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Abstract

We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse 

problem can be formulated as a linear regression with independent Gaussian scale mixture priors 

for both the source and noise components. Crucial factors influencing the accuracy of the source 

estimation are not only the noise level but also its correlation structure, but existing approaches 

have not addressed the estimation of noise covariance matrices with full structure. To address 
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this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for 

observations with latent variables for source and noise, which are estimated jointly from data. 

As an extension to classical sparse Bayesian learning (SBL), where acrosssensor observations 

are assumed to be independent and identically distributed, we consider Gaussian noise with full 

covariance structure. Using the majorization-maximization framework and Riemannian geometry, 

we derive an efficient algorithm for updating the noise covariance along the manifold of positive 

definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and 

validate it in simulations and with real MEG data. Our results demonstrate that the novel 

framework significantly improves upon state-of-the-art techniques in the real-world scenario 

where the noise is indeed non-diagonal and full-structured. Our method has applications in many 

domains beyond biomagnetic inverse problems.

Keywords

EEG/MEG Brain Source Imaging; Hierarchical Bayesian Learning; Majorization Minimization; 
Sparse Bayesian Learning; Type-II Maximum-Likelihood

I. INTRODUCTION

PRECISE knowledge of the noise distribution is a fundamental requirement for obtaining 

accurate solutions in many regression problems [1], including biomedical imaging 

applications such as neural encoding models for task-based fMRI analyses [2], [3], 

electrical impedance tomography (EIT) [4]–[6] or magneto- or electroetoencephalography 

(M/EEG) inverse problems [7]–[9]. In some of these biomedical imaging applications, 

however, it is impossible to separately estimate this noise distribution, as distinct “noise-

only” (baseline) measurements are not feasible. An alternative is to jointly estimate the 

regression coefficients and parameters of the noise distribution. This has been pursued 

both in a (penalized) maximum-likelihood setting (here referred to as Type-I approaches) 

[7] as well as in hierarchical Bayesian settings (referred to as Type-II) [8]–[11]. Most 

contributions in the literature, however, consider only a scalar noise level (homoscedastic 

noise) or a diagonal noise covariance (i.e., independent between different measurements, 

heteroscedastic noise) [12]–[14]. These are limiting assumptions in practice as noise may be 

highly correlated across measurements in many realistic scenarios and, thus, have non-trivial 

off-diagonal elements.

In this paper, we focus on M/EEG based brain source imaging (BSI), although the proposed 

algorithm can be used in general regression settings including sparse signal recovery. [15]–

[17]. The goal of BSI is to reconstruct brain activity from M/EEG data which can be 

formulated as a sparse Bayesian learning (SBL) problem. Specifically, we cast it as a 

linear Bayesian regression model with independent Gaussian scale mixture priors on the 

parameters and noise. Extending classical SBL approaches, we here consider Gaussian noise 

with full covariance structure. Prominent sources of correlated noise in M/EEG data are, 

for example, artifacts caused by eye blinks and the heart beat, muscular artifacts and line 

noise. Other domains that would benefit from modeling full-structure noise include array 
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processing [18], direction of arrival (DOA) estimation [19], geophysical inverse models [20], 

and electrical impedance tomography (EIT) [4]–[6].

Algorithms that can accurately estimate noise with full covariance structure in these domains 

can be expected to achieve more accurate regression models and predictions. This motivates 

us to present a model and to develop an efficient optimization algorithm for jointly 

estimating the posterior of regression parameters as well as the noise distribution. More 

specifically, our contribution in this paper is three-fold:

1. We consider linear regression with Gaussian scale mixture priors on the 

parameters and full-structure multivariate Gaussian noise as opposed to classical 

SBL approaches that only consider noise distributions with scalar or diagonal 

structures.

2. We formulate the problem as a hierarchical Bayesian (Type-II maximum-

likelihood) regression problem, in which the source variance hyperparameters 
and a full-structure noise covariance matrix are jointly estimated by maximizing 

the Bayesian evidence of the model.

3. We derive an efficient algorithm based on the majorization-minimization (MM) 

framework for jointly estimating the source variances and noise covariance along 

the Riemannian manifold of positive definite (PD) matrices.

The paper is organized as follows: In Section II, we review the necessary background 

on Type-II Bayesian learning. We then introduce our proposed algorithm in Section III. 

Simulation studies and real data analysis demonstrating significant improvement in source 

localization for EEG/MEG brain source imaging are presented in Sections IV and V, 

respectively. Finally, Section VI concludes the paper.

II. TYPE-II BAYESIAN REGRESSION

We consider the linear model Y = LX + E, where a set of coefficients or source components, 

X, is mapped to the measurements, Y, by forward or design matrix, L ∈ ℝM × N. Depending 

on the setting, the problem of estimating X given L and Y is called an inverse problem in 

physics, a multi-task regression problem in machine learning, or a multiple measurement 

vector (MMV) recovery problem in signal processing [21]. Adopting a signal processing 

terminology, the measurement matrix Y ∈ ℝM × T  captures the activity of M sensors at T
time instants, y(t) ∈ ℝM × 1, t = 1, …, T , while the source matrix, X ∈ ℝN × T , consists of 

the unknown activity of N sources at the same time instants, x(t) ∈ ℝN × 1, t = 1, …, T . 

The matrix E = [e(1), …, e(T)] ∈ ℝM × T  represents T  time instances of zero-mean Gaussian 

noise with full covariance Λ, e(t) ∈ ℝM × 1 ∼ N(0, Λ), t = 1, …, T , which is assumed to be 

independent of the source activations.

The goal of BSI is to infer the underlying brain activity X from the EEG/MEG measurement 

Y given a known forward operator, called lead field matrix L. In practice, L can be 

computed using discretization methods such as the finite element method (FEM) for a 

given head geometry and known electrical conductivities [22]. As the number of sensors is 
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typically much smaller than the number of locations of potential brain sources, this inverse 

problem is highly ill-posed. This problem is addressed by imposing prior distributions on 

the model parameters and adopting a Bayesian treatment through Maximum-a-Posteriori 

(MAP) estimation (Type-I Bayesian learning) [23]–[27] or, when the model has unknown 

hyperparameters, through Type-II Maximum-Likelihood estimation (Type-II Bayesian 
learning) [28]–[30]. In this paper, we focus on Type-II Bayesian learning, which assumes 

a family of prior distributions p(X ∣ Θ) parameterized by a set of hyperparameters Θ. These 

hyper-parameters can be learned from the data along with the model parameters using a 

hierarchical Bayesian approach [31] through the maximum-likelihood principle:

ΘII: = argmax
Θ

p(Y Θ) = argmax
Θ ∫ p(Y X, Θ)p(X Θ)dX .

Here we assume a zero-mean Gaussian prior with diagonal covariance Γ = diag(γ) for 

the underlying source distribution. That is, x(t) ∈ ℝN × 1 ∼ N(0, Γ), t = 1, …, T , where 

γ = γ1, …, γN
⊤ contains N distinct unknown variances associated to N modeled brain 

sources. In the Type-II Bayesian learning framework, modeling independent sources through 

a diagonal covariance matrix leads to sparsity of the resulting source distributions, i.e., at 

the optimum, many of the estimated source variances are zero. This mechanism is known as 

sparse Bayesian learning (SBL) [31] and is also closely related to the concept of automatic 
relevance determination (ARD) [32] and kernel Fisher discriminant (KFD) [33]. Just as 

most other approaches, SBL makes the simplifying assumption of statistical independence 

between time samples. This leads to the following expression for the distribution of the 

sources and measurements:

p(X Γ) = ∏
t = 1

T
p(x(t) Γ) = ∏

t = 1

T
N(0, Γ)

(1)

p(Y X) = ∏
t = 1

T
p(y(t) x(t)) = ∏

t = 1

T
N(Lx(t), Λ) .

