to avoid using buffers around an individual’s origin and destination because they
may be composed of many roadways that are irrelevant to a person’s decision of whether
to travel by bicycle. For example, these could be roadways that are near one’s origin but
travel in the opposite direction from one’s destination and vice versa. Secondly, I wanted to
be sure that the characteristics of roadways between a person’s origin and destination were
captured, especially since the area between a person’s origin and destination can be much
larger than the area around the person’s origin and destination. The zone of likely travel
achieved both of these goals.

To actually construct the zones of likely travel, I relied on a revealed preference study by
Dill and Gliebe (2008) that describes the percent difference between the length of observed
and shortest paths of cyclists, based on the length of the cyclist’s shortest path in one mile
increments. Their findings regarding these percent differences are shown in Figure 2.1} The
basic idea is that once one knows the length of the shortest path from an individual’s origin
to destination, one can draw a buffer around that path such that the buffer contains the
routes that the cyclist may take if they deviate from the shortest path. With the results of
Dill and Gliebe (2008])), T used the following series of steps to create each person’s zone of
likely travel:

1. Calculate the length of the shortest path between the individual’s origin and destination

2. Based on the data in Dill and Gliebe (2008)), find the mean percent difference in length
between observed and shortest paths for trips whose shortest paths are in the same
mileage category as the current individual’s trip
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3. Using the mean percent difference in length, calculate the expected bicycle trip length
for the current individual’s trip.

4. On a map, draw a straight line between the individual’s origin and destination.

5. Calculate an “offset distance” by subtracting the length of the straight line from the
expected bicycle trip length and then dividing by two.

6. At an “offset distance” away, in both directions orthogonal to the straight line drawn
in step [4, draw parallel straight lines. See the green and purple lines in Figure 2.2

7. Draw a box by connecting the start and end points of the three straight lines. See

Figure

8. Associate each corner of the box, as well as the origin and destination, with their closest
roadway intersections.

9. Starting at the roadway intersection nearest the origin and moving in a single consistent
direction, clockwise or counter-clockwise, create a polygon by the determining the
shortest path on the actual road network between the current roadway intersection
and the next roadway intersection from step [§

Note that Figure illustrates an intermediate stage in the construction of the zone of likely
travel, and Figure depicts an example of an actual person’s zone of likely travel. Once
the zones of likely travel are constructed for each person, one can begin collecting variables
and combining them to describe the quality of an individual’s bicycling environment. This
process will be described in the following subsection.

Decision Trees for Dimensionality Reduction

Given a constructed zone of likely travel, the next step in the methodology is to collect and
combine roadway-level variables from the zone in order to describe its bicycling environment.
In general, the variables collected from each zone will be determined by the needs, resources,
and interest of each researcher. However, the basic idea of this part the methodology is to
collect as many variables describing the bicycling environment as one can.

To determine the variables one collects, one might choose to be creative with one’s variable
definitions. For instance, one might measure the percentage of miles along the shortest path
from one’s origin to destination that have speed limits below a certain speed. This would
be an indicator of perceived traffic safety along one’s most direct travel route. One might
also choose to describe the distribution within the zone of each variable of interest as finely
as possible. As a concrete example, consider the following. One is often curious about
the effects of the following categories of roadway-level variables on the probability that a
person chooses to commute by bicycle: types of bicycle lanes, designated bicycle routes, and
off-street paths; traffic speeds; traffic volumes; roadway slopes.
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Figure 2.1: Percent difference between observed and shortest paths by bicycle trip length
(Dill and Gliebe, |2008)

The approach that I took in this study was to describe the entire distribution of these
variables instead of merely using point estimates. For example, instead of merely using
the mean of all the roadway slopes within the zone, I instead measured the deciles of the
empirical distribution of roadway slopes in the zone.

Once one has collected all of the variables that one is interested in, one might have a
large corpus of highly correlated variables. For example, I had more than thirty measured
variables. As such, directly entering all of these variables into one’s mode choice model is
not expected to be effectiveﬂ. Instead, the variables are combined in a way that reduces the
dimensionality of the terms that are added to the mode choice model. Moreover, 1 wanted
the variable combinations to be objective, interpretable, and predictive of whether or not a
person choose to commute by bicycle. Because of these requirements, I avoided standard
dimensionality reduction techniques such as principle component analysis and factor analy-

2Note, this point is corroborated by the results in Table 1 of Chapter 4. There, point estimates of the
variables of interest are directly entered into the bicycle utility equation, and still, only the variable for bicycle
lanes is statistically significant. Contrast those results to the results shown in Table 23] of this chapter where
7 of the 8 dummy variables representing the output nodes of the tree were statistically significant.



CHAPTER 2. INCORPORATING ROADWAY-LEVEL VARIABLES IN BICYCLE
DEMAND MODELS 30

Destination

Figure 2.2: Initialization of the Zone of Likely Travel
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sis. These methods have been characterized as difficult to interpret, and the resulting variable
combinations are not necessarily predictive of a particular dependent variable. Similarly, I
avoided the use of bicycle-environment factors since such factors are constructed subjectively
using expert opinions.

The approach I settled on was using a decision tree to perform the variable combination,
where the dependent variable was whether or not a person chose to commute by bicycle.
Provided that the tree that one constructs is of low depth, the tree and its resultant variable
combinations will be easily interpretable. Each output node will be able to read as series of
conjunctive statements such as “this node represents observations whose zones of likely travel
meet condition 1 and condition 2 and not condition 3,” etc. Additionally, because decision
trees are constructed with the express purpose of accurately classifying observations, the
variable combinations that are created as the decision tree’s output nodes will be precisely
those that are highly predictive of whether one chooses to commute by bicycle or not. For
an in depth discussion of decision trees and strategies for their construction, see Chapter 4.

Hybrid Decision Tree-Logit Models

The final step in the methodology is to construct the hybrid decision tree-logit model. As
described by |Steinberg and Cardell (1998)), this model takes the output nodes of the decision
tree and adds them as “dummy variables” to the systematic utility of one’s discrete choice
model. Given that the decision tree is estimated specifically to predict the choice of bicycling
or not, I added the dummy variables to the specification of the systematic utility of bicycling
as opposed to the utility of any of the other modes.

Now, the main motivation for placing the output nodes of the decision tree into the
bicycle utility of one’s discrete choice model is to create a link between the effect of the
roadway-level variables and the probability that a person bicycles. However, there are other
benefits that come from using this technique. First, discrete choice models and decision trees
are generally complementary techniques (Steinberg and Cardell, [1998). Decision trees work
by finding relationships between the dependent variable and local partitions of the space
of explanatory variables. In contrast, discrete choice models are typically used to estimate
relationships (i.e. the §’s) that hold globally, for all observations, regardless of one’s location
in the space of explanatory variables. Given that both techniques have been used to predict
discrete outcomes with much success, one may hope to do even better by combining the
two techniques. Secondly, the decision tree has (in our case) solely been used to relate
the roadway-level variables to the choice of bicycling. Conversely, discrete choice models
in transportation usually only account for socio-demographics and level-of-service variables.
Combining the two models and re-estimating the coeflicients allows us to interpret the effects
of roadway-level variable while controlling for socio-demographics and level-of-service and
vice versa.
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2.4 Application

For an empirical application, I jointly modeled the commute mode choices of individuals in
San Francisco, Berkeley, and Oakland. These cities were chosen because I had data on a sam-
ple of individual commute mode choices through the 2012-2013 California Household Travel
Survey, and because it was feasible for me to acquire, clean, and standardize the needed
geospatial data. In the following subsections, I describe the data used in the application,
as well as the model specification that is used as my point of comparison. I then present
the model results (both the decision tree and hybrid decision-tree logit model), and use the
model to forecast the change in the number of bicycle riders that is expected to come from
the Telegraph Avenue Complete Streets project in Oakland.

Data

As mentioned above, the primary dataset for this application is the 2012 California Household
Travel Survey (CHTS). The CHTS was a one day travel diary taken from a stratified sample
of households throughout the state of California and portions of Nevada. It was a stratified
sample, one-day travel diary, and it collected detailed information on individual’s activities,
locations, sociodemographics, household structure, and travel modes. The complete data
collection effort is described in (California Department of Transportation, |2013|). From the
complete data set, only individuals who both lived and worked or lived and attended school in
either Oakland, Berkeley, or San Francisco were extracted and retained for model estimation.

Beyond filtering based on geography and trip-purpose, I post-processed the raw CHTS
data to construct the final dataset used for model estimation. In particular, I combined the
data on individual trips into tours, defined a “chosen travel mode” for each tour, determined
the available travel modes for each tour, and assembled the level-of-service variables for each
tour. For this study, I used the level-of-service (travel costs, times, and distance) estimates
provided by the San Francisco Metropolitan Transportation Commission (MTC). As a result,
the set of possible alternatives in our example was defined to be the same as the categories
used by MTC. Specifically, eight travel mode alternatives were specified. There were three
driving modes, each differentiated by the number of passengers: drive-alone, shared-ride
with two passengers, and shared-ride with three or more passengers. There were also three
transit modes, each differentiated by their access and egress modes: walk-transit-walk (where
walking is used for access and egress), drive-transit-walk, and walk-transit-drive. Finally,
there were two non-motorized modes: walking and bicycling. For each tour, the travel mode
that was used for the longest distance was used as the “chosen travel mode” for that tour.
In total, the final data set included 1,015 tours, 87 of which had bicycling as the primary
travel mode used on the tour.

Along with the CHTS data, I drew upon a suite of spatial data from each city and from
MTC. Specific data types gathered include street shapefiles, bicycle infrastructure shapefiles,
speed limits, topography, traffic analysis zones (TAZs), and city boundaries.
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Base Model

The “basic” model used for comparison in this chapter is based on MTC’s current work-tour
mode choice model (Commission and Brinckerhoff] 2012). It is essentially taken “as-is” from
MTC and is used as a point of comparison for this application. Minor alterations to MTC’s
model specification were made based on data availability and statistical considerations such
as using removing insignificant variables. The largest difference between the MTC model
and the model used in this chapter is that I use a multinomial logit model instead of a
nested logit model. This decision was made in order to investigate the improvements that
are possible in the simplest type of choice model used by MTC. The Maximum Likelihood
Estimation (MLE) results of the basic model are presented in Table 2.1 along wiith the
results of the hybrid decision-tree logit model.

The Hybrid Decision Tree-Logit Model

As shown by the log-likelihoods in Table [2.1] the hybrid decision-tree logit model displays a
greater in-sample fit to the data as compared to the base model. The greater fit is statistically
significant as a log-likelihood ratio test of the hybrid decision-tree logit model versus the
restricted base model has a p-value of approximately le=!2.

Now, to interpret the results of the hybrid decision tree-logit model, one also needs the
estimated decision tree. Figure [2.4] shows the estimated tree, and Table describes the
names of the variables that appear in the estimated treeﬂ A few interesting aspects of the
hybrid decision tree-logit model are immediately apparent. First, the presence of bicycle
lanes only affects those individuals in output nodes 3-5, where the shortest path between
the individual’s home and work is less than 3.01 miles. This underscores the importance of
distance in determining whether an individual chooses to bicycle and whether the individual
is strongly impacted by the installation of on-street bike lanes. Secondly, the numerous ap-
pearance of the slope variables highlights the importance of having a relatively flat bicycling
environment{] Finally, it is instructive that the variable at the top of the tree is the fraction
of roadways along one’s shortest path with roadways of 35 miles per hour or higher. This
emphasizes the fact that individuals rarely commute by bicycle in regions where their most
direct path is along roads with fast moving (i.e. unsafe) traffic.

3Note the variables used to construct the tree include: the percentage of roads having bike lanes on them,
the percentage of roads having bike routes or “share the road” arrows (i.e. sharrows) on them, the deciles
of roadway slopes within a zone, the total elevation change from one’s origin to destination, the deciles of
roadway speed limits, the length of the shortest path from one’s origin to destination, the fraction of one’s
shortest path that has a speed limit of 20, 30, and 35 miles per hour or higher. Only a subset of these
variables appear in the estimated tree shown in Figure

4Note, basic node splitting procedures for tree construction are biased towards selecting variables (such
as the “slope xx” variables) with many unique values (Kim and Loh| [2001). However, I was not aware of this
fact when conducting the study described in this chapter. Future research should investigate the sensitivity
of the decision tree’s interpretation to the use of unbiased splitting procedures.
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Standard Logit Hybrid Tree-Logit
Variables Parameter  ¢-Stat ~ Parameter  ¢-Stat
ASC Shared Ride: 2 -2.737 -11.833** 2,717 -11.715%*
ASC Shared Ride: 3+ -2.852  -12.228** -2.831 -12.110**
ASC Walk-Transit-Walk -0.215  -0.593 -0.167  -0.462
ASC Drive-Transit-Walk -3.414  -7.332%* -3.370  -7.237**
ASC Walk-Transit-Drive -3.949  -8.212%* -3.907  -8.125**
ASC Walk 1.421 5.281%* 1.404 5.228%*
ASC Bike -0.950  -3.402** -3.291  -5.207**
Travel Time, units:min (All Auto Modes) -0.112  -7.912%* -0.112  -7.887**
Travel Time, units:min (All Transit Modes) -0.029  -6.854** -0.029  -6.970**
Travel Cost, units:$ (All Transit Modes) -0.123  -1.432 -0.124  -1.442
Travel Distance, units:mi (Walk) -1.103  -12.535%* -1.096  -12.475%*
Travel Distance, units:mi (Bike) -0.345  -7.470%* -0.219  -4.066**
Household Size (Shared Ride 2 & 3+) 0.593  9.774%* 0.585  9.618**
Cross-Bay Tour (All Transit Modes) 1.037  2.109* 1.056  2.146*
Node 1 (Bike) B - 1402 2.816%*
Node 2 (Bike) - - 0.926  1.066
Node 3 (Bike) _ _ 1.928  2.369*
Node 4 (Bike) - - 4238 6.338%*
Node 5 (Bike) _ _ 2370  3.798**
Node 6 (Bike) ~ ~ 4583 4.931%*
Node 7 (Bike) B _ 2.612  3.585%*
Node 8 (Bike) _ _ 1.483  2.145*
Log-likelihood -1,409.071 -1,372.327

Note: * means p-value < 0.05 and ** means p-value < 0.01.
__means the corresponding values do not apply to the given model.

Table 2.1: Base and Hybrid Decision-Tree Logit Model Results
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Node 4: {Not Bike: 7, Bike: 12} Node 3: {Not Bike: 11, Bike: 3}

Figure 2.4: Estimation results for the decision tree

Variable

Descriptions

shortest path 35

slope  xx

min _distance

bike class 2

forward elevation change

The ratio of miles of 35 mph roadways along the shortest
path from one’s origin to destination to the total roadway
miles along the shortest path.

The xx-percentile of the slopes in the zone of likely travel
between one’s origin and destination.

The length, in miles, of the shortest path between one’s ori-
gin and destination.

The ratio of roadway miles in one’s zone of likely travel which
have a bike lane on them to the total roadway miles in one’s
zone.

The absolute value of the change in elevation (in feet) be-
tween one’s origin and destination.

Table 2.2: Variable descriptions for variables in the classification tree
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While the discussion so far has centered on the in-sample estimation results, I did assess
the performance of the proposed methodology using out-of-sample testing. Specifically, I
used two complementary metrics to assess the out of sample performance of the proposed
method and the traditional logit model without roadway level variables: the out-of-sample
log-likelihood and “sensitivity.” The log-likelihood measures the overall quality of a model’s
predicted probabilities. The sensitivity of a model measures the model’s discriminative
ability—it is the percentage of observations of a given outcome that are correctly classified’]
by one’s model. Since this study is specifically focused on cycling, the models were judged
with respect to their log-likelihoods overall and with respect to their sensitivity towards
cycling.

To perform the out-of-sample testing, I used the “0.632” bootstrap (Efron, 1983; Efron
and Tibshirani, 1997). A bootstrap approach to out-of-sample testing was used because
alternative techniques (e.g. k-fold cross-validation or hold-out sets) were deemed less appro-
priate. My intuitions behind the choice of testing procedure were based on the arguments
made in [Efron and Tibshirani’s “Improvements on cross-validation: The .632+ boot-strap
methods” and [Japkowicz and Shah's “Evaluating Learning Algorithms: A Classification Per-
spective” (2011, Ch. 5). These two sources suggested that my dataset’s relatively small
size (1,015 observations), its highly imbalanced nature (e.g. there were only 87 cyclists),
and the expectation of multiple cycling sub-populations or “small disjuncts” (e.g. see the
popular construct of “Four Types of Cyclists” (Geller, Roger, 2006)) would lead to high vari-
ance in the error-estimates produced by cross-validation and high-bias in the error-estimates
produced by a holdout set.

Bootstrapping seemed to strike a useful balance between these bias/variance concerns.
For instance, a hold-out set would have resulted in either few cyclists in the held-out group
or too few observations overall in the training set. Similarly, the small number of cyclists
in each fold of cross-validation would have been expected to increase the variance of all the
out-of-sample estimates. Compared to a hold-out set, bootstrapping would maintain the
number (though not the information content) of cyclists in the training data. Compared to
cross-validation, bootstrapping would generally lead to a higher number of cyclists in the
out-of-sample tests and lower variance in the error estimates due to averaging over more
error estimates.

Amongst the possible bootstrap methods, I selected the 0.632 bootstrap to perform the
out-of-sample testing. This method takes a weighted average between the out-of-sample
metrics computed on the bootstrap samples and the in-sample metrics computed on the
same training data that one’s model was estimated with. The weights are 0.632 for the
out-of-sample metrics and 0.328 for the in-sample metrics, and they are derived from the
expected percentage of data points that are present in each bootstrap sample. The weights
balance the pessimism of the bootstrapped error estimates that are based on less information
than one’s final model and the optimism of the in-sample metrics that use the same data for

5Note, for probabilistic models with multiple outcomes, an observation is classified as having the outcome
with the highest predicted probability.
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Metrics Standard Logit Hybrid Tree-Logit
Log-Likelihood -1,421.0 -1,392.6
Sensitivity (Cyclists) 3.5 33.7

Table 2.3: Out-of-Sample Results for the Base and Hybrid Decision-Tree Logit Models

estimation and testing. This method was chosen over methods such as the ordinary bootstrap
because the 0.632 bootstrap has empirically been shown to accurately estimate prediction
error rates in small-samples (Efron, |1983; [Efron and Tibshirani), [1997; Japkowicz and Shahl,
2011). However, I do note that “[...| the relative appropriateness of one sampling scheme
le.g. cross-validation, bootstrap resampling, etc.|] over the other is classifier dependent”
(Japkowicz and Shah, 2011, p. 183). Because of this, future research should perform real
and simulated studies to investigate what the best type of out-of-sample error estimation
technique is for hybrid decision tree-logit models.

Justifications aside, the out-of-sample testing procedure was as follows. I used 2,000
stratified bootstrap samples of the data to re-estimate the models based on this chapter’s
proposed methodology and the traditional logit model. Each time, the log-likelihood and
sensitivity were calculated for the observations that were not part of the bootstrap sample.
The out-of-sample log-likelihood and sensitivity metrics were then averaged across the 2,000
bootstrap samples. Finally, a weighted average was taken between the in-sample metrics and
the the average metrics for the bootstrap samples. Following the 0.632 bootstrap procedure
(Japkowicz and Shah| 2011, pp. 181-182), the weights were 0.368 and 0.632 for the in-sample
and out-of-sample metrics, respectively.

Table shows the results of these procedures. Consistent with the in-sample results,
this chapter’s proposed methodology leads to better probabilistic predictions and greater
discriminatory power, even out—of—sampleﬂ The improvements in sensitivity are especially
encouraging. For bicycle planning, infrastructure installation decisions must specify where
in space that infrastructure will be installed. To make such siting decisions optimally, it is
important that one’s model be accurate at an individual level. One characteristic of a model
that is accurate at the individual level is that the model will be able to accurately identify

SNote, the out-of-sample results suggest, rather than prove, that the hybrid decision tree-logit generalizes
better than the standard MNL model. In particular, the logit coefficients were re-estimated during the
bootstrapping procedure. However, the decision tree itself remained constant, thus providing an avenue
for potential over-fitting. That said, two features of the tree estimation procedure reduce the likelihood of
over-fitting. First, a minimum number of 5 observations had to be contained in a given output node in
order for the node to be created. This should play a small role in reducing the chance that the decision tree
was overly affected by noise in the data that does not generalize to unseen observations. The second, and
more substantial, feature is that “reduced error pruning” (Rokach and Maimon, [2005) was used to arrive at
the tree shown in Figure 2.4 This procedure removes output nodes that lead to increased error on a set of
held-out data (i.e. a 20% stratified sample of the original dataset) that was not used to estimate the initial
tree. In this sense, even though the tree shown in Figure [2.4] was not re-estimated during the bootstrapping
procedure, this tree should already be somewhat inoculated against over-fitting to the estimation data.
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the alternative with the highest probability for each person. Thus, the model’s sensitivity
should be high. Given that the hybrid decision tree-logit model has a much higher out-of-
sample sensitivity than the traditional logit model, I believe the proposed model should also
be much more useful for planning purposes.

Policy Forecast

Finally, to demonstrate the responsiveness of the hybrid decision tree-logit model to policy-
relevant decisions, I used the Telegraph Avenue Complete Streets Plan as a case study. The
context for this case study is that, in 2014[?], the City of Oakland, California was planning
to redesign Telegraph Avenue between 20th Street and 57th Street. The Complete Streets
Plan had two design options. Option one was to install bicycle lanes between 20th Street
and 46th Street, sharrows between 46th Street and 52nd Street, and bicycle lanes between
52nd Street and 57th Street. Option two proposed a protected cycle track from 20th Street
to 46th Street, bicycle lanes between 46th Street and 52nd Street, and protected cycle tracks
from 52nd Street to 57th Street.

At the time the 2013 CHTS data was collected, the one protected bicycle lane in San
Francisco was outside of the zone of likely travel for any of the observations in my dataset,
and there were no protected bicycle lanes in Oakland or Berkeley. As a result, it was not
feasible to analyze or forecast the effect of installing protected bicycle lanes as opposed to
traditional bicycle lanes. Such an analysis would involve extrapolation beyond the range of
the observed data, and this analysis would likely lack credibility. Instead, I chose to test
design option one as it was described and to test a worst case scenario for design option two.
The worst case scenario for design option two would be that the protected bicycle lanes only
conferred as much of a benefit as installing a regular bicycle lane.

Given the aforementioned policy scenarios and the sample weights provided by the CHTS,
I used sample enumeration to forecast the change in bicycle demand that would occur among
people who live in Oakland and work in Oakland, Berkeley, or San Francisco if design option
one or two was selected. Note, my worst-case scenario simply takes option two from the
Complete Streets plan and replaces the protected cycle tracks with bicycle lanes. This
implements the worst-case assumption that the effect of cycle tracks on bicycle demand is
the same as a bicycle lane. To summarize, the two scenarios that were forecasted were: (i)
installing bicycle lanes on Telegraph Avenue between 20th Street and 46th Street, sharrows
between 46th Street and 52nd Street, and bicycle lanes between 52nd Street and 57th Street,
and (ii) installing bicycle lanes on Telegraph Avenue between 20th Street and 57th Street
with no interruption.

The forecast results are shown in Figures 2.5l Of the individuals who live in Oakland
and work in Oakland, Berkeley, or San Francisco, 153 individuals and 469 individuals, re-
spectively, were forecast to begin bicycle commuting as a result of design option 1 and the

"Note, the work described in this chapter was performed in 2014, before design and construction decisions
for the Telegraph Avenue project were finalized.
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Figure 2.5: Forecast results for the hybrid decision tree-logit model

worst-case scenario described above for option two. In terms of the effects on Oakland’s
bicycle mode shares, the 2014 mode shares were expected to change from 6.42% to 6.64%
under design option one and from 6.42% to 7.10% under the worst-case scenario for design
option two.

There are two main findings from this exercise. First, the substantive finding is that
keeping the bike lanes on Telegraph Avenue from 46th to 52nd Streets makes a large difference
in terms of bicycle demand because that roadway segment is likely to be traversed by many
potential cyclists and because sharrows were not associated with a high levels of bicycle
usage. Secondly, the methodological finding of this case study is that the combined zone of
likely travel and hybrid tree-logit model is sensitive to roadway level variables, as expected.
As shown by this case study, the proposed methodology is responsive to changes as small as
replacing 6 blocks worth of sharrows with bicycle lanes.

2.5 Conclusion

In this chapter, I introduced a method for incorporating roadway-level variables into discrete
choice models. Intuitively, the proposed methodology works as follows. First, for each
individual, a geographic buffer is drawn around the shortest path between the individual’s
origin and destination. The buffer size is chosen so that the buffer contains the roadways
that an individual is likely to traverse if the individual were to bicycle. The region denoted
by this buffer is referred to as the “zone of likely travel.” Next, for all roadways in the zone,
the variables of interest are calculated (e.g. does tthis roadway have a bicycle lane, what
is the speed limit on this roadway, etc.). These variables are then aggregated to the level
of the zone. In this chapter, such aggregation was done by computing deciles of continuous
variables and means of continuous and discrete variables. After variable aggregation, each
zone of likely travel was “scored” by a decision tree. The decision tree was constructed by
using whether each individual bicycled as the dependent variable and using the aggregated
variables for each zone as explanatory variables. Since each “score” is a mapping from a
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particular output node of the decision tree, membership in each output node was added to
the bicycle utility function of a traditional discrete choice model using dummy variables.

Section highlighted the ways that the proposed methodology addresses theoretical
shortcomings of previous methods. Empirically, Section showed that the new procedure
out-performed traditional discrete choice models that failed to incorporate roadway-level
variables and that these performance improvements held both in-sample and out-of-sample
and with multiple metrics. Finally, the case study showed that the proposed technique is
sensitive to the roadway-level variables and their spatial configuration—sensitive enough to
show real differences between two proposed bicycle infrastructure investments in Oakland,
California.

All together, this chapter presents a new method for incorporating roadway level variables
into discrete choice models. The proposed methodology has expected theoretical benefits
over other methods for incorporating roadway-level variables into discrete choice models,
and there are empirical benefits to be gained over not incorporating such roadway-level
variables. Hopefully, future work will lead to more case studies of the proposed methodology
and also to quantitative comparisons with methods based on geographic buffers around
points, bicycle-environment factors, and combined route and mode choice models. From a
methodological standpoint, it would also be interesting to investigate the extent to which
this chapter’s proposed methods is able to reduce the spatial dependence of the residuals
from one’s choice models.
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Chapter 3

Asymmetric, Closed-Form,

Finite-Parameter Models of Multinomial
Choice

Abstract
Class imbalance, where there are great differences between the number of observations associated
with particular discrete outcomes, is common within transportation and other fields. In the statistics
literature, one explanation for class imbalance that has been hypothesized is an asymmetric (rather
than the typically symmetric) choice probability function. Unfortunately, few relatively simple
models exist for testing this hypothesis in transportation settings—settings that are inherently
multinomial. This chapter fills this gap.

In particular, we address the following questions: “how can one construct asymmetric, closed-
form, finite-parameter models of multinomial choice” and “how do such models compare against
commonly used symmetric models?” Methodologically, we introduce (1) a new class of closed-
form, finite-parameter, multinomial choice models, (2) a procedure for using these models to extend
existing binary choice models to the multinomial setting, and (3) a procedure for creating new
binary choice models (both symmetric and asymmetric). Together, our contributions allow us to
create new asymmetric, closed-form, finite-parameter multinomial choice models. We demonstrate
our methods by developing four new asymmetric, multinomial choice models. Empirically, most of
our models strongly dominate the multinomial logit (MNL) model in terms of in-sample and out-
of-sample log-likelihoods. Moreover, analyzing two policy applications, we find practical differences
between the MNL and our new asymmetric models. Our results suggest that while asymmetric
models may not always outperform symmetric ones, asymmetric choice models are worth testing
because they might have better statistical performance and entail substantively different policy and
financial implications when compared with traditional symmetric models, such as the MNL.
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3.1 Introduction

Discrete choice modeling is widely used in transportation. It is used in every area of travel
demand analysis, such as residential choice, work location choice, destination choice, time-
of-travel choice, mode choice, and route choice. Moreover, discrete choice modeling is also
used outside of transportation in fields such as marketing, economics, finance, operations
research, statistics, and medicine. Across these many disciplines, the most commonly used
models have fairly simple functional forms, such as the multinomial logit (MNL) and binary
logit models. The use of simple models is, in part, due to the greater computational burdens
required to estimate and forecast with very general discrete choice models. Clearly then, it is
important to create simple models that are nonetheless able to avoid unwanted properties of
classic models such as the MNL model. In this chapter, we introduce models that have the
same basic form as the MNL model but, for the price of a finite number of new parameters
that are to be estimated from the data, provide potentially much better fits to one’s data
and avoid a “symmetry property” that we argue is often undesirable. The next paragraph
will review the MNL model because it is the starting point for the class of models that we
introduce. Then, we will describe the symmetry property, show it is present in common
discrete choice models, and make the case that such a property is not always desirable.

While the MNL and binary logit models are often used because of their ease of estimation,
their closed-form probability equations (shown in Equation E], and their ease of interpre-
tation, their use requires analysts to accept a set of properties that may be overly restrictive
or inaccurate in the specific contexts being modeled. Specifically, one well known property is
known as Independence from Irrelevant Alternatives (I.I.A.). The I.I.A. property is seen as
problematic when one considers substitution patterns between alternatives that are closely
related, and there have been numerous models that aim to avoid I.I.A. (e.g. nested logit,
cross-nested logit, etc.).

!Note that the variables are fully listed in order to make clear the notation used in the chapter.
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where y;; = a binary (0 or 1) indicator of whether individual ¢
is associated with outcome j.
C; = the choice set for individual 7
Vij = 2;j8 = the index for alternative j for individual 7
£ = a column vector of unknown population parameters
z;j = h(z;,), a row vector.
h () = a function that returns a row vector
zj = attributes of alternative j for individual ¢

(; = characteristics of individual ¢
(3.1)

In addition to the L.I.A. property, the MNL model’s probability function also implies a
“symmetry property.” Specifically, from a point where an individual has a 50% probability
of choosing an alternative j, this probability will increase and decrease at equal rates with
respect to equal-magnitude increases and decreases in alternative j’s index, V;;. Probability
functions with this quality are henceforth referred to as symmetric, and probability functions
without this property are henceforth referred to as asymmetric. See Figure for a visual
depiction of symmetric and asymmetric probability functions. The binary, complementary
log-log model (henceforth clog-log model) is described in Section and used in Figure
3.1] as an example of an asymmetric probability function. In contrast, the binary logit and
binary probit models are used as examples of symmetric probability functions. Note that
the logit model is not the only model with the symmetry property. The other commonly
used discrete choice model, the simple probit mode]ﬂ, is also symmetric. The point being
made here is that while it is seldom spoken of, a basic property of standard discrete choice
models is that one’s probability of choosing a given alternative is symmetric about 50%, with
respect to the index, V;;, of that alternative.

Although models exhibiting the symmetry property are pervasive in discrete choice
modeling, there are situations where such a property may seem overly restrictive. Class-
imbalanced choice contexts, where the numbers of observations choosing each alternative
are unequal, are one such set of situations. Note that in transportation, class-imbalanced
choice contexts are ubiquitous. For example, in the United States (US), there are almost
always many more automobile drivers than bicyclists when modeling commute mode choices.
Furthermore, while the initial motivation and focus of our empirical applications is on travel
mode choice, we emphasize that class imbalance is prevalent in many settings where discrete
choice models are employed. For instance, class imbalance is observed in: biomedical stud-

2The ‘simple’ probit model assumes that the error terms of the utility of each alternative are independent
and identically distributed.
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Figure 3.1: Symmetric and Asymmetric Binary Choice Probability Functions

ies of the dose-response effects of drugs (Pregibon) [1980); destination choice studies in the
form of ’superstar’ destinations (Chorus, |[2016]); loan default studies (Calabrese and Osmetti,
2013); and studies of shoppers’ brand choice (Briesch et al., 2002).

In class-imbalanced situations, it might be natural to hypothesize that the probability of
choosing the under-represented alternative decreases more rapidly from 50% than it increases,
even for equal-magnitude decreases and increases in the alternative’s index, V;;. In other
words, it might be natural to think that different alternatives have differing rates of adoption
and abandonment. Of course, this hypothesis is not the only plausible explanation for
the observed class imbalanceﬂ The point, however, is that symmetric probability models
prohibit one from investigating hypotheses about the magnitude of changes in the probability
of choosing an alternative, from a probability of 50%, with respect to equal-magnitude
increases and decreases in that alternative’s index. This is because symmetric probability
models assume a-priori that the changes in probability are equal.

In light of this undesired symmetry property of common discrete choice models such as the
standard MNL and simple probit model, this chapter’s contributions to the transportation
and discrete choice literature are that it:

1. introduces a general class of closed-form, finite-parameter models for multinomial
choice situations that do not necessarily imply symmetric choice probability functions
(as well as four new models within that class),

2. introduces and demonstrates a methodology for

3As noted by one referee, there are numerous methods in use in statistics and machine learning for
ameliorating the effects of class imbalance on one’s chosen performance metric. For example, there exist
many types of over- and under-sampling techniques. These techniques deal with the effect of class imbalance
on prediction. The focus of this chapter is different. We use asymmetric probability models to accommodate
alternative explanations of why class imbalance is observed.
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a) extending existing, binary choice models to the multinomial setting and

b) creating new binary choice models (both asymmetric and symmetric),

3. demonstrates that asymmetric probability models can substantially improve upon the
fit of standard discrete choice models such as the MNL model, and

4. shows that, compared to symmetric models such as the MNL model, asymmetric choice
probability functions can lead to substantive differences (both quantitatively and qual-
itatively) in one’s resulting statistical inference and policy-analyses.

For clarity, we reiterate the main purpose of this chapter. First, we note that class im-
balance is a common occurrence in discrete choice analyses. Secondly, through extensive
reference to the existing statistical literature, we highlight the fact that asymmetric prob-
ability functions have been given as one possible explanation for why there might be low
relative numbers of individuals choosing a particular alternative (Chen et al., 1999, p. 1172).
Another possible explanation is a data-generating process with a symmetric probability func-
tion and low, average systematic utilities in one’s population for the under-represented alter-
natives, relative to the over-represented alternatives. In general, we do not think that class
imbalance necessarily implies an asymmetric probability functionf] Moreover, we do not
think that asymmetric probability functions will necessarily perform better than symmet-
ric ones when modeling class imbalanced data. Investigation of such claims are beyond the
scope of this chapter. Through reference to the existing statistical literature, and through
our empirical applications, we instead demonstrate that asymmetric probability functions
can posstbly provide better explanations of the observed choices in one’s class imbalanced
dataset, and that due to this possibility, one should investigate the use of asymmetric prob-
ability functions in one’s analyses. To facilitate the use of asymmetric probability functions
in discrete choice analyses, we create methods to construct new, binary probability functions
(both symmetric and asymmetric), and we create methods to extend binary probability func-
tions to the multinomial settings that are common in many fields that use discrete choice
models.

The rest of the chapter is organized as follows. Section will review related literature
and current approaches to producing discrete choice models that are not necessarily sym-
metric. Section will detail our proposed class of choice models, relate it to the existing
literature, and show how one might create such models. Section [3.4] will describe the estima-
tion procedures for our proposed models, and Section will detail our empirical examples

4 Additionally, this  paragraph  does not imply that P (asymmetry | class imbalance)
> P (symmetry | class imbalance) or that P (asymmetry | class imbalance) >
P (asymmetry | balanced classes). Indeed, it is possible that asymmetric choice models may be of
use in scenarios where one’s classes are balanced. Instead, this paragraph’s sole purpose is to describe
the reasoning that motivated this paper, even if such reasoning may be incomplete or otherwise flawed.
Future research should formally investigate the conditions under which asymmetric choice models are to
be preferred to symmetric choice models. It may turn out that such conditions have nothing to do with
class imbalance. Either way, the research question of when asymmetric choice models are most useful is not
studied in this paper.
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and case studies, comparing our proposed models to existing ones such as the MNL model.
Section [3.6] will discuss extensions of our work and Section will conclude.

3.2 Literature Review

One can partition the asymmetric discrete choice models that have been proposed in the
literature based on whether they:

e are binary or multinomial choice models,
e are closed- or open—formE] models,

e have a null, finite, or infinitd¥ set of shape parameters—i.e. parameters that control
the shape of the resulting choice probability function.

To review the literature that this chapter builds upon, we will iterate through each of these
descriptors in the coming paragraphs—describing the work that has been done so far, how
that work relates to or has been used in transportation, and issues with the existing literature
that our chapter addresses.

First, virtually all research that explicitly focuses on the development of asymmetric
choice models has been carried out in the binary setting. Since at least 1976, statisticians
and computer scientists have been introducing closed-form, asymmetric generalizations of the
standard binary logit model through the use of one or two shape parameters (Prentice, 1976}
Pregibon, 1980; |Aranda-Ordaz|, |1981; Guerrero and Johnson| [1982; Stukel, 1988} [Morgan),
1988; |Czado, 1992, 1994} [Nagler, [1994; (Chen et al., [1999; Vijverberg, 2000; Masnadi-shirazi
and Vasconcelos| 2010; Vijverberg and Vijverberg, [2012; Nakayama and Chikaraishi, 2015
Komori et all [2015). These shape parameters allow one to adapt the shape of the result-
ing choice probability function to fit the data at hand. Beyond generalizations of the logit
model, a number of binary, asymmetric models that do not nest the logit model have also
been proposed in the statistics literature. For example, the clog-log model has been around
since at least the 1920s (Fisher, 1922; Yates, 1955; McCullagh and Nelder, [1989), and the
GEV regression model (not to be confused with McFadden’s GEV distribution) is a general-
ization of the clog-log model with one shape-parameter (Wang and Deyl, [2010; Calabrese and
Osmetti, 2013)). Still other asymmetric models of binary choice have been introduced based
on skewed normal distributions (Bazan et al. 2010), skewed student’s t-distributions (Kiml,
2002; |[Kim et al.| |2008), and symmetric power distributions (Jiang et al., 2013)). Broadly,
the binary choice models with one or more shape parameters have been referred to as “para-
metric link functions” in the statistics literature (McCullagh and Nelder} [1989), and many
examples of asymmetric choice models can be found by searching for scholarly articles that
use such phrases.

5The probability equation of open-form models contain analytically intractable integrals or infinite sums.
6Models with an infinite number of parameters are known as non-parametric or semi-parametric models.
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Two problems exist with the asymmetric choice models just discussed. First, while the
litany of binary, asymmetric choice models that has been developed may be quite useful, they
must be extended to the multinomial setting for use in transportation contexts—contexts
where the choice situations are often inherently multinomial. Secondly, the proliferation of
binary, asymmetric choice models suggests that no single asymmetric model fits the needs
of all researchers. However, no guidance on how to create such asymmetric models has been
offered in the literature. The various models cited in the last paragraph were almost all
introduced without any explanation of where the functional form for the model came from.
Sections resolves these issues by detailing a method for extending binary, asymmetric
models to the multinomial setting and by introducing a methodology for creating binary,
asymmetric choice models.

In addition to all of the binary, closed-form, asymmetric choice models described above,
many binary, asymmetric choice models with open-form choice probability functions have
also been proposed. These open-form models are typically one of two major varieties. One
type of binary, open-form, asymmetric model uses an asymmetric probability density function
for the difference in the error terms of the utilities of the two alternatives. Examples of this
type include the aforementioned models that were based on the skewed normal distributions
(Bazan et al., [2010) and skewed student’s t-distributions (Kim, [2002; Kim et al., 2008).
The second type of binary, open-form, asymmetric model is based on a mixed logit or mixed
probit approach, whereby a random variable with an asymmetric probability density function
is added to the index, Vj;, of the alternative of interest. In this second type of model,
the random variable with an asymmetric probability density function is multiplied by an
unknown coefficient whose value is to be estimated. If the estimated coefficient’s value is
zero, then the model reduces to the symmetric probability model (e.g. logit or probit) being
used as the kernel of the asymmetric model. Examples of this type of model include the
bayesian asymmetric logit and bayesian asymmetric probit models (Chen et al. [1999).

The first type of binary, open-form, asymmetric model described above might be easily
extended to the multinomial setting, provided that there exist multivariate versions of the
asymmetric probability density functions that are used in the binary case, or provided that
such multivariate distributions can be created. This remains an open question. On the
other hand, the second type of binary, open-form, asymmetric model can be easily extended
to the multinomial setting by simply adding random variables with asymmetric probability
density functions to each of the utility functions for the alternatives in one’s model. However,
regardless of whether such models can be extended to handle multinomial choice situations,
such open-form models will still entail computational burdens in estimation, storage, and
forecasting, relative to their closed-form counterparts. In this chapter, we focus on developing
closed-form, asymmetric choice models because they are less computationally burdensome
and more closely parallel the discrete choice models that have been used in all industries
(namely closed-form models such as the MNL model).

Regarding the number of shape parameters in one’s model, all of the asymmetric choice
models that have been mentioned so far have had one or two shape parameters, with the
exception of the binary clog-log model. In contrast to this, many multinomial, asymmetric
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choice models have been inadvertently[] created by transportation researchers, and most of
them have no shape parameters. Unlike the binary, closed-form, asymmetric models dis-
cussed above—where the functional form of P (y;1 = 1| Vj1,Vj2) is assumed outright—the
multinomial, asymmetric models created by transportation researchers come from assuming
various distributions for the error terms in the utility equations for each alternative. In
particular, multinomial, asymmetric choice models have been derived by transportation re-
searchers by assuming Weibull (Castillo et al., |2008; Fosgerau and Bierlaire, 2009)), Rayleigh
(Li, |2011), Type II Generalized Logistic (Li, 2011), Pareto (Li, |2011; Mattsson et al., [2014),
Exponential (Li, 2011), and Fréchet (Mattsson et al., 2014) distributions for the utilities of
one’s alternatives. In each of these cases, the resulting multinomial choice model is asym-
metric. A more recent paper (Nakayama and Chikaraishi, 2015) uses a “¢g-GEV” distribution
for the utility of each alternative, and derives a multinomial, asymmetric choice model with
one shape parameter, q. As a brief aside, Li (2011) and Nakayama and Chikaraishi (2015)
note that all of the models described in this paragraph have probability equations with
the same functional form as the MNL model, except that V;; is replaced with S;;. Here,
Sij = S (Vij,7;) or Si; = S (Vi;) depending on whether the model has shape parameters (v;),
and S (-) is a monotonically increasing function of V;;. Note also, that the one multinomial,
closed-form, asymmetric model that has been introduced in the statistics literature (Das
and Mukhopadhyayl, |2014) also has this form, except that v; = [v;1, 'ij]T, i.e. there are two
shape parameters per alternative. This functional form will be mentioned again in Section
[3.3 as it is very similar to the one that we propose in this chapter.

While all of the asymmetric models introduced by transportation researchers share the
virtue of being able to handle multinomial choice situations, they all share a key drawback:
they are only valid for certain values of the index, V;;. To be concrete, the weibit model of
Castillo et al. (2008) and Fosgerau and Bierlaire (2009) is only defined for values of V;; that
are negative. The same is true for utility maximizing models based on the Rayleigh, Type
IT Generalized Logistic, or Exponential distributions (Li, 2011). If the model is based on
the Pareto distribution, then V;; must be less than negative one (Li, 2011; Mattsson et al.,
2014)), and if the model is based on the ¢-GEV distribution, then Vj; must be greater than
or equal to q%ll for whatever value of ¢ is specified or estimated from one’s data (Nakayama
and Chikaraishi, [2015). In choice situations where the index, V;;, should be comprised of
both variables that increase an alternative’s probability of being chosen and variables that
decrease an alternative’s probability of being chosen, it can be hard or impossible to meet
such constraints on the index’s value or sign. Because of this, the models mentioned in
the last paragraph are only applicable in a restrictive set of circumstances. In Section [3.3]
we will introduce a class of multinomial, closed-form, asymmetric choice models that is (in
general) free from the sign and magnitude restrictions on V;; that have limited the usefulness
of asymmetric choice models in transportation so far. Our class of models will be shown to
include the previously derived models as special cases.

