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Abstract

Open system dynamics in quantum optomechanics

by

Dan Hu

Doctor of Philosophy in Physics

University of California, Merced

Professor Lin Tian, Dissertation Advisor

In this dissertation, I theoretically investigate the open system dynamics of cavity
optomechanical systems in the quantum limit, where a mechanical resonator cou-
ples to a cavity mode via radiation pressure force. Recent developments in nano-
fabrication and cooling techniques make it possible to optically control and manipu-
late the motion of micro- and nano-mechanical resonator. Several experiments have
demonstrated the possibility of preparing macroscopic mechanical resonators into
their quantum ground state, which makes optomechanical systems an ideal candidate
for studying the quantum behavior of macroscopic objects. One important direction
in quantum optomechanics is the study of the decoherence of optomechanical system
due to the interaction with their external environments. This dissertation explores
the decoherence effects by considering the influence of the radiation pressure coupling
on the interaction between optomechanical system and its environments. Because the
effects of the nonlinear interaction vary with the optomechanical coupling strength,
three different interaction regimes are fully studied here: the weak coupling, the
intermediate coupling and the strong coupling.

In Chapter 1, I introduce the basis of optomechanics and quantum open systems.
I first review the current development for the experimentally available optomechan-
ical systems, focusing on the description of the system and its Hamiltonian model,
the nonlinear properties of the radiation-pressure interaction and their possible ap-
plications. I also provide a brief introduction of the open system theory based on the
Born-Markov master equation and Langevin equation method, respectively.

Chapter 2 is concerned with the weak coupling regime where the system can be
linearized. We consider the validity of the general linearization procedure of an op-
tomechanical system in the unstable regime, which has been proposed for generating
large optomechanical entanglement by a pulsed scheme. Our results show that for a
pulse driven optomechanical system there exists a time window where the optome-
chanical dynamics can be fully characterized by a linearized model. We discuss the
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influence of the linearization window on entanglement generation for an optomechan-
ical system in the unstable regime. We also investigate the schemes of improving
optomechanical entanglement using time modulation and extend this idea to a three-
mode optomechanical system, where two cavity modes interact with one mechanical
mode. Our results reveal that with a suitable time modulation of the driving field,
the three-mode optomechanical system can have steady-states with significantly im-
proved entanglement between each subsystem, which provides an additional control
of entanglement dynamics in optomechanical systems.

In Chapter 3, we treat the nonlinear optomechanical interaction as a small pertur-
bation to the linearized model, which works for the standard optomechanical system
with an intermediate radiation pressure coupling. In this regime, the nonlinear part
of the optomechanical interaction starts to show its influence while the linearized op-
tomechanical interaction still dominates the dynamics for the system. We propose a
perturbative method to study the influence of the nonlinear interaction in the Heisen-
berg picture. It turns out that the perturbative approach successfully reveals the role
of the nonlinear coupling, which is consistent with the results from the general mas-
ter equation method, while the perturbative method developed in this chapter can
be applied to a much broader parameter regime as well as providing clear physical
pictures with its analytical form.

Finally, Chapter 4 is about the strong coupling regime, where the strength of
the optomechanical coupling is comparable to that of the mechanical frequency. In
this ultra-strong coupling regime, both the linearization and perturbation method
mentioned previously fail to provide correct dynamics. We establish a dressed-state
master equation method to investigate the optomechanical open system dynamics.
New coherent dynamics for this strongly coupled system are discovered with this
dressed-state master equation. We provide detailed comparison of this dressed-state
master equation with that of the standard master equation.
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Chapter 1

Introduction

Radiation pressure forces between light and matter come from the exchanges of mo-
mentum between the scattered photons and the reflecting object, where the momen-
tum change implies that the light is exerting a force on the object. To estimate the
magnitude of this force for a light beam with power P, the momentum change of
reflecting light during time ∆t is ∆p = 2P∆t/c and, as a result, the radiation force
is F = ∆p/∆t = 2P/c, which is a very tiny force due to the speed of light. For
example, the power of the sun light on earth is about 1.4KW/m2 and the corre-
sponding radiation force per square meter is 10−5N , which is ten orders smaller than
the atmospheric pressure force on the same area, i.e. 105N/m2. The radiation force
was firstly observed in the dust tails of comets by Kepler in the 17th century [1] and
has been studied by experiments since the early 20th century. Later, along with the
laser technology, radiation pressure forces were successfully applied to experimentally
trap and control the atomic system. One remarkable achievement is the laser cooling
technique, which allowed and initiated many important applications for atomic ex-
periments, such as the optical atomic clocks, high resolution spectroscopy of stored
ions, and the observation of the motional ground state of trapped ions.

Radiation pressure interaction exists not only for microscopic objects but also
between the light and macroscopic objects. The fluctuations of radiation pressure
on large mechanical objects were investigated by Braginsky and co-workers in the
late 1960s[2, 3]. They demonstrated that the quantum fluctuations of radiation fields
can limit the precision of position detection in the gravitational wave detectors via
the radiation pressure interaction. Recent advances in micro- and nano-fabrication
have enabled experimentalists to obtain this interaction between radiation fields and
micro- and nano-mechanical objects, which we call the optomechanical interaction
and the corresponding systems are called optomechanical systems. Optomechani-
cal systems have been realized experimentally in a variety of systems, including a
Fabry-Perot cavity with moving mirror(s) [4, 5], cold atoms in a cavity [6, 7], a
nanomechanical resonator coupling with superconducting circuits [8], and photonic
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CHAPTER 1. INTRODUCTION 2

crystal structures[9, 10, 11]. Study of such systems can lead to advances in precision
measurements [12, 13] and implementations of quantum information protocols, and
the testing of macroscopic quantum effects[14].

In recent experiments, many quantum behaviors of the mechanical modes have
been demonstrated [8, 15], which include the cooling to the quantum ground state, the
demonstration of strong optomechanical coupling, and conversion of cavity state to
the mechanical mode. Therefore the optomechanical system becomes an ideal candi-
date for studying quantum behavior of macroscopic objects. Putting the mechanical
oscillators into the quantum regime could allow us to explore quantum mechanics in
entirely new ways, such as observation of the mechanical Schrödinger cat state, cre-
ation of entanglement between cavity field and mechanical motion, and control and
manipulation of the quantum states for optomechanical system.

In this chapter we introduce the basics of optomechanical systems and lead the
reader towards the subject of this dissertation: open system dynamics of optome-
chanical systems in the quantum limit.