(2)

The parameters of the Type-II model are the unknown source variances and the noise 

covariance, i.e., Θ = Γ, Λ  which are optimized based on the current estimates of the source 

variances and noise covariance in an alternating iterative process. Given initial estimates of Γ
and Λ, the posterior distribution of the sources is a Gaussian of the form [34]

p(X Y, Γ, Λ) = ∏
t = 1

T
N x(t), Σx , where

(3)
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x(t) = ΓL⊤ Σy
−1y(t)

(4)

Σx = Γ − ΓL⊤ Σy
−1LΓ

(5)

Σy = LΓL⊤ + Λ .

(6)

The estimated posterior parameters x(t) and Σx are then in turn used to update Γ and Λ as the 

minimizers of the negative (marginal) log-likelihood −logp(Y ∣ Γ, Λ) given by [35]:

LII(Γ, Λ) = log Σy + 1
T ∑

t = 1

T
y(t)⊤Σy

−1y(t)

= log Λ+LΓL⊤ + 1
T ∑

t = 1

T
y(t)⊤ LΓL⊤ + Λ −1y(t) .

(7)

Given the final solution of hyperparameters ΘII = ΓII, ΛII , the posterior source distribution 

is obtained by plugging these estimates into (2)–(5).

III. PROPOSED METHOD:FULL-STRUCTURE NOISE (FUN) LEARNING

Here we propose a novel and efficient algorithm, full-structure noise (FUN) learning, which 

is able to learn the full covariance structure of the noise jointly within the Bayesian Type-II 

regression framework. We adopt the SBL assumption for the sources, leading to Γ-updates 

previously described in the BSI literature under the name Champagne [28]. As a novelty and 

main focus of this paper, we here equip the SBL framework with the capability to jointly 

learn full noise covariances by invoking efficient methods from Riemannian geometry, in 

particular the geometric mean.

Note that the Type-II cost function in (7) is non-convex and thus non-trivial to optimize. 

A number of iterative algorithms such as majorization-minimization (MM) approaches 

[36] have been proposed to address this challenge. Following the MM scheme, we here 

first construct convex surrogate functions that majorizes LII(Γ, Λ) in each iteration of 

the optimization algorithm. Then, we show the minimization equivalence between the 

constructed majoring functions and (7). This result is presented in the following theorem:
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Theorem 1.

Let Λk and Σy
k be fixed values obtained in the (k)-th iteration of the optimization algorithm 

minimizing LII(Γ, Λ). Then, optimizing the non-convex Type-II ML cost function in (7), 

LII(Γ, Λ), with respect to Γ is equivalent to optimizing the following convex function, which 
majorizes (7):

Lsource
conv Γ, Λk = tr L⊤ Σy

k −1LΓ + tr MS
kΓ−1 ,

(8)

where MS
k is defined as:

MS
k: = 1

T ∑
t = 1

T
xk(t)xk(t)⊤ .

(9)

Similarly, optimizing LII(Γ, Λ) with respect to Λ is equivalent to optimizing the following 
convex majorizing function:

Lnoise
conv Γk, Λ = tr Σy

k −1Λ + tr MN
k Λ−1 ,

(10)

where MS
k is defined as:

MN
k : = 1

T ∑
t = 1

T
y(t) − Lxk(t) y(t) − Lxk(t) ⊤ .

(11)

Proof.—The proof is presented in Appendix A.

We continue by considering the optimization of the cost functions Lnoise
conv Γk, Λ  and 

Lsource
conv Γ, Λk  with respect to Λ and Γ, respectively. Note that in case of noise covariances 

with full structure, the solution of Lnoise
conv Γk, Λ  with respect to Λ lies within the M2 + M /2

Riemannian manifold of PD matrices of size M × M. This enables us to invoke efficient 

methods from Riemannian geometry (see [37]), which ensure that the solution at each step 

of the optimization is contained within the lower-dimensional solution space. Specifically, 

in order to optimize for the noise covariance, the algorithm calculates the geometric mean 

between the previously obtained statistical model covariance, Σy
k, and the empirical sensor-

space residuals, MN
k , in each iteration. Regarding the solution of Lsource

conv Γ, Λk , note that we 

adopt the SBL assumption for the sources by imposing a diagonal structure on the source 
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covariance matrix, Γ = diag(γ), where γ = γ1, …, γN
⊤. The update rules obtained from this 

algorithm are presented in the following theorems:

Theorem 2.

The cost function Lnoise
conv Γk, Λ  is strictly geodesically convex with respect to the PD 

manifold, and its minimum with respect to Λ can be attained according to the following 
update rule:

Λk + 1 Σy
k

1
2 Σy

k −1/2MN
k Σy

k −1/2
1
2 Σy

k
1
2 .

(12)

Proof.—A detailed proof can be found in Appendix B. Moreover, a geometric 

representation of the geodesic path between the pair of matrices Σy
k, MN

k  on the PD manifold 

and the geometric mean between them, representing the update for Λk + 1, is provided in Fig. 

1.

Remark 1.

Note that the obtained update rule is a closed-form solution for the surrogate cost function, 
(10), which stands in contrast to conventional majorization minimization algorithms (see 
Section D in the appendix), which require iterative procedures in each step of the 
optimization.

Theorem 3.

Constraining Γ in (8) to the set of diagonal matrices with nonnegative elements S, i.e., 

S = Γ ∣ Γ = diag(γ) = diag γ1, …, γN
⊤ , γn ≥ 0, for n = 1, …, N ,

Γk + 1 = arg min
Γ ∈ S, Λ = Λk

tr L⊤ Σy
k −1LΓ + tr MS

kΓ−1 ,

leads to the following update rule for the source variances:

Γk + 1 = diag γk + 1 , wℎere,

γn
k + 1 MS

k
n, n

L⊤ ∑y
k −1L

n, n

=
1
T ∑t = 1

T xn
k(t) 2

L . n
⊤ ∑y

k −1L . n

for n = 1, …, N,

(13)

and where L . n denotes the n‐th column of the lead field matrix.

Proof.—A detailed proof can be found in Appendix C.
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Convergence of the resulting algorithm is shown in the following theorem:

Theorem 4.

Optimizing the non-convex Type-II ML cost function in (7), LII(Γ, Λ) with alternating 
update rules for Λ and Γ in (12) and (13) leads to an MM algorithm with convergence 
guarantees.

Proof.—A detailed proof can be found in Appendix D.

Remark 2.

Note that (13) is identical to the update rule of the Champagne algorithm [28]. Moreover, 
various recent Type-II schemes for learning diagonal noise covariance matrices that are 
rooted in the concept of SBL [8], [9] can also be derived as special cases of FUN 
learning. Specifically, imposing diagonal structure on the noise covariance matrix for 
the FUN algorithm, i.e., Λ∈S, results in the noise variance update rules derived in [9] 
for heteroscedastic, and in [8] for homoscedastic noise. We explicitly demonstrate the 
connection between FUN learning and heteroscedastic noise learning in Appendix E.

Remark 3.

Although FUN is limited to estimating a diagonal source covariance matrix, e.g. Γ = diag(γ), 
this assumption can be relaxed in certain settings. One such setting is when the inverse of 

L⊤ Σy
k −1L  is well-defined. This is the case whenever the rank of the lead field matrix 

L is less than the number of sensors. In the context of BSI, this scenario, for example, 
occurs when a region-level lead field – instead of a voxel-level lead field – is used. Under 
this condition, an update rule similar to (12) can be obtained for the full-structure source 
covariance matrix:

Γk + 1 CS
k

1
2 CS

k −1/2MS
k CS

k −1/2
1
2 CS

k
1
2,

(14)

where CS
k: = L⊤ Σy

k −1L
−1

. For additional extensions to other scenarios, please see the 

discussion section.