"We say inadvertently because in none of the cases cited was the purpose of creating the model to avoid
the symmetry property discussed in Section
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Lastly, transportation researchers in the multinomial setting (Li, 2011)), and econometri-
cians in the binary setting (Horowitz, |1993), have specified closed-form, asymmetric choice
models that have an infinite number of shape parameters. That is to say, closed-form, asym-
metric models have been specified where the function S (V;;), as defined above, has been
estimated non-parametrically. These models are known in the econometrics literature as
single-index models (Hardle et all [1997; Horowitz, 2010). As shown by Li (2011), single-
index models can take on symmetric or asymmetric forms. While these models are quite
general, and they avoid the problems that come from mis-specifying one’s choice probabil-
ity function (Czado and Santner, 1992a; Koenker and Yoon, 2009), they can be difficult to
estimate and require rather large sample sizes to estimate with decent precision. For these
reasons, we develop a class of models in Section that depends on a finite number of shape
parameters, making the class more flexible than the fixed shape models that are classically
used in transportation such as MNL models but less computationally burdensome than the
single-index models described above.

Summary

Overall, across a variety of academic disciplines, many asymmetric choice models have been
created thus far. However, this development has been fragmented and leaves much room
for improvement. In particular, most of the existing asymmetric models are binary models,
but to be most useful in transportation, these binary models need to be extended to the
multinomial setting. Moreover, we need systematic methods for creating new asymmetric
models when the existing ones do not meet our research needs. In the previous literature,
there has been much work on creating asymmetric, open-form, binary choice models. In this
chapter, we do not pursue the development of such models because of their greater computa-
tional complexity in estimation, storage, and forecasting in comparison to their closed-form
counterparts. For the same reason, we do not consider closed-form, multinomial, asymmet-
ric models with an infinite number of shape parameters. Instead, we build on the work
of transportation researchers since they have created numerous multinomial, asymmetric
models that have zero or a finite number of shape parameters. A major limitation of the
asymmetric models in transportation is that they all restrict the values that the index, V;,
can take. In the next section, we address each of these issues by proposing a class of multi-
nomial, closed-form models with zero or a finite number of shape parameters. The proposed
class will be able to avoid the symmetry property without restrictions on the index, and it
will include many of the existing models as special cases. We will also provide guidance on
extending existing binary models to the multinomial setting and on creating new asymmetric
choice models.
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3.3 A General Class of Asymmetric Models

In this section, we present a class of discrete choice models that can avoid the symmetry
property described in Section [3.1] without imposing restrictions on the sign or magnitude
of the index, Vj;, for any given alternative j. We will proceed as follows. Section will
give the general formulation of our proposed class of models and show how this formulation
can avoid the symmetry property described above. Section will then relate our models
to existing literature. Next, in Section we will demonstrate how our proposed class of
models can be used to extend existing, asymmetric, closed-form models of binary choice to
the multinomial setting. To do so, we will extend the clog-log model and the scobit model
from the binary to the multinomial setting for the first time. Finally, in Section we will
propose and demonstrate one possible approach to deriving new asymmetric choice models
when existing models are not adequate for one’s needs. In doing so, we will derive two new
asymmetric choice models, the “uneven logit model” and the “asymmetric logit model.”

General Formulation

Our proposed class of models, described below, is appropriate for multinomial choice sit-
uations, has a closed-form probability equation, and only depends on a finite number of
parameters. Moreover, we refer to our proposed model class as “Logit-Type” models because
their choice probability functions share the same functional form as the MNL model: an
exponential term divided by a sum of exponential terms. The choice probability function for
our proposed “logit-type” models is:

. exp [15 + S (Vij,75)]
P =1 ily Vi2y «oey Vi 7k i) =
(yis 7,7, Vi1, Vig, oo, Vi V{J, k} € C)) > vec, exXp [10 4 S (Vie, ve)]

_ exp (SU)
ZZGCZ' eXp (Sl€>

where 7 = a 1-dimensional vector of constants, with one value

for each alternative in the dataset.

~v = a 2-dimensional matrix of shape parameters, with
one column for each alternative in the dataset.

7; = a constant associated with alternative j.

~; = a column vector of shape parameters
associated with alternative j.

S (+,-) = a closed-form, model-specific function of V;; and
7;- It is monotonically increasing in V;;. As before,
if a model has no shape parameters, then we replace
S (Vij, ;) with S (V).

(3.2)
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Note that unlike standard logit models, our class of logit-type models makes no assump-
tions regarding additive random utility functions. As shown by Mattsson et al. (2014]),
models of the form given in Equation are obtainable under an infinite number of random
utility specifications, not all of which are additive. One example we have already mentioned
is the case of multiplicative utilities (Castillo et al., 2008} |Fosgerau and Bierlaire, 2009))
that are Weibull distributed. As shown by this example, it may be incorrect to interpret
Si; =1 + S (Vij,7;) as a redefinition of the systematic portion of one’s utility. Expressions
such as S;; may arise solely due to the derivation of the choice probabilities, and they may
not actually be present in the simplest expression of the random utility.

To see how our proposed model class can avoid the symmetry property described in the
introduction, one can make the analogy between the logit-type models given in Equation
and the MNL model given in Equation 3.1 Since the two models share the exact same
functional form except for the replacement of V;; with \S;; and since variable names do not
influence mathematical properties, it follows that logit-type models are symmetric with re-
spect to S;;. This means that for logit-type models, equal-magnitude increases and decreases
in the probability of choosing alternative j (from an initial probability of 50%) will result
if and only if equal-magnitude increases and decreases in S;; are experienced. As a conse-
quence, one will avoid the aforementioned symmetry property if and only if equal-magnitude
increases and decreases in V;; (respectively) lead to unequal increases and decreases in S;;.
Formally, if

S(Vij+o,7) =S Vij,vi) S (Vig,vi) =S (Vig —,7), ¥ 9 >0 (3.3)

then the logit-type model given by Equation will be asymmetric with respect to Vj;.

Relation to existing literature

The logit-type models described above encapsulate and generalize many closed-form, finite-
parameter, discrete choice models that exist in the literatureﬂ For example, one can use
Equation to denote the models described by Li (2011)) that were based on assuming
Weibull, Rayleigh, Type II Generalized Logistic, Pareto, or Exponential distributions for
one’s utilities. Except for the model based on the weibull distribution, 7; = 0 Vj and
there are no shape parameters. When basing one’s choice model on Weibull distributed
utilities, we have v; = +* Vj where v* is the scale parameter of the distributions. The
precise transformations, S (), are provided in Table 2 of Li (2011)) for each distribution
mentioned aboveﬂ Likewise the asymmetric, closed-form, multinomial choice model of Das
and Mukhopadhyay (2014) is a special case of the models given in Equation . Here,
again, 7; = 0 Vj. However, their model has two shape parameters for each alternative, so

8See Appendix B (Section for a convenient table that explicitly shows how our logit-type models
include previous models from the literature as special cases.

9See Appendix B (Section for more details on how our proposed logit-type model are related to and
different from the model of |Li| (2011]) and Das and Mukhopadhyay| (2014)).
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has two rows, and S () is now given by their function G () (Das and Mukhopadhyay, 2014)).
Examples of binary models that are special cases of logit-type models will be given in Section
[3.3] when we demonstrate how one can use Equation to extend existing binary models to
the multinomial setting.

To be clear, not all closed-form, finite-parameter discrete choice models are special cases
of logit-type models. An example of a closed-form, finite-parameter, multinomial model that
is not a special case of a logit-type model is the “exponomial choice model” (also known as
the “negative exponential distribution” model) (Daganzo, [1979; Alptekinoglu and Semple),
2016)). This can be most easily seen by considering the fact that logit-type models do not
depend on the order statistics (i.e. the rankings from lowest to highest) of the indices, V;;.
In contrast to this, the probabilities predicted by the exponomial choice model depend on
both the magnitude and the order statistics of each V;;. Furthermore, not all models with
choice probabilities given by a ratio of an exponential term in the numerator divided by a
sum of exponential terms in the denominator are logit-type models. Examples of this are
the “Random Regret Minimization” and “Relative Advantage Maximization” models where
each exponential term depends on variables related to all of the alternatives (Chorus et al.|
2014; Leong and Hensher, 2015)). In our logit-type models, each exponential term depends
only on the attributes of one alternative (through S (V;;,v;)).

While logit-type models generalize many closed-form, individual choice models that have
been described in the literature, they are also a particular parametrization of the class of
models described by Mattsson et al. (2014). Using the notation of Mattsson et al., we can
show equivalence between the two model classes if we set w; = exp [r; + S (V},7;)], where
the index ¢ has been suppressed to match the notation used in the Mattsson et al. paper
(which described the choice probabilities of a single individual). Viewing logit-type models
through the lens of the Mattsson et al. paper is useful for two reasons. First, the Mattsson et
al. paper provides a rigorous justification for the multinomial specifications of our logit-type
models. Secondly, when thinking of further extensions to our work, the Mattsson et al. paper
explains why we cannot automatically generalize our logit-type models to models that are
analogous to the nested logit model. In particular, Mattsson et al. show that specifying S ()
is necessary but not sufficient for specifying models that can cope with dependence between
one’s random utilities. To account for this dependence (as with nested logit), one needs
to also specify an “aggregation function” that dictates how the various random utilities are
combined into a joint distribution. However, determination of such aggregation functions is
an open question that we do not attempt to address because it is beyond the scope of this
chapter.

To recap, the logit-type models introduced in Section are both a generalization of
many existing models and a special case of a wider class of models introduced by Mattsson et
al. (2014]). This position allows us to easily extend previously existing binary choice models
to the multinomial setting, thereby making them more useful for transportation researchers.
Simultaneously, this position allows us to rely on the theoretical justifications that Mattsson
et al. provide for our entire class of models. The next subsection will focus on multinomial
extensions of binary choice models in greater detail. Looking further ahead, we have noted
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that there are choice models that are either not part of the logit-type framework or are
non-trivial extensions of logit-type models. These non-logit-type models are not considered
in this chapter, but they point to the need for more research to expand the types of models
that avoid the symmetry property described in Section [3.1] This point will be returned to
in Section where we describe the possible future work that stems from this chapter.

Extending Binary Models to the Multinomial Setting

As noted in the literature review (Section , there are many asymmetric, binary choice
models, but these models have limited usefulness for transportation researchers because
many choice contexts in transportation are inherently multinomial. In this subsection, we
propose a technique for using our class of logit-type models given by Equation to create
multinomial extensions of existing binary choice models. As a result, transportation scholars
and practitioners will be better able to leverage the work that has already been done to create
the asymmetric binary choice models that exist in the literature. First, we will describe our
procedure, and then we will demonstrate it with two examples. In particular, we will create
multinomial generalizations of the binary clog-log mode]ﬂ (Yates, |1955) and the binary
scobit model (Nagler, 1994). These two models are chosen, in part, because the clog-log
model is one of the oldest and most well-known asymmetric discrete choice models (Fisher),
1922; Yates, 1955 |McCullagh and Nelder} |1989)) and because the scobit model has been used
in multiple disciplines such as political science (Nagler, 1994)), transportation (Zhang and
Timmermans, [2010; [Zhang et al., 2011; |Wu et al., |2012), and finance (Golet, 2014)).

Overall, our procedure for using Equation to extend existing, closed-form, binary
choice models to the multinomial setting is given in Table 3.1} The basic idea behind
this procedure is that ¢f we can express an existing, binary, choice probability function as
%, then the work of Mattsson et al. (2014) rigorously shows that there are an
infinite number of random utility formulations that could have lead to the given binary
choice probabilities. Moreover, Mattsson et al. showed that the same utility formulations,
with more alternatives, would lead to choice probabilities of the form given in Equation [3.2]
The extension from a sum of two exponential terms in the denominator of the binary model,
to a sum of three or more exponential terms is thereby well-founded.

Following Table [3.1], we demonstrate our procedure with two examples, deriving multi-
nomial versions of the clog-log and scobit models for the first time. For an example of using

10Note, the clog-log model has mot been chosen based on any arguments related to its predictive perfor-
mance in previous studies. As one referee points out, the clog-log model does not always perform well as
compared to its logit and probit counterparts. In fact, as noted in Section where we discuss the results
of this chapter’s empirical applications, the clog-log model does not perform well given our study’s dataset.
However, there are numerous documented cases where the clog-log model does perform well relative to the
logit and probit model, for example |Spiegelhalter et al.| (2002)); Presnell and Boos| (2004)). Accordingly, the
clog-log model should not be disregarded a-priori. Nevertheless, we re-emphasize that the clog-log model
is included here because it is one of the most commonly used asymmetric probability functions within the
statistical literature, and may therefore serve as a more illuminating example as compared to less common
asymmetric probability functions.
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this procedure to generalize the binary logit model to the MNL, see Appendix C, where we
perform the extension to the multinomial setting in the context of providing a new derivation
of the binary logit and the MNL models.

Table 3.1: Procedure for Creating Multinomial Extensions of Binary Choice Models

Determine if one’s existing binary choice model is given in terms of both V;; and
Vio or if it is only given in terms of V;;.

2. If one’s binary choice model is only given in terms of V;:
(a) Assume Vjs = 240 = 0.
(b) Solve for S (Vi1,71) to identify the functional form of S ().
(¢) Calculate S (Vig, 72 | Vie = 0).
Use S (Vi1,71) and S (Vig, 72 | Vie = 0) to determine any restrictions on the values of
(d) 7 and v that need to be made to establish the binary choice model as a special case
of the logit-type models.

3. If one’s binary choice model is given in terms of both V;; and Vjs:

Express one’s existing choice model as a fraction with one term in the numerator

and a sum of terms in the denominator.

(b) Ensure that each term in the numerator and denominator contains only one index
V.

(c) Directly solve for S;;, for all alternatives j.

Determine any restrictions on the values of 7 and  that need to be made to

establish the binary choice model as a special case of the logit-type models.

Relax all restrictions from the previous two steps to generalize the binary model
and to create multinomial versions of the model.

Example 1: Deriving the Multinomial Clog-log Model
The binary clog-log model (Fisher, |1922; |Yates, |1955; McCullagh and Nelder| [1989)) was

introduced within the field of statistics, where there are usually no explanatory variables
that vary with one’s alternatives. The choice probability function of the binary clog-log
model is commonly written as Progiog (¥ij = 1| Vi1) = 1 — exp (—eV; ), and the function
is plotted in both Figures and As statisticians typically do when there are no
explanatory variables that vary with one’s alternatives, the probability of the outcome of
interest (y;; = 1) is spoken of as being only a function of V;; = z;; 8, without any regard for
Vis = x49. Often, Vi is not even defined. For instance, when statisticians speak of binary
logit models, they usually write P (yq = 1| zs1,8) = [1 +exp (—z;13)] " whereas econo-
metricians and transportation researchers would equivalently say P (y;1 = 1| xj1, %2, 8) =
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[14exp (Vig — Vi)' = [1 + exp ({2s2 — 21} B)]". Clearly, the unstated assumption is that
;o = 0. Whenever binary discrete choice models fail to define Vj5, we will adopt the con-
Ventionﬂ that Vs = x;00 = 0. With this in mind, we can express the binary clog-log model
as a special case of our logit-type models as follows:

Puogiog (Ui = 1| @1, w2 = 0,8) = 1 — exp (—e'™) Step 2a.
1 —exp (—eV“) = 2exp (Sir) Step 2.
> -1 exp (Sie)
Pclog—log _ - exp (_eVil) _ €xp (Szl)
1— Pclog-log €xXp (_th) exp (Sﬂ)
= exp (eV“) —1=-exp (S — Si2)
In [exp (e") — 1] = Siy — Sin
Infexp (&) = 1] =71+ 5 (V1) — 12— S (Vi)
On the last line of the right hand side of Equation , only S (V;;) involves V;;. This means
that S (V;1) = In [exp (") — 1], and more generally, S (V;) = In [exp (") — 1]. This fact
can be derived as follows. First, note that S (V;;) does not contain any arbitrary constants,
as these can be thought of as part of 7. Next, let h(V;;) = In [exp (eVif) — 1]. Then,

h(Va)=1+S Vi) — 12— 5 (Vig)
d(h(Vi) _0ln+S(Vi) =1 — S (Vio)]

oVi oVi
Oh (Vi)  0S(Va)
5‘/;'1 B 3‘/1'1

Oh (Vi

/ah Vi

1)
(Vir)
h (Vi1)
h(Vi) =

Vi)

/as )

(Vi) + A where A is a constant of integration

Via
In [exp (e") — 1] = 5 (Vi)

Note, if one’s vector of explanatory variables contains alternative specific variables, such as costs for each
alternative, then one’s binary choice model is likely to be implicitly defined in terms of V;; and V5. If one’s
choice model is given in terms of both V;; and Vi, yet Table [3:I|steps 3a and 3b cannot be performed, then it
is likely that one’s model is not expressible as a logit-type model, and it is likely that one cannot extend one’s
model to the multinomial setting using the procedures given in Table@ This precludes the use of the proce-
dures in Tablegfor a clog-log model that is expressed as Peiog-log (¥i; = 1 | i1, 2402, 8) = 1—exp ( eVini— V2)
or a scobit model that is expressed as Pacobit (¥ij = 1 | Zi1, %2, B,71) = (1 + exp [Via — Vi1]) ™. To the best
of our knowledge, alternative specific explanatory variables have never been used with the clog-log and scobit
models. Our chapter therefore covers the most common use cases for these models. Thanks to an anonymous
reviewer for prompting us to clarify this point.

( 1) because S (V1) contains no arbitrary constants
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With this specification of S (-), we can further simplify Equation as follows:

In [exp (ev“) — 1} =11+ (Vii) =1 — S5 (Vi)
S(Va) =7 +8Va) =1 = S (Vi2)
0=m—7—5 (Vi)
0=7 —m—S5(0) Step 2c. (3.5)
O=7—72—1In [exp (eo) — 1}
0=7—7—Infe—1]
Infe—1]=m—7 Step 2d.

From Equation [3.5] we have two unknowns 7 and 75, and one equation. Without loss of
generality, we can therefore set 79 = 0 and 7 = Infe — 1]. With these restrictions, we
have shown that the binary clog-log model is a special case of the logit type models given by
Equation , where there are no shape parameters v, and where S (V;;) = In [exp (eVii) — 1] ,
7 =Inle — 1], and 7, = 0.

From these results, we can form a “conditional clog-log model” that parallels the “con-
ditional logit model” (McFadden, |1972)) and is immediately made useful to transportation
researchers and econometricians by allowing explanatory variables that differ across alter-
natives. To do so, we merely remove the restriction that x;; = 0 Vi, and we remove the
constraint that 7 — 7 = Infe — 1]. Of course, as with alternative specific constants in
general, only the difference 7, — 7y is identified, so one of the two constants should be con-
strained. This “conditional clog-log model” can easily be extended to the multinomial setting
in an analogous fashion to the multinomial logit model. Specifically, the multinomial clog-log
model is given by Equation where S (Vij,7;) = S (Vij) = In [exp (e"¥) — 1] as derived
above, and where as usual, one of the 7;’s is constrained to zero for identification purposes.
For convenience, the probability equation of the multinomial clog-log model is displayed
below.

» exp (7; + In [exp (e"9) — 1])
Pco—o zzl s Vil, iv"’a% 7k i) =
log-1 g(y] |T vl v2 k V{] } € C) Zegci exp (Tg+1n [exp (eVil) _ 1])

Example 2: Deriving the Multinomial Scobit Model

The multinomial scobit model is derived from the binary scobit model (see Figure using
the same process as with multinomial clog-log model. Given that the binary scobit model
(Nagler}, 1994) is defined only in terms of V;;, we assume V5 = 2,5 = 0. From here we write,
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1
Pacobit (i = 1| i1, 20 = 0, 3,71) = A Fovayn’ 7 € (0,00) Step 2a.
L __o» () Step 20b.

(L e™V)™ = 57 exp (Su)
(L+e¥) ™" =[1+exp (S — Su)] ™
(1 + efv"l)71 =1+ exp (S — Si)
(T4+e )" —1=exp (Sin— Si)
In[(1+e¥)" —1] =8 — 5
In[(1+e")" 1] =+ S (Via,y) =11 — S (Vir,11), 72 € (0,00)

(3.6)
As before, since S (Vj1,71) is the only term on the right hand side of Equation that
contains V;;, we can determine that S (Vj;,71) = —1In [(1 —Fe_‘/“)71 — 1}, and that even

more generally, S (V;,7;) = —In [(1 + e_Vij)W — 1}. Substituting these terms into Equation
.6 we can further simplify that equation to:

In[(1+e¥)" = 1] =+ S (Viz,72) — 11 — S (Vir, 1)
—SVii,m) =1+ 5 Vie,72) =711 — S (Vir,m)
0=7+4+ S Vio,12) — 71

0=7m—1In [(1 + e_v’a)ﬁy2 — 1} -7 (37)
O=mn—In[(1+e)” =1 -7 Step 2c.
T — T =In[27 — 1] Step 2d.

Here, we have more unknowns than equations, so some of the parameters are not identified
and must be constrained. If we set 75 = 1, then this means 71 = 75, and without loss of
generality, we can assume 73 = 7, = 0. With these constraints, we have shown that the
binary scobit model is a special case of the logit-type models given by Equation [3.2]

As with the binary clog-log model, the binary scobit model can be immediately general-
ized to a “conditional scobit model” that allows for explanatory variables that differ across
alternatives. The “conditional scobit model” is derived by removing the constraints v, = 1,
Tio = 0, and 7 = 75 = 0. As usual, one of the alternative specific constants, 71 or 7, must
still be constrained for identification purposes.

Finally, as with the multinomial clog-log model, the generalization of the “conditional
scobit model” to the multinomial setting is immediate. The multinomial scobit model is
given by Equation , where S (V;;,7;) = —In [(1 + e_ViJ')% — 1} and where v, is a scalar,
for each alternative j, that is to be estimated along with § and all but one of the 7;’s (for
identifiability). For convenience, the probability formula for the multinomial scobit model is
displayed below.
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) exp (Tj —1In [(1 + e_Vij)W — 1])
Pscoi 121 5 a‘/;v‘/;w'-a‘/i v 7k Oz =
bit (Yij | 7,7 Vi, Vi VK EG) > vec, exXp (1 — In[(1 4+ e Vie)” —1])

Creating New Asymmetric Choice Models

In Section [3.3] we showed how one can extend existing, binary choice models to the multi-
nomial setting. In this section, we will present our method for creating new binary choice
models. Note that our proposed process is general enough to create both new asymmetric
and new symmetric choice models. Together, Section and Section provide a way to
create new multinomial choice models. In this chapter, however, we will focus on the creation
of new asymmetric, multinomial choice models. The rest of this subsection will proceed as
follows. First, we will briefly review traditional methods in transportation for creating new
choice models, and why we think such methods are not easy to use. Next, we will present
an alternative approach for creating new binary choice models—an approach that does not
begin by specifying the distribution of error terms in one’s utility functions. We will then
review the key concepts necessary to understand this approach, and finally, we will present
two examples where we demonstrate the procedure by creating new, asymmetric, binary
choice models and extending them to the multinomial setting.

As noted by Ben-Akiva and Lerman, “varying the assumptions about the distributions
of [one’s utilities| |...] leads to different choice models” (Ben-Akiva and Lerman, 1985, p.65).
This approach of first specifying the distribution of one’s utilities, and then deriving one’s
choice probabilities, is commonly used in transportation. For instance, it is used by the
transportation researchers cited above such as Castillo et al. (2008]), Fosgerau and Bierlaire
(2009), Li (2011), and Mattsson et al. (2014)). While clearly a viable approach, discrete
choice analysts have acknowledged that “it will often be difficult to make strong statements
about the overall distribution of |one’s utilities|” (Ben-Akiva and Lerman, 1985, p.66). To
sidestep these difficulties Daniel McFadden (emphasis is his own) wrote that:

“In practice, it is difficult to define joint distributions [of one’s utilities| which
allow the computation of econometrically useful formulas for the [selection proba-
bilities|. An alternative approach is to specify formulas for the selection probabil-
ities and then examine the question of whether these formulas could be obtained
[...] from some distribution of utility-maximizing consumers” (McFadden| 1972,
p.108).

This approach of directly specifying probability formulas is the one that we will take. From
the work of Mattsson et al. (2014), we know that any choice model of the form given in
Equation [3.2] can be generated from an infinite number of joint distributions of one’s utilities.
Moreover, we know that the newly derived logit-type models will be “well-behaved.” To be
specific, because logit type models have an exponential term for their numerator and a sum
of exponential terms for their denominator, where the sum includes the numerator, logit-type
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models will always return probabilities between zero and one. Also, because x;; only appears
in S;; and because 5;; was defined as being a monotonically increasing function of V;; = x;;3,
interpreting whether the probability of choosing alternative j increases or decreases when we
increase a variable in x;; remains as easy as it was with the standard MNL model. Often, such
interpretation consists of just knowing the sign on the index-coefficient () of the variable
of interest. Given these beneficial properties, we can generate new logit-type models simply
by specifying S (-).

To specify the S (-) function in one’s logit-type models, we created the three-step proce-
dureF_ZI shown in Table Note that this procedure will make use of potentially unfamiliar
terms and concepts such as “binary loss functions,” “asymmetric loss functions,” “properties
of loss functions,” and “related, binary, choice probability functions.” However, all of these
terms will be explained and made more precise in the following paragraphs. After these
explanations, we will demonstrate our procedure. First, we will use the process in Table
to re-derive the familiar MNL model. Then we will further demonstrate the procedure by
creating two new, closed-form, asymmetric, choice probability functions.

PARNAA

Table 3.2: Procedure for Creating New Multinomial Choice Models

Choose a binary loss function with properties that are desirable for one’s study. If
1. an asymmetric choice model is desired, then be sure to choose an asymmetric loss
function.

2. Derive the related, binary, choice probability function for one’s chosen loss function.
Use the procedure detailed in Section to convert one’s derived choice

3. probability function to a logit-type model. In the process, one will have determined
S (+) and created a new multinomial choice model.

Given that the first step in our proposed procedure is to choose a binary loss function with
properties that are desirable for one’s study, we will begin by defining loss functions, and then
we will explain what is meant by properties of the loss function. Loss functions are functions
that measure the quality of one’s predictions, and binary loss functions measure the quality
of one’s predictions when one’s observed, dependent variable takes on one of two possible
values. Overall, there are two types of binary loss functions: “class probability estimation
(CPE) loss functions” and “composite loss functions” (Reid and Williamson, 2010). For
the purposes of Step 1 of our procedure, either of the two types of loss functions may be

I2Note that our procedure was motivated by computer scientists who made use of asymmetric loss func-
tions (defined in the coming paragraphs) when dealing with class-imbalanced datasets. When investigating
this use of asymmetric loss functions, we came across literature that noted the fact that loss functions are
related to specific choice probability functions. This discovery lead us to think that a useful way of deriving
choice models, given the literature on choosing or designing loss functions, would be to first choose a desired
loss function and then derive its related choice probability function.
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chosen. However, the two types of loss functions lead to differences in how the related choice
probability functions are derived in Step 2 of our procedure. As a result, we will briefly
describe both types of losses in the next paragraph. Additionally, we will make connections
with concepts that most readers will be familiar with by showing the CPE and composite
loss functions that are related to the binary logit model.

We will start with CPE loss functions. CPE losses take an observed outcome and the
predicted probability of that outcome occurring as arguments, and they output a penalty
(i.e. a non-negative value) for discrepancies between the observation and prediction (Reid
and Williamson), [2010)). Typically, the returned penalty increases as the magnitude of the
discrepancy increases. For example, the CPE loss function that is related to the binary logit
model is the negative log-likelihood. This CPE loss is given by

Negative Log-Likelihood (y;1, P (yi1 = 1| Vi1, Vi2)) = Lya=13 (—In[P (ya = 1| Vi1, Vi2)]) +
1{yi1=0} (_ In [1 - P (yil =1 | Via, ‘/;2)])
(3.8)
where 1y} is an indicator function that equals 1 if r is true and 0 otherwise.

Moving to composite losses, we noted in Section that statisticians and computer
scientists often speak of P (y;; = 1) as being only a function of V;; = z; 0, without any
regard for Vi = x;,06. In such settings, where it is often implicitly the case that z;, = 0,
one can speak of “composite loss functions,” that are simply functions of V;;. Formally,
composite loss functions are CPE loss functions composed of the choice probability function
P(ya =11 Vi) (Reid and Williamson, 2010)). As an example, consider the composite loss
function that is related to the binary logit model—the log-loss. This loss function is derived
by composing the negative log-likelihood given in Equation with the choice probability
function, P (yq = 1| Vi) = [1+exp(=V;1)]"'. We will omit the algebra used to simplify
the composition, but the log-loss is given by the following formula:

Log-Loss (ys1, Vi1) = Lyn=1yIn (1 +e7") + 1gy,, =0 In (1 + ") (3.9)

Given the formulation of composite losses, these functions differ from CPE loss functions
only in their arguments. While both losses return a penalty for the discrepancy between one’s
observed outcome and the predicted probability of that outcome occurring, composite loss
functions take the observed outcome and Vj; (as opposed to P (y;; = 1| Vi1)) as arguments.
Note that CPE loss functions are defined for arbitrary choice probability functions, including
those of the form P (y; = 1| Vi1, Via), whereas composite loss functions are only defined for
choice probability functions of the form P (y;; = 1| V;;). This is analogous to the situation
described in Section where one’s choice probability function could depend only on V;; or
on both V;; and Vis. As in Table different steps are taken based on the situation we are
in.

Now, beyond merely choosing a loss function, step 1 of our procedure requires choosing
a loss function based on its properties. To place such properties in context, we emphasize
that for our purposes, the most important use of loss functions is as a tool for parameter
estimation. In an optimization setting, loss functions are used in statistics and computer
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science to estimate parameters of interest, such as the 4’s in one’s choice model (Gneiting
and Raftery, 2007; Dawid, 2006). The idea is that one chooses the set of parameters that
minimizes the total loss (i.e. the sum of the loss for each observation), given one’s dataset. In
a parameter estimation setting, each loss function has properties that impact the estimation
process and results. One important property is whether or not a loss function is symmetric.
Symmetric, binary loss functions output equal-magnitude penalties for equal magnitude
discrepancies, regardless of the observed outcome. For example, imagine we are analyzing
the losses incurred on two observations: observations 1 and 2. Observation 1 is associated
with outcome 1, and observation 2 is associated with outcome 2. For both observations, we
predicted a 30% probability of that observation being associated with its actual outcome. A
symmetric loss function would assign the same penalty to our predictions for both observation
1 and observation 2. In contrast, an asymmetric loss function would assign different penalties
to observation 1 and observation 2 because asymmetric loss functions unequally penalize each
outcomes’ predicted probabilities.

Aside from symmetry, loss functions have other properties that impact one’s parameter
estimates. For example, one might consider whether one’s loss function is strictly proper
(i.e. the loss is Fisher consistent and increasing discrepancies always lead to increasing
penalties) (Buja et al. |2005; Reid and Williamson| 2010)); robust against outliers (Pregibon),
1982; |Carroll and Pederson, (1993; Bianco and Yohai, [1996); or sparsity-inducing (in terms of
identifying “irrelevant” predictors”, i.e. setting their 5 coefficient to zero) (Kyung et al.,|[2010;
Bach et all 2012; Xu et al., 2012). In general, there are numerous properties that might be
of interest. As such, it is beyond the scope of this chapter to (1) comprehensively review
and describe these properties or (2) instruct readers on how to design their loss functions
with respect to these various properties. Interested readers seeking guidance may refer to
works such as Hennig and Kutlukayal (2007) or [Merkle and Steyvers (2013). Our main point
is that loss functions have properties, that analysts can choose the most desirable mix of
properties for their research needs, and that once an analyst has designed or found a loss
function with the appropriate properties for their study, a related choice probability function
can be derived from the chosen loss function. The next paragraph will describe precisely
what is meant by the term “related choice probability function” and how one can derive it.

In general, one can derive unique choice probability functions from both composite loss
functions and strictly proper CPE loss functions. In the case of CPE loss functions, the
related choice probability function is such that when minimizing one’s total loss, one is
guaranteed to have an optimization problem that is convex in one’s 8’s (Buja et al., 2005}
Reid and Williamson,, [2010)). In the case of composite loss functions, the related choice
probability function is the one that must have been used to derive the composite loss (Reid
and Williamson, [2010)). In each case, the derivation of the related choice probability functions
uses what are known as the partial losses for a binary loss function. The partial losses are
simply the functions used to supply the penalty for predictions on each of the two possible
discrete outcomes (Buja et al., 2005; Reid and Williamson, 2010). Formally, a given binary
loss function L (y;1,-) can be written as L (yi1, ) = 1gy,=13L1 () + Ly =0y L2 (). The second
argument of L (y;1,-) depends on whether or not we are using a CPE loss function or a
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composite loss function. In either case, Ly (-) and Ls (-) are known as the partial losses for
L (yi1,+). L1 determines the penalty if the observation is associated with outcome 1, and Ly
determines the penalty if the observation is associated with outcome 2. To derive the related
choice probability functions we will start with the simpler derivation, the one for composite
loss functions. It has been proven that in order for a binary composite loss function with
differentiable partial losses to have been created by the composition of a CPE loss function
and a choice probability function, the choice probability function must satisfy the following
criteria (Reid and Williamson| 2010, Eq. 11):
Ly (Vi)

Pya=1]|Va) T, (V) — L1 (Vi) (3.10)
We will use this equation directly in order to derive the related choice probability function for
composite losses. For strictly proper CPE loss functions, if one makes the usual assumption
from statistics and computer science that V;; = 0, then there exists a canonical choice
probability function that can be derived by solving the following differential equationﬁ for
P(yz‘l =1 ’ Vit, Vig = 0)1

d1L: (V)] 5 (Vi)

dp (Vir) » (Vi)

In the following examples, we will show how both of these equations can be used in our

proposed procedure for generating new multinomial choice models. In particular, we will

use our proposed procedure to create two new, asymmetric, closed-form, choice probability

functions. We will create the uneven logit model from a composite loss function and then

create the asymmetric logit model using a CPE loss function. To see these procedures used

in a setting that is likely to be more familiar to discrete choice modelers, see Appendix C

(Section . There, we derive the binary logit and MNL models from their related CPE
loss (i.e. the negative log-likelihood) and related composite loss (i.e. the log-loss).

where p(Vi1) = P (yin = 1| Vi1, Via = 0) (3.11)

Example 3: Creating the Uneven Logit Model

In “Calibrated asymmetric surrogate losses” (Scott, 2012), Scott provides a way of creat-
ing asymmetric, composite loss functions from symmetric ones. Scott’s main goal was to
create loss functions that performed optimally under different costs for wrong classification
predictions (i.e. binary predictions as opposed to probability predictions). Since altering mis-
classification costs is one technique used to deal with class imbalance in computer science,
we decided to see whether the choice probability functions derived from Scott’s asymmetric
composite losses would be useful for making probability predictions under class imbalance.

To begin, we used the procedures in Scott’s paper to derive the following “uneven log-loss™

Uneven log-loss = 1y, =13L1 (Vi1) + Lyi=01 L2 (Vi1)

. 1 : 3.12
= 1=y In (1 +e7") + 1{3,“:0}% In(1+e"), 4 >0 (3:12)

130ur derivation of this formula is given in Appendix A (see Section .
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We then derive the related choice probability function as follows:

_ef‘/zl

1+eVa

1
/ —
L2 (V;l) B 1+emVa

B L, (V)
Ly (Vi) — Ly (Vi) (3.13)

L,1 (Vil) -

Py =1]Vy)

T
o Ly (Vi)
L AN

1

-1V
1+(1+e " 1>e—Vil

1+eVa

Because we derived this choice probability function from the uneven log-loss, we named it
the “uneven logit model.” To visualize the range of possible shapes that the binary, uneven
logit model can take, see Figure |3.2]

Now, using the procedure from Table 3.1 we can convert the choice probability function
derived in Equation [3.13]into a logit-type model as given in Equation [3.2l We will omit the
algebra, but the result is that we find S (Vij,7;) = Vi +In(1+e %) —In (1 + e7%"%) and
7; = 0 Vj. Note v;, for all alternatives j, is still required to be positive because this ensures
that S;; is monotonically increasing in V;;.

As with the multinomial clog-log and multinomial scobit models, we can immediately
generalize the uneven logit model to a conditional uneven logit model. This is done simply
by allowing z;; # 0 and 7; # 0, although one of the 7;’s must still be constrained for
identification purposes. Lastly, the multinomial uneven logit model is immediately obtained
by using Equation with S (+) as derived in the last paragraph. As with the multinomial
clog-log and scobit models, the choice probability function for the multinomial uneven logit
model is displayed below for convenience.

= : o exp Vi HIn (T4 e Vi) —In (14 e V)]
Pneven logit (?Jz’j =1 | 7,7, Vi, Vi, .o, Vik V{J, k?} € Ci) = ZEeCi exp [Tg + Vie + ln(l + e—%z) _ ln(l T+ eVt

Example 4: Creating the Asymmetric Logit Model

Similar to Scott (2012), Winkler (1994) in his paper “Evaluating Probabilities: Asymmet-
ric Scoring Rules” developed a methodology for creating asymmetric loss functions from
symmetric loss functionsE[ However, unlike Scott, Winkler wanted to account for differing

4 Technically, Winkler developed a method for constructing asymmetric scoring rules from symmetric
scoring rules. However, scoring rules are simply negated loss functions, so Winkler’s methods also allow one
to create asymmetric loss functions.
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states of knowledge as opposed to different misclassification costs. In particular, Winkler
wanted a loss function whose riskE was maximized at the probability that corresponds to
“knowing nothing” (Winkler}, (1994). This would allow one to judge probability forecasts in
a way that accounts for the fact that knowing “nothing” does not always mean assigning
a 50% probability to the outcome of interest. Sometimes an analyst may still know that
(on average) individuals have a greater or lesser than 50% chance of choosing a given alter-
native. One such case where this is true is in class imbalanced situations. Given the link
between Winkler’s motivation for developing his asymmetric scoring rules and the class im-
balanced scenarios that motivated this chapter, we decided to investigate whether the choice
probability functions derived from Winkler’s asymmetric losses would be useful for making
probability predictions under class imbalance.

Applying Winkler’s methods to the negative log-likelihood, and making the assumption
that Vjo = 0, leads to the following asymmetric, negative log-likelihood:

Asymmetric, Negative Log-Likelihood = 1y, 213L1 (P (yi1 = 1| Vi1, Via = 0)) +
1{yi1:0}L2 (P (yil =1 | Vit, Vig = 0))
ln(vl)_ln[P(yﬂ:llVila‘/iQZO)}’ P (yu — 1 | ‘/;17 ‘/;2 — O) > /yl

—In
Li(P(yn =1]|Vi1,Via=0)) = (m)

In(v1)—In[P(y;1=1|V;1,Via=0
o P S Ve =0l Pyn = 1] Vi, Ve = 0) < m

In(1—71)—In[1—P(y;1=1|V;1,Vi2=0
( 1) [ 1((3/11) ‘ 1 2 )]’ P(yzl_ I | ‘/ilv‘/ig_o) >,)/1
L2 (1 (yzl =1 | iil? i1'2 - O)) -

In(1—71)—In[1—P(y;1 =1|Vi1,Viz=0
(=) [,ln(i‘i;l)‘ 2 )], Pyn=1|Vi,Vie=0) <m

where v; € (0,1)
(3.14)
Because the asymmetric, negative log-likelihood is piecewise defined, deriving the related
choice probability function requires us to solve Equation twice, once for each case:
P (yn = 1| Vi, Vip =0) greater than or equal to v, and P (y;; = 1| Vi1, Via = 0) less than
~v1. The result will be a piecewise defined choice probability function. However, we need
to avoid circular reasoning when defining the pieces of the choice probability function. In
particular, we cannot define the pieces of the choice probability function using conditions
based on the value of the choice probability function, as is done in the asymmetric, nega-
tive log-likelihood. To construct conditions for the related choice probability function, we
note that Equation [3.11] is a differential equation, so we will need boundary conditions to
identify the constant of integration. Our boundary condition for the two cases will be that
P(ya =1|Vi1 =0,Vis =0) equals ;. This condition will ensure continuity of the result-
ing choice probability function. Moreover, when combined with the fact that the choice
probability function is monotonically increasing in V;;, this boundary condition allows us
to express the pieces of the choice probability function in terms of V;; > 0 (which implies
P(ya =1]Vi1,Via=0) > ) and V;; < 0 (which implies P (y;; = 1| Vi1, Via = 0) < 7).
I5Note the risk of a loss function is the expectation of the loss over all possible datasets, given the true
parameters being estimated (Keener} 2010).
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Starting with the case, P(ygy =1 |Vi1,Vio =0) >y and P(y1 = 1| Vi1 =0,Via =0) =
1, we have:

where p(Vi1) = P(ya =1 Vi1, Vie = 0)

[%} / P (Vi) [1d;z3(1/;1)] B / v
[—_1} m( B (Vi)
(| P\ 1= (v

In (71) 1—p(Va) In (71) L —=m
1
which simplifies to  p (Vi1) = , Va>0, 7 €(0,1)

L+ (' =1)m"

Similarly, when P (y; =1|Vi1,Vio =0) <y and P (yi1 = 1| Vi1 =0,Via =0) = 71, we
have:

(3.15)
=v+ A where A is a constant

where p(Vi1) = P(ya =1 Vi1, Vie = 0)

Ln(l_—l ’Vl)} /ﬁ(vﬂ) [1d; Vi)l /dv

p
—1 p(Vir) ) .
— | In|{——— | =v+ B where B is a constant
Ln(l - 71)} (1 —p (Vi)
=) () =~ [ (5
In(1—m) 1—p (Vi) In(1—m) L—m
1
which simplifies to  p (V;;) = — Vi <0,y €(0,1)
L4yt (1 —mp)
(3.16)
Together, the binary asymmetric logit model can be written as:
1
Vii>0
—1 o Vil Y (] -_
Pyy=1|Vi,Va=0) = L+ (n . DRt (3.17)
Vi <0

L+ (1 =)

For the readers’ convenience, the binary asymmetric logit model is displayed in Figure [3.2]
where we aim to highlight the range of possible shapes that the model can take. Note, we
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named this choice probability function the “asymmetric logit model” because it is derived
from the asymmetric, negative log-likelihood.
Now, following the procedure in Table [3.1, we can show that for the binary asymmetric

logit model,
[ Wy =Vyl(y) V=0
S (Vij, ;) = { In(vy;)—Vi;In(1—7;) Vi; <0

With these expressions, we can proceed from the binary case to the conditional and multi-
nomial cases. In doing so, however, we must take care to generalize the restrictions and
boundary condition used to derive the binary asymmetric logit model. In particular, we will
require that

® 7 € (Oa1> v.]7
o Zj'Vj:l’
e Py =1|Vip =0, Vk € C;) = v, Vj, and

e that the multinomial, asymmetric logit model nest the multinomial logit model the
same way the binary, asymmetric logit model nests the binary logit model™]

With all of these requirements, the multinomial, asymmetric logit model can be written
as given in Equation where

In (v;) = VijIn(v;), Vi; >0
S (Vij,v5) =

1 — ~;
1n(7j)—1/;j1n<J_713), Vi; <0 (3.18)

where J = The total number of possible alternatives in one’s dataset

and where one of the 7;’s must be constrained for identification purposes. Note that unlike
the multinomial clog-log, scobit, and uneven logit models, we will not display the choice
probability function for the multinomial asymmetric logit model. Because of the piecewise
definition of each S;;, there are 27 choice probability functions where J is the total number
of possible alternatives in the dataset. In other words, there is one function for each of
the possible permutations of the indices (V;;) being positive or negative. Thus, even for
three alternatives, we would need to display 8 equations. The simplest way of stating the
multinomial asymmetric logit model is to refer to Equation and note that S;; is piecewise
defined for all 7 in this model.

