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Abstract
Purpose This review explores the current landscape of AI applications in imaging for TAVR, emphasizing the potential and 
limitations of these tools for (1) automating the image analysis and reporting process, (2) improving procedural planning, 
and (3) offering additional insight into post-TAVR outcomes. Finally, the direction of future research necessary to bridge 
these tools towards clinical integration is discussed.
Recent Findings Transcatheter aortic valve replacement (TAVR) has become a pivotal treatment option for select patients 
with severe aortic stenosis, and its indication for use continues to broaden. Noninvasive imaging techniques such as CTA 
and MRA have become routine for patient selection, preprocedural planning, and predicting the risk of complications. As 
the current methods for pre-TAVR image analysis are labor-intensive and have significant inter-operator variability, experts 
are looking towards artificial intelligence (AI) as a potential solution.
Summary AI has the potential to significantly enhance the planning, execution, and post-procedural follow up of TAVR. 
While AI tools are promising, the irreplaceable value of nuanced clinical judgment by skilled physician teams must not be 
overlooked. With continued research, collaboration, and careful implementation, AI can become an integral part in imaging 
for TAVR, ultimately improving patient care and outcomes.

Keywords Transcatheter aortic valve replacement (TAVR) · Artificial intelligence (AI) · Computed tomography (CT)

Introduction

The introduction of transcatheter aortic valve replacement 
(TAVR) in the 2000s revolutionized the management of 
severe aortic stenosis (sAS). Multiple randomized con-
trolled trials (RCT) have demonstrated improved periopera-
tive mortality rates and favorable long-term outcomes for 
patients receiving TAVR [1, 2]. Society guidelines have now 
established TAVR as a standard of care for a selected group 

of patients with sAS [3]. The number of TAVR procedures 
performed in the United States has grown substantially each 
year, with approximately 98,500 TAVR procedures per-
formed in the US in 2022 [4].

Noninvasive imaging techniques play a crucial role for 
patient selection and preprocedural planning for TAVR. 
Multidetector CT and, less commonly, MRA are used for 
access planning, annular sizing, product selection, and 
other assessments. Precise anatomical measurements are 
required for optimal valve selection and predicting the risk 
of post-TAVR complications such as paravalvular leak, valve 
migration, and coronary obstruction. In 2019, a consensus 
was published on the correct technique for performing and 
analyzing these pre-operative scans for TAVR [5]. However, 
this complex process remains time-consuming and labor-
intensive for radiologists, even with the use of semi-auto-
matic software.

The indication for TAVR has expanded from patients 
being ineligible or at high-risk for surgical intervention to 
include patients at intermediate and low risk for surgical aor-
tic valve replacement (SAVR) [3]. Several ongoing clinical 
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trials aim to broaden FDA approval of TAVR for asymp-
tomatic sAS and potentially even moderate AS [6, 7]. The 
growing demand for TAVR procedures and the necessary 
pre-operative planning will exacerbate the burden on radiol-
ogists who are already grappling with a global shortage [8].

The rise of artificial intelligence (AI) over the past decade 
has propelled this innovation into society’s mainstream and 
holds the potential to revolutionize radiology and medicine 
[9]. Several recent studies have demonstrated AI’s poten-
tial to enhance pre-operative planning efficiency in TAVR, 
promising to further improve patient care. Additionally, 
fully automated AI tools are currently under development 
to streamline this process [10].

This review emphasizes the current state-of-the-art 
research in AI techniques for TAVR-related imaging, 
addressing their limitations and exploring future directions.

Patient Selection and Diagnosis

The diagnosis of AS via echocardiography relies on certain 
operator-dependent measurements, which can affect specific 
subgroups based on who performs the scan. For example, 
inter-operator variability for the left ventricular outflow tract 
(LVOT) diameter reaches up to 8%, which is then magnified 
in the calculation of aortic valve area (AVA) [11]. Tradi-
tionally, a mean pressure gradient of 40 mmHg or greater 
and an AVA of less than 1  cm2 are considered the criteria 
for diagnosing sAS [3]; however, recent findings suggest 
that up to one-third of patients present with discordant AS 
grading [12]. Measurement error and discordant grading 
severely impact the diagnosis of sAS, and accurate grading 
is crucial for timely intervention and proper management of 
these patients.

