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Abstract

Randomizing Reals and the First-Order Consequences of Randoms

by

Ian Robert Haken

Doctor of Philosophy in Recursion Theory

University of California, Berkeley

Professor Theodore A. Slaman, Chair

In this dissertation we investigate two questions in the subject of algorithmic randomness.
The first question we address is “Given a real, is there a probability measure for which the
real is not an atom, but relative to which the real is algorithmically random?” This question
was originally studied by Reimann and Slaman with respect to Martin-Löf randomness,
and this research continues their investigation by considering the question with respect to
stronger notions of randomness and by providing metamathematical analysis of Reimann
and Slaman’s methods.

The second question we investigate is “What are the first-order consequences of the exis-
tence of 2-random reals?” Conidis and Slaman showed that the consequences lie somewhere
between IΣ0

1 and BΣ0
2, but left open the question of further classification. We show that

the existence of 2-random reals does not imply BΣ0
2, and thus the consequences lie strictly

between IΣ0
1 and BΣ0

2. Furthermore, by utilizing the methods in this proof we are able to
construct a κ-like model of ¬BΣ0

2 and thereby answer an open question posed by Kaye in
1995.
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Chapter 1

Introduction

The premise of this dissertation is to study algorithmic randomness and thereby better
understand what it means for any infinite string of digits (usually referred to as a “real” in
the context of recursion theory) to be “random.” This is a subject that dates back many
years, with a number of approaches defined by Kolmogorov, Church, and Martin-Löf in the
mid 20th century. If one considers “random” to simply mean unpredictable, one’s definition
may be that it is impossible to reliably predict the digits a random real. From another point
of view, one may say that a random real should have no simple description and therefore has
no better way of describing it than just writing out the entire string itself. Yet another point
of view would suggest that if reals are known to have some property P with probability 1,
then for a real to be considered random it must also have property P .

Each of the above notions translates into a well-studied definition of randomness, and
it turns that — when the definitions are made precise — they are actually all equivalent.
Furthermore, they each have a common feature of referring to a certain notion of “effectivity.”
For example, how powerful should our process of predicting digits be allowed to be? When we
speak of reproducing a string from short descriptions, how powerful are the algorithms which
can extract the original string from a short definition? When we say a real should satisfy
properties occurring with probability 1, this will only make sense if we restrict the scope to
of such properties, usually to a “describable” subset. When we enter into this context, we
are in the realm of “algorithmic randomness” or “algorithmic information theory.”

There are many texts which cover the area of algorithmic randomness extensively, and
we refer the reader to books by Rod Downey and Denis Hirschfeldt [6] and André Nies [18]
for a full treatment on background material.

This dissertation focuses on two independent questions from the area of algorithmic
randomness. The first is “Which reals are random for some probability distribution?” This
question was originally studied by Reimann and Slaman in 2008 [19] for a specific definition
of randomness, and we will expand upon their work. The second question considered is
“What are the implications of the existence of random reals?” This question was considered
by Conidis and Slaman in 2013 [3], and this work continues that investigation.

These two questions are considered in chapters 2 and 3 respectively. The independent
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nature of these questions allows the chapters to be read independently of one another. The
rest of this introductory chapter provides more specific background relevant to both chap-
ters, and introduces the notion used throughout. Each of the chapters also has its own
introduction of background material relevant to that chapter specifically.

1.1 Notation

The notation 2<n refers to the set of binary strings of length strictly less n. Similarly, 2≤n

refers to the set of strings of length at most n. 2<ω refers to the set of all finite binary strings,
and 2ω represents the set of infinite binary strings (also known as Cantor space).

Lower case Greek letters σ, τ, ρ will be used to indicate finite binary strings, i.e. elements
of 2<ω. The empty string will be represented by 〈〉. |σ| denotes the length of the string σ.
The notation σai for i ∈ {0, 1} represents the string of length |σ| + 1 which is σ followed
by the bit i. If n ≤ |σ| we use σ � n to represent the string that is the first n bits of σ. If
|σ| > 0 we let σ∗ = σ � (|σ| − 1). We will say σ ⊆ τ if τ is an extension of σ, i.e. |τ | ≥ |σ|
and τ � |σ| = σ.

The notation 〈·, ·〉 represents the standard uniformly recursive pairing function from N×N
to N, i.e. a recursive bijection from N2 to N. The ⊕ operator refers to the recursive join. That
is, for realsX, Y the realX⊕Y is defined by (X⊕Y )(2n) = X(n) and (X⊕Y )(2n+1) = Y (n).
For finite strings σ, τ where |σ| = |τ | or |σ| = |τ | + 1 the finite string σ ⊕ τ is defined as
analogously as the finite string with length |σ|+ |τ |.

Similarly, we will use the notation
⊕
n<ω

Xn to denote the uniform recursive join of count-

ably many reals. Specifically, this denotes the real X such that X(〈n, i〉) = Xn(i).
Upper case Latin letters from the end of the alphabet X, Y, Z will be used to represent

reals, i.e. elements of 2ω. Upper case letters from the beginning of the alphabet A,B,C will
be used to denote sets of reals, i.e. subsets of 2ω. In a slight abuse of notation, we will write
σ ⊂ X if σ is an initial segment of X. Similarly, X � n represents the finite string equal to
the first n bits of X, so σ ⊂ X iff σ = X � |σ|. We will use [σ] to denote the set of reals
extending σ, i.e. [σ] = {X ∈ 2ω : X ⊃ σ}.

We let Φ0,Φ1, . . . be a uniform listing of all partial Turing functionals, and let W0,W1, . . .
be a uniform listing of all recursively enumerable (r.e.) sets. We write Φe,s(x) to denote the
computation of Φe(x) up to stage s, and write Φe(x) ↓ to indicate that the functional Φe

converges on argument x. Given a real X, X ′ refers to the Turing jump relative to X, i.e.
X ′ = {e : ΦX

e (e) ↓}. The notation X(n) refers to the nth iterate of the Turing jump.
Given two sets A,B, A \B = {x : x ∈ A ∧ x /∈ B}. We let A = N \ A.
If M is a model, |M| represents the (first-order) domain of the model.
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1.2 Background on Algorithmic Randomness

As mentioned in the introduction, there are a number of equivalent definitions of algorith-
mically random reals. Throughout this dissertation we will be using the definition coined
by Per Martin-Löf. His definition captures the notion that a random real should satisfy
any effectively described “almost surely” property. For example, a real satisfies the Law of
Large Numbers with probability 1. Since the Law of Large Numbers is easily described, any
random real should satisfy this property.

Definition 1. A Martin-Löf test {Vn}n∈ω is a uniformly r.e. sequence of sets Vn ⊆ 2<ω such
that for all n,

∑
σ∈Vn

2−|σ| ≤ 2−n.

Definition 2. A real X passes a Martin-Löf test {Vn}n∈ω if X /∈
⋂
n∈ω

Vn.

Definition 3. A real X is Martin-Löf random if X passes every Martin-Löf test.

As is often the case in recursion theory, these definitions can be relativized.

Definition 4. A Martin-Löf test relative to Z is a sequence of sets Vn ⊆ 2<ω for n ∈ ω
which is uniformly r.e. relative to Z, and for which

∑
σ∈Vn

2−|σ| ≤ 2−n for all n. A real X is

Martin-Löf random relative to Z if X /∈
⋂
n∈ω

Vn for all Martin-Löf tests {Vn}n∈ω relative to

Z.

Chapter 3 specifically discusses 2-random reals, which are reals that are Martin-Löf ran-
dom relative to 0′.

An important result from literature is the existence of a universal Martin-Löf test, a fact
that is used throughout chapters 2 and 3. Consequently, we present it here as necessary
background for both chapters which follow.

Theorem 1. There is a total recursive function f such that for any oracle Z, {WZ
f(n)}n∈ω

is a universal Martin-Löf test relative to Z. That is, a real X is Martin-Löf random relative
to Z iff X /∈

⋂
nW

Z
f(n).

We will write UZ
n to represent the nth Π0

1 class of the universal Martin-Löf test relative

to Z. That is, UZ
n = WZ

f(n). Hence a real X is 2-random relative to Z iff there is an n such

that X ∈ UZ
n .
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Chapter 2

Randomizing Reals

2.1 Introduction

Although our introductory definition of Martin-Löf randomness makes no mention of prob-
ability measure, the familiar reader will realize that the requirement

∑
σ∈Vn

2−|σ| ≤ 2−n is the

same as requiring λ(Vn) ≤ 2−n where λ is the Lebesgue measure on 2ω. However, Martin-
Löf’s original definition of an algorithmically random sequence was defined relative to any
probability measure on 2ω, and Levin extended many of his results to arbitrary probability
measures. In particular, Levin proved the existence of neutral measures, i.e. a measure
relative to which every real is Martin-Löf random. We expand upon the topic of neutral
measures below.

One of the fundamental questions in randomness is simply “What reals are random?”
This question can be interpreted a number of ways. For example, one of the first challenges in
algorithmic randomness was to provide an explicit example a Martin-Löf random sequence.
One such example was provided by Gregory Chaitin in the form of a real defined as the
halting probability, also called Chaitin’s Ω. Another way of interpreting this question is to
ask where in the Turing degrees random reals can lie. Antonin Kučera [14] and Péter Gács
[9] answered this question by showing that every real is bounded above by a Martin-Löf
random.

In 2008 Reimann and Slaman [19] investigated a reversal of this question and asked,
“Given a real X, is there a measure µ such that µ({X}) = 0 and X is Martin-Löf random
relative to µ?” They studied this question for both arbitrary measures and for continuous
measures. In their paper, they were able to show that for arbitrary measures, such a µ exists
iff X is non-recursive. For continuous measures, it is sufficient to be non-hyperarithmetic, but
for hyperarithmetic reals there are both examples and counter-examples. Thus they defined
the class NCR of not-continuously-random reals. Since we will be generalizing several of
their results and analyzing their methods, the reader should be familiar with their paper.

This chapter is primarily concerned with expanding Reimann and Slaman’s question
beyond Martin-Löf randomness. That is, given a real X and one of the alternate definitions
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of randomness (defined below), is there a measure µ such that X is random relative to µ?
The main results of this chapter will be demonstrating a class of non-recursive reals for
which no such µ exists (thus differentiating this case from the one studied by Reimann and
Slaman), and then providing a metamathematical analysis of Reimann and Slaman’s result
showing that some of their methods are necessary to their proof, and are so even in the
context of these alternate notions of randomness.

In the remainder of this section, we discuss measures and their representations. In section
2 we will give the definitions of randomness used throughout the chapter and also make some
preliminary observations. In the section 3 we show the non-existence results, contrasting with
the case of Martin-Löf randomness. In section 4 we discuss the construction of measures
which make reals appear random, providing a result showing that reals which can be made to
appear strongly random relative to some µ have a certain density within the Turing degrees.
We conclude by proving a theorem which provides the aforementioned metamathematical
analysis.

Measure Representations

Given a topological space T with σ-ring S ⊆ P(T ), a measure µ on S is a mapping from S to
non-negative real numbers with the properties that it is monotone and countably additive.
That is, if A ⊆ B then µ(A) ≤ µ(B), and if A0, A1, . . . are disjoint elements of S then
∞∑
i=0

µ(Ai) = µ(
∞⋃
i=0

Ai).

A measure µ is a probability measure if µ(S) = 1. Given an ring R ⊆ S that generates
S, Carathéodory’s extension theorem implies that µ is uniquely determined by the values it
takes on R so long as the measure is σ-finite (which in particular holds if µ is a probability
measure). On the other hand, a function µ from R to non-negative real numbers is called a
pre-measure if it is countably additive onR and if µ(∅) = 0. In such a case, it is a well known
theorem of measure theory that µ can be extended to a measure on S. Hence considering
measures on all of S is equivalent to considering pre-measures on R.

In our context, the topological space will be 2ω, S will be the Borel subsets of 2ω, and
the generating ring will be the basic clopen sets, i.e. finite unions of {[σ] : σ ∈ 2<ω}. Hence
a measure is completely determined by its values on each set µ([σ]). We will frequently
abuse notation and simply write this as µ(σ). The above paragraph implies that so long as
µ(〈〉) = 1 and µ(σa0)+µ(σa1) = µ(σ), µ can be extended uniquely to a probability measure
on the Borel subsets of 2ω.

We will let λ denote the Lebesgue measure on 2ω, i.e. the measure for which λ(σ) = 2−|σ|

for all σ. Given a measure µ, we call a real X an atom of the measure if µ({X}) > 0. A
measure is called continuous if it has no atoms.

If we wish to extend the definition of Martin-Löf randomness to arbitrary measures µ,
we need to take care if µ is not recursive. We would like to provide Martin-Löf tests with
the ability to calculate the measure µ and we will do so by relativizing the definition to a
real R which represents the measure. We define what it means for a real to represent a
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measure below, but it is worth noting that this is by no means the only valid definition. For
a detailed discussion on the representations of measures (including alternate definitions), we
refer to the reader to Day and Miller’s paper [5].

Fix an effective enumeration σ0, σ1, . . . of all finite strings. Given a real R and string σ,

let n be the index such that σ = σn and let Rσ =
∞∑
i=0

2−i ·R(〈n, i〉). Then Rσ is a number in

[0, 1] for every σ. Define by induction the pre-measure µR as

µR(〈〉) = 1

µR(σa0) = µR(σ) ·Rσ

µR(σa1) = µR(σ) · (1−Rσ)

It is clear that µR is a well-defined pre-measure. In this way every real R represents
some probability measure µR on 2ω, and it is clear that for every probability measure has
a real which represents it. Of course, given a measure µ there is not necessarily a unique

representation R (if µ(σa0)
µ(σ)

is a dyadic rational then there are two choices for Rσ).

If R is a representation of a measure µ, we write Rs(σ) to be an approximation of µ(σ) to
within 2−s. That is to say, we require Rs(σ)− 2−s ≤ µ(σ) ≤ Rs(σ) + 2−s. It is clear that the
function Rs(σ) is uniformly recursive in s, σ relative to R. That Rs(σ) is uniformly recursive
is the only feature of our definition of measure representations that we will use going forward,
and is a feature common to any reasonable definition of measure representations.

Given this definition of Rs, it is useful to note the following facts about representations
of measures, as they will be used later on.

• µ(σ) < q iff ∃s(Rs(σ) < q − 2−s).

• µ(σ) > q iff ∃s(Rs(σ) > q + 2−s).

• µ(σ) = x iff µ(σ) 6< x and µ(σ) 6> x iff ∀s(Rs(σ) ≤ x+ 2−s) and ∀s(Rs(σ) ≥ x− 2−s).

Put another way, inequality is a Σ0
1(R) property and equality is a Π0

1(R) property.

2.2 Formal Definitions and Preliminary Observations

We begin by making explicit all notions and generalizations of randomness used in this
chapter, relavitized to arbitrary measures.

Definition 5. A real X is µ-(n+ 1)-random relative to Y if there is some representation R
of µ such that X /∈

⋂
i Vi for every test {Vi} where Vi is uniformly r.e. in (R ⊕ Y )(n) and

µ(Vi) ≤ 2−i for all i.

Note that a real being 1-random is equivalent to a real being Martin-Löf random.
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Definition 6. [7] A real X µ-difference-random relative to Y if there is some representation
R of µ such that X /∈

⋂
i Vi for every test {Vi} where µ(Vi) ≤ 2−i the sets {Vi} are uniformly

2-r.e. in R⊕ Y .

Franklin and Ng defined this notion of randomness and showed that the above definition is
equivalent to allowing tests to be uniformly k-r.e. for any k ≥ 2. They further characterized
the difference randoms as a subset of the 1-randoms:

Theorem 2. [7] A real X is µ-difference-random iff there is a representation R of µ such
that X is µ-1-random relative to R and X ⊕R 6≥T R′.

Definition 7. A real X is µ-weak-(n+2)-random relative to Y if there is some representation
R of µ such that X /∈

⋂
i Vi for every test {Vi} where limi→∞ µ(Vi) = 0 and the sets {Vi} are

uniformly r.e. in (R⊕ Y )(n)

In the above definitions we relativize our tests to (R⊕Y )(n). One may ask why we do not
instead relativize to R(n)⊕Y (n) or R⊕Y (n). The convention used by Reimann and Slaman in
their definition of NCRn (reals which are not n-random relative to any continuous measure)
allows for the use of the nth iterate of jump of R, so we follow that convention (thus ruling
out the last option). The results of this chapter don’t pursue relativization beyond iterates
of the Turing jump itself and would therefore apply to either of the former definitions.