160ne can show that the binary, asymmetric logit model nests the standard binary logit model when
1

Vi =T AT
TG
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Figure 3.2: Binary, Asymmetric Choice Models

Summary

To summarize, Section |3.3| presented our proposed class of logit-type models and showed how
they avoid the symmetry property described in the introduction. Section|3.3|then positioned
our logit-type models in relation to the existing discrete choice and statistics literature. Next,
we showed in Section [3.3] how one can leverage the logit-type model formulation to extend
existing, asymmetric choice models to the multinomial setting, thereby making such models
useful to the transportation community at large. Finally, in Section[3.3, we demonstrated one
way to derive entirely new asymmetric choice models based on specific considerations that
analysts may have concerning their study. Overall, we presented four new examples of this
section’s methods by deriving the multinomial clog-log, scobit, uneven logit, and asymmetric
logit models. The binary versions of these models are shown in Figure [3.2] to display the
range of shapes that these models embody in comparison to the binary logit model. Note
that we display the binary versions of these models instead of their multinomial versions
simply for ease of visualization.

In the next Section, we will describe the estimation techniques used in this chapter for the
logit-type models given by Equation [3.2] Section [3.5] will then present the empirical applica-
tions of our logit-type models and compare them to the standard multinomial logit model,
using the four example models derived in this section. Section [3.6| will discuss extensions to
our work and finally Section [£.7] will conclude.
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3.4 Estimation Techniques

Within transportation, maximum likelihood estimation (MLE) is the most commonly used
technique for performing statistical inference on the unknown parameters in one’s discrete
choice model. For the logit-type models specified in Equation [3.2] the gradient and hessian
of the unknown parameters ¢ = ((,7,7) can be calculated in closed-form, provided that
S (+) is twice differentiable and provided that the unknown parameters are constrained such
that S () exists. The existence of the gradient and hessian permits one to use most numeric
optimization methods to try and maximize the likelihood of one’s model. Even if S (-) is not
differentiable, one may still be able to make use of sub-gradient methods to perform such
numerical maximization.

Despite having closed-form gradients and hessians, the log-likelihood of one’s logit-type
model will (in general) not be concave in the unknown parameters 6. This lack of concavity
can make it difficult to calculate the MLE estimates for one’s logit-type model. Neverthe-
less, when possible, we used standard optimization techniques that do not require tuning
parameters such as the Newton-Raphson or the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithms. In cases where standard techniques failed, we resorted to custom-coded gradient
descent algorithms. To implement the aforementioned estimation methods, all calculations
were carried out using the Python programming language and the NumPy, SciPy, and Pandas
packages (McKinney et al., 2010; Van Der Walt et al., [2011} Jones et al.l 2014). Moreover,
we developed a Python package called PyLogit to perform MLE for the MNL model and the
four asymmetric models introduced in Section [3.3] Our package, PyLogit, is available for
public use through the Python Package Index.

3.5 Empirical Applications

This section describes our two policy applications of the asymmetric choice models developed
in this chapter. These two applications were chosen because they differ in their respective
emphases on the aggregate versus disaggregate predictions of the choice models. However,
both applications use the same dataset and model specification. In particular, we model the
travel mode choice of commuters in the San Francisco Bay Area who are making work or
school tours. Our use of a common dataset and model specification allows us to consider
the practical differences between the asymmetric and symmetric models based on use case,
independent of differences in model inputs.

For our first application, we analyze the impact of a cordon toll in Downtown San Fran-
cisco on commute mode shares. As noted in the introduction, commute mode choices are
almost always class imbalanced in the US. For instance, as shown in Table [3.3] approximately
43% of the 4,004 commute tours in our sample were conducted by driving alone while only
5% were conducted by bicycling. In such class-imbalanced situations, it might be natural
to suspect that one’s choice probability function is asymmetric. We will investigate this
hypothesis through statistical tests of our asymmetric choice models versus the MNL model
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Table 3.3: Sample Mode Shares

Travel Mode Mode Shares (%)
Drive Alone 42.8
Shared Ride-2 15.9
Shared Ride-3+ 14.0
Walk-Transit-Walk 10.3
Drive-Transit-Walk 1.5
Walk-Transit-Drive 1.3
Walk 94
Bike 4.6

Note: Percentages do not sum to 100 due to rounding error.

and through each model’s cross-validation performances. To evaluate the possible effects of
the asymmetric choice models on policy analyses, in addition to the predictive performance
of such models, we investigate the impact of cordon tolls on commute mode choice.

For our second application, we analyze the impact of using our asymmetric choice models
in a travel demand management (TDM) setting. In particular, we focus on the use of indi-
vidualized marketing to increase public transit ridership (Brog), 1998). As a TDM strategy,
individualized marketing targets individuals who do not currently use transit but neverthe-
less could be persuaded to use transit given the information and incentives being offered by
the marketing campaign (Brog, [1998). An example of one such incentive is the provision
of free transit-passes for a limited time. This is the incentive used in our application. By
assessing how “switchable” each individual is (Genschl, [1984])), choice models such as the MNL
model and the asymmetric models developed in this chapter are used to select individuals
for targeting and transit-pass provision. We then compare the costs and programmatic suc-
cess of using the MNL model versus our asymmetric logit-type models for target selection
in an individualized marketing campaign by treating our sample of individuals as the pop-
ulation of individuals that a transit agency’s pilot marketing program might have access
to. Together, the TDM and cordon toll analyses will provide insight into the nature of the
practical differences between the asymmetric logit-type models and the traditional MNL
model.

In the subsection below, we report the main results of our model estimation and policy
analyses. Following this, we conclude the section with a discussion. Readers who are inter-
ested in a detailed description of the data, surrounding context, and methodology used to
conduct this analysis can see Appendix D (see Section .

Results

In this sub-section, we report the results of our model estimation efforts for the standard
MNL model and the four asymmetric choice models derived in this chapter—the multinomial
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uneven logit, scobit, asymmetric logit, and clog-log models. The parameter estimated’’] are
displayed in Table [3.4. The asterisks that indicate statistical significance at the 95% and
99% confidence levels are based on the “bias-corrected and accelerated” (BCa) bootstrap
confidence intervals of |[Efron and Tibshirani| (1993) and |DiCiccio and Efron| (1996)). BCa
intervals were used to assess statistical significance because our bootstrapping indicated
that, at our current sample size, the sampling distributions of the MLEs for our asymmetric
models had not yet converged to asymptotic normality. Since the sampling distributions
of the MLEs had not converged to (approximate) asymptotic normality, the standard Wald
tests based on such convergence were likely to be inaccurate (Jennings, |1986} Pawitan, 2000)).
For full display of the 95% and 99% BCa intervals for each model, see Tables [3.8 and .9 in
Appendix D.

Now, when interpreting the parameter estimation results displayed in Table [3.4] one may
wonder if the uneven logit model and asymmetric logit model are empirically identified. In-
deed, for these two models, most of their shape parameters are not statistically significant at
the 95% confidence level. However, the uneven and asymmetric logit models are indeed em-
pirically identified. As is well known in the statistics literature, if one is estimating both the
shape parameters (7) and the non-shape-parameters (7 and () of a parametric link function
(i.e. a choice probability function with parameters that control its shape), then the variance
of one’s estimates will be high when the shape parameters and non-shape-parameters are
highly correlated (Stukel, 1988; Taylor, [1988; |Czado and Santner, 1992b)). As put by Czado,
this variance increase is the “cost” of estimating the shape of the choice probability function
within a particular parametric family (Czado and Santner, |1992b). When we examined the
correlation between shape () and intercept parameters (7) of the uneven logit and asymmet-
ric logit models, we found that these two sets of parameters were indeed highly correlated.
This explains the non-significance of the estimated shape parameters and intercept terms.
Moreover, each model’s Hessian at the MLE had a small but existent curvature with respect
to each model parameter, indicating that we do have empirical identification.

In addition to our parameter estimates, we also report the in-sample and out-of-sample
predictive performance (i.e. the log-likelihoods) of each of the models in Tables , ,
and [3.6] It can be seen that the asymmetric models generally had better predictive ability
than the MNL model, both in-sample and out-of-sample. Finally, beyond the measures of
statistical fit, we report the results of our applications on cordon pricing and individualized
marketing for a public transportation TDM measure.

Specifically, for the cordon toll analysis, we report the aggregate, automobile-based mode
share predictions by each choice model, in relation to the different toll amounts. These
aggregate predictions are shown in Figure Moreover, we present a comparison of the
disaggregate probability forecasts of the MNL versus the uneven logit model in Figure [3.4
to highlight the disagreement between the asymmetric models and the MNL model. The

17 As detailed in Appendix D, the parameter estimates for the shape parameters are reparameterized, and
as such, are not the shape parameters described in Section The reasons for the reparameterizations, as
well as a precise description of them, are given in Appendix D.
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map in Figure further emphasizes the practical significance of the differences between
the MNL model and the asymmetric choice models used in this chapter.

Finally, for the individualized marketing application, our main results are shown in Figure
[3.6] Defining program efficiency as the total cost of providing the free transit-passes divided
by the change in the expected number of walk-transit-walk riders, Figure displays the
program efficiencies that are achieved by using each of the choice models for target identifi-
cation. As mentioned in the following discussion section, it is useful to have Table [3.5]to help
assess the program efficiency results shown in Figure [3.6 Table decomposes the overall
in-sample log-likelihoods achieved by each model into the in-sample log-likelihoods achieved
on each travel mode. It allows us to compare the program efficiency results to the predictive
ability of each model on specific travel modes instead of just interpreting the program effi-
ciency results based on overall model performance. In general, all of the results mentioned
above will be discussed more thoroughly in the discussion section to follow (Section [3.5]).

Discussion
Model Estimation and Testing

As shown in Tables and the multinomial clog-log model did not perform well relative
to the MNL model. However, all of the asymmetric choice models with flexible shapes (i.e.
with shape parameters) more accurately predicted the mode choice of individuals in our
sample than the MNL model. In particular, there were large differences in in-sample log-
likelihoods between the asymmetric choice models with flexible shapes and the MNL model.
These differences range from about 132 for the asymmetric logit model to 205 for the uneven
logit model. Since all three of the asymmetric choice models with shape parameters nest the
MNL model, log-likelihood ratio tests were used to assess whether the differences in model
fit were statistically significant. Table shows that all three of the asymmetric, flexible
shape models had log-likelihood ratio statistics that were significant at the 0.01 alpha-level.
This suggests that the MNL model is inappropriate for this dataset, relative to the flexible,
asymmetric choice models used in this chapter. Moreover, the greater predictive ability of
the uneven logit, the asymmetric logit, and the scobit model was not limited to just the
in-sample predictions. The out-of-sample predictions in Table |3.6| showed exactly the same
trends indicated by the in-sample results. Here, the differences in the average out-of-sample
log-likelihood during cross-validation ranged from approximately 12 for the asymmetric logit
to 20 for the uneven logit. Given that the testing sets in each fold of the cross-validation are
about one-tenth the size of the overall dataset, these results are consistent with the in-sample
results. This indicates that the greater predictive ability of the flexible, asymmetric choice
models as compared to the MNL are real and not due to over-fitting.



Table 3.4: MLE Parameter Estimation Results

Variables Standard Logit Uneven Logit Scobit Asymmetric Logit  Clog-log
Alternative Specific Constants
Shared Ride: 2 -1.010* -0.806 -0.280 -1.242%* 0.969*
Shared Ride: 3+ 3.462%* 0.443 2.596** -0.724 6.316*
Walk-Transit-Walk -0.392 0.350 11.524* 0.490 -1.741%*
Drive-Transit-Walk -2.622%* -3.002%* 4.388 0.443 -4.001%*
Walk-Transit-Drive -2.977H* -3.686** 2.566 0.451 -4.345%*
Walk 1.554** 1.626%* 0.156 0.852%* -0.117
Bike -1.106** -0.957%* -2.669%* 0.211* -2.903%*
Travel Time, units:min
All Auto Modes -0.076**  -4.376e-06** -0.046** -0.042%* -0.078%*
All Transit Modes -0.027%* -0.364** -0.003** -0.016** -0.026**
Travel Cost
Units:$ All Transit Modes -0.127%* -1.718%* -0.015%* -0.080%* -0.210%*
Units:$/mi Drive Alone -5.061%%  -3.718e-04**  -4.701** -2.465* -10.955%*
Units:$/mi SharedRide-2 -20.319** -0.001%%  -11.941** -7.859%F  _47.736*
Units:$/mi SharedRide-3+ -90.922%* -0.002%%  -32.494** -16.531°%F%  -141.947*
Travel Distance, units:mi
Walk -1.027** -0.852%* -2.090** -0.444** -0.982**
Bike -0.287** -0.211°%* -0.465%* -0.164** -0.263**
Systematic Heterogeneity
( Aﬁ“ﬁﬁf‘f\gﬁssed drivers 1.213%%  6.204e-05%*  0.597** 0.452%%  0.764%*
) grgf)'Bay Tour (Shared Ride 0.928%F  7.841e-05%*  0.906** 0.549%%  1.707%*
Household Size (Shared Ride 0.114%  9.474e-06%*  0.074%* 0.053%*  0.073
2 & 3+)
(S}T;z;bgigi gﬁsgli)HousehOld 0.687%%  3.587e-05%*  0.327%* 0.248%%  0.682%*
Shape Parameters
Drive Alone B 9.716 0.503** B B
Shared Ride: 2 _ 10.000 0.804** 2.009** _
Shared Ride: 3+ _ 10.190 0.987** 2.806 _
Walk-Transit-Walk B -2.469 2.917%* -1.342
Drive-Transit-Walk -2.820 2.565%* -3.584
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Table 3.5: MLE In-Sample Log-likelihoods by Travel Mode and by Model

Standard Logit Uneven Logit Scobit  Asymmetric Logit  Clog-log

Drive Alone -1,084.14 -1,045.70 -1,040.07 -1,045.04 -1,092.69
Shared Ride: 2 -1,183.66 -1,138.00 -1,144.92 -1,151.32  -1,196.55
Shared Ride: 3+ -905.80 -826.15  -844.65 -847.57  -926.98
Walk-Transit-Walk -572.69 -566.87  -569.84 -072.85  -581.04
Drive-Transit-Walk -184.99 -177.76  -177.20 -182.35  -185.73
Walk-Transit-Drive -176.93 -167.30  -167.32 -176.54  -175.32
Walk -520.07 -002.27  -515.38 -019.54  -513.11
Bike -445.16 -444.30  -443.42 -445.80  -444.65
Total -2,073.43 -4,868.35 -4,902.79 -4,941.01 -5,116.07

Table 3.6: MLE Average Out-of-Sample Log-likelihood During 10-fold Cross-Validation

Model Log-Likelihood
Uneven Logit -490.12
Scobit -494.04
Asymmetric Logit -498.44
Standard Logit -510.28
Clog-log -514.63

Cordon Toll Analysis

In addition to judging whether the improvements offered by one model over another are
“statistically significant,” it is important to assess whether such improvements are “practically
significant.” One way we assessed the practical impacts of the asymmetric choice models
derived in this chapter was to conduct an analysis of the effects of a congestion cordon tol]lﬂ

18From economic theory, if a set of alternatives are perfect substitutes for one another, then the marginal
dis-utility of cost should be constant across the alternatives since the goods are exactly the same. Because
our estimated cost-coefficients for the Drive Alone, SharedRide-2, and SharedRide-3+ modes show large
differences from one another, we have reason to believe that these three automobile alternatives are not
perfect substitutes for one another, even after controlling for our study’s explanatory variables. Accordingly,
we conclude that there is some set of unobserved variables that still differentiates the three modes from each
other and which interacts with the cost variable to influence an individual’s cost-sensitivity for each mode.
While recognizing this issue, we are not sure what these unobserved variables might be, and even if we did
have thoughts about what these unobserved variables might be, we are not in a position to collect data on
these features. As a result, both our cordon toll and TDM analysis are therefore conditional on the following
ceteris paribus assumption: that the interaction effects between cost and these unobserved variables remain
as they currently are, despite external changes to the cost of the various automobile-based modes. Thanks
to an anonymous reviewer for raising this point.



CHAPTER 3. ASYMMETRIC, CLOSED-FORM, FINITE-PARAMETER MODELS OF

MULTINOMIAL CHOICE 76
60
Model Name (Log-Likelihood)
= -+ Uneven Logit (-4,868)
0B - .- Scobit (-4,903)
S RN Asymmetric Logit (-4,941)
B2 40 \\":‘\ v Standard Logit — (-5,073)
25 ~ = Clog-log (-5,116)
S e \ 7y
S0 v R,
g0 T,
© O \ . ,
s N ‘\ by .
8 O N e < tiy,
o g 20 S N ~ l\’l'l,,
ke S e \“"'L"lu
Lle \\ S . -'4':':'1,,,.,"“"
10 T~~a e .
0
0 1 2 3 4 5

Toll per Cordon Crossing ($)

Figure 3.3: Automobile-Based Mode Shares by Model and by Cordon Toll Amount

in Downtown San Francisco.

At the most basic level, we compare the MNL model and the asymmetric choice models
on the basis of their aggregate, predicted mode shares for automobile-based modes (drive
alone, shared ride with two passengers, and shared ride with three or more passengers) under
various cordon toll charges. Given that the purpose of the congestion toll is to reduce the
use of automobile-based modes at peak commute times, large differences in predicted mode
share for automobile-based modes would have great ramifications for support and expecta-
tions of the congestion tolling scheme. As shown in Figure the aggregate mode share
predictions for the automobile based modes, for tours that cross the cordon, follows the
same general trend for both the MNL and the flexible, asymmetric choice models. Moreover,
the differences in the predicted mode shares are minimal. Compared to the flexible, asym-
metric models, the MNL model overestimates the mode share of automobile-based modes
by 1-3.8% at the San Francisco County Transportation Authority’s proposed toll of $3 per
cordon crossing, depending on which model is being examined. However, the MNL and
flexible asymmetric models all predicted overall decreases of approximately 31-35% in auto-
mobile based mode shares from a $0 toll to a $3 toll. In light of the overall predicted mode
share changes, the differences between models seems mostly inconsequential from a general
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Figure 3.4: Disaggregate Probability Predictions for Walk-Transit-Walk and Drive-Transit-
Walk for the Uneven Logit and the MNL Models

planning perspective.

Beyond the basic question of how the aggregate, automobile-based mode shares will
change as a result of tolling, a host of disaggregate outputs from mode choice models may be
useful for transportation agencies implementing the congestion toll. In particular, to support
individuals making their commute trips under the tolling scheme, transportation agencies
should make switching to more sustainable modes (such as public transit) as easy and safe
as possible. For example, at transit stations where one expects the average number of drive-
transit-walk commuters to increase, and where parking capacity is nearly full at peak hours,
transit agencies might want to increase parking capacity so that 'park-and-ride’ trips can
be more readily accommodated. However, such actions require knowledge of which transit
stations have catchment areas that are going to see large increases in their drive-transit-walk
mode shares.

To be accurate, these station-level determinations require accurate predictions of the
disaggregate drive-transit-walk probabilities for individuals. In our application, we find sub-
stantive disagreements between the MNL model and the flexible, asymmetric choice models.
For example, Figure [3.4] shows the predicted probabilities of walk-transit-walk and drive-
transit-walk with a cordon toll of $3 according to both the MNL model and the uneven logit
model for the 4,004 tours in our sample. As can be seen, many of these predicted proba-
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Figure 3.5: Top Ten Traffic Analysis Zones Producing Drive-Transit-Tours
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bilities disagree. These disagreements are not just an artifact of the $3 toll, but they exist
at every tolling amount we tested, including the base case scenario with no toll. The sub-
stantive impact of these individual-level disagreements is that practitioners deciding where
to install pedestrian improvements and increase parking capacity based on the MNL model
might make misguided decisions: installing infrastructure where it is not needed, or failing
to install infrastructure where it is needed. For instance, Figure shows the ten traffic-
analysis-zones producing the greatest expected numbers of drive-transit-walk tours into the
cordon area for the MNL model and the Uneven Logit model at $3 per cordon crossing. As
shown by the map, the MNL model under-predicts the amount of drive-transit-walk trips
from the East Bay into the cordon area, relative to the uneven logit model. Practitioners
using the MNL model as opposed to the uneven logit model might then incorrectly under-
estimate the need for increased parking capacity at BART stations in the East Bay, thereby
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Figure 3.6: Total Individualized Marketing Costs Per New, Expected Walk-Transit-Walk
Rider by Model

hampering the success of the congestion pricing effort.

TDM Analysis—Individualized Marketing

Continuing with the emphasis on disaggregate model differences, this subsection discusses
the practical differences for an individualized marketing campaign for TDM. Here, we assume
the role of an agency interested in maximizing the increase in the expected number of walk-
transit-walk riders per dollars expended. As such, the differences that we are concerned
with in this application result from selecting individuals for targeting using each of the
choice models being compared in this chapter. To the extent that the different models select
different individuals, the costs of providing the transit-passes will differ, and the change in
the expected number of new walk-transit-walk commuters will differ.

Using the uneven logit model to estimate the “true” change in the expected number of
new walk-transit-walk commuters (since the uneven logit model had the highest in-sample
and out-of-sample log-likelihoods—see Tables and , Figure shows the ratio of
the “program efficiencies” achieved by each model, for a range of budgets for purchasing the
transit passes. From this Figure, a few insights can be gleaned.

First, when only a small proportion of the sample can be targeted (i.e. when the budget
is low), the scobit and uneven logit models make the best uses of money relative to the
MNL model. For instance, with a $5,000 budget, the MNL spends $770 per new expected
walk-transit-walk passenger, while the scobit and uneven logit models spend $731 and $719,
respectively. If the number of individuals in the marketing program increases while the
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proportion that is targeted remains the same, such differences in program efficiency will
lead to large differences in the number of new walk-transit-walk riders that are attracted
using each model’s targeting list. Second, as the budget increases and the proportion of
individuals that can be targeted increases, the differences between the program efficiencies
of each model are greatly reduced. This is to be expected. At the limit, there will be a
large enough budget to select all individuals for targeting, thus the program costs and the
“true” increase in the expected number of walk-transit-walk passengers will be equal across
models. Lastly, the ranking of program efficiencies across models depended not on the overall
predictive ability of one’s multinomial model but mostly on the predictive ability of one’s
model for the travel mode of interest (walk-transit-walk in this case). For instance, since the
asymmetric logit model’s in-sample and out-of-sample log-likelihoods are higher than those
of the MNL model (see Tables and , one would expect the asymmetric logit model
to make better targeting selections than the MNL model. However, when one looks at the
log-likelihoods of each model for just the walk-transit-walk mode (shown in Table , we
can see that the asymmetric logit model is actually a worse predictor of the walk-transit-walk
mode than the MNL model, even though it is has a higher log-likelihood overall. It’s program
efficiency is therefore worse than that of the MNL model. Another seemingly anomalous fact
is that when the budget is low, the clog-log model is able to better target individuals than
the asymmetric logit model. This merely reflects the fact that for this sample and relative
to the asymmetric logit model, the clog-log model is better able to find the small handful of
individuals providing the highest increase in their probability of commuting via walk-transit-
walk per dollar spent. However, as the budget increases and the number of individuals that
is to be targeted increases, the ranking of program efficiencies return to the predictable state
of mimicking the in-sample, log-likelihood rankings for the walk-transit-walk mode.

Overall, for our individualized marketing application, we find that when resources are
limited (i.e. when only a small percentage of one’s population can be targeted for marketing),
the use of the MNL model can be inefficient as compared to the asymmetric choice models
such as the uneven logit and scobit models. In our example, such inefficiencies cost the MNL
an additional $51 per new expected walk-transit-walk rider when compared to the uneven
logit model. As the budget for the marketing campaign and the percentage of individuals
that could be targeted increased, the disaggregate predictive abilities of each model became
less important, and as with the cordon toll application, the practical differences between
models became minimal.

Summary

Through our analysis of the commute mode choices of San Francisco Bay Area residents, we
found that the three asymmetric choice models with flexible shapes (i.e. those with shape
parameters) had much better predictive ability (overall) than the standard MNL model.
This result was observed in both in-sample and out-of-sample log-likelihoods. Moreover,
these results were corroborated through our log-likelihood ratio test results. All of our
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flexible asymmetric models had log-likelihoods that were higher than the MNL model, at
statistically significant levels.

With regard to practically significant differences, we find that the MNL model and the
flexible, asymmetric choice models yield similar aggregate inferences in our cordon toll anal-
ysis. In particular, results concerning the aggregate mode shares of automobile-based modes
at different tolling levels are virtually equal across the different models. The practical dif-
ferences between the MNL and flexible, asymmetric models comes from the disaggregate
predictions of the various models for each individual, and the fact that the predictions for
some modes may differ greatly. Specifically, the predictions for walk-transit-walk and drive-
transit-walk differ greatly between the MNL model and the flexible, asymmetric models in
our example.

The practical significance of these differences for our cordon toll application is that dis-
cordant inferences are obtained regarding where transit-serving parking supply should be
increased. The MNL model suggests that transit-serving parking should be added in San
Francisco itself, whereas the asymmetric models imply that the most important places to
increase transit-serving parking supply are all in the East Bay. Due to the higher land values
in San Francisco and a lower supply of land to devote to parking, the use of the MNL model
instead of its better performing, asymmetric counterparts would lead transportation agencies
to misguidedly spend much more money providing parking in San Francisco, when the Fast
Bay is likely in greater need for transit-serving parking under a congestion tolling scheme.

For our TDM application, the practical significance of our models is that the asymmetric
choice models that predict the walk-transit-walk mode better than the MNL model can
better guide investment of the money that is available for individualized marketing of public
transit. Specifically, we found that in our example, when the budget for providing free
transit passes was low ($5,000), the cost of acquiring each new walk-transit-walk rider could
be reduced by approximately $50 and $40, respectively, by using the uneven logit model
and the scobit model for target selection instead of the MNL model. Conversely, as the
budget and the percentage of individuals who could be targeted increased, the differences
in the disaggregate predictions of the models mattered less and less for target selection and
the resulting efficiency of the marketing campaign. This further underscores the fact that
the practical usefulness of asymmetric choice models appear to be highest when accurate,
disaggregate predictions are needed.

Moving onto the remaining two sections of this chapter, we will now transition from
discussing our specific applications to looking more broadly at how our work on asymmet-
ric, closed-form, finite-parameter models of multinomial choice can be extended. Then in
Section [4.7] we will conclude by summarizing the theoretical contributions of this chapter,
highlighting our empirical results, and raising key research questions from this work that
should interest academic scholars and professional analysts.
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3.6 Extensions

Thus far, all of the individual models and results that have been shown in this chapter
have been based on the general formulation of logit-type models given by Equation [3.2]
Despite restricting ourselves to that proposed class of models, at least six extensions or
future research directions are immediately apparent. In particular, these ideas for future
work can be categorized as either (1) direct extensions of the logit-type models developed
in this chapter, (2) applications of this chapter’s ideas to other models, or (3) investigations
of the statistical properties of logit-type models. In the following paragraphs we will detail
each of the extensions and future research directions that comprise these categories.

Firstly, the logit-type models given in Equation can avoid the symmetry property of
standard MNL models, but because they share the same functional form as the MNL model,
they retain other undesired properties such as I.I.A. Accordingly, many of the motivations
behind existing extensions to the MNL model remain equally applicable to our proposed
class of logit-type models. Here we highlight three such extensions. First, models such
as the “Heteroskedastic Logit Model” (Steckel and Vanhonacker) |1988; Recker| (1995; |Bhat],
1995) allow the scale parameter to vary across observations, and this effectively allows the
shape of the resulting choice probability function to vary across observations. An analogous
extension to logit-type models would be to allow v; to vary across individuals, such as by
parametrizing it as a function of x;;. Such parametrizations have been successfully used in a
transportation context to improve the fit of binary scobit models (Zhang and Timmermans|,
2010; [Wu et al., 2012), but this type of extension can be more generally applied to any logit-
type model that has shape parameters. Second, the wider class of “multivariate extreme
Value”@ models (such as the nested and cross-nested logit) generalizes the MNL model,
capturing arbitrary correlations between the utilities of an individual’s various alternatives
while still maintaining a closed-form expression (Train, 2009). Logit-type models would
benefit from similar extensions. As mentioned in Section [3.3, one way to extend logit-type
models to account for correlation between the utilities of one’s alternatives is to specify
various “aggregation functions” as described by Mattsson et al. (2014) in conjunction with
w;; = exp [1; + 5 (Vij,7;)]. Lastly, MNL models have been extended using various “mixing
distributions” to account for taste heterogeneity in their parameters and to provide realistic
substitution and correlation patterns between alternatives (Revelt and Train, |1998)). These
mixed logit approaches use a MNL “kernel” and allow the [ coefficients to be randomly
distributed throughout the population. Similar mixing strategies could be followed whereby
one used a logit-type model as the kernel and a continuous mixing distribution of Ss in the
model. If using a discrete mixing distribution, i.e. a Latent Class Choice Model (LCCM),
an analogous procedure is to use a logit-type model for the class-specific choice model. Such
mixing procedures would allow for much greater flexibility and behavioral realism in our
proposed logit-type models.

19This class was originally referred to as “generalized extreme value” (GEV) models (McFadden, 1980).
The name multivariate extreme value was adopted to avoid confusion with the pre-existing generalized
extreme value distribution (Jenkinson, (1955)).
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Beyond the direct extensions already mentioned, future research directions include ap-
plying the techniques and concerns of this chapter to other choice models. Two such research
directions seem immediately promising. First, as noted at the end of the last paragraph, one
can consider using a logit-type model as the class-specific choice model in a LCCM. However,
this still begs the question of what choice model should be used as the class-membership
model. It is not clear that one would necessarily want the class-membership model to have
the symmetry property described in the introduction, so it would be interesting to look at
the effects of using an asymmetric, logit-type model as the class-membership model in one’s
LCCM. There could be large policy impacts from such a change. For instance, imagine one
is interested in growing the market share of a desired market segment, such as a latent class
of individuals with a predisposition towards using non-motorized modes of transportation.
If that market segment is forecast to grow much more slowly when using an asymmetric
model for the class membership probabilities as opposed to a MNL, and the asymmetric
model fits one’s data better, then policy-makers may need to take more aggressive measures
to increase the market shares of the desired class. Secondly, the logit-type models developed
in this chapter were based on the desire to make the MNL model asymmetric. However, as
stated above, this logit-based lineage leads to the inheritance of the other undesired proper-
ties of the logit model such as I.I.A. It would be interesting to instead try and make other,
non-logit-based, choice models asymmetric. For instance, the Exponomial Choice model is
not based on the logit model, yet it shares some of the attractive properties of the logit
model. In particular, it has a closed-form probability equation, it has a log-likelihood that
is concave with respect to the s to be estimated, and it does not have the I.I.A. property
(Alptekinoglu and Semple, 2016)). However, it is a symmetric choice probability functionlg_UI.
It would be quite interesting to develop an asymmetric analogue to the Exponomial Choice
model, as such a model would avoid both the I.I.A. property and the symmetry property.

Finally, there are a number of statistical questions regarding logit-type models that re-
main to be investigated. One point, raised by a referee, is that one does not know (a-priori)
which logit-type model will be best for one’s application. Therefore, one essentially has to
try them all. As a result of this fact, it would be useful to study the characteristics of the
best performing transformation functions S (-) in relation to the intrinsic characteristics of
one’s data. If such research leads to a greater understanding of how to specify one’s S (-)
functions, then one may be able to save researchers a fair amount of computational effort.
More generally, it would be worthwhile to perform simulation studies to gain insight into the
conditions under which asymmetric models perform better than symmetric ones and into
the conditions that favor various types of asymmetry. In the meantime, the situation with
logit-type models is analogous to the situation that is already faced in research, where (for
instance) a researcher may not be certain (a-priori) of which plausible nesting or cross-nesting
structure will be better in one’s application.

Another statistical question is what is the best way to estimate one’s logit-type model?
As was noted in Section [(3.4) MLE was sometimes difficult for the four logit-type models

20This assertion is made based on plotting the choice probabilities for the binary exponomial choice model.
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derived in this chapter. One response is to use Bayesian techniques to estimate the logit-type
models since these techniques do not require maximization of an objective function. However,
Bayesian estimation techniques can potentially lead to long estimation times, depending on
one’s model, dataset, and specific estimation method. It would be useful to investigate the
properties of Bayesian and other estimation techniques on logit-type models. For instance,
it has already been shown that maximum entropy estimation (Donoso et al., [2011) may be
a better estimation technique than MLE for nested logit models. Further research should be
done with logit-type models to investigate the implications, the possible equivalences, and the
relative merits and drawbacks of various estimation techniques such as bayesian inference,
maximum entropy, method of moments, minimum chi-square estimation (Berkson, [1980)),
etc.

Lastly, it may be interesting to investigate the differences between this chapter’s various
asymmetric models by studying the models’ influence functions and influential observations.
The primary questions to answer would be whether the various estimated models are highly
influenced by differing observations, or whether the different models are differentially suited
for different types of outlying or high-leverage observations. Such investigations may lead
to more data-driven methods for constructing the asymmetric, logit-type model that is best
for one’s application.

3.7 Conclusion

In this chapter’s introduction, we called attention to a symmetry property of common discrete
choice models such as the MNL model and the simple probit model. Arguing that it is
often undesirable for one’s discrete choice model to a-priori be symmetric, we introduced a
class of “logit-type” models that allow one to specify choice models of varying shapes and
asymmetries, without entailing restrictions on the signs or magnitudes of the indices, V;;.
Essentially, logit-type models replace the index, V;; = x;;8 in the MNL model with functions,
S (+), that depend on the index and a finite number of shape parameters that control the
shape of the choice probability function. By ensuring that this new function is asymmetric
with respect to the index V;;, we avoid symmetry in our logit-type models.

Next, we showed that our proposed class of models is both a parametrization of the class
of models introduced by Mattsson et al. (2014)) as well as a generalization of numerous exist-
ing, asymmetric choice models from both the transportation discipline as well as statistics.
This nesting of existing models was used to devise a methodology for extending numerous
pre-existing models to the “conditional” and multinomial settings. Such extensions greatly
increase the number of situations that can be modeled by existing asymmetric choice models
and increase the relevance of such models to transportation researchers whom often study
inherently multinomial choice contexts. As examples of the proposed method, we extended
two existing models—the clog-log model and the scobit model—to the multinomial setting
for the first time.

Recognizing that the existing asymmetric choice models may not always suit a researcher’s
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needs, we proposed a method for creating new, asymmetric choice models. We break from re-
cent trends in transportation whereby one first specifies the distribution of each alternative’s
utility to each individual and then derives the choice probability functions as a result. Our
work takes the opposite approach of directly specifying the form of the choice probability
functions, knowing that our logit-type models can be derived from innumerable distributions
of the utilities. Doing so frees us to specify the choice probability functions according to the
properties that we find desirable for our study. To demonstrate our proposed procedure, we
derived two new choice models that generalize the MNL model: the asymmetric logit model
and the uneven logit model.

To test the four new models derived in this chapter against the standard MNL model,
we applied all of these models to an analysis of travel mode choice in the San Francisco
Bay Area. We find that all of the asymmetric choice models with flexible shapes (i.e. those
with shape parameters to be estimated from the data) were able to fit the data better
according to both in-sample and out-of-sample log-likelihoods. The difference in fit, for
our example, was not just statistically significant but quite dramatic—on the order of more
than 200 log-likelihood points for a dataset of only 4,004 individuals with 8 alternatives.
Moreover, beyond the statistical fit and predictive ability of the various models, we showed
that switching to asymmetric choice models can also entail serious policy implications. When
looking at the effects of a cordon toll in Downtown San Francisco, we found that relative
to the flexible asymmetric choice models (which had greater predictive power), the MNL
model over-predicted the number of drive-transit-walk tours coming from San Francisco.
Such over-predictions would encourage transportation agencies to erroneously invest more
in increasing transit-serving parking supply in San Francisco as compared to the East Bay,
where all of the other asymmetric models predict high expected numbers of drive-transit-walk
tours. Moreover, in our TDM application, we find that the uneven logit model and the scobit
model are able to better target individuals for marketing when funding for such a campaign
is limited. In particular, the uneven logit and scobit models are able to reduce the cost of
acquiring each new walk-transit-walk customer by approximately $50 to $40 relative to the
MNL model when the marketing budget is only $5,000. These results suggest that while
asymmetric models may not always outperform symmetric ones, asymmetric choice models
are at least worth testing in one’s analysis as they might have better statistical performance
and entail substantive policy and financial implications.

Lastly, while this chapter presents a new class of models as well as four particular in-
stances of this new class, many extensions to this work and future research directions remain.
By direct analogy with MNL models, it will be of interest to extend logit-type models to
account for arbitrary correlation structures between the various utilities of each alternative.
Moreover, it will be interesting to make use of mixture formulations to incorporate taste
heterogeneity and flexible patterns of substitution between alternatives. Regarding appli-
cations, further investigation remains to be done on the effect of incorporating logit-type
models into other contexts (such as modeling market segmentation in LCCMs) and on the
effect of incorporating asymmetry into choice models with different functional forms from the
logit model (such as the Exponomial Choice model). Alongside all of the research directions
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mentioned above, there will of course be a need to answer statistical questions related to
the proposed model-class, including questions of how best to estimate logit-type models and
how one can check the appropriateness of a given function, S (-), for one’s data.

Acknowledgements

We thank James A. Goulet for many stimulating conversations in the beginning stages of
this research. Additionally, we thank Michael Fratoni for computational assistance in the
beginning of this project. Thanks go to Madeleine Sheehan and the anonymous referees for
their constructive criticism of this manuscript. Any remaining errors or omissions are, of
course, our own. Lastly, we thank UCCONNECT and Caltrans for funding this research
effort.



CHAPTER 3. ASYMMETRIC, CLOSED-FORM, FINITE-PARAMETER MODELS OF
MULTINOMIAL CHOICE 87

3.8 Appendix A: Proofs

Here we provide the derivation of Equation [3.11} It is based on Equation 16 and Equation
45 of Buja et al.| (2005)). Note that in all equations below, we use the notation introduced in
Section

First, Equation 16 of Buja et al. states that:

p(Vi1)
LG = [ i (A1)
0
Applying the Fundamental Theorem of Calculus to Equation [AT] we can write:

d[Ls (p (Vir)))

i =p (Vi) w (p (Vi) (A2)

At the same time, Equation 45 of Buja et al. states:
L=w(p (Vi) p (Vi) (A3)

Assuming that p' (V;1) # 0, we can rearrange Equation as follows:

1
P (Vir)
Finally, substituting Equation [A4] into Equation [A2] yields Equation [3.11]

= w (p(Vir)) (A4)
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3.9 Appendix B: Further relations to existing literature

In this appendix, we provide further details on the relationship between our models and
those of |Li (2011) and |Das and Mukhopadhyay (2014). Additionally, for convenience, we
provide a table showing how our proposed class of logit-type models subsumes previously
described asymmetric models as special cases.

First, while the models based on Weibull, Rayleigh, Type II Generalized Logistic, Pareto,
or Exponential distribution utilities are generalized by both our logit-type models and the
single-index model of [Li (2011)), our logit-type models given by Equation are not a spe-
cial case of Li’s model. In particular, Li (2011) estimates a single S (-) for all alternatives.
The transformations used in our logit-type models are allowed to differ across alternatives,
based on the values of the shape parameters 7; for each alternative. Secondly, our chapter
provides a general method to create new, closed-form, binary probability functions. The pa-
per of |Li (2011) does not. [Li (2011)) instead focuses on semi-parametric, binary probability
functions. Finally, our work provides a method and rationale for generalizing binary prob-
ability functions to the multinomial setting, whether or not the distribution of the utilities
underlying the probability function are known. The paper of |Li (2011]) provides no such
distribution-free method for generalizing existing binary probability functions.

Next, with respect to the paper by Das and Mukhopadhyay| (2014)), our work is strictly
more general. Das and Mukhopadhyay (2014) only consider a single S (-) function, namely
that of |Czado| (1994). This chapter considers general, closed-form S () functions. As noted
in Section and as shown below in Table , the model of Das and Mukhopadhyay| (2014))
is a special case of the models described by our logit-type models given in Equation [3.2]
Moreover, this chapter provides a way to create such S (+) functions while the paper of Das
and Mukhopadhyay| (2014)) completely ignores this issue.

Lastly, we include Table|3.7]in this appendix to explicitly show the various S (-) functions
that show how a number of asymmetric probability functions from the literature can be seen
as special cases of our logit-type models.
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Table 3.7: Special Cases of Our Logit-Type Models

Model S(-) Shape Parameters Constraints
Exponential —log (V) N/A Vi; >0
Rayleigh —2log (Vi5) N/A Vij >0
Weibull —log (Vi) v Vij,7¥ >0
Pareto log (Vi;) —log (V;; — 1) N/A Vij >1
Type II Generalized Logistic _ N/A Vi 0,—1,-2,...

P S L) a8 }
(14Vig)"i—1 .
Das and Mukhopadhya; it V; >0 :
(2014)) PR . i —_— ! Y5 = 7155 V23] V5 N/A
_% if Vij <0
-GEV (Nakayama and _
oEY Ty 5 log 1+ (7 = 1) Vi . V> =

Chikaraishi, |2015)

Note ¢ (z) = w where I' (x) is the gamma function and N/A means “not applicable.”

3.10 Appendix C: Deriving the MINL Model

In this Appendix, we aim to clarify the procedures in Table by deriving the familiar
MNL model using both its related CPE loss and its related composite loss. We start with
the composite loss, since it is a more straightforward derivation.

Deriving the Binary Logit Model Using the Log-Loss In Step 1, we are required
to choose a binary loss function. For the binary logit model, one such loss function is the
log-loss (i.e. the related composite loss for the binary logit model). As shown in Equation
[3.9] the binary log-loss is:

Log-Loss (yi1, Vi1) = 1y,=13 In (1 + e_V“) + Liy—oy In (1 + eV“)
= Lyya=13L1 (Vir) + Ly =0y L2 (Vir)

The necessary derivatives for Step 2 are L} (Vi;) and L) (V;;). For the log-loss, these
derivatives are:

L (V) = =
1 (Vi) I+eVa
-1
C14ea
. eVit
Ly (Vi)
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Below, we use these derivatives to derive the formula for binary logit model that is commonly
used in statistics and computer science applications (where V;, implicitly equals zero):

Ly (Vi)
Pbmary logit (yll =1 | ‘/ﬂ> L/ (V )2_ [1//1 (Vl)

e‘/il

14 eV
e -1
Vi Vi
14+eVn
eVl +1
1+eVa
eVit

14 eV

For a moment, we will defer Step 3 (where we extend the binary logit model to the
multinomial setting). Instead we will now show how the same binary logit model formula
can be obtained from the negative log-likelihood. The final step of extending the binary logit
model to the MNL model will be the same for both versions of the procedure in Table [3.2]
regardless of whether we start with a CPE loss or a composite loss function.