Summarizing, similar to Champagne and other SBL algorithms, the FUN learning approach 

also assumes independent Gaussian distributed sources with diagonal source covariances, 

which are updated through (13). As an extension to the classical SBL setting, which assumes 

the noise distribution to be known, FUN models noise with full covariance structure, which 

is updated using (12). We summarize the algorithm in Algorithm 1.

Remark 4.

The theoretical results presented in Section III have been obtained for the scalar setting of 
voxels, where the orientations of the dipolar brain source are assumed to be perpendicular 
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to the surface of the cortex and, hence, only the scalar deflection of each source 
along the fixed orientation needs to be estimated. In real data, surface normals are 
hard to estimate or even undefined in case of volumetric reconstructions. Consequently, 
we model each source here as a full 3-dimensional current vector. This is achieved 
by introducing three variance parameters for each source within the source covariance 

matrix, Γ3D = γ1
x, γ1

y, γ1
z, …, γN

x , γN
y , γN

z ⊤. As all Type-II algorithms considered here model 

the source covariance matrix Γ to be diagonal, the proposed extension to 3D sources 
with free orientation is readily applicable. Correspondingly, a full 3D leadfield matrix, 

L3D ∈ ℝM × 3N,

Algorithm 1:

Full-structure noise (FUN) learning
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is used, where we define L3D = L1, …, LN , and where N is the number of voxels under 

consideration and Ln = Ln
1, ⋯, Ln

dc ∈ ℝM × dc is the leadfield matrix for n‐tℎ voxel with dc

orientations. The k‐tℎ column of Ln, i.e. Ln
k for k = 1, ⋯, dc, represents the signal vector that 

would be observed at the scalp given a unit current source or dipole at the n-th voxel with a 
fixed orientation in the k-th direction. The voxel dimension dc is commonly set to 3 for EEG, 

and MEG with realistic volume conductor models, and 2 for MEG with single spherical 
shell models. The update rule in (13) can then be reformulated as follows:

γn
k + 1

1
T ∑t = 1

T xn
k(t) ⊤xn

k(t)

tr Ln
⊤ Σy

k −1Ln

for n = 1, …, N .

Complexity Analysis:

Suppose FUN takes K iterations to converge. The key steps within each iteration of FUN 

include matrix multiplications of different dimensions, additions of matrices, and a matrix 

inversion. Of note, Γ is diagonal matrix in our setting; which significantly reduces the 

computational burden. Finally, by retaining only dominating factors and using that T ≪ N, 

M ≪ N, and log(N) < M in typical BSI settings, we obtain the overall complexity as 

O(MNT) + O M2N . Note that since the model used in FUN learning better captures the 

structure of the noise in most settings, it converges faster than a less accurate diagonal noise 

model (please see convergence plots in Fig. 2). Therefore, this observation can be interpreted 

as a trade-off in which even though per-iteration complexity is more significant for FUN 

compared to heteroscedastic or homoscedastic noise learning variants, fewer iterations are 

required for FUN to meet the convergence criteria. This behavior can reduce the overall 

computational complexity of FUN learning and result in a competitive or only slightly 

increased total computational time compared to diagonal heteroscedastic or homoscedastic 

noise learning.

IV. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed algorithm to variants 

employing simpler (home- and heteroscedastic) noise models through an extensive set 

of simulations. We consider a standard EEG inverse problem, where brain activity is 

reconstructed from simulated pseudo-EEG data [38]. Our MATLAB codes are publicly 

accessible at: https://github.com/AliHashemi-ai/FUN-Learning.

A. Pseudo-EEG Signal Generation

Forward Modeling: We used a realistic volume conductor model (of human head) which 

exhibits a linear relationship between primary electrical source currents generated within the 

populations of pyramidal neurons in the cortical gray matter [22] and the resulting scalp 

surface potentials captured by EEG electrodes. The lead field matrix L ∈ ℝ58 × 2004 consists 

of 2004 dipolar current sources and 58 sensors was generated using New York Head model 
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[39]. The orientation of all source currents was fixed to be perpendicular to the cortical 

surface, so that only scalar source amplitudes needed to be estimated.

Source and Noise Model: We simulated a sparse set of N0 = 5 active sources placed 

at random locations on the cortex. Neural activity of these sources X = [x(1), …, x(T)], 
T = 200 were simulated by sampled from an identically and independently distributed (i.i.d) 

Gaussian distribution. Gaussian additive noise was randomly sampled from a multivariate 

zero-mean Gaussian distribution with full covariance matrix Λ:e(t) ∈ ℝM × 1 ∼ N(0, Λ), 
t = 1, …, T . This setting is further referred to as full-structure noise. To further investigate 

the effect of model violation, we generated noise with diagonal covariance matrix, referred 

as heteroscedastic noise. The noise matrix E = [e(1), …, e(T)] ∈ ℝM × T  is normalized and 

added to the signal matrix Ysignal = LX as follows:

Y = Ysignal + (1 − α) Ysignal
F

α ∥ E ∥F
E,

(15)

where α determines signal-to-noise ratio (SNR) in sensor space defined as 

SNR = 20log10
α 1 − α . The following SNR (dB) values were used in our experiments: 

{−12,−7.4,−5.4,−3.5,−1.7,0,1.7,3.5,5.4,7.4,12}.

Parameter Initialization: The variances of all voxels were initialized randomly by 

sampling from a standard normal distribution. The optimization programs were terminated 

either after reaching convergence (defined by a relative change of the Frobenius-norm of the 

reconstructed sources between subsequent iterations of less than 10−8), or after reaching a 

maximum of kmax = 1000 iterations.

Performance Metrics: We applied the proposed FUN method on the aforementioned 

synthetic data to recover the locations and time courses of active brain sources. In addition, 

two further Type-II Bayesian learning schemes, namely homoscedastic and heteroscedastic 

Champagne [8], [9], were also included as benchmarks with respect to source reconstruction 

performance and noise covariance estimation accuracy.

Source reconstruction performance was evaluated according to the following metrics. First, 

earth mover’s distance (EMD) [25], [40], normalized to [0,1], was used to quantify 

the spatial localization accuracy. The EMD measures the cost needed to transform two 

probability distributions defined on the same metric domain (in this case, distributions of the 

true and estimated sources defined in 3D Euclidean brain space) into each other. Second, the 

reconstruction error was measured using Pearson correlation between all pairs of simulated 

and reconstructed (i.e., those with non-zero activations) source time courses. To evaluate 

the localization error, we also report average Euclidean distance (EUCL) between each 

simulated source and the best (in terms of absolute correlations) matching reconstructed 

source.
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To assess the recovery of the true support, we computed the F1 measure [41]: 

F1 = 2 × TP (P + TP + FP), where P denotes the number of true active sources, while TP and 

FP are the numbers of true and false positive predictions. Note that F1 = 1 represents the 

perfect recovery of the true support.

The performance of the noise covariance estimation was evaluated using tree metrics: 

Pearson correlation Λsim , the normalized mean squared error (NMSE), which is defined as 

Λ − Λ F
2 / Λ F

2 , where Λ and Λ denote true and reconstructed noise covariances, respectively, 

and finally the log-det Bregman matrix divergence – also known as Stein’s loss – between 

original and reconstructed noise covariance matrices, denoted by Dlog‐det. An introduction 

to log-det Bregman matrix divergence in the context of BSI methods can be found in 

[8, Appendix A]. Note that NMSE measures the reconstruction of the true scale of the 

noise covariance matrix, while Λsim is scale-invariant and hence only quantifies the overall 

structural similarity between simulated and estimated noise covariance matrices.

Each simulation was carried out 100 times using different instances of X and E, and the 

mean and standard error of the mean (SEM) of each performance measure across repetitions 

was calculated.