For a fixed real X and measure µ we have the following implications:

(n+ 1)-random ⇒ weak-(n+ 1)-random ⇒ difference-(n+ 1)-random ⇒ n-random

For Lebesgue measure, it is known that none of these arrows reverse. The reader is
referred to Downey and Hirschfeldt [6] for proofs and further discussion, and to Franklin and
Ng [7] for proofs about difference-randomness.

We can now precisely state the main question of this chapter: for which reals X is there a
measure µ such that µ({X}) = 0 and such that X is [weak-n, n, difference]-random relative
to µ?

It will be a bit cumbersome to rewrite the above phrase throughout everything which
follows, and so we adopt a the term randomizable to refer to such reals.

Definition 8. A real X is [weak-n, n, difference]-randomizable if there is a measure µ such
that µ({X}) = 0 and X is [weak-n, n, difference]-random relative to µ.

In this language, the principal question of this chapter is simply “What reals are ran-
domizable?”

As aforementioned, Reimann and Slaman [19] answered this question for 1-randomness by
showing that a real is 1-randomizable iff it is not recursive. Thus, the goal of this chapter is
to shed some light on the problem for the notions of randomness stronger than 1-randomness.
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Preliminary Observations

In 1970 Levin proved that there exists a measure µ such that every real is µ-Martin-Löf
random [16]. That is, for every X there is a representation R of µ such that X µ-Martin-Löf
random relative to R. Gács [10] later termed such measures neutral measures.

The existence of neutral measures is a peculiarity of Martin-Löf randomness, and it stems
from Martin-Löf tests lacking the computational power to handle multiple representations
of measures. To make this statement more precise, observe that given any measure repre-
sentation R there is a real XR such that XR is not µR-Martin-Löf random relative to R
(the proof of this is not difficult; see Lemma 4.1 of [5]). We are therefore able to conclude
(by the existence of neutral measures) that different representations R necessarily produce
different reals XR, and there is no test which can uniformly capture the same X for every
representation.

Day and Miller [5] studied neutral measures and provided an alternate construction of
a neutral measure which yielded an entire Π0

1 class of representations of neutral measures.
As a corollary, they provide an alternative proof to Reimann and Slaman’s result that every
non-recursive real is 1-randomizable.

Given this direction of study of Martin-Löf randomness with respect to arbitrary measures
by Levin et al., and given that Day and Miller’s investigation yielded results directly related
to the primary question of this chapter, we first wish to investigate neutral measures in the
context of higher randomness. However, our first result shows that difference-randomness
(the weakest notion of randomness stronger than 1-randomness which we consider) is able
to overcome the ambiguity introduced by representations of measures, and hence no neutral
measure can exist for difference-randomness. Therefore a deeper investigation of neutral
measures will not aid in our discussion.

Theorem 3. There are no neutral measures for difference-randomness. That is, for any
measure µ there is a real X such that X is not µ-difference-random.

Proof. Fix a measure µ and define X inductively and follows. Suppose we have defined
X � n and let σ = X � n. If µ(σa0) ≤ µ(σa1) let X(n) = 0 and otherwise let X(n) = 1.
Note that this implies µ(X � (n+ 1)) ≤ 1

2
µ(X � n) and hence µ(X � n) ≤ 2−n. In particular

this also means µ({X}) = 0.
It is claimed that X is not µ-difference-random. To see this, fix a representation R of µ.

Define the sets Dn,0, Dn,1 inductively as follows. Let D0,0 = {〈〉} and D0,1 = ∅.
Let

Dn,0 =

{
τai ∈ 2n : τ ∈ Dn−1,0 ∧

((
i = 0 ∧Rn+1(τai) ≤ 1

2
Rn(τ) + 2−n

)
∨
(
∃s
(
Rs+1(τai) <

1

2
Rs(τ)− 2−s

)))}
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Dn,1 =
{
τai ∈ 2n : (∃σ ⊆ τ ∃k < n (σ ∈ Dk,1))

∨
(
∃s
(
Rs+1(τai) >

1

2
Rs(τ) + 2−s

))}
It is clear from the definition that each Dn,i is r.e. It is first claimed that X � n ∈

Dn,0\Dn,1 for each n, and hence X ∈
⋂
n (Dn,0 \Dn,1). We show this by induction on n. The

case of n = 0 is immediate. In the inductive case let X � n = τai. By induction τ ∈ Dn−1,0.
First take the case that µ(τai) < 1

2
µ(τ). Fix s large enough so that 2−s < 1

4

(
1
2
µ(τ)− µ(τai)

)
.

Then we have µ(τai) < 1
2
µ(τ)− 4 · 2−s and we get

Rs+1(τai) ≤ µ(τai) + 2−(s+1) <
1

2
µ(τ)− 3 · 2−s ≤ 1

2
(Rs(τ) + 2−s)− 3 · 2−s

<
1

2
Rs(τ)− 2−s

Hence τai ∈ Dn,0. In the other case we have µ(τai) = 1
2
µ(τ) and hence by definition

of X we have i = 0. Then we have Rn+1(τai) ≤ µ(τai) + 2−(n+1) = 1
2
µ(τ) + 2−(n+1) ≤

1
2
(Rn(τ) + 2−n) + 2−(n+1) = 1

2
Rn(τ) + 2−n and hence τai ∈ Dn,0.

Finally note that it cannot be the case that τai is in Dn,1 or else this would imply that
there is a stage s such that Rs+1(τai) > 1

2
Rs(τ) + 2−s and hence

µ(τai) ≥ Rs+1(τai)− 2−(s+1) >
1

2
Rs(τ) + 2−s − 2−(s+1)

≥ 1

2
(µ(τ)− 2−s) + 2−s − 2−(s+1) =

1

2
µ(τ)

a contradiction.
Now we want to verify that µ(Dn,0 \ Dn,1) ≤ 2−n for all n. To do this we show that

σ ∈ Dn,0 \ Dn,1 iff σ = X � n, which suffices since by our definition of X, µ(X � n) ≤ 2−n

for all n. Again we proceed by induction, and the case of n = 0 is trivial. Suppose that
τai ∈ Dn,0\Dn,1. Then τ /∈ Dn−1,1 or else τai would be inDn,1 by definition. Since τai ∈ Dn,0

it must also be the case that τ ∈ Dn−1,0. Thus τ ∈ Dn−1,0 \Dn−1,1, so τ = X � (n − 1) by
induction.

Suppose for a contradiction that τai 6= X � n. First suppose τai ∈ Dn,0 because there is
an s such that Rs+1(τai) < 1

2
Rs(τ)− 2−s. However we then have

µ(τai) ≤ Rs+1(τai) + 2−(s+1) <
1

2
Rs(τ)− 2−s + 2−(s+1)

≤ 1

2
(µ(τ) + 2−s)− 2−s + 2−(s+1) =

1

2
µ(τ)

Then τai = X � n contradicting our assumption. Thus it must be the case that i = 0
and Rn+1(τai) ≤ 1

2
Rn(τ) + 2−n. In this case we claim that τai ∈ Dn,1, which will achieve a
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contradiction since we assumed τai ∈ Dn,0\Dn,1. Since we are assuming that τ = X � (n−1)
and τai 6= X � n, this implies X(n) 6= 0 and hence µ(τa0) > µ(τa1). Fix an s such that
2−s < 1

4

(
µ(τa0)− 1

2
µ(τ)

)
, so that we have µ(τa0) > 1

2
µ(τ) + 4 · 2−s. Then we get

Rs+1(τai) ≥ µ(τai)− 2−(s+1) >
1

2
µ(τ) + 3 · 2−s ≥ 1

2
(Rs(τ)− 2−s) + 3 · 2−s

>
1

2
Rs(τ) + 2−s

and hence τai ∈ Dn,1 as desired.
Therefore Vn = Dn,0 \Dn,1 is a µ-difference-randomness test relative to R which captures

X. Since such a test exists for any R representing µ, we have that X cannot be µ-difference-
random.

2.3 Non-randomizable Reals

Since Reimann and Slaman showed that a real is 1-randomizable iff it is not recursive, our
first foray into generalizing their result to higher notions of randomness will be asking if every
non-recursive real is difference-randomizable, weak-n-randomizable, or even n-randomizable
for n > 1. However, this section provides a number of counter-examples, showing that their
result will not generalize.

Recall that Reimann and Slaman defined the class NCR of not-continuously-random
reals, i.e. the reals X for which there is no continuous µ such that X is µ-1-random. More
generally they defined NCRn, the set of reals X for which there is no continuous µ such
that X is µ-n-random. In their paper they showed that NCRn is a subset of HYP for each
n, though an earlier result by Kjos-Hanssen and Montalbán showed that the NCR reals are
unbounded within HYP.

Theorem 4. [13] For every β < ωCK1 there is a real X ≡T 0(β) such that X ∈ NCR.

Our first result helps to bridge the gap between being not-continuously-random and being
not randomizable, taking 2 jumps to do so. Consequently, we show that the reals which are
not 3-randomizable are a superset of NCR and in particular contain more than just the
recursive reals. Before we prove the theorem, we prove some lemmas, the first of which is a
fairly simple and well-known fact about measures.

Lemma 1. Let µ be a probability measure. Then µ has only countably many atoms.

Proof. Suppose that µ had uncountably many atoms. Let Bn = {X ∈ 2ω : µ({X}) > 1
n
}.

Since
⋃
nBn contains all atoms of µ, there is a single n such that Bn is uncountable. Let

X1, X2, . . . , Xn+1 be n + 1 many reals from Bn. Then we have by countable additivity

µ(Bn) ≥
n+1∑
i=1

µ({Xi}) > n+1
n
> 1, a contradiction.



11

The next lemma is another well-known result which says that all atoms of a measure are
computable from a representation of that measure.

Lemma 2. Suppose X is an atom of µ. Then for any representation R of µ, X ≤T R.

Proof. Since µ({X}) > 0, fix a rational q such that q < µ({X}) < 2q. Fix some σ ⊂ X such
that µ(σ) < 2q. Fix s such that 2−s < q. Then R can compute initial segments of X by
looking for τ ⊇ σ and t ≥ s such that Rt(τ) > q + 2−t. For every length l > |σ| there is at
most one such τ , for if there were two strings τ1, τ2 then we would have

µ(σ) ≥ µ(τ1) + µ(τ2) ≥ Rt1(τ1)− 2−t1 +Rt2(τ2)− 2−t2 > q + q > 2q

which contradicts our choice of σ.

Now fix a real X in NCR and a measure µ such that µ({X}) = 0. We will show that X
cannot be µ-3-random.

Since µ has countably many atoms, list them as Y1, Y2, . . .. Let A(σ) =
∑

i{µ({Yi}) :
Yi ∈ [σ]}. That is, A(σ) is the sum of the weight of atoms in [σ]. Fix a representation R of
µ. Our next lemma establishes the complexity of the relation A(σ) > q.

Lemma 3. The relation A(σ) > q is uniformly recursive in R′′.

Proof. First we define the relation M(σ, q) which holds iff there is an atom Y ∈ [σ] with
µ({Y }) ≥ q. Then we have

M(σ, q)⇔ (∀m ≥ |σ|)(∃τ ∈ 2≤m)(|τ | = m ∧ τ ⊇ σ ∧Rm(τ) ≥ q − 2−m)

Thus M(σ, q) is a Π0
1(R) relation.

Returning to analyzing the complexity of A(σ), first suppose it is the case that A(σ) > q.
Then there is a finite collection of atoms Z1, . . . , Zn in [σ] such that

∑
i µ(Zi) > q. Pick a

length l large enough so that the strings Zi � l are pairwise distinct, and let σi = Zi � l. Fix
rationals qi such that µ(Zi) > qi and

∑
i qi > q. Then M(σi, qi) holds for each i. Hence we

have:

∃n∃σ1, . . . , σn∃q1, . . . , qn such that the σi all have the same length and extend
σ, the σi are pairwise distinct,

∑
i qi > q, and M(σi, qi) holds for each i.

(∗)

Conversely, suppose (∗) holds. Since M(σi, qi) holds for each i, there are n distinct atoms
Z1, . . . , Zn with µ(Zi) ≥ qi. Hence µ(σ) ≥

∑
i qi > q. Hence (∗) is equivalent to A(σ) > q.

Since (∗) is Σ0
2(R), the predicate A(σ) > q is recursive in R′′.

We will also need to be able to decide if A(σ) = 0 and therefore analyze the complexity
of that relation.

Lemma 4. The relation A(σ) = 0 is Π0
2(R) and is therefore decidable in R′′.
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Proof. Note that

A(σ) = 0⇔ ∀n∃l∀τ ∈ 2≤l ∩ [σ](|τ | = l⇒ Rn+1(τ) ≤ 2−n)

and by observation this is Π0
2.

The last lemma before we proceed to the main theorem uses the above lemmas to show
that R′′ can compute a finite listing of atoms in [σ] in order to approximate A(σ).

Lemma 5. Suppose q is a rational and A(σ) > q. Then uniformly in σ, q R′′ can compute a

finite list of indices e0, . . . , ek such that ΦR
ei

is an atom of µ in [σ] and such that
k∑
i=0

µ({ΦR
ei
}) >

q.

Proof. R′′ can compute the set of total Turing functionals ΦR
e0
,ΦR

e1
, . . ., and since every atom

of µ is recursive in R, every atom contained in [σ] appears in this list.
R′′ can therefore compute indices from this list such that each index j satisfies ΦR

ej
⊇ σ

and ∃qj∃s∀kRs(Φ
R
ej
� k) > qj−2−s. R′′ can continue computing such indices until

∑
j qj > q,

and then output those indices.
If this program halts, it is clear that the indices output satisfy the lemma. To verify

that the program will halt, fix atoms Y1, . . . , Yn in [σ] such that
∑
µ(Yj) > q. Then we can

fix rationals q1, . . . , qn such that µ({Yj}) > qj and
∑

j qj > q. Fixing indices ej such that

Yj = ΦR
ej

, the above program will halt by the time it discovers the indices e1, . . . , en.

We are now ready to prove the first main result.

Theorem 5. If X is NCR, then X is not 3-randomizable.

Proof. We non-uniformly split into two cases. First suppose that A(〈〉) = 1. By Lemma 5
R′′ can for every n uniformly compute atoms Z1, . . . , Zm such that

∑
µ(Zi) > 1− 2−n. Let

Vn = {σ : σ is incomparable to each Zi}. Then clearly µ(Vn) < 2−n and R′′ can compute
each Vn. Since X is not an atom of µ, X ∈

⋂
n Vn, so X is not Martin-Löf random relative

to R′′.
Now suppose that A(〈〉) < 1 and define the measure ν by

ν(σ) =
µ(σ)− A(σ)

1− A(〈〉)

Note that ν is a well-defined measure, since ν(〈〉) = 1 and for any σ we have

ν(σa0) + ν(σa1) =
µ(σa0)− A(σa0) + µ(σa1)− A(σa1)

1− A(〈〉)

=
µ(σ)− A(σ)

1− A(〈〉)
= ν(σ)
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Since R′′ can recursively compute µ(σ) and A(σ), R′′ can compute a representation S of
ν.

Now observe that ν is continuous, for suppose there is a Y such that ν({Y }) > 0. Since
µ(Y �n)−A(Y �n)

1−A(〈〉) = ν(Y � n) we can take the limit of both sides as n→∞ and get

µ({Y })− lim
n→∞

A(Y � n)

1− A(〈〉)
= ν({Y })

But since lim
n→∞

A(Y � n) = µ({Y }) we have 0 = ν({Y }) > 0, a contradiction. Hence ν is

continuous.
Since ν is continuous and X is NCR, there is some ν-Martin-Löf test {Vn} uniformly r.e.

in S (hence uniformly r.e. in R′′) such that {Vn} captures X. Define V ′k as follows.
List the strings enumerated into Vk+1 as σ1, σ2, . . .. When σi is enumerated into Vk+1,

if A(σi) = 0 then put σi in V ′k . Otherwise search for a rational qi such that qi < A(σi) <
qi+2−(k+i+1), and by Lemma 5 pick atoms Z1, . . . , Zm such that

∑
j µ({Zj}) > qi. Enumerate

into V ′k all extensions of σi which are incomparable to each Zj.
Since X ∈

⋂
n Vn and X is not an atom of µ, it is clear that X ∈

⋂
n V

′
n. So the only

thing that needs to be checked is that µ(V ′k) ≤ 2−k for each k. Observe

µ(V ′k) ≤
∞∑
i=1

(µ(σi)− qi)

≤
∞∑
i=1

(
µ(σi)− (A(σi)− 2−(k+i+1))

)
= 2−(k+1) +

∞∑
i=1

(µ(σi)− A(σi))

= 2−(k+1) + (1− A(〈〉)) · ν(Vk+1)

≤ 2−(k+1) + (1− A(〈〉)) · 2−(k+1)

≤ 2−k

Note that the above proof relativizes to the more general statement that if X is NCRn

then X is not (n+ 2)-randomizable.
We next show that the reals which are not difference-randomizable contain the r.e. reals,

and hence Reimann and Slaman’s result does not even generalize to difference-randomness.