AI holds promise in reducing misclassification by assist-
ing in the diagnosis and identification of aortic stenosis from 
echocardiograms. Holste et al. [13] developed a deep learn-
ing model that detects sAS from 2D cine echocardiography 
data, eliminating the need for Doppler imaging. This model 
was trained and validated on large datasets from multiple 
institutions, achieving high diagnostic accuracy for aortic 
stenosis, with AUC of 0.978 in the primary test set. A model 
using only 2D single views has the potential for point-of-
care screening for sAS across various clinical settings and 
patient subtypes. Playford et al. [14] explored the use of 
an AI algorithm to identify sAS from routine echocardi-
ograms without the need for error-prone LVOT informa-
tion. Key results show that the algorithm could correctly 
identify 95.3% of patients with traditional high-gradient AS 
and 100% of patients with traditional high-gradient AS and 
AVA < 1.0  cm2. It also effectively identified low-flow, low-
gradient severe AS, with only a 4.7% misclassification rate.

While echocardiography remains the gold standard for 
diagnosing and grading AS, its use as a routine screening 
method may be impractical due to the significant costs, 
required operator skill, and time involved. As a result, there 
is a growing interest in more cost-effective and widely 
accessible solutions, such as the use of ECGs and chest 
radiographs [15, 16] for early detection of AS. Elias et al. 
developed a deep learning model, ValveNet, to detect left-
sided valvular heart diseases using ECG data [15]. This 
model achieved high diagnostic accuracy, with an AUC of 
0.84 for detecting AS, aortic regurgitation (AR), or mitral 
regurgitation (MR), and demonstrated a sensitivity of 0.78 
and a specificity of 0.73. When optimized for screening, the 
model achieved a positive predictive value (PPV) of 0.20 
and negative predictive value (NPV) of 0.98 at a preva-
lence of 7.8%. These findings highlight the potential of Val-
veNet in detecting valvular heart conditions and for use as 
a screening tool. Ueda et al. developed and evaluated three 
deep learning models to detect AS from chest radiographs 
using a dataset of 10,433 images from 5638 patients [16]. 
These radiographs were classified based on echocardiogra-
phy assessments as either AS-positive or AS-negative. The 
top-performing model combined weighted averages of prob-
ability scores from all three individual models, achieving an 
AUC of 0.83, sensitivity of 0.78, specificity of 0.71, accu-
racy of 0.71, PPV of 0.18, and NPV of 0.97 on the validation 
dataset. The integration of AI with chest radiographs and 
ECGs holds great promise for enhancing AS detection as a 
highly efficient screening tool.

Language models were also studied for identifying 
patients at risk of AS through electronic medical record 
(EMR) documentation. Solomon et al. developed and vali-
dated natural language processing (NLP) algorithms to accu-
rately detect patients with AS from echocardiogram reports 
[17]. Using 1003 physician-adjudicated reports, NLP algo-
rithms achieved a PPV and NPV over 0.95 for AS detection. 
Applying these algorithms to nearly one million echocardio-
grams revealed that NLP identified AS in 11.2% of cases, 
demonstrating superior accuracy compared to diagnosis 
codes. This underscores the potential of NLP to improve AS 
identification and management within healthcare systems.

Pre‑procedural Planning for TAVR

Pre-procedural CTA or MR for TAVR focuses on several 
specific tasks: (1) assessment of the aortic annulus and root 
for selection of the prosthesis, (2) assessment of the suprav-
alvular aorta and vascular access to map the device delivery 
path, (3) risk stratification for annular injury or coronary 
occlusion, and 4) prediction of the fluoroscopic angle for 
valve deployment [5, 18]. More specifically, pre-procedural 
planning typically includes an evaluation of the options 
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for endovascular access, identification of the annular plane 
with precise measurements of the annulus, bicuspid versus 
trileaflet valvular morphology, presence of aortic root cal-
cifications, relationship of the coronary ostia to the native 
valve leaflets, angulation between the ascending aorta and 
the LVOT, and possible incidental findings [19]. Further 
details regarding the technique can be found in the published 
consensus statement [5].

