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Cellular/Molecular

Swedish Nerve Growth Factor Mutation (NGFR100W) Defines
a Role for TrkA and p75NTR in Nociception

X Kijung Sung,1 X Luiz F. Ferrari,3 Wanlin Yang,1,4 X ChiHye Chung,5 Xiaobei Zhao,1 Yingli Gu,1,6 Suzhen Lin,1,4

X Kai Zhang,7,9 X Bianxiao Cui,7 Matthew L. Pearn,2,10 Michael T. Maloney,8 X William C. Mobley,1 X Jon D. Levine,3

and X Chengbiao Wu1,10

1Department of Neurosciences, 2Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093,
3Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143, 4Department of Neurology and Institute of Neurology,
Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025, 5Department of Biological Sciences, Konkuk University, 120
Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea, 6Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin,
Heilongjiang, China 150001, 7Department of Chemistry, 8Department of Neurosciences, Stanford University, Stanford, California 94305, 9Department of
Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, and 10V.A. San Diego Healthcare System, San Diego, California 92161

Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation
leading to a change from arginine to tryptophan at residue 100 in the mature NGF�sequence (NGFR100W) in patients with hereditary sensory and
autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different
outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the
binding and signaling properties of NGFR100W. Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W

mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and
differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades
(i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical
acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide
evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR

signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of
both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.
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Introduction
Nerve growth factor (NGF), discovered as a result of potent
trophic actions on sensory and sympathetic neurons of the PNS
in the 1950s (Levi-Montalcini and Hamburger, 1951), also regu-

lates the trophic status of striatal and basal forebrain cholinergic
neurons (BFCNs) of the CNS (Levi-Montalcini and Hamburger,
1951; Svendsen et al., 1994; Li and Jope, 1995; Kew et al., 1996;
Conover and Yancopoulos, 1997; Lehmann et al., 1999). With the
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Significance Statement

In the present study, we characterized the naturally occurring nerve growth factor NGF R100W mutant that is associated with
hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGF R100W retains trophic
support capability through TrkA, but fails to engage p75 NTR signaling pathways. Furthermore, after intraplantar injection into
adult rats, NGF R100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic
hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75 NTR-mediated signaling appears to
regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGF R100W suggests that it is possible to uncouple
trophic effect from nociceptive function, both induced by wild-type NGF.
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discovery of brain-derived neurotrophic factor (BDNF), Neu-
rotrophin 3 (NT-3) and Neurotrophin 4 (NT-4), NGF is now
known as a member of the neurotrophin family (Chao and Hemp-
stead, 1995; Huang and Reichardt, 2001; Chao, 2003). NGF acts via
two known receptors, the 140 kDa tyrosine receptor kinase A
(TrkA) and the 75 kDa neurotrophin receptor (p75 NTR), to
transmit signals to the cytoplasm and nucleus of responsive neu-
rons (Bothwell, 1995; Chao and Hempstead, 1995; Kaplan and
Miller, 1997). NGF signaling through TrkA elicits many of the
classical neurotrophic actions ascribed to NGF (Loeb and Greene,
1993). TrkB and TrkC mediate the signaling of NT-3 and NT-4,
respectively (Huang and Reichardt, 2001; Chao, 2003). NGF and
all members of the family also signal through p75 NTR (Huang and
Reichardt, 2001; Chao, 2003). p75 NTR contributes to sphingo-
myelin-ceramide metabolism (Dobrowsky et al., 1994, 1995) and
modulates RhoA activity to regulate axonal growth (Yamashita et
al., 1999; Gehler et al., 2004). In addition, p75 NTR has been shown
to activate the NF-�B, Akt, and JNK pathways (Harrington et al.,
2002; Roux and Barker, 2002) to either induce apoptosis or to
promote cell survival and differentiation (Chao and Hempstead,
1995; Casaccia-Bonnefil et al., 1998; Salehi et al., 2000; Roux and
Barker, 2002; Nykjaer et al., 2005).

Given its robust trophic effects, NGF has been investigated for
therapeutic properties in neurodegenerative disorders (Apfel et
al., 1994, 1998; Andreev et al., 1995; Apfel and Kessler, 1995,
1996; Blesch and Tuszynski, 1995; Anand et al., 1996; Apfel,
1999a,b, 2000, 2002; Aloe et al., 2012). In one example, NGF’s
robust trophic effects on BFCNs has suggested a role in treating
Alzheimer’s disease (AD) in which this population degenerates (Ol-
son, 1993; Hefti, 1994; Scott and Crutcher, 1994; Blesch and
Tuszynski, 1995; Knusel and Gao, 1996; Koliatsos, 1996; Eriksdotter
Jönhagen et al., 1998; Williams et al., 2006; Mufson et al., 2008;
Schindowski et al., 2008; Schulte-Herbrüggen et al., 2008; Cuello et
al., 2010). Unfortunately, features of the biology of NGF have
limited the extent to which it could be evaluated. Inability to cross
the blood– brain barrier prevented systemic administration. De-
livery via the ventricular system even at low doses resulted in pain
and studies in primates demonstrated Schwann cell hyperplasia
that served to compromise CSF flow (Winkler et al., 1997). A
recent phase 2 trial in which NGF was delivered via virus to the
basal forebrain demonstrated safety and was not associated with
pain (Tuszynski et al., 2015). Marked sprouting of BFCN fibers
was evidence of a potent trophic effect, but cognitive measures
were unaffected (Rafii et al., 2014). Significant efforts were also
invested to investigate NGF as a treatment for diabetic polyneu-
ropathy (Apfel and Kessler, 1995, 1996; Anand et al., 1996; Tom-
linson et al., 1996; Elias et al., 1998; Apfel, 1999b; Goss et al., 2002;
Murakawa et al., 2002; Kanda, 2009). NGF treatment demon-
strated some benefit in phase 2 trial at 0.1 and 0.3 �g/kg, but was
associated with dose-dependent hyperalgesia at the injection site
(Apfel, 1999a,b). A large-scale phase 3 trial with a dose of 0.1
�g/kg showed no beneficial effect (Apfel et al., 1998; Apfel, 2002).

NGF is not only a trophic factor, but also functions as one of
the key molecules for mediating inflammatory pain and neuro-
pathic pain in the PNS (Lewin and Mendell, 1993; Lewin et al.,

1993; Chuang et al., 2001; Watanabe et al., 2008). Therefore,
clinical trials in which large doses of NGF were infused in patients
with AD had to be terminated due to the extreme side effects of
pain (Aloe et al., 2012). Other clinical trials using NGF in treating
diabetic neuropathies and peripheral neuropathies in HIV were
also discontinued after reports of serious side effects such as back
pain, injection site hyperalgesia, myalgia, and weight loss (Hell-
weg and Hartung, 1990; Lein, 1995; Apfel et al., 1998; Unger et al.,
1998; Rask, 1999; McArthur et al., 2000; Quasthoff and Hartung,
2001; Schifitto et al., 2001; Apfel, 2002; Pradat, 2003; Walwyn et
al., 2006). Therefore, the adverse effect of significant pain caused
by NGF has severely limited its therapeutic use in treating neurode-
generative disorders. To overcome these pain-causing side effects of
NGF, it is of paramount importance to elucidate the role of NGF and
its receptor signaling by TrkA and p75NTR in nociception.

A large body of genetic and clinical evidence has pointed to
both TrkA and p75 NTR as contributing factors to sensitization
of inflammatory pain mediated by NGF. For example, recessive
mutations in TrkA cause hereditary sensory and autonomic neu-
ropathy type IV [hereditary sensory autonomic neuropathy type
V (HSAN V) (Online Mendelian Inheritance in Man (OMIM)
#256800], also known as congenital insensitivity to pain with
anhidrosis (Indo, 2001, 2002). Strong evidence supports a role of
TrkA in mediating the sensitization effect of NGF: attenuation of
TrkA expression (Malik-Hall et al., 2005; Alvarez and Levine,
2014) and pharmacological inhibition of TrkA-mediated signal-
ing pathways extracellular signal-related kinase (ERK), phospha-
tidylinositol 3-kinase (PI3K), and phospholipase C� (PLC�) all
reduced NGF-induced hyperalgesia (Fang et al., 2005; Malik-Hall
et al., 2005; Summer et al., 2006; Mantyh et al., 2011; Alvarez and
Levine, 2014; Ashraf et al., 2016). Furthermore, NGF still evoked
hyperalgesia in mice lacking p75 NTR, pointing to the involvement
of TrkA (Bergmann et al., 1998). Evidence that p75 NTR has a role
in pain signaling pathways is largely indirect. In one example, inject-
ing a neutralizing antibody to p75NTR prevented NGF-induced pain
behavior and NGF-mediated increases in action potentials in sen-
sory neurons (Zhang and Nicol, 2004; Watanabe et al., 2008;
Iwakura et al., 2010). Therefore, both TrkA and p75NTR signals con-
tribute to pain induced by NGF. However, how these two receptors
interact to mediate pain is poorly defined.