Proposition 1. Suppose that X is a real with a total recursive function f : N×N→ {0, 1}
such that ∀n lims f(n, s) = X(n) and

∀n (|{s : f(n, s) 6= f(n, s+ 1)}| < 2)

Then X is not difference-randomizable.



14

The above categorization of X in particular captures both r.e. and co-r.e. reals.

Proof. Fix a measure µ and a representation R of µ. Let

Dn,0 = {σ : ∃s(Rs(σ) ≤ 2−n − 2−s ∧ ∀i < |σ|(σ(i) = f(i, s))}
Dn,1 = {σ : ∃s∃s′ > s∃i < |σ|(f(i, s′) 6= f(i, s))}

It is clear that each Dn,i is r.e. We first claim that µ(Dn,0 \ Dn,1) ≤ 2−n). Suppose
σ ∈ Dn,0 \Dn,1. Fix the stage s at which σ enters Dn,0. Then Rs(σ) ≤ 2−n − 2−s and hence
µ(σ) ≤ 2−n. Furthermore, for all i < |σ| it must be the case that f(i, s) = lims′ f(i, s′) = X(i)
or else there would be a stage s′ > s such that f(i, s′) 6= f(i, s) and hence σ ∈ Dn,1. Hence
σ ⊂ X, so the only members of Dn,0 \Dn,1 are initial segments of X with measure less than
2−n.

Finally we claim that if µ({X}) = 0 then X ∈
⋂
n (Dn,0 \Dn,1). Fix n and pick k large

enough so that µ(X � k) < 2−(n+1). Let σ = X � k. Fix s large enough so that for all i < k,
f(i, k) = lims f(i, s) and large enough such that 2−(s−1) < 2−(n+1). Then we have

Rs(σ) ≤ µ(σ) + 2−s < 2−(n+1) + 2−s = 2−(n+1) + 2−(s−1) − 2−s

< 2−(n+1) + 2−(n+1) − 2−s = 2−n − 2−s

Hence σ ∈ Dn,0, and since there is no stage s′ > s such that f(i, s′) 6= f(i, s) for any i < |σ|,
we have σ /∈ Dn,1.

This result has an interesting implication in the analysis of Reimann and Slaman’s method
for showing non-recursive reals are 1-randomizable. Suppose that X is an r.e. real and µ
is a measure such that X is µ-1-random. Since X cannot be µ-difference-random, Theorem
2 implies that for any representation R of µ for which X is µ-1-random relative to R,
X ⊕ R ≥T R′. In a sense, every measure which randomizes X is generic relative to X. We
will make reference to this fact below, so we state this result as a corollary.

Corollary 1. Suppose X is r.e., µ is a measure such that µ({X}) = 0, and R is a repre-
sentation of µ such that X is µ-1-random relative to R. Then R⊕X ≥T R′.

We next investigate those reals which are not weak-2-randomizable. To do so we will use
an extremely useful characterization of weak-n-randomness. A proof of this characterization
is presented in Downey and Hirschfelt’s book [6], though only with respect to Lebesgue
measure. In order to carefully track the generalization to arbitrary measures, we present a
fully generalized version of the proof below.

Theorem 6. Fix n ≥ 1, a measure µ, and a representation R of µ. The following are
equivalent:

1. X is µ-weak-(n+ 1)-random relative to R.



15

2. X is µ-n-random relative to R and X ⊕ R(n−1) forms a minimal pair with R(n) over
R(n−1). That is, if A ≤T X ⊕R(n−1) and A ≤T R(n) then A ≤T R(n−1).

Proof. First suppose X is µ-weak-(n+ 1)-random relative to R. Suppose that there is a real
A such that X ⊕R(n−1) ≥T A and R(n) ≥T A. Let f(m, s) be the ∆0

2(R(n−1)) approximation
of A. That is, f is recursive in R(n−1) and lims f(m, s) = A(m) for all m. Fix e such that

ΦX⊕R(n−1)

e = A. Define

T = {Y : ∀m∃s(ΦY⊕R(n−1)

e,s (m) ↓)

∧ ∀m∀s(ΦY⊕R(n−1)

e,s (m) ↓6= f(m, s)⇒ (∃s′ > s)(f(m, s′) 6= f(m, s)))}

Then T is a Π0
2(R(n−1)) class containing X. Since X is µ-weak-(n + 1)-random relative to

R, it must be the case that µ(T ) > 0. Fix a rational q > 0 such that 3
4
µ(T ) < q < µ(T ). By

the definition of µ as an outer measure on the basic open sets, there is a finite set of strings
F such that T ⊆

⋃
{[σ] : σ ∈ F} and µ(F ) < µ(T ) + q

3
. Let [F ] denote

⋃
{[σ] : σ ∈ F}.

The following is a program in R(n−1) computing A, showing A ≤T R(n−1) as desired.
Given m and i = 0, 1 define

Ti = {σ ∈ [F ] : ∃s(Φσ⊕R(n−1)

e,s (m) ↓= i}

For i = A(m), Ti ⊇ T , so µ(Ti) > q. Hence there is a stage s such that Rs(Ti,s) > q for at
least one i. On the other hand since q > 3

4
µ(T ) we have µ(F ) < µ(T )+ q

3
< 4

3
q+ q

3
= 5

3
q < 2q.

Since T0 ∪ T1 ⊆ [F ] we thus have µ(Ti) > q for exactly one i, which as noted above is the i
such that i = A(m). Hence this computes the kth bit of A.

For the reverse, we demonstrate the contrapositive. Suppose X is not µ-weak-(n + 1)-
random relative to R, but X is µ-n-random relative to R. We will build an A 6≤T R(n−1)

such that A ≤T X ⊕R(n−1) and A ≤T R(n).
Since X is not weak-(n+ 1)-random, there is a uniformly Σ0

1(R(n−1)) sequence {Vm} such
that X ∈

⋂
m Vm and limm µ(Vm) = 0. We construct A as an r.e. in R(n−1) set, and hence

A ≤T R(n).
For each e pick a fresh large ne. If we ever see a stage s such that Rs(Vne,s) > 2−(e+1)

(and we have not yet stopped action for e) choose a new ne and restart. Otherwise if we see a

stage s ≥ e such that ne ∈ WR(n−1)

e,s then we wait for a stage s′ > s such that Rs′(Vne,s) < 2−e.
When this happens, put ne into A and stop the action of e.†

Note that for all e, each ne eventually reaches a final value. If we reach a final value of
ne because µ(Vn) ≤ 2−(e+1) and ne /∈ WR(n−1)

e , then we never put ne into A, so A 6= WR(n−1)

e .
On the other hand, we may reach a final value of ne because we find a stage s such that
ne ∈ WR(n−1)

e,s and eventually see that µ(Vne,s) < 2−e. In this case we have ne ∈ A so again

A 6= WR(n−1)

e . Hence A 6≤T R(n−1).

†The choice of 2−(e+1) in the first step and then 2−e is the second is intentional and necessary. If we see
ne enter A at stage s, then if µ(Vne,s) = 2−e we may never see this fact and hence never choose a new value
for ne nor put ne into A. But in this case we would see a stage such that Rs(Vne,s) > 2−(e+1) and pick a
new ne.
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Now it just remains to show A ≤T X ⊕ R(n−1). Define the Martin-Löf test relative to
R(n−1) by V ′e = {σ ∈ Vne+1,s : ne+1 enters A at stage s}. By our definition of putting ne+1

into A, we have µ(V ′e ) = µ(Vne+1,s) < 2−(e+1) + 2−(e+1) = 2−e. Furthermore, since we can
enumerate A using R(n−1), V ′e is uniformly r.e. in R(n−1). Hence it is Martin-Löf test relative
to R(n−1).

Let V ′′e =
∞⋃

k=e+1

V ′e and observe that V ′′e is also a Martin-Löf test relative to R(n−1), so

there is some e such that X /∈ V ′′e . Hence for all but finitely many e, X /∈ V ′e . Since we were
assuming X ∈

⋂
m Vm, let sne be the least stage such that X ∈ Vn,sne , which is uniformly

recursive in X ⊕ R(n−1). Then for all but finitely many e, ne ∈ A iff ne ∈ Asne . Hence
A ≤T X ⊕R(n−1).

The requirement that X form a (relativized) minimal pair with R′ for some representation
R of a measure µ makes it particularly difficult to directly construct a measure such that
X is µ-weak-2-random. The next theorem shows that this requirement is enough to narrow
down the class of reals for which such a µ can exist. Furthermore, it actually provides sharp
strengthening of observations made by Reimann and Slaman during their investigation of
NCR.

Proposition 2. [19] If n ≥ 2, then for all k ≥ 0, 0(k) is not n-random with respect to a
continuous measure.

Proposition 3. [19] For n ≥ 3, 0(ω) is not n-random with respect to a continuous measure.

In the proof that follows, we will use a lemma by Sacks [20] which shows the hyperjump
sets are uniformly Π0

2 definable. We use the notation of Sacks in which Ha is the ath iterate
of the halting problem for a, a notation for a recursive ordinal. The reader is referred to
Sacks’s book for additional background on the hyperarithmetic hierarchy.

Lemma 6. [20] There is a Π0
2 formula H(a, Z) such that if a is a notation for a recursive

ordinal, H(a, Z) holds iff Z = Ha.

Theorem 7. Fix k ≥ 1 and let X be a real such that 0(α) ≤T X ≤T 0(α+k) for any recursive
ordinal α < ωCK1 . Then X is not weak-(k + 1)-randomizable.

Proof. Suppose for a contradiction that X is µ-weak-(k + 1)-random for some measure µ
with µ({X}) = 0. Fix an ordinal representation a such that |a|O = α and fix e such that
ΦX
e = Ha. Let C = {Z : ΦZ

e is total ∧H(a,ΦZ
e )}. Then by Lemma 6, C is a Π0

2 class, and
by assumption X ∈ C. Since we are assuming that X is µ-weak-(k+ 1)-random, this implies
that µ(C) > 0.

Let R be a representation of µ. It is claimed that R ≥T Ha. We first select a string σ such
that µ([σ] ∩ C) > 3

4
µ(σ). Such a σ exists by the general density theorem (a generalization

of the Lebesgue Density Theorem; see e.g. Mattila [15] for reference). Define Z(n, s, i) =
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{X ∈ [σ] : ΦX
e,s(n) ↓= i}. Fix t large enough so that 2−t < 1

5
µ(σ). Note that for any s > t

we have 2−t < 1
5
(Rs(σ) + 2−s) < 1

5
Rs(σ) + 1

5
2−t and hence 2−t < 1

4
Rs(σ).

We can now compute the nth bit of Ha from R by waiting for a stage s > t such that
Rs+1(Z(n, s, i)) ≥ 1

2
Rs(σ) and outputting i.

We note that such a stage exists since lim
s→∞

Z(n, s,Ha(n)) ⊇ [σ] ∩ C, so we can pick s1

such that µ([σ] ∩ C) − µ(Z(n, s1, Ha(n))) < 1
4
µ(σ). We then pick s2 large enough so that

2−s2 < µ([σ] ∩ C)− 3
4
µ(σ) and let s = max(s1, s2). We then have

Rs+1(Z(n, s,Ha(n))) ≥ µ(Z(n, s,Ha(n)))− 2−(s+1)

≥ µ([σ] ∩ C)− 1

4
µ(σ)− 2−(s+1)

>
3

4
µ(σ) + 2−s − 1

4
µ(σ)− 2−(s+1)

=
1

2
µ(σ) + 2−s − 2−(s+1)

≥ 1

2
(Rs(σ)− 2−s) + 2−s − 2−(s+1)

=
1

2
Rs(σ)

Furthermore, we note that if i 6= Ha(n) then µ(Z(n, s, i)) ≤ 1
4
µ(σ)) and hence

Rs+1(Z(n, s, i)) ≤ µ(Z(n, s, i)) + 2−(s+1) ≤ 1

4
µ(σ) + 2−(s+1)

≤ 1

4
(Rs(σ) + 2−s) + 2−(s+1) <

1

4
Rs(σ) + 2−s

<
1

4
Rs(σ) + 2−t <

1

2
Rs(σ)

Thus whenever our procedure outputs an answer, it will be equal to Ha(n).
Since we are assuming that X is µ-weak-(k+ 1)-random, there is a representation R of µ

such that X is µ-weak-(k + 1)-random relative to R. In particular this means R(k−1) 6≥T X.
However, R(k) ≥T 0(α+k) ≥T X. This contradicts the minimal pair property of Theorem
6: X ≤T X ⊕ R(k−1) and X ≤T R(k), but X 6≤T R(k−1). Hence X could not have been
µ-weak-(k + 1)-random.

Since this theorem implies that no ∆0
2 real is weak-2-randomizable and Proposition 1

implies there are no r.e. difference-randomizable reals, it is interesting to note that there
are ω-r.e. difference-randomizable reals. Indeed, with respect to Lebesgue measure one can
choose a low ω-r.e. path through the first level of the universal Martin-Löf test U1. This
path will be Martin-Löf random and Turing incomplete and hence is difference-random by
Theorem 2. By contrast, there are no weak-2-randomizable ∆0

2 reals. It is still open as to
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whether or not there are n-r.e. difference-randomizable reals. These results are summarized
in the below table, where each column represents reals not belonging the columns to the left.

Which ∆0
2 reals are randomizable?

recursive r.e. n-r.e. ω-r.e.
1-randomizable None All All All
difference-randomizable None None ? Some (All?)
weak-2-randomizable None None None None

In a slight tangent, we would like to show that there are no n-r.e. 1-random reals for
Lebesgue measure (and hence neither are there such difference-randoms). This eliminates
the possibility of using such an example to demonstrate n-r.e. difference-randomizable reals,
as we did above to show that there is a ω-r.e difference-randomizable real.

Proposition 4. Suppose X is n-r.e. for some n ≥ 1. Then X is not Martin-Löf random
with respect to Lebesgue measure.

Proof. We proceed by induction on n. Define f(i, s) to be a recursive approximation of X.
Let ci = |{s : f(i, s) 6= f(i, s+ 1)}| be the number of times the approximation to i changes.
If there are only finitely i such that ci = n, then there is a recursive approximation f̂ which
changes at most n− 1 times for each i. Hence X is (n− 1)-r.e. so we are done by induction.

Otherwise for each k define sk as the least number such that ∃i1, . . . , ik < sk∀j ≤ k(|{s <
sk : f(ij, s) 6= f(ij, s+ 1)}| = n) Note that each of sk and i1, . . . , ik are uniformly recursive.
Define the test

Vk = {σ : ∀1 ≤ j ≤ k(σ(ij) = f(ij, sk)}

Since the approximation f(ij, sk) has already changed n times, it cannot change again,
so f(ij, sk) = X(ij). Hence X ∈ Vk for each k. Further, it is clear by definition that
λ(Vk) = 2−k. Thus X is not Martin-Löf random.

2.4 Constructing Measures for Randomizable Reals

The set of reals which are not n-randomizable is contained in HYP (since NCRn ⊆ HYP), so
the task of identifying which reals are not randomizable can be constrained to this context.
With this in mind, Theorem 7 provides a large coverage of the domain in question. In the
results which follow, we show that this theorem is, in a sense, as strong as it can be made
since if we widen the interval between jumps we can always find a randomizable real.