Deriving the Binary Logit Model Using the Negative Log-Likelihood Similar to
the use of the log-loss, we can use the negative log-likelihood as our CPE loss function from
which we derive the binary logit model. As given in Equation [3.8] the negative log-likelihood
with Vo assumed to equal zero is

Negative Log-Likelihood (i1, P (yi1 = 1| Vi1, Vie = 0)) = 1gy=13 (—In [P (ya = 1| Vir, Via = 0)]) +
Lya=oy (—In[1 = P (yn = 1| Vi1, Vio = 0)])
= 1{yi1:1}L1 [ (yzl =1 | Vit, Vig = 0)] +
(

Liyu=0y Lo [P (yi1 = 1| Vi1, Vig = 0)]

For Step 2, we need the derivative of Ly with respect to P (y; = 1| Vi, Vio = 0). This
derivative is:

3L2[P(?Ji1=1|‘/§1,‘/§2=0)]: 1
OP (i1 =1 Vi1, Via =0) 1—=P(yn=1]|Vis,Vie=0)

From here, we can use Equation to solve for P (y; = 1| Vi1, Vio = 0) as follows. Let
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ﬁ(‘/; ) = P(y’bl =1 | ‘/;17‘/;2 = 0) Then7

OLy [p (V)] _ (V)
9p (Vi) 9p (Vir)
Vi
L p)
15 (V) 9 (Va)
Vi
1 oV
PR L= (V)] 35 (Vi)
9p (Vi)
- - =0V,
(Vi) [1 =5 (Var)] 1
1 1
- + - op (Vi ov;
LU (Vi) 1 —P(Vil)} Va) '
1 1
- + - op (Vi —/0‘/;
/{p(vﬂ) 1—p<v;1)} P 1
In[p(Vi1)]—In[l —p(Vi1)] = Vi1 + A where A is a constant of integration

As with any differential equation, we need a boundary condition to be able to determine
the value of A. A typical condition would be that p(V;; = 0) = 0.5. With this boundary
condition, A = 0 and we have

| { 5 (Vi)

1—p (Vi )}
Standard algebraic manipulation leads back to Equation for the binary logit model where
V;9 is assumed to be zero.

Extending Binary Logit to MNL Finally, Step 3 of our procedure for creating new
choice models is that we use the procedure from Section [3.3]to create a multinomial extension
of the binary version of our model. This is done below. The labels to the right of the equations
refer to the steps in Table [3.1]
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eVil
Pbinary logit (Z/zy =1 | Ti1, Ti2 = O, 6) = 1+ eVl St@p 2a.
Vi1 )
: v = Qexp (Su) Step 2b.
Lern 57 exp (Su)
1 1 (2)

1+ e Va - 1 4+ eSi2—5a
l4+e Vo =14+ ediz—5i1
—Vii =S8 —S;
Vi =1+8 Vi) =11 — S (Va)
Using the same arguments as in Section , we find S (V;;) = V;;. Substituting this equality
back into the last line of Equation [C2] we get:

—Vai=n+Vio—7n -V
O=mn+Vi—m
0=m —m7 because Vs =0 Step 2c.
T =Ty Step 2d.

(C3)

The two constants, 71 and 7, are not identified. Without loss of generality we can set 7, and
implicitly 75, equal to zero. This establishes the binary logit model as a special case of our
logit-type models. The generalization to the MNL model given in Equation follows by
removing the restrictions on 7 and using Equation with S (V;;) = Vi;,Vj € C;, subject
to identification. Typically, researchers include an alternative specific constant in z;;. Such
a constant will cause a lack of identification with 7 in the MNL model. In such conditions,
one can set 7; = 0 Vj, and the MNL formula from Equation is recovered exactly.
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3.11 Appendix D: Application Data and Methodology

In this appendix, we describe both the dataset used in our two applications as well as the
methodology used to conduct our analysis. Specifically, we describe the procedures used for
model estimation, model testing, our cordon toll analysis, and our TDM example.

Data

The data used in this example comes from the 2012 California Household Travel Survey
(CHTS). The CHTS was a one day travel diary taken from a stratified sample of households
throughout the state of California and portions of Nevada. The complete data collection
effort is described in |California Department of Transportation| (2013)). For this study, the
overall sample was filtered to include just those individuals commuting to school or work in
the San Francisco Bay Area.

Beyond filtering based on geography and trip-purpose, we post-processed the raw CHTS
data to construct the final dataset used for model estimation. In particular, we combined the
data on individual trips into tours, defined a “chosen travel mode” for each tour, determined
the available travel modes for each tour, and assembled the level-of-service variables for each
tour. For this study, we used the level-of-service (travel costs, times, and distance) estimates
provided by the San Francisco Metropolitan Transportation Commission (MTC). As a result,
the set of possible alternatives in our example was defined to be the same as the categories
used by MTC. Specifically, eight travel mode alternatives were specified. There were three
driving modes, each differentiated by the number of passengers: drive-alone, shared-ride
with two passengers, and shared-ride with three or more passengers. There were also three
transit modes, each differentiated by their access and egress modes: walk-transit-walk (where
walking is used for access and egress), drive-transit-walk, and walk-transit-drive. Finally,
there were two non-motorized modes: walking and bicycling. For each tour, the travel mode
that was used for the longest distance was used as the “chosen travel mode” for that tour.

After filtering and post-processing, the final dataset consisted of 4,004 home-based work
or school tours made by 3,836 individuals (with no individual making more than two tours).
The percentage of tours that had their chosen travel mode associated with each of the
aforementioned alternatives is shown in Table [3.3] As mentioned earlier, the proportion of
tours associated with each alternative is highly unbalanced, ranging from a low of 1.3% for
the share of “walk-transit-drive” tours to a high of 42.8% for drive-alone tours.

Estimation and Testing Procedures

In this subsection, we will describe the procedures we used to perform the estimation, testing,
and application of the various logit-type models employed in our example.
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Estimation

First, to actually perform the numerical optimization necessary for the MLE, the scobit,
the uneven logit, and the asymmetric logit models were re-parametrized. In particular,
the log-likelihood functions of the scobit and the uneven logit models were expressed in
terms of T; = In(v;) Vj, and the log-likelihood function of the asymmetric logit model was
exp (®,)
Zk exp (y)
for unconstrained optimization of T; and ®;, and it led to better estimation results when
compared to performing constrained optimizations on the original v;’s. Accordingly, our
shape parameter estimates for the scobit, uneven logit, and asymmetric logit models are
presented in terms of T; and ®;, respectively.

expressed in terms of ®; where v; = Vj. These re-parametrizations allowed

Inference

As noted in Section [3.5, we used the non-parametric bootstrap and ‘bias-corrected and
accelerated’ (BCa) intervals of [Efron and Tibshirani| (1993)) and |DiCiccio and Efron (1996)
to assess the statistical significance of our estimated parameters. This was done because, at
our current sample size the sampling distributions of the MLE for the asymmetric models
had not yet converged to an approximately normal distribution. The 95% and 99% BCa
intervals are shown in Table [3.8[ and Table [3.9, respectively.



Table 3.8: MLE 95% Bias-Corrected and Accelerated Confidence Intervals § %
= =
Standard Logit Uneven Logit Scobit Asymmetric Logitﬂ E’ Clog-log
Variables 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% S %?.5% 97.5%
Alternative Specific Constants é w
Shared Ride: 2 -1.931  -0.047 -1.430 0.589  -0.876 0.357 -2.221 -0.103% = 0.204 1.66
Shared Ride: 3+ 1.576 5.520 -0.248 3.199 1.813 3.577 -1.659 1.667% E@ 3.787 8.86
Walk-Transit-Walk -0.978 0.162 -0.599 1.097 2.767 152.961  -0.786 1.0870 =-2.176 -1.31
Drive-Transit-Walk -3.182  -2.099 -4.038 -2.157  -1.651 98.255  -0.852 0.646% =-4.416 -3.99
Walk-Transit-Drive -3.530  -2.458 -4.726 -2.733  -2.964 86.590  -0.320 0.696 ?3—4.759 -3.93
Walk 0.921 2.167 0.401 2.225  -0.559 0.887 0.382 1.393 “8—0.619 0.34
Bike -1.749  -0.506 -2.330 -0.185  -3.720 -1.521 0.059 0.664 Q—3.448 -2.43
Travel Time, units:min S
All Auto Modes -0.088  -0.064 -0.219 -1.433e-07  -0.058 -0.035  -0.048 -0.035 %—0.090 -0.06
All Transit Modes -0.032  -0.022 -0.543 -1.372e-09  -0.007 -2.283e-04 -0.019 -0.014  ©-0.031 -0.02
Travel Cost %
Units:$ All Transit Modes -0.198  -0.057 -3.356 -4.771e-08  -0.045 -0.001  -0.113 -0.037 =-0.284 -0.13
Units:$/mi Drive Alone -7.788  -2.430 -30.563 -1.745e-05  -7.662 -2.792  -3.918 -0.281 n§13.308 -8.66
Units:$/mi SharedRide-2 -29.275 -10.988 -89.650 -3.643e-05 -16.506 -8.174 -11.680 -3.460 ZhH4.964  -39.74
Units:$/mi SharedRide-3+ -119.584 -64.001 -164.792 -7.217e-05 -39.785 -24.566 -24.861 -6.904 %7.254 -108.09
Travel Distance, units:mi E
Walk -1.139  -0.906 -1.321 -1.098e-04  -4.743 -1.058  -0.566 -0.212 §—1.093 -0.86
Bike -0.345  -0.224 -10.468 -3.629¢-07  -0.825 -0.268  -0.197 -0.107  =-0.317 -0.20
Systematic Heterogeneity E
Autos per licensed drivers 0918  1.512 1.872¢-06 1.982  0.444 0.783  0.346 0612 =0527  0.9¢
(All Auto Modes) %
) grgf)'Bay Tour (Shared Ride 0.347 1521 2.80le-06 5112 0.596 1.260  0.257  0.827 < 1.056  2.35
) g%‘f;h‘)ld Size (Shared Ride 0.019  0.207 3.761e-07 0.301  0.030 0.121  0.018  0.092 é-o.om 0.16
(Sﬁzb%gi glisgli)Househ"ld 0.573  0.806 1.076e-06 1.269  0.258 0414 0199 0297 0556 0.7¢
Shape Parameters
Drive Alone B “1.153 13.071  0.191 0.707 B B B
Shared Ride: 2 B -0.917 13.360 0.521 1.022 0.306 2.571 B
Shared Ride: 3+ _ -0.602 13.593 0.767 1.209 -4.252 3.251 _
Walk-Transit-Walk -2.844 17.100 1.820 5.406  -4.908 0.601



Table 3.9: MLE 99% Bias-Corrected and Accelerated Confidence Intervals § %
_
Standard Logit Uneven Logit Scobit Asymmetric Logitﬂ E’ Clog-log
Variables 05%  99.5%  0.5% 99.5% 0.5% 99.5% 05%  99.5% S 5% 99.5%
Alternative Specific Constants é w
Shared Ride: 2 2.248  0.280 -1.649 0.922  -1.088 0.599 -2.939  -0.103= »-3.343  1.883
Shared Ride: 3+ 0.870  6.222 -0.495 4144  1.556 3.867 -2.589 L7173 24710 9.747
Walk-Transit-Walk 1151 0.341 -1.003 1210 -0.781  169.288  -2.052 1.087C £-2.321  -1.118
Drive-Transit-Walk -3.348  -1.912 _4.557 2,025 -4.432  102.822 -3.067 0.7153 §-4.540  -3.409
Walk-Transit-Drive 3.693  -2.279 -5.255 2569  -5.391 97.877  -1.226 0.696 S-4.878 -3.747
Walk 0.682  2.358 0.057 2.397  -0.766 1.200  0.289 1.393 0773 0.547
Bike 2,016  -0.298 -2.627 0.009  -4.059 -0.446  -0.870 0.813 ~-3.595 -2.241
Travel Time, units:min S
All Auto Modes 0.091  -0.061 0.325 -4.046e-08  -0.063 0.030  -0.049  -0.030 Z-0.093 -0.047
All Transit Modes 0.034  -0.021 -0.656 -1.404e-10  -0.022 -2.271e-04  -0.020  -0.013 $5-0.033 -0.020
Travel Cost %
Units:$ All Transit Modes 0.218  -0.031 4610 -2.79¢-09  -0.131 20.001  -0.124  -0.021 5-0.307 -0.032
Units:$/mi Drive Alone 8777 -1.677  -T5.446 -3.344c-06  -8.770 2207  -4.445 0.325 =14.158 -4.659
Units:$/mi SharedRide-2 232,749 -7.675 -134.983 -9.149¢-06 -18.268 7.097 -13.312  -2554 IH7.399  6.917
Units:$/mi SharedRide-3-+ 2129.730  -56.617  -212.323 -1.994e-05 -42.701  -21.672 -28.281  -4.806 -289.148 15.216
Travel Distance, units:mi E
Walk 1182 -0.877  -11.685 -4.183¢-09 -4.781 0.822 0586  -0.141 31133 -0.834
Bike 0.365 -0.206  -12.898 -6.228¢-09  -1.385 20166 -0.210  -0.060 =-0.334 -0.191
Systematic Heterogeneity E
Autos per licensed drivers 0.798  1.600 5.799¢-07 3.144  0.399 0.861  0.302 0.676 = 0277  1.068
(All Auto Modes) %
) grgf)'Bay Tour (Shared Ride 0.197  1.671 6.597¢-07 7.344  0.491 1.385  0.161 0.926 % 0400 2.515
) g%‘f;h‘)ld Size (Shared Ride 20.015  0.235 6.513¢-08 0.633  0.014 0.138  0.006 0.102 C%-0.053 0.197
(Sﬁzb%gi glisgli)Househ"ld 0.538  0.847 3.086e-07 1.829  0.238 0.449  0.184 0.318¢ Q0.171  0.832
Shape Parameters
Drive Alone B -1.553 14.357  0.061 0.766 B B B B
Shared Ride: 2 B -1.335 14.653  0.407 1.090  0.306 4.346 - B
Shared Ride: 3-+ B -0.968 14870 0.696 1.292  -4.252 4.447 B
Walk-Transit-Walk -3.025 19.054  0.348 5506  -4.908 1.802
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Testing

In our application, we use two types of model-testing or comparison procedures. First we
use “in-sample” testing and comparison where the same sample that is used to estimate
our models is then used to compare one model against another. The second type of model
comparison and testing procedures that we use is “out-of-sample” where we use one subset
of observations to estimate our models and then test our models against a different subset of
observations. Because the MNL model is a restricted version of the uneven logit, asymmetric
logit, and scobit models, we use log-likelihood ratio tests as our in-sample tests to compare
the MNL versus the uneven logit model, the MNL versus the asymmetric logit model, and
the MNL versus the scobit model. For our out-of-sample comparisons, we compare all of the
models against one-another using ten-fold, stratified cross-validation. For this technique,
we separate our data into ten stratified random subsetf’] Then we iterate through the
ten subsets, one at a time, using the selected subset for testing and the other nine subsets
for estimation. The models are then compared on the basis of their average log-likelihoods
across the ten subsets used for testing.

Cordon Toll Analysis

The current congestion pricing proposal for the City of San Francisco is “The Mobility, Access,
and Pricing Study” (MAPS) being conducted by the San Francisco County Transportation
Authority (2010). The main congestion pricing alternative being studied is a $3 toll that
would be collected from cars passing into or out of the “Northeast Cordon” shown in Figure
during the AM peak (6AM - 10AM) or PM peak (3PM - 7PM), with individuals being
charged no more than twice per day.

To study the effects of the proposed and similar congestion pricing schemes, we use
sample enumeration based on the individual-level sample weights supplied by the CHTS.
In particular, we varied the toll amount per crossing, from $0 to $5 in $0.50 increments,
calculated the probability of each travel mode for each tour given the current toll amount
per crossing, and then used the sample weights to calculate the expected amount of tours
using each mode. Care was taken to ensure that we properly calculated if, when, and how
many times a tour would result in an individual driving into, out-of, or within the Northeast
Cordon so that the toll could be applied as it is has been described in the MAPS study.

Moreover, while it is unlikely that individuals will be using the walk-transit-drive or
drive-transit-walk mode to commute into or out-of Downtown San Francisco (due to the
lack of public parking lots at subway stations within the Northeast Cordon), we also applied
the toll to those modes for people whose destination or origin (respectively) was within
the cordon. Our rationale is that the purpose of the toll is to ease congestion within the
Northeast Cordon. Using the walk-transit-drive or drive-transit-walk modes to commute
into or out-of the Northeast Cordon is not supportive of such a purpose, even if one may

21Stratification is used so that the proportions of tours associated with each travel mode are relatively
constant across the subsets.
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1

Laguna Street

18th Street

Figure 3.7: Northeast Cordon for San Francisco Congestion Pricing (San Francisco County
Transportation Authority|, 2010))

not physically drive one’s vehicle across the cordon. Our analysis therefore assumes that the
agency implementing the congestion charge will devise a way to track and charge individuals
using walk-transit-drive or drive-transit-walk to commute into or out-of locations inside the
Northeast Cordon.

TDM Analysis—Individualized Marketing

To better understand the differences between the standard MNL model and the asymmetric
logit-type models developed in this chapter, we asked the following question. Given a fixed
budget to be spent on the provision of month-long free transit passes (such as for an individ-
ualized marketing pilot program), how would using the various asymmetric choice models for
target selection compare to using the MNL model in terms of the dollars spent per expected
new transit-rider?

To answer this question, we needed:

e a way to calculate the costs of transit-pass provision for each targeted individual,
e a way to select individuals for targeting given the choice model being used, and

e a way to assess each targeted individual’s change in the probability of transit usage,
given free transit.

First, we calculated the total cost of transit-pass provision for each individual by multiplying
each individual’s cost of the “walk-transit-walk” mode by an assumed 22 working days per
month. Although one might typically take the cost of a month-long transit pass from relevant
transit agencies and use this as the cost of transit-pass provision for each individual, transit
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agencies in the San Francisco Bay Area such as the Bay Area Rapid Transit (BART) System
and Caltrain use distance-based fares. As a result, such agencies do not offer monthly passes,
and we based our cost calculations on the individualized transit costs instead of using a single
cost for all individuals. The idea is that each individual would be provided with a transit-
pass that has been preloaded with the amount of money that is deemed necessary for the
individual to complete one walk-transit-walk commute tour per working day for a month.

Secondly, to select individuals for targeting, we assumed the role of an agency that was
interested in (1) incentivizing individuals to use the “walk-transit-walk” mode and (2) maxi-
mizing the increase in the expected number of walk-transit-walk riders per dollars expended.
Based on these goals, our target selection procedure was as follows. We first calculate the
probability of using the walk-transit-walk mode with and without a transit pass. Note that
the provision of a transit pass would completely eliminate the cost of the walk-transit-walk
mode, but it would also reduce the cost of the walk-transit-drive and drive-transit-walk
modes by however much the individual would pay in walk-transit-walk costsFE]. Next we di-
vide the change in the walk-transit-walk probability by the total cost of transit provision for
each person. Finally, we place the individuals in descending order according to their change
in walk-transit-walk probabilities per dollar spent, and we select all individuals from the top
of the list such that the total cost of the transit-pass provision for all selected individuals
is less than our specified budget. We repeated our analysis for a range of different budgets
(35,000 - $60,000) to better understand how the models perform in different scenarios.

Lastly, to assess each targeted individual’s change in the probability of transit usage, we
had to choose a model to treat as “truth.” As shown in Section the uneven logit model
had the best in-sample and out-of-sample log-likelihoods. Given the dominant performance
of the uneven logit model, we treated it as the “true” model that would be used to calculate
the probability of an individual taking transit with or without a free transit-pass. Each
model’s probability predictions were therefore used to select the individuals for targeting as
described in the last paragraph, but the uneven logit model was used when assessing the
ratio of the total cost of the individualized marketing program to the total increase in the
expected number of walk-transit-walk riders.

As one reviewer pointed out, treating the uneven logit model as the “truth” may be viewed
as problematic because the shape parameters of the uneven logit model have confidence
intervals that include zero (the same value as the standard MNL model). However, the joint
confidence region of the vector of uneven logit shape parameters definitely excludes the vector
of all zeros (i.e. the standard MNL model). This can be seen by the statistically significant
results of the likelihood ratio test of the uneven logit model versus the standard MNL. As a
result, even though the shape parameters have some uncertainty associated with them, the
joint uncertainty is not so large as to include the standard MNL model. Because of these
observations, and because we still need to be able to compare each model’s predictions with
some notion of ‘truth,” we treat the uneven logit model as the ‘truth.” Moreover, we choose
to not include bootstrapped confidence intervals in Figure The point of this plot is to

220f course, we assumed a minimum cost of $0.
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illustrate that differences between the various logit-type models are to be observed at the
disaggregate level. This point would remain, even if overlapping confidence intervals were
displayed, as the means of these confidence intervals would remain as they are now.
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Chapter 4

Machine Learning Meets
MICI'OGCOHOIHICSI The Case of Decision Trees and Discrete Choice

Abstract
In the 1960’s, the logistic regression model from statistics and the binary probit model from psy-
chology were linked with random utility theory, thereby connecting such methods with economic
theory. Since then, the fields of statistics, computer science, and machine learning have created
numerous methods for modeling discrete choices. However, these newer methods have not been
derived from or linked with economic theories of human decision making. We believe this lack of
economic interpretation is one reason discrete choice modelers have been slow to adopt these newer

methods.

This chapter begins bridging this gap by providing a microeconomic framework for decision
trees: a popular machine learning method. Specifically, we show how decision trees represent a
non-compensatory decision protocol known as disjunctions-of-conjunctions and how this protocol
generalizes many of the non-compensatory rules used in the discrete choice literature so far. Addi-
tionally, we show how existing decision tree variants address many economic concerns that choice
modelers might have. Beyond theoretical interpretations, we contribute to the existing literature of
two-stage, semi-compensatory modeling and to the existing decision tree literature. In particular,
we formulate the first bayesian model tree for classification, thereby allowing for uncertainty in
the estimated non-compensatory rules as well as for context-dependent preference heterogeneity in
one’s second-stage choice model. Using an application of bicycle mode choice in the San Francisco
Bay Area, we estimate our bayesian model tree, and we find that it is over 1,000 times more likely
to be closer to the true data-generating process than a multinomial logit model (MNL). Qualita-
tively, our bayesian model tree automatically finds the effect of bicycle infrastructure investment
to be moderated by travel distance, socio-demographics and topography, and our model identifies
diminishing returns from bicycle lane investments. These qualitative differences lead the bayesian
model trees to produce forecasts that directly align with the observed bicycle mode shares in regions
with abundant bicycle infrastructure such as Davis, CA and the Netherlands. In comparison, the
forecasts of the MNL model are overly optimistic.
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4.1 Introduction

During the 1960s and 1970s, Daniel McFadden spearheaded the use of discrete choice tech-
niques within economics, and in 2000, he was awarded a Nobel Prize for this work (University
of California at Berkeley, 2000; [Manski, 2001)). By his own account (McFadden, |2001), Mc-
Fadden’s major contribution was not the creation of the conditional logit|'| model-—a model
that is still one of the most widely used discrete choice methods today. Indeed, the con-
cept of a random utility maximization model was created earlier by Jacob Marschak (1960)),
and statistical models that are nearly equivalent to McFadden’s conditional logit model had

already been introduced by David Cox (1966]). According to McFadden,

“The reason my formulation of the MNL model has received more attention
than others that were developed independently during the same decade seems to
be the direct connection that I provided to consumer theory [...].” (McFadden,
2001, p. 354).

Put simply, the great contribution of McFadden’s work is that he connected an existing
statistical model of discrete outcomes with economic theory (Manski, [2001)).

In the more than fifty years since McFadden’s pioneering efforts, the fields of machine
learning and statistics have produced a vast array of methods that, like discrete choice
models, predict the probability that a given discrete outcome will be realized out of a finite
set of discrete alternatives. We now have decision trees, kernel machines, neural networks,
and much more (Bishop| 2006; |[Friedman et al., 2008; Murphy, 2012). In general, these new
techniques often display superior predictive ability compared to traditional discrete choice
models (Fernandez-Delgado et al., 2014 Wainer, [2016]). However, despite this smorgasbord of
accurate methods, discrete choice modelers have mostly restricted themselves to econometric
techniques that are descended from McFadden’s conditional logit model (Manski, 2001).

We hypothesize that one reason machine learning models have not made greater inroads
amongst discrete choice modelers is because these models have not been linked to economic
theories of human decision-making. Moshe Ben-Akiva (1973)), one of the earliest discrete
choice researchers, once wrote that “a model can duplicate the data perfectly, but may
serve no useful purpose for predictionE] if it represents erroneous behavioral assumptions.”
Though written in the 1970’s, we believe that this sentiment still pervades the field of
discrete choice modeling and econometrics more broadly (Einav and Levin), 2014; |Bajari et al.|
2015alb). As a result, econometricians do not make frequent use of alternative techniques
from machine learning and statistics. Such methods may be useful for prediction under
stationary conditions, but they are considered black-boxes that lack a theoretical basis for
interpreting and understanding human behavior.

!Note that the conditional logit model is also commonly referred to as the multinomial logit (MNL)
model.

2Note that the sort of prediction being referred to is prediction in the face of a policy change. This type
of prediction is characteristic of causal inference whereby one predicts the effects of external manipulation
of environmental conditions.
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In contrast to newer techniques from statistics and machine learning, almost all discrete
choice models in the literature are rooted in the theory of utility maximization (Train, 2009),
and even competing discrete choice models are based on alternative behavioral theories such
as regret minimization (Chorus, 2012)). Overall, theory-based econometric techniques appear
to have become dominant within econometrics because behavioral theories provide a way to
understand and interpret one’s model outputs beyond in-sample and out-of-sample predictive
accuracy. Machine learning methods have yet to provide this additional framework and
linkage with economic theory.

In this chapter, we aim to bridge this method-versus-theory gap by continuing to merge
existing quantitative techniques with economic principles. Our contributions to the litera-
ture are as follows. First, we take a popular machine learning method—decision trees—and
we connect it to economic theory. To do so, we provide a microeconomic framework for the
interpretation of decision trees. In particular, we show that decision trees correspond to a
non-compensatory, microeconomic decision protocol known as “disjunctions-of-conjunctions”
(Hauser et al., 2010)). Using this perspective, we explain how many of the varieties of decision
trees address and can be motivated by microeconomic considerations such as analyst uncer-
tainty or heterogeneity in one’s non-compensatory behaviors. Additionally, our economic
viewpoint suggests new additions to the existing body of decision tree techniques—additions
that should lead to not only richer econometric models, but to more accurate statistical
models overall.

Second, by combining decision trees with traditional discrete choice models, we advance
the state of the art in the modeling of semi-compensatory decision making. We discuss how
decision trees allow us to more flexibly represent non-compensatory behaviors than previously
possible. Moreover, we show that our two-stage, semi-compensatory model jointly models
how non-compensatory decision protocols influence both choice set formation and preference
heterogeneityf’]

Finally, our third contribution is an empirical demonstration of the aforementioned tech-
niques to the choice of travel mode in the San Francisco Bay Area. We show that the
semi-compensatory models fit the data better than traditional models based solely on utility-
maximization, and we show that the semi-compensatory models lead to a number of policy
implications that are not readily uncovered by traditional discrete choice models. Through
this application, we illustrate the quantitative and qualitative benefits that can come from
combining economic theory with machine learning and modern statistical methods.

3We are aware that, in the discrete choice literature, the term preference heterogeneity has been used
ambiguously. In some cases, preference heterogeneity refers to differences in the general preference for an
alternative, irrespective of attributes of the alternative (Bhatl 1998]). In other cases, preference heterogeneity
is taken to also include the coeflicients that are multiplied by an alternative’s attributes when using a linear-in-
parameters choice model specification (Kamakura et al. [1996)). In still other cases, preference heterogeneity
is taken to also include choice set heterogeneity (Vij and Walker], |2014). In this chapter, we use preference
heterogeneity to include all of the coefficients in one’s linear-in-parameters choice model specification. If one
is using a non-linear or non-parametric choice model specification, we are also using preference heterogeneity
to include differences in the systematic utility functions for different individuals.
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Structurally, the rest of this chapter is organized as follows. In Section we provide
an econometrically accessible introduction to decision trees. Here, we focus on decision
trees as a statistical tool. Next, Section describes the microeconomic theories of non-
compensatory decision making that are related to decision trees, and it shows how decision
trees algorithmically represent these concepts. Here, we focus on the ways that decision
trees are motivated by particular decision making principles. In Section [4.4] we review
how the aforementioned microeconomic concepts have been operationalized in the discrete
choice literature so far, and we make note of how decision trees address the theoretical and
practical difficulties with these previous implementations. Section[4.5|then details the various
types of decision trees, including combined decision-tree/discrete-choice models. Specifically,
we orient our discussion around the ways these decision tree variants address economic
considerations that might prevent choice modelers from using decision trees in their work.
In Section , we formulate a new decision-tree/discrete-choice model, and we apply the
model to the choice of travel mode in the San Francisco Bay Area. We describe the data
used for this application, and we discuss the greater fit and unique insights provided by our
semi-compensatory model in comparison to models based purely on utility-maximization.

Finally, Section [.7] concludes.

4.2 Decision trees explained

In this section, we provide a brief description of decision trees, targeting econometricians as
our main audience. We will first provide an explanation of what a decision tree is, and we
will use a highly simplified example to demonstrate how they can be used. After this, we will
give a brief description of some of the (many) ways that decision trees are estimated from
data. Here, again, we will focus on comparing and contrasting these estimation methods
with techniques that econometricians are familiar with.

What are decision trees and how do we use them?

In simple terms, decision trees are a set of “if-then” statements that are used to predict a
given quantityﬁ (Loh, 2011). Etymologically, decision trees get their name because they are
often represented graphically as a tree: an acyclic set of nodes connected by directed edges,
with each node connected to at most one preceding node, beginning with a single “root” node
that has no edges pointing into it, and terminating with a set of “output” nodes (Meila and
Jordan, 2000; Rokach and Maimon|, 2005)). Each path from the root node to an output node
represents one of the “if-then” statements that make up the tree. These if-then statements
must partition the space of explanatory variables into a set of mutually exclusive regions
(corresponding to the output nodes) that span the entire space of explanatory variables

4We realize that our definition of decision trees is broad. Our definition includes models such as regression
trees, classification trees, decision lists, and decision tables (Rivest] 1987, [Lohl 2011)). For this chapter’s
purposes, these models are similar enough to merit a joint description.
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Raining == True
<-True, False—>

Travel Time < 30 minutes

Topography == Flat

Output 4: No

Figure 4.1: Example decision tree for bicycle consideration

(Lemon et al., 2003). Then, when making predictions about a decision maker, the “if”
condition is used to determine the region/output-node the decision maker is in, and the
corresponding “then” statement is used to provide the desired prediction. In a discrete choice
context, such predicted quantities might be (1) the probability that a particular alternative
is considered or (2) the probability with which an alternative is chosen.

To continue our explanation of what decision trees are and how they can be used, we will
now provide a concrete, but highly stylized example of choice set generation, conditional on
a given decision tree. In the discussion that follows, we realize that modelers may have many
valid reservations about the realism of our example. It suffices to say that concerns about
the deterministic nature the choice sets generated by our tree (shown in Figure , concerns
about the explicit discontinuities in the tree, and concerns about how such a tree could be
estimated can all be addressed. Our example only features these qualities for simplicity of
discussion. We note that in some contexts, deterministic choice sets are not uncommon: for
example, when individuals are making residential location choices, some housing options may
be deterministically excluded because the rents violate the individuals’ income constraints
(Kaplan et all 2012} |Zolfaghari et al., 2013; Bhat, 2015). Moreover, decision trees that
probabilistically predict an individual’s choice set can be estimated. These considerations
will be discussed in Section [£.5] Concerns about the explicit discontinuities in our tree can
be relaxed by considering individual heterogeneity in the split points of a tree or in the very
structure of the tree being used. Like the issue of estimating trees that probabilistically
predict an individual’s choice set, concerns about individual heterogeneity are discussed in
Section Lastly, the estimation of decision trees will be discussed in Subsection (4.2

Now, disclaimers aside, imagine that we are modeling the choice set formation behavior
of travellers who are choosing the mode by which they will travel. Further, assume that our
population of individuals has only two commuting alternatives: bicycle and public transit,
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and assume that public transit is always considered. Finally, Figure shows the decision
tree that represents the assumed choice set formation process in our hypothetical population.
Here, Raining is either True or False, Travel Time is measured in minutes, Topography is
either Flat or Hilly, and the dependent variable (bicycle consideration) is either Yes or No.
From the tree in Figure [£.I] a number of useful observations can be made. First, there
are four output nodes, two of which result in bicycle being considered and two that result
in bicycle not being considered. Secondly, we see that bicycle consideration is a function
of weather (raining or not), travel time, and topography. Now, to use the tree to make
predictions for a given individual, one must traverse the tree from top to bottom, ending at
one of the tree’s output nodes. The rules for traversing the givenP| decision tree are that if
the condition in a decision node (i.e. a non-output node) is True, then one goes to the left
and if the condition is False, one goes to the right.

So, what can one use the tree in Figure for? First, the tree and its predictions can be
directly used to inform policies. For instance, a municipality trying to increase bicycle usage
must first ensure that bicycle is considered as a mode of travel. Based on this example’s
tree, the municipality might subsidize the relocation costs for individuals that wish to move
to a location that is 30 minutes away or closer to their workplace. Such subsidies would help
push bicycle into the choice sets of individuals, thereby increasing the expected number of
bicycle commuters. Secondly, the tree in Figure might be used as part of a larger model
building effort. For instance, one might use the tree in Figure to inform a two-stage
model of travel mode choice. At the first stage, an individual’s choice set is modeled. By
assuming that individuals must travel to work and that public transit is always considered,
our example is left with two possible choice sets: {Public Transit} and {Public Transit,
Bicycle}. The choice sets in this example are based on whether bicycle is considered or not,
and the probabilities of these choice sets (i.e. the first stage in Manski’s two-stage models)
can be written as follows:

P (C' = {Public Transit, Bicycle} | x, tree) = P (Bicycle considered | x, tree)
= Z P [Bicycle considered | T (z) = r] P[T (z) = r]

where C' = An individual’s choice set.
re{1,2,3,4}
r = A specific region demarcated by the decision tree.
T () = The region an individual belongs in based on z and the tree

x = Explanatory variables for an individual.
(4.1)

For most decision trees, T'(x) is a deterministic functionﬂ such that, given explanatory

5We note in passing that the traversal rules may change from tree to tree, based on author preference,
but they should always be explicitly stated.

6The primary exception to this is a “probabilistic” decision tree, also known as a “soft” or “fuzzy” decision
tree, where T () is a probabilistic function. These decision tree variants will be discussed in Section
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Figure 4.2: Regions 2-4 of example decision tree for bicycle consideration

variables =, an observation is deterministically assigned to a given region/output-node r.
For our example, regions 2-4 are graphically depicted in Figure [4.2 Because our T (z) is
deterministic, P [T () = r| is either 1 or 0, and the same is true of the probability of bicycle
consideration, conditional on being in a given region. In all cases, we can expand P [T (x) = r]
to more explicitly show how each explanatory variable contributes to the likelihood of an
observation being in a given region.

Specifically, we note that each “if” statement in the decision tree can be written as the
union of elementary conditions, typicallyﬂ with one such elementary condition per explana-
tory variable. For instance, let x; denote whether it is raining, let x5 denote the bicycle travel
time between an individual’s home and work, and let x3 denote the topography between an
individual’s home and work. Additionally, let S, denote the set that variable x; must be in
for an individual to belong to region r. Using these variables, we can write the region cor-
responding to the first output node as Sy; = {True}, Si5 = [0, 00), and S;3 = {Flat, Hilly}.
These sets reflect the fact that output node 1 is the region of the variable space where Raining
is True and where any values of Travel Time or Topography are valid. With this notation,
we can express the probability of bicycle consideration as follows:

The other exception is where the case of measurement error where the value x is unknown and modeled with
a probability distribution of its own.

"Exceptions to this statement come from decision trees that are not “axis-aligned,” such as oblique
decision trees that use inequalities with linear combinations of variables for their “if” conditions (Murthy
et al., [1994; Ittner and Schlosser] [1996|).
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P (Bicycle considered | z, tree) = Z P [Bicycle considered | T (z) = 7| P[T (z) = 7]

m T € Srk]

= Z {P [Bicycle considered | T' () = r] H Plx, € Srk}}

k
(4.2)
The equation above shows how, conditional on a given decision tree, one can form the
sorts of probability statements that are common in the first stage of two-stage choice models
with non-compensatory rules for choice set formation (Gilbride and Allenby| 2004; |Cantillo
et al., 2006). Moreover, if one’s decision tree was being used to directly predict the proba-
bility of a given alternative, one’s likelihood function would be formed analogously. Besides
being transparent about how the structure of the tree translates to one’s likelihood equa-
tions, Equation highlights the link to the non-compensatory decision protocol known as
disjunctions-of-conjunctions (Hauser et al. 2010). Though we will delay a detailed discussion
of this protocol to Section [£.3] we point out here that logical disjunctions are algebraically
represented as summations and logical conjunctions are algebraically represented as products
(Gilbride and Allenby;, 2004)). Equation shows that when modeling bicycle consideration
with a decision tree, our probabilities of interest are explicitly given as a summations of
products (i.e as disjunctions-of-conjunctions). Importantly, such a decision protocol general-
izes the typical conjunctive or disjunctive rules that are used in choice models that represent
non-compensatory processes. See Section for further discussion and explanation of this
point.

= Z P [Bicycle considered | T (z

How do we estimate decision trees?

In the previous subsection, we explained what decision trees are and (conditional on a specific
decision tree) what one can do with them. In this subsection, we turn to the question of how
such decision trees are estimated from data and how such estimation techniques differ from
those commonly employed in the discrete choice literature.

To begin, discrete choice modelers are most likely to be familiar with estimation tech-
niques such as maximum likelihood, method of moments, and bayesian Markov Chain Monte
Carlo (MCMC) methods (Train, 2009). Of these techniques, only bayesian MCMC methods
have been applied to the estimation of decision trees (Chipman et al., [1998; |Denison et al.
1998; Letham et al.l 2015, Pratola, |2016). We believe that the main reason for this dis-
crepancy in estimation methods is that decision trees are not continuous functions. Instead,
they are explicitly discontinuous functions of the explanatory variables (e.g. at a particular
node, should we split on Travel Time or Travel Cost?). Maximum likelihood, if it is to be
performed at all can no longer rely on gradients and hessians, so enumeration and compar-
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ison of all decision trees is necessary. However, enumeration of all possible decision trees is
NP-hard (Ruggieri, 2017)). Since it is computationally prohibitive to enumerate all possible
decision trees and assess their log-likelihoods, maximum likelihood estimation of decision
trees is typically viewed as infeasible. Similarly, since the method of moments and its gener-
alizations require continuous moment functions (Hansen| |1982)), these estimation techniques
cannot be used to estimate decision trees.

As highlighted in the last paragraph, estimation of decision trees is severely hindered by
the discontinuous nature of the trees and the fact that explicit enumeration of all possible
trees is computationally prohibitive. Due to these challenges, most estimation techniques
(both bayesian and frequentist) use approximations and heuristics. By far, the most common
frequentist heuristic is to use a greedy algorithm to estimate the tree (Rokach and Maimon),
2005). Here, one recursively performs a search over all variables and values of those variables
to pick the variable and value combination that best meets some “splitting criteria.” After
finding the best variable and value pair, the dataset is split according to the chosen pair.
The process is then repeated for each subset of the data: those meeting the chosen condi-
tion and those not meeting the condition. The greedy estimation of the decision tree will
terminate once some stopping criteria is met (e.g. no output node should contain less than
5 observations). After the initial estimation of the decision tree, some estimation methods
“prune” the initial tree by removing nodes according to a “pruning criterion” (Mingers| |1989;
Esposito et al., |1997)). Differing methods and criteria for splitting, stopping, and pruning all
lead to different types of decision trees (Lohl 2014; Rokach and Maimonl, [2014). Moreover,
besides the greedy approach just described, there exist a number of other frequentist tree
estimation techniques such as using genetic algorithms (Barros et al 2012)) or branch-and-
bound algorithms (Angelino et al. 2017)). Though we cannot perform an exhaustive review
of the various decision tree estimation techniques, good surveys of this material can be found
in Murthy| (1998)); Rokach and Maimon| (2005); Barros et al.| (2012)), and |Lomax and Vadera
(2013)).

For the bayesian estimation of decision trees, a prior is placed over the space of possible
decision trees, the likelihood is formed using equations similar to Equation 4.2 and then an
MCMC algorithm is used to sample from the posterior distribution of possible decision trees
(Chipman et al.| 1998} Denison et al.l 1998} Letham et al., [2015; [Pratola, [2016). At first
glance, this seems exactly the same as what is always done in a bayesian estimation. However,
since the set of all possible decision trees is huge and discrete, the MCMC algorithms do
not typically “explore” the entire posterior distribution of trees (Chipman et al., [1998)). The
approximation is that the MCMC methods typically only explore part of the posterior since
these algorithms are limited by however much time an analyst has to let the algorithm run.
If the MCMC algorithm is run for long enough, the hope is that “high accuracy” sections of
the posterior are explored, such that one samples from the trees that are most predictive of
the choices in one’s dataset. Note, unlike the frequentist estimation methods where trees are
defined based on how they are estimated, differing priors or differing MCMC methods lead
to differences in how the space of decision trees is explored, but it is uncommon to speak of
“different” bayesian decision trees. Such differentiation is likely unnecessary because, given
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an impractically long time, all bayesian MCMC techniques will explore the entire posterior
of trees.

Finally, we pause to make a few passing remarks about the properties of the various esti-
mators for decision trees. In standard discrete choice modeling, much importance is placed
on having consistent and efficient estimators. The greedy estimation techniques described
above for decision trees have long been proven to be consistent, non-parametric estimators
of underlying data-generating processes (Gordon and Olshen, 1980, |1984; Toth and Eltinge),
2011). Bayesian techniques have also demonstrated their consistency in simulation (Letham
et al., 2015)), though formal proofs are still missing. In terms of efficiency, however, it is
not clear that this notion is meaningful for decision tree models. In particular, the notion
of an “efficient” estimator being one that achieves the Cramer-Rao lower bound is no longer
meaningful since the parameter space (the number of splits in the tree, variables and values
being split on, and the tree structure) is discrete and increases with the size of one’s data
set (i.e. it is not fixed). If one views efficiency as being inversely related to the variance of
one’s estimator, then it is known that estimation techniques that generate a large number
of candidate trees and then select the best one tend to be less variable than the greedy
methods described above (Tibshirani and Knight], |1999). Nevertheless, whether or not other
variations on the notion of efficiency can be shown to apply to decision trees is beyond the
scope of this chapter and will not be investigated.

4.3 Decision trees: The link with microeconomics

In Section [4.2], we described what decision trees are, how a given decision tree can be used,
and how decision trees might be estimated. Additionally, in both Sections and [4.2]
we noted that decision trees correspond to a non-compensatory decision protocol known
as disjunctions-of-conjunctions (Hauser et al., 2010). In this section we will review this
microeconomic interpretation of decision trees in detail. Initially, we will briefly describe
standard discrete choice models and their use of compensatory decision protocols. Then we
will motivate the need for non-compensatory decision protocols, and in Subsection we will
proceed to describe a number of such behavioral strategies. We will begin with simple non-
compensatory protocols and proceed to describe further generalizations of such strategies
until we arrive at disjunctions-of-conjunctions: a focal point of this chapter. Finally, in
Subsection [4.3], we will mathematically show how decision trees represent disjunctions-of-
conjunctions.

To start, we note that compensatory decision protocols are decision making strategies
where, for a given alternative, “high levels of satisfaction with one attribute compensate
for low levels of satisfaction with [other|” attributes (Foerster, [1979). As readers are likely
aware, almost all discrete choice models used in practice and research are based on com-
pensatory decision processes, with utility-maximization being the most common exampleﬁ

8We are aware of the increasing number of discrete choice models that are being estimated under the
assumption of regret-minimizing behavior. However, such models are still compensatory in nature, and
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(Swait, [2001b; Truong et al., 2015). However, counter to prevailing practices, behavioral
economists and psychologists have presented much evidence that individuals frequently de-
part from standard notions of utility maximization and rationality (Foerster, 1979; Bronner),
1982; 'Tversky and Kahneman) |1986; |Conlisk, (1996). Spurred by these observations, a steady
but small stream of research has both called for and proposed new models of human decision
making that explicitly incorporates the possibility of non-utility maximizing choice behavior
(Simon, (1955; Tversky, (1972; |Gigerenzer and Goldstein, 1996 Leong and Hensher, [2012).
Such alternative methods of decision making are typically referred to as non-compensatory
decision rules or non-compensatory decision protocols. They are called non-compensatory
because they do not always allow positive attributes of a given alternative to compensate for
negative attributes of that same alternative. Additionally, since non-compensatory decision
rules do not typically require the evaluation of all attributes of all alternatives, they better
capture the limited cognitive resources of decision makers (Simon, [1955; Young, |1984; Swait],
2001b) and are therefore thought to be more behaviorally realistic.