Recently, patients in consanguineous Swedish families suffer-
ing from length-dependent loss of pain that often leads to bone
fractures and joint destruction were shown to harbor a homozy-
gous missense mutation in NGF (Einarsdottir et al., 2004; Car-
valho et al., 2011). The disorder was labeled HSAN V, OMIM
#608654. Genetic analysis of these HSAN V patients revealed a
point mutation (661C�T) causing a substitution of tryptophan
(W) for arginine (R) at position 211 in the proform of the NGF
polypeptide (pro-NGF R221W); this residue corresponds to the
position 100 in the mature protein (NGF R100W) (Einarsdottir et
al., 2004). Unlike HSAN type IV, which results from mutations in
TrkA, HSAN V patients appear to have normal cognitive function,
suggesting that the mutant NGF may retain its trophic functions in
the CNS (Einarsdottir et al., 2004). We and others reasoned that
NGFR100W provides a tool with which to decipher possible differ-
ences in the trophic and nociceptive actions of NGF (Covaceuszach
et al., 2010; Capsoni et al., 2011, 2014).

Initial characterization of NGF R100W revealed that the R100
mutation may disrupt the processing of pro-NGF to mature NGF
in cultured cells, resulting in relatively higher percentage of NGF
secreted as the pro-form (Larsson et al., 2009). Given the difficul-
ties in expressing NGF R100W, Capsoni et al. (2011) examined a
different series of residues at position 100, including NGF R100E
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and NGF double mutant (NGF P61S/R100E), using recombinant
techniques. They discovered that these NGF R100 mutants bound
normally to TrkA, but failed to bind to p75 NTR (Covaceuszach et
al., 2010). This finding suggested that failure to activate p75 NTR

signaling was sufficient to attenuate pain induced by NGF and
that TrkA signaling had little or no effect in pain (Capsoni et al.,
2011). The investigators speculated that NGF R100 mutant would
allow for development of p75 NTR antagonists such as NGF R100W

as a “painless NGF” therapeutic agent (Malerba et al., 2015).
In the present study, we examined the binding and signaling

properties of the mature form of the naturally occurring mutant
NGF (NGFR100W) in HSAN V and compared the effects with those
of wtNGF and NGF mutants that selectively engage and signal
through either TrkA or p75NTR. We discovered that NGFR100W re-
tains binding and signaling through TrkA to induce trophic ef-
fects, but not binding or activation of p75 NTR. Our findings are
evidence that NGF WT acts via both p75 NTR and TrkA to cause
pain. Our findings are consistent with a necessary role for TrkA in
both acute sensitization and delayed priming of nociceptive re-
sponses. In contrast, signaling through p75 appears to be neces-
sary for acute sensitization, but does contribute to priming. The
integration of both TrkA and p75 signaling thus appears to reg-
ulate neuroplastic effects of NGF in peripheral nociception.

Materials and Methods
Ethics statement. All experiments involving the use of animals were ap-
proved by the Institutional Animal Care and Use Committee of Univer-
sity of California–San Diego and University of California–San Francisco
(UCSF). Surgical and animal procedures were performed strictly follow-
ing the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals.

Chemicals, oligos, and reagents. Streptavidin-QD605, Streptavidin-
QD-655 (Q10103MP, Q10123MP) conjugates were from Invitrogen; all
other chemicals were from Sigma-Aldrich unless noted otherwise. Re-
combinant extracellular domains of p75 NTR were a generous gift from
Dr. Sung Ok Yoon of Ohio State University. Prostaglandin E2 (PGE2)
was from Sigma-Aldrich (catalog #82475). NGF (wtNGF, NGF R100W,
KKE, �9/13) proteins were produced in our own laboratory (Sung et al.,
2011).

Cloning. Mouse pro-NGF was amplified by PCR from a NGF-GFP
plasmid (a generous gift from Professor Lessmann, Mainz, Germany).
Theforwardprimersequencewas:5�-acgaattccaccatgtccatgttgttctacactctg
atcactgcg-3� and the reverse primer sequence was: 5�-gatggatccttcgtgcca
ttcgattttctgagcctcgaagatgtcgttcagaccgccaccgacctccacggcggtggc-3�. The
reverse primer contains a sequence coding for the 17 aa AviTag: GGG
LNDIFEAQKIEWHE. The sequence was based on the #85 AviTag pep-
tide sequence described previously (Schatz, 1993). One glutamic acid
residue was added to the C-terminal AviTag based on a finding by Avidity
(www.avidity.com) that it greatly enhanced the biotinylation rate of the
AviTag (Beckett et al., 1999). Platinum pfx DNA polymerase (Invitrogen,
catalog #11708021) was used following the manufacture’s instructions.
The 50 �l reaction was denatured at 94°C for 4 min, followed by 25 cycles
of amplification (30 s at 94°C; 30 s at 50°C; 90 s at 68°C). An additional
extension was performed at 68°C for 4 min. The PCR product was puri-
fied and digested with EcoRI (Fermentas, catalog #FD0274) and BamHI
(Fermentas, catalog #FD0054) and was ligated in-frame into the
pcDNA3.1-myc-His vector that was predigested with EcoRI/BamHI. The
resulting construct was designated as pcDNA3.1-NGFavi. BirA was am-
plified by PCR from pET21a-BirA (Addgene, plasmid #20857) (Howarth
et al., 2005) using a forward primer (forward primer: 5�-gtgaac atg
gctagcatgact-3�) and a reverse primer (5�-ggtgctcgagtcatgcggccgcaagct-3�
(containing an XhoI site). PCR was performed using Pfx as described
above. The PCR product was digested with XhoI (Fermentas, catalog
#FD0694) and subcloned into pcDNA3.1 myc.his (�) vector (Invitro-
gen) that was precut with EcoRV (Fermentas, catalog #FD0303) and
XhoI. The resulting plasmid was designated as pcDNA3.1-BirA. All

primers were from Elim Biopharmaceuticals. All constructs were verified
by sequencing (Elim Biopharmaceuticals). NGF R100W was cloned using
the same method, but with a point mutation at 661 (C�T). The KKE and
�9/13 mutant constructs were obtained from Dr. K. Neet of Rosalind
Franklin University (Hughes et al., 2001; Mahapatra et al., 2009) and
subcloned to the pcDNA3.1-myc-His vector with an Avitag (Sung et al.,
2011).

Protein purification. HEK293FT cells were grown in 15 cm plates to
70% confluency. Cells were changed to 25 ml of DMEM-high glucose,
serum-free medium that was supplemented with 50 �M D-biotin (Sigma-
Aldrich, catalog #B4639). Then, 15–21 �g f pcDNA3.1-NGFavi, NGFR100Wavi,
KKEavi, and �9/13avi plasmids DNA plus 15–21 �g of pcDNA3.1-BirA
plasmid DNA were mixed with 1 ml of DMEM-high glucose medium
and 60 �l of Turbofect (Fermentas, catalog #R0531). The mixture was
incubated at room temperature for 15 min and then added into the
medium by the dropwise method. Transfected HEK293FT cells were
incubated at 37°C, 5% CO2. Seventy-two hours after transfection, media
were collected for protein purification.

Media were harvested and adjusted to 30 mM phosphate buffer, pH
8.0, 500 mM NaCl, 20 mM imidazole, and a mixture of protease inhibitors
(1 mM PMSF from Sigma-Aldrich, catalog #P7626, and 1 �l/ml aprotinin
from Sigma-Aldrich, catalog #A6279). After incubation on ice for 15
min, media were cleared by centrifugation at 18,000 rpm for 30 min using
a Beckman JA-20 rotor. Ni-NTA resins (Qiagen, catalog #30250) were
rinsed with the washing buffer (30 mM phosphate buffer, pH 8.0, 500 mM

NaCl, 20 mM imidazole, and a mixture of protease inhibitors from
Sigma-Aldrich, catalog #S8820). Ni-NTA resins were added to the media
at a concentration of 0.3 ml Ni-NTA/100 ml of media and incubated
overnight with rotation at 4°C. The media/Ni-NTA slurry was loaded
onto a column and the captured Ni-NTA resins were washed with 10 ml
of wash buffer and eluted with 5 ml of elution buffer (30 mM phosphate
buffer, pH 8.0, 500 mM NaCl, 300 mM imidazole, protease inhibitors).
Every 500 �l volume of elution was collected. The purity and concentra-
tion of NGF was assessed by SDS-PAGE using a silver staining kit (Fast
Silver, G-Biosciences, catalog #786 –30). Known quantities of NGF puri-
fied from mouse submaxillary glands were used as standards. The first
two eluted fraction normally contained most of purified proteins.

Cell culture and transfection. PC12 cells or a subclone of PC12 cells,
PC12M, PC12 nnr5 cells were cultured as described previously (Wu et al.,
2001, 2007). NIH3T3-TrkA, NIH3T3-p75 NTR cells were as described
previously (Huang et al., 1999). HEK293FT cells (Invitrogen, catalog
#R70007) cells were cultured in DMEM-high glucose medium (4.5 g/L
glucose, Mediatech, catalog #10-013-CV), 10% FBS, and 1% penicillin/
streptomycin.