1.1 Cavity Optomechanics

Standard cavity optomechanical system

To investigate the optomechanical interaction between the optical field and mechani-
cal object, an optical cavity is usually employed to resonantly enhance the light-field
intensity, which significantly increases the optomechanical effects as the circulating
photon repeatedly interacts with the mechanics before it finally leaks out of the cav-
ity. A generic cavity optomechanical system consists of a Fabry-Perot cavity with a
movable end-mirror suspended by a mechanical spring and another fixed-mirror as
the input-output port for the external laser driving. The motion of the mirror is well
approximated by a damped harmonic oscillator interacting with the cavity field. This
interaction is caused by the radiation pressure force between the scattered photons
and the suspended mirror, where scattering of cavity photons modifies the motion
of the mirror. As a result, it changed the length of cavity, which in turn affects the
cavity resonance frequency and thus the intensity of the cavity field. The strength of
the radiation pressure force is therefore coupled with the mechanical motion. Starting
from the equation of motion of the cavity field and the mirror, one could identify the
Hamiltonian structure of the system [16], and the resulting Hamiltonian reads,

H = h̄ωcâ
†
câc +

p̂2

2meff

+
1

2
meffω

2
M x̂

2 − h̄g0x̂â
†
câc + Ĥdrive + Ĥκ + Ĥγ (1.1)



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Plot of the schematic picture for a standard optomechanical system

with Hdrive = ih̄E
(
e−iωL â†c − eiωL âc

)
and

Hκ =

∫
dωh̄ωĉ† (ω) ĉ (ω) + i

∫
dωκ (ω)

(
ĉ† (ω) âc − ĉ (ω) â†c

)
, (1.2)

Hγ =
1

2

∑
j

[
(p̂j − kjx̂)2 + ω2

j q̂
2
j

]
. (1.3)

where âc is the annihilation operator for the cavity field with frequency ωc. If L is
the equilibrium cavity length in the absence of the impinging field, the frequency of
the cavity mode will be ωc = nπc/L and the radiation pressure coupling constant is
g0 = ωc/L. For the typical materials and geometries one obtains g0/ωM ∼ 10−4[17].
Operators x̂ and p̂ are the position and momentum operator of the mechanical os-
cillator. Ĥdrive describes the laser driving of the cavity field at frequency ωL and
with E as the driving amplitude. Hamiltonian Ĥκ and Ĥγ describes the cavity decay
and mechanical damping of the oscillator, respectively. The cavity environment is
modeled as a bosonic thermal bath with ĉ(ω) as its bosonic operator with frequency
ω. The mechanical environment is considered as a finite but very large number of N
of harmonic oscillators with j indicating its j-th oscillator mode.

Experimental realizations

The above standard optomechanical model describes a very general optomechanical
coupling, and it applies to any situation where the mechanical displacement modifies
the resonant frequency of a cavity field. This model has been realized in various
experimental systems. The most obvious way to realize optomechanical interactions
in a cavity is to suspend one of the cavity mirrors via the micro- or nano-mechanical
cantilevers. Due to the flexibility on mirror size and mass, this configuration provides
the optomechanical control over a large range of system parameters. Typically, the
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mechanical frequencies range from several kHz to tens of MHz, but their bare op-
tomechanical coupling rates are in the order of Hz. Another realization uses optical
micro-resonators, where light circulating inside a circular resonator couples the whis-
pering gallery mode to the mechanical vibration mode of the structure. The small size
of the micro-resonators allows ultrahigh quality factors with a large optomechanical
coupling rate. Optical quality factors of 108 are routinely obtained with mechanical
frequency at tens of MHz.

Photon crystal and on-chip waveguides provide a different implementation for
optomechanical interaction. The periodic structures not only provide localized optical
photonic modes but also can localize phononic modes with high mechanical quality,
which result in an optomechanical coupling strength that is much larger than regular
cavity optomechanical approaches. It provides the possibility to enter the regime
of nonlinear photon-phonon interactions. The typical bare optomechanical coupling
rates available in experiments are around MHz.

Besides realization of optomechanical system with optical fields, the generic op-
tomechanical model can also be implemented in microwave resonators including LC
circuits and the superconducting microwave resonators, where the motion of a me-
chanical element is capacitively coupled to the microwave field. This enables possibil-
ity of creating the hybrid system between an optomechanical system and supercon-
ducting qubits. Another approach to realize optomechanical coupling is to replace
the solid mechanical element with the ultra-cold atomic gas, where the optical field
couples to the collective motion of the atomic ensemble. With a large cavity-atom
detuning, the frequency of the cavity field becomes dependent with atoms’ positions
which provides the optomechanical interactions. Due to the large number of atoms,
a strong effective interaction exists between the collective motion and optical field,
leading to a strong optomechanical coupling.

To compare the relevant optomechanical parameters for all these experimental
implementations, a table summarizing current experimental parameters is provided
in the Table 1.1. Although different systems work in different parameter regimes, all
these systems share the same dynamical properties of the standard optomechanical
model described in Eq.(1.1), details of which we will discuss in the following sections.

1.2 Optomechanical Phenomena

System dynamics and linearized model

Based on the Hamiltonian of the standard optomechanical system in Eq.(1.1), the
Heisenberg equations for the mechanical displacement x̂, momentum p̂ and the cavity
operator âc can be written as the following, which are called the quantum Langevin
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Experimental System Reference ωM/2π[Hz] γM/2π[Hz] κ/2π[Hz] κ/ωM g0/2π[Hz] g0/ωM

Fabry-Perot

Kleckner et al., 2011 [18] 9.7 · 103 1.3 · 10−2 4.7 · 105 55 2.2 · 101 2.3 · 10−3

Groblacher et al., 2009 [19] 9.5 · 105 1.4 · 102 2 · 105 0.22 3.9 4.1 · 10−6

Arcizet et al., 2006 [20] 8.14 · 105 81 1 · 106 1.3 1.2 1.5 · 10−6

Cuthbertson et al., 1996 [21] 318 2.5 · 10−6 275 0.9 1.2 · 10−3 3.8 · 10−6

Circular resonator Verhagen et al., 2012 [22] 7.8 · 107 3.4 · 103 7.1 · 106 0.09 3.4 · 103 4.4 · 10−5

Photonic crystal Chan et al., 2011 [23] 3.9 · 109 3.9 · 104 5 · 108 0.13 9 · 105 2.3 · 10−4

Microwave Resonator Teufel et al., 2011 [8] 1.1 · 107 32 2 · 105 0.02 2 · 102 1.8 · 10−5