Non-compensatory decision rules

Thus far, some of the non-compensatory decision processes that have been detailed in the
discrete choice literature include: dominance (Cascetta and Papolal, |2009), lexicography
(Kohli and Jedidi} [2007)), elimination-by-aspects (Tversky, 1972), satisficing (Stiittgen et al.,
2012)), conjunctive rules, disjunctive rules, subset-conjunctive rules, and disjunctions-of-
conjunctions. Of these, conjunctive and disjunctive rules are quite prevalent in the literature,
and all of the last four non-compensatory rules are related to decision trees. We therefore de-
scribe the last four non-compensatory decision protocols below, and in Section [£.4] we review
how these four protocols have been previously incorporated into discrete choice models.

Conjunctive Rules (Coombs|, 1951; Dawes, (1964))

Using a conjunctive decision rule, an individual only considers alternatives that meet
all of a given number of requirements. For instance, an individual making a residential
location choice may only consider housing options that meet his or her requirements
on the maximum amount of rent and the distance from the individual’s workplace
location. The “and” statement is what distinguishes this decision rule as conjunctive.
As noted in Subsection conjunctive statements are algebraically represented using
products.

Disjunctive Rules (Coombs, 1951; Dawes, (1964))
Using a disjunctive decision rule, individuals only consider alternatives that meet at
least one of a given set of requirements. For instance, continuing with the residential
choice example, an individual may only consider housing options that are within a given
distance from their workplace location or that are within a given distance from major
public parks. The “or” statement is what distinguishes this decision rule as disjunctive.

therefore retain many of the properties we describe in the context of utility-maximization.
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As noted in Subsection [4.2] disjunctive statements are algebraically represented using
sums.

Subset-Conjunctive Rules (Jedidi and Kohli, 2005)

Subset-conjunctive rules are a generalization of both conjunctive rules and disjunctive
rules. Using a subset-conjunctive decision rule, an individual only considers alternatives
that meet a certain number of requirements. Using another residential location choice
example, consider an individual who would like to live within one mile of a major public
park, who would like to live within two miles of his or her workplace, who would like
to pay less than $1,000 per month in rent (but is flexible), and who would like to live
within one mile of a subway station. Under a subset-conjunctive rule, this individual
would consider any housing units that meet some number of these four requirements.
For instance, this individual might consider any housing units that meet at least three
of these four requirements. Note that if this individual only considered housing units
that met all four requirements, then this would be equivalent to a conjunctive decision
rule with four requirements. Likewise, if this individual only required housing units
to meet one of the four requirements, then this would be equivalent to a disjunctive
decision rule. Algebraically, subset-conjunctive rules are therefore sums of products,
with the restriction that each product term have a given number elements (one for
each requirement that should be met).

Disjunctions-of-Conjunctions (Hauser et al., 2010)
Disjunctions-of-conjunctions generalize the conjunctive, disjunctive, and subset-conjunctive
decision rules. Under a disjunctions-of-conjunctions decision protocol, an individual
will consider any alternative that meets at least one of a given set of conjunctive con-
ditions. Each condition may differ in the number of requirements that compose the
conjunction. Algebraically, then, disjunctions-of-conjunctions are expressed as sums of
products with no constraints on the number of elements in each product.

Consider once more the residential choice example. If, for instance, our decision maker
was more concerned about rent than the other requirements, he or she might consider
any housing unit that required less than $1,000 per month in rent and that met one of
the remaining three requirements. Additionally, he or she might consider any housing
unit that was simultaneously within one mile of a major park, within one mile of a
subway station, and within two miles of his or her workplace. In this case, only one of
the following four conjunctive conditions needs to be met in order for a housing unit
to be considered:

e rent less than $1,000 per month and housing unit within one mile of a major
public park

e rent less than $1,000 per month and housing unit within two miles of the individ-
ual’s workplace



CHAPTER 4. MACHINE LEARNING MEETS MICROECONOMICS: THE CASE OF
DECISION TREES AND DISCRETE CHOICE 121

e rent less than $1,000 per month and housing unit within one mile of a subway
station

e housing unit within one mile of a major public park and within one mile of a
subway station and within two miles of the individual’s workplace.

As can be seen from the example above, if the individual had only one condition
for consideration, we would have a conjunctive rule. If the individual had only one
requirement in each of the four conditions above, then we would have a disjunctive
rule. Similarly, if we expanded the first three conditions above so that they each
included a third requirement, we would once again have the subset-conjunctive rule
whereby any housing unit with three of the four requirements would be considered.

Before moving on to Subsection [4.3] we pause to briefly summarize why we believe the
link between disjunctions-of-conjunctions and decision trees is important. First, as noted
above, conjunctive rules and disjunctive rules are seen as important information process-
ing strategies, and they have been applied in many choice modeling efforts (Foerster, |1979;
Swait, [2001b}; (Gilbride and Allenby|, 2004; Elrod et al., 2004; Martinez et al., |2009; Hauser
et al., |2010; [Hess et al., 2012 Kaplan et al., 2012; Zolfaghari et al., 2013 Truong et al.,
2015)). Being a generalization of these two rules, disjunctions-of-conjunctions may also be an
important decision making strategy, but it has seldom been tested in choice modeling con-
texts. We think a major reason for this lack of choice modeling application is because there
have not been easy or straightforward ways to estimate such rules. Linking disjunctions-of-
conjunctions to decision trees gives researchers a way to estimate disjunctions-of-conjunctions
by drawing upon well established methods of estimating decision trees. Additionally, once
disjunctions-of-conjunctions can be estimated by themselves, it is then possible to estimate
such strategies in combination with the compensatory procedures used in standard discrete
choice models. We pursue this strategy later, in Section [4.5] and Section [4.6]

Linking decision trees with disjunctions-of-conjunctions

As described in the previous subsection, disjunctions-of-conjunctions are highly flexible non-
compensatory decision protocols. Here, we highlight how decision trees mathematically
represent the relationships implied by disjunctions-of-conjunctions.

First, we define the necessary notation. Let b represent a primitive boolean statement,
i.e. a specific requirement. Such a statement is an equality or inequality that is not composed
of any other equalities or inequalities. For instance, x == 2 and x < 5 are primitive boolean
statements but ((x; == 2) % (x5 < 5)) is not a primitive boolean statement because it is
composed of two boolean statements. Additionally, if b is True, then we say that b = 1, and
if b is False, then we say that b = 0.
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With this notation, conjunctive rules can be expressed as:

() o

i=1
where B = the total number of requirements in the rule. (4.3)
“=" = “then” or “implies”.

Yy = some outcome.

In words, this is read as “if all requirements, b;, are met, then 3”. This follows because each
b; must be True (i.e. must be met) in order for that b; to equal 1, and we need all b; to equal
1 in order for [],_, b; to evaluate to 1.

Similarly, a disjunctive rule can be expressed as:

In words, this is read as “if at least one (i.e. if any) of the requirements b; are met, then y”.
This follows because any requirement b; that is not met will cause that b; to evaluate to 0.
If at least one requirement is met, then the corresponding b;’s will evaluate to 1, and then
> i—y bi will be greater than or equal to 1.
With these building blocks, we turn immediately to the case of disjunctions—of—conjunctionsﬂ

In words, the use of disjunctions-of-conjunctions requires statements such as “if at least one
of some set of conjunctive conditions is met, then y.” To mathematically express such a
statement, we will introduce additional symbols. The first symbol, p, will represent con-
junctive conditions, i.e. products of primitive boolean statements. As noted in Subsection
4.3 in disjunctions-of-conjunctions, the various conjunctive conditions need not have the
same number of requirements. To account for this, we will index the various conjunctive
conditions by i, and we will use | p; | to denote the number of requirements that make up
p;. Finally, we will use the symbol, bé», to indicate the j’th primitive boolean statement
(i.e. the j’th requirement) in conjunctive statement p;. With this additional notation, our
disjunctions-of-conjunctions statement can now be expressed as:

D
if <Zpi) >1=y

i=1

D |pil (4.5)

it (> ]v ] =1=v

i=1 j=1

where D = the total number of conjunctive conditions.

9Subset-conjunctive rules will be expressed as a special case of the formula for disjunctions-of-
conjunctions.
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From the first line, we mathematically see the disjunction (i.e. the summation) of conjunctive
conditions. The second line shows the conjunction (i.e. the product) of requirements. Now,
for subset-conjunctive rules, we merely impost the constraint that | p; | be equal to some
constant value for all p;. This is equivalent to saying that each conjunctive condition must
be comprised of the same number of requirements.

To go from the abstract equations above to a decision tree, we must consider what a
conjunctive condition represents. In general, a conjunctive condition defines a region in a
space. Using Figure[4.1] as an example once more, consider the space formed by the variables
r1 = Rain and z9 = Travel Time. The conjunctive condition that leads to output node 2 is
x1 == False AND x5 < 30. This condition will define a rectangular region in the graph of
(21, z2) comprised of the area where x; is False, and the area where x5 is less than 30. For
more examples of regions formed by conjunctive conditions, see Figure above. Now, when
we have multiple conjunctive conditions, we have multiple regions in space. These regions
will either be mutually exclusive, or they will overlap. It is crucial to note that any region
defined by a set of overlapping conjunctive criteria can be expressed as a region defined by
a set of mutually exclusive criteria. For instance, let {p} = {p1,p2} be a region defined by
a set of overlapping conjunctive conditions, p; and p,. This region can be re-expressed as
a set of mutually exclusive conjunctive conditions, {p} = {p1,p2}. One such re-expression
is py = p1 and py = py * P}, where p, is read as “py equals po AND NOT p;.” Observations
meeting the condition ps will therefore satisfy all the requirements of py, but they will not
satisfy all the requirements of p;.

With the possibility of re-expression in mind, recall that using disjunctions-of-conjunctions
means making statements of the form “if at least one of some set of conjunctive conditions,
{p}, is met, then y”. As just noted, this statement can be reformulated as, “if at least one
of some set of conjunctive conditions, {p}, is met, then y”. Given the mutually exclusive
conjunctive conditions of {p}, our reformulation can be expressed as a decision tree where
each conjunctive condition in p becomes an “if” statement in the tree with a corresponding
“then 1" statement. Note we will also need a final condition such as “if ﬂil p; then y')”
where 3’ # y. Here, the final condition ensures that the decision tree is comprised of a set of
conditions that are both mutually exclusive and exhaustive. The condition ﬂfil P, is read
as “NOT p; and NOT py and ... and NOT pp.” Finally, we use 3’ as the outcome for the
remaining conditions that are added to ensure exhaustiveness, e.g. ﬂi’il P, simply because
we assume that if there was any other condition that would result in y, then that condition
would have been part of the original set of conditions, {p}.

4.4 A review of how non-compensatory protocols have
been incorporated in discrete choice

In Section [4.3] we described conjunctive rules, disjunctive rules, subset-conjunctive rules,
and disjunctions-of-conjunctions. However, researchers have gone beyond mere descriptions.
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These decision protocols have been incorporated into choice models and used to quantita-
tively study the concordance of non-compensatory processes with observed choices. In this
section, we will review the ways that conjunctive rules, disjunctive rules, and their general-
izations have been previously incorporated into discrete choice models. Afterwards, we will
highlight drawbacks of the previous work that this chapter seeks to address. Having said
this, we state upfront that our review mainly focuses on the way that non-compensatory
protocols have been used to model choice set generation as opposed to modeling the actual
choice being made. The reason for our focus is that conjunctive rules, disjunctive rules, and
their generalizations are (in general) not sufficient to uniquely choose a particular alternative.
Multiple alternatives may meet an individual’s non-compensatory rules, but (in our context)
a decision strategy must still be employed to generate a single discrete choice. As a result,
conjunctive rules, disjunctive rules, and their generalizations have almost exclusively been
used in the discrete choice literature to winnow a decision maker’s choice set before another
strategy is used (if necessary) to make the final choice. In Subsection 4.4 we review this
approach of choice set generation followed by compensatory choice amongst the considered
alternatives, and we revisit this notion in Section when we describe the decision tree
variant known as “model trees.” In Subsection [£.4] we will briefly review the few ways that
observed choices have been directly{’’l modeled with conjunctive rules, disjunctive rules, and
their generalizations.

Choice-set generation via non-compensatory protocols

Across the literature, two main approaches have been used to incorporate conjunctive, dis-
junctive, and related protocols into discrete choice models. These two approaches differ
primarily based on whether they explicitly model an individual’s decision making using
two-stages as prescribed by [Manski (1977) or whether they use a single-stage model that
implicitly performs choice-set generation. We will begin by first describing the single-stage
models, also known as the “reduced-form” approach (Swait, [2001b).

Pioneered by Swait (2001b)), single-stage models implement conjunctive and/or disjunc-
tive rules by altering the systematic utility of an alternative. When representing strict non-
compensatory behaviors, these models combine attribute values and attribute thresholds to
set the systematic utility of an alternative to -/+ infinity, effectively removing an alternative
from one’s choice set or removing all other alternatives from one’s choice set. Through the
years, multiple single-stage models have been proposed, each with their own set of unique
additions. Swait| (2001b) allowed for non-strict non-compensatory behavior where violation
of an attribute threshold was allowed but resulted in penalties to one’s systematic utility.
Elrod et al. (2004)) estimated the attribute thresholds from choice data only, whereas [Swait
(2001b) required individuals to report their attribute thresholds. Moreover, Elrod et al.
(2004) did not allow violation of one’s attribute threshold and even penalized or rewarded
the systematic utility when the value of an attribute approached that attribute’s threshold,

10T e., without estimating any rules or parameters that implicitly or explicitly determine one’s choice set.
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based on whether a conjunctive or disjunctive rule was being implemented. When allowing
violation of one’s attribute thresholds, [Martinez et al.| (2009) used non-linear penalty func-
tions in contrast to the linear penalty functions of Swait| (2001b)). Most recently, [Truong
et al.| (2015) proposed a novel way to estimate the attribute thresholds in the context of
Swait’s original (2001b)) formulation. Common to all these implementations, however, is
the fact that conjunctive or disjunctive behavior was operationalized through the systematic
utility function.

The second approach used in the literature to represent conjunctive, disjunctive, and
similar behaviors is the two-stage approach where one formally models the choice set gen-
eration process. To date, the vast majority of such two-stage models have relied on the
Probabilistic Independent Availability Logit (PIAL) model (Swait} (1984, 2009). Here, the
two-stage models use non-compensatory decision rules to determine whether each alterna-
tive will be present in an individual’s choice set. The randomness underlying the probability
that an alternative is in one’s choice set is explained as coming from analyst uncertainty
over the attribute thresholds used by each individual to evaluate the non-compensatory
rules. Moreover, the probability of an alternative being in one’s choice set is considered to
be independent of the probability that any other alternative is in one’s choice set, hence the
name PIAL. Despite this independence assumption, PIAL models still suffer from the curse
of dimensionality since they typically require one to enumerate all possible subsets of one’s
universal choice set. As a result, important differences can be seen in the way that various
authors have dealt with this computational hardship. Some authors have used simulation
techniques to avoid full enumeration of the various consideration sets, other authors have
made no attempts at avoiding computational difficulties in estimating PTAL models, and
still other authors have tried to minimize the number of possible consideration sets by col-
lecting explicit consideration set information from decision makers. Our review below will
be structured around these modeling differences.

To the best of our knowledge, the first paper to incorporate conjunctive and disjunctive
rules into a two-stage model was the 2004] paper of Gilbride and Allenby. As described
above, these authors parametrize the probability of an alternative being available as the
probability of an alternative satisfying the conjunctive or disjunctive rules that are made up
by the (unobserved) attribute thresholds for each attribute. To sidestep the computationally
prohibitive step of enumerating each possible consideration set, Gilbride and Allenby use a
bayesian estimation method. In particular, the authors use a MCMC sampling method
to explore the space of possible thresholds, and each set of sampled thresholds induces a
particular choice set that can be used in the second-stage choice process. While apparently
successful in dealing with the curse of dimensionality, most models after|Gilbride and Allenby
(2004) take a different (i.e. a frequentist) approach.

For an example of this frequentist approach, we can look at the second paper on this topic,
by (Cantillo and de Dios Ortuzar| (2005). These authors estimate a frequentist version of the
Gilbride and Allenby model, using standard maximum likelihood estimation as opposed to a
simulation-based optimization method. As a result, these authors are forced to enumerate all
possible consideration sets, thereby incurring all estimation difficulties from the curse of di-
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mensionality. On a positive note, however, Cantillo and Orttuzar are able to parameterize the
attribute thresholds as a function of socioeconomic variables and choice conditions (e.g. trip
purpose, time restrictions, etc.). This allows them to give greater behavioral interpretation
to the estimated thresholds. Shortly thereafter, |Jedidi and Kohli (2005) use a PIAL model
where they allow for subset-conjunctive rules and for individual heterogeneity through the
use of latent classes. To accommodate uncertainty in the number of requirements that need
to be satisfied, Jedidi and Kohli estimate this parameter as well. Their approach amounts
to full enumeration of all possible choice sets under each possible set of criteria and each
possible number of requirements. Later, Swait| (2009) returns to the issue of choice set gen-
eration with a two-stage choice model called a k-Mix model. This model is a PIAL model
at its core, albeit with a couple of important differences. First, favorable conjunctive or
disjunctive rules can be used to not only allow for consideration of alternatives but to place
them in a “dominance” state wherein alternatives are preferred to all other alternatives that
are not in a dominant state. Secondly, unfavorable non-compensatory rules can be used to
place alternatives in a “rejection” state where alternatives are completely disregarded unless
all other alternatives are also placed into the “rejection” state.

Finally, some authors have tried to retain a frequentist modeling framework while avoid-
ing the curse of dimensionality that often plagues PIAL models. The approach taken by
these authors has been to elicit information from individual decision makers that allows the
analyst to specify the decision maker’s choice set exactly. The underlying assumption that
is made by these authors is that all alternatives that meet the conjunctive or disjunctive
criteria are deemed to be in an individual’s consideration set. Given this assumption, the
observation of the exact thresholds used by an individual permits one to specify an individ-
ual’s consideration set with certainty. Prominent examples of models estimated in this vein
include the series of papers by Kaplan et al. (2009; [2012; 2012). In addition to making use
of the observed thresholds, Kaplan et al. model the choice of threshold, thereby allowing the
model to be used for prediction with observations for whom thresholds have not been elicited.
Another model that is estimated according to this approach is the model of [Zolfaghari et al.
(2013)). Though similar to the Kaplan et al. models, Zolfaghari et al. allow for the possi-
bility that individuals do not make use of all elicited attribute thresholds. As in the |Jedidi
and Kohli (2005) model, Zolfaghari et al. deal with the uncertainty over the number and
composition of criteria being used by fully enumerating all possible combinations of number
and sets of criteria. This leads to a formulation that is similar to that of a subset-conjunctive
rule with uncertainty over the number of criteria that must to be met.

Across the aforementioned one-stage and two-stage models, there are two key issues that
this chapter seeks to address. The first issue is that the aforementioned models primarily
represent only conjunctive or disjunctive rules. Only the model by Jedidi and Kohli| (2005)
allowed for subset-conjunctive rules, and none of the models allowed for disjunctions-of-
conjunctions as described in Section[4.3] Secondly, the one-stage models described above suf-
fer from theoretical issues due to their use of constraints to implement strict non-compensatory
behavior. In particular, imagine that there are two attributes, xy and zs, and that violating
the threshold for attribute z; leads to a systematic utility of positive infinity while violating
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the threshold for attribute x5 leads to negative infinity. Although none of the observations in
one’s original dataset may violate both of these estimated thresholds, there is no guarantee
that these thresholds will not be simultaneously violated by one or more observations when
making predictions. In a situation where both thresholds are simultaneously violated, it is
not clear what value the systematic utility should be set to and how calculation of choice
probabilities should proceed. The decision tree models described in Section and
avoid this issue by using sets of conjunctive conditions that are all mutually exclusive, thus
ensuring that no observation is ever described by more than one condition.

Direct choice modeling via non-compensatory protocols

As mentioned in the beginning of this section, few models have directly used conjunctive
rules, disjunctive rules, or their generalizations to predict the probability of a given choice
without estimating any rules or parameters that explicitly or implicitly determine an indi-
vidual’s choice set. To the best of our knowledge, there have only been two such modeling
approaches: the cognitive process model of Zhu and Timmermans| (2010) and the decision
tree models of Arentze and Timmermans| (2004} 2007). These will briefly be described below.

The cognitive process model first creates a new set of discrete features comprised of the
originally discrete features and discretizations of the originally continuous features. The
continuous features are discretized using estimated thresholds. Then, each alternative’s set
of discrete features are weighted using estimated weights, and a systematic utility for each
alternative is created by summing the weighted, discretized features. Next, the systematic
utilities are compared to estimated thresholds to determine the “state” that an alternative
is determined to be in. In|Zhu and Timmermans (2010)), it is assumed that there is only a
reject or accept state. Based on the estimated thresholds and estimated weights, conjunctive
or disjunctive rules may be expressed, and somd"| disjunctions-of-conjunctions can also be
expressed. A drawback of this model is that it is not clear how it works when there are
more than two alternatives. In particular, it is not clear what would happen if two or more
alternatives are placed into the “accept” state, and it is not clear what process would be used
to determine a particular choice from the multiple acceptable alternatives.

In contrast to the cognitive process model, which is quite different from the models
described in this chapter, the decision tree models of |/Arentze and Timmermans| (2004, 2007))
are highly related to our work. Using either decision trees by themselves or in combination
with standard discrete choice models such as the MNL model, |Arentze and Timmermans
directly predict the probability of a given alternative. Though not heavily emphasized in the
original works of |Arentze and Timmermans (2004, 2007, these models do permit the same
microeconomic interpretations that we are describing in this chapter. However, the models
in |Arentze and Timmermans| (2007) were motivated mostly by an attempt to the estimate
the effect of discrete variables on one’s systematic utilities using a non-parametric function

H'Note, we use the qualifier “some” because it is not clear to us that all disjunctions-of-conjunctions can
be expressed using some combination of weights and thresholds in the cognitive process model.
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that is adept at detecting interactions. In particular, when a decision tree is combined with
standard discrete choice models in |Arentze and Timmermans| (2007), the decision tree is
estimated based only on the explanatory variables that are originally discrete, and then a
dummy variable for each output node of the tree is added to the systematic utilities of the
various alternatives. The coefficients of these dummy variables are then estimated along with
the usual parameters of one’s choice model. As we will explain in Section the models of
Arentze and Timmermans| (2004, |2007) are actually special cases of the more general decision
tree variant known as “model trees.” Moreover, as we will further explain in Section this
chapter is the first (as far as we know) to interpret model trees as operationalizing a type of
non-compensatory, context-dependent preference heterogeneity.

4.5 Decision Tree Variants and Economic
Considerations

In Section we described the way that discrete choice models have incorporated con-
junctive rules, disjunctive rules, and their generalizations, and in Section we showed
that these non-compensatory protocols can be expressed as decision trees. In this section,
we concentrate on economic considerations that are likely to arise when choice modelers
consider using decision trees in their own modeling activities. In particular, we will use
Subsection to focus on the ways that decision trees can (1) make probabilistic predic-
tions, (2) represent heterogeneity in a population’s non-compensatory rules, (3) represent
estimation uncertainty, (4) represent context-dependent preference heterogeneity, and (5)
satisfy monotonicity constraints. After this, we use Subsection to discuss the ways that
certain combinations of these considerations have been jointly accounted for by existing de-
cision tree variants. Additionally, since choice modelers will likely need to account for all of
these considerations simultaneously, we will end this section by pointing out the remaining
methodological gaps that prevent these considerations from being addressed concurrently.

Major Considerations
Probabilistic predictions

Some readers may note that, thus far, all of our decision tree and disjunction-of-conjunction
examples have involved deterministic outputs. However, people with the same values for
their explanatory variables may nevertheless make different choices. As a result, models
of individual decision making need to be capable of producing probabilistic predictions.
Fortunately, decision trees can and often do make probabilistic predictions in their output
nodes. Conditional on a particular output node, the probability of a given alternative is often
predicted to be the fraction of observations in that output node who chose the alternative
in question (Arentze and Timmermans| 2004} Strobl et al 2009).
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To economically motivate the move from deterministic outputs to the more general case
of probabilistic outputs, we make two observations. First, we note that individuals may ex-
plicitly have probabilistic outputs in mind when they are using disjunctions-of-conjunctions.
For instance, individuals may well say “if any of these conjunctive conditions are met, then
it is highly likely that I will do y,” where y is some outcome. In this case, the estimated de-
cision tree will be estimating what “highly likely” means for this population. Secondly, it has
long been noted that people violate their stated thresholds and attribute cutoffs when using
non-compensatory protocols such as conjunctive and disjunctive rules (Green et al., 1988}
Huber and Klein, [1991; Swait, 2001b). One implication of such cutoff violations is that even
if an individual consciously operates as if satisfaction of some set of conjunctive conditions
will result in a deterministic outcome y, there is still some probability that an individual in
may choose another alternative 1’ because he or she is violating their own conditions. In
either motivating casd', a decision tree will estimate the probability that each alternative
is chosen from a given set of options.

Heterogenous non-compensatory rules

When describing human behavior, it is often unreasonable to expect that all individuals
in a population will use exactly the same non-compensatory rules. For example, imagine
that the decision tree shown earlier in Figure is generally accurate for two individuals:
one who is fit and the other who is not fit. In this case, perhaps the fit individual believes
commuting by bicycle for more than 45 minutes is unacceptable whereas the unfit individual
thinks bicycling longer than 20 minutes is unacceptable. Here, the two individuals differ in
the value that Travel Time is split on in the decision tree. We will refer to this heterogeneity
in the split point for an explanatory variable as local heterogeneity. In contrast, we will
use the term global heterogeneity to describe the situation where even the structure of the
decision tree differs across individuals. For instance, perhaps the unfit individual does not
consider bicycling if the topography is hilly, regardless of the travel time. This would be
heterogeneity in the set of conjunctive conditions that must be met in order for the individuals
to consider bicycling. Below, we will discuss how both local and global heterogeneity have
been accounted for by existing decision tree variants.

To begin, we note that local heterogeneity is fully accounted for by “soft decision trees”
(Quinlan, 1990; [Villandré et al., [2012)), also known as decision trees with “soft splits” (Kin-
dermann and Paass|, |1998) or “fuzzy decision trees” (Jang, 1994; |Olaru and Wehenkel, 2003]).
These decision trees place a probability distribution over the splitting point of each contin-
uous explanatory variable. Continuing the bicycle consideration example, these probability

12\We are aware that in random utility maximization models, probabilistic outputs are often motivated
through the argument that an analyst is unable to observe all of the variables that lead to an individual’s
deterministic choice. We believe that a lack of analyst omniscience will also lead to probabilistic outputs
for decision tree models, but this reasoning also begs the question of how decision tree models behave when
important explanatory variables are omitted. Such an investigation is beyond the scope of this chapter, so
for ease of exposition, we assume analysts using decision tree techniques observe all relevant explanatory
variables.
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distributions enable soft decision trees to account for more realistic scenarios where 30 min-
utes is unacceptable to some people, 29 minutes is unacceptable to some other people, and
yet still other people find 31 minutes to be acceptable. In these scenarios, the basic structure
of the tree is correct, but individuals differ on the exact point at which their requirements
are met. In order to account for this situation, one can make predictions as if a split point
is known, and then one can use the given distributions to marginalize over the possible split
points. When using this process, one eventually ends up still using formulas such as Equa-
tion [£.2] but now the probability of being in a given region (i.e. a given output node) will
be some value between 0% and 100% instead of being deterministic.

Turning now to considerations of global heterogeneity, we find that this concern is ac-
commodated by decision tree ensembles (Rokach) [2010). In particular, ensembles of decision
trees such as random forests (Breiman, 2001) or boosted trees (Biithlmann and Hothorn)
2007)) represent global heterogeneity in much the same way that ensembles of discrete choice
models (i.e. latent class choice models) represent heterogeneity amongst the compensatory
decision protocols being used by differing market segments in a population (Vij et al., [2013]).
The basic feature of tree ensembles is that many trees are estimated, and then predictions are
made by averaging the predictions of each tree in the ensemble. However, a second feature
of ensembles that we highlight is the ensemble’s asymptotic behavior. What happens as the
number of observations being used to estimate the trees goes to inﬁnityF—_g] (Minkay, 2002)7
Asymptotically, decision tree ensembles such as bayesian decision trees and “bagging” (a
portmanteau of “bootstrap aggregation”) lead to the estimation of a single tree. We inter-
pret these ensemble methods as catering for estimation uncertainty, so these methods will
be described in Section [£.5] In contrast, global heterogeneity is represented by the ensemble
methods that estimate multiple decision trees, even as the number of observations grows
without bound. Analogously, as the number of observations tends to infinity, a latent class
model still returns estimates for the different market segments in a population—it does not
collapse to a choice model with one class.

Despite the similarities between latent class models and decision tree ensemble methods,
there are some salient implementation differences between the two types of techniques. One
of the most obvious differences is that latent class models often estimate a relatively small
number of classes (Allenby and Rossi, [1999)), but ensemble methods usually result in models
with hundreds of decision trees. While perhaps initially disconcerting, we note that having
many trees makes sense behaviorally. The disjunctions-of-conjunctions used by individuals
can differ in many ways. Even the simple difference between how the fit and unfit cyclists
processed topography information in our earlier example would lead to two separate decision
trees. As a result, a population can be expected to have many different decision trees being
used by different people.

13Note, this discussion is closely related to the notions of model averaging versus model combination
(Minkal, [2002)). Asymptotically, ensembles that implement model averaging will reduce to the estimation of
a single tree, while ensembles that implement model combination will still estimate multiple, distinct decision
trees. Model averaging is therefore seen as way to reduce estimation uncertainty while model combination
accounts for global heterogeneity.
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Estimation uncertainty

In many statistical applications, quantifying one’s inferential uncertainty is important. For
models that depend on continuous parameters, uncertainty is often quantified by the sam-
pling distribution of one’s estimator. However, unlike traditional models that are indexed by
continuous parameters, decision trees are made up of discrete parameters such as the depth
of the decision tree, the variables that the tree is split on, the values of the variables that
are being split on, etc. In such discrete settings, uncertainty is quantified by the probability
of a given combination of parameters being the data-generating parameters. In other words,
we need the probability of any given tree being the “correct tree.” Unfortunately, as with
estimation of the tree, one will have to make approximations since complete enumeration of
the possible decision trees is typically prohibitive (Chipman et al., |1998, p. 960).

Here, as noted in Section [4.5] ensembles methods such as bayesian decision trees and
bagging can provide a measure of estimation uncertainty. That bayesian decision trees
provide the desired uncertainty quantification is due to the fact that bayesian methods
explicitly estimate posterior probabilities of particular parameter values being true. The link
between uncertainty quantification and bootstrap aggregation (i.e bagging) comes from the
fact that the bootstrap is equivalent to a traditional bayesian analysis using a particular prior
(Rubin, [1981; Newton and Raftery,|1994). In both cases, one would take the fraction of times
a particular decision tree appears in the ensemble as being an estimate of the probability that
the given decision tree is the “true” tree. These methods provide an approximate measure of
the estimation uncertainty because there is no guarantee that these ensembles will contain
all possible decision trees (Chipman et al., 1998, p. 960).

Context-dependent preference heterogeneity

In the discrete choice literature, and in the broader literature concerning human decision-
making, it has long been acknowledged that “the context in which a decision is made is an
important determinant of outcomes” (Swait et al., 2002). In particular, one’s choice context
may affect one’s preferences or sensitivities to a given set of explanatory variables, and we
use the term “context-dependent preference heterogeneity” to refer to this phenomenon. As
an example, consider an individual making a choice of travel mode for his/her commute.
When the cost of a given travel mode is low, perhaps the individual is most sensitive to
that mode’s travel time. However, when the cost of the travel mode is high, perhaps the
individual becomes more sensitive to changes in travel cost than to changes in travel time.
For such a simple scenario, a piecewise linear function for one’s systematic utility may be
sufficient. However, for scenarios where preferences are dependent on arbitrarily complex
conditions, potentially involving multiple variables, we do not know of any accommodating
methods within the traditional discrete choice literature.

Looking instead to the literature on decision tree methods, we note that decision tree vari-
ants known as “hybrid,” “model,” or “functional” trees (Zeilis et al., 2008; Rusch and Zeilis|,
2013)) are able to account for such notions of context-dependent preference heterogeneity.
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Model trees are decision trees where the output at a given output node is a statistical model
(Chan and Loh| 2004 |[Landwehr et al. |2005; Zeilis et al., 2008; Yu et al., 2016)). To make
predictions, the decision tree is used to determine the output node that corresponds to the
given observation, and then that output node’s statistical model is used to provide the final
outcome probabilities for the observation. In the specific case where discrete choice models
are used in the output nodes, preference heterogeneity is represented by differing systematic
utility functions in the models used in different nodes. Returning to our example from the
previous paragraph, imagine that we had a decision tree that was split on the Travel Cost
variable at a value that distinguished “low” versus “high” travel costs. The model at the low-
travel-cost output node might have a systematic utility function that is linear-in-parameters
with a coefficient Spowcost being multiplied by the travel-cost variable. Conversely, the model
at the high-travel-cost output node might also have a linear-in-parameters systematic util-
ity function, with a coefficient Buighcost being multiplied by the travel-cost variable, where
BHighCost > PLowCost- Such a model tree would capture the notion that preferences (in this
case, the travel-cost coefficients) are dependent on the context in which the choice is being
made—a low travel cost context versus a high travel cost context.

Beyond the general description provided in the previous paragraph, we pause here to
note that many decision tree methods and discrete choice methods can be seen as special
cases of model trees. First, the standard decision tree described in Section can be seen
as a model tree where discrete choice models such as the MNL are used in each node, and
each alternative’s systematic utility is only comprised of an alternative specific constant
(ASC). For decision trees with deterministic outputs, these constants are either infinity or
negative infinity. For decision trees with probabilistic outputs, the relative values of these
constants can be determined by constraining a reference alternative’s ASC to zero, and
determining what ASCs of the other alternatives will lead to the decision tree’s estimated
choice probabilities. Secondly, other proposed models estimate a decision tree and then place
a dummy variable for each output node into one’s systematic utility functions in a discrete
choice model. This methodology includes models such as the parametric-action decision tree
(Arentze and Timmermans, 2007)), the hybrid CART-logit model (Steinberg and Cardell,
1998)), the tree-augmented logistic model (Su, 2007), and the two-stage MNL model(Kim,
2009; Kim and Kim, [2011)). Such models can be seen as special cases of model trees that allow
for context-dependent heterogeneity in the ASCs but enforce homogeneity on the remaining
parameters in the choice models. Finally, the semi-compensatory models used in the discrete
choice literature are also special cases of model trees. In these semi-compensatory models,
described in Section [£.4] conjunctions, disjunctions, or disjunctions-of-conjunctions are used
to screen alternatives and then a compensatory discrete choice model is used to select from
any remaining alternatives. This can be seen as a model tree where the parameters of the
systematic utility function for available alternatives are constrained to be equal across the
various output nodes, and output nodes that result in a given alternative not being available
simply set the systematic utility for that alternative to negative infinity.
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Monotonicity

Lastly, we note that models of human decision making are often subject to constraints based
on economic theory. For instance, all else equal, as the price of a normal good increases, the
probability that this good is chosen should decrease or, at worst, stay the same. This is a
monotonicity constraint. In discrete choice models that use linear-in-parameters systematic
utility functions, such monotonicity constraints are operationalized through constraints on
the sign of the model coefficients. These sign constraints allow one to quickly check if
one’s estimated parameters comply with economic theory about the relationship between an
explanatory variable and an outcome of interest. And as noted in the introduction, discrete
choice modelers are highly unlikely to use a model that does not demonstrate compliance
with economic theory.

Fortunately, decision tree variants that can incorporate monotonicity constraints have
been created (Potharst and Feelders, 2002 |Velikova and Daniels, |2004; Hu et al., 2012}
Marsala and Petturiti, 2015; Pei et al., 2016). Such monotonic decision trees are constructed
by altering the estimation process to ensure that the desired monotonicity constraints are
not violated. By using monotonic decision trees, one can estimate the disjunctions-of-
conjunctions that may be in use in one’s population, while at the same time guaranteeing
compliance with economic theory. The ability to ensure the monotonicity of key relationships
should go a long way towards easing the concerns of choice modelers who are considering
using decision trees in their analyses but want to make sure that their estimated trees “make
sense.”

Combining considerations

In Subsection (4.5 we sequentially detailed how various types of decision trees allow re-
searchers to (1) make probabilistic predictions, (2) represent heterogeneity in a popula-
tion’s non-compensatory rules, (3) represent estimation uncertainty, (4) represent context-
dependent preference heterogeneity, and (5) satisfy monotonicity constraints. However, in
real applications, analysts may wish to simultaneously account for all of the considerations
described above. In this subsection, we will briefly detail the ways that such goals can and
cannot yet be met. Our discussion will point out advanced decision tree variants as well as
point to methodological gaps that must be filled in order to make decision trees maximally
useful to discrete choice researchers.

To begin, we first point out that all decision tree variants allow for the use of probabilis-
tic predictions. Accordingly, we will focus our discussion on considerations (2) - (5), listed
above. Next, we will make the point upfront that there are no decision tree variants that
currently account for all four of the remaining considerations. The best that can be done
with available methods is to account for combinations of two or three of considerations (2)
- (5). Moving swiftly through such combinations, the only three considerations that have
been combined in discrete choice settings are the representation of local heterogeneity, the
representation of estimation uncertainty and the representation of context-dependent pref-
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erence heterogeneity. These three concerns are simultaneously accounted for in the decision
tree variant known as a bayesian hierarchical mixture-of-experts model (Bishop and Svensén),
2003). Such a model makes use of model trees with soft-splits and uses bayesian estimation
techniques to account for estimation uncertainty. Moving to combinations of two of the four
considerations, only three of the six possible combinations have been accounted for in the
literature. First, bayesian soft decision trees (Kindermann and Paass, [1998)) and bagged soft
decision trees (Yildiz et al., 2016) allow for estimation uncertainty and representations of
local heterogeneity. Furthermore, soft tree ensembles such as a random forest of soft trees
(Seyedhosseini and Tasdizen, [2015; [Kumar et al. 2016) allow for representations of both
local and global heterogeneity. Secondly, soft model trees known as mixtures of experts or
hierarchical mixtures of experts (Jordan and Jacobs, 1994; Yuksel et al., [2012) allow for
context-dependent preferences and local heterogeneity. Thirdly, global heterogeneity and
monotonicity have been jointly represented by monotonic random forests (Gonzalez et al.
2015).

To the best of our knowledge, no combination of considerations has been addressed be-
yond those detailed in the last paragraph. As a result, by developing decision tree models
that account for the missing combinations of economic considerations, discrete choice re-
searchers can help advance the fields of computer science and statistics while simultaneously
catering for properties they wish to have in their own analyses. In Section [4.6] we illus-
trate such development by formulating and estimating what we believe is the first bayesian
model tree for discrete choice problems. This allows us to account for estimation uncertainty
and context-dependent preference heterogeneity. While not simultaneously addressing all of
considerations (2) - (5) mentioned above, our model nevertheless fills a missing rung in the
methodological ladder of existing decision trees.

4.6 Empirical Application

In the last section, we showed how common economic concerns can be addressed by exist-
ing variants of decision trees. Additionally, we pointed out gaps in existing decision tree
methodologies that need to be filled in order to make decision trees most useful when model-
ing economic phenomena. In this section, we switch focus and review this chapter’s empirical
application. Given the economic interpretation of decision trees representing disjunctions-
of-conjunctions, we study whether such rules appear to be used by commuters in the San
Francisco Bay Area. In particular, we model how disjunctions-of-conjunctions are used to
choose whether or not bicycle would be considered as a travel mode and, if bicycle was
considered, how the disjunctions-of-conjunctions affect the overall preference for bicycling
when choosing between the considered travel modes. Moreover, we take pains to capture
our uncertainty in the estimated disjunctions-of-conjunctions. As a result, our application
contributes to the literature by creating the framework and estimation techniques for the
first decision tree variant that accounts for both context-dependent preference heterogeneity
and model uncertainty:.
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In the following subsections, we first review the motivation for our proposed semi-
compensatory model (i.e. the combination of a decision tree with a standard mode choice
model). Next, Section reviews the details of how our proposed model works, and Section
details the proposed and implemented estimation techniques for our new model. In Sec-
tion we detail the model specification and data used in our application, and in Section
4.6l we present our results and discussion.

Motivation

As previously noted, our application concerns the choice of travel mode in the San Francisco
Bay Area. Specifically, we are interested in whether people choose to commute by bicycle.
Of critical importance are two phenomena. First, individuals may (for a variety of reasons)
exclude bicycling from consideration, thereby removing all possibility that they will use a
bicycle to commute to work/school. If such differences in consideration are not accounted
for, then one will make incorrect inferences regarding the amount by which any project can
be expected to increase the expected number of cyclists. Secondly, individuals may find
themselves in situations that lead them to be more or less amenable to the idea of commut-
ing by bicycle. If an individual has a very low general preference for bicycling, then policies
to increase bicycling rates may only have a minor impact on this individual’s probability of
bicycling. In other words, before judging the ability of an intervention to increase the prob-
ability that the individual actually bikes, one must be sure that an individual is considering
bicycling as a commuting option, and one should attempt to judge an individual’s general
preference for bicycling.

In previous discrete choice research that allowed for heterogeneous consideration sets,
mode choice models have been operationalized based on assumptions regarding: the existence
of latent market segments that each have their own consideration sets and utility coefficients
(Vij et al.| 2013;Vij and Walker| [2014)), the existence of individuals that have either complete
choice sets or who irrationally only consider a single travel mode (Swait and Ben-Akival,
1987h|), or whether alternatives are independently chosen for inclusion in one’s consideration
set (Swait and Ben-Akival |1987a;; Swait, 2001a, [2009)). With these formulations, researchers
have already found support for the hypothesis that, beyond deterministic differences in the
travel modes which are available to a given person, individuals differ in whether they consider
bicycling as a commuting option and in how much they generally prefer cycling (Swait} 2009}
Vij et al., [2013; Vij and Walker} 2014; Mahmoud et al., |2016).

In all the modeling efforts just described, the probability of an individual considering a
particular mode was always based on a compensatory model. These models are curious in
light of the fact that when asked about why they don’t commute by bicycle, individuals do
not state that the issues which make them avoid bicycling to work can be compensated for
by other commonly used variables in mode choice models. Individuals commonly state that
they live too far away to commute by bicycle, that roadway conditions are too dangerous
for them to commute by bike, that cycling would require too much physical exertion, that
they have to transport children to some place, and so on (Goldsmith) 1992; |Cleland and
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Walton), 2004)). It is not clear a-priori that these type of concerns can be incrementally
compensated for by changes in sociodemographic variables or level-of-service variables for
the various travel modes. As a result, it is reasonable to think that non-compensatory
models of consideration set formation may be better able to emulate the actual decision
making process of individuals. Our goal for this application was to develop a policy analysis
tool for bicycling that could capture the effect of non-compensatory protocols on choice set
formation and on the general preference for bicycling. We used disjunctions-of-conjunctions
as our non-compensatory protocol in order to account for the “if-then” nature of people’s
stated reasons for not bicycling. Beyond using decision trees to model the consideration of
the bicycle alternative, we wanted to be sure to account for the effect of the attributes of the
non-bicycle alternatives. As a result, we follow the lead of the semi-compensatory models
reviewed in Section by using a compensatory model to predict the final choice between
any alternatives that are considered.

Model Framework

In the last subsection’s discussion, we reviewed why we desire a semi-compensatory model
that combines decision trees and discrete choice models. In this subsection, we will review
our desired model in more detail so readers are clear about how it works and so that readers
of Section have enough context to understand why we chose the estimation methods that
we chose.