In addition to being time-consuming and labor-intensive, 
manual analysis of pre-TAVR imaging entails significant 
inter-operator variability [20], which can potentially impact 
the procedural planning and increase the risk of procedure-
related complications [21]. AI algorithms developed to 
automate this process show promise in improving standardi-
zation, reducing provider workload, and lowering overall 
healthcare costs [10], [22] (First available AI based method 
to evaluate TAVR measurements), [23, 24], [25] (First to 
obtained FDA clearance and CMS billing code), [26–29].

TAVI‑PREP

In 2023, Santaló-Corcoy et al. introduced TAVI-PREP, one 
of the first fully automated deep learning-based tools for 
extracting the full ensemble of critical measurements from 
pre-TAVR planning CT scans [22] (First available AI based 
method to evaluate TAVR measurements). Their tool incor-
porates a deep learning-based segmentation algorithm and 
landmark detection algorithm that creates a 3D mesh repre-
senting the patient’s cardiac and aortic anatomy, from which 
measurements are then derived. It requires approximately 
2 min to extract 22 measurements, including measurements 
of the annulus, LVOT, sinotubular junction (STJ), sinus 
of Valsalva (SOV) commissures, and the coronary artery 
heights. The authors then compared the results of their auto-
mated tool with two expert cardiologists on a dataset of 200 
patients. High correlation coefficients (CC) were obtained 
for most measurements between the algorithm and the expert 
measurements, ranging from 0.9 to 0.97.

Nevertheless, the algorithm struggled with predicting 
coronary ostia heights, with CCs of 0.72 to 0.80 in addition 
to several other limitations. Lower CCs were found between 
the algorithm and the expert readers for prediction of cor-
onary artery heights. Edge cases, including patients with 
severe calcification or artifacts present on the CT images, 
posed challenges to the algorithm, and led to less accurate 
predictions. Valve selection, aortic angle, and femoral access 
diameters were also not included in the algorithm at the time 
of publication. Moreover, one of the expert readers used 
in the comparison provided the annotations for training the 
software, and subsequently had a higher correlation with the 
software compared to the other expert, which is speculative 
of bias. Incorporation of additional measurements, improve-
ment of coronary artery height prediction, and performing 

additional external validation studies may strengthen the 
argument for clinical integration readiness.

MIMICS PLANNER™

The Mimics Planner™ software tool (Materialise, Leuven, 
Belgium) automates preprocedural planning for structural 
heart disease. This tool utilizes machine learning for heart 
segmentation to obtain accurate measurements and visuali-
zations of anatomy in 3D. Mimics Planner™ has been used 
for aortic, mitral, and tricuspid valve implantation and left 
atrial appendage occlusion planning [23].

. Due to this product’s proprietary nature and lack of 
published data, details of the Mimics Planner™ tool’s tech-
nology are limited. A validation study was performed by 
Corbin et al. to compare the Mimics Planner™ tool with the 
TAVI-PREP algorithm on the same 200 patients in the origi-
nal TAVI-PREP study [24]. Overall, TAVI-PREP achieved 
greater performance on perimeter-associated measurements 
and Mimics Planner™ achieved more accurate predictions 
of sinus measurements. Both algorithms struggled with 
coronary height measurements.

Although further details about the Mimics Planner™ are 
lacking, advantages include additional functions beyond 
anatomical measurements including device selection, 3D 
visualization, valvular calcification scoring, and report 
preparation.

Precision TAVI

Precision TAVI™ (Dasi Simulations, Dublin, Ohio) obtained 
FDA approval in 2023 and even a CMS outpatient billing 
code in 2024 for preprocedural TAVR planning. Their soft-
ware utilizes patient specific CTA imaging to perform simu-
lation testing; however, there is no published data on the 
efficacy of the overall product. There are several published 
studies demonstrating individual techniques, including using 
preprocedural data points to predict post-TAVR aortic valve 
pressure gradient and aortic valve area size [25] (First to 
obtained FDA clearance and CMS billing code), predicting 
post-TAVR valve thrombosis [26], and predicting the risk 
of coronary obstruction post-TAVR through measurement 
of coronary artery heights [27, 28].