Atomic gas Murch et al., 2008 [6] 4.2 · 104 1 · 103 6.6 · 105 15.7 6 · 105 14

Table 1.1: Experimental parameters for a representative sampling of published cavity
optomechanics experiments (arXiv: 1303.0733v1)

equations (QLEs),

˙̂x(t) =
p̂(t)

meff

, (1.4a)

˙̂p(t) = −meffω
2
M x̂(t)− γM p̂(t) + g0â

†
c(t)âc(t) + ξ̂(t), (1.4b)

˙̂ac(t) = − (i∆0 + κ/2) âc(t) + ig0âc(t)x̂(t) + E +
√
κâin(t), (1.4c)

Here ∆0 = ωc − ωL is the cavity detuning under the external driving field. Operator
ξ̂(t) is the Brownian stochastic force with zero mean value and obeys the correlation
function,

〈ξ̂ (t) ξ̂ (t′)〉 =
γM
ωM

∫
dω

2π
e−iω(t−t′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
(1.5)

and âin(t) is the vacuum radiation input noise. For simplicity of discussion, its cor-
relation functions are assumed as

〈âin (t) â†in (t′)〉 = [N (ωc) + 1] δ (t− t′) (1.6)

〈â†in (t) âin (t′)〉 = N (ωc) δ (t− t′) (1.7)

with N (ωc) = [exp (h̄ωc/kBT )− 1]−1 as the averaged occupation number for the
cavity thermal bath. At optical frequency h̄ωc/kBT � 1 so that N (ωc) ' 0. The
above Langevin equations are nonlinear in the sense that the mechanical momentum
operator p̂ is coupled with cavity field operator in the quadratic form of âc(t)

†âc(t),
and it is therefore impossible to obtain a general solution to such a nonlinear quantum
Langeivn equations. However, if the fluctuations of the field operator δac and the
fluctuations of mirror quadratures δx and δp are small compared with the respective
mean values, one can linearize the above equations around the mean values. This is
equivalent to assume x̂(t) = x̄(t) + δx̂(t), p̂(t) = p̄(t) + δp̂(t), âc(t) = αs(t) + δâc(t),
with the mean values follows the classical dynamics and neglects the high order terms
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of the fluctuations operators, the linearized equations are,

d

dt
δx̂(t) =

δp̂(t)

meff

, (1.8a)

d

dt
δp̂(t) = −meffω

2
Mδx̂(t)− γMδp̂(t) + g0

(
α∗sδâc(t) + αsδâ

†
c(t)
)

+ ξ̂(t),(1.8b)

d

dt
δâc(t) = − (i∆ + κ/2) δâc(t) + ig0αsδx̂(t) +

√
κâin(t), (1.8c)

where ∆ = ∆0− g2
0|αs|2/meffω

2
M and the mean values are chosen as the steady state

solutions, x̄ = g0|αs|2/meffω
2
M , p̄ = 0 and αs = (κ− i∆)−1E. With the system

under the strong driving, these linearized equations can be used to fully describe
optomechanical phenomena, such as optomechanical cooling, optical string effects,
quantum entanglement generation, optomechanical induced transparency (OMIT)
and squeezing. Note that the above semi-classical linearization procedure can be
equivalently derived quantum mechanically with a much more strict form by working
with a displacement picture, details of which is provided in Chapter 2.

Classical optomechanical effects

Much of the basic optomechanical physics can be fully understood from the pure
classical equations. To do so, one need to replace all quantum operators (δx̂ and
δâc) of Eq.(2.21) with their average values (δx and δα) and drop all quantum noise
operators. The resulting classical equations of motion read,

d

dt
δα = − (i∆ + κ/2) δα + ig0αsδx, (1.9)

meff
d2

dt2
δx = −meffω

2
Mδx−meffγM δ̇x+ g0 (α∗sδα + αsδα

∗) + Fext, (1.10)

An external force Fext(t) was added here to investigate the linear response of the stan-
dard optomechanical system. This equation is best solved in the frequency domain,

−iωδα(ω) = − (i∆ + κ/2) δα(ω) + ig0αsδx(ω), (1.11)

−meffω
2δx(ω) = −meffω

2
Mδx(ω) + imeffγMδx(ω) + Fext(ω)

+ g0 (α∗sδα(ω) + αs(δα(−ω))∗) , (1.12)

Here, δa(ω) =
∫∞
−∞ dte

iωtâc(t) is the Fourier transformation of âc. The corresponding
solutions of the above equations read

δα(ω) =
g0αs

(∆ + ω)− iκ/2
δx(ω) (1.13)

δx(ω) = χ(ω)Fext(ω) (1.14)
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where χ(ω) is the susceptibility of the mechanical oscillator providing the linear re-
sponds of the mechanical oscillator to external force Fext(t). Without radiation pres-
sure force (g0 = 0), this susceptibility is given by

χ−1
0 (ω) = meff (ω

2
M − ω2)− imeffγMω (1.15)

and under radiation pressure force, the susceptibility is modified as following,

χ−1(ω) = meff (ω
2
M − ω2)− imeffγMω − Σ(ω) (1.16)

with

Σ(ω) = 2meffωMg
2

(
1

(∆− ω)− iκ/2
+

1

(ω + ∆) + iκ/2

)
(1.17)

where the relation g = xZPg0|αs| is employed in the above expression and xZP =

(2meffωM)−1/2 is the mechanical zero point fluctuation. Σ(ω) describes the modifi-
cation of the mechanical properties due to the radiation pressure interaction with the
cavity field. Its real part modifies the mechanical frequency causing the optical spring
effects for the optomechanical system. The modification of Σ(ω) depends on the de-
tuning of the cavity: with spring-softened mechanical oscillator at red-detuned laser
driving (∆ > 0) and spring-hardened for a blue-detuned laser driving (∆ < 0)[24,
25]. The imaginary part of Σ(ω) changes the mechanical damping rate γM leading
to the mechanical cooling and amplification. However, with a strong external driving
field, the standard optomechanical system could enter into an unstable parameter
regime where the system shows nonlinear dynamics. We study such a situation in the
next chapter, where the stability condition of the standard optomechanical model is
discussed in details.