First, as described in Section [4.5] our proposed type of model is known in the decision tree
literature as a model tree. Model trees are decision trees that use statistical models in their
output nodes to predict the outcome of interest. Here, the statistical models in the output
nodes typically differ from one another. In our application, the model tree will function as
follows. There will be a decision tree with mode choice models in the output nodes. The tree
will be used to winnow the bicycle from an individual’s choice set, and across the different
situations where bicycle is considered, the general preference for bicycling will be allowed to
differ. This results in differing bicycle ASCs in the mode choice models of the different output
nodes of the decision tree. For simplicity, we have constrained the other parameters in our
choice model to remain constant across the various output nodes. In other words, accounting
for context-dependent preference heterogeneity in the parameters other than the bicycle ASC
is left for future research, as is accounting for global and local heterogeneity in the estimated
disjunctions-of-conjunctions or accounting for a-priori monotonicity constraints.

Second, we go beyond the mere use of model trees as they have already been imple-
mented. Instead, we contribute to the literature of decision tree methodologies by developing
a bayesian model tree for discrete choice settings. By using bayesian estimation techniques,
we can account for estimation uncertainty about which model tree is the “true” tree. These
various candidate trees, denoted by m, represent different non-compensatory decision proto-
cols, and we are using the bayesian estimation to compute the probabilities of these different
protocols being the one used in our population. In addition, as is always done when es-
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timating bayesian choice models, the bayesian estimation also accounts for the estimation
uncertainty in the choice model parameters.

Now, because we are estimating a model tree, we can partition the model parameters
into those that describe the tree and the parameters that describe the choice models at
the output nodes of the tree. We will start with the tree parameters. Using the notation
from Section [4.3] a decision tree is uniquely identified by three sets of parameters. The first
parameter is how many conjunctive conditions (i.e. output nodes) are in the tree. We denote
this as D™. The second set of parameters is how many requirements are in each conjunctive
condition. We denote these parameters as | p/* |, where i € {1,2,..., D™}. Lastly, the third
set of parameters is the primitive boolean conditions that make up each requirement. We
denote these parameters as b;m where j € {1,2,...,| pi" |}.

Next, we will move onto the parameters of the choice models at the output nodes of the
tree. We denote these parameters as 7™, and we note that in our application, we are only
allowing the bicycle ASC to differ across output nodes. As a result, we can further partition
the parameters that describe the choice models at the output nodes. Conditional on a tree
(m), there will be one parameter per output node (), and these parameters will determine
the bicycle ASC for the given node. We will denote these node-varying parameters by n.".
Additionally, there will be the remaining choice model parameters that do not change from
one output node to the next. We will denote these parameters by (. All together, we have
y™ = (n", 5). Combining this paragraph with the last, the parameters to be estimated are
0= (D™, |p" |, b?’m,n{”,ﬁ) for all i € {1,2,...,D™} and for all j € {1,2,....]| p7 |}.

Due to the bayesian estimation techniques, our estimation results will now be a posterior
distribution that reflects our uncertainty in the “true tree” and in the “true” parameters of
the choice models in that tree’s output nodes. Moreover, since we do not have a closed-
form expression for this posterior distribution, it will be represented by a sample from this
joint distribution of trees and choice model parameters. Each sampled element (s) will be a
decision tree (m) and the parameters of the choice models at that tree’s output nodes ().
We denote the number of sampled elements containing tree m as S,,. Next, we can use the
fraction of times that a specific tree appears in the posterior sample to estimate the posterior
probability of a given tree (Ppog; (M) = Z 57 ). Finally, in a bayesian model tree setting, we
calculate the predicted probability of outcome Y given explanatory variables X using the
following formula:

M
Y|X Z PostY|Xm)PPOSt( )

M 1 S
Z S_ZPY|X75’ ) PPost( ) (46>
m= s=1

where M = The total number of unique trees in one’s sample.

P (Y | X, m) = The choice model probability of Y given X, 17, and tree m.

For a graphical depiction of this process, see the diagram in Figure
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Figure 4.3: Procedural diagram of bayesian model trees

Estimation Methods

The previous subsection reviewed the overall framework, mechanics, and parameters of our
proposed bayesian model tree. In this subsection, we detail our estimation techniques. These
details are discussed at length because we found estimation of this new model to be a
nontrivial challenge, and we want other researchers to be able to replicate and build off our
work. Readers who would like to immediately get to the results and ‘big-picture’ discussion
may feel free to skip ahead to Section

Subsection [4.6[s formulation of § shows that the total number of parameters being es-
timated depends on the decision tree. In particular, as we change from tree to tree, the
number of conjunctive conditions (D™) will vary, and as a result, the dimensionality of the
parameter vector will vary. Unfortunately, such changing dimensionality necessitates the
use of specialized estimation techniques (Das and Bhattacharyay, 2017, p.5). Of these, the
reversible-jump algorithm (Green, [1995) is the most common bayesian estimation technique
for problems of varying dimensionality, both overall (Sisson, 2005) and for decision trees in
particular (Denison et al. [1998; |Wu et al., |2007; [Mohammadi and Kaptein, 2016]).

As noted by Fan and Sisson| (2011}, p.72-73), efficient reversible-jump algorithms require
a way for one to propose parameter values of high posterior probability while switching
between parameter spaces of varying dimensions, and creating such proposal mechanisms is
not straightforward. Our initial attempts at using a reversible-jump algorithm to estimate
our model tree failed because we were unable to devise a good way to propose new choice
model parameters when switching from one tree to another. How should we propose new
bicycle ASCs when the groups of individuals in each output node are completely different?
The creation of an efficient, reversible-jump proposal mechanism for bayesian model trees



CHAPTER 4. MACHINE LEARNING MEETS MICROECONOMICS: THE CASE OF
DECISION TREES AND DISCRETE CHOICE 139

remains an open problem, and it is one that we would be happy to collaborate with others
on.

Given our difficulties with the reversible-jump algorithm, we instead sought an alternative
estimation strategy. The approach we settled on was to split the problem into two sub-
problems, each of which was more easily solved than the original problem. Specifically, as
we noted in Section [£.2] there are existing methods for performing a bayesian estimation of
decision trees. Additionally, one can estimate the parameters of a given choice model using
almost all existing bayesian estimation techniques for fixed-dimensional problems. In light
of these two facts, we sought to break our model tree estimation into a first step where we
estimate the decision trees by themselves and a second step where, conditional on a given
decision tree, we estimate the choice models that belong in each output node of the tree.
Finally, some procedure would be needed to tie these two estimation tasks together.

To implement this divide-and-conquer approach, our original (and idealized) plan was as
follows. First, we would use the techniques of [Letham et al.| (2015) to perform a bayesian
estimation of the decision trees. Then, conditional on each tree, we would use the techniques
of Braun and Damien| (2016) to estimate our mode choice model with varying bicycle ASCs.
And lastly, we would use importance sampling to adjust the original posterior distribution of
decision trees in light of the information provided by the choice models at the output nodes
at each tree. Below, we briefly justify each of these choices.

Beginning with the estimation of the decision trees, we chose to use the techniques of
Letham et al| (2015) for two reasons. First, their methods were implemented in freely
available python scripts, so we would not have to re-invent their techniques. Secondly, their
approach requires researchers to specify the possible requirements that can be used in the
conjunctive conditions that comprise the decision tree. This specification gives researchers
the ability to check for sensible relationships between the explanatory variables and the
outcomes of interest. For example, by specifying the regions of parameter space that the
travel distance is split into, the researcher can empirically check whether the fraction of
individuals bicycling decreases as one moves from the region where travel distance is between
2 and 3 miles to the region where travel distance is between 3 and 4 miles.

Moving to the choice model estimation, we (again) had two reasons for choosing the
techniques of |Braun and Damien| (2016)). First, unlike typical MCMC procedures that only
generate dependent samples from the posterior distribution of one’s choice model parameters,
the techniques of|Braun and Damien (2016) generate independent samples, resulting in higher
effective sample sizes per unit of computational time. Secondly, the methods of |Braun and
Damien| (2016) automatically provide accurate estimates of the total probability of the data
given one’s decision tree (i.e. after marginalizing over the parameters in the choice model).
This probability is needed for our last step: importance sampling.

After the initial estimation of the decision trees and the mode choice models, conditional
on the decision trees, we need to link these two estimation procedures. In particular, we
want a sample from the joint distribution of decision trees and their accompanying choice
models. However, our original sample of decision trees was produced without using any
information from the choice models at the output nodes. As a result, our original sam-
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ple of decision trees is (in general) drawn from an incorrect distribution. We use impor-
tance sampling (Gelman, 1992; Hesterberg, 1995)) to weight our original sample of decision
trees such that the weighted sample comes from our desired distribution. Since our origi-

nal sample was drawn from a distribution P (tree without choice models | data) instead of

P (tree with choice models | data), we will weight each tree by the ratio PftgzzeivKg:uflicﬁzién;ﬁzlsr‘;jga)
The probabilities in the numerator and denominator are computed up to a constant of pro-
portionality using Bayes rule, and then the importance weights are normalized such that
they sum to one across all the trees in our sample. At this point, estimation is complete and

the weighted sample is then available for prediction or further inference tasks.

As just described, this three step procedure is our current, ideal method for estimating
bayesian model trees. However, this procedure is computationally expensive. For example,
our initial sample of trees contained more than 5,000 unique decision trees. On average, for a
single decision tree, it took approximately 2 hours to perform the bayesian estimation of the
choice models at the output nodes. The total estimation time would have taken more than
a week for our dataset and choice model specification (described in Section [4.6). Given our
current computing resources (a single laptop), we deemed this estimation time unreasonable,
so we made further approximations to speed up the estimation process. In particular, we
selected a subset of 10 decision trees from the total set of unique trees so that the total
estimation time would be less than a day. Then, we then estimated the choice models at
the output nodes of these trees, and we proceeded as if these ten trees were the complete
set. of possible trees for our data. As far as we know, it is impossible to account for the
existence of the other trees without performing the estimation of those trees’ choice models,
which is exactly what we wished to avoid. While numerous ways of choosing the ten trees
are possible, we tried to follow the intuition of |Breiman/ (2001) who noted that the accuracy
of a set of trees “depends on the strength of the individual tree classifiers and a measure of
the dependence between them.” Specifically, we chose the ten trees as follows. We chose
top three trees in terms of their (approximate) log-posterior from step 1, and we also chose
the top three trees in terms of their (approximate) log-likelihood from step ].IE] We chose
the final four trees by first selecting the trees that had approximately the posterior mean
number of output nodes (D™) and then, from the selected trees, choosing the 4 trees with the
highest log-posterior. This procedure closely follows the recommendation of [Letham et al.
(2015)) for selecting a single decision tree to be a point estimate for the posterior distribution
of trees. In the end, our selected trees were all “strong” in some way, whether that be
high log-likelihoods or high log-posterior values, and across the three selection criteria, the
trees were quite different from one another. We will refer to the procedure described in this
paragraph as our “actual” estimation methodology, whereas the procedures described in the
paragraphs above are our “ideal” estimation methodology. As we will see in Section [4.0]
despite our radical simplifications, our actual estimation methodology still produces a model
that provides quantitatively more accurate and qualitatively more reasonable inferences than

14Note, we use the term ‘approximate’ because the log-posterior values and log-likelihood values of step
1 do not take into account the choice models at the output nodes of the tree.
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the traditional MNL model.

Data and model specification

In the previous subsections, we described our model framework and estimation methods. In
this section we describe the data used in our application and the precise specification (i.e.
model priors and choice model specification) of our bayesian model trees.

Data

Starting with the data, we are using 1,015 observations from the California Household Travel
Survey (2013). Each individual in our sample lives in Oakland, Berkeley, or San Francisco,
CA, and the observations represent home to work or school commute tours. For level-of-
service variables (such as travel time, cost, and distance) we use estimates provided by the
San Francisco Metropolitan Transportation Commission (MTC) (2012). Basing our set of
possible alternatives on the alternatives used by MTC, we classify observations as having
traveled via one of eight travel modes. There were three driving modes, each differentiated
by the number of passengers: drive-alone, shared-ride with two passengers, and shared-ride
with three or more passengers. There were also three transit modes, each differentiated
by their access and egress modes: walk-transit-walk (where walking is used for access and
egress), drive-transit-walk, and walk-transit-drive. Finally, there were two non-motorized
modes: walking and bicycling. For each tour, the travel mode that was used for the longest
distance was used as the “chosen travel mode” for that tour.

Importantly, one of our uses for non-compensatory rules is to determine whether or
not an individual considers bicycling as a travel mode. Accordingly, our decision trees are
based on spatial variables and socio-demographics that have been mentioned in reasons why
individuals did not consider bicycling. In particular, the trees are based on spatial variables
such as distance, roadway slopes, elevation, on-street bicycle infrastructure, speed limits,
and socio-demographics such as the number of children. Post-processing of the raw spatial
data was done using a novel concept called the zone of likely travel. The main idea is, for
each individual, to form a buffer around the shortest path between one’s home and work
or school. This buffer is constrained to follow the roadway network instead of merely being
laid atop of a map, and the buffer is constructed so its perimeter is based on each user’s
likely, maximum deviation from the shortest path. In other words, the zone should contain
the roadways over which one is likely to travel. All spatial variables are then calculated over
the roadways in one’s zone of likely travel. In general, the details of this post-processing
procedure are not related to the main purpose of this chapter, so we will not review them
any further. However, we instead encourage interested readers to review the details of this
processing in [Brathwaite, (2018)).
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Model Specification

Traditionally, when discrete choice modelers talk about model specification, they mean the
specification of one’s utility functions. However, in a bayesian paradigm, one also needs
to specify his/her model priors. These priors are probability distributions that encapsulate
the modeler’s prior beliefs about the true value of the model parameters. Together with
the utility specifications and likelihood function, these specification choices allow for model
estimation. Below, we will note each our specifications in turn, starting with the choice
model.
Specifically, we specify the systematic utility functions in our choice model as follows:

Vba = Buravel-time-auto Travel Timepa + Bautos per-driver AutosPerDriver
VSR2 = ASCshared—ride—2 + 6travel—time—autoTravelTimeSRQ + ﬁautos—per—driverAutOSPerDriver
+ Beross-bay CTossBay + Bnum-kiasNumberKids + Bhousehold-size HouseholdSize
VSR?) - ASCshared—ride—3 + Btravel—time—autoTravelTimeSR3 + ﬂautos—per—driverAUtOSPerDriver
+ Beross-bay CTossBay + Bnum-kiasNumberKids + Shousehold-size HouseholdSize
VWTW = ASCwalk—transit—walk + 5trave1—time—transitTravelTimeWTW + 5trave1—cost—transitTravelCOStWTW
VWTD = Ascwalk—transit—drive + Btravel—time—transitTravelTimeWTD + ﬁtravel—cost—transitTravelCOStWTD
VDTW = ASCdrive-transit-Walk + ﬁtravel—time-transitTravelTimeDTW + Btravel-cost-transitTravelCOStDTW
Vwalk = Ascwalk + Bdistance—walkTravelDiStancewalk

%z’ke - ASCbike + Bdistance—walkTravelDiStancebike
(4.7)
In the systematic utility equations above, DA means “drive alone,” SR2 means “shared-ride
with two passengers,” SR3 means “shared-ride with three or more passengers,” WTW means
“walk-transit-walk,” WTD means “walk-transit-drive,” and DTW means “drive-transit-walk.”
Though not indicated using subscripts on the variables, all of these systematic utility equa-
tions are specific to a given individual.

Next, we note that our specifications above were not made arbitrarily. Travel cost was
excluded from the driving alternatives because it was too collinear with the travel time
variable to permit estimates that had the correct sign. This is to be expected since MTC
calculates both its travel cost and travel time estimates for driving modes as a function of
travel distance. Secondly, income and gender are not present in our specifications because it
was missing for numerous individuals in our dataset.

Finally, the systematic utility specifications shown in Equation [£.7] are common across
both the MNL model and the bayesian model trees used in this chapter. There are only
two differences between the systematic utility specification of the MNL and the bayesian
model trees. First, as mentioned above, the ASCh;. is allowed to differ from output node to
output node. In other words, the bayesian model trees replace ASChe with Zf):n; 0; AS Chike,i
where 7 denotes a particular output node of decision tree m and J; is a dummy variable that
indicates whether or not an individual is in output node i. Briefly, we note that we do not
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directly estimate the parameters ASChie; Vi € {1,2,...,D™}. This would correspond to
using a no-pooling estimator that treats the output nodes as being completely different from
one another. Instead, we would rather estimate how different the nodes are from one another.
To do this, we use a hierarchical logit estimator (i.e. a partial-pooling estimator) (Bafumi and
Gelman), 2006; Gelman|, 2006}, (Gelman et al., [2014]) that combines (i.e. pools) information
about the overall bicycle preference across output nodes. The ASChi.; parameters are
conceptualized as instances from an overall, normal distribution of bicycle ASCs with mean
ASChiie and variance o2, . Here, the mean and variance parameters are estimated along with
the individual ASChixe para,meterﬂ. As 02, — 0o, we are increasingly certain that the
output nodes are completely different from one another, and as o2, — 0 we are increasingly
confident that the general preference for bicycling is actually the same across output nodes.

The second difference is, as noted in Section that we use spatial variables in the
construction of the decision trees. In order to fairly compare the MNL and the bayesian
model tree, we include the spatial variables in the MNL model by placing these variables in
the bicycle systematic utility. In particular, the bicycle utility of the MNL model is expanded
to include the following variables and their coefficients: shortest path length, median slope,
average speed limit, proportion of roadway miles on the shortest path with speed limits of 25
mile per hour or less, proportion of roadway miles with bicycle lanes, and the proportion of
roadway miles with “share the road” markings (also known as “sharrows”). These variables
are excluded from the bicycle utility of the choice models in the bayesian model tree as they
are already used when constructing the decision trees.

Next we state our model priors. In a bayesian setting, priors must be specified for all
parameters that are being estimated. We start with the choice model parameters. For
all choice model parameters, excluding ASChe; Vi € {1,2,...,D™} and o8, we assumed
independent priors of N (0,4) where 4 is the variance of the normal distribution. This prior
was chosen to reflect the fact that we think it is highly unlikely for a 1-unit change of any
of our variables to cause a change of 4 in our systematic utility functions. Such changes
would greatly increase or decrease the probability of choosing a given alternative, and we
don’t expect a 1 minute change in travel time, a 1 dollar change in travel cost, a change in 1
mile of travel distance, etc. to cause drastic changes in the probability of a given mode. For,
the ASChie; parameters, we use the prior distribution mentioned above. That is, the prior
distribution of ASChike; is N (ASChike, 02y )- Here, we again use a N (0, 4) for the hyperprior
on ASChye. The hyperprior for the variance is specified as In [N (0,4)], i.e. log-normal with
a location parameter of zero and a scale parameter of 2 (v/4 = 2).

Moving to our priors for the parameters of the model trees, we need a prior distribution
for (D™, | p" |, bzm) foralli € {1,2,...,D™} and for all j € {1,2,...,| p/* |}. To construct our
prior, we precisely follow the methodology described in Section 2 of |[Letham et al. (2015]).

15To tie this paragraph back to Section where we first discussed our model parameters, we define
ASChike,s = ASChike + 1;. In our application we actually estimate 7; and ASChjke instead of ASChjke,; and
ASChike. In the statistical literature, this choice is referred to as the use of a non-centered parametrization
(Papaspiliopoulos et al.,2007)). We used the non-centered parametrization instead of the traditional approach
of directly estimating ASChike,; because this method led to faster estimation times.
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Unfortunately, this methodology took Letham et al| nearly four pages and much math-
ematical notation to describe. Additional pages would be needed to relate their original
description to the characterization of decision trees that we have given in Sections [4.2] and
[1.3] Since reviewing the techniques of [Letham et al| (2015) is not a primary focus of our
article, we state upfront that the following description of our prior distribution of decision
trees will be necessarily brief and will likely require a reader to consult Letham et al.| (2015))
for full understanding. For readers who prefer reading code to reading verbal descriptions of
our procedures, all scripts used in this application are available upon request.

Now, we begin with D™, the number of output nodes (or conjunctive conditions) in our
decision tree. Given that one of the arguments for non-compensatory rules is that humans
are boundedly rational and only spend but so much mental effort making decisions, we do not
think individuals are using overly complex rules. Our prior for D™ was therefore specified
as a truncated Poisson distribution with a rate parameter of 5, reflecting our prior belief
that the expected number of output nodes in one’s decision tree is approximately five. A
truncated (as opposed to standard) Poisson distribution was used because the support of
the standard Poisson distribution extends to positive infinity whereas the number of possible
conjunctive conditions for the trees is limited by the finite number of possible requirements
from which the conjunctive rules can be composed. See [Letham et al| (2015, p. 1355) for
the specific form of the truncated Poisson distribution and for more details on this prior
specification.

Continuing to the next parameter, we have to specify a prior for | pI* |: the number
of requirements in each conjunctive condition. We will not delve into the details here, but
the methods of |Letham et al. (2015)) use a slightly different representation of decision trees
than have been described in this chapter. In their formulation, output nodes are evaluated
sequentially, and | p* | represents the number of requirements in output node i, conditional
on the requirements of the previous nodes not being met. Given this set up, and given the
assumption that people are using relatively simple rules to make their decisions, we specify
our prior for | p* | as a truncated Poisson distribution with a rate parameter of 2. In
other words, besides the requirement of not meeting the conditions specified by the previous
output nodes, we expect that a given output node will be described by approximately two
requirements.

Next, we need prior distributions for the requirements (b;m) that make up each con-
junctive condition. We pause here to note that such prior distributions implicitly define a
prior on the conjunctive conditions (p;) that correspond to each output node. Alternatively,
placing a prior directly on the conjunctive conditions (p;) will implicitly define a prior on
the requirements (b;m) that make up these conditions. Following the procedures in Letham
et al.| (2015), we use a three-stage procedure to place a prior directly on the conjunctive con-
ditions (p;). First, we specify the possible requirements that a conjunctive condition can be
composed of. These requirements are formed by discretizing the explanatory variables into
various ranges (e.g. minimum distance greater than 4 miles). Second, we specify which of
the possible combinations of requirements will be allowed as possible conjunctive conditions.
And finally, we specify a prior distribution over the possible conjunctive conditions. We will
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discuss each of these three steps below.

To specify the possible requirements from which a conjunctive condition could be com-
posed, our strategyE] was to subdivide the explanatory variables used to construct the de-
cision tree into as many equal sized groups as possible. The only constraint was that the
partition had to maintain the expected relationships between the groups and the outcome
of bicycling or not. For example, the variable denoting the number of children was split into
three groups: [0,1], (1,2], and (2,00). For these categories of the number of children, the
percentages of individuals in each category that owned a bicycle and actually bicycle to work
or to school were approximately 16%, 13% and 0%. Such trends follow our a-priori expecta-
tions that the probability of bicycling decreases as one has more children. Sub-dividing the
number of children variable into 4 or more categories led to relationships that were deemed
to be spurious since they did not match our a-priori beliefs about the relationship between
number of children and the probability of bicycling commuting. All together, the possible
requirements used to construct the decision tree were as follows (with numbers rounded to
two decimal places, or more when necessary):

e Number of Kids: [0, 1], [2], and [3, c0)

e Minimum distance (miles): [0,1.17], (1.17,1.92], (1.92,3.00], (3.00,4.37], (4.37,00)

e Average Speed Limit (miles per hour): [23.01,25.15], (25.15,25.78], (25.78, c0)

e Median Slope (meters per foot): [0,0.01], (0.01,0.02], (0.02,0.03], (0.03,0.04], (0.04, o)

e Proportion of roadway miles along one’s shortest path with speed limits < 25 miles
per hour:
[0,0.66], (0.66,0.83], (0.83,0.95], (0.95,0.9984], (0.9984,0.9986], (0.9986, )

e Proportion of roadway miles with bicycle lanes: [0,0.04], (0.04,0.11], (0.11, c0)

e Proportion of roadway miles with “share the road” markings: [0,0.08], (0.08,0.14],
(0.14, 00)

These requirements are all binary boolean conditions that are to be read as “wvariable in
range.” For instance, “minimum distance in [0, 1.17].”

Given the possible requirements specified above, the next task is to specify the combi-
nations of these requirements that will be allowed as possible conjunctive conditions in our
decision trees. Going along with the notion of non-compensatory rules are at least par-
tially motivated by a desire to minimize cognitive effort, we hypothesize that no individual
conjunctive condition will be made up of a large number of requirements. As a result, we

16Note, we are aware that other strategies could have been used to discretize our variables in order to
create requirements for use in the decision tree. Future researchers are free to use any such discretization
strategies they prefer and to make a case for such strategies. We chose to follow the procedures of [Letham
et al.| (2015) who manually discretized their variables according to their a-priori beliefs.
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specify the maximum number of requirements in a conjunctive condition to be 2. Moreover,
since we are trying to estimate a decision tree that (by assumption) is used by our entire
population, we limit the possible conjunctive conditions to those conjunctions that apply
to a large percentage of the population. In particular, we only consider those conjunctive
conditions that apply to (1) 10% or more of those who bicycle or (2) 10% or more of those
who did not bicycle. As is done in [Letham et al. (2015), we use the FP-growth algorithm
implemented by Borgelt| (2005 to enumerate these conjunctive conditions.

Now, given the possible conjunctive conditions, our remaining task is to assign a prior
probability to each of these conjunctive rule. Because we do not have any prior information
about whether one conjunctive condition would be used more than any other, we use a
uniform distribution as our prior. In particular, we follow Equation 2.2 of [Letham et al.
(2015) and place a uniform distribution prior over all conjunctive conditions that (1) have
| pi™ | requirements and (2) have not already been used in the decision tree.

Lastly, in order to use the methods of Letham et al. (2015]), we initially use the decision
trees to predict the choice of bicycling or not, for those individuals who own a bicycle. This
bicycle focused prediction is performed for two reasons. First, we are being agnostic (initially)
about the presence of a more general choice model at the output nodes of the decision tree,
and unlike our mode choice models, our trees are not constructed with the relevant variables
for predicting all travel modes. Secondly, we focus on the choice of bicycling because the
tree is will ultimately be used specifically to determine whether bicycle is considered or
not and to what extent bicycling is generally preferred when it is considered. Either way,
to make predictions about whether or not an individual bicycles to work or to school, the
methods of [Letham et al.| (2015) require us to specify a prior for the probability that an
individual chooses to bicycle. For a fully unknown person, we chose our prior to express
maximal ignorance about his/her probability of bicycling. Our prior for the probability that
an individual commutes by bicycle is Beta (1,1): a uniform distribution over the range (0, 1).

For further clarification of how we initially sampled the decision trees, see Letham et al.
(2015)).

Results and Discussion

In this subsection, we discuss the results of our empirical application. Specifically, we com-
pare the MNL model with our proposed bayesian model trees in four ways. We first quantita-
tively compare these two models in terms of in-sample fit. Note that we do not compare the
two models in terms of out-of-sample predictive ability simply because our long estimation
times and small sample size made both cross-validation and the use of a holdout sample
unappealing. Moreover, it is well known that while frequentist estimation techniques such
as maximum likelihood are prone to over-fitting, bayesian estimation techniques are much
less likely to overfit, and bayesian model selection techniques automatically penalize model
complexity (Dawid, 2002; |Wagenmakers et al., 2008| Section 3.2). Secondly, we qualitatively
compare the two models in terms of their forecasted relationship between public investments
in bicycle lanes and expected bicycle mode shares. Thirdly, in an attempt to uncover the
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Figure 4.4: Expected Bicycle Mode Share versus Mean Percentage of Bicycle Lanes

model differences that lead to the divergent forecasts, we compare the estimation results of
those coefficients that are common to the two models. Finally, we conclude this subsection by
discussing the behavioral differences that lead to greater plausibility of our bayesian model
tree forecasts as compared to the forecasts of the MNL model.

To begin, we start with the in-sample results. In a frequentist setting, models are com-
monly compared using log-likelihood ratios. For non-nested models, one might use the Vuong
test (a generalization of the likelihood ratio test) to test which of two models is closer in
terms of Kullback-Leibler divergence to the true data generating process (Vuong, 1989)). In
a bayesian setting, the same interpretation can be given to the posterior probability of a
model. Simply, the posterior probability of a model is the probability that, out of one’s
set of models, a given model is closest in terms of Kullback-Leibler divergence to the true
data generating process (Walker, 2013). Because we use the scalable rejection sampling al-
gorithm of Braun and Damien| (2016), we automatically get an estimate of P (Y | X, m) for
each of our ten model trees, and because we have the prior of each tree m, we can calculate
P (Y | X) given our bayesian model tree. Likewise, the scalable rejection sampling algorithm
provides an estimate of P (Y | X) for our MNL model. Combining these probabilities with
prior probabilities of % for each model (to reflect maximal uncertainty about which model is
closest to the data generating process), we find that the posterior probability of our bayesian
model trees is 99.91% compared to the posterior probability of 0.09% for the MNL model.
In other words, based on our data, the bayesian model tree is overwhelmingly more likely to
be closer to the true data generating process than the MNL model.

Given that the bayesian model trees are likely to be a better representation of the true
data generating process, we now turn to the question of whether this model leads to dif-
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ferent policy implications as compared to the MNL model. For our policy application, we
considered the effect of increasing the proportion of bicycle lanes for the individuals in our
sample. In particular, we raised the proportion of bicycle lanes for each individual in our
sample, one percentage point at a time, until each individual’s proportion of bicycle lanes
was approximately 70% (the maximum value observed in our estimation dataset). After
each incremental increase in the proportion of roadways with bicycle lanes, we predicted the
average bicycle mode share across the dataset. In Figure we plot the expected bicycle
mode shares, as predicted by the bayesian model trees and the MNL model, along with their
associated credible intervalsE]. Note that in this plot, we use the acronym “BMT” to refer to
the bayesian model trees. Naming aside, Figure [4.4] shows that the two models lead to very
different forecasts. In particular, as one begins to install bicycle lanes, both models show
an increase in the expected bicycle mode share, but eventually, the bayesian model trees
predicts that the expected bicycle mode share will flatline. In contrast, the MNL model
predicts that the expected bicycle mode share will increase continually. A-priori, the pre-
dictions of the bayesian model trees appear more plausible than the predictions of the MNL
model. In particular, we expect diminishing returns from increasing the proportion of road-
ways with bicycle lanes since individuals will eventually come to feel safe on public roadways
but will still reject the bicycling alternative due to other factors such as time pressures due
to childcare obligations, concerns about sweating, etc.

To corroborate our a-priori expectations, we note that in the United States (U.S.) and
internationally, solely having many bicycle lanes does not lead to the huge bicycle mode
shares predicted by the MNL model. For instance, take the case of Davis, California. Davis
has lead the U.S. in the installation of on-street bicycle infrastructure. The first on-street
bicycle lanes, the first bicycle traffic signal, and the first ‘protected intersection’ for bicyclists
were all installed in Davis (Caltrans| [2017)). Accordingly, out of all cities in the U.S. with
populations of greater than 20,000 individuals, Davis has the highest bicycle commuting
mode share. Depending on one’s source, Davis’ bicycle commuting mode share is 17% -
19% (McKenzie, 2014, McLeod, 2016), a value that precisely matches the predictions of
our bayesian model trees. Looking internationally, we can observe countries such as the
Netherlands that lead the world in on-street bicycle infrastructure investments. Here, we are
quick to note that bicycle infrastructure in the Netherlands is often of much higher quality
than in the U.S. Bike lanes in the Netherlands are often ‘protected’ in the sense that they
are physically-separated from motor vehicles (Pucher and Buehler] 2008)). Additionally, the
entire travel context in the Netherlands is more supportive of bicycling: fuel and automobile-
ownership costs are much higher than in the U.S., more downtown areas are designated as
automobile-free, local roads are often ‘traffic-calmed,” and travel by bicycle is often more
direct than by automobile (Pucher and Buehler, 2008)). Even with all of these advantages,
only about 36% percent of all trips are taken by bicycle in the Netherlands (TNS Opinion
& Social, 2015). We are immediately sceptical of any model, such as our MNL model, that
predicts a similar level of bicycling based solely on the installation of ‘unprotected’ bicycle

I"Note that credible intervals are the bayesian analog of confidence intervals
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lanes (the only type of bicycle lane present in our study area at the time the data was
collected).

Now, to investigate the causes of the differing forecasts shown in Figure 4.4] we start with
the estimated choice model coefficients () of the MNL model and our bayesian model trees.
A summary of the posterior distribution of the choice model parameters for both the MNL
and bayesian model trees is given in Table [1.1] Briefly, Table [£.1] shows the posterior mean,
the 2.5th percentile, and the 97.5th percentile of the posterior samples for each choice model
parameter. To calculate the posterior summary for the bayesian model trees, we calculated a
weighted posterior mean and weighted percentiles where the posterior samples of each choice
model parameter, for each decision tree, were weighted by the posterior probability of that
tree. To make the display manageable, Table [4.1] only displays the parameters estimated in
the MNL model. The parameters that are specific to the model trees, such as the bicycle
ASCs that are specific to each output-node (ASCyie i), are not shown. Now, the main finding
from Table is that the estimation results of parameters that are common to both models
are very similar. The only parameter whose posterior mean shows large differences between
the two models is ASCye, and this is because the ASCy. in the bayesian model tree plays
a different role than it does in the MNL model. Recall that in the bayesian model tree,
ASChike s just the group mean that the output-node specific ASCye; are centered around.
Details aside, knowing that the estimated choice models are the largely the same means that
we should look towards the decision trees themselves to find out why the two models have
such differing forecasts. This line of investigation is pursued below.

Behaviorally, we believe that four qualities of our bayesian model trees lead to its differing
forecasts from the MNL model. The first quality we note is that the bicycle lane variable
is almost never included in the conjunctive condition that splits the root node. In other
words, the bicycle lane variable is almost never in the conditions at the top of our decision
trees. In nine of our ten decision trees, there were nodes that filtered out individuals before
they could get to an output node that depended on bicycle lanes. Furthermore, the one tree
that had a bicycle lane requirement for the first output node actually had a low probability
(0.2%) of being the tree that is closest to representing the true data generating process. The
behavioral interpretation of this finding is that bicycle lanes are not the most important
variable in an individual’s decision making process about whether or not to commute by
bike. Variables that appear to take precedence over bicycle lanes when deciding whether
or not to commute by bike include topography, the number of children an individual has,
and the minimum distance between an individual’s home and work/school. As a result, the
impact of installing bicycle lanes will be moderated by these other variables.

The second quality that we note about our bayesian model trees is that the bicycle lane
variable never appeared by itself. In particular, when the proportion of roadways containing
bicycle lanes was present in a conjunctive condition, it always appeared alongside another
variable. For instance, in seven out of ten decision trees, the bicycle lane variable appeared
in the following conjunctive condition: ‘proportion of roadways with bicycle lanes is greater
than 0.11 and the number of children is 0 or 1.” The posterior probability that the true
data generating process was most closely represented by one of these seven trees was over
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99%. Such a finding emphasizes that the proportion of roadways containing bicycle lanes is
not always important. In particular, if a person has 2 or more children, then bicycle lanes
are unlikely to affect whether the individual commutes by bicycle. Presumably, childcare
pressures will be a bigger determining factor of those individuals’ choice of travel mode.



Table 4.1: Posterior Summaries of Choice Model Parameters

MNL Bayesian Model Trees

Variables Mean  2.5% 97.5%  Mean  2.5% 97.5%
Alternative Specific Constants

Shared Ride: 2 -1.746*  -2.282 -1.231 -1.787%  -2.322 -1.259

Shared Ride: 3+ -1.865*  -2.378 -1.345 -1.909* -2.453 -1.378

Walk-Transit-Walk 1.070%* 0.495 1.623 1.078* 0.497  1.666

Drive-Transit-Walk -2.183*  -2.969 -1.431 -2.223% -3.060 -1.418

Walk-Transit-Drive -2.677%  -3.537 -1.886 -2.734* -3.602 -1.910

Walk 2.428* 1.826  3.042  2.504* 1.885  3.149

Bike 1.087 -2.573  4.854 0.171 -3.419  3.738
Travel Time, units:0.1min

All Auto Modes -1.113*  -1.358 -0.875 -1.129* -1.383 -0.894

All Transit Modes -0.374*  -0479 -0.273 -0.378% -0.486 -0.276
Travel Cost, units:$

All Transit Modes -0.173*  -0.300 -0.053 -0.173*  -0.301 -0.048
Travel Distance, units:mi

Walk -1.125%  -1.299 -0.960 -1.151* -1.337 -0.979

Bike -0.242 -0.503  0.052 -0.356*  -0.469 -0.245
Systematic Heterogeneity

Autos per licensed drivers (All Auto Modes) 1.181%  0.784 1.582 1.221*  0.822 1.621

Cross-Bay Tour (Shared Ride 2 & 3+) -0.517 -1.264 0.167 -0.518 -1.286  0.201

Household Size (Shared Ride 2 & 3+) 0.108 -0.097  0.311 0.127 -0.079  0.330
i)ﬁLl\)Tumloelr of Kids in Household (Shared Ride 2 & 0.662* 0414 0903  0.634* 0.394  0.892
Spatial Variables

Minimum Distance units:mi (Bike) -0.232 -0.822  0.294 B B B

Median Slope units:m/ft (Bike) -1.433 -5.046  2.304 B _ -

Mean Speed Limit units:mph (Bike) -0.064 -0.206  0.072 B B B

Proportion of Shortest Path Roads slower than
Y5mph (Bike) 0484  -0.701 1.791 B B B

Proportion of Roadways with Bike Lanes (Bike) 2.218%  0.363 4.048 B B B

Proportion of Roadways with Bicycle Chevrons 0.765 9647 1.108

(Bike)

Note: * means the equal-tailed 95% credible interval excludes zero.

Additionally bhicvele chevronge are another name for “chare the road” arrowa
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Third, we point out that decision trees, by their very nature, incorporate a notion of
threshold effects. These threshold effects can be seen in our application by the fact that all of
our decision trees with posterior probabilities of greater than 0.2% all feature the requirement
that the ‘proportion of roadways with bicycle lanes is greater than 0.11.” Undoubtedly, the
presence of this sharp discontinuity at 0.11 is partly an artifact of our discretization methods.
However, as described in Section 4.5 even when using soft decision trees that don’t implement
such “hard” thresholds, the interpretation is that individuals do use hard thresholds, but we
are merely uncertain about what those hard thresholds are. Either way, the presence of
these threshold effects leads to two features of our forecasts. First, the threshold effects lead
to the discrete jump in the expected bicycle mode share when the average percentage of all
roadways containing bicycle lanes is about 20%. At this point, almost everyone’s proportion
of roadways with bicycle lanes rises above 0.11, so all individuals now belong to output nodes
with the highest chance of bicycling. Secondly, the threshold effects also cause the flatline in
expected bicycle mode share. Because further increases in the proportion of roadways with
bicycle lanes do not cause any more changes in the output node’s of an individual, there are
no more changes in the probability that an individual chooses to bike.

Finally, the last major difference between the forecasts of the bayesian model trees and
the MNL model is that as the average percentage of roadways with bicycle lanes increases,
the variance in the expected bicycle mode share increases for the MNL model but not for
the bayesian model trees. This finding is perhaps best explained mathematically. Whether
operating in a frequentist or bayesian setting, the parameters of one’s choice model will have
an associated probability distribution. In a frequentist setting, this will be the sampling
distribution of B and in a bayesian setting, this will be the posterior distribution of 3. For
ease of exposition, we will continue our discussion from a bayesian perspective, but our
explanation is equally valid from a frequentist perspective. Since the MNL model multiplies
the proportion of roadways with bicycle lanes (Xpike-tanes) DY Obike-lanes, We can calculate the
variance of the product as Var [XpikelanesObike-lanes] = X ke tancs VAT [Bbike-lanes| ' Lhis means
that as Xpike1anes iNCreases, the variance of Xjiie 1anes/Bbike-lanes inCreases. Because the MNL’s
probability that an individual commutes by bicycle is dependent on Xyike 1anes/Obike-lanes; the
increase in the variance of Xyike1anesObike-lanes l€ads to an increase in the variance of the
probability that an individual commutes by bicycle. Aggregated over all individuals, the
increases in the variances of the bicycle probabilities lead to an increase in the variance of
the expected bicycle mode share.

In contrast to the process described above, changing the value of Xye1anes When fore-
casting with the bayesian model trees only changes what output node one falls into for a
given decision tree. The structure of the trees remains unchanged, the posterior probabilities
across the trees remains unchanged, and the variance of the ASCyke; remain mostly constant
across output nodes that have bicycle available as an alternative. As a result, the variance
of the expected bicycle mode share remains mostly constant as Xpke1anes 18 increased for the
various individuals in our dataset. Behaviorally, these differences in forecast uncertainty can
be attributed to the fact that when using a compensatory model, one is uncertain about
the extent to which the proportion of roadways with bicycle lanes compensates for the other
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variables that affect one’s probability of bicycling. In other words, one is uncertain about the
value of Bbike_lanes O Ppike-lanes. S1NCE Xpike-lanes, ONLY appears in the non-compensatory por-
tion of our bayesian model trees (i.e. in the decision trees as opposed to the choice model),
we are always certain that the bike lane proportion does not compensate for other variables.
I.e. our bayesian model trees are based on the assumption that Spike1anes = 0. This constant
level of uncertainty with respect to the compensatory nature of Xyjre1anes leads directly to
the constant level of forecast uncertainty for the bayesian model trees in Figure [4.4]

4.7 Conclusion

In this chapter, we have made three contributions to the literature. First, we have provided
a micro-economic framework for interpreting a class of machine learning models known as
decision trees. In particular, we reviewed how decision trees are used and estimated (Section
4.2), we showed how decision trees represent a non-compensatory decision protocol known
as disjunctions-of-conjunctions (Section , and we discussed how existing decision tree
variants can account for economic considerations that discrete choice modelers are likely to
have (Section [4.5)).

Secondly, we contributed to both the discrete choice and decision tree literatures by
formulating and estimating the first bayesian model tree for discrete choice problems. The
result is a semi-compensatory, two-stage model of human decision making. Our model uses a
non-compensatory, disjunctions-of-conjunctions protocol to determine one’s choice set, and
conditional on a given choice set, it uses a compensatory discrete choice model (e.g. an
MNL model) to make a final selection if more than one alternative is available. Beyond
one’s choice set, our bayesian model tree allows the non-compensatory rules to influence
one’s preferences, as embodied in the choice model parameters, and our model allows for
quantification of one’s uncertainty over which set of disjunctions-of-conjunctions are actually
being used in a population. To the best of our knowledge, this is the first time a bayesian
model tree has ever been proposed and estimated for discrete choice problems.

Finally, beyond the mere proposition of the bayesian model tree, this chapter carried out
an empirical application of this model. We made three major findings. First, our proposed

bayesian model tree is more than 1,000-times more likely (%53 &~ 1,100) to be closer to our

application’s true data-generating process than the MNL model. Second, our bayesian model
trees provide forecasts that are consistent with observed bicycle mode shares in areas with
abundant bike lanes such as Davis, CA and the Netherlands. In comparison, the forecasts
of the MNL model were overly optimistic. Third, our bayesian model trees provide insights
that are qualitatively different than the MNL model. Specifically, our bayesian model trees
suggest that (1) investments in on-street bicycle lanes will eventually suffer from diminishing
returns and (2) that factors such as travel distance, child-related pressures, and topography
may all prevent individuals from bicycling even if there are many bicycle lanes. These insights
are missing from the more traditional (and compensatory) MNL model.
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Moving forward, we note that in the decades after McFadden revealed the economic im-
plications of the conditional logit model, discrete choice modelers moved swiftly to create
needed extensions. As a result, we can now avoid many of the troubling assumptions and
properties of the conditional logit model, leading to more accurate analyses and more sen-
sible policy implications. Analogously, by linking decision trees to economics, this chapter
brings decision trees to a similar, infantile stage. As noted in Section [4.5] there remain a
number of economic concerns (or more specifically, combinations of concerns) that must be
confronted before decision trees will be maximally useful in policy settings. By detailing
the microeconomic implications of decision trees, we aim to draw the attention of choice
modelers. Hopefully, this chapter will encourage the use and extension of current decision
tree methodologies, thereby increasing the accuracy and usefulness of such models for policy
analyses.
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Chapter 5

Causal Inference in Travel Demand
Modeling (and the lack thereof)

Abstract
This chapter is about the general disconnect that we see, both in practice and in literature, between
the disciplines of travel demand modeling and causal inference. In this chapter, we assert that
travel demand modeling should be one of the many fields that focuses on the production of valid
causal inferences, and we hypothesize about reasons for the current disconnect between the two
bodies of research. Furthermore, we explore the potential benefits of uniting these two disciplines.
We consider what travel demand modeling can gain from greater incorporation of techniques and
perspectives from the causal inference literatures, and we briefly discuss what the causal inference
literature might gain from the work of travel demand modelers. In this chapter, we do not attempt
to “solve” issues related to the drawing of causal inferences from travel demand models. Instead, we
hope to spark a larger discussion both within and between the travel demand modeling and causal
inference literatures. In particular, we hope to incite discussion about the necessity of making causal
inferences in travel demand applications and the methods by which one might credibly do so.