However, before we show that result we provide a more general context for the construc-
tion of measures, as it will aid in the discussion which follows. Given a continuous function
f : 2ω → 2ω, we can define the image measure µf as µf (A) = λ(f−1(A)). It is easy to
verify that this is a well-defined measure, and in fact it can be shown that every probability
measure on 2ω is equal to µf for some f (though we won’t make use of this fact).
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Since a Turing reduction Φ is a (partial) map from 2<ω to 2<ω, we can extend it to a
continuous (partial) map from 2ω to 2ω and define the measure µΦ in the same way. In our
context of pre-measures, we can equivalently define µΦ(σ) =

∑
τ :Φ(τ)⊇σ

2−|τ | where we assume

the sum ranges over a prefix-free set of τ . We immediately have µΦ(〈〉) = 1, but to get
additivity (and thus have µΦ be a well-defined measure) Φ must be total on all oracles.
Equivalently, Φ must be a truth-table reduction.

Given a probability measure µ, suppose there is a constant c > 0 such that for all σ,
µ(σ) ≥ cλ(Φ−1(σ)) (which in particular will be true for c = 1 if µΦ is well-defined and
µ = µΦ). Then µ preserves randomness in the sense that if X is random for Lebesgue
measure then Φ(X) is random for µ. This is made precise by the next proposition:

Proposition 5. Let X be a real and Φ a Turing functional with X ∈ dom(Φ). Let µ
be a measure with representation recursive in R such that X is [difference, weak-n, n]-
random relative to R. Further suppose that there is a constant c > 0 such that for all σ,
µ(σ) ≥ cλ(Φ−1(σ)). Then Φ(X) is µ-[difference, weak-n, n]-random relative to R.

Proof. Suppose the conclusion does not hold, i.e. there is a test {Vn} relative to R which
has the appropriate µ measure and captures Φ(X). We will show that X is not actually
random, thus reaching a contradiction. We verify this independently for each of the three
types of randomness, although each of the cases are analogous to one another.

n-randomness The test {Vn} is uniformly r.e. in R(n−1) and satisfies µ(Vn) ≤ 2−n.
Fix k large enough so that 2k > 1

c
and define V ′n =

⋃
{Φ−1(σ) : σ ∈ Vn+k}. Then

clearly V ′n is also uniformly r.e. in R(n−1), captures X, and

λ(V ′n) =
∑

σ∈Vn+k

λ(Φ−1(σ)) ≤
∑

σ∈Vn+k

1

c
µ(σ) < 2k2−(n+k) = 2−n

Weak-n-randomness The test {Vn} is uniformly r.e. in R(n−1) and satisfies the limit
property lim

n→∞
µ(Vn) = 0. Define V ′n =

⋃
{Φ−1(σ) : σ ∈ Vn}. Then clearly V ′n is also

uniformly r.e. in R(n−1), captures X, and

lim
n→∞

λ(V ′n) ≤ lim
n→∞

1

c
µ(Vn) =

1

c
lim
n→∞

µ(Vn) = 0

Difference-randomness The test {Vn} can be written as Vn = Dn,0 \ Dn,1 where
each set Dn,i is uniformly r.e. in R and µ(Vn) ≤ 2−n. We can assume without loss of
generality that Dn,1 ⊆ Dn,0 for all n, and hence µ(Vn) = µ(Dn,0)−µ(Dn,1). Fix k large
enough so that 2k > 1

c
and define D′n,i =

⋃
{Φ−1(σ) : σ ∈ Dn+k,i}. Then clearly each

D′n,i is uniformly r.e. in R. Furthermore, D′n,0 \D′n,1 = Φ−1(Dn+k,0) \ Φ−1(Dn+k,1)) =
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Φ−1(Dn+k,0 \ Dn+k,1) = Φ−1(Vn+k), so X is captured by the sequence D′n,0 \ D′n,1.
Finally,

λ(D′n,0 \D′n,1) = λ(Φ−1(Dn+k,0))− λ(Φ−1(Dn+k,1))

≤ 1

c

(
µ(Dn+k,0)− µ(Dn+k,1)

)
=

1

c
µ(Vn+k)

≤ 1

c
2−(n+k)

< 2−n

This then gives us a tool for showing reals are randomizable. Suppose X ≡tt Y and X
is random relative to some real R. Let Φ be the truth-table Turing functional such that
Φ(X) = Y . Then Y is µΦ-random relative to R. Furthermore, because the equivalence is
truth-table, the resulting measure µΦ is actually continuous. Indeed, this statement reverses
showing that this is the only way to find reals which are random relative to a continuous
measure. This was made precise by Reimann and Slaman for n-randomness, but also applies
to difference-randomness and weak-n-randomness.

Proposition 6. [19] Fix reals X and R. Then the following are equivalent:

1. X is random relative to a continuous measure µ with a representation recursive in R.

2. There is a real Y which is Lebesgue random relative to R and is truth-table in R
equivalent to X.

We now extend this idea to find randomizable reals arbitrarily high in the Turing degrees,
and contrast this with Theorem 7.

Proposition 7. Suppose Z is [difference, weak-n, n]-random relative to X. Then there is a
continuous measure µ such that Z ⊕X is µ-[difference, weak-n, n]-random relative to X.

Proof. Define the Turing functionals Φ,Ψ relative to X as follows:

Φ(σ ⊕ τ) = σ

Ψ(σ) = σ ⊕X � |σ|

Both Φ and Ψ are truth-table reductions, so Z ≡tt(X) Z ⊕X. Hence µΨ is well defined
and has a representation recursive in X. Since Z is random relative to X, by Proposition 5
Ψ(Z) = Z ⊕X is µΨ-random relative to X as desired.
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Corollary 2. For any n ≥ 1 and real X, there is a real Z such that X ≤T Z ≤T X(n+1)

such that Z is continuously n-randomizable.

In particular this shows that there are reals above 0′ which are difference-random. Since
Franklin and Ng characterized the Lebesgue difference-randoms as those Martin-Löf randoms
not above 0′, this contrasts by showing that — for arbitrary measures — there are arbitrarily
high difference-randomizable reals.

At this point, it is worth reviewing the specific methods used in Reimann and Slaman’s
proof that all non-recursive reals are 1-randomizable. The intent is to show that these
methods are required features of any proof which shows a real is randomizable.

In Reimann and Slaman’s proof, they started with a non-recursive real X and first
appealed to a Posner-Robinson argument to find a generic real G such that X ≡T (G) G

′.
Then by applying a result by Kučera, they found a real Z such that Z ≡T G′ and Z is
1-random relative to G. So X is Turing equivalent in G to a 1-random.

Although the Turing equivalence was not total (and therefore they could not just appeal
to the image measure µΦ), they were able to define a Π0

1 class of measure representations
that were consistent with the image measure of total functions extending Φ. They were
then able to finish their proof by finding a path in the Π0

1 class relative to which Z was still
1-random. Since this path represents a measure consistent with the image measure and has
a representation relative to which Z is random, the argument of Proposition 5 implies X is
random relative to this measure.

As briefly mentioned in the previous section, the step of finding a generic G seems to be
a requisite step of the proof, at least for r.e. reals. Recalling Corollary 1, if X is an r.e. real
and µ a measure with representation R relative to which X is µ-1-random, it must be the
case that X ⊕R ≡T R′.

Continuing this analysis we could ask whether the other steps are necessary. That is,
must the proof find an intermediate random Z such that X ≡T (G) Z. We answer this question
in the affirmative by providing a direct analogue of Proposition 6 for 1-randomness.

Theorem 8. Fix reals X and R. Then the following are equivalent:

1. R computes a representation of a measure µ such that µ({X}) = 0 and X is µ-1-
random relative to a R.

2. There is a real Y which is Lebesgue 1-random relative to R and is Turing equivalent
in R to X.

Proof. (2 ⇒ 1) follows from Reimann and Slaman’s proof, as outlined above. (1 ⇒ 2) will
follow from Theorem 9 below.

In showing (1 ⇒ 2) we will not be able to show that the µ in question is the image
measure of some Turing equivalence (as Reimann and Slaman’s proof suggests), but instead
we will show that µ induces a Turing functional Φ with the measure-preserving requirements
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of Proposition 5. The Turing functional will not in general be total (unless µ is continuous,
in which case we could appeal to Proposition 6 directly).

In the Theorem 8, there is nothing special about Lebesgue measure other than that it is
continuous. Thus the fully generalized version of the theorem below defines Y as a µ2-random
real for any continuous measure µ2.

Before proceeding to the proof of Theorem 9, we will need to refine our representation of
measures in order to keep track of the multiplicative effects of errors. Consequently it will
be necessary to use approximations which are within a multiplicative constant of the correct
value, rather than being within an additive constant as in our definition of Rs(σ). Thus we
define some new notation.

If M is a representation of µ, we want M(σ, ε) be the estimation of µ(σ) to within an
relative error of ε; that is, we would like to have M(σ, ε) ≤ µ(σ) ≤ M(σ, ε)(1 + ε). Our
particular definition of M(σ, ε) will also need some monotonicity properties expanded upon
below.

First define the approximation M∗(σ, 2−n) for n ≥ 0. Let s1 be least such that Ms1(σ) >
2−s1 if it exists, and pick s2 least such that

2−s2 <

(
1 +

2−n

2 + 2−n

)−1
1

2 + 2−n
2−n(Ms1(σ)− 2−s1)

Then define M∗(σ, 2−n) = Ms2(σ)− 2−s2 . Note that the computation of M∗(σ, 2−n) does
not converge if µ(σ) = 0 and otherwise such an s1 does exist, so the computation converges.

By definition M∗(σ, 2−n) = Ms2(σ)− 2−s2 ≤ µ(σ) as desired, and furthermore we have

2−s2 ≤
(

1 +
2−n

2 + 2−n

)−1
1

2 + 2−n
2−n

(
Ms1(σ)− 2−s1

)
≤
(

1 +
2−n

2 + 2−n

)−1
1

2 + 2−n
2−n

(
Ms2(σ) + 2−s2

)
Thus (

1 +
2−n

2 + 2−n

)
(2 + 2−n)2−s2 ≤ 2−n(Ms2(σ) + 2−s2)

(2 + 2−n)2−s2 + 2−n2−s2 ≤ 2−nMs2(σ) + 2−n2−s2

(2 + 2−n)2−s2 ≤ 2−nMs2(σ)

(1 + 2−n)2−s2 + 2−s2 ≤ (1 + 2−n)Ms2(σ)−Ms2(σ)

Ms2(σ) + 2−s2 ≤ (1 + 2−n)(Ms2(σ)− 2−s2)

µ(σ) ≤ (1 + 2−n)M∗(σ, 2−n)

Hence we have M∗(σ, 2−n) ≤ µ(σ) ≤M∗(σ, 2−n)(1 + 2−n). Define inductively M(σ, 2−n)
as follows. For n = 0 we let M(σ, 2−n) = M∗(σ, 2−n). For n > 0, if M∗(σ, 2−n)(1 + 2−n) >
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M(σ, 2−(n−1))(1 + 2−(n−1)) let M(σ, 2−n) = M(σ, 2−(n−1))1+2−(n−1)

1+2−n
. Otherwise let M(σ, 2−n)

be the larger of M∗(σ, 2−n) and M(σ, 2−(n−1)).
We now verify a number of facts about M(σ, 2−n), proceeding by induction on n.

1. M(σ, 2−n) ≤ µ(σ): First suppose M(σ, 2−n) = M∗(σ, 2−n). Then by the above verifi-
cation, M∗(σ, 2−n) ≤ µ(σ) so we are done. If n > 0 and M(σ, 2−n) = M(σ, 2−(n−1))
then by induction we have M(σ, 2−(n−1)) ≤ µ(σ) so again we are done. Otherwise it
must be the case that

M∗(σ, 2−n)(1 + 2−n) > M(σ, 2−(n−1))(1 + 2−(n−1)) = M(σ, 2−n)(1 + 2−n)

and hence µ(σ) ≥M∗(σ, 2−n) > M(σ, 2−n).

2. M(σ, 2−n)(1 + 2−n) ≥ µ(σ): If M(σ, 2−n) = M(σ, 2−(n−1))1+2−(n−1)

1+2−n
then by induction

we have M(σ, 2−n)(1 + 2−n) = M(σ, 2−(n−1))(1 + 2−(n−1)) ≥ µ(σ). Otherwise suppose
M(σ, 2−n) = M∗(σ, 2−n). Then by the above verification, µ(σ) ≤M∗(σ, 2−n)(1 + 2−n).
Finally, suppose n > 0 and M(σ, 2−n) = M(σ, 2−(n−1)) in which case M∗(σ, 2−n) ≤
M(σ, 2−(n−1)). Then we have by the above verification that

µ(σ) ≤M∗(σ, 2−n)(1 + 2−n)

≤M(σ, 2−(n−1))(1 + 2−n) = M(σ, 2−n)(1 + 2−n)

3. M(σ, 2−(n+1)) ≥M(σ, 2−n): First suppose that

M(σ, 2−(n+1)) = M(σ, 2−n)
1 + 2−n

1 + 2−(n+1)

Then we immediately have M(σ, 2−(n+1)) > M(σ, 2−n). Otherwise we have by defini-
tion that M(σ, 2−(n+1)) is the larger of M∗(σ, 2−(n+1)) and M(σ, 2−n) so again we are
done.

4. M(σ, 2−(n+1))(1 + 2−(n+1)) ≤ M(σ, 2−n)(1 + 2−n): First suppose it is the case that
M(σ, 2−(n+1)) = M(σ, 2−n) 1+2−n

1+2−(n+1) . Then M(σ, 2−(n+1))(1 + 2−(n+1)) = M(σ, 2−n)(1 +

2−n) so we are done. Otherwise it must be the case that M∗(σ, 2−(n+1))(1 + 2−(n+1)) ≤
M(σ, 2−n)(1+2−n), so if M(σ, 2−(n+1)) = M∗(σ, 2−(n+1)) we are done. Otherwise we are
in the case that M(σ, 2−(n+1)) = M(σ, 2−n). Then we have M(σ, 2−(n+1))(1 + 2−n+1) =
M(σ, 2−n)(1 + 2−(n+1)) < M(σ, 2−n)(1 + 2−n), so we have the desired conclusion.

In general define M(σ, ε) as M(σ, 2−n) where n is least such that 2−n < ε. Then we have
in summary that M(σ, ε) ≤ µ(σ) ≤ M(σ, ε)(1 + ε), M(σ, ε) is monotonically increasing as ε
goes to zero, and M(σ, ε)(1 + ε) is monotonically decreasing as ε goes to zero.

We now present the main lemma in the proof of Theorem 9.
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Lemma 7. Let µ1, µ2 be measures with representations M1,M2 respectively. Then there are
Turing functionals Φ,Ψ relative to M1 ⊕M2 such that dom(Φ) ⊇ {X ∈ 2ω : µ1({X}) =
0 ∧ ∀n µ1(X � n) > 0}, for all X ∈ dom(Φ) Ψ(Φ(X)) = X, and there is a c > 0 such that
for all σ µ2(σ) ≥ cµ1(Φ−1(σ)).

Proof. We will construct the Turing functional Φ recursively in M1 ⊕M2 as follows, simul-
taneously constructing its inverse functional Ψ. Let εs = 1

5
4−(s+1) and note εs ≤ 1

20
for all

s. The construction will use a sequence of machines {Ts}s∈ω which run in parallel. Each
machine will be simultaneously acting on tuples 〈σ, {τ1, . . . , τn}, δ〉 which have the following
properties:

1. µ1(σ) > 0 and µ2(τi) > 0 for each τi

2. (1 + εs)M1(σ, εs) ≤
n∑
i=1

M2(τi, εs) + δ

3. δ
n∑
i=1

M2(τi,εs)
≤ 1

3
(1− 4−s)

Intuitively, the machine Ts is acting to put extensions of σ into the domain of Φ, with

the range being restricted to
n⋃
i=1

[τi]. The rational δ represents the “over-commitment” of

measure, as made precise by restriction (2) above.
At the beginning of the construction we add 〈〈〉 , {〈〉}, ε1〉 to the machine T1.
When a machine Ts receives a tuple 〈σ, {τ1, . . . , τn}, δ〉 it acts as follows. First set variables

A1 = · · · = An = 0 and B1 = · · · = Bn = ∅ which will be local to this tuple. The variables Ai
will keep track of the µ1-measure assigned to each τi while the Bi will be used to keep track of
the extensions of τi already put into the range of Φ. Let α = εs min({M2(τi, εs) : 1 ≤ i ≤ n}).
Begin searching for σ̂ ⊃ σ such that M1(σ̂, εs) <

α
2
.