Quantum effects in optomechanical dynamics

Many quantum effects in the standard optomechanical system could also be under-
stood through the above linearized model. To better formalize the theory, we intro-
duce the phonon creation (b̂†M) and annihilation (b̂M) operators with

x̂ = xZP (b̂M + b̂†M), p̂ = −imeffωMxZP (b̂M − b̂†M) (1.18)

where xZP =
√
h̄/2meffωM . The linearized equations of Eq.(2.21) now have the

following form,

d

dt
δâc(t) = − (i∆ + κ/2) δâc(t) + ig

(
δb̂M(t) + δb̂M(t)†

)
+
√
κâin(t),

(1.19a)

d

dt
δb̂M(t) =

(
−iωM −

γM
2

)
δb̂M(t) + ig

(
δâc(t) + δâ†c(t)

)
+
√
γM b̂in(t),

(1.19b)
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where ∆ = ∆0 − g2
0|αs|2/meffω

2
M and ∆0 = ωc − ωL. The effective optomechanical

coupling strength is
g = xZPg0|αs| (1.20)

The corresponding linearized Hamiltonian has the form of

Hs = h̄ωcδâ
†
cδâc + h̄ωMδb̂

†
Mδb̂M +Hint (1.21)

where Hint = −h̄g
(
δâ†c + δâc

) (
δb̂†M + δb̂M

)
. It is obvious that an effective linear

optomechanical interaction is formed between the cavity mode and mechanical mode.
Depending on the cavity detuning, three different regimes can be distinguished with
respect to this linear interaction. In the red-detuned regime of ∆ = ωM and under
the rotating-wave approximation (RWA), the interaction Hint could be simplified as:

Hint = −h̄
(
δâ†cδb̂M + δâcδb̂

†
M

)
(1.22)

It describes the exchange of quanta between the cavity mode and the mechanical
mode, called the beam-splitter interaction in Quantum Optics. This interaction can
be used to implement the mechanical cooling and quantum state transfer between the
cavity field and mechanical oscillator [26, 27]. In the blue-detuned regime ∆ = −ωM ,
the corresponding interaction under RWA is,

Hint = −h̄
(
δâ†cδb̂

†
M + δâcδb̂M

)
(1.23)

This effective interaction causes the two modes squeezing and generates the optome-
chanical entanglement. It is also responsible for the optomechanical parametric am-
plification [28]. At the resonant detune of ∆ = 0, the effective interaction takes the
form of

Hint = −h̄g
(
δâ†c + δâc

) (
δb̂†M + δb̂M

)
(1.24)

which describes the process of optomechanical displacement measurement and QND
detection of the optical amplitude quadrature.

Cavity optomechanical entanglement

One important property in quantum optomechanics is the generation of the entangled
cavity-mechanical states, which is basis for many quantum information processes. In
order to create reliable entangled states, the red-detuned cavity driving (∆ < 0) is
usually applied. In this regime, the system dynamics are well characterized by the
linearized optomechanical model and its steady-state entanglement is robust with
environment noises. To better understand this topic, We provide a brief introduction
to the generation of steady-state optomechanical entanglements in the following two
sections.
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Figure 1.2: (a) Plot of logarithmic negativity EN as a function of the normalized
detuning ∆/ωM . (b) Plot of logarithmic negativity EN as a function of mechanical
temperature and the detunes are chosen at the maximal entanglement in (a). Parame-
ters are chosen from Ref.[29] as optical cavity length L = 1mm, driven by a laser with
wavelength 810 nm and power P = 50 mW , mechanical frequency ωM/2π = 10 MHz
and γM/2π = 100 Hz.

Due to the Gaussian property of the linearized model, the optomechanical dynam-
ics are completely characterized by the covariance matrix,

Vi,j =
ξ̂iξ̂j + ξ̂j ξ̂i

2
(1.25)

with ξ̂ = [X̂M , ŶM , X̂c, Ŷc]
T . Here, X̂M =

(
b̂M + b̂†M

)
/
√

2 and P̂M = −i
(
b̂M − b̂†M

)
/
√

2

denote the mechanical amplitude and phase quadratures, while X̂c =
(
âc + â†c

)
/
√

2

and P̂c = −i
(
âc − â†c

)
/
√

2 denote the cavity amplitude and phase quadratures, re-
spectively. The cavity-mechanical entanglement can be measured by the logarithmic
negativity EN [30],

EN = max[0,−ln2η−] (1.26)

Here η− = 2−
1
2 [Σ(V ) − [Σ(V )2 − 4detV ]

1
2 ]

1
2 and Σ(V ) ≡ detVM + detVc − 2detVcm,

with Vc, VM and Vcm as sub-blocks of the covariance matrix,

V =

(
VM Vcm
V T
cm Vc

)
(1.27)
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According to the linearized equations in Eq.(1.19), the equation of motion for the
covariance matrix is

dV (t)

dt
= AV (t) + V (t)AT +D (1.28)

with D = Diag(0, γM (nth + 1/2) , κ/2, κ/2) and matrix A is the coefficient matrix in
Eq.(1.19) with its form given by

A =


0 ωM 0 0
−ωM −γM/2 g 0

0 0 −κ/2 ∆
g 0 −∆ −κ/2

 (1.29)

The steady-state covariance matrix can be attained from the solution of the following
linear equation

AV (t) + V (t)AT = −D (1.30)

which is then applied with Eq.(1.26) to obtain the steady-state optomechanical en-
tanglement. In the red-detuned regime, the entanglement between mechanical and
optical mode was first analyzed with the above method in [29, 31]. It was shown
that the steady-state entanglement is maximal at the detuning around ∆ ≈ ωM ,
shown in Fig.4.2, where the solid line corresponding to a mass m = 5 ng and finesse
F = 1.07 × 104. The dashed line refers to m = 50 ng and finesse F = 3.4 × 104.
The dashed dot line refers to fixed g/2π = 16.803 MHz and κ/2π = 16.822 MHz.
Fig.4.2(b) shows that the steady state entanglement are also robust with the mechani-
cal temperature. However, such a steady-state entanglement is strongly limited by its
stability condition. In oder to obtain highly entangled states, strong cavity drivings
are required, but too large driving could make the optomechanical system unstable
and break the linearization model. Therefore the obtained entanglement with the
steady-state generation scheme is always limited by its driving power. Another ap-
proach to overcome this restriction is to work with blue-detuned driving ∆ < 0 and
replace the continuous laser driving with optical pulse, which releases the stability
condition, and larger entangled states are created as a result. However, such approach
also suffers from the same issue of linearization in the blue-detuned regime and we
will come back to this topic in the chapter 2.