4TAVR

Toggweiler et al. introduced 4TAVR in 2024, a fully auto-
mated software tool, which analyzes patient CTAs, performs 
anatomical segmentation and 3D reconstruction, calculates 
planning measurements, and ultimately generates reports in 
approximately ten minutes [29]. This tool is now available 
for use through the Hi-D Imaging Cardiovascular Imaging 
Suite (Hi-D Imaging, Winterthur, Switzerland). 4TAVR 
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utilizes 2D and 3D U-net models for segmentation and a 
separate U-net model for landmark detection. Automated 
multiplanar reconstructed slices are then created based on 
the extracted aortic centerline for anatomical measurements. 
The results of the automated measurements were compared 
with three expert operators in 100 TAVR patients at a single 
center. The tool achieved a CC of up to 0.97 for the annu-
lar perimeter and area and 0.83–0.95 for measurements of 
the LVOT, SOV, STJ, and ascending aorta. Advantages of 
the study were the inclusion of cases with heavy calcifica-
tion burden and bicuspid valves. In addition, AI-generated 
measurements resulted in > 85% agreement with manual 
measurements in valve sizing for multiple types of valves. 
The major limitation of this study is the small patient cohort 
from a single center.

Philips HeartNavigator

HeartNavigator by Philips (Philips, Amsterdam, Nether-
lands) is a fully automated software analysis of pre-proce-
dural CTA that offers segmentation and measurement of the 
heart anatomy, e.g., the annulus, SOV, and coronary artery 
heights. Kočka et al. prospectively evaluated the tool’s capa-
bilities in 128 patients at a single center in Prague versus 
manual analysis using FluoroCT software performed by 
lab technicians supervised by a cardiologist [30]. Overall, 
they found a statistically significant difference between the 
manual and automatic measurements though the numerical 
difference was small; more specifically, less than 2 mm on 
average for most measurements. Furthermore, the manual 
and automatic measurements yielded the same valve size 
selection for the Evolut PRO valves in 80% of cases. Another 
advantage is that the CT analysis can be utilized for fusion 
imaging with fluoroscopy during the procedure.

Additional studies involving a larger patient cohort, 
multi-center participation, comparison with radiologist 
measurements, and evaluation with different types of valves 
would be necessary for further validation.

FORSSMAN

Wang et al. developed FORSSMAN, a fully automated deep 
learning-based tool for aortic valvular complex segmenta-
tion and measurement [31]. This tool employs a U-Net-
based two-stage deep learning network for segmentation 
and landmark detection. It performs centerline extraction 
and generates key planes, from which measurements are 
derived. In addition to measurements of the annulus and 
SOV, the coronary heights, aortic angle and volume of cal-
cification are extracted. The FORSSMAN tool was evaluated 
on an external validation dataset of 100 patients from over 
19 hospitals in China and the automatic measurements were 
compared to manual measurements by 2 senior observers. 

On average, the automated tool required 0.9 min for meas-
urement extraction compared to 19.5 min for manual meas-
urements. Comparison with senior observers resulted in CCs 
of greater than 0.97 for most measurements, with only the 
aortic angle having a CC of 0.87.

Advantages of this model include testing on edge cases, 
such as severe valvular calcification and bicuspid valves, 
and automatic detection of anatomical risk factors, includ-
ing horizontal aorta, ascending aorta dilation, severe cal-
cification, large SOV size, and low coronary ostia height. 
Limitations of this study mostly include the small patient 
cohort, lack of information on the impact of automatic ver-
sus manual measurements on overall valve selection, and 
lack of evaluation of the access route.

Vascular Module of AI‑RAD Companion Chest CT

Boninsegna et al. evaluated a Vascular Module Platform 
developed by Siemens Healthineers (Erlangen, Germany) on 
50 patients prior to TAVR [32]. This tool utilizes an adver-
sarial deep image-to-image network in a symmetric convolu-
tional encoder-decoder architecture to perform segmentation 
of the cardiac anatomy. A centerline model is then combined 
with landmark detection to identify measurement planes. 
The Vascular Module automatically extracts the diameters of 
the aorta at 9 positions, including the SOV, STJ, and points 
along the ascending, arch, and descending portions of aorta. 
On average, the AI measurements required 1 min and 47 s 
whereas manual measurements took 5 min and 41 s. Overall, 
the AI- and manual-obtained values were not significantly 
different, and for 91% of values the difference was ≤ 1 mm.