B. Results

Fig. 2 shows two simulated datasets with five active sources in presence of full-structure 

noise (upper panel) and heteroscedastic noise (lower panel) at 0 dB SNR. Topographic maps 

depict the locations of the ground-truth active brain sources (first column) along with the 

source reconstruction result of three noise learning schemes –noise with homoscedastic, 

heteroscedastic, and full structure. For each algorithm, the estimated noise covariance matrix 

is also plotted above the topographic map. Source reconstruction performance was measured 

in terms of EMD and time course correlation (Corr); and are summarized in the table next 

to each panel. Besides, the accuracy of the noise covariance matrix reconstruction was 

measured in terms of Λsim and NMSE.

Fig. 2 (upper panel) allows for a direct comparison of the estimated noise covariance 

matrices obtained from the three different noise learning schemes. It can be seen that 

FUN learning can better capture the overall structure of ground truth full-structure noise 

as evidenced by lower NMSE and similarity errors compared to the heteroscedastic and 

homoscedastic algorithm variants that are only able to recover a diagonal matrix while 

enforcing the off-diagonal elements to zero. This results in higher spatial and temporal 

accuracy (lower EMD and time course error) for FUN learning compared to competing 

algorithms assuming diagonal noise covariance. This advantage is also visible in the 

topographic maps.

The lower-panel of Fig. 2 presents analogous results for the setting where the noise 

covariance is generated according to a heteroscedastic model. Note that the superior spatial 

and temporal reconstruction performance of the heteroscedastic noise learning algorithm 

compared to the full-structure scheme is expected here because the simulated ground 

truth noise is indeed heteroscedastic. The full-structure noise learning approach, however, 
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provides fairly reasonable performance in terms of EMD, time course correlation (corr), 

and Λsim, although it is designed to estimate a full-structure noise covariance matrix. 

The convergence behaviour of all three noise learning variants is also illustrated in Fig. 

2. Note that the full-structure noise learning approach eventually reaches lower negative 

log-likelihood values in both scenarios, namely full-structure and heteroscedastic noise.

Fig. 3 shows the EMD, the time course reconstruction error, the EUCL and the F1 measure 

score incurred by three different noise learning approaches assuming homoscedastic (red), 

heteroscedastic (green) and full-structure (blue) noise covariances for a range of SNR 

values. The upper panel represents the evaluation metrics for the setting where the noise 

covariance is full-structure model, while the lower-panel depicts the same metric for 

simulated noise with heteroscedastic diagonal covariance. Concerning the first setting, 

FUN learning consistently outperforms its homoscedastic and heteroscedastic counterparts 

according to all evaluation metrics in particular at low-SNR. Consequently, as the SNR 

decreases, the gap between FUN learning and the two other variants increases. Conversely, 

heteroscedastic noise learning shows an improvement over FUN learning according to all 

evaluation metrics when the simulated noise is indeed heteroscedastic. However, note that 

the magnitude of this improvement is not as large as observed for the setting where the noise 

covariance is generated according to a full-structure model and then is estimated using the 

FUN approach.

Fig. 4 depicts the accuracy if the estimated noise covariance matrix reconstructed 

by three different noise learning approaches assuming noise with homoscedastic (red), 

heteroscedastic (green) and full (blue) structure. The ground truth noise covariance matrix 

either had full (upper row) or heteroscedastic (lower row) structure. Performance was 

measured in terms of similarity, NMSE, and Dlog‐det. To be consistent with NMSE, we 

report “similarity error”, defined as 1 − Λsim, instead of similarity, Λsim. Similar to the 

trend observed in Fig. 3, full-structure noise learning leads to better noise covariance 

estimation accuracy (lower NMSE and similarity error) for the full-structure noise model, 

while superior reconstruction performance is achieved for heteroscedastic noise learning 

when true noise covariance is heteroscedastic.

The last column of Fig. 4 depicts the performance of FUN learning as well as 

heteroscedastic and homoscedastic noise learning approaches in terms of the Pearson 

correlation error, 1 − Λsim, for different numbers of time samples. For this experiment, 

the SNR is set to −3.5 dB and the following number of time samples are used: 

T = 10, 20, 50, 70, 100, 150, 250, 500, 1000, 1500 . The rest of the parameters are set to the 

values explained in Section. IV-A.

Note that all model inference relies on the robustness of the estimated sample covariance 

matrix. According to the observed results, we, therefore, conclude that, when the number of 

samples is small, the sample covariance estimate becomes unreliable and correspondingly 

will negatively impact the performance of all algorithms. The inference quality, however, 

can be significantly improved for FUN learning by increasing the number of time samples.
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Remark 5.—When the true noise is heteroscedastic, the inference algorithm with a 
generative model that matches the true scenario, in this case, heteroscedastic noise learning, 
outperforms a more complex full-structure noise learning model that has many more 
parameters to be estimated to become zero, i.e. more degrees of freedom (DoF). Thus, 
the full-structure noise (FUN) learning model requires more data to converge to the true 
model. This behavior is confirmed in the last column of Fig. 4, where we observe that 
both models, namely heteroscedastic noise learning and FUN, converge at large data lengths 
when the true noise is heteroscedastic. Notably, while the FUN and heteroscedastic noise 
learning solutions converge when the true noise is heteroscedastic, the same is not true when 
the true noise has full-structure. As only FUN learning is able to deal with full structure, 
its performance is dramatically better than that of heteroscedastic (and homoscedastic) noise 
learning across all sample sizes in this setting.

V. ANALYSIS OF REAL MEG DATA

A. Auditory and Visual Evoked Fields (AEF and VEF)

All MEG data used here were acquired in the Biomagnetic Imaging Laboratory at the 

University of California San Francisco (UCSF) with an Omega 2000 whole-head MEG 

system from CTF Inc. (Coquitlam, BC, Canada) at a sampling rate of 1200 Hz. All human 

participants provided informed written consent prior to study participation and received 

monetary compensation for their participation. The studies were approved by the University 

of California, San Francisco Committee on Human Research.

Lead-fields for each subject were calculated using NUTMEG [42] assuming a single 

spherical shell volume conductor model resulting in only two spherical orientations. Lead-

fields were constructed at a voxel resolution of 8 mm. Furthermore, each lead-field column 

was normalized. Neural responses to auditory evoked fields (AEF) and visual evoked fields 

(VEF) stimulus were localized using the FUN algorithm and other benchmarks. The AEF 

response was elicited during passive listening to binaural tones (600 ms duration, carrier 

frequency of 1 kHz, 40 dB SL). The VEF response was elicited while subjects were viewing 

pictures of objects projected onto a screen and subjects were instructed to overtly name the 

objects [43], [44]. Up to 120 AEF and 100 VEF trials were collected. For both AEF and 

VEF data, trials with clear artifacts or visible noise in the MEG sensors that exceeded 10 pT 

fluctuations were excluded prior to source localization analysis.

Both AEF and VEF data were digitally filtered to a passband of 1 to 70 Hz to remove 

artifacts and DC offset, and time-aligned to the stimulus onset. Averaging was then 

performed across sets of trials of increasing size: {10,20,40,60,100} trials for AEF, and 

{10,20,40} trials for VEF analyses. The pre-stimulus window was selected to be 100 ms 

prior to stimulus onset. The post-stimulus time window for AEF was selected to be +50 ms 

to +150 ms. For VEF data, we focused on source reconstruction in two time-windows – 

an early window ranging from +100 ms to +150 ms around the traditional M100 response, 

and a later time window ranging from +150 ms to +225 ms around the traditional M170 

responses [35], [45]–[47].
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Fig. 5 shows the reconstruction of the AEF for different number of trial averages for a 

representative subject using FUN learning along with Type-I and Type-II BSI benchmark 

methods. In addition to heteroscedastic Champagne, two classical non-SBL source 

reconstruction schemes were included for comparison. The minimum-current estimate 

(MCE) algorithm [48] shown here is an example of a sparse Type-I method based on 

l1-norm minimization. Additionally, eLORETA [49], represents a smooth inverse solution 

based on l2
2-norm minimization.