Time modulated optomechanics

It was later proposed in [33, 32, 34] that the scheme of steady-state entanglement
could be enhanced by a time periodic driving scheme with the following Hamiltonian,

H = h̄ωcâ
†
câc+

p̂2

2meff

+
1

2
meffω

2
M x̂

2−h̄g0x̂â
†
câc+ih̄[E(t)e−iωLtâ†c−E∗(t)eiωLtâc] (1.31)
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Figure 1.3: Plot of the logarithmic negativity with time dependent driving as a func-
tion of time. The solid line refers to a modulated driving (Ω = 1.4ωM) while the
dotted line corresponds to a non-modulated driving (Ω = 0). The chosen parameters
in units of ωM are: κ = 0.2, γM = 10−6, ∆ = 1, nm = 2× 103, na = 0, g0 = 4× 10−6,
E0 = 7 × 104, EΩ = 2.5 × 104. The inset shows the trajectory of the effective cou-
pling g̃(t) = xZPFg0|αs(t)| in the complex plane due to the time evolution of the
optical amplitude αs(t). The phase space orbit (black line) is numerically simulated
from the classical average equations, while the limit cycle (green line) is an analytical
approximation (see [32] for more details).

where the driving amplitude E(t) is periodic with E(t) = E(t + τ). Because of
this periodicity, the steady-state solutions become periodic, which causes the linear
optomechanical coupling g in Eq.(1.20) to be time dependent,

g(t) = xZPg0|αs(t)| (1.32)

In general the driving could be expressed as E(t) =
∑∞

n=0ENe
inΩt with Ω = 1/τ

and the high order modulations of EN are usually quite small so that one could
truncate E(t) as E = E0 + E1e

iΩt. As a result, the above g(t) could be simplified as
g(t) = g0 + gΩe

iΩt, and the corresponding linearized Hamiltonian reads,

Hs = h̄∆cδâ
†
cδâc + h̄ωMδb̂

†
Mδb̂M +Hint(t) (1.33)

where
Hint(t) = −h̄

(
g0 + gΩe

iΩt
) (
δâ†c + δâc

) (
δb̂†M + δb̂M

)
(1.34)
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Previously, with a time independent red-detuned driving, the dominant interaction
in Hint is dominated by the beam-splitter interaction of Eq.(1.22), which could not
be used to create quantum entanglement. However, with a time dependent driving,
an effective two-mode squeezing interaction is added in Hint as the terms of gΩe

iΩt,
which can be used to enhance the optomechanical entanglement. Ref.[32] has shown
that, with appropriate choice of rotating frame and some RWA, the Eq.(1.33) could
be written as

Hs ≈ −h̄gΩe
i(Ω−2ωM )t

(
eig0tĉ+ĉ+ + e−ig0tĉ−ĉ−

)
/2 + h.c. (1.35)

with ĉ± =
(
âc ± b̂M

)
/
√

2. If the modulation frequency were chosen as Ω = 2ωM−g0,

the corresponding effective interaction will be

Hs ≈ −h̄gΩ

(
ĉ±ĉ± + ĉ†∓ĉ

†
∓

)
/2 (1.36)

which can be used to cause the squeezing of the hybrid modes ĉ+ or ĉ−, implying
that the time dependent driving really creates an effective interaction to generate
entangled optomechanical states. One example from the [32] is provided in Fig.4.3.

Optomechanical induced transparency(OMIT)

Another interesting quantum effect in optomechanical systems is OMIT, analogous
to the electromagnetic induced transparency (EIT) in atomic systems. OMIT can be
explained as following: If there is only one laser driving (called the probe field) applied
resonantly with the cavity, the transmission spectrum of the outgoing probe field will
have the standard Lorentz form with a peak at the resonant frequency. Meanwhile,
if the cavity field is also driven from its sideband by another laser driving (called
the coupling field), the scattered photons of it are at resonant with the cavity but
possess an additional π/2 phase compared with the incoming probe field. Therefore,
the probe field is out of the phase with the scattered photons of the coupling field,
and they will interfere destructively, leading to a dip in the transmission spectrum of
the outgoing probe field at the resonant frequency.

Quantitatively, the Hamiltonian describing the standard optomechanical system
with one driving field and one probe field reads

H = h̄ωcâ
†
câc +

p̂2

2meff

+
1

2
meffω

2
M x̂

2 − h̄g0x̂â
†
câc + Ĥdrive(t) + Ĥκ + Ĥγ (1.37)

where the driving field

Ĥdrive(t) = ih̄(E(t)â†c + E∗(t)âc)
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has two contributions E(t) = εce
−iωLt + εpe

−iωpt, with εc (εp) as the amplitude of the
coupling field (the probe field). In a frame rotating at the frequency of the coupling
field ωL, we obtain the equations of motion as:

˙̂x(t) = p̂(t)/meff , (1.38a)

˙̂p(t) = −meffω
2
M x̂(t)− γM p̂(t) + g0â

†
c(t)âc(t) + ξ̂(t), (1.38b)

˙̂ac(t) = − (i∆0 + κ/2) âc(t) + ig0âc(t)x̂(t) + εc + εpe
−iΩt +

√
κâin(t), (1.38c)

To linearize the above equations around the steady-state solutions without the probe
field (εp = 0), one has to split the quantum operators into its average value and
fluctuation operator: x̂ = x̄ + δx̂, p̂ = p̄ + δp̂ and âc = αs + δâc. The mean values
of the mechanical amplitude are chosen as x̄ = g0|αs|2/meffω

2
M and p̄ = 0. The

average cavity amplitude is αs = εc (κ− i∆)−1 and it is chosen as real. The linearized
equations read,

d2

dt2
δx(t) + γM

d

dt
δx(t) + ω2

Mδx(t) =
g0αs
meff

(δac(t) + δa∗c(t)) , (1.39a)

d

dt
δac(t) = − (i∆ + κ/2) δac(t) + ig0αsδx(t) + εpe

−iΩt, (1.39b)

Because the probe field is at the frequency of Ω = ωp−ωc, the general ansatz for the
above equations are,

δac(t) = A−e
−iΩt + A+e

iΩt (1.40a)

δx(t) = Xe−iΩt +X∗eiΩt (1.40b)

When substituting the above relations back into the linearized equations, this yields
six different equations (A± are complex amplitude). Because we are only interested
in the output field at probe frequency ωp, only equations of A− are important:

(i (∆− Ω) + κ/2)A− − ig0αsX = εp, (1.41)

(−i (∆ + Ω) + κ/2)A∗+ + ig0αsX = 0, (1.42)(
ω2
M − Ω2 − iγMΩ

)
X =

g0αs
meff

(A− + A∗+), (1.43)

The solution for A− is, therefore,

A− =
1 + if(Ω)

i (∆− Ω) + κ/2− 2∆f(Ω)
εp (1.44)

with

f(Ω) =
g2

0α
2
sχ(Ω)