Limitations of this tool include the lack of aortic annulus 
measurement, assessment of the access route, consideration 
of additional factors such as bicuspid valves or valvular cal-
cifications, and the small sample size at a single institution 
(see Fig. 1).

Coronary Artery Screening

Patients with sAS commonly have multiple cardiovascu-
lar comorbidities, such as coronary artery disease (CAD), 
which can lead to ischemia following hemodynamic insta-
bility during TAVR procedures [33]. Although invasive 
coronary angiogram has previously been the gold standard 
for CAD evaluation, concomitant evaluation of the cor-
onary arteries during the pre-procedural CTA has been 
shown to be safe and effective and is now routinely used 
for CAD screening prior to TAVR in select populations [3, 
34]. Currently, coronary CTA (CCTA) has moved beyond 
assessment of luminal stenosis to also involve characteri-
zation and quantification of atherosclerosis. Several semi-
automated software tools can provide measurements of 
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plaque volume and composition; however, the analysis is 
time-consuming and demands significant manual input 
from expert readers.

In a multicenter study, Lin et al. evaluated a novel deep 
learning system for accurate quantification of plaque volume 
and stenosis severity from CCTA [35]. Automated measure-
ments achieved intraclass CCs of 0.96 for plaque volume and 
0.88 for stenosis severity when compared to expert readers. 
AI analysis required an average of 5.7 s, compared to the 
25.7 min typically required by expert readers for manual 
measurements. This model was constrained by semi-auto-
mated coronary centerline extraction performed by technolo-
gists and validation in a small sample size of patients.

In another multicenter study, Choi et al. evaluated the 
FDA-cleared software Cleerly LABS (Cleerly, New York, 
New York) for automated analysis of CCTA for compre-
hensive CAD assessment [36]. Key measurements including 
percent stenosis, plaque volume and composition, presence 
of high-risk plaque, and CAD-RADS category were com-
pared between the AI algorithm and expert readers. Correla-
tion was best with detecting percent stenosis, with intraclass 
CCs of 0.91 for per-vessel and 0.93 for per-patient evaluation 
between AI and expert analyses. Greater than 98% agree-
ment was found for determination of CADS-RADS catego-
ries on a per-patient evaluation. AI analysis alone required 
an average of 9.7 min, and when including quality assurance 

and report generation, it totaled an average of 23.7 min. The 
time required for expert readers per case was not assessed.

Coronary artery calcium scoring, typically assessed by 
the Agatston score, has demonstrated prognostic value in 
predicting mortality among patients undergoing TAVR 
[37]. Several machine learning algorithms have shown high 
performance in fully automating coronary artery calcium 
scoring [38].

CT angiography-derived fractional flow reserve (CT-
FFR) assessment has been shown to enhance the prediction 
of high-risk patients compared to CTA alone, but acces-
sibility and computational time have been limiting fac-
tors thus far [39]. Recent advancements in CT-FFR have 
introduced machine learning algorithm-based acquisition 
methods, replacing the previous standard of computational 
fluid dynamics. Current data suggests that machine learning-
derived CT-FFR improves diagnostic performance compared 
to CCTA alone [40].

Outcome Prediction Post‑TAVR

Post‑TAVR Mortality

Mortality post-TAVR has been shown to be comparable to 
that of post-SAVR, with the 1-year mortality or disabling 