Reconstruction performance of all algorithms for different trial averaging with 10, 20, 40, 

60, and 100 trials are shown. All trials were selected randomly prior to averaging. As the 

subplots for different numbers of trial averages demonstrate, FUN learning can accurately 

localize bilateral auditory activity to Heschel’s gyrus, the characteristic location of the 

primary auditory cortex, even with as few as 10 trials. In this challenging setting, FUN 

outperforms all competing methods.

Regarding the comparison between FUN and the heteroscedastic noise learning approach 

on real data as demonstrated in Fig. 5, it is not straightforward to evaluate the performance 

of BSI approaches quantitatively due to the absence of the ground truth. Therefore, the 

quality of the reconstructions is commonly assessed based on prior neurophysiological 

knowledge. In Fig. 5, we observed an involvement of both bilateral Heschl’s gyri, which is 

expected for localization of auditory cortex. Indeed, qualitatively, FUN is able to localize 

both bilateral auditory activities even when the number of trials is limited to 10. For this 

setting, the heteroscedastic noise learning approach was only able to locate the left Heschl’s 

gyrus auditory activity. These results highlight the importance of accurate noise covariance 

estimation on the fidelity of source reconstructions.

Fig. 6 shows the localization and time series reconstruction of VEF activity for a single 

subject using FUN and heteroscedastic noise learning Champagne, eLORETA and MCE. 

Reconstruction performance is again shown for the number of trials used for averaging 

ranging from 10 to 40. Trials were randomly chosen from the full dataset without 

replacement prior to averaging. Within each panel, the top shows the source localization 

of the M100 (1st peak) and M170 (2nd peak) responses, respectively. The time course of 

the most prominent source (indicated by the intersecting green lines) across a +25 ms to 

+275 ms window is presented below the source localization results. Blue lines represent 

the voxel power with arbitrary units averaged across ten independent experiments (that is, 

ten random selections of trials for trial averaging). Blue shades represent the standard error 

of the mean (SEM) across different trial averaging experiments. We also included three 

additional benchmark algorithms, sLORETA [50], S-FLEX [25] and the LCMV beamformer 

[51] in Fig. 7. In comparison to MCE and eLORETA, FUN shows accurate localization 

capability, while the former benchmarks did not yield reliable results for averages of only 

ten trials. Even when the number of trials used for averaging was increased to 20, these 

benchmarks yielded neither good spatial localization of the two visual cortical peaks, nor 

were the expected time courses of activation reconstructed. Furthermore, FUN detects two 

salient and clear peaks in each time window in contrast to other benchmarks, where the 

salience of the early and late peaks are less prominent. Results obtained from FUN are also 
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robust across different SNRs/numbers of trial averages. For more benchmark results, please 

see Fig. 7.

B. Resting-state data

Resting-state data are particularly suited for the FUN algorithm because of the lack of 

baseline data on which the noise distribution could be estimated. Here, we show that FUN is 

able to learn the underlying noise distribution and consistently recover brain activity. For this 

analysis, three subjects were instructed simply to keep their eyes closed and remain awake. 

We collected four trials per subject, where each trial was one minute long. We randomly 

chose 30 seconds or equivalently 36000 time samples for brain source reconstruction from 

one trial of each subject. These resting-state MEG data were digitally filtered using a 

pass-band ranging from 8 to 12 Hz (alpha band) to remove artifacts and DC offset.

Localization of resting state alpha band activity from the three subjects are shown in 

Fig. 8. The first three columns show the estimated source covariance patterns (with the 

application of a threshold of 10% the peak value) for the three noise learning variants of 

Champagne. Each row represents one subject. The corresponding loss function values across 

1000 iterations are shown in the last column. FUN consistently localizes all subjects’ brain 

activity predominantly near the midline occipital lobe or posterior cingulate gyrus consistent 

with expected locations of alpha generators known to dominate resting-state activity.

VI. DISCUSSION

In this paper, we focused on sparse regression within the hierarchical Bayesian regression 

framework and its application in EEG/MEG brain source imaging. We proposed an efficient 

optimization algorithm for jointly estimating Gaussian regression parameter distributions 

as well as Gaussian noise distributions with full covariance structure within a hierarchical 

Bayesian framework. Using the Riemannian geometry of positive definite matrices, we 

derived an efficient algorithm for jointly estimating brain source variances and noise 

covariance. The benefits of our proposed framework were evaluated within an extensive set 

of experiments in the context of the electromagnetic brain source imaging inverse problem 

and showed significant improvement upon state-of-the-art techniques in the realistic scenario 

where the noise has full covariance structure. The practical performance of our method is 

further assessed through analyses of real auditory evoked fields (AEF), visual evoked fields 

(VEF) and resting-state MEG data.

In the context of BSI, [52] proposed a method for selecting a single regularization parameter 

based on cross-validation and maximum-likelihood estimation, while [53]–[57] assume 

more complex spatio-temporal noise covariance structures. A common limitation of these 

works is, however, that the noise level is not estimated as part of the source reconstruction 

problem on task-related data but from separate noise recordings. Our proposed algorithm 

substantially differs in this respect, as it learns the noise covariance jointly with the brain 

source distribution from the same data. This joint estimation perspective is opposed to a 

step-wise independent estimation process that can cause to error accumulation. The idea of 

joint estimation of brain source activity and noise covariance has been previously proposed 

for Type-I learning methods in [7], [58]. Bertrand et al. [7] proposed a method to extend 
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the group Lasso class of algorithms to multi-task learning, where the noise covariance 

is estimated using an eigenvalue fit to the empirical sensor space residuals defined as 

MN
k  in Theorem 1. In contrast, FUN learning uses Riemannian geometry principles, e.g., 

the geometric mean between the sensor space residuals MN
k  and the previously obtained 

statistical model covariance, Σy
k. This enables us to robustly estimate the noise covariance 

as part of the model, in contrast to the method proposed in [7], which estimates the 

noise covariance solely based on the eigenvalues of the observed sensor space residuals. 

Furthermore, in contrast to these Type-I likelihood estimation methods, FUN is a Type-II 

method, which learns the prior source distribution as part of the model fitting. Type-II 

methods have been reported to yield results that are consistently superior to those of Type-I 

methods [8], [9], [46], [47], [59]. Our numerical results show that the same holds also 

for FUN learning, which performs on par or better than existing variants from the Type-II 

family (including conventional Champagne) in this study.

The question of which noise model to use on real data can be addressed through well-known 

model selection techniques from the machine learning literature. One such strategy is to 

evaluate the Type-II negative log-likelihood loss of both models and pick the model that 

achieves the lowest loss, i.e. choose models that maximize the Bayesian evidence. This 

was the objective of our analysis in Fig. 8, where we demonstrated that the localization of 

resting-state brain activity using FUN learning converges to a lower negative log-likelihood 

loss, i.e., better Bayesian model evidence, than heteroscedastic noise learning, which 

indicates the superiority of FUN learning and the necessity to model full-structure noise. 

Furthermore, it is also possible to evaluate the Type-II likelihood, or, the Bayesian model 

evidence, out-of-sample in order to perform model selection in real data analyses. This 

approach may be suitable when parameters of the Type-II likelihood are being optimized as 

is the case here for all approaches. Using this technique, which was successfully employed 

in [8], the data samples are first split into two parts, namely the training set and the testing 

set, i.e., hold-out data. For real data analysis, the data can be split among different trials or 

sensor subsets. The model parameters are fitted to the training set and the Type-II (Bregman) 

or Type-I likelihoods of the fitted model are then evaluated on the hold-out data (see [8, Eqs. 