Administration of wtNGF, NGFR100W, prostaglandin E2 (PGE2), and
inhibitors to adult rats. Experiments were performed on adult male
Sprague Dawley rats (220 –240 g, Charles River Laboratories; RRID:
RGD_737891). All experiments were performed following protocols that
have been approved by the University of California–San Francisco Com-
mittee on Animal Research and conformed to the National Institutes of
Health’s Guidelines for the Care and Use of Laboratory Animals. Either 200
ng of wtNGF or NGF R100W was injected intradermally on the dorsum of
one hindpaw of adult rats. Nociceptive thresholds in the injected paws
were then tested over time.

For studies using K252a (Sigma-Aldrich catalog #K1639) and GW4869
(Sigma-Aldrich catalog #D1692), both inhibitors were dissolved in
DMSO (2 �g/�l) and then diluted to a concentration of 0.2 �g/�l in
saline at the time of the experiments. Five minutes before injection of
NGF, 5 �l (1 �g) of inhibitors was administered intradermally on the
dorsum of the hindpaw at the same site where NGF was injected. The
experimental design is illustrated in Figure 7A.

Randall–Selitto mechanical test and Hargreaves thermal test. Mechani-
cal nociceptive threshold was measured using the Randall–Selitto paw
pressure test (Randall and Selitto, 1957) with an Ugo Basile Algesymeter
(Ferrari et al., 2010, 2013, 2015a,b). This device exerts a linear increase in
force to the dorsum of the hindpaw of the rats. Before the test, rats were
kept in individual restrainers for 20 min to acclimatize them to the ex-
perimental environment. The restrainers had openings that allowed rats
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to extend hindpaws during the test. Mechanical thresholds were calcu-
lated as the average of three readings.

Thermal threshold was measured using the Hargreaves test, which
applies heat stimuli by an adjustable high-intensity movable halogen
projector lamp (Malmberg and Yaksh, 1993). Baseline responses were
first measured and then averaged from at least two readings. Then, 600 ng
of wtNGF or NGF R100W was injected in the plantar surface of one hind-
paw under isofluorane anesthesia. After recovery from the anesthesia, in
less than 1 min, rats were placed on a glass plate and acclimatized for
20 min. Thermal nociceptive thresholds were evaluated within 1 h after
the injections.

Binding and internalization assays of NGF-QD. At 50% confluence of
NIH3T3-TrkA and NIH3T3-p75 NTR, cells were starved in serum free
DMEM-high glucose medium for 4 h at 37°C. NGF or NGF mutants were
conjugated with QD 655-streptavidin (Invitrogen, catalog #Q10121MP)
on ice 4°C for 30 min. Then, 0.2 nM conjugate was applied to cells. Cells
were incubated at 20°C for 20 –30 min, washed with serum free DMEM-
high glucose medium, and then surface binding was quantified. For the
internalization assay, cells were incubated with 1 nM conjugates for 30
min or 2 h, for 3T3-TrkA and 3T3-p75 NTR, respectively, at 37°C. Cells
were washed and then subjected to imaging.

Pull-down assay. The recombinant protein, Fc-75 NTR extracellular do-
main (ECD) was a kind gift from Dr. Sung Ok Yoon, the Ohio State
University. Five microliters of supernant from insect lysate expressing
Fc-p75 NTR was incubated with a range of either wtNGF or NGF R100W

(�0 –10 ng) overnight at 4°C. Avidin–agarose beads (20 �l) were added/
incubated for 2 h at 4°C. Beads were washed, boiled with protein sample
buffer, and subjected to SDS-PAGE. Western blotting was performed
using the function blocking antibodies against the extracellular domain
of p75 NTR (REX) (Mischel et al., 2001).

Dorsal root ranglion (DRG) culture, live-cell imaging, and data analysis.
Embryonic DRGs at embryonic day 15 (E15) to E16 were isolated from
Sprague Dawley rats as described previously (Cui et al., 2007; Wu et al.,
2007; Sung et al., 2011) with some minor modifications. Cells were main-
tained with alternation between growth media (MEM media containing
10% heat inactivated FBS and 100 ng/ml of NGF) and selection media
(MEM media containing 0.5–1 �M cytosine �-D-arabinofuranoside
(Sigma-Aldrich catalog #C1768 and 100 ng/ml NGF) every 2 d.

For survival analysis, only the cells with round and transparent cell
bodies were counted as DRG neurons to exclude possible fibroblast pop-
ulations. In phase contrast images, the cell bodies of DRGs look whitish
and transparent, whereas fibroblasts have black and flattened cell bodies.

For live cell imaging, dissociated DRGs were cultured in microfluidic
chambers for 7–10 d (Cui et al., 2007). The microfluidic chambers, man-
ufactured in-house, were plated onto 24 mm � 48 mm glass coverslips
that were precoated with poly-L-lysine (Sigma-Aldrich catalog P8920) as
described previously (Taylor et al., 2006). Dissociated DRG neurons were
plated into the cell body chamber. The growth/selection scheme outlined
above was repeated. Axons from the DRG neurons started to cross the
microgrooves after 3 d and reached the axonal chamber in another 7– 8 d.
Before live imaging of axonal transport of NGF, all compartments (cell
body and axonal chambers) of the DRG neurons were thoroughly rinsed
and depleted of NGF in NGF-free, serum-free MEM for 3 h. NGF-QD605
was prepared following the protocol described above. NGF-QD605 was
added to a final concentration of 0.2 nM to the axonal chambers for 2 h at
37°C. Live cell imaging of NGF-QD605 transport with the axons was
performed using a modified inverted microscope (Nikon TE300) for
pseudo-TIRF illumination (Zhang et al., 2010). The microscope stage
was equipped to maintain a constant temperature (37°C). CO2 level (5%)
was maintained using CO2-independent medium (Invitrogen catalog
#18045-088) during live imaging. The laser beam of 532 nm was used and
penetrated �1 �m into aqueous solution at an incident angle. Fluores-
cence emission was filtered with QD605/20 emission filter (Chroma
Technology). Time-lapse images were acquired at the speed of 10
frames/s and were captured using an EMCCD camera (Cascade 512B,
Photometric). All data were processed and analyzed using a MATLAB
software pipeline (RRID:SCR_001622).

Single-cell patch-clamp recording. All recordings were obtained from
small- to medium-diameter cells from cultured DRGs at room temper-

ature. One-electrode whole-cell voltage-clamp recording was performed
using Axopatch-1D amplifiers (Molecular Devices). A 2–5 MW sized
patch electrode and puffing pipette were used. All cells were clamped at
�60 mV holding potential to measure low pH-evoked current.

Standard external solution contained the following (in mM): 145 NaCl,
5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose, adjusted to pH 7.4
with NaOH, and was used to incubate DRG neurons. To block possible
synaptic transmission via activation of ionotropic receptors, 1 mM TTX,
10 mM CNQX, 50 mM AP5, and 50 mM picrotoxin were added to the bath.
Internal recording solution contained the following (in mM): 130 K-gluconate,
10 HEPES, 0.6 EGTA, 5 KCl, and 2.5 Mg-ATP, adjusted to pH 7.3 with
KOH. Low pH puffing solution was made from external solution and was
adjusted to pH 5.5 by adding 1 N HCl.

Cells were starved for 2 h with MEM before recording. To evoke a low
pH response, pH 5.5 external solution was applied briefly through an
additional glass pipette placed 50 mm away from the recorded cell and by
a Picospritzer (5–10 psi, for 50 –100 ms, Picospritzer II, General Valve).
The responses seen at this configuration were not evoked by mechanical
stimulation due to air puffing as when neutral pH solution was used, so
no response was observed. wtNGF or NGF R100W at a concentration of 50
ng/ml was applied directly to the bath and incubated for 10 min, followed
by low pH puffing. Data analysis was done in pClamp software (Molec-
ular Devices, RRID:SCR_011323) by calculating the charge transfer for
100 ms and normalized by computing the ratio of response after NGF/
response before NGF.

Antibodies and SDS-PAGE/blotting. Standard protocols were followed
for SDS-PAGE and blotting. Rabbit anti-pro-NGF IgGs were a generous
gift of Dr. B.L. Hempstead of Cornell University. Rabbit anti-NGF IgGs
were from Santa Cruz Biotechnology (catalog #sc-549; RRID:AB_632012).
Rabbit IgGs against Trk-pTyr490, pErk1/2, total Erk1/2, and p-Cofilin
were from Cell Signaling Technology (catalog #9141; RRID:AB_2298805,
9101; RRID:AB_331646, 9102; RRID:AB_330744, 3311; and RRID:
AB_330239 respectively). Mouse IgGs against pJNK and mouse IgGs
against total PLC-� were from Santa Cruz Biotechnology (sc-6254; RRID:
AB_628232, sc-7290; RRID:AB_628119, respectively) and rabbit IgGs
against pPLC-� were from GeneTex (GTX61714; RRID:AB_10621534).
Rabbit functional blocking antibodies against the extracellular domain of
p75 NTR (REX) (Mischel et al., 2001) was a generous gift of Dr. L. Reich-
ardt of UCSF. Rabbit monoclonal antibodies against pAkt were from
Epitomics (catalog #2214-1; RRID:AB_1266979). Rabbit anti-AviTag
IgGs were from Genescript (catalog #A00674; RRID:AB_915553).