When such a σ̂ is found, proceed as follows. Pick i least such that Ai ≤ M2(τi, εs) +

δ M2(τi,εs)∑
jM2(τj ,εs)

(it will be shown below that such an i always exists). Define

δ̂ = (1 + εs)

δ M2(τi, εs)
n∑
j=1

M2(τj, εs)
+ α


Let ε∗ = 1

2
εsM1(σ̂, εs) min(1, M2(τi,εs)

δ̂
). Let k be large enough so that µ2(τ) < ε∗ for all

strings τ of length k (that such a k can be found effectively is the only use of the fact that
µ2 is continuous). Let τ ′1, . . . , τ

′
n′ be the strings extending τi of length k extending τi not

already contained in Bi.
Fix t such that 2−t < α

2n′
and let τ̂1, . . . , τ̂n̂ be those τ ′i such that M2,t(τ

′
i) > 0. Note that

n̂∑
i=1

µ2(τ̂i) ≥
n′∑
i=1

µ2(τ ′i)− n′ · 2−t >
n′∑
i=1

µ2(τ ′i)−
α

2
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Pick m ≤ n̂ such that

m∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
< (1 + εs)M1(σ̂, εs)

≤
m∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
+ εsM1(σ̂, εs)

It will be shown below that we can always find such an m.
Increase Ai by (1 + εs)M1(σ̂, εs), add {τ̂1, . . . , τ̂m} to Bi, set Φ(σ̂) = τi, and set Ψ(τ̂j) = σ̂

for j = 1, . . . ,m. Define

δs+1 = δ̂ ·

m∑
j=1

M2(τ̂j, εs)

M2(τi, εs)
+ εsM1(σ̂, εs)

and add 〈σ̂, {τ̂1, . . . , τ̂m}, δs+1〉 to machine Ts+1. This ends the action upon finding σ̂ and
ends the construction. We now verify that all the requirements of the construction are met.

First we check that (2) is maintained for the new tuple added to Ts+1. This is immediate
from the above observation:

(1 + εs+1)M1(σ̂, εs+1) ≤ (1 + εs)M1(σ̂, εs)

≤
m∑
j=1

M2(τ̂j, εs) + δ̂ ·

m∑
j=1

M2(τ̂j, εs)

M2(τi, εs)
+ εsM1(σ̂, εs)

=
m∑
j=1

M2(τ̂j, εs) + δs+1

To verify (3) we first observe using the inequality above that:

(1 + εs)M1(σ̂, εs) ≤
m∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
+ εsM1(σ̂, εs)

M1(σ̂, εs) ≤
m∑
j=1

M2(τ̂j, εs) + δ̂

m∑
j=1

M2(τ̂j, εs)

M2(τi, εs)

M1(σ̂, εs)
m∑
j=1

M2(τ̂j, εs)
≤ 1 +

δ̂

M2(τi, εs)
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Then

δ̂

M2(τi, εs)
= (1 + εs)

 δ
n∑
j=1

M2(τj, εs)
+

α

M2(τi, εs)


≤ (1 + εs)

(
1

3

(
1− 4−s

)
+ εs

)
≤ (1 + εs)

(
1

3
+ εs

)
≤ (1 +

1

20
)(

1

3
+

1

20
) <

1

2

so we can achieve the crude upper-bound of M1(σ̂,εs)
m∑
j=1

M2(τ̂j ,εs)
< 1 + 1

2
< 2.

Using this we have

δs+1
m∑
j=1

M2(τ̂j, εs+1)
≤ δs+1

m∑
j=1

M2(τ̂j, εs)

=
δ̂

m∑
j=1

M2(τ̂j, εs)
·

m∑
j=1

M2(τ̂j, εs)

M2(τi, εs)
+

εsM1(σ̂, εs)
m∑
j=1

M2(τ̂j, εs)

=
δ̂

M2(τi, εs)
+

εsM1(σ̂, εs)
m∑
j=1

M2(τ̂j, εs)

≤ (1 + εs)

(
1

3

(
1− 4−s

)
+ εs

)
+ 2εs

=
1

3

(
1− 4−s

)
+ εs +

1

3

(
1− 4−s

)
εs + ε2s + 2εs

≤ 1

3

(
1− 4−s

)
+ 5εs

=
1

3
− 4

3
4−s−1 + 4−s−1

=
1

3

(
1− 4−s−1

)
Next we check the claims made during the construction. The first is that we can al-

ways find an i as above. That is to say, that there is always some i such that Ai ≤
M2(τi, εs) + δ M2(τi,εs)∑

jM2(τj ,εs)
. Suppose otherwise for a contradiction. Recall that Ai is increased
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by (1 + εs)M1(σ̂, εs) each time the machine acts on some σ̂, so list such strings σ̂1, . . . , σ̂k
acted on so far. Then we have

(1 + εs)M1(σ, εs) ≥ (1 + εs)
k∑
i=1

M1(σ̂i, εs)

=
n∑
i=1

Ai

>
n∑
i=1

M2(τi, εs) + δ
M2(τi, εs)
n∑
j=1

M2(τj, εs)



=
n∑
i=1

M2(τi, εs) + δ

n∑
i=1

M2(τi, εs)

n∑
j=1

M2(τj, εs)

=
n∑
i=1

M2(τi, εs) + δ

This contradicts the requirement described by (2).
Secondly we claim we can always find an m. Let m′ ≤ n̂ be largest such that

m′∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
< (1 + εs)M1(σ̂, εs)

First take the case that m′ < n̂. In this case we have

(1 + εs)M1(σ̂, εs) ≤
m′∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)

+M2(τ̂m′+1, εs)

(
1 +

δ̂

M2(τi, εs)

)

≤
m′∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
+ ε∗ + ε∗

δ̂

M2(τi εs)

≤
m′∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
+ εsM1(σ̂, εs)
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Hence m′ works as the desired m. Now suppose m′ = n̂ but m′ does not work as the
desired m, i.e.

n̂∑
j=1

(
M2(τ̂j, εs) + δ̂

M2(τ̂j, εs)

M2(τi, εs)

)
+ εsM1(σ̂, εs) < (1 + εs)M1(σ̂, εs)

Let ρ1, . . . , ρp be the strings extending σ that the machine Ts has already acted on
and for which Φ(ρj) = τi. Let Bi(ρj) denoted the set of strings put into Bi when the
machine acted on ρj. Then we have (from the choice of m when Ts acted on ρj) that∑
τ∈Bi(ρj)

(
M2(τ, εs) + δ̂ M2(τ,εs)

M2(τi,εs)

)
< (1 + εs)M1(ρj, εs).

Hence we have that

M2(τi, εs) =
∑
j

∑
τ∈Bi(ρj)

M2(τ, εs) +
n′∑
j=1

M2(τ ′j, εs)

≤
∑
j

∑
τ∈Bi(ρj)

M2(τ, εs) +
n̂∑
j=1

M2(τ̂j, εs) +
α

2

<
∑
j

(1 + εs)M1(ρj, εs)− δ̂

∑
τ∈Bi(ρj)

M2(τ, εs)

M2(τi, εs)



+ (1 + εs)M1(σ̂, εs)− δ̂

n̂∑
j=1

M2(τ̂j, εs)

M2(τi, εs)
− εsM1(σ̂, εs) +

α

2

= (1 + εs)

(
M1(σ̂, εs) +

∑
j

M1(ρj, εs)

)

− δ̂

M2(τi, εs)

 n̂∑
j=1

M2(τ̂j, εs) +
∑
j

∑
τ∈Bi(ρj)

M2(τ, εs)


− εsM1(σ̂, εs) +

α

2

≤ (1 + εs)

(
M1(σ̂, εs) +

1

1 + εs
Ai

)
− δ̂M2(τi, εs)

M2(τi, εs)
− εsM1(σ̂, εs) +

α

2

= M1(σ̂, εs) + Ai − δ̂ +
α

2

≤M1(σ̂, εs) +M2(τi, εs) + δ
M2(τi, εs)
n∑
j=1

M2(τj, εs)
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− (1 + εs)

δ M2(τi, εs)
n∑
j=1

M2(τj, εs)
+ α

+
α

2

≤M2(τi, εs) +M1(σ̂, εs)−
α

2
< M2(τi, εs)

Thus, we arrive at a contradiction, and so we are always able to find an m as above.
Having verified that the construction of Φ is well-defined and satisfies the requirements

above, we now make a few remarks about Φ. Note that for any real Y , if µ1({Y }) = 0
and µ1(Y � n) > 0 for each n then every machine will find a σ ⊂ Y to act on, and hence
Y ∈ dom(Φ). Suppose Y ∈ dom(Φ) and Z = Φ(Y ). It is claimed that Ψ(Z) = Y . To
see this, fix n and pick σ ⊂ Y such that |σ| ≥ n and σ was the first component in some
tuple belonging to a machine Ts. When Ts defined Φ(σ) = τi, it added Ψ(τ̂j) = σ for each
j = 1, . . . ,m. Hence it will suffice to see that Z extends one of the τ̂j. Additionally, when
Ts defined Φ(σ) = τi, it added 〈σ, 〈τ̂1, . . . , τ̂m〉 , δ〉 to Ts+1. Hence when Ts+1 acts on some σ̂
extending σ, it will set Φ(σ̂) = τ̂j for some j. In particular this holds of σ̂ ⊂ Y which must
have been added to the domain of Φ by Ts+1 since we assumed Y ∈ dom(Φ).

Finally, suppose τ is in the range of Φ, so τ = τi in some tuple in a machine Ts. Then

µ1(Φ−1(τi)) ≤ (1 + εs)M1(Φ−1(τi), εs)

≤ Ai

≤M2(τi, εs) + δ
M2(τi, εs)∑
jM2(τj, εs)

+ (1 + εs)α

≤M2(τi, εs)

(
1 +

δ∑
jM2(τj, εs)

+ (1 + εs)εs

)

≤M2(τi, εs)

(
1 +

1

3

(
1− 4−s

)
+ (1 + εs)εs

)
< µ2(τi)

(
1 +

1

3
+ 1

)
< 3µ2(τi)

Hence for any τ ∈ ran(Φ), µ2(τ) ≥ 1
3
µ1(Φ−1(τ)).

Theorem 9. Let µ1, µ2 be measures and X a real such that µ1({X}) = 0 and is µ1-
[difference, weak-n, n]-random relative to M1 ⊕ M2 where M1,M2 are representations of
µ1, µ2 respectively. Furthermore suppose µ2 is continuous. Then X is Turing equivalent in
M1 ⊕M2 to a real Y which is µ2-[difference, weak-n, n]-random relative to M1 ⊕M2.

Proof. Fix Φ,Ψ as in the above lemma so that there is a c > 0 such that µ2(σ) ≥ cµ1(Φ−1(σ))
for all σ. Since X is µ2-random, µ(X � n) > 0 for all n, and µ({X}) = 0 by assumption, so
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X ∈ dom(Φ) and Ψ(Φ(X)) = X. Then by Proposition 5 Y = Φ(X) is µ2-random relative
to M1 ⊕M2.

The above theorem uses the hypothesis that µ2 is continuous, so this leaves open the
case that µ2 is not continuous. One direction holds trivially. Suppose that µ2({Y }) > 0 for
some Y . Then M2 ≥T Y so X ≥T (M1⊕M2) Y . However, the other direction does not hold
in general. Suppose µ2(0ω) = 1. Then 0ω is the only µ2-random and there is a recursive
representation M2, so 0ω ≥T (M1⊕M2) X would imply M1 ≥T X which is impossible if X is
µ1-random.

Since we usually consider µ({Y }) > 0 a degenerate instance of randomness, one might
ask under which conditions can a µ1-random real X compute a µ2-random real Y such that
µ2({Y }) = 0. However the following propositions demonstrate examples of measures µ2

for which this cannot hold. Thus any generalization of Theorem 9 would require stricter
hypotheses.

Proposition 8. Suppose µ2 has finitely many atoms Y1, . . . , Yn and
n∑
i=1

µ2(Yi) = 1. Then

the only µ2-1-randoms are Y1, . . . , Yn.

Proof. Fix a representation M2 of µ2. By Lemma 2 Y1, . . . , Yn are recursive in M2, so fix
indices e1, . . . , en such that ΦM2

ei
= Yi. Then the set of strings which are incomparable to

each ΦM2
ei

is recursive in M2 and has measure 0.

Proposition 9. Suppose µ2 has atoms Y1, Y2, . . . and
∞∑
i=1

µ2(Yi) = 1. Then the only µ2-weak-

2-randoms are Y1, Y2, . . ..

Proof. Let Vn = {σ : µ2(σ) < 2−n}. If 2−n < µ2(Yi) then Yi /∈ Vn, so lim
n→∞

µ2(Vn) = 0, so

{Vn} is a weak-2 test. If X 6= Yi for any i then X is in each Vn, so X is not random.

On the other hand, if µ2 has finitely many atoms with mass less than 1, any representation
of µ2 can recursively compute a continuous measure in a manner analogous to Theorem 5,
and hence in this case Theorem 9 will hold.

Proposition 10. Suppose µ2 has finitely many atoms Y1, . . . , Yn and
n∑
i=1

µ2(Yi) < 1. Suppose

µ1 is a measure, X is a real such that µ1({X}) = 0, and X is µ1-[difference, weak-n, n]-
random relative to M1 ⊕M2 where M1,M2 are representations of µ1, µ2 respectively. Then
X is Turing equivalent in M1 ⊕M2 to a real Y which is µ2-[difference, weak-n, n]-random
relative to M1 ⊕M2 and such that µ2({Y }) = 0.

Proof. By Lemma 2 fix indices e1, . . . , en such that ΦM2
ei

= Yi. Let A(σ) =
∑

Yi:Yi⊃σ
µ2(Yi) and

note that A(σ) is recursive in M2. Define

ν(σ) =
µ2(σ)− A(σ)

1− A(〈〉)
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As in the proof of Theorem 5, ν is a continuous measure with representation recursive in M2.
Hence by Theorem 9 X is Turing equivalent in M1⊕M2 to a ν-random relative to M1⊕M2

real Y . Note that Y 6= Yi for any i or else Y ≤T M2 contradicting that Y is ν-random
relative to M2.

Suppose for a contradiction that Y is not µ2-random relative to M1 ⊕M2. Let {Vn} be
a test capturing Y and fix k large enough so that 2−k < 1− A(〈〉). Let V ′n = Vn+k. Then

ν(V ′n) =
∑

σ∈Vn+k

ν(σ) =
1

1− A(〈〉)
∑

σ∈Vn+k

(µ2(σ)− A(σ))

≤ 1

1− A(〈〉)
2−(n+k) < 2−n

Hence {V ′n} is a test capturing X, contradicting that X is ν-random.

In light of these results, an outstanding case of interest is when µ2 has infinitely many
atoms of total mass less than 1.

2.5 Open Questions

This chapter begins an exploration of randomizable reals for higher randomness, but leaves
many interesting questions open. Although we have highlighted a number of reals which can
and cannot be made to appear random, the general classification problem still exists:

1. Is there a “natural” description of those reals which are randomizable with respect to
difference, weak-n, or n-randomness?

With Martin-Löf randomness, the description was “non-recursive” which is of course
arithmetic. The natural definition of randomizable is Σ1

1, so another way of framing a
similar question would be:

2. Is there an arithmetic sentence ϕ(X) such that ϕ(X) holds iff X is randomizable with
respect to difference, weak-n, or n-randomness?

This chapter only made a few remarks about the effect of constraining µ to be continuous,
but this case still remains mostly unstudied.

3. What can be said about the classification of reals which are difference, weak-2, or n-
randomizable with respect to continuous measures?

In Proposition 1 we showed that r.e. reals cannot be difference-randomizable, but as
described the case of n-r.e. reals for n ≥ 2 is open.

4. Is there a difference-randomizable n-r.e. real for n ≥ 2?
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It is worth noting that Theorem 7 implies no n-r.e. real can be weak-2-randomizable, so
a positive answer to the previous question would be an interesting difference between weak-2
and difference-randomness.

In Proposition 9 we showed that a measure with all of its mass on atoms has no weak-2-
random reals except for its atoms. Whether or not this applies to 1-randoms or difference-
randoms in open.

5. Suppose µ is a measure with infinitely many atoms Y1, Y2, . . . and
∞∑
i=1

µ(Yi) = 1. Can

there be a µ-1-random real X such that µ({X}) = 0?