31 and 32] for related formulations). Note that since the hold-out data are not used during 

model fitting, the likelihood evaluation on this data is called out-of-sample likelihood. The 

BSI method that achieves better out-of-sample likelihood with respect to the evaluation 

metric can be considered superior in terms of performance for real data analysis. Formal 

comparisons of the performance of these model selection techniques on different real data 

sets are interesting explorations and are considered one of the directions of our future work.

Noise learning has also attracted attention in functional magnetic resonance imaging (fMRI) 

[2], [3], [60], where various models like matrix-normal (MN), factor analysis (FA), and 

Gaussian-process (GP) regression have been proposed. The majority of the noise learning 

algorithms in the fMRI literature rely on the EM framework, which is quite slow in practice 

[8] and has convergence guarantees only under certain restrictive conditions [36], [61]–

[63]. In contrast to these existing approaches, our proposed framework not only applies 

to the models considered in these papers, but also benefits from theoretically proven 

convergence guarantees. To be more specific, we showed in this paper that FUN learning 
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is an instance of the wider class of majorization-minimization (MM) framework, for which 

provable fast convergence is guaranteed. It is worth emphasizing our contribution within 

the MM optimization context as well. Unlike many other MM implementations, where 

surrogate functions are minimized using an iterative approach, our proposed algorithm is 

more efficient because it obtains a closed-form solution for the minimum of the surrogate 

function in each step.

As pointed out in the introduction, electrical impedance tomography (EIT) is another 

practical example in which the noise interference is highly correlated across measurements; 

and thus, indeed has full covariance structure. The authors in [4], [5] addressed this problem 

using SBL techniques for multiple measurement vector (MMV) models. Since the noise in 

these works is restricted to scalar or diagonal covariance structure, FUN learning could be 

used to model more realistic full-structural noise also in EIT problems.

While being broadly applicable (see [64, Appendix A] for a comprehensive list of 

potential applications), our approach is nevertheless limited by a number of factors. 

Although Gaussian noise distributions are commonly justified, it would be interesting to 

include more robust non-Gaussian noise distributions in our framework. Besides, signals 

in real-world scenarios often lie in a lower-dimensional space compared to the original 

high-dimensional ambient space due to the correlations that exist in the data. Therefore, 

imposing physiologically plausible constraints on the noise model, e.g., low-rank, Toeplitz, 

or Kronecker structure [65], [66], not only provides side information that can be leveraged 

for the reconstruction but also reduces the computational cost in two ways: a) by reducing 

the number of parameters and b) by taking advantage of efficient implementations using 

circular embeddings and the fast Fourier transform [67], [68]. In our recent work [68], we 

employed separable Gaussian distributions using Kronecker products of temporal and spatial 

covariance matrices. The proposed efficient algorithms exploit the intrinsic Riemannian 

geometry of temporal autocovariance matrices. For stationary dynamics described by 

Toeplitz matrices, the theory of circulant embeddings was employed.
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APPENDIX

A. Proof of Theorem 1

Proof.

We start the proof by recalling (7):

LII(Γ, Λ) = log Σy + 1
T ∑

t = 1

T
y(t)⊤Σy

−1y(t) .

(16)

The upper bound on the log Σy  term can be directly inferred from the concavity of the 

log-determinant function and its first-order Taylor expansion around the value from the 

previous iteration, Σy
k, which provides the following inequality [36, Example 2]:

log Σy ≤ log Σy
k + tr Σy

k −1 Σy − Σy
k

= log Σy
k + tr Σy

k −1Σy − tr Σy
k −1Σy

k .

(17)

Note that the first and last terms in (17) do not depend on Γ; hence, they can be ignored 

in the optimization procedure. Now, we decompose Σy into two terms, each of which only 

contains either the noise or source covariances:

tr Σy
k −1Σy = tr Σy

k −1 LΓL⊤ + Λ

= tr Σy
k −1LΓL⊤ + tr Σy

k −1Λ .

(18)

In next step, we decompose the second term in (7), 1
T ∑t = 1

T y(t)⊤Σy
−1y(t) , into two terms, each 

of which is a function of either only the noise or only the source covariances. To this end, we 

exploit the following relationship between sensor and source space covariances:

1
T ∑

t = 1

T
y(t)⊤Σy

−1y(t) = 1
T ∑

t = 1

T
xk(t)⊤Γ−1xk(t)

+ 1
T ∑

t = 1

T
y(t) − Lxk(t) ⊤Λ−1 y(t) − Lxk(t) .

(19)

By combining (18) and (19), rearranging the terms, and ignoring all terms that do not 

depend on Γ, we have:
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LII(Γ) ≤ tr Σy
k −1LΓL⊤ + 1

T ∑
t = 1

T
xk(t)⊤Γ−1xk(t)

= tr L⊤ Σy
k −1LΓ + tr MS

kΓ−1

= Lsource
conv Γ, Λk ,

(20)

where MS
k: = 1

T ∑t = 1
T xk(t)xk(t)⊤.

This proves the equivalence of (7) and (8) when the optimization is performed with respect 

to Γ.

The equivalence of (7) and (10) can be shown analogously, with the difference that we only 

focus on noise-related terms in (18) and (19):

LII(Λ) ≤ tr Σy
k −1Λ

+ 1
T ∑

t = 1

T
y(t) − Lxk(t) ⊤Λ−1 y(t) − Lxk(t)

= tr Σy
k −1Λ + tr MN

k Λ−1

= Lnoise
conv Γk, Λ ,

(21)

where MN
k : = 1

T ∑t = 1
T y(t) − Lxk(t) y(t) − Lxk(t) ⊤

.

Summarizing, we have shown that optimizing (7) is equivalent to optimizing Lnoise
conv Γk, Λ  and 

Lsource
conv Γ, Λk , which concludes the proof.

B. Proof of Theorem 2

Before presenting the proof, the subsequent definitions and propositions are required:

Definition 1

(Geodesic on the positive definite (PD) manifold). Let M be a Riemannian manifold, 
i.e., a differentiable manifold whose tangent space is endowed with an inner product that 
defines local Euclidean structure. Then, a geodesic between two points on M, denoted by 
p0, p1 ∈ M , is defined as the shortest connecting path between those two points along 

the manifold, ζl p0, p1 ∈ M for l ∈ [0, 1]. Here, we consider a Riemannian manifold of PD 

matrices, S+ + . Assume two PD matrices P0, P1 ∈ S+ + . Then, for l ∈ [0, 1], the geodesic curve 

joining P0 to P1 is defined as [69, Chapter. 6]:

ξl P0, P1 = P0

1
2 P0

−1/2P1 P0
−1/2 l P0

1
2 .
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(22)

Note that P0 and P1 are obtained as the starting and end points of the geodesic path by 

choosing l = 0 and l = 1, respectively. The midpoint of the geodesic, obtained by setting 

l = 1
2 , is called the geometric mean.

Definition 2

(Geodesic convexity). Let p0 and p1 be two arbitrary points on a subset A of a Riemannian 

manifold M. Then a real-valued function f with domain A⊂M with f:A ℝ is called 
geodesic convex (g-convex) if the following relation holds:

f ζl p0, p1 ≤ lf p0 + (1 − l)f p1 ,

(23)

where l ∈ [0, 1] and ζ p0, p1  denotes the geodesic path connecting two points p0 and p1 as 

defined in Definition 1.

The proof parallels the one provided in [70, Theorem. 3]:

Proof.—First, we consider PD manifolds and express (23) in terms of geodesic paths and 

functions that lie on this particular space. We then show that Lnoise
conv Γk, Λ  is strictly g-convex 

on this specific domain. Second, we then derive the update rule proposed in (12).