Fig. 1  A representative sample of common preprocedural CTA 
TAVR measurements commonly performed for operative planning 
and valve selection. A Multiplanar double oblique images of the aor-
tic root along the long axis (A1) with levels (solid lines) correspond-
ing to the true short axis views of the aortic annulus (A2), sinotubular 
junction (A3), and Sinuses of Valsalva (A4). B Measurement of the 

coronary ostia height of the left main coronary artery at the takeoff 
from the left coronary cusp (arrow) as seen on the longitudinal (B1) 
and the short axis (B2) views. C Measurement of the coronary ostia 
height of the right coronary artery at the takeoff from the right coro-
nary cusp (arrow) as seen on the longitudinal (C1) and the short axis 
(C2) views
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stroke rate estimated at 1.0% for low-risk patients [41]. Ini-
tial efforts to estimate the risk of TAVR led to in-hospital 
mortality and stroke risk calculators developed from the 
STS/ACC TVT Registry data [42, 43]. These calculators 
utilized covariates selected from a combination of expert 
opinion and logistic regression analysis, and primarily uti-
lized clinical and operative technique-related factors. Recent 
studies have sought to improve these risk calculators with 
machine learning models [44] and have demonstrated addi-
tional performance in predicting in-hospital mortality for 
TAVR.

Additionally, preprocedural imaging findings have shown 
predictive capabilities for post-TAVR mortality, independent 
of the clinical risk factors utilized in the STS/ACC TVT cal-
culators [45]. Hossain et al. found that pericardial effusions 
and increased size of the main pulmonary artery, both signs 
of right heart failure, were predictors of mortality at 1-year 
post-TAVR. This was also corroborated by the association 
of decreased right ventricular ejection fraction on echocardi-
ography with mortality at 1-year post-TAVR. Another study 
by Aquino et al. also showed that left atrial emptying frac-
tion on preprocedural cardiac CTA predicted mortality in 
patients with severe AS undergoing TAVR [46].

As the radiological assessment of preprocedural imaging 
is a time-consuming process, Brüggemann et al. developed 
a 3D deep neural network-based model to automatically 
predict post-TAVR mortality using unprocessed, preproc-
edural CT and additional clinical characteristics [47] (First 
AI application for patient selection). This model outper-
formed the models using solely clinical factors and were 
similar in performance to models using both clinical factors 
and manually extracted image measurements. Furthermore, 
while manual extraction required 10 to 15 min for their 
expert radiologists, the AI model only required 5 to 20 s on 
a consumer CPU.

Computational Modeling of Fluid Dynamics

Computational modeling for simulating hemodynamics and 
tissue behavior is another technique with potential to predict 
postoperative complications. This approach has been used 
to “virtually” implant valves for testing of multiple device 
sizes and implantation depths [48] to determine the optimal 
selection. However, these models require lengthy computa-
tion times and are not routinely used due to practicality and 
availability constraints. Techniques using machine learning 
or deep learning have been shown to cut down computation 
times by an order of magnitude with similar results to con-
ventional methods [49].

The FEops HEARTguide™ (FEops, Gent, Belgium) is one 
such software that employs patient’s CT scans for 3D visuali-
zation and semi-automatic identification and measurement of 
anatomical landmarks to perform patient-specific simulations 

of valve implantation. The PRECISE-TAVI study, a prospec-
tive multicenter observational study, used this software to 
predict the risk of conduction abnormalities and the risk of 
paravalvular leakage post-TAVR [50]. This led to changes in 
procedural planning in 35% of patients, including changes in 
valve size selection and implantation depth.

Conclusion

The integration of AI into imaging for TAVR represents a 
promising advancement in the fields of cardiology and radiol-
ogy, offering the potential to streamline pre- and post-TAVR 
care. The ability of AI tools to fully automate and standardize 
patient identification and selection, pre-procedural imaging 
analysis, and prediction of post-TAVR mortality would have a 
significant impact on patient care. Preliminary studies of these 
AI tools show promise, but these tools are often constrained by 
small patient cohorts, limited scope, and significant variability 
in function and performance. Collaboration among AI devel-
opers, radiologists, and cardiologists is crucial to ensure these 
technologies are effectively integrated into clinical practice. 
Before widespread clinical adoption, rigorous validation will 
be necessary to ensure the performance of these tools and their 
overall impact on patient outcomes. Further studies, head-to-
head comparisons, and cost–benefit analyses proving reduction 
in labor or reading time will be necessary to justify the added 
cost for these programs prior to clinical integration. With con-
tinued research, collaboration, and careful implementation, AI 
can become an integral part in imaging for TAVR, ultimately 
improving patient care and outcomes.
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