Immunostaining. Immunostaining was performed according to pub-
lished protocols (Weissmiller et al., 2015). Briefly, PC12 nnr5 cells (RRID:
CVCL_C128) were cultured on coverslips that were precoated with
Matrix gel (BD Biosciences). Aafter serum starvation for 2 h, cells were
treated with either 50 ng/ml wtNGF or 50 ng/ml NGF R100W. Cells were
then fixed for 10 min with 4% paraformaldehyde at 37°C and permeabil-
ized for 15°C at room temperature with 0.1% Triton X-100; 3% BSA and
5% goat serum in PBS were used for blocking. The cells were then incu-
bated overnight at 4°C with blocking solution containing 1/100 diluted
primary antibody, active RhoA from New East Biosciences (catalog
#26904; RRID:AB_1961799). After washing 3� primary antibody with
PBS and rocking fir 5 min, the cells were incubated with a 1/800 dilution
of Alexa Fluor 488-goat anti-mouse IgG (Invitrogen catalog #A1100) for
1 h at room temperature with rocking covered with foil. After 3 washes
with PBS, nuclei were labeled with 1 �g/ml Hoechst 33342 (bisBenzimide
H 33342 trihydrochloride, Sigma-Aldrich catalog #B2261) for 5 min at
room temperature. Cells were rinsed, air-dried, mounted, and examined
with a Leica microscopy using a 100� oil objective lens.

Statistical analysis. All experiments were repeated at least three times
independently. Statistical analyses of results and calculation of p-values
were performed using Prism 5 software (GraphPad Software; RRID:
SCR_015807). For un-pairwise comparisons, the Student’s t test was
used. For multiple comparisons, the Tukey one-way ANOVA (RRID:
SCR_002427) test was used. Data are presented as mean 	 SEM. *p 

0.05, **p 
 0.01, ***p 
 0.001.

Sung et al. • NGFR100W Fails to Engage p75NTR to Elicit Pain J. Neurosci., April 4, 2018 • 38(14):3394 –3413 • 3397

https://scicrunch.org/resolver/SCR_001622
https://scicrunch.org/resolver/SCR_011323
https://scicrunch.org/resolver/AB_632012
https://scicrunch.org/resolver/AB_2298805
https://scicrunch.org/resolver/AB_331646
https://scicrunch.org/resolver/AB_330744
https://scicrunch.org/resolver/AB_330239
https://scicrunch.org/resolver/AB_628232
https://scicrunch.org/resolver/AB_628119
https://scicrunch.org/resolver/AB_10621534
https://scicrunch.org/resolver/AB_1266979
https://scicrunch.org/resolver/AB_915553
https://scicrunch.org/resolver/CVCL_C128
https://scicrunch.org/resolver/AB_1961799
https://scicrunch.org/resolver/SCR_015807
https://scicrunch.org/resolver/SCR_002427


Results
NGF R100W does not elicit acute thermal or mechanical
hyperalgesia in vivo
Previous studies suggested that the NGF mutation associated
with HSAN V disrupted either the processing of the proform (i.e.,
NGF R221W) or secretion of the mature form (NGF R100W), result-
ing in preferential secretion of the NGFR221W (Larsson et al., 2009;
Covaceuszach et al., 2010; Carvalho et al., 2011; Capsoni, 2014).
However, these findings and interpretations are perplexing
because HSAN V patients report no autonomic symptoms (Cap-
soni, 2014), which would argues against increased levels of pro-
NGF, a p75 ligand that induces death of sympathetic neurons
(Roux and Barker, 2002; Nykjaer et al., 2005; Khodorova et al.,
2013). Furthermore, these patients have intact mental abilities,
arguing against clinically meaningful CNS neuronal loss and dys-
function. To further explore the binding, signaling, and actions of
NGF R100W, we produced and characterized the mature form of
the protein in HEK293 cells.

Although superficial sensation in patients homozygous for
NGF R100W is normal, it is unknown whether this mutant NGF
can induce nociceptor sensitization or transition to chronic
pain. Therefore, we measured the behavioral response of adult
rats to mechanical stimuli or noxious thermal stimulus after a
single injection of either wtNGF or NGF R100W. Proteins were
administered intradermally to the hindpaws of adult male
Sprague Dawley rats following published protocols (Taiwo et
al., 1991).

We used the Randall–Sellito method to measure mechanical
threshold (Randall and Selitto, 1957). For all experiments, base-
line values were measured before the injection of NGF. Previous
reports showed that 10 ng to 1 �g of injected wtNGF induced
significant mechanical hyperalgesia (Andreev et al., 1995; Malik-
Hall et al., 2005). When 200 ng of wtNGF (Fig. 1A–C, blue) was
injected to the dorsum of the rat’s hindpaw, the mechanical no-
ciceptive threshold was reduced by �25% compared with base-
line (p 
 0.0001, unpaired t test, 0 m vs 60 m on the first day; Fig.
1B,C, blue). Mechanical hyperalgesia was evident as soon as 15
min and reached the maximum by 1 h, an effect that lasted for
�24 h. Hyperalgesia was diminished to �15% by 5 d (Fig. 1C). In
marked contrast to wtNGF, injection of 200 ng of NGF R100W had
no effect on mechanical nociceptive threshold (Fig. 1B,C, red).

We then measured thermal hyperalgesia using the Hargreaves
method (Hargreaves et al., 1988). Intraplantar injection of 600 ng
of wtNGF to the hindpaw of rats induced thermal hyperalgesia, as
demonstrated by as much as a 34.8% decrease in nociceptive
threshold (p � 0.0186, 0 vs 45 m, unpaired t test; Fig. 1D–F,
blue). Acute thermal hypergelsia was first observed 20 –30 min
after injection, with the maximal effect at 45 min, followed by a
return to baseline (Fig. 1E,F, blue). In contrast, injection of 600
ng of NGF R100W did not induce acute thermal hyperalgesia (Fig.
1E,F, red). We conclude that, unlike wtNGF, NGF R100W does not
induce acute thermal or mechanical hyperalgesia.

NGF R100W induces hyperalgesic priming
To test whether NGF R100W could contribute to chronic pain, we
took advantage of the hyperalegesic priming paradigm with the
injection of prostaglandin E2 (PGE2) (Reichling and Levine, 2009). Be-
cause wtNGF was shown to induce hyperalgesic priming in rats
(Ferrari et al., 2010), we used this model to examine responses to
wtNGF and NGF R100W. Seven days after injection of 200 ng of
either wtNGF or NGF R100W, PGE2 (100 ng/5 �l) was injected into
the same injection site into adult rats (Fig. 1G). If a priming effect
for chronic pain is absent, then injection of PGE2 only induces

acute hyperalgesia that disappears by 4 h (Ferrari et al., 2010,
2013, 2015b). However, in the presence of priming, the same dose
of PGE2 induces a much prolonged hyperalgesia to mechanical
stimuli (Aley and Levine, 1999; Reichling and Levine, 2009).

As reported previously (Ferrari et al., 2010), intradermal in-
jection of wtNGF (200 ng) induced acute mechanical hyperalge-
sia that lasted through day 7 (Fig 1H, I). As before, NGF R100W

failed to induce acute mechanical hyperalgesia (Fig. 1H, I). On
the seventh day after measuring the threshold baseline, PGE2 was
injected into the same site as for NGF and the mechanical thresh-
old was measured at 30 min and 4 h thereafter. Consistent with
previous findings (Aley and Levine, 1999; Ferrari et al., 2010), in
animals treated with wtNGF, PGE2 induced prolonged hyperal-
gesia unattenuated at least for 4 h (Fig. 1H, I, blue), whereas in
naive subjects, PGE2 induced only acute hyperalgesia at 30 min
and the hyperalgesic effect was largely dissipated at 4 h (Fig. 1H, I,
black, naive). Remarkably, NGF R100W was also as potent as wt-
NGF in inducing priming with prolonged PGE2 hyperalgesia,
lasting at least 4 h (Fig. 1H, I, red, NGF R100W). We conclude that
NGF R100W retains the binding and signaling necessary to induce
hyperalgesic priming (Fig. 1H, I) despite its inability to induce
acute hyperalgesia (Fig. 1B,C,E,F). These findings suggest that
studies of NGF R100W may provide insights into mechanisms un-
derlying the nociceptive and trophic functions of NGF in sensory
neurons.