The end of section 4 leaves open whether Theorem 9 can be generalized to the case that
µ2 is not continuous, but has infinitely many atoms with a total mass less than 1.

6. Suppose µ2 has infinitely many atoms with total mass less than 1. Suppose µ1, µ2 have
representations M1,M2 and that X is µ1-random relative to M1⊕M2 with µ1({X}) = 0.
Is X always Turing equivalent in M1 ⊕M2 to a real Y such that µ2({Y }) = 0 and Y is
µ2-random relative to M1 ⊕M2?
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Chapter 3

First-Order Consequences of
Randoms

3.1 Introduction

In this chapter, we turn our attention to a subject of mathematical logic not directly related
to algorithmic randomness: reverse mathematics. Reverse mathematics studies the question
“which set-theoretic existence axioms are necessary to prove traditional theorems of math-
ematics,” and formulates this is the language of second-order arithmetic. Specifically, the
program of reverse mathematics defines a weak base theory and asks which set-theoretic
axioms are implied by traditional theorems over this base theory. Reverse mathematics has
a rich body of literature, and the reader is referred to the book by Stephen Simpson [21] for
background.

The base theory over which we work is referred to as RCA0, and is defined formally below.
In our discussion, the set-theoretic existence axiom of interest will be 2RAN, the existence of
2-random reals. This axiom requires special consideration in order to be formalized within
second-order arithmetic, so we take care to define it precisely below.

In 2009 Csima and Mileti [4] studied the reverse mathematics of the Rainbow Ramsey
Theorem (RRT), showing that RRT is strictly weaker than Ramsey’s Theorem for pairs
(RT2

2). Part of this proof included the result that 2RAN implies RRT, opening the door for
a study on the reverse mathematical strength of 2RAN.

In 2013 Conidis and Slaman [3] followed up on this paper with an investigation into
the first-order consequences of 2RAN. The existence of 1-random reals is implied by Weak
König’s Lemma (WKL0) which is Π1

1-conservative over RCA0 and hence has first-order con-
sequences no stronger than P− + IΣ0

1. By contrast, Conidis and Slaman showed that 2RAN
implies the cardinality schema for Σ0

2 sentences (CΣ0
2), a first-order axiom schema defined

below. Consequently, RCA0 + 2RAN has first-order consequences strictly stronger than
P− + IΣ0

1. On the other hand, they showed 2RAN is Π1
1-conservative over RCA0 + BΣ0

2, so
the first-order strength of RCA0 + 2RAN is at most that of RCA0 + BΣ0

2.
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This chapter, in research conducted jointly with Ted Slaman, continues that investigation
and provides a partial solution to the open problem at the end of Conidis and Slaman’s paper:
“Characterize the set of first-order consequences of 2RAN.” In section 2 we establish that
RCA0 + 2RAN does not imply BΣ0

2, so the first-order strength of RCA0 + 2RAN lies strictly
between IΣ0

1 and BΣ0
2. In our proof we develop a general method of building models of ¬BΣ0

2,
and in section 3 we apply this method to further characterize the reverse mathematical
strength of the cardinality schema (CARD) thereby answering an open question of Kaye
[11].

Axiom Schemas and Background

We let P− denote the first order theory of Peano Arithmetic without induction in the language
of (+, ·, 0, 1, <). To be precise and self-contained, these axioms are the universal closure of

• n+ 1 6= 0

• m+ 1 = n+ 1⇒ n = m

• m+ 0 = m

• m+ (n+ 1) = (m+ n) + 1

• m · 0 = 0

• m · (n+ 1) = (m · n) +m

• ¬(m < 0)

• m < n+ 1⇔ (m < n ∨m = n)

IΣ0
n denotes the axiom schema of induction for all Σ0

n formulas. That is, for every Σ0
n

formula ϕ(x) (possibly with first and second-order parameters), IΣ0
n contains the universal

closure of
[ϕ(0) ∧ ∀x(ϕ(x)⇒ ϕ(x+ 1))]⇒ ∀xϕ(x)

The schemas IΠ0
n are defined analogously. I∆0

n is similarly defined: if ϕ(x), ψ(x) are Σ0
n

formulas (possibly with first and second-order parameters), I∆0
n contains the universal closure

of
[∀x(ϕ(x)⇔ ¬ψ(x)) ∧ ϕ(0) ∧ ∀x(ϕ(x)⇒ ϕ(x+ 1))]⇒ ∀xϕ(x)

Let PA denote the theory of Peano Arithmetic, i.e. P− +
⋃
n IΣ0

n.
BΣ0

n denotes the bounding axiom schema for Σ0
n formulas. That is, for every Σ0

n formula
ϕ(x, y) (possibly with first and second-order parameters), BΣ0

n contains the universal closure
of

∀b [∀x < b∃yϕ(x, y)⇒ ∃a∀x < b∃y < aϕ(x, y)]

The schemas BΠ0
n are defined analogously.
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The following are some of the known results about the relative strength between BΣ0
n

and IΣ0
n:

IΣ0
n+1 ⇒ BΣ0

n+1 ⇒ IΣ0
n

BΣ0
n ⇔ I∆0

n

The reader is referred for Slaman’s paper [22] on the subject for proofs of these facts.
The cardinality schema for Σ0

n sentences is denoted by CΣ0
n and represents a restricted

version of the bounding axiom schema. This axiom schema says that there is no Σ0
n injection

from all numbers to a bounded initial segment. That is, for every Σ0
n formula ϕ(x, y) (possibly

with first and second-order parameters) CΣ0
n includes the universal closure of

∀x∃yϕ(x, y)⇒ [∃x1, x2, y(x1 6= x2 ∧ ϕ(x1, y) ∧ ϕ(x2, y)) ∨ ∀b∃x∃y > bϕ(x, y)]

It is easy to see that BΣ0
n ⇒ CΣ0

n. The schema CARD represents
⋃
n CΣ0

n.
As is traditional in reverse mathematics, we will work over the base theory of RCA0,

the second-order theory containing the theory P− + IΣ0
1 along with ∆0

1-comprehension. ∆0
1-

comprehension is the second-order axiom schema for all Σ0
1 formulas ϕ(x), ψ(x):

∀x(ϕ(x)⇔ ¬ψ(x))⇒ ∃X∀x(x ∈ X ⇔ ϕ(x))

The axiom 2RAN asserts the existence of a 2-random real relative to any other real. That
is,

∀Y ∃R∃n∀τ(τ = Y ′ � |τ | ⇒ R ∈ U τ
n)

Here UZ
n is the uniformly-defined universal Martin-Löf test as defined previously. Note

that the above axiom refers to Y ′, a real which may not exist in the absence of arithmetic
comprehension. So for the 2RAN to be well-defined, the axiom intentionally refer to Y ′

only in terms of finite initial segments that are consistent with Y ′ and does not assert the
existence of Y ′ as a second-order object.

3.2 Building Models of ¬BΣ0
2

In 2001 Chong, Slaman, and Yang [2] showed that the Stable Ramsey’s Theorem for pairs
does not imply IΣ0

2 over RCA0. In their proof, they worked in a non-standard model of set
theory V and created a V-finite chain of models of PA. The direct limit of these models
satisfied ¬IΣ0

2. Our proof will use a similar tactic, although instead of a chain we will build a
V-finite tree of models of PA and take a generic path through that tree. Because our methods
are similar, it would be useful (although not necessary) for the reader to be familiar with
their paper.

As stated, we start by letting V be a model of set theory in which NV is non-standard.
Fix b ∈ NV \ N a non-standard V-finite number with countably many predecessors.

To describe how we will build a failure of BΣ0
2, suppose M is a model of P− containing

b and that f is a binary-valued function definable in M, with downward-closed domain



36

(i.e. if n ∈ dom(f) and m ≤ n then m ∈ dom(f)). Define gf,0 and gf,1 by recursion as
follows. We will maintain by induction that gf,0(n) ≤ gf,1(n), gf,0(n) ≤ gf,0(n + 1), and
gf,1(n) ≥ gf,1(n+ 1).

Let gf,0(0) = 0 and gf,1(0) = b. For n > 0, if n /∈ dom(f) we leave gf,0(n), gf,1(n)
undefined. Otherwise, if gf,0(n− 1) = gf,1(n− 1) then let gf,0(n) = gf,0(n− 1) and gf,1(n) =
gf,1(n− 1). Otherwise if f(n) = 0 define gf,0(n) = gf,0(n− 1) + 1 and gf,1(n) = gf,1(n− 1).
Finally if f(n) = 1 define gf,0(n) = gf,0(n− 1) and gf,1(n) = gf,0(n− 1)− 1.

Given gf,0, gf,1 define the interval If ⊆ [0, b] as If = {n ≤ b : ∃m(n < gf,0(m))}.
We will frequently refer to the difference gf,1(n)− gf,0(n), so we write g̃f (n) = gf,1(n)−

gf,0(n). For strings σ ∈ 2≤b we will also frequently refer to g̃σ(|σ|), so in a slight abuse of
notation we also define g̃(σ) to be g̃σ(|σ|).

Suppose it is the case that for all n ≤ b there is an m such that either n < gf,0(m) or
n ≥ gf,1(m). Then If is recursive in f (even if the domain of f is not). In particular, if f is
∆0

2-definable in M, so is If . This leads us to the following lemma:

Lemma 8. Suppose f is ∆0
2-definable, has a downward closed domain, and satisfies the

following properties:

1. For every n ∈ dom(f), g̃f (n) > 0.

2. For every n < b there is an m < b such that n < gf,0(m) or n ≥ gf,1(m).

3. For every n ∈ dom(f) there is some m > n such that f(m) = 0.

Then M |= ¬BΣ0
2.

Proof. As noted above, condition 2 above ensures that If is ∆0
2-definable. Since I∆0

2 ⇔ BΣ0
2,

it suffices to see that If is non-principal, i.e. that If has no greatest element. Suppose
for a contradiction that there is some greatest n ∈ If . Fix m < b such that n < gf,0(m).
Since n + 1 /∈ If , we know gf,0(m) = n + 1. By condition 3, there is some m′ > m
such that f(m′) = 0. By condition 1 gf,1(m′ − 1) − gf,0(m′ − 1) is greater than zero,
so gf,0(m′) = gf,0(m′ − 1) + 1 ≥ gf,0(m) + 1 > gf,0(m) = n + 1. Hence n + 1 ∈ If , a
contradiction.

Our goal then will be to construct a model with a definable function satisfying the above
conditions. To do so, we will create a tree of models of height b, such that any path through
the tree is ∆0

2-definable in the direct limit of that path. To establish branching at each node
in the tree, we will utilize the following result by Friedman [8]. His original result is actually
stronger, but we reproduce this version directly relevant to our current context.

In what follows, we let Tr(1) abbreviate the Π0
1-definable set of (the Gödel numbers of)

all true Π0
1 sentences. The notation ±ϕ is short-hand for either ϕ or ¬ϕ.

Lemma 9. [8] Let T be a consistent, Π0
1-definable theory extending PA + Tr(1). Then there

exist mutually independent Π0
2 sentences ϕ0, ϕ1 over T . That is, for any boolean combination

±ϕ0 ∧ ±ϕ1 we have PA + Tr(1) ` Con(T )⇒ Con(T +±ϕ0 ∧ ±ϕ1).
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Proof. Using Gödel self-reference, define ϕ0 as the formula which says the following:
“For every proof of ϕ0 from T there is a shorter proof of ¬ϕ0 from T .”
Similarly, having defined ϕ0, define ϕ1 as:
“For every proof of ±ϕ0 ∨ ϕ1 from T there is a shorter proof of ±ϕ0 ∨ ¬ϕ1 from T .”
Note that both formulas are of the form ∀n(ψ(n)→ ∃m < n(ψ′(m))), where both ψ and

ψ′ are Π0
1 (since T is Π0

1-definable). Hence the formulas ϕ0, ϕ1 are Π0
2.

First we show that T 6` ±ϕ0. Suppose for a contradiction that T ` ϕ0. If N |= ϕ0 then by
definition of ϕ0, T ` ¬ϕ0, contradicting our assumption that T is consistent. On the other
hand, if N |= ¬ϕ0 then since ϕ0 is Π0

2 we have PA + Tr(1) ` ¬ϕ0, which again contradicts
the consistency of T .

Next suppose T ` ¬ϕ0. Let k be the length of the shortest proof. If N |= ϕ0 then
PA + Tr(1) ` ϕ0, by simply showing that there are no proofs of ϕ0 from T of length less
than or equal to k. This contradicts the consistency of T . If N |= ¬ϕ0 then there is a proof
of ϕ0 from T , so T ` ϕ0, again contradicting the consistency of T .

Now we want to show that T 6` ±ϕ0 ∨ ±ϕ1. Suppose this is not to case, so for some
boolean combination we have T ` ±ϕ0 ∨ ±ϕ1. It is first claimed that PA + Tr(1) ` ±ϕ1.
To see this, first suppose T ` ±ϕ0 ∨ ϕ1. If there is no shorter proof of ±ϕ0 ∨ ¬ϕ1 from
T , then this is a counter-example to ϕ1 and hence PA + Tr(1) ` ¬ϕ1. Otherwise we have
T ` ±ϕ0 ∨ ¬ϕ1, and this is a case similar to the above; let k be the length of the shortest
such proof. Then either there is a shorter proof of ±ϕ0 ∨ ϕ1 and hence PA + Tr(1) ` ¬ϕ1

or else PA + Tr(1) proves ϕ1 is true just by showing that there are no proofs of length less
than or equal to k of ±ϕ0 ∨ ϕ1.

Given that PA+Tr(1) ` ±ϕ1, we now take the case that PA+Tr(1) ` ϕ1. Then N |= ϕ1,
so T ` ±ϕ0 ∨ ¬ϕ1. Hence T ` ±ϕ0, contradicting our above proof that T 6` ±ϕ0. On the
other hand, suppose PA + Tr(1) ` ¬ϕ1. Then N |= ¬ϕ1, so T ` ±ϕ0 ∨ϕ1 and again we have
T ` ±ϕ0 contradicting the above.

It is important to note that (the Gödel numbers for) the sentences ϕ0, ϕ1 are uniformly
recursive in (the Gödel number for) T , as this will allow us to recursively refer to those
formulas as we try to define our failure of BΣ0

2.
In order to ensure our tree can be extended at each node, we will require that each model

satisfies a certain amount of consistency. Define T0 = PA + Tr(1) and inductively define
Tn+1 = PA+Tr(1)+Con(Tn). Inductively, NV |= Tn for all n ≤ b, so each Tn is consistent. By
Lemma 9, for each n there are Π0

2 sentences ϕn0 , ϕ
n
1 such that Con(Tn)⇒ Con(Tn+±ϕn0∧±ϕn1 )

for any boolean combination of ±ϕn0 ∧ ±ϕn1 .
Let M〈〉 be a model of Tb. We will inductively define Mσ for |σ| ≤ b with the induction

hypothesis that Mσ |= Tb−|σ|. Suppose Mσ is already defined. Since Mσ |= Con(Tb−|σ|−1),

we have Mσ |= Con(Tb−|σ|−1 + ±ϕ|σ|0 ∧ ±ϕ
|σ|
1 ) for any boolean combination ±ϕ|σ|0 ∧ ±ϕ

|σ|
1 .

Hence for i = 0, 1 there are models Ni such that Ni |= Tb−|σ|−1 +¬ϕ|σ|i ∧ϕ
|σ|
1−i. Since Tb−|σ|−1

contains Tr(1), we also have that Mσ ≺Π0
1
Ni. Let Mσai = Ni for i = 0, 1.

Since Mσ ≺Π0
1
Mσai for i = 0, 1, we can apply induction to see Mσ ≺Π0

1
Mτ for any

τ ⊇ σ.
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Furthermore, note that for each σ and i = 0, 1, the model Mσai is definable in Mσ, and
thus if A ⊆ Mσ is definable in Mσai, then it is also definable in Mσ. Applying induction
to the preceding fact yields that if τ ⊇ σ and A ⊆ Mσ is definable in Mτ , then A is also
definable in Mσ. We formalize this as follows and will reference it later:

Lemma 10. Suppose A ⊆Mσ is definable in Mτ for τ ⊇ σ. Then A is definable in Mσ.

Working in our outer model (in which b is recognized as non-standard), we now develop
a notion of forcing on this tree of models. Our poset P will be {σ : g̃(σ) is non-standard}.
Comparability is defined by σ ≺P τ precisely when σ ⊇ τ . Given a generic G ⊆ P, we let
our generic model MG be

⋃
{Mσ : σ ∈ G}.