−i (∆ + Ω) + κ/2
(1.45)
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and the mechanical susceptibility with

χ(Ω) =
1

meff (ω2
M − Ω2 − iΩγM)

(1.46)

Applying the input-output relation, one obtain

âout(t) = âin(t)−
√
κâc(t) (1.47)

the output field amplitude at frequency ωp is then given by:

Ap = εp −
√
κA− (1.48)

and then the transmission of the probe beam is then given by

tp =
Ap
εp

= 1−
√
κ (1 + if(Ω))

i (∆− Ω) + κ/2− 2∆f(Ω)
(1.49)

While the amplitude of the probe beam without coupling beam is just the lorentz
form and the transmission is,

tp(αs = 0) =
Ap(αs = 0)

εp
= 1−

√
κ

i (ωc − ωp) + κ/2
(1.50)

The OMIT was first predicted theoretically [35] for the standard optomechanical
system with the linearized model and then observed experimentally by [36, 37]. More
recently, there were three groups theoretically proposing observation of the OMIT
created by the nonlinear optomechanical interactions [38, 39, 40], where the OMIT
is caused by the destructive inference between the second sideband driving laser and
the probe beam. This new type of OMIT could only be understood by the nonlinear
optomechanical coupling. The perturbation method developed in chapter 3 provides
another alternative theoretical frame to understand this nonlinear OMIT phenomena.

1.3 Nonlinear Quantum Optomechanical System

Quantum optomechanical effects beyond the linearized model have been studied re-
cently, demonstrating that the standard optomechanical system possesses enormously
rich nonlinear phenomena, such as multistabilities with both static and dynamical[41,
42], photon blockade [43, 44], and non-Gaussian states [45]. To observe these non-
linear effects, the mechanical mode needs to be strongly coupled with cavity field.
Consequently, multiple optical sidebands, as well as multi-photon transitions, are in-
volved for the standard optomechanical system in this strong coupling regime, showing
interesting photon-photon, phonon-phonon or photon-phonon correlations.
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However, due to its nonlinearity and complexity, the theoretical tools to deal with
such a system are limited, especially when the optomechanical open system dynamics
with the external environments are included. Perturbations based on assumptions
of weak nonlinear coupling or weak driving are usually employed to deal with the
optomechanical open system dynamics. In this dissertation, we investigate the various
roles of the nonlinear optomechanical interaction on the open system dynamics of
the standard optomechanical system for different parameter regimes and focus on
developing new theoretical tools for investigating the dynamical behaviors of the
standard optomechanical system.

In Chapter 2, we deal with the validity of the linearized optomechanical model in
the unstable blue-detuned regime. We propose a linearization time window for this
regime and prove that in this time window, the linearized model could be utilized to
fully describe the optomechanical dynamics even if the system is unstable. Such a
linearization time window is useful for entanglement generation in the blue-detuned
regime, where the system tends to be unstable while the dominated linearized optome-
chanical interaction is preferred for creation of large bipartite entanglement between
the cavity field and the mechanical oscillator. Consequently, the linearization time
window imposes new limits on available optomechanical entanglement obtained in
this regime.

Going beyond the linearization time window, the optomechanical system behaves
nonlinearly, and the linearized model fails to describe the optomechanical dynamics.
In Chapter 3, a new perturbation method in the Heisenberg picture was developed to
deal with a weak nonlinear interaction, where we treated the nonlinear interaction as
perturbations to the linearized optomechanical model. The new method shows that,
under the first order perturbation, both the optical amplitude and the mechanical
quadratures are influenced by this weak nonlinear interaction. While the cavity pho-
ton numbers are modified only by another higher order perturbation, which makes
the analytical analyze really involved. In order to overcome these weaknesses, a
master equation approach in the next chapter was developed to deal with nonlinear
interactions, which is much easier to apply numerically.

Chapter 4 is about the strongly coupled optomechanical systems, where the non-
linear effects are dominate and could not be treated as perturbations. In order to
characterize the dynamics in this regime, a new master equation based on the dressed-
state basis was developed. In chapter 4 we shows that the transient dynamics of the
optomechanical system are significantly influenced by the strong coupling and, as a
result, the the cavity decay is coupled with the mechanical damping. The traditional
treatment of the standard master equation with independent decoherence model may
not provide a correct insight for the optomechanical dynamics in this regime. We
provide detailed comparison of this dressed-state master equation with that of the
standard master equation.



Chapter 2

Linearized Optomechanical
Interaction

For the typical materials and dimensions, the optomechanical coupling g0 in most
experimental optomechanical systems usually has a very small value (g0/ωM ∼ 10−4),
which makes the optomechanical effect difficult to observe. One way to enhance the
optomechanical interaction is to apply a strong driving field to the optical cavity
which leads to an effective linear optomechanical interaction. Such a field-enhanced
linear optomechanical interaction has been proved to be responsible for the cooling
of the mechanical motion [46, 47, 48], as well as, the creation of various quantum
correlations between the cavity light field and mechanical oscillator [29, 31]. As a
result, most studies in the weak coupling regime considered a pure linearized interac-
tion while neglecting the nonlinear part of the optomechanical interaction. However,
this linearization procedure is not always guaranteed in the weak coupling regime:
when the weak coupled optomechanical system becomes unstable, the influence of the
nonlinear interaction on optomechanical dynamics can grow exponentially and finally
destroy the linearized model.

In this chapter, we propose a practical approach to investigate the validity of the
linearization procedure for the standard optomechanical system working in the unsta-
ble parameter regime. As we will show, a pulsed laser driving ensures a linearization
time window, in which the optomechanical dynamics can be fully characterized by
the linearized model. We provide the analytical form of the linearization time win-
dow for blue-detuned optomechanical systems and concentrate on its applications for
entanglement generation in the unstable parameter regime. Our results show that
the optimization of optomechanical entanglement for the pulsed scheme relies sensi-
tively on the validity of the linearized optomechanical model that the pulse duration
should be strictly limited by the linearization time window. Otherwise, the break-
down of the linearized optomechanical model often leads to unrealistic optimized

16
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cavity-mechanical entanglement, which finally invalidates the pulsed driving scheme
for the optomechanical system in the unstable parameter regime.