1) G-convexity of the Majorizing Cost Function:  Let ξl Λ0, Λ1  denote geodesics 

along the PD manifold as presented in Definition 1, and let define f( . ) to be 

f(Λ) = tr Σy
k −1Λ + tr MN

k Λ−1 , representing the cost function Lnoise
conv Γk, Λ .

We now show that f(Λ) is strictly g-convex on this specific domain. For continuous 

functions as considered in this paper, fulfilling (23) for f(Λ) and ξl Λ0, Λ1  with l = ½ is 

sufficient for strict g-convexity according to mid-point convexity [71]:

tr Σy
k −1ξ1/2 Λ0, Λ1 + tr MN

k ξ1/2 Λ0, Λ1
−1

< 1
2tr Σy

k −1Λ0 + 1
2tr MN

k Λ0
−1

+ 1
2tr Σy

k −1Λ1 + 1
2tr MN

k Λ1
−1 .

(24)

Given Σy
k −1 ∈ S+ + , i.e., Σy

k −1 > 0 and the operator inequality [69, Chapter. 4]

ξ1/2 Λ0, Λ1 ≺ 1
2Λ0 + 1

2Λ1,

(25)
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we have:

tr Σy
k −1ξ1/2 Λ0, Λ1

< 1
2tr Σy

k −1Λ0 + 1
2tr Σy

k −1Λ1 ,

(26)

which is derived by multiplying both sides of (25) with Σy
k −1 followed by taking the trace 

on both sides.

Similarly, we can write the operator inequality for Λ0
−1, Λ1

−1  using (22) as:

ξ1/2 Λ0, Λ1
−1 = ξ1/2 Λ0

−1, Λ1
−1 ≺ 1

2Λ0
−1 + 1

2Λ1
−1 .

(27)

Multiplying both sides of (27) by MN
k ∈ S+ +  and applying the trace operator on both sides 

leads to:

tr MN
k ξ1/2 Λ0, Λ1

−1

< 1
2tr MN

k Λ0
−1 + 1

2tr MN
k Λ1

−1 .

(28)

Summing up (26) and (28) proves inequality (24) and concludes the first part of the proof.

2) Derivation of the Update Rule in (12):  We now present the second part of the proof 

by deriving the update rule in (12). Since the cost function Lnoise
conv Γk, Λ  is strictly gconvex, 

its optimal solution in the k‐th iteration is unique. More concretely, the optimum can be 

analytically derived by taking the derivative of (10) and setting the result to zero as follows:

∇Lnoise
conv Γk, Λ = Σy

k −1 − Λ−1MN
k Λ−1 = 0,

(29)

which results in

Λ Σy
k −1Λ = MN

k .

(30)

This solution is known as the Riccati equation, and is the geometric mean between Σy
k and 

MN
k  [72], [73]:
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Λk + 1 Σy
k

1
2 Σy

k −1/2MN
k Σy

k −1/2
1
2 Σy

k
1
2 .

Deriving the update rule in (12) concludes the second part of the proof of Theorem 2.

C. Proof of Theorem 3

We start the derivation of update rule (13) by constraining Γ to the set of diagonal matrices 

with non-negative entries S, i.e.,

S = Γ ∣ Γ = diag γ1, …, γN
⊤ , γn ≥ 0, n = 1, …, N .

We continue by reformulating the constrained optimization with respect to the source 

covariance matrix,

Γk + 1 = argmin
Γ ∈ S, Λ = Λk

tr L⊤ Σy
k −1LΓ + tr MS

kΓ−1 ,

(31)

as follows:

γk + 1 = argmin
γ ≥ 0, Λ = Λk

diag L⊤ Σy
k −1L γ + diag MS

k γ−1

Lsource
diag γ ∣ γk

,

(32)

where γ−1 = γ1
−1, …, γN

−1 ⊤ is defined as the elementwise inversion of γ. Note that the set 

of diagonal matrices with all non-negative entries are positive semidefinite (PSD) by 

construction [74, Appendix A]. Thus, by constraining the space of solutions of optimization 

problem (31) to the set S, the PSD requirement for Γ reduces to the requirement that the 

diagonal elements of Γ, i.e., γn, for n = 1, ⋯, N, must be non-negative. The optimization with 

respect to the scalar source variances is then carried out by taking the derivative of (32) with 

respect to γn, for n = 1, ⋯, N, and setting it to zero, yields the following update rule:

Γk + 1 = diag γk + 1 , where,

γn
k + 1 MS

k
n, n

L⊤ Σy
k −1L

n, n

=
1
T ∑t = 1

T xn
k(t) 2

Ln
⊤ Σy

k −1Ln

for n = 1, ⋯, N,

(33)

where Ln denotes the n-th column of the lead field matrix. Note that (33) is identical to the 

update rule of Champagne [28].
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D. Proof of Theorem 4

We prove Theorem 4 by showing that the alternating update rules for Λ and Γ, (12) and (13), 

are guaranteed to converge to a local minimum of the Bayesian Type-II likelihood (7). More 

generally, we prove that FUN learning is an instance of the general class of majorization-

minimization (MM) algorithms, for which this property follows by construction. To this 

end, we first briefly review theoretical concepts behind the majorization-minimization (MM) 

algorithmic framework [62], [63] [61], [75].

1) Required Conditions for Majorization-Minimization Algorithms:

MM encompasses a family of iterative algorithms for optimizing general non-linear cost 

functions. The main idea behind MM is to replace the original cost function in each iteration 

by an upper bound, also known as majorizing function, whose minimum is easy to find. 

Interested readers are referred to [36] for an extensive list of applications on MM.

The problem of minimizing a continuous function f(u) within a closed convex set U ⊂ ℝn:

min
u

f(u) subject to u ∈ U,

(34)

within the MM framework can be summarized as follows. First, construct a continuous 

surrogate function g u ∣ uk  that majorizes, or upper-bounds, the original function f(u) and 

coincides with f(u) at a given point uk:

g uk ∣ uk = f uk ∀ uk ∈ U

[A1]

g u ∣ uk ≥ f(u) ∀ u, uk ∈ U .

[A2]

Second, starting from an initial value u0, generate a sequence of feasible points 

u1, u2, …, uk, uk + 1 as solutions of a series of successive simple optimization problems, 

where

uk + 1: = arg min
u ∈ U

g u ∣ uk .

[A3]

If a surrogate function fulfills conditions [A1] − [A3], then the value of the cost function f
decreases in each iteration: f uk + 1 ≤ f uk . For the smooth functions considered in this 

paper, we further require that the derivatives of the original and surrogate functions coincide 

at uk:
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∇g uk ∣ uk = ∇f uk ∀ uk ∈ U .

[A4]

We can then formulate the following theorem:

Theorem 5.—Assume that an MM algorithm fulfills conditions [A1]–[A4]. Then, every 
limit point of the sequence of minimizers generated in [A3], is a stationary point of the 
original optimization problem in (34).

Proof.: A detailed proof is provided in [63, Theorem 1].

2) Details of the Proof of Theorem 4:

We now show that FUN learning is an instance of majorization-minimization as defined 

above, which fulfills Theorem 5.

Proof.—We need to prove that conditions [A1]–[A4] are fulfilled for FUN learning. To 

this end, we recall the upper bound on log Σy  in (17), which fulfills condition [A2] since it 

majorizes log Σy  by virtue of the concavity of the log-determinant function and its first-order 

Taylor expansion around Σy
k. Besides, it automatically satisfies conditions [A1] and [A4] by 

construction, because the majorizing function in (17) is obtained through a Taylor expansion 

around Σy
k. Concretely, [A1] is satisfied because the equality in (17) holds for Σy = Σy

k. 