We claim that MG is a Π0
1-elementary extension of each Mσ for σ ∈ G. Suppose not;

then there is a formula ϕ(x) with only bounded quantifiers such that MG |= ¬∀xϕ(x) while
for some σ ∈ G we have Mσ |= ∀xϕ(x). Fix a ∈ MG such that MG |= ¬ϕ(a). Fix τ ∈ G
such a ∈Mτ and assume without loss of generality that τ ⊇ σ (if τ ⊂ σ then a ∈Mσ and we
could instead have chosen τ = σ). Since ϕ has only bounded quantifiers and Mτ is an initial
segment of MG, we have Mτ |= ¬ϕ(a) and hence Mτ |= ¬∀xϕ(x). But this contradicts the
fact that Mσ ≺Π0

1
Mτ .

We can extend this argument to show that Σ0
2 facts are forced by conditions in G in the

following sense.

Lemma 11. Suppose ϕ is a Σ0
2 sentence. Then MG |= ϕ iff there is a condition σ ∈ G such

that Mσ |= ϕ.

Proof. Write ϕ as ∃xψ(x) where ψ(x) is a Π0
1 formula. First suppose σ is a condition in G

such that Mσ |= ∃xψ(x). Then we can fix a ∈Mσ such that Mσ |= ψ(a). Since Mσ ≺Π0
1
MG

we have MG |= ϕ(a). Thus MG |= ∃xϕ(x).
For the reverse, now suppose MG |= ∃xϕ(x). Fix a ∈ MG a witness such that MG |=

ψ(a). Fix σ ∈ G such that a ∈Mσ. Then by downward absoluteness of Π0
1 formulas we have

Mσ |= ψ(a). Hence Mσ |= ∃xϕ(x).

Next observe that MG |= IΣ0
1.

Lemma 12. If G is generic then MG |= IΣ0
1.

Proof. Suppose IΣ0
1 does not hold. Fix a Σ0

1 formula ϕ(x) such that MG |= ∃xϕ(x) ∧
¬∃x(ϕ(x) ∧ ∀y < x¬ϕ(y)). Fix some a ∈ MG such that MG |= ϕ(a). Fix σ ∈ G such that
a ∈Mσ. Note Mσ |= ϕ(a) since ϕ is Σ0

1. Since Mσ |= PA, Mσ |= ∃x(ϕ(x) ∧ ∀y < x¬ϕ(y)).
Let â be the witness for this x in Mσ, so Mσ |= ϕ(â) ∧ ∀y < â¬ϕ(y). Since ϕ(â) is Σ0

1,
MG |= ϕ(â). Similarly since ∀y < â¬ϕ(y) is Π0

1, MG |= ∀y < â¬ϕ(y). But this contradicts
our assumption that MG |= ¬∃x(ϕ(x) ∧ ∀y < x¬ϕ(y)).

Let fG =
⋃
G. Given n ∈ dom(fG) let σ = fG � n, so σ ∈ G. Then Mσ |= ¬ϕnσ(n) ∧

ϕn1−σ(n). Since every structure Mσ is a Π0
1-elementary substructure of MG, the least witness
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in MG of ¬ϕn0 ∨ ¬ϕn1 is a witness for ¬ϕnσ(n). Hence MG has a ∆0
2 definition of the function

f defined by f(n) = i where i = 0, 1 is chosen such that the least witness to ¬ϕn0 ∨ ¬ϕn1 is a
witness to ¬ϕni . The domain of f is equal to that of fG, and f = fG on its domain, so fG is
∆0

2-definable in MG.

Lemma 13. Let G be a generic and let fG =
⋃
G. Then fG satisfies the following:

1. g̃fG(n) > 0 for all n ∈ dom(fG).

2. For all n < b there is some m such that n < gfG,0(m) or n ≥ gfG,1(m).

3. For every n ∈ dom(fG) there is some m > n such that fG(m) = 0.

Proof. The first condition is immediate, since g̃(σ) is non-standard for all σ ∈ P, and fG(n)
is defined precisely when there is a string σ ∈ G of length n.

We wish to show that meeting the second condition is dense for each n < b. Fix σ and n.
The gap g̃(σ) = gσ,1(|σ|)− gσ,0(|σ|) is non-standard, so at least one of the gaps gσ,1(|σ|)− n
and n − gσ,0(|σ|) is non-standard. If gσ,1(|σ|) − n is non-standard, let τ = σa0n−gσ,0(|σ|)+1.
Then gτ,0(|τ |) = n + 1 and gτ,1(|τ |) = gσ,1(|σ|), so τ is a valid condition and n < gτ,0(|τ |).
Likewise if gσ,1(|σ|) − n is standard, let τ = σa1gσ,1(|σ|)−n. Then gτ,0(|τ |) = gσ,0(|σ|) and
gτ,1(|τ |) = n, so again τ is a valid condition and now n ≥ gτ,1(|τ |).

Finally, we want to know that meeting condition 3 is dense. Given n ∈ dom(fG) and
σ ∈ P, let τ be any string extending σ of length at least n. Then the condition τa0 satisfies
fG(|τ |+ 1) = 0 and hence it is dense to satisfy 3.

This result, combined with Lemma 8 implies that if G is generic, then MG |= ¬BΣ0
2. The

next step is to show that we can simultaneously build a real which is 2-random. First, we
would like to point out that finding a single 2-random is sufficient.

Lemma 14. Suppose M is a first-order model satisfying P− + IΣ0
1 and M models that

X ⊆ |M| is 2-random. Then M can be extended to a second-order model which satisfies
RCA0 + 2RAN.

Proof. Let X =
⊕
n<ω

Xn. Since X is 2-random in M, by Van Lambalgen’s Theorem the model

also satisfies that every finite join of columns of X is 2-random relative to any other finite join
of columns from X. Hence we can let the second-order part of M be {Y : ∃i1, . . . , ik(Y ≤T
Xi1 ⊕ · · · ⊕Xik)}.

The second-order model constructed clearly satisfies both 2RAN and ∆0
1-comprehension,

so we just need to verify that adding the second-order predicates doesn’t cause a failure of
IΣ0

1. To do so, we show that even adding X as a predicate would not cause a failure of IΣ0
1.

Suppose IΣ0
1 does not hold, so there is a Σ0

1(X) sentence ϕ(x,X) such that I = {x : M |=
ϕ(x,X)} is bounded by some m ∈ M but is non-principal. Write ϕ(x,X) as ∃sψ(x, s,X)
where ψ has only bounded quantifiers. Consider the set

Vs = {Y : ∃x ≤ m (∃s′ > s(ψ(x, s′, Y )) ∧ ∀s′ ≤ s(¬ψ(x, s′, Y )))}
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Since
⋂
s Vs = ∅ and the sets Vs are uniformly Σ0

1, 0′ can compute the function f(n) where
for each n, f(n) is the smallest s such that λ(Vs) < 2−n. Hence {Vf(n)}n∈ω is a Martin-Löf
test relative to 0′. Since X is 2-random, X /∈ Vf(n) for some n. Let a = f(n) and fix σ such
that a ∈Mσ. Then for x ≤ m we have x ∈ I iff M |= ϕ(x,X) iff M |= ∃s ≤ a(ψ(x, s,X � a))
iff Mσ |= ∃s ≤ a(ψ(x, s,X � a)). Hence I is definable in Mσ, but this contradicts Mσ |= PA.

We are now ready to prove the main theorem:

Theorem 10. There is a model of RCA0 + ¬BΣ0
2 + 2RAN.

Proof. By the prior lemma, it suffices to find an M-real X such that X is 2-random in M
(noting that the constructed counter-example of BΣ0

2 remains a counter-example regardless
of adding second-order predicates).

We work again inside our model in which we view b as standard. Recall that {UZ
k }k∈ω

represents the universal relativized Martin-Löf test. Let Jσ represent the real 0′ as calculated
by the model Mσ. Suppose σ ⊆ τ ; since Mσ ≺Π0

1
Mτ , calculation of 0′ must agree on the

common domain of the two models. Put another way, Jσ ⊆ Jτ . Similarly, UJσ
k is a subset of

UJτ
k , since if ρ ∈ UJσ

k this is a ∆0
1(Jσ) fact and Jτ agrees with Jσ on all the bits used in this

computation. Hence ρ ∈ UJτ
k .

It will also be useful to note that if ρ is a finite string in Mσ, σ ⊆ τ , and Mτ |=
λ([ρ] ∩ U0′

k ) ≥ q then Mσ |= λ([ρ] ∩ U0′

k ) ≥ q. This is because witnessing the measure of a
Π0

1(0′) class dropping below a rational value q is a Σ0
2 event, and so the stage witnessing this

event would also occur in Mτ .
To define our 2-random real X, we will fix a number k and define for each string σ a

Mσ-string Xσ. For σ with |σ| > 0, Xσ will have length equal a finite number from Mσ \Mσ∗ .
If σ ⊆ τ then we will have Xσ ⊆ Xτ . Finally, we will have Mσ |= Xσ ∈ U0′

k .
Assuming we have done this, we will return to our external model and consider a generic

G. Let XG =
⋃
{Xσ : σ ∈ G}. Note that XG is a real defined on the entire domain of M.

It is also claimed that M |= XG ∈ U0′

k , for suppose not. Then there is some n ∈ M such
the tree U0′

k above XG � n becomes empty. However, this is a Σ0
2, so it is forced by some

σ ∈ G (and assume without loss of generality that σ is large enough so that n ∈Mσ∗). Then
Mσ |= [XG � n] ∩ U0′

k = ∅. However, since XG ⊇ Xσ ⊇ XG � n and Mσ |= Xσ ∈ U0′

k we have
a contradiction. Thus M models that XG is 2-random.

We now return to our construction of the strings Xσ. We will define Xσ inductively.
For the base case we let X〈〉 = 〈〉. Let ε0 = 2−b

2−1. For s < b define εs+1 = 2bεs and note

that εb = ε0
∏b

s=1 2b = ε02b
2

= 1
2
. In particular this implies 1 − εs > 0 for all s ≤ b. Pick

k > b2 +1; then for every σ we have Mσ |= λ(U0′

k ) ≥ 1−ε0. In our construction will maintain

the induction hypothesis that Mτ |=
λ([Xσ ]∩U0′

k )

λ([Xσ ])
≥ 1− ε|σ| for all τ ⊇ σ. Note that in the base

case for σ = 〈〉, this holds by our selection of k and ε0. Besides aiding in the construction,
since 1− εs > 0 for all s, this implies Mτ |= Xσ ∈ U0′

k , our desired conclusion.
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Given σ with |σ| > 0, let s = |σ|, fix some l ∈ Mσ \Mσ∗ , and let m = |Xσ∗|, which is
Mσ-finite. Consider all Mσ-strings Y with length l extending Xσ∗ . If there is a Y such that

Mτ |=
λ([Y ]∩U0′

k )

λ([Y ])
≥ 1− εs for all τ ⊇ σ of length b, let Xσ be equal to this Y . By our above

remark, this holding for all τ of length b is enough to satisfy the induction hypothesis.
We would like to show that there always exists such a Y . For each τ of length b let Bτ =

{Y ⊃ Xσ∗ : |Y | = l∧Mτ |=
λ([Y ]∩U0′

k )

λ([Y ])
< 1− εs}. The first claim is that Mτ |= |Bτ | < 2l−m−b,

for otherwise — working inside Mτ — we have the following computation:

1− εs−1 ≤
λ([Xσ∗ ] ∩ U0′

k )

λ([Xσ∗ ])

= 2m
∑

Y⊃Xσ∗ ,|Y |=l

λ([Y ] ∩ U0′

k )

= 2m−l
∑

Y⊃Xσ∗ ,|Y |=l

λ([Y ] ∩ U0′

k )

λ([Y ])

= 2m−l

 ∑
Y⊃Xσ∗ ,|Y |=l,Y /∈Bτ

λ([Y ] ∩ U0′

k )

λ([Y ])
+
∑
Y ∈Bτ

λ([Y ] ∩ U0′

k )

λ([Y ])


< 2m−l

[
(2l−m − |Bτ |) · 1 + |Bτ | · (1− εs)

]
= 2m−l

[
2l−m − |Bτ |εs

]
≤ 2m−l

[
2l−m − 2l−m−bεs

]
= 1− 2−bεs

= 1− εs−1

Hence we arrive at a contradiction. Although we defined each Bτ in terms of Mτ , each
set Bτ is a Mσ-finite set of Mσ-strings and hence is coded by a parameter from Mσ. Since
Mτ |= |Bτ | < 2l−m−b which is a ∆0

1 fact, we have Mσ |= |Bτ | < 2l−m−b. Hence

Mσ |= |{Y : |Y | = l ∧ Y ⊃ Xσ∗}| = 2l−m = 2b · 2l−m−b >
∑
τ

|Bτ |

so there is some string Y of length l extending Xσ∗ not belonging to any Bτ . By definition

this implies that Mτ |=
λ([Y ])∩U0′

k )

λ([Y ])
≥ 1− εs for each τ as desired.

3.3 Building Models of CARD

The framework of the previous section gives us a more general tool of building models of
¬BΣ0

2. In this section we explore an additional application, showing that CARD does not
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imply BΣ0
2. To do so, we first extend the forcing of the previous section to a formal forcing

language.
Let Q be a downwards-closed subset of 2≤b. For σ ∈ Q and a sentence ϕ (possibly with

parameters from Mσ) define σ 
Q ϕ by induction on the complexity of ϕ.
In the base case that ϕ is a Σ0

2 formula, define σ 
Q ϕ iff Mσ |= ϕ.
Inductively, given forumals ϕ, ψ, define σ 
Q ϕ ∧ ψ iff σ 
Q ϕ and σ 
Q ψ. Similarly

define σ 
Q ϕ ∨ ψ iff σ 
Q ϕ or σ 
Q ψ.
Define σ 
Q ∃xψ(x) iff there is some a ∈Mσ such that σ 
Q ψ(a).
Finally, define σ 
Q ¬ϕ iff for every τ ∈ Q extending σ, τ 6
Q ϕ.
Having defined this notion of forcing, we prove a few basic facts:

Lemma 15. (Monotonicity) Let ϕ be a formula and suppose σ 
Q ϕ. If τ ⊇ σ then τ 
Q ϕ.

Proof. We proceed by induction on the complexity of ϕ. If ϕ is Σ0
2 then write ϕ as ∃xψ(x).

Since Mσ |= ϕ there is some a ∈ Mσ such that Mσ |= ψ(a). Since Mσ ≺Π0
1
Mτ we have

Mτ |= ψ(a). Hence Mτ |= ϕ, so τ 
Q ϕ.
Inductively, assume we have shown the lemma for forumlas ϕ, ψ. Then σ 
Q ϕ∧ψ implies

σ 
Q ϕ and σ 
Q ψ, so by induction τ 
Q ϕ and τ 
Q ψ, so by definition τ 
Q ϕ ∧ ψ.
Similarly if σ 
Q ϕ ∨ ψ then σ 
Q ϕ or σ 
Q ψ so by induction τ 
Q ϕ or τ 
Q ψ, so
τ 
Q ϕ ∨ ψ.

If σ 
Q ∃xϕ(x) then there is an a ∈Mσ such that σ 
Q ϕ(a), so by induction τ 
Q ϕ(a)
and hence τ 
Q ∃xϕ(x).

Lastly, if σ 
Q ¬ϕ then there is no extension of σ in Q which forces ϕ. In particular
there is no extension of τ in Q which forces ϕ, so τ 
Q ¬ϕ.

We now prove the usual forcing lemma:

Lemma 16. (Forcing Lemma) Let G be a generic and suppose ϕ is a sentence, possibly with
parameters from MG. Then MG |= ϕ iff there is a condition σ ∈ G such that σ 
P ϕ.

Proof. We proceed by induction on the complexity of ϕ. First suppose ϕ is Σ0
2. Then the

lemma holds by Lemma 11.
Inductively suppose we have shown the lemma for ϕ, ψ and suppose MG |= ϕ∧ ψ. Then

by induction there are σ, σ′ ∈ G such that σ 
P ϕ and σ′ 
P ψ. Since both σ, σ′ are in G
they are compatible, so let τ be the longer of the two strings. By Lemma 15, τ 
P ϕ and
τ 
P ψ. Hence τ 
P ϕ∧ψ. For the reverse, if there is a condition σ ∈ G such that σ 
P ϕ∧ψ
then σ 
P ϕ and σ 
P ψ, so by induction MG |= ϕ and MG |= ψ, so M |= ϕ ∧ ψ.