Another interesting subject of the linearized optomechanical system is to improve
the steady-state optomechanical entanglement utilizing a time periodic driving. This
topic has been studied recently for the standard optomechanical system of one cavity
mode interacting with one mechanical mode [33, 32, 34], showing that with a suitable
time modulation on the amplitude of the cavity driving field or on the mechanical
frequency, it is possible to significantly improve the bipartite entanglement between
the cavity field and the mechanical oscillator. In the second part of this chapter, we
extend this idea one step further and apply it to investigate the influence of the time
periodic driving scheme for a three-mode optomechanical system, where two cavity
modes interact with one mechanical mode. Our results show that, with a slightly
modified scheme, the time modulation technique can be implemented to enhance the
obtained entanglement for the three-mode optomechanical system. By controlling the
modulation strength, it is possible to increase or decrease the entanglement between
two cavity-cavity modes, or between each cavity mode and the mechanical mode,
providing an additional control on the entanglement dynamics for the three-mode
optomechanical system. We also study the influence of the time periodic driving on
the global tripartite entanglement existing in this model.

2.1 Blue-detuned Optomechanics

Introduction

Optomechanical interaction via radiation pressure force is an effective way to gen-
erate the coupling between the macroscopic mechanical oscillator and cavity optical
fields. With its ability to measure the mechanical position with high accuracy, the
optomechanical system can be applied in various fields of physics, such as ultrahigh
precision measurements [12] and gravitational wave detection [13]. Furthermore, the
optomechanical coupling could be used for cooling mechanical oscillators down to the
quantum ground state, allowing us to explore quantum mechanics in entirely new ways
[49, 14]. The quantum behavior of the mechanical oscillator has been experimentally
observed [15, 8], indicating the realization of the quantum mechanical motion. One
important characteristic of the quantum behaviors of the mechanical oscillator are the
entangled optomechanical states, which provide useful resources for many quantum
information processes, such as continuous-variable quantum teleportation [50], quan-
tum state transfer [51] and entanglement swapping [52]. It could even be possible to
build quantum-communication networks using optomechanical systems[52, 53].
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While optomechanical entanglement shows promising applications in quantum in-
formation science, generating a high enough, reliable entanglement for an optome-
chanical system remains challenging. Steady-state optomechanical entanglement,
which is robust against thermal noise and cavity decay, has been broadly investigated
[29, 31]. However, the stability requirement of steady-state entanglement strongly re-
stricts the strength of the effective radiation-pressure coupling, which, in turn, limits
its ability to generate high-entangled optomechanical states [46]. Another approach
to generate optomechanical entangled states is based on applying a pulsed driving to
the cavity field [54]. This scheme does not rely on the existence of a stable steady state
and could be used to generate high optomechanical entangled states in an unstable
regime. The problem with the preceding approach is that its linearization procedure
still depends on an assumption that all quantum operators must have small fluctua-
tions which is not always guaranteed in the unstable optomechanical system. In order
to obtain a workable pulsed driving scheme for the unstable optomechanical system,
the fluctuation effects in the unstable parameter regime must be studied and taken
into consideration for the generation of optomechanical entanglement.

In this section, we aim to study the entanglement generation in an unstable regime,
including the effect of fluctuations and the optimization of the parameters for high
entanglement outcome. We will show a pulsed driven scheme ensures a time window,
in which entanglement is optimized and can be fully characterized with the linearized
optomechanical model.

Optomechanical system

We consider a driven Fabry-Perot cavity with one moving end mirror. The cavity
mode is coupled to the mechanical motion of the mirror via radiation pressure inter-
action. The Hamiltonian of the system reads [16]

Hs = h̄ωcâ
†
câc +

p̂2

2meff

+
1

2
meffω

2
M x̂

2 − h̄G0x̂â
†
câc + ih̄E

(
â†ce
−iωLt − âceiωLt

)
Here âc is the annihilation operator for the cavity mode, x̂ and p̂ are mirror quadrature
operators. If L is the equilibrium cavity length in the absence of the driving field,
the frequency of the cavity mode is ωc = nπc/L, and the radiation pressure coupling
constant isG0 = ωc/L. The external driving laser has a frequency of ωL and amplitude
of E.

By including the cavity decay and mechanical damping, in the rotating frame at
driving frequency ωL, the equations of motion for the optomechanical system are fully
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characterized by the following nonlinear Quantum Langevin Equations (QLEs),

d

dt
b̂M(t) = −iωM b̂M(t)− γM

2
(b̂M(t)− b̂†M(t))− ig0â

†
c(t)âc(t)−

√
γM b̂in(t),

(2.1a)

d

dt
âc(t) = − (i∆0 + κ) âc(t)− ig0(b̂M(t) + b̂†M(t))âc(t) + E (t)−

√
2κâin(t),

(2.1b)

Here γM is the mechanical damping rate and b̂in is the Brownian stochastic input
noise caused by the mechanical thermal bath, which has the correlation functions (in
the limit of ωM/γM � 1)

〈b̂†in(t)b̂in(t′)〉 = n̄δ(t− t′) (2.2)

〈b̂in(t)b̂†in(t′)〉 = (n̄+ 1)δ(t− t′) (2.3)

with n̄ = [exp(h̄ωM/kBT )−1]−1. The cavity decay rate is denoted as κ, and âin is the
input field operator due to the outside vacuum bath with the correlation functions,

〈âin (t) â†in (t′)〉 = [N (ωc) + 1] δ (t− t′) (2.4)

〈â†in (t) âin (t′)〉 = N (ωc) δ (t− t′) (2.5)

Here N (ωc) = [exp (h̄ωc/kBT )− 1]−1 is the average occupation number for the cavity
thermal bath, at optical frequency h̄ωc/kBT � 1, N (ωc) ' 0. Cavity detuning is
denoted as ∆0 = ωc − ωL. Coefficient g0 = xZPG0 is the vacuum optomechanical
coupling strength and it quantifies the interaction between a single photon and the
mechanical mode, often called single photon coupling constant.

Semi-classical dynamics of the nonlinear optomechanical system

To introduce the essential dynamical features of the standard optomechanical system
of Eq.(2.1) in the unstable parameter regime, we first consider its purely classical
dynamics. To do so, one needs to replace the operator âc(t) and b̂M(t) by their complex
field amplitudes, α(t) and β(t) respectively. The classical equations of motion then
read,

β̇(t) =− iωMβ(t)− γM
2

(β(t)− β∗(t))− ig0|α(t)|2,

α̇(t) =− (i∆0 + κ)α(t)− ig0(β(t) + β∗(t))α(t) + E (t) ,
(2.6)

where quantum fluctuation operators have been set to zero and all the products of
operators have been replaced by the products of the corresponding amplitudes that
will be valid for sufficiently strong cavity driving. The above equation could be treated
as the expectation values of the quantum operator equations of Eq.(2.1). According to
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the standard linearization analysis, the fixed points of the above nonlinear equations
are obtained by setting all of the derivatives as zero, which yields the fixed points as
(αss, βss) =

(
E(t) (−i∆ + κ)−1 ,−g0|α|2/ωM

)
. The stability of Eq.(2.6) is determined

by the eigenvalues of the Jacobian Matrix at these fixed points. If all the eigenvalues
are negative, then the system is stable, as in the situation discussed in the previous
optomechanical steady-state entanglement schemes [29, 31]. However, here we are
interested in the unstable regime where at least one of eigenvalues is positive and
we denote the maximal positive one as λ+. It is known that the dynamics of the
nonlinear equations Eq.(2.6) can be well approximated by a set of linear equations
within the time duration of t < λ−1

+ , which is true even for the unstable system.