NGF R100W does not potentiate low H �-evoked response in
sensory neurons in vitro
Among the known mechanisms of pain transduction, NGF
produces acute hypersensitivity by potentiating nociceptive ion
channels such as the capsaicin receptor (also known as TRPV1)
and acid-sensing ion channels (ASICs) (Szallasi and Blumberg,
1999; Qiu et al., 2012; McCleskey and Gold, 1999; Chuang et al.,
2001; Julius and Basbaum, 2001; Mamet et al., 2003; Yen et al.,
2009). ASICs and TRPV1 are proton-gated nonselective cation
channels that mediate acid-evoked pain in peripheral sensory
neurons (Caterina et al., 2000; Davis et al., 2000; Chen et al., 2002;
Hellwig et al., 2004). We next performed patch-clamp recordings
to test whether NGF R100W no longer elicited nociceptive response
at the cellular level in cultured rat E15.5 DRG sensory neurons. At
8 d in culture (DIC8), neurons were starved for NGF for 2 h. We
used a moderate acidic solution, pH 5.5, to activate ASICs and
TRPV1 by puffing the patch-clamped cell body (Fig. 2A). Proton-
evoked currents were measured before and after a 10 min appli-
cation of either wtNGF or NGF R100W (Fig. 2B). The responses
were normalized by calculating the ratio of the “after NGF” value
to the “before NGF” value. Consistent with previous studies (Ko-
plas et al., 1997; Shu and Mendell, 1999a,b), 10 min of wtNGF
treatment produced an acute sensitization, as displayed by a 1.5-
fold increase in proton evoked current (Fig. 2C). However,
NGF R100W did not induce hypersensitization (Fig. 2C; wtNGF vs
NGF R100W; p 
 0.01; paired t test).

NGF R100W induces differentiation and supports survival of
rat E15.5 DRG neurons
HSAN V patients show reduced responses to painful stimuli but
retain normal cognitive function (Einarsdottir et al., 2004). We
thus speculated that NGF R100W would sustain trophic signaling,
resulting in the differentiation and survival of DRG sensory
neurons (Winter et al., 1988; Wu et al., 2007). To compare the
bioactivity of NGF R100W with wtNGF, we performed a dose–
response survival assay of DRG neurons for both wtNGF and
NGF R100W (0, 10, 50, and 100 ng/ml). We used E15.5 DRG and
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Figure 1. NGF R100W does not induce acute sensitization in adult rats. A–C, Mechanical hyperalgesia. The Randall–Selitto method was used to measure mechanical hyperalgesia in adult rats. After
intradermal injection of 200 ng of wtNGF (n � 6) or NGF R100W (n � 6) into the rat’s hindpaws, mechanical threshold was measured at the indicated times. A significant decrease in mechanical
nociceptive threshold in rats injected with wtNGF was seen within 15 min, reached a maximum by 1 h, and lasted at least 5 d. In contrast, NGF R100W did not produce a significant decrease in the
threshold during the 5 d period. D–F, Thermal hyperalgesia. The Hargreaves test was used to measure thermal hyperalgesia. Baseline response was first measured for each test animals before NGF
injection. Hindpaws were injected with 600 ng of either wtNGF or NGF R100W. Thermal threshold was measured at the indicated times. Animals that were injected with wtNGF showed a significant
decrease at 30 min. The decrease was dissipated after 1 h. NGF R100W failed to reduce thermal nociceptive threshold during the entire 1 h test period. Six rats for (Figure legend continues.)

Sung et al. • NGFR100W Fails to Engage p75NTR to Elicit Pain J. Neurosci., April 4, 2018 • 38(14):3394 –3413 • 3399



measured the number of healthy DRGs at DIC8 after treating
with either wtNGF or NGF R100W (Fig. 3A). At DIC8, phase con-
trast images of DRG cultures were taken and survival was quan-
titated (Fig. 3B). Unpaired t test was performed to compare the
number of healthy DRGs treated with wtNGF or NGF R100W. At

any concentration of treatment, NGF R100W exerted a trophic ef-
fect to support the survival of DRGs comparably to wtNGF. As a
control, cultures with no addition of NGF showed significant
death (Fig. 3A). We thus conclude that NGF R100W supports the
survival of rat E15.5 DRG neurons and that it does so as effec-
tively as wtNGF.

NGF R100W binds to and is internalized through TrkA, but not
p75 NTR

NGF binds and signals through TrkA and/or p75 NTR receptors to
effect neuronal function (Frade and Barde, 1998; Yoon et al.,
1998; Sofroniew et al., 2001; Chao, 2003). We then explored
whether NGF R100W differed from wtNGF in binding and inter-
nalization through TrkA and p75 NTR. We used a NIH3T3 cell line
that stably expresses either TrkA or p75 NTR (Hempstead et al.,
1991; Kaplan et al., 1991; Zhou et al., 1994; Huang et al., 1999) to
perform in-cell binding assays. NGF R100W and wtNGF were each
labeled with Quantum Dots 655 (QD655) before incubating with
either NIH3T3-TrkA-, or NIH3T3-p75 NTR cells. Saturable bind-
ing was demonstrated by using a range of NGF concentrations

4

(Figure legend continued.) each group (n � 6) were used in the test. Unpaired t tests were
performed against the baselines within each NGF injection group to produce p-values. Compari-
ons were done between the threshold before injection with either wtNGF or NGF R100W to
produce p-values that were noted in the figure. *p 
 0.05, **p 
 0.01, ***p 
 0.001. G–I,
PGE2-hyperalgesic priming effect. On d 7 after NGF administration, PGE2 was injected intrader-
maly (100 ng/5 �l) to test hyperalgesic priming. Naive rats (nontreated with NGF) are shown as
a control. Naive animals showed acute hyperalgesia within 30 min, but not at 4 h, after PGE2

injection. Rats pretreated with intradermal injection of wtNGF showed a decrease in the me-
chanical nociceptive threshold after PGE2 injection at 30 min, like the controls, but unlike con-
trols, it lasted longer than 4 h. Rats pretreated with NGF R100W showed significant decrease in
mechanical nociception after PGE2 injection, which lasted at least 4 h and was comparable to
wtNGF. Data are presented as mean 	 SEM. Unpaired t tests were performed versus values
before PGE2 injection. ***p 
 0.001 Six paws (n � 6) were used for wtNGF or NGF R100W.
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Figure 2. Low H �-evoked response by single-cell patch clamping. Rat E15.5 DRG neurons were cultured as described in the Materials and Methods. At DIC5, DRG neurons were deprived of NGF
for 2 h. A, Phase contrast image of DRG neurons (under 60� magnification) showing the experimental setup. The patch pipette approached from the left and another glass pipette that applied brief
puffs of pH 5.5 solution to the nearby cell body was placed at a distance. This pipette did not induce mechanical responses. B, Whole-cell patch-clamp recording was performed at a holding potential
of �60 mV in DRG. The proton-evoked response was measured after a brief application of moderate acidic solution of pH 5.5 (blue arrow) onto the cell body to induce inward current (designated
as “before NGF response”). Then, 50 ng/ml of wtNGF or NGF R100W (green arrow) was applied to the bath solution for 10 min and three additional puffs were applied to record the after NGF response.
C, The data were normalized by calculating the ratio of the after NGF response to the before NGF response. Bar graphs represent mean 	 SEM. wtNGF sensitized the inward current by 1.45-fold, but
not NGF R100W ( p � 0.0096; wtNGF vs NGF R100W; unpaired t test). **p 
 0.01.
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(Fig. 4A,B). Binding data were fit to a classical hyperbolic bind-
ing curve (one-site binding) and nonlinear regression analysis
using Prism 6 software. The results showed that NGFR100W binding
to TrkA (Kd � 2.79 nM) was essentially indistinguishable from that
for wtNGF (Kd � 2.27 nM; Fig. 4A). In contrast, NGFR100W showed
minimal binding to p75NTR even at concentrations at which wtNGF
binding was essentially saturated (Fig. 4B).

To further confirm that NGF R100W binding to p75 NTR was
markedly reduced, we performed in vitro binding assays for
p75 NTR using the extracellular domain (p75 NTR-ECD). Either
wtNGF or NGF R100W in their biotinylated forms at a final con-
centration ranging from 0 to 0.25 nM was incubated with recom-
binant p75 NTR-ECD; streptavidin–agarose beads were used to
pull down p75 NTR-ECD that bound to biotinylated wtNGF or
NGF R100W. The levels of p75 NTR-ECD were assayed by immuno-
blotting using the anti-p75 NTR antibody, REX. Figure 4, C and E,
shows that increasing concentrations of wtNGF resulted in in-
creasing amounts of p75 NTR-ECD in the pull-down complex. In

contrast, NGF R100W failed to pull down detectable p75-ECD even
at the highest concentration (Fig. 4D). We conclude that the
binding affinity of NGF R100W for p75 NTR is markedly reduced
with respect to that for wtNGF; therefore, NGF R100W fails to bind
p75 NTR.