Similarly for disjunction, if MG |= ϕ∨ψ, assume without loss of generality that MG |= ϕ.
Then by induction there is a σ ∈ G such that σ 
P ϕ and hence σ 
P ϕ∨ψ. For the reverse,
if there is a σ ∈ G such that σ 
P ϕ ∨ ψ then σ 
P ϕ or σ 
P ψ. Without loss of generality
assume it is the former, so by induction MG |= ϕ. Hence MG |= ϕ ∨ ψ.

For the existential case, if MG |= ∃xϕ(x) then there is some a ∈ MG such that MG |=
ϕ(a). By induction there is some σ ∈ G such that σ 
P ϕ(a). For the reverse, if σ 
P ∃xϕ(x)
then there is a a ∈Mσ such that σ 
P ϕ(a), so by induction MG |= ϕ(a), so MG |= ∃xϕ(x).
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Finally, take the case that there is some σ ∈ G such that σ 
P ¬ϕ. Suppose for a
contradiction that MG |= ϕ. Then by induction there is some τ ∈ G such that τ 
P ϕ. If
τ ⊆ σ, then Lemma 15 implies σ 
P ϕ, contradicting that σ 
P ¬ϕ. On the other hand if
σ ⊆ τ then again by Lemma 15 τ 
P ¬ϕ, which is contradicted by τ 
P ϕ.

For the reverse, suppose M |= ¬ϕ, and suppose for a contradiction that there is no σ ∈ G
such that σ 
P ¬ϕ. Then by definition, for every σ ∈ G there is a τ ∈ P extending σ such
that τ 
P ϕ. Hence the set of such τ is dense, so there must be such a τ in G. But then by
induction MG |= ϕ, a contradiction.

To prove the target theorem, we would like to apply a counting argument to show that
there can be no one-to-one mapping from MG into a MG-finite interval. Exploiting the
finite-ness of the interval requires implementing the counting argument inside the models
Mσ themselves. Since P is not definable in the models Mσ, it is not possible to refer to the
forcing relation directly. We therefore define the following subsets of 2≤b:

Definition 9. For k ≤ b let Pk = {τ ∈ 2≤b : g̃(τ) ≥ k}.

Note that P0 = 2≤b and P =
⋂
k∈N

Pk. Since each Pk is definable inside Mσ, we are able to

refer to our formal forcing notion when 
P and 
Pk coincide. The following lemma captures
such instances:

Lemma 17. (Overspill) Fix a Σ0
3 sentence ϕ and σ ∈ P. Then σ 
P ϕ iff there is some

k ∈ N such that σ 
Pk ϕ.

Proof. The first claim is if ϕ is a Σ0
2 formula, σ 
P ϕ iff for every k ∈ N, σ 
Pk ϕ. However,

this is immediate by definition since both hold iff Mσ |= ϕ.
The next claim is if ϕ is a Π0

2 formula, τ 
P ϕ iff there is some k ∈ N such that σ 
Pk ϕ.
First suppose that there is a standard k such that σ 
Pk ϕ. Then there is no τ ∈ Pk
extending σ such that Mτ |= ¬ϕ. Since Pk ⊇ P this implies σ 
P ϕ.

For the reverse, suppose σ 
P ϕ but for every k ∈ N, σ 6
Pk ϕ. Then inside Mσ define
A = {k ≤ b : σ 6
Pk ϕ}. As stated, N ⊆ A. On the other hand, if k 6∈ N then Pk ⊆ P, so for
every τ ∈ Pk extending σ we have Mτ 6|= ¬ϕ. Hence σ 
Pk ϕ, so k /∈ A. But this implies
A = N. Since A was definable in Mσ, this is a contradiction.

Finally we suppose ϕ is Σ0
3, and write ϕ as ∃xψ(x). First suppose σ 
P ϕ. Then there

is an a ∈ Mσ such that σ 
P ψ(a). By the above, this implies there is a k ∈ N such that
σ 
Pk ψ(a) and hence by definition σ 
Pk ϕ. For the reverse, if there is a k ∈ N such that
σ 
Pk ϕ then again there is an a ∈ Mσ such that σ 
Pk ψ(a) and again by the above we
have σ 
P ψ(a), so σ 
P ϕ.

We are now ready to prove the first theorem of this section.

Theorem 11. For G sufficiently generic, MG |= CΣ0
3. Hence there is a model of P−+ IΣ0

1 +
¬BΣ0

2 + CΣ0
3
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Proof. Fix σ ∈ P, a Σ0
3 formula ϕ(x, y), and a number n ∈ Mσ. To show that ϕ is not a

counter-example of CΣ0
3, we want to show that ϕ is not total, ϕ is not one-to-one, or its

range is not bounded by n. Write ϕ(x, y) as ∃zψ(z, x, y).
Suppose there is some τ ∈ P extending σ and x ∈Mτ such that for every τ ′ ∈ P extending

τ , τ ′ 6
P ∃yϕ(x, y). Then τ forces ϕ to be partial, so we can extend our condition to τ and
we are done.

Otherwise, for each x ∈Mσ it is dense above σ to make ϕ converge at x. Let ψ′ be the
statement that ϕ is not a one-to-one function, i.e. ∃x1, x2, y(x1 6= y2∧ϕ(x1, y)∧ϕ(x2, y)). If
there is a τ extending σ which forces ψ′, we can extend to that condition and we are done.
Otherwise for every τ ∈ P extending σ, τ 6
P ψ

′. So by Lemma 17, for every τ ∈ P extending
σ and every k ∈ N, τ 6
Pk ψ

′. In particular this holds of k = 0.
Let Q = {τ ∈ P0 : τ 6
P0 ψ

′}. The above paragraph implies Q ⊇ P.
For each y ≤ n and τ ∈ Q extending σ, let Bτ,y = {x ≤ n · (2b+1 + 1) : τ 
P0 ϕ(x, y)}.

By Lemma 10 each Bτ,y is definable in Mσ. Since τ 6
P0 ψ′, it must be the case that
Mσ |= |Bτ,y| ≤ 1, for suppose otherwise. Then there is a y and distinct a, a′ ∈ Mσ with
Mσ |= (τ 
P0 ϕ(a, y))∧(τ 
P0 ϕ(a′, y)). Hence τ 
P0 ϕ(a, y)∧ϕ(a′, y). But then this implies
τ 
P0 ∃x1, x2(x1 6= x2 ∧ ϕ(x1, y) ∧ ϕ(x2, y)), contradicting that τ ∈ Q.

Given this we have Mσ |=
∑
τ∈Q

∑
y≤n
|Bτ,y| ≤ n · 2b+1, so Mσ |= ∃x ≤ n · (2b+1 + 1)(x 6∈⋃

τ∈Q

⋃
y≤n

Bτ,y). Fixing a witness for x we thus have that there is no τ ∈ Q and y ≤ n such that

τ 
P0 ϕ(x, y). Since we are assuming it is dense to make ϕ converge, fix τ ∈ P extending σ
such that τ 
 ∃yϕ(x, y). Since Q ⊇ P, τ ∈ Q and hence the witness y ∈ Mτ of this must
satisfy y > n. Thus τ 
 ∃y > nϕ(x, y), so τ satisfies our goal of forcing ϕ to not have range
bounded by n.

The argument above heavily relies on the Overspill Lemma (Lemma 17), which doesn’t
seem to support extension beyond Σ0

3 formulas. In what follows we produce a model of
IΣ0

1 + ¬BΣ0
2 + CARD, but appeal to much larger fragment of set theory. It is open whether

or not it is possible to produce a model of IΣ0
1 + ¬BΣ0

2 + CΣ0
n for n > 3 without using such

strong set theoretic axioms.
In what follows, we will produce a model satisfying CARD by producing a κ-like model.

Definition 10. [12] A model M is said to be κ-like if card(M) = κ, but for all a ∈ M,
card({n ∈M : n < a}) < κ.

It is easy to see that all κ-like models satisfy CARD since there are no injections into a
proper initial segment (and hence there are in particular no definable such injections). In
order to produce such a model, we will appeal to the well-known MacDowell-Specker theorem
for constructing end extensions of PA of arbitrary cardinality.

Theorem 12. [17] Every model of PA has a proper elementary end extension.

Corollary 3. Given a cardinal κ and a model M of PA, there is an elementary end extension
of M with cardinality at least κ.
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To build models with proper cardinality, we must construct them in our outer model of
set theory rather than taking the direct limit of the models constructed in V . To do so,
we will need stronger consistency results than we had in the previous section. We let the
formulas ϕki be as we defined them before, but write ϕki as ∀xϕ̂ki (x) where ϕ̂ki is Σ0

1. For
k ≤ b and i = 0, 1 let ψk,i be the statement (¬ϕk0 ∨ ¬ϕk1) ∧ ∀x(¬ϕ̂k1−i(x) ⇒ ∃y < x¬ϕ̂ki (y)).
This precisely captures that MG |= fG(k) = i. Note that for any σ ∈ 2≤b and k < |σ|,
Mσ |= ψk,σ(k).

For σ ∈ 2≤b let the theory Sσ be
∧

k<|σ|
ψk,σ(k). Then as just noted, Mσ |= Sσ. Furthermore,

if τ ⊇ σ then Sτ ⇒ Sσ, so we also have Mτ |= Sσ. However, we will more generally use the
following:

Lemma 18. Suppose M |= Sσ and N is a Π0
1-elementary end extension of M. Then N |= Sσ.

Proof. Suppose not, so there is a k < |σ| such that N |= ¬ψk,σ(k). Since N is a Π0
1-elementary

end extension of M, all Σ0
2 facts in M also hold in N. In particular this means N |= ¬ϕk0∨¬ϕk1.

So it must be the case that N |= ¬∀x(¬ϕ̂k1−σ(k)(x) ⇒ ∃y < x¬ϕ̂kσ(k)(y)). Fix the witness

x for this, and note that x ∈ N \M. Then we have N |= ∀y < xϕ̂kσ(k)(y). Since this in

particular holds for all y ∈ M, we have M |= ∀yϕ̂kσ(k)(y). However, since M |= ψk,σ(k), by

contrapositive this means M |= ∀xϕ̂k1−σ(k)(y) contradicting M |= ¬ϕk0 ∨ ¬ϕk1.

The more general consistency result we will utilize is as follows:

Lemma 19. Fix σ, τ ∈ 2≤b with τ ⊃ σ. Suppose N |= Tb−|σ|+Sσ. Then N |= Con(Tb−|τ |+Sτ ).

Proof. Fix σ and proceed by induction on τ . In the base case that τ = σai for i = 0, 1
we follow the procedure used in the previous section. That is, we have by Lemma 9 that
N |= Con(Tb−|σ|−1 + ¬ϕ|σ|i + ϕ

|σ|
1−i). Take N′ an end extension such that N′ |= Tb−|σ|−1 +

¬ϕ|σ|i +ϕ
|σ|
1−i, and since Tr(1) ⊆ Tb−|σ|−1 we have N ≺Π0

1
N′. By definition we have N′ |= ψ|σ|,i

and so Lemma 18 implies we have N′ |= Sτ . Hence by the completeness theorem, Mσ |=
Con(Tb−|τ | + Sτ ).

In the induction case, let τ ⊃ σ and let i = 0, 1. By the induction hypothesis, N |=
Con(Tb−|τ | + Sτ ). Let N′ be an end extension of N which models Tb−|τ | + Sτ . As before,
since Tr(1) ⊆ Tb−|τ | we know N′ is a Π0

1-elementary end extension of N. By the definition of

ϕ
|τ |
0 , ϕ

|τ |
1 , N′ |= Con(Tb−|τ |−1 +¬ϕ|τ |i +ϕ

|τ |
1−i). Let N′′ be an end extension of N′ which models

Tb−|τ |−1 + ¬ϕ|τ |i + ϕ
|τ |
1−i, which again is Π0

1-elementary. By definition N′′ |= ψ|τ |,i. Again by
Lemma 18 we have N′′ |= Sτ , so N′′ |= Tb−|τ |−1 + Sτai. Hence N′ |= Con(Tb−|τ |−1 + Sτai).

Suppose for a contradiction that N |= ¬Con(Tb−|τ |−1 +Sτai). Then there is a proof p ∈ N
of a contradiction from Tb−|τ |−1 + Sτai. Since this theory is Π0

1 and N′ is a Π0
1-elementary

end extension, p is in N′ and is also a valid proof in N′. Hence N′ |= ¬Con(Tb−|τ |−1 + Sτai),
a contradiction. Thus N |= Con(Tb−|τ |−1 + Sτai) as desired.

We are now ready to prove the final result of this section.
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Theorem 13. There is a model M of P− + IΣ0
1 + ¬BΣ0

2 + CARD

Proof. Let G be a generic from our poset P. Since b was countable, G is countable and we
can choose a sequence 〈σn : n ∈ N〉 which is increasing and unbounded inside G. Define Nσn

by induction. We will maintain that Nσn |= Tb−|σn| + Sσn .
In the base case let Nσ0 = Mσ0 .
In the induction case, let σ = σn and let τ = σn+1. We have by induction that Nσ |=

Tb−|σ| + Sσ, so by Lemma 19 we have Nσ |= Con(Tb−|τ | + Sτ ). Let N be an end extension of
Nσ such that N |= Tb−|τ | + Sτ . By Theorem 12 let Nτ be a conservative end extension of N
of cardinality at least P(Nσ).

Finally we let M be the direct limit of the models Nσn for n ∈ N. As before, M is a
Π0

1-elementary end extension of each Nσn , which implies M |= IΣ0
1. Additionally, by Lemma

18 we have M |= Sσn for each n. Hence the function fG is ∆0
2-definable in M, so M |= ¬BΣ0

2

as desired. Furthermore since the cardinality of M is strictly greater than the cardinality
of any initial segment of M (since all such initial segments are contained in Nσn for some
n ∈ N), M is a κ-like model.

Returning once more to κ-like models, we answer an open question posed by Kaye [11] in
1995. Kaye describes an axiom schema INDISC which precisely characterizes κ-like models
for strong limit cardinals κ. He also defines the axiom schema IB as

IΣ0
n ⇒ BΣ0

n+1

for all n. He ends his paper with the open question “Is ‘IB + exp’ an axiomatization of the
theory of κ-like models for singular strong limit cardinals κ?” or equivalently, is it the case
that INDISC⇒ IB? Since M has singular strong limit cardinality, it is a model of INDISC
and we can answer his question in the negative.

Corollary 4. INDISC 6⇒ IB

Proof. Since M is a κ-like model for a singular strong limit cardinal κ, we know M |=
INDISC. Furthermore, M |= IΣ0

1 + ¬BΣ0
2, so M |= ¬IB.

3.4 Open Questions

This chapter has continued the investigation into the first-order consequences of 2RAN.
Although we have narrowed that characterization, the original question posed by Conidis
and Slaman remains open:

1. Characterize the first-order consequences of 2RAN.

In section 3 we showed that CΣ0
3 6` BΣ0

2 using only a small fragment of set theory. We
then showed the stronger statement that CARD 6` BΣ0

2 but had to appeal to countably many
iterates of the power set axiom. Whether or not this was necessary is an interesting open
question.
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2. Is there a proof of IΣ0
1 + CARD 6` BΣ0

2 that can be carried out in just second-order
arithmetic? Is this even possible for IΣ0

1 + CΣ0
4?

As section 3 demonstrated, this framework for creating models of ¬BΣ0
2 can be used to

show that BΣ0
2 is not a consequence of other theorems and axioms. This chapter has only

provided a few examples, but we suspect there are many others. Some potential candidates
include TS(2), the Thin Set Theorem for pairs, and the Carlson-Simpson Lemma.

3. Can the methods used in this chapter be used to show other theorems or axioms do not
prove BΣ0

2?

Avigad, Dean, and Rute investigated the strength of relativizing Weak Weak König’s
Lemma (WWKL) and showed that n-WWKL is equivalent to BΣ0

n +n-RAN over RCA0 [1].
It remains unclear if there is a sufficient level of randomness such that n-RAN implies BΣ0

2.

4. Is there an n such that P− + IΣ0
1 + n-RAN implies P− + BΣ0

2?
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