5.1 What demand modelers have always wanted to do

Consider the following three quotations.

“Travel demand models are used to aid in the evaluation of alternative poli-
cies. The purpose of the models is to predict the consequences of alternative
policies or plans. [...] Predictions made by the model are conditional on the
correctness of the behavioral assumptions and, therefore, are no more valid than
the behavioral assumptions on which the model is based. A model can duplicate
the data perfectly, but may serve no useful purpose for prediction if it represents
erroneous behavioral assumptions. For example, consider a policy that will dras-
tically change present conditions. In this case the future may not resemble the
present, and simple extrapolation from present data can result in significant er-
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rors. However, if the behavioral assumptions of the model are well captured, the
model is then valid under radically different conditions.” —(Ben-Akival, [1973)

“Indeed, causal models (assuming they are valid) are much more informative
than probability models. A joint distribution tells us how probable events are
and how probabilities would change with subsequent observations, but a causal
model also tells us how these probabilities would change as a result of external
interventions—such as those encountered in policy analysis, treatment manage-
ment, or planning everyday activity. Such changes cannot be deduced from a
joint distribution, even if fully specified.” —(Pearl, 2009a))

“The goal of many sciences is to understand the mechanisms by which vari-
ables came to take on the values they have (that is, to find a generative model),
and to predict what the values of those variables would be if the naturally occur-
ring mechanisms were subject to outside manipulations. [...| Finding answers to
questions about the mechanisms by which variables come to take on values, or
predicting the value of a variable after some other variable has been manipulated,
is characteristic of causal inference.”—(Spirtes, [2010))

Based on personal communication with many travel demand modelers, i.e. based on
anecdote, we believe that the first quotation, by Moshe Ben-Akiva, accurately represents the
opinions of most researchers and practitioners within the field of transportation. Moreover,
we think it is safe to say that a “policy that will drastically change present conditions” can
be categorized as an “external intervention” or “outside manipulation.” If one accepts these
two premises, then based on the two quotations by Pearl and Spirtes, it is clear that the
implicit goal of travel demand modeling is to make causal inferences (i.e. “to predict the
consequences of alternative policies or plans”)ﬂ Moreover, in order to produce such causal
inferences, it is clear that travel demand models should be “causal models.”

In the rest of this chapter, we further investigate the relationship between travel de-
mand models and “causal models” as seen in other disciplines. Section provides a brief
overview of what causal inference is and why it should be seen as a distinct field from travel
demand modeling. In Section [5.3 we describe the current state of relations between the
fields of causal inference and travel demand modeling. There, we pay special attention to
the differences between practices in the causal inference literature and practices in travel
demand modeling. In Section we continue this focus by hypothesizing about why the

1 As noted by an anonymous referee, “some might argue that the purpose of demand modeling is to make
predictions, as opposed to discover the causal mechanism.” We believe such distinctions are red herrings. The
predominant role of travel demand modelers, especially practitioners, is to predict the effects of particular
policies on a future population’s travel behavior. As stated by Spirtes (2010), “predicting the value of a
variable [i.e. travel behavior| after some other variable [i.e. a policy] has been manipulated is characteristic
of causal inference.” Put succinctly, counterfactual prediction is a causal inference task. Identifying causal
mechanisms is also a causal inference task, but identifying causal mechanisms is not always necessary for
making counterfactual predictions.
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travel demand modeling literature seems so far removed from the causal inference literature.
Finally, although we do not try to “solve” the issues of drawing valid causal inferences from
travel demand models, we try to bridge the gap between the two literatures in Section [5.5]
In this section, we emphasize what travel demand modelers can learn from causal inference
researchers, we provide an extended example that illustrates the use of the techniques de-
scribed in this chapter, and we conclude with a statement about how travel demand modelers
can contribute to the causal inference literature.

5.2 A brief primer

Despite sharing the same goals (as highlighted in Section , we believe travel demand
modelers are generally uninformed or misinformed? about key concepts from the field of
causal inference.

Here are some recent examples of this point. On April 20th and 21st, 2017, the “Advancing
the Science of Travel Demand Modeling” National Science Foundation Workshop was held
at the University of California, Berkeley. This workshop convened many travel demand
modeling scholars and practitioners, young and old, from both within and outside of the
United States. As such, the comments made during the workshop represent a wide cross-
section of voices within the field. Of special interest was panel discussion #2: “How critical is
causality? And how can we make clear statements about causality in travel demand models?”
In particular, some direct quote&ﬂ from the discussion after Panel #2 were:

o “What is causality? What is the clear definition of causality?”
e “What is causality? What about the context? It’s not just Y and X.”

e “How do we define causality?” How much causality is needed in the models to give
robust predictions?”

e “A model that predicts successfully implies that we are accounting for causality.”

o “If we take a certain intervention, will it have the outcome desired by the policy makers?
It’s not about getting causality right. It’s more about what confidence do we have in
our projected outcome.”

2Note, we do not use the adjectives “uninformed” and “misinformed” to be disparaging. We mean
very literally that travel demand modelers do not seem to widely read the causal inference literature, and
because the concepts and findings of that literature are non-trivial and sometimes un-intuitive, travel demand
modelers often express sentiments that (1) show a lack of awareness of the technical details and definitions
from the causal inference literature or (2) show beliefs that directly contradict findings from the causal
inference literature. This second point is supported in the next paragraph.

3Note that the names of individuals who made each quote have been redacted to respect participant
privacy because individuals did not make these statements “on the record.”
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As illustrated by these comments from attendees and the overall tenor of the conversations
throughout the workshop, the topic of causality in travel demand modeling is beginning to be
widely discussed, but it is still far from being widely and correctly understood’} Specifically,
travel demand modelers seemed most uninformed or misinformed about what causal inference
is and how it differs from prevailing practices in travel demand modeling. Below, we briefly
address these two questions.

First, for the purposes of this chapter, causal inference is defined as the use of data and
assumptions to make inferences about outcomes under external manipulation or intervention
in a particular context (Dawid, 2010). We will begin by introducing some notation. Let Y;
be a discrete dependent variable for an individual i. In the field of travel demand, concrete
examples of Y; might be the vector of zeros and ones that represents the travel mode that
an individual takes, a count of how many automobiles an individual or household owns,
or the time period during which an individual departs from work. Now, let X; be some
explanatory variable for that individual, which is amenable to change via political action.
Concrete examples of X; include the speed of public transit, the cost of driving (as affected
by gas taxes), or the prevalence of bicycle lanes between the individual’s home and work.
Finally, let Z; be a set of covariates for individual ¢ that also affect the outcome Y; but are not
being subjected to any external change. Z; might include, for instance, socio-demographics
or attributes of a travel mode that are not being subjected to change by the policy in question
(e.g. walking time between one’s origin and destination).

Using this notation®] causal inference focuses on inferring P (Y;|do (X; = z), Z;) (Pearl,
2009b|, Section 3.2.1). Here, z is a particular value of X;. The notation do (X; = z) explicitly
denotes the fact that we are interested in the so-called post-intervention or controlled distri-
bution of the outcome Y;, where we externally set X; to the value z (Pearl and Bareinboim),
2014)). From this post-intervention distribution, numerous quantities of interest may be cal-
culated. For instance, let X;; and X;o be two different values of X;, each corresponding to
a different policy: policy 1 and policy 2. Then the individual causal effect of policy 2 versus
policy 1 can be defined as P (Y;|do (X; = Xi2)) — P (Yi|do (X; = X;1)) (Pearl, 2009b} Section
8.2.1). Other quantities of interest can also be calculated. For instance, the average treat-

4To be completely explicit, we note that on the topic of making inferences about outcomes under external
manipulation or intervention, we generally assume that if the statements of travel demand modelers and
causal inference researchers disagree, then the travel demand modeler is incorrect. Of course, we examine
the statements and supporting arguments made by both parties, but we have found our assumption to
typically hold true. Again, this is not a pejorative remark against travel demand modelers. It is an expected
outcome based on the fact that causal inference researchers are trained to focus on this topic, whereas travel
demand modelers are typically not.

5Note, our discussion is in terms of a discrete dependent variable because much of travel demand mod-
eling focuses on predicting discrete outcomes. However, if one is interested in a continuous dependent
variable, then the quantities described in this paragraph would change as follows. Instead of inferring the
probability mass function P (Y;|do (X; = x), Z;), we would instead focus on inferring the probability density
f(Y;|do (X; = x), Z;). Additionally, using Y;; to denote the outcome for individual ¢ if policy j is enacted,
we would define the individual causal effect as Y;o — Y;1, and we would define the average causal effect as
E[Yiz — Ya)-
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ment effect can be defined as the average of the individual causal effects over the population
E[P (Yildo (X; = Xip)) — P (Yi|do (X; = Xi))].

We emphasize here that the post-intervention distributions, i.e. the distributions using
the “do” operator, contrast the observational distributions of Y; where individuals choose to
have X; = z, e.g. P (Yi|X; =1x,7Z;). In general, the two distributions are not equivalent:
P (Y;|do (X; = x)) # P (Y;|X; = x). Assome readers may already be thinking, this difference
is related to the traditionally defined concept of endogeneity. However, as we will discuss
two paragraphs from now, this difference in distributions is broader than the traditional
concept of endogeneity. Now, to clarify what we mean by differences in the post-intervention
and observational distributions, imagine the following (fictitious) public health study. Here,
Y; is the number of times an individual rides a bike for recreation in a given month. As an
explanatory variable, X;, consider the average number of times in a week that the individual
rides his/her bicycle to work. The post-intervention distribution may be observed where
participants in a randomized controlled trial are made to ride a bicycle to work 3 or more
times a week. This might differ from the observational distribution where perhaps only
“serious” cyclists rode a bicycle to work 3 or more times a week. Intuitively, one might
expect that more recreational bike rides would be observed amongst those who frequently
commuted by bicycle without the study intervention as compared to those who were forced
to commute by bicycle frequently. In other words, one might expect P (Y;|X; = x,Z;) >
P (Y;|do (X; = x), Z;) in this example.

The primary reason for the inequality of the post-intervention and the observational
distributions is that individuals choose the values of X; that they are observed to have.
Continuing the example from the last paragraph, individuals choose how often they wish to
commute to work by bicycleﬂ Because individuals choose their observed values of X;, there
may be unobserved factors influencing their choice of X; that also affect their outcome Y;.
We discuss this point further in Section [5.3] but for now, note that in our example, a person
with an unobserved aversion to bicycling may still choose not to bicycle a lot for recreation,
even if he/she is forced to bicycle to work by his/her doctor. In general, simply looking
at the observational distribution P (Y;|X;, Z;) may lead one to incorrectly overestimate or
underestimate the effect of externally setting X; = = while holding all of the other unobserved
variables constant. As put eloquently by statistician A.P. Dawid:

“[T]t is a logically trivial but fundamentally important point that there is no
necessary connexion between the different regimes of seeing and doing: a system
may very well behave entirely differently when it is kicked than when it is left
alone.”—(Dawid} 2010)

6Again, we realize that some readers in the travel demand community may be already thinking that
this is simply about endogeneity. Endogeneity, as typically defined, is a subset of the concepts used in the
causal inference literature when judging the identifiability of P (Y;|do (X; = x)). We will return to this point
in the next paragraph where we will discuss how causal inference is a larger topic than simply dealing with
endogeneity as known to travel demand modelers.
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As travel demand modelers, we do ourselves a disservice by not paying special attention
to this distinction in our modeling efforts. Indeed, our policy problems call for the post-
intervention distribution P (Y;|do (X; = z)), but we typically estimate P (Y;|X; = ). Then,
when we apply our models, we erroneously behave as if we have estimated P (Y;|do (X; = z)).
This causal non sequitur leads to misguided statements such as those quoted above where
success or confidence in predictions of P (Y;|X; = z) is taken to be the important feature in
a causal inference problem, even though the observational distribution may be arbitrarily
far from the post-intervention distribution that we truly need.

The discussion above should be helpful for travel demand modelers who are unfamiliar
with the field of causal inference and who seek a basic understanding of what the vast and
growing body of causal inference studies is about. However, there may be other travel
demand modelers who see little added value in the preceding (and following) discussions.
Presumably, their thought will be that since the concept of endogeneity and self-selection
already exists within travel demand modeling, there is nothing new to be learned. This
thought is incorrect. For example, current definitions of endogeneity typically refer to the
case where one’s explanatory variables are correlated with the error terms in one’s model
(Louviere et al., 2005)). Concretely, imagine that (1) X; and T; are two observed, explanatory
variables that affect one’s outcome Y;, (2) that X; is currently excluded from one’s model
while 7; is included, and (3) that X, and 7; are correlated. Using common definitions,
T; would be labelled endogenous because it is correlated with X;, which is excluded from
one’s model and therefore part of one’s error terms. As such, travel demand scholars who
research endogeneity might say that the correct action would be to include X; in one’s model.
We will not delve into the details here, but researchers from the causal inference literature
would (correctly) point out that the decision of whether or not one should include X; in
one’s model depends on one’s causal assumptions about how X;,T;, and Y; are related. In
some cases, including X; can increase bias in one’s estimation of P (Y;|do (T; = t)) instead of
reducing it (Elwert| 2013} Ding and Miratrix}, [2015). For some scenarios where the statistical
definitions of endogeneity are insufficient for determining whether a variable should included
in one’s model, see the literature on M-bias (Ding and Miratrix, [2015), butterfly-bias (Ding
and Miratrix, 2015]), overcontrol or overadjustment bias (Schisterman et al. 2009; Elwert
and Winship, 2014)), and endogenous selection bias (Elwert and Winship| 2014]) for more
information.

The basic point that we reiterate and elaborate on further in the remaining sections
of this chapter is that (1) techniques, approaches, and insights from the causal inference
literature are distinct from and broader than those in the current travel demand literature,
and (2) that given their common goals, the travel demand literature should both adopt and
contribute to methods from the causal inference literature.



CHAPTER 5. CAUSAL INFERENCE IN TRAVEL DEMAND MODELING (AND THE
LACK THEREOF) 172

5.3 The current state of the union

Starting in the 1970’s with the so-called Rubin Causal Model (Holland, [1986)) and continuing
to the present, an impressive amount of scholarly study on causal inference has been per-
formed. This research has largely taken place outside the field of travel demand modeling,
within disciplines such as economics, statistics, artificial intelligence /computer science, soci-
ology, and epidemiology. In particular, the causal inference literature has come to focus on
a number of discoveries and concepts that are not widely emphasized or utilized within the
field of travel demand modeling. The critically important point here is that some of these
discoveries in the causal inference literature show that the common viewpoints and practices
of travel demand modelers, as exemplified by the Ben-Akiva quotation in Section [5.1] are
incorrect or misguided. As a result, the field of travel demand modeling can be improved by
incorporating these concerns into its own practice.

Let us give a concrete example to motivate this section. Thus far, much of the causal
inference research has focused on the necessary and sufficient conditions for estimating var-
ious kinds of causal effects from observational data. Said differently, much causal inference
work has focused on specifying the “requirements for a causal interpretation of an empir-
ical relationship” (Heckman|, 2000). That so much effort has been expended on this topic
is instructive. It is now known that having “valid behavioral assumptions” that are “well
captured']in one’s model is not sufficient for one to justifiably draw causal inferences from
a model estimated from observational data. In the words of Imbens and Rubin| (2015),

“we cannot simply look at the observed values of [...| outcomes under different
treatments |...] and reach valid causal conclusions irrespective of the assignment
mechanism. In order to draw valid causal inferences we must consider why some
units received one treatment rather than another” (p.15).

We will revisit this notion of treatment assignment later, but for now, the point is that if
one estimates a travel model based on “valid behavioral assumptions” but fails to consider
why the individual decision makers had particular values for the treatment or treatments
received (e.g. travel costs and travel times), then one will not be able to make valid causal
inferences. To a certain extent, this fact has been acknowledged by academics who work
in the field of travel demand modeling (Petrin and Train, 2010j; [Mabit and Fosgerau, 2010;
Pinjari et al., 2011; Guevara, 2015)), but such knowledge is not routinely reflected in travel
demand research, and it is largely ignored by travel demand modeling practitioners.

Travel models are almost always estimated using observational as opposed to experi-
mental data, and as just noted, there is a discord between the concerns of causal inference
researchers and the norms of travel demand modelers. Such a disagreement should spur
large changes in how we approach our work as travel demand modelers. In particular, since
the predominant purpose of travel demand modeling is to make causal inferences, one might

"Note that “well captured” is taken, here, to mean that one’s model is based on and mathematically
represents one’s behavioral assumptions.
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expect travel demand modelers to (as much as possible) have done two things. First, one
might have expected modelers to have incorporated the existing causal inference techniques
into their own practices. Secondly, one might have expected travel demand modelers to have
begun contributing to the general field of causal inference based on their need to make causal
inferences in settings that are distinct from the settings typically faced by scholars from other
fields. However, despite the two academic disciplines developing roughly simultaneously, no
such merger of the causal inference and travel demand modeling worlds has occurred.

To be clear, we recognize that some concepts from the study of causality have made
their way into transportation studies. For instance, when trying to determine the effect
of the built environment on travel behavior, transportation researchers have long spoken
about the “self-selection” problem (see for example the review of |Cao et al. [2009)). As a
specific illustration, consider the impact of transit-oriented-development (TOD) on transit
ridership. Here, the issue is that it may not be the presence of TOD that causes higher
rates of transit ridership in a given area, but perhaps individuals who prefer to take transit
chose to live in TODs. Using terminology from the Rubin Causal Model, one might say that
the treatment assignment (TOD or not) mechanism is not random—people choose where
to live and therefore choose to be exposed to the treatment. Clearly then, transportation
researchers of select topics, such as the land-use and transportation connection or traffic
safety, have begun to make use of techniques from the causal inference literature. However,
as exemplified by the work done by metropolitan planning organizations, cities, and discrete
choice researchers, the general practice of travel demand modeling remains disconnected from
the causal inference literature.

Let us provide an example of the disconnect that we are referring to. Treasure Island
is between San Francisco and Oakland, California. This island is under the jurisdiction of
San Francisco, and a major suite of residential and commercial developments are planned
for the island. An important policy objective for San Francisco is that when the initial
suite of development is complete, that the majority of travel to, from, and within the island
takes place via public transit, walking, and bicycling (San Francisco County Transportation
Authority, 2015). This objective has triggered massive travel demand modeling efforts, both
by practitioners and academics. A key piece of these modeling efforts is the creation of
travel mode choice models. These models typically take as inputs individual characteristics
(e.g. age, gender, family structure, automobile ownership, etc.) and alternative-specific
attributes (e.g. travel times and travel costs for a particular individual traveling from a
particular origin to a particular destination). As outputs, travel mode choice models return
the probability that an individual chooses to complete a trip by a particular travel mode
(e.g. car, bus, train, bicycle, walk, taxi etc.). Given a travel mode choice model, as well as a
model that can simulate a synthetic population to represent the individuals expected to be
living, working, and visiting Treasure Island, one can estimate the expected share of people
traveling via each available travel mode. Moreover, such models will be used to study the
causal effects on the aggregate travel mode shares, due to the introduction of various types
of transportation policies (e.g. transit signal priority, parking restrictions, heavy investments
in bicycle infrastructure, etc.).
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A major difference between traditional causal inference studies and such travel demand
modeling efforts is that there is typically no accounting for the treatment assignment mech-
anism (i.e. no accounting for confoundingﬂ) in travel demand modeling work. For instance,
the travel mode choice models just described will likely be estimated using disaggregate
data collected from household travel surveys. The key parameters being estimated are those
that correspond to variables being manipulated by the transportation policies, namely the
parameters related to travel times, travel costs, and infrastructure conditions. However, the
values of those time, cost, and infrastructure variables were not randomly assigned to the
individuals being used for model estimation. Instead, the observed time, cost, and infras-
tructure values are the result of individuals choosing to live in, work in, and visit particular
locations. For instance, since I (Timothy) enjoy commuting by bicycle, I chose to limit my
household location search to areas that were within three miles of my workplace. Similar to
the TOD example, my choice of bicycling to work is therefore not due solely to having a low
bicycle travel time—my bicycle travel time is low because I want to bicycle to work. Put
another way, in observational studies such as the kind performed in travel demand modeling,
the variables of interest may be endogenous or confounded. Without accounting for this con-
founding or endogeneity, one has not accounted for the treatment assignment mechanism,
and one cannot hope to draw valid causal inferences.

Broadly, we think that a serious problem of the travel demand modeling field is that
it ignores findings and methods from the causal inference literature. In particular, travel
demand analyses are often not explicit about the causal effects that they are meant to
estimate. Moreover, travel demand analyses often lack transparent accounts of how their
assumptions and techniques combine to identify the desired causal effects. In the upcoming
sections, we will review why we think this gap between the two fields exists, what lessons
travel demand modelers can immediately take from the causal inference literature, and where
we think travel demand modelers can contribute to the travel demand literature.

5.4 Why the disconnect?

Given the current state of affairs just described, it may be useful to reflect on why there is
a disconnect between travel demand modeling and the study of causality. Below, we state
and discuss our (admittedly) subjective views on this topic.

In general, if two academic disciplines address (or appear to address) markedly different
problems, then it is quite understandable that those disciplines might not rely on common
techniques. For instance, as an extreme example, it is not surprising that creative writing

8The term confounding is used in a somewhat technical manner in this chapter. Let C denote the set
of confounding variables. C' may comprise any mix of observed or unobserved variables. Let Y denote
the set of outcome variables, and let D denote the set of treatment variables. This chapter uses the term
confounding to refer to the condition where C' has two causal pathways through which it affects Y. One is
where C' — D — Y, i.e. where C affects the value of D, that in turn affects the value of Y. The second
causal pathway is where C' — Y, i.e. where C affects Y through means that do not involve affecting the
treatment variables D.
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and transportation engineering have very little methodological overlap. These disciplines
attempt to answer very different questions. More relevant to this discussion is the fact
that travel demand modeling takes place in a setting that is quite different from typical
causal inference work. This difference in setting is manifest in terms of the effects or target
quantities being studied, how treatments are defined, and the data that is available for
use in our studies. We will expound on each of these areas of difference below, but given
such differences, it is lamentable—though not surprising—that there is little methodological
overlap between causal inference studies and most travel demand modeling efforts. At first
glance, travel demand modelers might not think that the causal inference literature will be
of much assistance in the sorts of transportation policy questions being addressed.

Different Quantities of Interest

In terms of the effects or target quantities being studied, questions regarding transportation
policy may be ambitious compared to the types of questions typically studied in the causal
inference literature. Consider the Treasure Island example once more. The target quanti-
ties of interest can be defined as the combined mode shares of public transit, walking, and
bicycling under different suites of transportation policies. Given that this is a future devel-
opment, we observe neither the “treatment outcome” nor the reference or control outcome
being used as the basis for comparison. Such a setting stands in stark contrast to the typical
settings described by prominent researchers of causality. For instance, consider the following
three quotes. In “The State of Applied Econometrics: Causality and Policy Evaluation,”
Athey and Imbens write that

“|w]e focus on the case where the policies of interest had been implemented
for at least some units in an available dataset, and the outcome of interest is
also observed in that dataset. We do not consider here questions about outcomes
that cannot be directly measured in that dataset, such as consumer welfare or
worker well-being, and we do not consider questions about policies that have
never been implemented. The latter type of question is considered a branch of
applied work referred to as “structural” analysis; the type of analysis considered
in this review is sometimes referred to as “reduced-form,” or “design-based,” or
‘causal methods.”’—(Athey and Imbens| 2016b))

Here, Athey and Imbens are explicit about their description of “causal methods” not including
questions about policies that have never been implemented. Earlier, [Imbens and Wooldridge,
in “Recent Developments in the Econometrics of Program Evaluation” wrote that

“[t|he central problem studied in this literature is that of evaluating the effect
of the exposure of a set of units to a program, or treatment, on some outcome.
[...| Moreover, this literature is focused on settings with observations on units
exposed, and not exposed, to the treatment, with the evaluation based on com-
parisons of units exposed and not exposed. As opposed to studies where the
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causal effect of fundamentally new programs is predicted through direct iden-
tification of preferences and production functions.”—(Imbens and Wooldridge,
2009))

And even before this, Nobel Laureate James Heckman wrote that

“[t|he treatment effect literature focuses almost exclusively on policy problem
P1 [(evaluating the impact of historical interventions on outcomes)] for the subset
of outcomes that is observed. It ignores the problems of forecasting a policy in a
new environment [...] or a policy never experienced |[...|. Forecasting the effects
of new policies is a central task of science and public policy that the treatment
effect literature ignores.”—(Heckman) 2005).

The “treatment effect literature” that Heckman references is a large subset of the causal
inference literature, and these papers are silent about the types of problems that travel
demand models are being used for. As a result, travel demand modelers would need to per-
form a rather substantive search of the causal inference literature to see that some causality
work (the so-called structural analysis) is addressing questions that mirror those found in
transportation policy analysis.

Different Treatments

In much of the standard causal inference literature, the treatment variable in one’s analysis
is defined as the policy being evaluated. However, in transportation policy analysis, and
in the structural analysis segment of the causal inference literature more generally, policies
stipulate bundles of treatment variables that are thought to affect one’s potential outcomes.
For example, when forecasting the effect of a congestion pricing scheme, it is the manipulated
automobile travel costs and travel times that will affect one’s travel mode choice. Here, the
treatment effects of interest are the dose-response relationships between levels of automobile
travel costs and travel time, and the probability of an individual choosing to drive.

There are numerous ramifications from redefining treatment variables to be distinct from
particular policies. The biggest benefit of this redefinition is noted by Heckman, below.

“This approach models different treatments as consisting of different bun-
dles of characteristics. |...] Different treatments s are characterized by different
bundles of the same characteristics that generate all outcomes. This framework
provides the basis for solving policy problem P3 [(forecasting the impacts of inter-
ventions never historically experienced to new environments)| since new policies
(treatments) are generated as different packages of common characteristics, and
all policies are put on a common basis™—(Heckman, 2005).
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However, despite the increased capabilities brought about by such a redefinition of one’s
treatment variables, there are at least four drawbacks{’] The first drawback is that to estimate
the causal effects of interest, one must now make much stronger assumptions about how the
treatment variables affect one’s outcome variables, as compared to researchers who only study
policies that have already been implemented. For instance, instead of simply observing how
the construction of transit oriented development changes transit usage rates of residents in
an area, one must make assumptions about the mechanisms by which TOD does and does
not affect transit usage (e.g. by reducing travel time from the transit station to destinations
of interest, but not by making transit usage a more socially acceptable travel mode). In
Heckman’s words, one must now make assumptions about the “causes of effects” instead of
simply measuring the “effects of causes” (Heckman, 2005). As a result of discomfort with
making such strong assumptions, many scholars who are interested in causal inference do
not take the structural analysis approach, and it becomes easy to miss the work of scholars
who do focus on forecasting questions that are similar to those seen in transportation.

The second drawback is that while the typical treatment effect literature focuses on cat-
egorical treatments (e.g implement one of a finite set of policies), the redefinition described
above typically makes use of continuous treatment variables in transportation contexts (e.g.
travel times and travel costs). Continuous treatments require one to make even more as-
sumptions in order to arrive at identifiable quantities that can be regarded as treatment
effects. In particular, when using the presence of a particular policy as the treatment vari-
able, dummy variables sufficed to describe the treatment effect (e.g. when assuming additive
and homogeneous treatment effects). Now, when using continuous treatment variables, one
must specify the form of the relationship between the treatment variable and the response
(e.g. z, %, In(x), etc.). As before, increasing the number of assumptions that must be
made decreases the amount of causal inference literature that is devoted to this sort of
transportation-relevant analysis.

Thirdly, in a “selection-on-observables” regime where one believes that he or she has ob-
served all the variables that influence both a person’s outcome and his/her observed level
of the treatment variables, the redefinition just described may open the analyst up to prob-
lems due to the curse of dimensionality. Specifically, many causal inference techniques in
“selection-on-observables” settings rely on the “propensity score”™—the probability or proba-
bility density of the observed treatment level given the observed covariates. When there are
multiple treatment variables involved, there are typically multiple propensity scores (Imai
and Van Dyk, 2004). As the number of treatment variables used to characterize a policy
increases, one can encounter a situation with very low numbers of individuals with similar
values for all of their propensity scores for the various treatment variables. In such settings,
common causal inference techniques such as matching and sub-classification may become
difficult to use in practice (Imai and Van Dyk, 2004). Travel demand modelers may see such

9See Mokhtarian and van Herick| (2016, Footnote 10) for a similar discussion of how the structural
definition of treatments leads to difficulties in applying standard causal inference techniques in a residential
choice setting.
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an issue and be initially discouraged, noting that their particular applications suffer from
issues that have not even been resolved in the causal inference literature itself.

Finally, as noted earlier, a requirement for drawing causal inferences is that one accounts
for the treatment assignment mechanism. Given that the redefinition above typically leads
to the creation of multiple treatment variables per policy, travel demand modelers should
be concerned about the assignment mechanism for each of the treatment variables for the
observations in their sample. Moreover, since confounding due to unobserved variables is
usually a serious concern in observational studies with only one treatment variable, it may
be reasonable to expect the potential for unobserved confounding to be increased when there
are multiple treatment variables. If unobserved confounding exists in one’s study, then the
prospects for drawing credible causal inferences are grim, partially due to the cross-sectional
datasets used in transportation[}

In the context of travel demand models and cross-sectional data, unobserved confounding
shows up as an endogeneity issue. Endogeneity in travel demand models may currently be
addressed through a number of techniques such as the use of proxy variables, the “Berry-
Levinson-Pakes” technique (in particular instances), and instrumental variable techniques
(Guevaral, 2015)). Of these strategies, instrumental variable approaches are the most generally
applicabld'!] Instrumental variable approaches such as control function, latent variable,
or multiple indicator solution methods, all rely on researchers being able to find variables
that are “valid instruments.” That is, one needs variables that are correlated with the
endogenous variable but conditionally independent of the outcome, given the endogenous
variable(s) (Guevaraj, 2015). Unfortunately, a travel demand modeler might be dismayed due
to the consensus in the causal inference literature that “[g]ood instruments are hard to find,
however, so we'd like to have other tools to deal with unobserved confounders” (Angrist and
Pischke, 2008). Even Phillip G. Wright, the inventor of the instrumental variable estimator
in econometrics, wrote that “[s|uch factors, [i.e. valid instruments| I fear, especially in the
case of demand conditions, are not easy to find” (Angrist and Pischke] 2015)).

Summary

In summary, travel demand modelers often hope to draw causal inferences regarding policies
that either have not been implemented yet or have not been implemented in the population
of interest yet. In such settings, modelers must redefine the “treatment variables” in their
studies from being particular policies to being sets of characteristics that define policies.
This redefinition permits a so-called “structural analysis” that is used in a small subset
of the causal inference literature. Moreover, this redefinition requires the use of strong

10For instance, cross-sectional datasets preclude fixed-effects and random-effects estimators that may be
used to deal with unobserved heterogeneity.

1 As noted by (Guevara (2015), proxy variable methods are easy to apply but their assumptions are
commonly violated. The “Berry-Levinson-Pakes” method requires the endogeneity to be present at the level
of groups of observations and is not applicable when the endogeneity is present for individual observations
(Guevaral, 2015)).
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assumptions to provide identification of the causal parameters of interest. As a result,
the type of causal inference work that most directly pertains to travel demand modelers is
not highly visible within the causal inference literature. Additionally, the forays of travel
demand modelers into the causal inference literature may not be well received by scholars
of the more common “treatment effect literature” that do not typically concern themselves
with the more speculative studies that are needed in transportation policy analysis. Beyond
research visibility and reception, the redefinition of treatment variables may lead to practical
difficulties in credibly employing common techniques from the causal inference literature
for dealing with confounding/treatment-assignment due to observed or unobserved factors.
Such difficulties may be discouraging for travel demand modelers, but they also point to
areas where travel demand modeling could contribute to the causal inference literature.

Different Datasets

Lastly, as mentioned in the previous subsection, the redefinition of treatment variables, from
representing a policy of interest to representing characteristics of policies, may lead to a
greater opportunity for an analyst’s study to suffer from unobserved confounding. That is,
one’s treatment variables and one’s outcome may both be a function of some unobserved
factor(s). Causality researchers, especially economists, have developed a number of tech-
niques for dealing with unobserved confounding, beyond the aforementioned methods. Such
techniques include difference-in-difference, fixed effects, and random effect models, to name
a few. While this fact may initially seem encouraging to travel demand modelers, these
techniques rely on panel data to achieve identification of the causal effects of interest. As
already mentioned, travel demand models are typically (though not always) estimated us-
ing cross-sectional datasets, thereby precluding the use of many of the existing models for
dealing with unobserved confounding.

Recapping the rift

To summarize this section, we have attempted to detail our opinions about why travel
demand modeling does not incorporate many of the techniques developed in the causal
inference literature. The main reasons that come to mind are that first, not all areas of the
causal inference literature are directly applicable to the inferential settings of travel demand
modeling. In particular, travel demand modeling often seeks to forecast the effect of a policy
that has not been implemented in the target population of interest (e.g. different policies
for the future Treasure Island development). Much of the existing causal inference literature
ignores this problem in favor of evaluating the effects of policies that have already been
implemented in the population of interest. As a result of this difference in questions, a
minority subset of the causal inference literature (i.e. the literature on structural analysis)
is of greater relevance to travel demand modeling than the more common “treatment effect
literature.”
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Secondly, as a result of asking different questions, travel demand modelers will likely
need to change their definition of what a treatment variable is. By moving from treatment
variables that are equivalent to policies being evaluated, to treatment variables that de-
fine characteristics of policies, travel demand modelers are able to draw causal inferences
about the effects of policies that have not yet been implemented in the populations of in-
terest. However, in redefining what a treatment variable is, travel demand modelers may
face difficulties in applying standard causal inference techniques. For instance, there may
be a greater chance of suffering from the curse of dimensionality when applying propensity
score techniques. Additionally, there may be a greater need for sensitivity analysis due to
modelers making strong assumptions about the nature of the relationship between treat-
ment and outcome variables. And finally, the redefinition of treatment effects may expose
modelers to a greater chance of confounding from unobserved factors. Unfortunately, travel
demand modeling’s ubiquitous cross-sectional data disqualifies many of the tools that have
been developed to combat just this type of unobserved confounding.

Put simply, travel demand modeling may not have adopted techniques from the causal
inference literature because the relevant techniques are not widely visible, nor are they
necessarily straightforward or possible to apply in a transportation setting.

5.5 Where we can go from here?

While the previous section may appear to be a rather somber conclusion about the intermin-
gling ability of the causal inference and travel demand modeling worlds, we are actually quite
optimistic that the two fields can actually be mutually beneficial to one another. Presently,
we think that there are many practices and perspectives that can be usefully adopted from
the various branches of the causal inference literature. We will use Subsection [5.5|to provide
an overview of lessons that we think may be most valuable for travel demand modelers.
Subsection will then illustrate these points on a final, concrete example. It is hoped
that this example will be familiar enough to travel demand modelers that they can go forth
and begin trying to apply techniques from the causal inference literature in their own work.
Finally, we use Subsection to conclude by pointing out the potential contributions to the
causal inference literature that can come from travel demand researchers.

Lessons to learn from the causal inference literatures

This subsection is targeted towards travel demand modelers. Herein, we provide a high-
level and subjective overview of what we believe are three key and useful points from the
various causal inference literatures. In particular, we make note of topics discussed in the
computer science, machine learning, econometrics, statistics, and epidemiology literatures.
Where appropriate, we also point out areas that we believe should be of future research
interests to the travel demand modeling discipline.
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Lesson 1: Be explicit

As expressed by Judea Pearl, “behind every causal conclusion there must lie some causal
assumption that is not testable in observational studies” (Pearl, 2009b, p.99). Consequently,
travel demand modelers should be explicit about the assumptions they have made in order to
draw their conclusions. Such an upfront statement of one’s assumptions would facilitate an
honest evaluation of the validity of one’s claimed causal inferences. In particular, two pieces
of information seem key. First, it would be useful for travel demand modelers to explicitly
state their assumptions about the causal relationships between the observed explanatory
variables, the outcome variables, and the unobserved variables that are thought to affect the
outcomes. Secondly, it would be useful for travel demand modelers to explicitly state their
identification strategy—i.e., how their dataset and methodology allow them to make use of
their causal assumptions to identify the causal relationships of interest (Keele, 2015). Both
of these points will be expounded on below.

In stating one’s assumptions about how the observed and unobserved variables of interest
are causally related, such statements would ideally be made both graphically and verbally.
The figures most frequently used for these graphical displays are directed, acyclic graphs.
When used to encode causal assumptions, such graphs are known as “structural equation
modelﬂ’ in transportation, econometrics, psychology, and sociology (Golob, [2003; Bollen
and Pearl, 2013); “causal flow diagrams” or “system maps” in systems dynamics (Abbas and
Bell, 1994; Shepherd), |2014]); “causal diagrams” in computer science and systems dynamics
(Pearl, |2009a; |Abbas and Bell, [1994); “influence diagrams” in statistics (Dawid, 2015); and
“causal graphs” or “path diagrams” in the social sciences (Morgan and Winship), 2015). These
graphs serve multiple purposes. First, they aid one in communicating one’s assumptions
about a potentially complicated system of relations between various sets of observed and
unobserved variables. Additionally, the graphs aid one in determining how and which causal
effects are theoretically identifiable given one’s assumptions. Once a graph has been shown,
a verbal description can follow, explaining any additional causal assumptions, explaining the
unobserved variables in greater detail, and/or justifying the exclusion of other variables from
the graph.

While the preceding paragraph concerned one’s beliefs about how the world works in
theory, it is also important to state one’s assumption about how the dataset in one’s study
permits the identification of causal effects. This corresponds to making explicit statements
about the details of the dataset being used in one’s study and how one’s methodology will
account for the treatment assignment mechanism of one’s observations. As econometricians
might say, one should be explicit about where the “identifying variation” in one’s dataset is
coming from and what one’s “identification strategy” is (Angrist and Pischke, 2010; Keele,
2015). Is one saying that all covariates of interest and all confounding variables have been

12Note, structural equation models are often based on linear models (Golob, 2003). These parametric
assumptions need not be made, and indeed, for the use of encoding causal assumptions we refer to non-
parametric structural equation models (Bollen and Pearl, |2013)) because we are not making any parametric
assumptions at this stage of the analysis.
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observed? Is one relying on an instrumental variable approach to identification, and if so,
what are one’s instruments, and how strong are they? How is one dealing with unobserved
confounding if any is suspected? These types of questions should be clearly answered in
one’s study in order to help others judge the validity of one’s research.

Lesson 2: Make fewer assumptions

In 1983, Edward Leamer wrote a scathing critique of data analysis practices within eco-
nomics. Bemoaning the lack of robustness in the conclusions that were drawn from various
analyses, Leamer wrote that

“an inference is not believable if it is fragile, if it can be reversed by minor
changes in assumptions. As consumers of research, we correctly reserve judge-
ment on an inference until it stands up to a study of fragility [...|. [...] The pro-
fessional audience consequently and properly withholds belief until an inference
is shown to be adequately insensitive to the choice of assumptions.”—(Leamer,
1983)

Echoing these sentiments, a strong wave of criticism swept the academic world of economet-
rics and the social sciences more broadly in the 1970’s and 1980’s (Leontief, (1971} Freedman),
1985; |Abbott|, 1988]). The main intellectual thrust of these critiques was that the inferences
made by many researchers rested on strong assumptions that could not be credibly defended.
As pointed out by econometrician Charles Manski (Manski, |2003)), “the credibility of infer-
ence decreases with the strength of the assumptions maintained,” so based on the dubiously
strong assumptions invoked by researchers, scholarly inferences themselves were also deemed
untrustworthy.

Within travel demand modeling, where there is nearly ubiquitous appeal to assumptions
of utility maximization and Type I extreme value distribution assumptions for unobserved
factors, there has been some response to the credibility concerns just mentioned. Discrete
choice modelers have relaxed assumptions to allow for taste heterogeneity amongst individ-
uals (mixed logit), substitution patterns across alternatives (nested logit, cross-nested logit,
etc.), distributional heterogeneity across alternatives (heteroskedastic logit, mixed logit with
alternative specific variances), attribute non-attendance, and more. However, many aca-
demic studies, and most travel demand models used in practice, still rely on stringent as-
sumptions about how one’s explanatory variables lead to the probability of a given outcome.

In this sense, travel demand modelers may do well to follow the lead of researchers
in other disciplines who also conduct model-based causal inference. In disciplines such as
econometrics, epidemiology, biostatistics, etc., non-parametric models are beginning to see
increased use. These models make substantially weaker assumptions than the assumptions
typically made in travel demand models. For example, consider the words of biostatistician
Mark van der Laan:
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“Why do we need a revolution? Can we not keep doing what we have been do-
ing? Sadly, nearly all data analyses are based on the application of so-called para-
metric (or other restrictive) statistical models that assume the data-generating
distributions have specific forms. Many agree that these statistical models are
wrong. That is, everybody knows that linear or logistic regression in parametric
statistical models and Cox proportional hazards models are specified incorrectly.
[...]| However, today statisticians still use these models to draw conclusions in
high-dimensional data and then hope these conclusions are not too wrong. It
is too easy to state that using methods we know are wrong is an acceptable
practice: it is not! [...] That is, instead of assuming misspecified parametric or
heavily restrictive semi-parametric statistical models, and viewing the (regres-
sion) coefficients in these statistical models as the target parameters of interest,
we need to define the statistical estimation problem in terms of non-parametric
or semi-parametric statistical models that represent realistic knowledge, and in
addition we must define the target parameter as a particular function of the true
probability distribution of the data.—(van der Laan and Rose, 2011)

As van der Laan counsels, travel demand modelers should make greater use of non-
parametric and semi-parametric models that “represent realistic knowledge.” Here, there
is likely much room to learn from the practices of modern econometricians who make use
of non-parametric models. Likewise, given that the machine learning community builds
models of discrete outcomes with minimal assumptions, travel demand modelers can probably
benefit from adapting techniques from the machine learning literature. Such a melding of
techniques has already begun to occur in other disciplines. For instance, a growing cohort
of econometricians and statisticians have begun making use of machine learning techniques
for making causal inferences (see for example Hill, 2011; |Su et al., [2012; |Athey and Imbens|,
20164), and the fields of epidemiology and biostatistics have begun to do the same (e.g.
Cruz and Wishart, 2006} [van der Laan, 2010; Lee et al., 2010). Though machine learning
techniques are not widely used within the field of travel demand modeling, we think this can
and should change.

Lesson 3: Validate one’s inferences

Undoubtedly, the prospective analyses that are needed in travel demand modeling require a
“structural” approach to causal inference, where explicit models are used for the probabilities
of individual travel choices. However, it would be wise to pay attention to the critiques that
have already been levied at the structural approach to causal inference. In particular, it
seems prudent to adopt a healthy dose of skepticism towards our travel demand models and
subject them to numerous means of validation.