To extend these analyses, we then assayed whether wtNGF and
NGF R100W differed with respect to TrkA- or p75 NTR-receptor-
mediated internalization. Because NGF R100W showed reduced or
absent binding to p75 NTR, NGF R100W would also fail to be inter-
nalized via p75NTR. We performed live cell imaging using NIH3T3-
TrkA- or NIH3T3-p75 NTR-expressing cells (Huang et al., 1999).
In addition to wtNGF and NGF R100W, we also took advantage of
two well characterized NGF mutants: the KKE mutant, which
shows a significant decrease in binding affinity for p75 NTR but
unaltered binding affinity for TrkA (Ibáñez et al., 1992; Mahapa-
tra et al., 2009), and the �9/13 mutant, which poorly binds to
TrkA while maintaining normal binding affinity for p75 NTR

(Hughes et al., 2001). Accordingly, KKE and �9/13 NGF served as
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Figure 3. DRG survival assays. Rat E15.5 DRG neurons were cultured as described in the Materials and Methods. Parallel cultures were supplied with either wtNGF or NGF R100W at a range from 0
to 100 ng/ml. A, Phase contrast images of DRG neurons at 8 d in vitro were captured and representative images are shown. Negative control (no NGF, 0 ng/ml) failed to maintain the survival of DRGs.
NGF R100W maintained the survival as potently as wtNGF. B, The survival rate of DRG neurons (i.e., cell counts) by wtNGF or NGF R100W was not significantly different. E, Unpaired t test was performed
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positive controls for binding to TrkA and p75 NTR, respectively.
We produced monobiotinylated forms of KKE and �9/13 NGF
along with wtNGF and NGF R100W to facilitate conjugation to
QD655. These QD-655 labeled forms of NGF were incubated
with cells at a final concentration of 0.2 nM at 37°C (30 min for
NIH3T3-TrkA cells and 2 h for NIH3T3-p75 NTR cells) to allow
for internalization. Incubations were followed by extensive wash-
ing at 4°C in PBS (3�). QD655 signals were captured by live
imaging and defined as internal if the QD signal was found within
the perimeter of the cell and at the same focal level as the nucleus.
As with wtNGF and the KKE mutant, NGF R100W was internalized
by NIH3T3-TrkA cells (Fig. 5A). The process was receptor medi-
ated because premixing with 100� wtNGF (i.e., not conjugated
to QD 655) eliminated NGF R100W-QD655 internalization. The
�9/13 mutant was not internalized in NIH3T3-TrkA cells (Fig.
5A,C). As predicted, NGF R100W and the KKE mutant failed to be
internalized into NIH3T3-p75 NTR cells; with both wtNGF and
the �9/13 mutant, bright QD signals were detected inside

NIH3T3-p75 NTR cells (Fig. 5B,C). As a control, nonconjugated
QDs were not detected in either cell line. These results are further
evidence that NGF R100W is similar to wtNGF in that it binds to
TrkA, but differs in not binding to p75 NTR.

NGF R100W activates TrkA-mediated signaling pathways, but
fails to stimulate a p75 NTR downstream effector
Based on the binding and internalization results, we predicted
that NGFR100W activated the TrkA-mediated, but not the p75NTR-
mediated signaling, pathway. We next determined whether wt-
NGF and NGF R100W activated two main effectors of TrkA
downstream signaling cascades: Erk1/2 and Akt using PC12 cells
(Fig. 6A). For this purpose, PC12 was stimulated with 50 ng/ml of
either wtNGF or NGF R100W. Cells then were lysed and analyzed
using immunoblotting. Figure 6H, shows that NGF R100W in-
duced phosphorylation of TrkA, Erk1/2, and Akt to the extent
comparable to wtNGF. We also performed semiquantitative mea-
surement of pTrkA activated by wtNGF or NGFR100W. The signals
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for pTrkA were normalized against GAPDH (Fig. 6-1, available
at: https://doi.org/10.1523/JNEUROSCI.1686-17.2018.f6-1). We
did not detect a significant difference in pTrkA (Fig. 6-1, available
at: https://doi.org/10.1523/JNEUROSCI.1686-17.2018.f6-1).
These findings suggest that NGF R100W maintains its ability to
activate TrkA, Erk 1/2, and Akt signaling pathways, which are
primarily involved in providing trophic support for neuronal
survival and differentiation.

We then assessed whether both wtNGF and NGF R100W stim-
ulated two signaling pathways downstream of p75 NTR receptors.
We investigated whether RhoA and Cofilin, two effectors down-
stream to p75 NTR (Yamashita and Tohyama, 2003; Vardouli et al.,
2005), were phosphorylated or activated by wtNGF or NGFR100W. Us-
ing PC12 nnr5 cells that express p75 NTR with little or no TrkA
(Loeb and Greene, 1993), we tested whether treatment of these
cells with either wtNGF or NGF R100W induced phosphorylation
of Cofilin (i.e., p-Cofilin) by immunoblotting using an antibody
that specifically recognizes the phosphorylated form of Cofilin.
Our results show that Cofilin was activated when cells were
treated by wtNGF. However, the level of phosphorylated Cofilin
was significantly less in cells treated by NGF R100W (Fig. 6D,E).
We then assayed for activation of RhoA, a signaling molecule
upstream of Cofilin in the p75 NTR signaling cascades (Vardouli et
al., 2005). As demonstrated by immunostaining with specific anti-
body to activated RhoA (i.e., RhoAGTP), RhoAGTP exhibited marked
activation by wtNGF, as evident by strong cytosolic staining (Fig.
6F). In contrast, NGF R100W resulted in much less activation of
RhoA GTP, with only sparse speckles of signals in the cytoplasm
(Fig. 6F). These data further confirm that NGF R100W is ineffec-
tive in activating signaling cascades downstream of p75 NTR.

Interestingly, we observed that NGF R100W was unable to fully
induce phosphorylation of PLC-� (Fig. 6G). Therefore, we inves-
tigated whether failure of activation of the p75 NTR signaling by
NGF R100W was responsible for the inability to fully phosphory-
late PLC-�. Indeed, there has been evidence suggesting that acti-
vated p75 NTR downstream effectors positively affect downstream
of TrkA signaling (Ruiz-Argüello et al., 1996; Basáñez et al., 1997;
Ruiz-Argüello et al., 1998; Cremesti et al., 2002). For example,
others have shown that ceramide-induced changes in membrane
microenvironments facilitate PLC signaling. We therefore spec-
ulated that treating cells with wtNGF under conditions in which
p75 NTR was inhibited would cause a reduction in PLC-� activa-
tion, as was the case for NGF R100W (Fig. 6H). We used PC12 cells
to determine whether p75 NTR inhibition affected PLC-� by pos-
sible crosstalk between p75 NTR and TrkA. Our results showed
that phosphorylation of PLC-� was decreased when PC12 was
pretreated with a p75 NTR inhibitor, TAT-pep5 (Head et al.,
2009), followed by stimulation with wtNGF (Hasegawa et al.,
2004), as shown in Figure 6F. These results suggest that failure of
p75 NTR signaling by NGF R100W leads to failure of PLC-� signal-
ing by as yet unknown mechanisms, even though NGF R100W

stimulates other downstream signaling such as Erk1/2 and Akt
under TrkA. NGF R100W activates most TrkA downstream signal-
ing events, but not those mediated by p75.

NGF R100W is retrogradely transported in a fashion similar
to wtNGF
Axons feature prominently in facilitating trafficking and signal-
ing of NGF. A possibility existed that the loss of pain signaling in
NGF R100W was due to its inability to be effectively transported
retrogradely to the cell soma in sensory neurons. The ability of
R100W to induce priming suggested that it was effectively trans-
ported retrograde in axons to engage the cell body responses that
support priming. To test this possibility, we established microflu-
idic cultures of dissociated rat E15.5 DRG neurons. To visualize
trafficking of NGF, we conjugated biotinylated wtNGF or NGFR100W

with streptavidin-QD605 at a 1 NGF dimer to 1 QD605 ratio. This
experimental paradigm was used to track axonal movement of a
single NGF dimer by live imaging to produce highly quantitative
results (Sung et al., 2011). wtNGF was retrogradely transported
with an average speed of 1.5 �m/s (Fig. 7A), which is consistent
with previous results (Cui et al., 2007; Sung et al., 2011). Based on
the analysis of �100 endosomes/condition, the average moving
speed of NGF R100W revealed no marked difference from that of
wtNGF (Fig. 7B).

NGF is known to exhibit a “go and stop” behavior during
transport (Cui et al., 2007; Sung et al., 2011). Therefore, we
tested whether the moving speed during the “go” period dif-
fered significantly between wtNGF and NGF R100W. Our results
demonstrated that this was not the case (Fig. 7D). By super-
imposing the kymographs of NGF R100W onto those of wtNGF
(Fig. 7C), our results confirmed that NGFR100W behaved exactly
like wtNGF during retrograde transit from the axonal terminal to the
cell body. We thus conclude that the critical function in retrograde
axonal transport of NGF in sensory neurons is preserved in
NGFR100W.