Similarly, [A4] is satisfied because the gradient of log Σy  at point Σy
k, Σy

k −1 defines the 

linear Taylor approximation log Σy
k + tr Σy

k −1 Σy − Σy
k . Thus, both gradients coincide in by 

construction. We can further prove that [A3] can be satisfied by showing that Lnoise
conv Γk, Λ

reaches its global minimum in each MM iteration. This is guaranteed if Lnoise
conv Γk, Λ  can 

be shown to be convex or g-convex with respect to Λ. To this end, we first require the 

subsequent proposition:

Proposition 1.:  Any local minimum of a g-convex function over a g-convex set is a global 
minimum.

Proof.: A detailed proof is presented in [76, Theorem 2.1].

Given Theorem 2, which already states that the cost-function Lnoise
conv Γk, Λ  is g-convex, and 

Proposition 1, we can conclude that any local minimum of Lnoise
conv Γk, Λ  is a global minimum.

For brevity, we omit the proof of conditions [A1], [A2] and [A4] for the optimization 

with respect to Γ based on the convex surrogate function in (8), Lsource
conv Γ, Λk , as it can be 

presented analogously. We here only show that [A3] is satisfied if Lsource
diag γ ∣ γk  in (32) is 

a convex function with respect to γ. Note that the g-convexity of Lsource
conv Γ, Λk  can also be 

proven using arguments analogous to those presented in appendix B.1. However, we instead 
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prove a stronger condition, i.e., convexity, for simplifying the proof. To this end, we rewrite 

(32) as follows:

Lsource
diag γ ∣ γk = diag Vk γ + diag MS

k γ−1,

where Vk: = L⊤ Σy
k −1L is defined as a parameter that does not depend on γ. The convexity 

of Lsource
diag γ ∣ γk  can be directly inferred from the convexity of diag Vk γ and diag MS

k γ−1 with 

respect to γ[77, Chapter. 3]. The convexity of Lsource
diag γ ∣ γk , which ensures that condition 

[A3] can be satisfied using standard optimization, along with the fulfillment of conditions 

[A1], [A2] and [A4], ensure that Theorem 5 holds for Lsource
conv Γ, Λk . This completes the proof 

that the optimization of (7) with respect to Γ using the convex surrogate cost function (8) 

leads to an MM algorithm with convergence guarantees.

E. Special Case of FUN Learning leads to Champagne with 

Heteroscedastic Noise Learning

We start by constraining Λ to the set of diagonal matrices with non-negative entries S, i.e.,

S = Λ ∣ Λ = diag λ1, …, λM
⊤ , λm ≥ 0, m = 1, …, M .

We then reformulate the constrained optimization with respect to the noise covariance 

matrix,

Λk + 1 = argmin
Λ ∈ S, Γ = Γk

tr Σy
k −1Λ + tr MN

k Λ−1 ,

(35)

as follows:

λk + 1 = argmin
λ ≥ 0, Γ = Γk

diag Σy
k −1 λ + diag MN

k λ−1

Lnoise
diag λ ∣ λk

,

(36)

where λ−1 = λ1
−1, …, λM

−1 ⊤ is defined as the element-wise inversion of λ. Taking the derivative 

of (36) with respect to λm, for m = 1, …, M, and setting it to zero, yields the following update 

rule:

λm
k + 1

1
T ∑t = 1

T y(t) − Lxk(t) y(t) − Lxk(t) ⊤
m, m

Σy
k −1

m, m
for m = 1, …, M,
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(37)

which is identical to the update rule of the Champagne with heteroscedastic noise learning 

as presented in [9].
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Fig. 1: 
Geometric representation of the geodesic path between the pair of matrices Σy

k, MN
k  on the 

PD manifold and the geometric mean between them, which is used to update Λk + 1.
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Fig. 2: 
Two examples of the simulated data with five active sources in presence of full-structure 

noise (upper panel) as well as heteroscedastic noise (lower panel) at 0 dB SNR. Topographic 

maps depict the locations of the ground-truth active brain sources (first column) along 

with the source reconstruction results of three noise learning schemes assuming noise with 

homoscedastic (second column), heteroscedastic (third column), or full structure (fourth 

column). For each algorithm, the estimated noise covariance matrix is also plotted above 

the topographic maps. The source reconstruction performance of these examples in terms 

of EMD and time course correlation (Corr) is summarized in the associated table next to 

each panel. Beside these two source reconstruction metrics, we also report the accuracy with 

which the ground-truth noise covariance was estimated in terms of the Λsim and NMSE 

metrics. The convergence behaviour of all three noise estimation approaches is also shown. 

Note that the full-structure noise learning approach converges to better minima of the 

negative log-likelihood than competing approaches regardless of whether the ground-truth 

noise covariance has full or heteroscedastic structure. However, an advantage in terms of 

reconstruction is only observed in the former case.
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Fig. 3: 
Source reconstruction performance (mean ± SEM) of the three different noise learning 

schemes for data generated by a realistic lead field matrix. Generated sensor signals were 

superimposed by either full-structure or heteroscedastic noise covering a wide range of 

SNRs. Performance was measured in terms of the earth mover’s distance (EMD), time-

course correlation error, F1-measure and Euclidean distance (EUCL) in (mm) between each 

simulated source and the reconstructed source with highest maximum absolute correlation.
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Fig. 4: 
Accuracy of the noise covariance matrix reconstruction incurred by three different 

noise learning approaches assuming homoscedastic (red), heteroscedastic (green) and full-

structure (blue) noise covariances. The ground-truth noise covariance matrix is either full-

structure (upper row) or heteroscedastic diagonal (lower row). Performance was assessed 

in terms of the Pearson correlation between the entries of the original and reconstructed 

noise covariance matrices, Λ and Λ, denoted by Λsim (first column). Shown is the similarity 

error 1 − Λsim. Further, the normalized mean squared error (NMSE) between Λ and Λ, 

defined as NMSE = Λ − Λ F
2 / Λ F

2  and the log-det Bregman matrix divergence between 

original and reconstructed noise covariance matrices, denoted by Dlog‐det are reported (second 

and third column). The last column depicts the performance of FUN learning as well as 

heteroscedastic and homoscedastic noise learning for different numbers of time samples 

as measured by Pearson correlation error between true and reconstructed noise covariance 

matrices.
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Fig. 5: 
Auditory evoked field (AEF) localization results from one representative subject for 

different numbers of trial averages using FUN learning, heteroscedastic Champagne, MCE 

and eLORETA. All reconstructions of FUN learning algorithm show focal sources at the 

expected locations of the auditory cortex. Even when limiting the number of trials to as few 

as 10 reconstruction result of FUN learning is accurate, it severely affects the reconstruction 

performance of competing benchmark methods.
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Fig. 6: 
Localization and time series results of visual evoked field (VEF) activity for a single subject 

using FUN and benchmarks. Comparing with MCE and eLORETA, FUN shows accurate 

localization capability. Furthermore, FUN detects sharper 2nd peaks when compared to the 

heteroscedastic noise-learning Champagne, which is consistent with the sharp response of 

the VEF. The results obtained by FUN are robust across different SNRs/numbers of trial 

averages. For additional benchmark results, please see Fig. 7.
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Fig. 7: 
Localization and reconstructed time series of visual evoked field (VEF) activity for a single 

subject using another four benchmark algorithms. FUN outperforms LCMV beamformer 

and sLORETA in terms of localization. Moreover, the activation time courses derived from 

homoscedastic noise learning Champagne and S-FLEX do not exhibit as sharp responses as 

observed for FUN. The noise level used for S-FLEX reconstructions was set to values learnt 

from classical Champagne algorithm with noise learning.
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Fig. 8: 
Localization of resting-state brain activity for three subjects using FUN and the 

heteroscedastic and homoscedastice noise learning variants of Champagne. The source 

variance patterns estimated by each algorithm are projected onto the cortical surface. The 

convergence behaviour of all three noise estimation approaches is also shown in terms of the 

negative log-likelihood cost function. FUN converges to better minima when compared to 

these benchmarks.
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