Looking at in-sample means of inferential validation, Leamer writes in a rejoinder to
his original critique that “sensitivity analysis would help” (1985). We agree. It should
be standard practice to subject one’s model assumptions to multiple changes (changes in
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variable specification, radical changes in model form, etc.) in order to assess the robustness
of one’s results. However, sensitivity analyses by themselves are not enough. As noted by
Angrist and Pischke (2010)),

“la] good structural equation model might tell us something about economic
mechanisms as well as causal effects. But if the information about mechanisms is
to be worth anything, the structural estimates should line up with those derived

under weaker assumptions. [...] We find the empirical results generated by a
good research design more compelling than the conclusions derived from a good
theory [...].”

Such sentiments have been echoed numerous times in the causal inference literature (for
e.g. Hendry, |1980; LalLonde|, 1986|). To ensure that our structural models are producing
reasonable inferences, we should also be validating our models using out-of-sample data.
Note that this out-of-sample validation does not simply test one’s model on more samples
from the observational distribution (e.g. such as by hold-out samples or cross-validation).
The out-of-sample validation being spoken of here uses samples from a post-intervention
distribution where the variables of interest have actually been “manipulated” and the samples
being used for validation were not part of the original model estimation process.

Such out-of-sample validation can take numerous forms. First, in the case where we are
making predictions about some future event (for e.g. travel mode shares on Treasure Island),
we should be performing post-evaluations using the actual results that are observed after
the event in question (e.g. the actual mode shares after the Treasure Island development is
opened). This is reminiscent of the early Bay Area Rapid Transit (BART) studies that were
performed by Daniel McFadden (McFadden, (1974} 2000). Before the BART system opened,
McFadden predicted BART mode share, and he compared those predictions with the actual
mode shares after the system opened. Such comparisons allow one to judge the credibility
of a given structural analysis.

Beyond the use of post-evaluation studies, travel demand modelers should take advantage
of “natural experiments” and highly credible observational studies (e.g. well done regression
discontinuity and difference-in-difference designs). For instance, has a transit strike tem-
porarily eliminated the public transit option for travelers? This presents an opportunity
to observe whether travelers redistribute themselves according to the patterns predicted by
one’s travel demand model. Alternatively, is one’s city or region considering the implemen-
tation of dynamic parking prices? Provided that (1) there is adequate public notice and (2)
that prices remain stable long enough for people to reach new equilibrium behaviors, one can
observe how people’s driving habits change in response to changing driving costs. Do peo-
ple’s real changes match the predictions from one’s travel model? Overall, our transportation
systems are continually buffeted™] by sporadic disturbances that change travel times, travel
costs, and various types of physical infrastructure (e.g. [Marsden and Docherty, 2013)). Such

BThanks to Michael Anderson for pointing out the importance of this fact.
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disturbances are invaluable opportunities to observe how well our analyses predict the effects
of external changes to these key attributes.

Lastly, one should also strive whenever possible to make use of randomized controlled
trials (RCTs). We recognize that there are formidable ethical and logistic challenges to
performing RCTs in transportation settings. This is a large part of why RCTs have not been
performed more frequently by travel demand modelers. However, as noted by Donald Rubin

“[f]or obtaining causal inferences that are objective, and therefore have the
best chance of revealing scientific truths, carefully designed and executed random-
ized experiments are generally considered to be the gold standard. Observational
studies, in contrast, are generally fraught with problems that compromise any
claim for objectivity of the resulting causal inferences.” —(Rubin|, 2008])

Fortunately, as digital transportation services rise in popularity, the ease with which RCTs
can be performed is also increasing. For example, the use of transit smartcards can help
transit agencies perform experiments related to transit prices (via electronically distributed
discounts) (Carrel et al, |2017)). Private transportation network companies such as Lyft and
Uber already perform large numbers of RCTs on their users, varying attributes such as prices,
displayed wait times, etc. (Chamandy| 2016} Attwell, 2017)). To the extent that the results
of travel demand models built on observational data match the results of these and other
RCTs, one can have greater confidence in the inferences from one’s model. And critically, if
predictions from one’s model that was built on observational data does not align with the
results of one’s RCT, then one should investigate which assumptions need to be modified in
order to produce valid inferences.

Importantly, as a result of using post-evaluation, highly credible observational studies of
the kind employed in the “treatment effect” literature, and RCTs, it often becomes easier to
actually implement new transportation policies. The sad, and perhaps justified truth, is that
many individuals in the public, many politicians, and even many transportation practitioners
do not trust travel model outputs. Based on our experience, travel demand models are often
viewed with suspicion. At the same time however, actual data on the result of implemented
policies are viewed as having greater credibility. If we are to not just analyze transportation
policies but actually be useful in helping good policies get implemented, then evaluation
(not just forecasting) must be employed. To this end, consider the following the quote from
former New York City Department of Transportation Commissioner Janette Sadik-Khan.
Known for her dizzying array of completed projects and change of New York City streets,
she wrote that

“like all politics, all transportation is local and intensely personal. A transit
project that could speed travel for tens of thousands of people can be halted by
objections to the loss of a few parking spaces or by the simple fear that the project
won’t work. |[...] Data showed that interventions that resolved street problems
improved safety and had neutral or even positive effects on overall traffic and
business. The public discussion slowly graduated from anecdote to analysis.



CHAPTER 5. CAUSAL INFERENCE IN TRAVEL DEMAND MODELING (AND THE
LACK THEREOF) 186

[...]| Data change the scope of how we understand the street. They change the
question from whether people like or want redesigned roads to whether these
redesigns make the street work better.”—(Sadik-Khan and Solomonow), 2016))

In sum, post-evaluation, “treatment effect” studies, and RCTs are the opposite side of the
travel demand modeling coin. All of these actions can help increase model credibility for both
analysts and the public, thereby speeding the identification, adoption, and implementation
of sound transportation policies.

A final example

To end the discussion of what travel demand modelers can learn from the causal inference
literature, we will sketch out how one might apply the various lessons from this chapter
to a travel demand question. In keeping with our stated goal of encouraging discussion
and experimentation, as opposed to “trying to solve issues related to the drawing of causal
inferences from travel demand models,” we do not carry the analysis through. Instead, we
merely describe how such an analysis might proceed. This is partially because methodological
issues such as those described in Section remain currently unresolved, and it is beyond
the scope of this chapter to make such methodological advancements. We emphasize that
our example is merely given so travel demand modelers can have a concrete illustration
that helps enable them to go forth and begin working out how to use such causal inference
techniques in their own research.

The basic problem we will use to illustrate the methods described in this chapter is the
following. Imagine one is a transportation planner in Berkeley, CA. The policy question of
interest is “if I install a bicycle lane on University Avenue, from the Berkeley Marina to the
University of California, Berkeley, how many additional Berkeley residents are expected to
commute to work or to school by bicycle?”

Given that this is a question about the effects of an intervention, we are dealing with a
causal inference problem. We will first state what we think the steps of analysis might be,
and then we will expound on the less familiar steps afterwards. To be clear, we do not think
these steps are necessary or sufficient for every causal inference task. However, we think
these steps will be useful for and commonly used by many researchers. Now, the steps of
analysis might proceed as follows:

1. Re-express the problem in terms of the “treatment variables” as described in Section
instead of the “treatment policy” that was initially used to define the problem.

2. State one’s causal assumptions, both verbally and graphically. This includes drawing
the causal diagram that encodes one’s belief about how the treatment variables and
the other variables of substantive interest in this problem all relate to the outcomes of
interest.

3. Attempt to falsify the assumptions encoded in the causal diagram by deriving all
testable implications from the diagram and testing them on the data at hand. If any
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of the testable implications are found to be false, then one or more of the assumptions
in the causal diagram are false, and we must reformulate our assumptions. If all tests
are passed, then the causal assumptions are compatible with the data at hand. Note,
however, that we still cannot say the causal assumptions are true.

4. Determine whether or not the desired causal effects are identifiable given one’s causal
diagram (i.e. given one’s causal assumptions about how the world works) and given
the type of data one has access to. Note that this involves determining which variables,
if any, need to be conditioned on and how the causal effect will be identified.

5. Build models for the various quantities that are involved in the expression for one’s
causal effect. This is the step travel demand modelers are most familiar with and
spend the most time on. It includes tasks such as modeling the outcome of interest
(e.g. traveler mode choice) as a function of the covariates determined in the previous
step.

6. Use natural experiments, “real” experiments (such as RCTs), or post-evaluation studies
to validate one’s analysis and determine what, if anything, should be changed about
how such analyses are approached in the future.

Step

In this example, the treatment policy is the installation of the bicycle lane on University
Avenue. However, expressed in this way, the policy is too narrowly defined. Indeed, because
there was never a bicycle lane on University Avenue, there is no data on that exact policy
that can be used to inform our analyses. One cannot, for example, compare the bicycling
rate of individuals before and after the installation of the bicycle lane. Instead, we need a
variable that can be thought of as representing the mechanism through which all bike lane
projects work (not just a lane on University Avenue). For instance, we might (simplisti-
cally) hypothesize that installing a bicycle lane on University Avenue affects people solely
by changing the percentage of roadways between an individual’s home and work that have
bicycle lanes on them. Let us define the treatment variable T} as this percentagd'] where
“between” is some precisely defined region for each individual that is anchored by his/her
home and commute destination.

Note that 7T; is a function of the policies employed. For each individual, we can define
T; (No bike lane) = TNBL and this corresponds to the current percentage of roadways with
bicycle lanes, since there is currently no bicycle lane on University Avenue. Likewise, we
can define T; (Bike lane on University Avenue) = T2l as the percentage of roadways with
bicycle lanes between individual 2’s home and destination given that a bike lane on University

14We understand that in this example, we could have used other treatment variables. For instance we
could let the treatment variable be the aggregate quality of the bicycling environment, as measured by the
log-sum from a route choice model. We have instead used the treatment variable defined in the text since
less background material is required to understand it.
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Avenue is installed. Now, define Y; as an indicator variable that denotes what travel mode
a person uses to commute. The quantity we want to estimate is

E [P (Y; = bicycle|do (T; = T”*)) — P (Y; = bicycle|do (T; = T;?"))]

where the expectation is taken over the entire population of Berkeley.

Step

Now, given the well defined problem specified above, we need to draw the causal diagram
that depicts our beliefs about how the world works. Guidance on how to construct such
diagrams is given in (Pearl, |1995; Greenland et al., [1999; |[Elwert and Winship| 2014} [Mor-
gan and Winship, [2015). In order to avoid lengthening this chapter, we do not repeat their
instructions. The main point, however, is that constructing a causal diagram involves the ex-
plicit representation of relationships between the outcome variable Y;, the treatment variable
T;, and the miscellaneous other variables that affect Y;—both observed and unobserved.
As noted by Morgan and Winship,

“|w]|riting down a full graph that represents a consensus position, or a set of
graphs that represent alternative positions can be very difficult, especially if the
arguments put forward in alternative pieces of research are open to multiple in-
terpretations. Yet little progress on estimating causal effects is possible until such
graphs are drawn, or at least some framework consistent with them is brought to
bear on the questions of central interest.”—(Morgan and Winship|, 2015, pg. 33)

One result of this difficulty is that in studies purporting to draw causal inferences, the
statement of one’s assumptions can be one of the most viciously debated points. Indeed,
“assumptions are self-destructive in their honesty. The more explicit the assumption, the
more criticism it invites, for it tends to trigger a richer space of alternative scenarios in
which the assumption may fail” (Pearl and Bareinboim, 2014, pg. 580). Here, we do not
wish to engage in such debates over our causal assumptions. The example of a causal diagram
that we provide in Figure is meant to be just that: an example. In a real application,
the causal diagram and its embedded assumptions would have to be defended. We simply
present such a diagram to give a concrete example of what one might look like and how such
a diagram might be used.

When reading Figure [5.1] note that the variables in the squares are observed, and the
variables in ovals are unobserved. In particular, the “bicycle preference” node refers to a
latent preference for cycling and self-identification as “a cyclist.” Additionally, the “Individual
Characteristics” node and the “Level of Service” node denote sets of variables (given in the
curly braces in each box). Each of the variables in the curly braces in these two boxes can
be thought of as their own node, with the exact same “parent nodes” and “child nodes.” For
instance, both bike lane percentage and transit availability are functions of home and work
location, and both bike lane percentage and transit availability influence the travel mode
that one chooses to commute by.
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Travel Mode:
{Bike, Walk, Transit, Drive}

1 Level of Service:
{Transit Availability,
Travel Distance (Walk, Bike),
Travel Cost (Transit, Auto)

Bicycle Ownership Automobile Ownership Travel Time (Transit, Auto)

\ / Bike Lane Percentage}

¢ ://Bicycle Preferencéwi )

Locations:
{Home Location, Work Location}

Individual Characteristics:
{Gender, Age, Income, Education,
Physical Fitness, # Children,

# Dependents, # Housemates,
Marital Status}

Note: Squares denote observed variables. Ovals denote unobserved variables.

Figure 5.1: Example Causal Diagram for Travel Mode Choice

As mentioned earlier, the causal diagram encodes one’s causal assumptions. For example,
Figure [5.1] expresses the assumption that conditional on one’s home and work locations,
individual characteristics have no effect on the level-of-service variables. However, not all
causal assumptions are displayed by the diagram. One important assumption that is not
explicitly shown on the diagram is that the travel mode of a given individual is not affected
by the bike lane percentage for other individuals in the population. This assumption of no
interference between individuals is known as the Stable Unit Treatment Value Assumption
(or SUTVA for short) (Imbens and Rubin) 2015, p. 10). SUTVA allows one to estimate causal
effects by comparing the probability distributions of the outcomes across groups of individuals
with different bike lane percentage levels. Overall, as demonstrated in this paragraph, any
causal assumptions of importance that are not encoded in the causal diagram should be
explicitly stated in words.

Step [3k

Along with a causal diagram come a set of testable implications. Three such types of testable
implications are (1) conditional independence tests, (2) tests of functional constraints, and
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(3) “over-identification” tests. First, note that our conditional independence assumptions are
encoded in the causal diagram. For instance, given the causal diagram in Figure the
following conditional independencd™| assumptions are implied:

e Automobile Ownership I Level of Service | Locations
e Bicycle Ownership I Level of Service | Locations
e Individual Characteristics I Level of Service | Locations

Each of these assumptions can be tested using one’s actual dataset.

Secondly, in models containing latent variables, there may be “functional constraints”
that can be tested. These constraints are basically statements that certain causal effects
(i.e. certain functions) depend only on a particular subset of variables. One can then verify
that this is indeed the case by ensuring that the computed causal effect is constant across
different values of the variables that are supposed to have no influence on the causal effect.
See [Tian and Pearl (2002)) for more information.

Lastly, in a similar fashion, “over-identification” can be used when trying to falsify a given
causal diagram. “Over-identification” refers to the situation where, given a particular causal
diagram, there are two or more distinct ways to compute a given causal effect. While this
is not the case in the causal diagram of Figure [5.1] the general idea is that one computes
the causal effect by all methods, and then tests for equality of the computed values. See for
example [Sargan (1958); |[Kirby and Bollen| (2009).

Step

Once one has tried and failed to falsify one’s causal diagram, one can perform an identi-
fication analysis. This step is now automatic because the necessary procedures have been
reduced to algorithms that are implemented in software that is freely available online. See,
for example, Breitling| (2010); Textor et al| (2016)); Tikka and Karvanen| (2017)). In an ob-
servational setting, if the effects one wants to estimate (i.e. P (Y; = bicycle | do (T} = t)))
are identifiable, then such software will return an expression for this quantity in terms of
observational distributions (i.e. distributions without the “do” operator) or a set of variables
to be conditioned on in order to estimate the causal effect of interest. By looking at the
variables contained in this expression, one will know what variables must be conditioned on,
and in looking at the various probability distributions that are returned, one will know what
models need to be built and estimated.

For a concrete example, see the diagram given in Figure [5.1) once more. Here, the causal
effect is identified, and it is given by the following expression:

P (Y; = bicycle | do (T; = t)) = /P (Y; = bicycle | T; = t, Locations;) P (Locations; | T; = t) d (Locations;)
(5.1)

5Note, a Il b | ¢ means “a is conditionally independent of b given c.”
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From the given expression, one can see that a researcher would need to condition on the home
and workplace locations of the various individuals in the dataset, and the researcher would
need to build a model for the joint home and workplace location choices of the individual.
Here, standard mode choice models are insufﬁcientlﬂ. Although conventional mode choice
models condition on individual characteristics, bicycle ownership, automobile ownership,
and the level-of-service variables, controlling for these variables still allows for the possibility
that the remaining variation in bike lane percentage is due to the “confounding” variable:
the individual’s latent bicycle preference (through one’s home and work location choices).
As a result, one cannot treat the observed distribution as being equal to the, desired, post-
intervention distribution. We have to directly condition on the home and work locations to
sever any ties between the confounding bicycle preference and the bike lane percentagelﬂ.

Steps [5] and [6}

In the previous subsection, we noted that Equation [5.1] called for models of the follow-
ing probabilities: (1) the probability of bicycling given the bike lane percentage and one’s
home and work locations, and (2) the joint probability of an individual choosing his/her
home and workplace locations, conditional on the bike lane percentage t. These models
differ from typical travel demand models. The first difference is that the mode choice
model, P (Y; = bicycle | T; = t, Locations;), conditions on far fewer variables than typical
mode choice models. Secondly, the mode choice model directly conditions on the home and
workplace locations instead of using proxies such as the level-of-service variables. Thirdly,
the full model used to estimate the causal effect combines a joint location choice model with
a mode choice model.

Differences from usual travel demand models notwithstanding, at leasﬂ two problems
will be encountered when trying to construct the needed models. The first issue is the
fact that based on subject-matter insight, we know that even in the population, there are
few individuals with the same home and workplace location. As a result, one will not
have enough individuals to estimate P (Y; = bicycle | T; = ¢, Locations;) after conditioning.
Secondly, even if one had multiple individuals with the same home and workplace location,

16 As noted by an anonymous referee, it is not necessarily the case that a standard mode choice model will
provide inconsistent estimates of P (Y; = bicycle | do (T; = t)). However, the estimating expressions derived
from the “do-calculus” operations on causal graphs have already been shown to sufficient for consistently
estimating causal effects (Galles and Pearl, 1998} Huang and Valtortal, [2006)). If analysts wish to use differing
expressions, then the analysts should show that their expressions also consistently estimate the desired causal
effects or at least meet some other desired criteria.

I"Note that if bicycle preference did not directly affect an individual’s travel mode choice, then conven-
tional travel demand models would be sufficient for estimating the effect of bicycle lane percentage on mode
choice. In that hypothetical scenario, bicycle lane percentage would not be endogenous because bicycle
preference would not be part of the error term.

8There are definitely multiple sources of analytical difficulty in our example. We are not aiming to be
comprehensive. If readers think of their own challenges in this example and wish to know how to address
those challenges, we view this as a success for our efforts to spark consideration and discussion of causality
in travel demand settings.
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the level-of-service variables such as bicycle lane percentage are a deterministic function of
these two locations. There will therefore be no variation in the bike lane percentage after
conditioning. Again, the requisite probabilities will not be estimable. Resolving these two
issues will be key to solving the causal inference problem given in this example. Such a
resolution is beyond the scope of this chapter, but we think it is instructive to identify the
problem so that other researchers may join us in working on this and similar issues.

As a first step in thinking about how one might identify the causal effects of bike lane
percentage on the probability of bicycling to work or school, we offer the following preliminary
thoughts. First, while conditioning on variables that influence “self-selection” of the bike lane
percentage is one way to identify the causal effect of interest, it is not the only way. The
identification strategy of conditioning on the variables that lead to bike lane percentage is
known as using the “back-door criterion.” If we can identify a variable that provides insight
into the “mechanism” by which bike lane percentage influences an individual’s travel mode,
then we may be able to use the alternative “front-door criterion” (Elwert} 2013; |Knight and
Winship, 2013)) to identify the desired causal effect. We will give an example to illustrate
this alternative identification strategy. Assume that increasing an individual’s bike lane
percentage only influences that individual’s travel mode by increasing his or her perceived
sense of traffic safety for the specific commute trip by bicycle. If we are able to collect
measurements of an individual’s perceived sense of safety, then using integrated choice and
latent variable techniques, we may be able to estimate (1) the effect of bike lane percentage
on perceived safety, and (2) the effect of perceived safety on an individual’s travel mode.
Combining these two estimates with our assumptions, we will be able to estimate the effect
of bike lane percentage on an individual’s probability of traveling by bicycle. We do not
claim that this is the only way to estimate the desired causal effect, or even a correct way
to estimate the desired effect (since the assumptions may be incorrect), but we use the
discussion as an example of how one might proceed.

Now, once one completes Step B one will have a model for P (Y; = bicycle | do (T} = t)).
This model can then be used to calculate the desired quantity:

E [P (Y; = bicycle | do (T, = TPY)) — P (Y; = bicycle | do (T; = TVPL))]

The end result will be a causally valid inference about the effect of the University Avenue
bike lane on citywide demand for bicycle commuting.

For Step [6] one should use data from actual bicycle lane interventions to corroborate
the model that one is making inferences from. Note that evaluating real outcomes to see
whether or not they match one’s predictions has been a part of travel demand analysis from
the beginning (see the discussion in Section about the early BART studies). While
such evaluations may not be performed regularly by travel demand modelers any more, the
knowledge of how to do so exists. See for example, Section[5.5] In the context of our example,
natural experiments might take the form of measuring bicycle usage before and after the
construction of bicycle lanes that are built in an “unexpected” manner. For instance, looking
before and after the stealthy construction of bicycle lanes in New York City for public trials.
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We can then compare our predictions of the change in bicycle mode share before and after
the installation of these lanes. Alternatively, a RCT might be analyzed whereby low-income
residents applying for housing assistance are randomly placed in housing and the individuals
have differing values of T;. Bicycle commuting rates can then be studied using the different
individuals in the program. Finally, if the bicycle lane is actually constructed on University
Avenue, one should perform a post-evaluation study whereby the bicycling rates amongst
residents are measured before and after the construction of the bicycle land™} Such studies
will confirm whether one’s model is actually performing well.

Conclusion

So far, we have discussed what causal inference is, the overlapping goals of causal inference
and travel demand modelling, and some reasons why we think a gulf exists between these two
disciplines. Moreover, we have extracted some lessons from the causal inference literature
that we think can be of use for travel demand modelers, and we have tried to show how these
lessons might be used in a concrete, travel demand setting. To conclude, we now turn to
the prospect of the causal inference literature being enriched by the work of travel demand
modelers, and we end with a distinctly hopeful outlook.

Travel demand modeling, in its modern incarnation, grew out of the application of econo-
metrics to the study of human travel patterns. The problems faced in modeling human
travel choices are difficult, and as a result, travel demand modeling applications provided
the impetus for many of the most advanced discrete choice modeling techniques to date.
Concurrently, the broader field of econometrics has moved on to embrace the challenge of
determining causal effects from observational and experimental data (Angrist and Pischke),
2010), and we think it is only natural that travel demand modeling “catch-up” to its pro-
genitor. As noted in Sections and there are a number of challenges to be faced in
bringing causal inference techniques and perspectives to bear on travel demand modeling ap-
plications. However, methodological challenges have always provided the most fertile ground
for progress. Accordingly, we highlight three causal inference topics that we think will be
particularly fruitful grounds for research and application by travel demand modelers.

First, causal inference researchers in computer science and epidemiology have been pro-
ducing a small but growing literature on the topic of “causal transportability” and “meta-
synthesis” (Hernan and VanderWeele, 2011} Petersen, 2011; Pearl and Bareinboiml 2011}
Bareinboim and Pearl, 2012; Pearl, |2012; Lee and Honavar|, 2013; [Bareinboim et al., [2013;
Singleton et al., 2014; Bareinboim and Pearl, 2014). Put simply, the study of causal trans-
portability seeks to determine the conditions and procedures with which it is possible to
transport (i.e. generalize) causal inferences learned in one setting to another (Pearl and
Bareinboiml, 2011}, |2014). Similarly, “meta-synthesis” (Pearl, 2012} [Lee and Honavar, 2013}

90f course, care should be taken to measure bicycling rates amongst those who lived and worked in the
area for a sufficiently long time before and after the construction of the bike lane. This would be done to
remove any influence of individuals who may have moved their home or work location to the area after they
knew the bike lane existed or was going to be built.
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Bareinboim et al., [2013; Bareinboim and Pearl, 2014) is concerned with the formalization
of procedures for combining inferences from multiple studies into one aggregated measure
for a target population that need not have been involved in any of the studies being com-
bined. Thus far, papers about causal transportability have mainly focused on the abstract
mathematical conditions that permit the transport of causal inferences. There has been
a comparative lack of research applying the knowledge obtained thus far to real applica-
tiong?"] There is likely much to be gained from applying the abstract mathematics of causal
transportability research to real problems and from attempting to integrate transportability
notions with domain specific modeling techniques and traditions. Already, travel demand
modelers have much experience with two specific transportability processes: (1) transferring
model results from one time and place to another (Agyemang-Duah and Hall, [1997; |Fox,
2015), and (2) generalizing insights from stated preference (SP) experiments to revealed
preference (RP) studies. In the latter case, travel demand studies have used a number of
techniques to facilitate the desired transport of model results. For example, these tech-
niques include methods such as joint RP-SP estimation techniques (Brownstone et al., 2000;
Feit et al., 2010), incentive-aligned SP experiments to increase the similarity between the
SP study and the RP environment where the results will be used (Ding et al., 2005; Ding,
2007; Moser et al 2010; |Chung and Chiou, |2017), and certainty calibration (Beck et al.
2016)). From both model transferability and RP/SP studies, travel demand modelers may
have much accumulated wisdom to offer the causal transportability literature. Conversely,
travel demand modelers may also have much to gain by incorporating the existing causal
transportability techniques, especially when trying to determine whether or not the desired
inferential transport can actually be performed.

Secondly, feedback processes and change over time have been ignored in much of the
causal inference research performed thus fai’]] Indeed, much of the causal inference work
performed thus far takes the directed acyclic graph as its starting point (or equivalently, the
recursive structural equation model used in much of the social sciences). Such work explicitly
excludes systems of relationships where variable 1 both causes and is affected by variable
2 (possibly offset by a time lag). A transportation example of such a feedback process is
where an individual’s attitudes towards bicycling affect the individual’s choice of bicycling or
not, but the individual’s experiences while bicycling will then affect his/her future attitudes
towards bicycling. While possibly a rare occurrence in other disciplines, we expect that such
feedback processes are common in travel demand settings. As another example, consider the
effect of increased driving costs. At the outset, the increase in costs is expected to damp
demand by some initial amount. However, the initial decrease in the number of drivers may
alleviate congestion, thereby causing an increase in traffic speeds and leading some potential
drivers to begin driving due to the faster speeds. The overall decrease in the number of
drivers will therefore be less than the initial decrease due to the increased prices. This
overall decrease in the number of drivers may be over-predicted if the feedback mechanism is

20Notable exceptions include work such as Singleton et al.| (2014).
21Thanks to two anonymous referees for raising this point.
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ignored. To give credit where it is due, a limited amount of causal inference work has tried to
account for such feedback processes. This work includes the use of chain graphs (Lauritzen
and Richardson|, 2002)), directed cyclic graphs (Schmidt and Murphy, 2009)), the “settable
systems” framework developed by econometricians Halbert White and Karim Chalak (2009)),
and dynamic causal networks (Blondel et all 2017). However, as with the aforementioned
causal transportability studies, these techniques have seldom been used in real applications.
Here, travel demand modelers would essentially forge the link between systems dynamics
researchers who commonly use causal diagrams to portray systems with feedback processes
over time (for example |Abbas and Bell (1994) and Shepherd| (2014)) and causal inference
researchers who use causal diagrams to explicitly identify and compute causal effects.

Finally, travel demand researchers face severe challenges when trying to make robust
quantitative claims. The fragility of travel demand modeling results often comes from am-
biguity over how to choose the variables to be conditioned on when trying to estimate the
probability of interest, how to specify the “systematic utility” equationsF_Z], how the preferences
underlying the systematic utilities might change over time, how to specify the probability
function that links the systematic utilities with the probability of the observed choice, and
even ambiguity in the causal diagram upon which the entire analysis should be built (for
e.g. see the literature on observationally equivalent causal graphs). As was recently noted
by Dagsvik:

“A well-known problem in quantitative economic analysis is that economic
theory provides limited guidance for the specification of functional forms of quan-
titative structural economic models. An unfortunate consequence is that it be-
comes difficult to discriminate between econometric model formulations based
on the same theoretical framework which fit the data reasonably well but result
in different counterfactual predictions. Given this state of affairs, the analyst is
forced to choose between model specifications without adequate theoretical or
empirical support.”—(Dagsvik, [2017)

Overall, we believe that this ambiguity in travel demand models will remain for the foresee-
able future. So although the type of sensitivity analysis advocated in Section will help
uncover how much uncertainty in one’s estimates there actually is, one will likely always
need good methods of reporting this uncertainty. Here, we have seen few structural causal
inference studies that managed to present the uncertainty inherent in their analysis in an
easy to understand and useful manner. In our opinion, the inherent ambiguity in travel de-
mand models gives transportation researchers an opportunity to take the lead on discovering
parsimonious and meaningful ways of representing the uncertainty in one’s analysis.

In conclusion, if the past is any indication of the future, then based on the topics above,
we believe that travel demand modelers will once again be able to advance the arsenal of

22We realize that not all travel demand models have systematic utilities. However, given that most travel
demand models are based on random utility maximization, the comments in this paragraph are valid for
most travel demand analyses.
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quantitative techniques, this time in the causal inference arena as opposed to simply in
the arena of discrete choice. By generalizing and adapting causal inference techniques for
travel demand applications, travel modelers can simultaneously contribute to the field of
causal inference and fulfill their original purpose of validly “predict|ing| the consequences of
alternative policies or plans [...] under radically different conditions” than those present at
the time of one’s analysis.
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Chapter 6

Conclusion

6.1 Research Overview

In this dissertation, I made two broad types of advances. The first type of advances are sub-
stantive: I developed new bicycle demand models. These new models address three bicycle-
specific concerns: incorporating important but frequently ignored roadway-level variables,
allowing for differential rates of “abandonment” between bicycling and other travel modes,
and reflecting the likely reality that individuals use non-compensatory or semi-compensatory
decision rules to decide whether they will commute via bicycle.

The second type of advances are methodological. Here, I blended traditional discrete
choice models with methods from statistics, machine learning, and causal inference. Specif-
ically, I used statistical techniques to create a new class of finite-parameter, closed-form,
asymmetric choice models. Next, I detailed a micro-economic framework for interpreting
decision tree models from machine learning, and I created new, semi-compensatory choice
models using the proposed framework. Lastly, through the lens of causal inference, I exam-
ined travel demand modeling overall and a bicycle demand modeling problem in particular.
These examinations led to the recognition that, as a field, we discrete choice modellers still
need to make significant methodological changes to our travel demand models (bicycle de-
mand models being included as a subset). The validity of our work is questionable without
such changes.

Together, these substantive and methodological advances have three main impacts. First,
transportation analyst have more accurate and more realistic bicycle demand models for use
in their jurisdictions. Second, discrete choice modellers have more accurate, flexible, and
micro-economically diverse models for their various applications. And finally, discrete choice
researchers have new frameworks for interacting with the fields of statistics, machine learning,
and causal inference.

The remaining sections return to these points and will proceed as follows. First, I will
provide a more detailed recap of the contributions I made in this dissertation. Next, I will
note the limitations of my efforts. And finally, building off these limitations and looking
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at future opportunities, I will note some research directions that seem especially promising
and /or needed.

6.2 Research Contributions

This dissertation is composed of four primary research efforts. Each of these efforts makes
both substantive (i.e. bicycle-planning-focused) contributions and methodological ones. Be-
low, I describe these contributions, one project at a time.

First, I developed a method for incorporating roadway-level variables (e.g. speed limits,
slopes, the presence of bike lanes, “share the road arrows” (sharrows), etc.) into travel
demand models. This methodology relies upon a novel concept termed the “zone-of-likely-
travel” and decision trees from computer science. The basic idea of the zone-of-likely-travel
is that it is a polygon that represents a geographic buffer around the shortest-path from one’s
origin to one’s destination. However, this buffer is constrained to follow the roadway network
instead of merely being laid over it, and the size of the buffer is such that an individual who
cycles is likely to take a path that is within the buffer. For all roadways within the zone-of-
likely-travel, the desired spatial variables are recorded, then these variables are aggregated
to the level of the zone by taking averages and percentiles. Finally, a decision tree is built
using a dependent variable of “bicycle or not,” representing whether the individual commuted
to work or school by bike. The nodes of the decision tree are used as descriptors of each
zone-of-likely-travel.

Theoretically, this variable incorporation procedure blends existing “buffer-based” meth-
ods with objectively created “bicycle environment factors.” Substantively, my new procedures
avoids drawbacks of these earlier methods (and procedures based on route choice models).
In particular, My zones are constructed to lie between one’s origin and destination, so it
excludes roadways that are not in the direction one would travel, and it includes roadways
that may be left out by disjoint buffers around one’s origin and destination. Moreover, it
creates descriptors of the bicycling environment in an objective fashion that is tailored to-
wards predicting bicycle demand. And finally, this method avoids the pitfall of route-choice
models, which is that they are built solely on cyclists and then extrapolated to the entire
population of cyclists and non-cyclists alike. Methodologically, I created a new method for
improving the accuracy of bicycle demand models, and I provided another example of the
successful and complementary combination of decision trees and discrete choice models.

Next, I created a class of asymmetric, multinomial discrete choice models with a finite
number of parameters. This class of “logit-type” models has the substantive affect of allowing
analysts to model the (a-priori likely) situation where individuals have differing rates of adop-
tion or abandonment of depending on the travel mode being examined. For instance, from
a state of indifference, an individual’s probability of commuting by bicycle may fall quickly
with respect to a change in its systematic utility. In contrast, an individual’s probability of
driving may fall less rapidly with an equal change in the systematic utility of driving. Em-
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pirically, this new class of models made more accurate predictions than standard, symmetric
discrete choice models.

Methodologically, this extension makes a number of contributions to the discrete choice
literature. First, such models provide a more flexible way to explain observed levels of class-
imbalance as opposed to solely relying on one’s alternative specific constants. Secondly, the
new class of logit-type models generalizes a wide variety of existing, binary asymmetric mod-
els to the multinomial setting for the first time, making such models immediately useful to
transportation, marketing, and other disciplines where individuals choose between multiple
(i.e. more than two) alternatives. Third, I also introduced procedures for systematically
creating new asymmetric choice models. This allows researchers to create new asymmetric
models that are tailored to the specific desired qualities.

For my third project, I detailed a micro-economic framework for the interpretation of
decision tree models from computer science. At a practical level, motivated by this new
framework, I created a bayesian model tree that places a discrete choice model inside a deci-
sion tree, and performs a bayesian estimation of this entire system. Substantively, these ex-
pansions allow one to capture non-compensatory and context-dependent semi-compensatory
decision making amongst individuals. Based on qualitative and anecdotal reports, these ef-
fects are expected to be significant for the choice of bicycle commuting. This intuition was
supported in the empirical application of our bayesian model trees. The bayesian model tree
model had dramatically better levels of fit than a standard MNL model, and the insights
and forecasts of the bayesian model trees were far more plausible than those offered by the
MNL model.

Methodologically, I merged an existing class of machine learning models (decision trees)
with economic theory. This should be greatly helpful in promoting the use and advancement
of tree-based models by discrete choice modelers and other researchers that come from a
background in econometrics. By relying on tree-based models, I provided a model for very
flexible non-compensatory decision rules that generalize those used in the discrete-choice lit-
erature so far. At the same time, tree-based models avoid theoretical drawbacks of previous
research methods such as the ability to make predictions for all future scenarios. Lastly, I
methodologically contribute to the literature on tree-based models by developing the first
model that simultaneously allows for estimation uncertainty (through the bayesian estima-
tion) and context-dependent preference heterogeneity (through the model trees).

For this dissertation’s final project, I examined travel demand modeling procedures
through the perspective of the causal inference literature. Because these two fields have
different methods but largely overlapping goals, I was able to use causal inference results to
identify inferential practices within the travel demand modeling practices that are likely to
be invalid. Substantively, this project resulted in the recognition of the overwhelming need
for bicycle demand models to address the issue of unmeasured confounding. Without doing
so, analyses and plans based on bicycle demand models that are estimated from observational
data should be viewed with suspicion.

Methodologically, this project pointed toward a number of causal inference practices that
could immediately benefit the field of travel demand modeling. Such practices include the un-
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ambiguous stating of causal assumptions for a given study. These statements should include,
but not be limited to, drawing causal diagrams. Moreover, helpful causal inference practices
would also include techniques such as making greater use of models with fewer assumptions
(e.g. mnon-parametric models) and checking the validity of one’s model predictions using
techniques such as before-after studies, natural experiments,difference-in-difference studies,
and randomized controlled trials. At the same time, this project uncovered ways that travel
demand modelers could contribute to the causal inference literature. Such ways include
taking the lead on studies of causal transportability, studies including feedback processes,
and the representation of analytic uncertainty in all its forms. These are all topics where
transportation researchers have either done much work or they are working conditions that
travel demand modelers are forced to face, for better or for worse. By tackling the causality
issues inherent in such studies, travel demand modelers can increase the validity of their own
work and improve the state of causal inference knowledge overall.

6.3 Research Limitations

Overall, my research efforts in this dissertation suffer from two main drawbacks. First, many
of the new techniques require ad-hoc decisions on the part of the researcher. For instance,
the zone-of-likely-travel requires a researcher to choose a percentile between 0 and 100 to
approximate the distribution of how far cyclists are willing to deviate from their shortest
paths. To develop new asymmetric choice models, my procedures require an individual to
choose a loss function from which the new model will be derived. There are few principled
guidelines for choosing a specific loss function. As a final example, my proposed estimation
procedures for bayesian model trees required the choice of a small number of individual
decision trees to represent the full posterior distribution of trees. In this dissertation, I
chose the trees in an ad-hoc manner that, while practically successful in the current research
setting, does not provide guiding principles that are proven to be successful in more general
settings.

Secondly, the methods developed in this dissertation require a substantial effort for use in
new settings. For instance, an analyst seeking to use my zone-of-likely-travel ideas may have
to program their own routines to construct the zones. The routines used in this research
were “minimally-viable-products” that worked for my contexts (i.e. the cities being used
in my research, the origin-destination pairs observed in my datasets, etc.). However, my
routines are neither robust nor computationally efficient. Likewise, for any asymmetric
choice models developed using this dissertation’s techniques, beyond the four that I have
already created, one will have to program the models without being able to rely on existing
implementations. Given that “the devil is in the details,” the way that a new researcher
implements the estimation code for the new asymmetric models may have a significant effect
on the apparent success of the new model. Finally, the bayesian model trees that I created in
this dissertation require numerous choices of priors, of choice model “kernel” (I used an MNL
model, but one can use any discrete choice model more generally), and of the type of decision
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tree being used. Since these different choices can lead to vastly different code to implement
such models, new researchers will have to perform such implementations themselves. Such
implementation may seem daunting, and may therefore discourage the most appropriate and
flexible use of these new techniques.

Despite the points above, one could argue that the obligation of researchers is to produce
new ideas, not necessarily to produce commercial-grade implementations of these ideas. In
this sense, the aforementioned issues are unfortunate realities of my work, as opposed to
limitations. However, my opinion is that since researchers are often funded by the pub-
lic (through government grants), researchers should strive to make their work as useful as
possible to the public. This means making research as easy to use by others as possible.
Accordingly, the next section begins with this goal, recommending future research directions
that (1) address the limitations mentioned in the preceding paragraphs and (2) leverage the
work in this dissertation to address problems that I believe are of the utmost importance for
discrete choice modelling in general, and for bicycle demand modelling in particular.

6.4 Recommendations for Future Research

As noted above, this section will make two general types of recommendations for future
research. The first type of recommendation will focus on how to improve the techniques
created in earlier chapters. The second type of recommendation will focus on new issues,
beyond those that were investigated in this dissertation. Lastly, in addition to the recom-
mendations below, each of the dissertation chapters contains its own set of further research
directions (many of which are unique from those described below).

Now, beginning with the bicycle focused research, it is likely that some analysts will
encounter difficulties when constructing zones-of-likely-travel due to computational speed or
due to the complexities of real, digital roadway network files. Future research efforts should
therefore focus on creating computationally efficient and robustf]] procedures for creating the
zones-of-likely-travel. This would enable individuals to reap all the theoretical benefits of
this method’s approach to incorporating roadway-level variables into travel demand models.

Next, future research should investigate the relationship between intrinsic features of
one’s dataset and the type of shapes that one’s asymmetric choice model should have in
order to generate the most accurate predictions. Such research would guild the selection
of loss functions from which one can derive the desired choice model, and it would help
analysts who, reasonably, may not be familiar with the various types of loss functions in
existence. Similarly, future research should investigate how tools such as automatic differen-
tiation and computational graphs can be used to unify and streamline the implementation
of such asymmetric choice models.

Finally, my last recommendation for improving this dissertation’s research is that future
efforts should create numerically robust, conceptually streamlined, and computationally fast
estimation methods for bayesian model trees. Ideally, such estimation methods will be

'Note that I mean robust to different roadway network configurations.
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‘one-step” methods as opposed to the three-step methodology used in this dissertation. An
estimation technique of this kind would greatly reduce the trepidation that some modellers
may experience when thinking of using a new choice model.

To conclude, I will three highlight research recommendations that I believe are more
‘forward-facing,” as opposed to being primarily focused on improving this dissertation’s ef-
forts. First, one of the most exciting research topics that was not explored in this disser-
tation is the effect of using asymmetric choice models as the class-membership models in a
latent-class framework. Here, the asymmetric choice models would provide information on
how difficult it is to switch members of the population from one latent-class to another. If
the latent-classes capture behavioral heterogeneities such as differing choice-sets and taste-
parameters, then such asymmetric latent-class models may entail drastically different policy
implications than our current models. For instance, we may find that radically more ag-
gressive policy changes are needed to switch individuals into a latent market-segment that
considers ‘active’ transportation modes. Alternatively, we may discover that certain latent
classes are easily affected by policy changes, thus warranting a greater focus on these groups
than would have been given when using a traditional latent-class model.

Secondly, as noted in the chapter on causal inference, unmeasured confounders greatly
increase the difficulty of drawing causal inferences from observational data. To date, re-
searchers (both in and outside of discrete choice) have not figured out how to mitigate the
effects of unmeasured confounding in general settings. To make matters worse, the presence
of unobserved confounding is likely the rule, as opposed to the exception, in observational
studies. Given this state of affairs, it behooves discrete choice modelers to attack the problem
of modeling in the presence of unobserved confounding. Without progress on this front, it
is unlikely that our profession has any hope of performing defensible policy analyses based
on observational data.

Lastly, my final recommendation is emblematic of this dissertation overall, as it is both
methodological in nature and substantively focused on the issue of bicycle planning. Thus
far, most transportation planning agencies act in a “reactive” manner. In the (unfortunately)
unlikely scenario that a planning agency has a bicycle mode share goal, the agency will likely
first come up with a set of plans for bicycle infrastructure investment. Only afterwards
will the agency (at best) check to see whether the plan is expected to increase bicycle
demand levels to the desired amounts. I believe that this order of operations should be
reversed. Given a budget constraint, agencies should proactively optimize the placement of
bicycle infrastructure to maximize the expected bicycle mode share. Methodologically, this
requires (1) causally valid bicycle demand models, and (2) optimization techniques that treat
demand as the objective function while being able to handle huge amounts of boolean decision
variables (e.g. bike lane on this street or not). Such a collaboration between optimization
experts and discrete choice modellers has yet to be realized, but to best manage public funds,
this type of joint research should be a priority for future efforts.
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