Study of contribution of TrkA or p75 NTR to NGF-induced
sensitization effect in vivo
Our findings suggest that NGF R100W retained its ability to bind to
and activate TrkA while failing to engage p75 NTR. However,
when injected into adult rats, NGF R100W still induced hyperalge-
sic priming without causing acute sensitization to mechanical
stimuli. These results raise the possibility that TrkA and p75 NTR

may play a distinct role(s) in NGF-induced hyperalgesia and hy-
peralgesic priming. We used pharmacological reagents to selec-
tively inhibit signaling downstream of TrkA and/or p75 NTR:
K252a for blocking TrkA activation and GW4869 for inhibiting
neutral sphingomyelinase downstream of p75 NTR.

Vehicles or inhibitors (K252a, GW4869, K252a � GW4869)
were injected only once 5 min before NGF injection (Fig. 8A). We
then measured the mechanical nociceptive threshold at 1 h and
7 d after NGF injection, as outlined in the experimental design
(Fig. 8A). K252a produced a robust reduction (�30%) in NGF
hyperalgesia (p � 0.0001); GW4869 had a small but insignificant
reduction (�7%, p � 0.0557); combination of K252a with
GW4869 caused a �25% reduction (p 
 0.0001). Consistent
with results presented in Figure 1, NGF-induced hyperalgesia had
returned to baseline nociceptive threshold at day 7 after NGF
treatment regardless of inhibitors (Fig. 8A).

We then measured the impact of these inhibitor treatments on
priming after injection of PEG2, as in Figure 1. Treatment with
K252a, GW4869, or both did not change acute sensitization sig-
nificantly 30 min after PEG2 injection (Fig. 8A). However, at 4 h
after PEG2 injection, K252a and GW4869 each alone produced a
moderate reduction in PGE2 hyperalgesia (p � 0.0076 for K252a;
p0.0359 for GW4869); Strikingly, combination of K252a with
GW4869 induced complete elimination of PGE2 hyperalgesia

4

(Figure legend continued.) used to investigate internalization of the different forms of NGF
proteins and representative images are shown after incubating with NGF-QD655 for 2 h at 37°C.
The results show that both wtNGF and �9/13, which are known to bind to the p75 NTR receptor,
were internalized into NIH3T3-p75 NTR cells and the QD655 signals were mostly concentrated
around the peripheries of the cell. No signals were observed in the NIH3T3-p75 NTR cells when
treated with either the KKE mutant or NGF R100W. C, Internalized QD655 within the cells were
quantitated. Data are presented as mean 	 SEM.
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compared with wtNGF. F, Immunostaining of RhoA-GTP in PC12 nnr5. PC12 nnr5 were plated on the coverslip coated by poly-L-lys, starved for 2 h, treated with (Figure legend continues.)
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(p � 0.0006; Fig. 8A). These results further support an interac-
tion between TrkA and p75 NTR in mediating the priming effect
by NGF.

Because there is discrepancy between NGF R100W injection
studies (Fig. 1B,C) versus GW4869 treatment in inducing acute
hypersensitivity (Fig. 8A), we repeated the Randall–Selitto exper-

iment with higher dosages of GW 4869. We chose two different
dosages, 10 �g and 1000 �g. Previous studies have demonstrated
that 11.55 �g/injection of GW 4869 was effective in blocking
acute sensitization by NGF (Khodorova et al., 2013, 2017). The
1000 �g dose was to ensure that a maximal effect was achieved. As
demonstrated in Figure 8B, 10 �g/injection appeared to yield a
maximal effect; both dosages, 10 �g and 1000 �g, successfully
prevented NGF-induced acute hyperalgesia at 1 h after NGF
injection, which is consistent with published studies (Khodo-
rova et al., 2013, 2017), but also from our own studies presented
in Figure 1, B and C. At 1 h after NGF injection, vehicle injection
decreased the mechanical pain threshold �34.57% and 10 �g
and 1000 �g of GW4869 decreased the threshold �19.14% (p �
0.0043) and �17.64% (p � 0.0303), respectively. (Fig. 8B). We
then measured priming after injection of PGE2 with these two
high dosages of GW4869. Both dosages also blocked priming
significantly compared with vehicle (p � 0.0087 and p � 0.0043;
Fig. 8B). These data further confirmed our result pointing to the
loss of p75 NTR downstream signaling in NGF R100W as a mecha-
nism underlying loss of pain perception. Together, these data
suggest that both TrkA and p75 NTR are responsible for mediating
acute hypersensitivity and priming.

4

(Figure legend continued.) either wtNGF or NGF R100W, and the preparations were fixed and
permeabilized, followed by the protocol. Differential interference contrast imaged cells show
single staining for active form of RhoA (RhoA-GTP) or double staining for active RhoA and
nucleus. RhoA-GTP staining revealed that RhoA activation was stronger in the cell treated with
wtNGF than in the cell treated with NGF R100W. G, H, Analysis of PLC-� signaling in PC12 cells by
immunoblotting. G shows that PLC-� stimulated by NGFR100W differs significantly from the
one by wtNGF. In contrast, the same lysate showed similar amount of activation of Erk1/2 and
Akt. PC12 cells were pretreated with the p75 NTR inhibitor Pep15, followed by treatment with 50
ng/ml NGF. In parallel samples, cells were treated with vehicle, 50 ng/ml NGF, or 50 ng/ml
NGF R100W. Cell lysates were analyzed by SDS-PAGE/immunoblotting with specific antibodies as
indicated. The data show thatactivation of PLC-� was markedly suppressed by NGF R100W com-
pared with wtNGF. wtNGF failed to fully activate PLC-� when p75 NTR was functionally inhib-
ited, similar to partially activated PLC-� when treated by NGF R100W. Data are presented as
mean 	 SEM. p values were calculated using student unpaired t-test. *p 
 0.05, **p 
 0.01,
***p 
 0.001.
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Figure 7. Analysis of retrograde axonal transport by live imaging. A, B, Rat E15.5 DRG neurons were cultured in microfluidic chamber. Kymographs of axonal movement of wtNGF and NGF R100W

based on real-time imaging series of axonal transport assays are shown. The graphs represent spatial position of QD605 signals (in micrometers) over time (seconds). The results for both wtNGF and
NGF R100W showed similar slopes, suggesting that NGF R100W moves at a speed within the axon similar to that of wtNGF. C, Overlayed kymographs of displacement of axonal QD605 signals for wtNGF
and NGF R100W. The 100 –150 QD605 signals for either wtNGF (blue) or NGF R100W (red) were analyzed and superimposed. The results demonstrate that axonal movement of wtNGF and NGF R100W

behaves in a strikingly similar fashion. D, Total average transport speeds including pausing for wtNGF and NGF R100W were calculated to be 1.5 and 1.4 mm/s, respectively. The moving velocity
without pausing, that is, during the “go” motion period, was 1.7 mm/s for both wtNGF and NGF R100W.
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Discussion
Studies on a naturally occurring mutation in HSAN V patients,
NGF R100W, have provided new insights into NGF-mediation of
nociceptor function. Using molecular, cellular, and biochemical
techniques, we demonstrated that NGF R100W retained the ability
to bind and signal through TrkA receptors and robustly support
the trophic status of DRGs. In contrast, NGF R100W failed to bind
or activate of p75 NTR. Our in vivo studies have demonstrated that
inhibition of TrkA and p75 NTR signaling, as well as delivery of
antisense reagents targeting these receptors, provided evidence
for a role for both receptors in nociceptor regulation. Whereas
TrkA activation mediated acute sensitization and priming, p75NTR

signaling appeared to contribute only to priming, thereby augment-
ing the TrkA response. Remarkably, and in contrast to its ability to
induce trophic responses via TrkA, NGFR100W induced nociceptor
priming, but differed from wtNGF by not causing acute sensitiza-
tion. These observations are evidence for distinct TrkA signaling
pathways mediating trophic effects and nociceptor function and
provide insights into the biology of HSAN V.

Consistent with previous results (Covaceuszach et al., 2010;
Capsoni et al., 2011), we confirmed that, whereas NGF R100W

binding and activation of TrkA is robust, binding and signaling
through p75 NTR is essentially absent. Important to its ability to
prime nociceptors, NGF R100W was internalized at axonal tips of
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 0.05, **p 
 0.01.

Sung et al. • NGFR100W Fails to Engage p75NTR to Elicit Pain J. Neurosci., April 4, 2018 • 38(14):3394 –3413 • 3407



DRG sensory neurons and traveled toward the cell body at the
speed and with the velocity characteristic of wtNGF. Given prop-
erties in common with wtNGF, it is unclear why NGF R100W failed
to induce acute sensitization. Possibilities include differences
with respect to wtNGF in the structure of the NGF R100W/TrkA
complex, the structure of the complex in signaling endosomes, or
the downstream partners recruited to these complexes. Further-
more, it is hard to exclude the possibility that TrkA downstream
signaling events implicated in pain could be positively affected by
crosstalk between p75 NTR and TrkA, as suggested by only partial
PLC activation by NGF R100W. This suggests the possibility that
TrkA downstream events that support trophic functions are re-
tained in NGF R100W, whereas p75 NTR downstream and some
TrkA downstream events that affect pain threshold are reduced in
NGF R100W. In any case, it is apparent that differences must exist
for the signaling events that subserve TrkA trophic functions and
its acute effects on nociceptor sensitization. Further studies to
decipher the basis for these differences will benefit from the abil-
ity to compare the signaling properties of NGF R100W/TrkA with
wtNGF/TrkA.

Our data help to explain the clinical manifestations of
NGF R100W mutation. Studies of affected families point to con-
siderable interpatient variability. Both homozygous and
heterozygous individuals demonstrate orthopedic manifesta-
tions, the most frequent of which is multiple painless fractures,
typically in the legs and feet (Einarsdottir et al., 2004; Minde et al.,
2004; Larsson et al., 2009; Capsoni, 2014). Homozygous patients
show decreased pain sensation, mainly at the forearms and legs.
In contrast, they respond to truncal pain and register visceral
pain. Distal testing of temperature thresholds showed increases in
some homozygous and heterozygous patients. Sensitivity to soft
touch, joint position, vibration sensation, and visceral pain are
normal. Sural nerve biopsy reveals loss of C and A delta sensory
fibers in both homozygotes and heterozygotes (Minde et al.,
2004, 2009; Minde, 2006; Sagafos et al., 2016). All patients show
reduced sensory innervation of skin and reduced sympathetic
innervation of sweat glands, with more marked changes in ho-
mozygotes (Axelsson et al., 2009). Although a decrease in pain is
consistent with the inability of NGF R100W to induce acute noci-
ceptor sensitization, the clinical picture is that of a length-
dependent sensory and sympathetic neuropathy. Indeed, this
explains best the painless fractures and decreased pain sensation
in distal lower limbs, increased distal thresholds for cold and heat
perception, loss of sensory and sympathetic innervation of skin,
and preservation of truncal pain. In view of the preservation of
TrkA signaling by NGF R100W, the question arises as to how
NGF R100W causes the syndrome. The likely cause is failure to
secrete the protein in sufficient amounts to support the distal
axons of sensory and sympathetic neurons. NGF is critical for the
survival and maintenance of sympathetic and sensory neurons
(Ibáñez et al., 1992; Kew et al., 1996; Casaccia-Bonnefil et al.,
1998; Sofroniew et al., 2001; Chao, 2003). Decreased secretion of
NGF R100W, as demonstrated in other studies, must be confirmed
with human cells expressing the mutant protein (Larsson et al.,
2009; Covaceuszach et al., 2010).

A causal link between NGF deficiency in innervated targets
and neuronal dysfunction and degeneration was established
during the earliest studies on NGF (Levi-Montalcini and
Hamburger, 1951; Cohen and Levi-Montalcini, 1956; Levi-
Montalcini and Angeletti, 1961, 1963; Levi-Montalcini, 1964)
and has been shown in studies of the developing and mature
nervous system. Attempts to increase NGF availability in the
hopes of reducing neurodegeneration (Wilcox and Johnson,

1988; Apfel et al., 1994; Apfel and Kessler, 1995, 1996; Apfel,
1999a,b, 2002; McArthur et al., 2000; Cattaneo et al., 2008)
have failed in part due to NGF dose-limiting pain (Eriksdotter
Jönhagen et al., 1998; Apfel, 2000, 2002). That NGF R100W

maintains trophic functions without acutely sensitizing noci-
ceptors has suggested that this isoform of NGF might be used
to provide trophic support without causing pain (Capsoni et
al., 2011, 2014). That NGF R100W maintains the ability of wt
NGF to prime nociceptors raises the caution that NGF R100W

treatment may not fully avoid the pain induced by wild-type
NGF.

Increasing evidence supports that both TrkA- and p75 NTR-
mediated signaling pathways are intimately involved in NGF-
induced hyperalgesia (Nicol and Vasko, 2007). Extensive
human genetic studies strongly support an essential role
played by TrkA in pain sensation; mutations in TrkA that
result in loss or reduced TrkA activity are associated with
congenital insensitivity to pain with anhidrosis (Indo, 2001,
2002). In addition, inhibiting of TrkA-mediated signaling
pathways such as Erk1/2 (Aley et al., 2001; Dai et al., 2002),
PI3K/Akt (Zhuang et al., 2004), and PLC-� (Chuang et al.,
2001) has been shown to block NGF-induced sensitization
both in vivo and in vitro. Consistent with these findings, we
used specific antisense oligos to attenuate expression of TrkA
via intrathecal administration or administered K252a to in-
hibit TrkA activation via acute intraplantar injection. Both
approaches affirmed that TrkA is required for both the acute
and chronic phase of sensitization induced by NGF.

Unlike TrkA, a role for p75 NTR in NGF-induced hyperalgesia
has been implicated largely by indirect evidence: (1) intrathecal
administration of anti-p75 NTR into animals reduced temperature
hyperalgesia and mechanical allodynia after nerve injury (Obata
et al., 2006); (2) direct application of an p75 NTR antibody to a
crushed sciatic nerve suppressed mechanical allodynia (Fukui et
al., 2010); (3) pretreatment with a p75 NTR antibody prevented
the increase in the number of action potentials induced by NGF
(Zhang and Nicol, 2004); (4) intraplantar injection of proNGF,
which selectively activates p75 NTR, and not TrkA, induced hyper-
algesia (Khodorova et al., 2013); and (5) NGF-induced sensitiza-
tion was attenuated by inhibiting p75 NTR-mediated activation of
the sphingomyelin-ceramide-sphingosine 1 phosphate and the
c-JUN kinase pathway (Zhang et al., 2002, 2006; Doya et al., 2005;
Obata et al., 2006; Khodorova et al., 2013).

We confirmed a role for p75 NTR in acute sensitization of me-
chanical nociceptors using GW4869. However, a discrepancy
exists between priming studies of NGF R100W in Figure 1 versus
GW4869 in Figure 8A; NGF R100W induced a priming effect com-
parably to wtNGF, whereas GW4869 failed to block the priming
effect by wtNGF even at higher dosages (Fig. 8B). This could be
explained by the lack of specificity of GW4869 in blocking neutral
SMase2 (Canals et al., 2011). The GW4869 specificity issue was
also raised in studies showing that GW4869 not only blocks
SMase, but also PLC and PP2A (Luberto et al., 2002). Moreover,
previous studies have shown that GW4869 abrogated NGF-
mediated TrkA trophic effects on cell viability (Candalija et al.,
2014), suggesting that block of nSMase2 could lead to partial
block of TrkA-mediated trophic signaling such as pAkt (Gills et
al., 2012). Therefore, the GW4869 effect could not be the same as
loss of p75 downstream by NGF R100W. This may explain the in-
consistency in our data showing incapability of priming by
GW4869 versus the priming capability by NGF R100W.

We are also aware of the specificity issues associated with
the use of K252a inhibitor to block TrkA. K252a selectivity has
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been studied in many studies. For example, K252A is known to
inhibit PKCs, which is also implicated in p75 downstream
(Mizuno et al., 1993). Not only inhibiting TrkA, at certain
range of concentration, K252a was also found to act as partial
inhibitor of the PDGF receptor (Nye et al., 1992).

Given all the caveats associated with the use of inhibitors in
our studies, our data suggest that p75 NTR plays an important
role in NGF-induced pain function (Zhang and Nicol, 2004;
Watanabe et al., 2008; Iwakura et al., 2010; Khodorova et al.,
2013, 2017). When p75 inhibition is combined with TrkA
suppression, both acute response and priming resulted in a
greater reduction in NGF-mediated hyperalgesic priming.
These results support a role for p75 NTR that is most evident in
its ability to synergize with TrkA to mediate NGF-induced
hyperalgesic priming. Therefore, the nociceptive functions
of NGF include contributions from both TrkA and/or p75 NTR.

To avoid the pitfalls associated with the use of inhibitors for
TrkA- or p75NTR-signaling pathways, future studies using
novel genetic models are needed to further study the contri-
butions of TrkA and p75 NTR to NGF-induced sensitization.
For example, TrkA activity can be specifically inhibited by
injection of nanomolar concentrations of derivatives of the
general kinase inhibitor PP1 (1NMPP1 or 1NaPP1) to block
NGF signaling in TrkA (F592A)-knock-in mice (Chen et al.,
2005). Ablation of p75 NTR can be induced in conditional
p75 NTR knock-out mice (Bogenmann et al., 2011; Wehner et
al., 2016). Use of these models is expected to further clarify the
contributions of TrkA and p75 NTR and suggest the possibility
that their signaling pathways interact to effect NGF-induced
sensitization.
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PM (2009) Transient receptor potential vanilloid 1, vanilloid 2 and
melastatin 8 immunoreactive nerve fibers in human skin from individuals
with and without norrbottnian congenital insensitivity to pain. Neurosci-
ence 162:1322–1332. CrossRef Medline

Barrett GL, Naim T, Trieu J, Huang M (2016) In vivo knockdown of basal
forebrain p75 neurotrophin receptor stimulates choline acetyltransferase
activity in the mature hippocampus. J Neurosci Res 94:389–400. CrossRef
Medline
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