Based on the above discussion, we hypothesize that for an unstable optomechanical
system there is a time window that the fluctuations of all the quantum operators are
guaranteed to be small and the system dynamics can be fully described by a linearized
model. We assume that the time window is determined by the maximal positive
eigenvalue λ+ of the Jacobian Matrix of Eq.(2.1) as t < λ−1

+ . Since small fluctuations
are guaranteed in this time window, so as the linear optomechanical model, which
could be still utilized to study the behavior of the quantum optomechanical system
in the unstable regime, details of which are shown in the following sections.

Linearization in the unstable parameter regime

To linearize QLE of Eq.(2.1) around the general fixed points (including both stable
and unstable fixed points), we need to work in a displacement picture with the cavity
and mechanical displacement amplitude chosen as α = E(t)/ (−i∆ + κ) and β =
−g0/ωM |α|2, respectively. The total Hamiltonian of the optomechanical system in
this displaced picture takes the following form,

H̄ (t) = UHU−1 = H̄s + H̄κ + H̄γ

where the unitary transformation operator U = Dc (α)DM (β) and the displacement

operator for the i-th mode is defined Di (ξ) = exp
(
−ξâ†i + ξ∗âi

)
and âi stands for the

field operator of the cavity mode and the mechanical mode. Here H̄κ (H̄γ) describes
the interactions between the surrounding thermal bath and the cavity mode (the
mechanical mode), while H̄s describes the coupled cavity-mechanical Hamiltonian in
the displacement picture,

H̄s = h̄∆â†câc + h̄ωM b̂
†
M b̂M + h̄g0

(
αâ†c + α∗âc

) (
b̂†M + b̂M

)
+
[
h̄ (∆α + iE) â†c + h̄

(
ωMβ + g0 |α|2

)
b̂†M + h.c.

]
(2.7)
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with ∆ = ∆0+g0 (β∗ + β). Notice that an nonlinear term of Ĥint = h̄g0â
†
câc

(
b̂†M + b̂M

)
has been neglected through the assumption that, within the linearization time win-
dow, the fluctuation operators âc and b̂M are small compared with the displacement
amplitude α and β, respectively. By defining the vector of û(t) = (b̂M(t), b̂†M(t), âc(t), â

†
c(t))

T

and n̂(t) = (−√γM b̂in(t),−√γM b̂†in(t),−
√

2κâin(t),−
√

2κâ†in(t))T , the corresponding
equations of motion for the linearized dynamics read,

d

dt
û (t) = Mû (t) + n̂ (t) (2.8)

where its coefficient matrix M is given as

M =


−iωM − γM/2 γM/2 −ig −ig

γM/2 iωM − γM/2 ig ig
ig ig −i∆− κ 0
−ig −ig 0 i∆− κ

 (2.9)

Here the effective optomechanical coupling strength is g = g0α, indicating that the op-
tomechanical interaction has been enhanced by a factor of the cavity light steady-state
amplitude α through the strong external driving. To further simplify the discussion,
we focus on the case of blue-detuned driving, where ∆ = ωc−ωL = −ωM . As discussed
in Chapter 1, the effective Hamiltonian in the blue-detuned optomechanical system is
dominated by the down-conversion type interaction, which is preferred for entangle-
ment generation but can easily cause the system to become unstable. However, with
the new linearization procedure developed here, we are going to show that, within
the linearization time window, the dynamics of the optomechanical system could still
be linearized even for the system in the unstable parameter regime. Based on the
rotating wave approximation (RWA) [29], the coefficient matrix M of the linearized
equation Eq.(2.8) in the blue-detuned regime can be simplified into,

M =


−γM

2
0 0 −ig

0 −γM
2

ig 0
0 −ig −κ 0
ig 0 0 −κ

 (2.10)

The eigenvalues of M are λ1,2 = (−2κ− γM − Ω) /4 and λ3,4 = (−2κ− γM + Ω) /4

with Ω =
√

(4g)2 + (2κ− γM)2. The solutions of the linearized equations of Eq.(2.8)
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can be obtained as,

âc(t) = g1 (t) · âc(0)− f (t) · b̂†M(0)−
√

2κ

∫ t

0

dsg1(t− s)âin(s)

+
√
γM

∫ t

0

dsf (t− s) b̂†in(s), (2.11a)

b̂M(t) = g2 (t) · b̂M(0)− f (t) · â†c(0)−√γM
∫ t

0

dsg2 (t− s) b̂in(s)

+
√

2κ

∫ t

0

dsf(t− s)â†in(s), (2.11b)

where f (t) = 2igΩ−1
(
eλ3t − eλ1t

)
, g1 (t) = A·eλ1t+B ·eλ3t and g2 (t) = A·eλ3t+B ·eλ1t

with the amplitudes A = (Ω + 2κ− γM) /2Ω and B = (Ω− 2κ+ γM) /2Ω. Note that
the commutation relations [âc(t), â

†
c(t)] = 1 and [b̂M(t), b̂†M(t)] = 1 are fulfilled by the

above solutions at any time.

Linearization time window

For the blue-detuned optomechanical system, λ1,2 are always negative and the stabil-
ity of the system relies only on the negativity of λ3,4. When g2/κ > γM/2, the system
is always unstable. As mentioned previously that the upper limit of the linearization
time window is t = λ−1

3 , we will show that the maximal entanglement is achieved
at the time scale of |λ1|−1 ∼ κ−1 which provides the lower bound for the lineariza-
tion time window. As a consequence, the linearization time window with optimized
optomechanical entanglement takes the following form,

κ−1 < t <

(
−2κ− γM + Ω

4

)−1

(2.12)

In Fig. 2.1 and Fig. 2.2, the solutions of Eq.(2.11) for the linearized optome-
chanical model are compared with the master equation approach of the standard
optomechanical model without linearization. It is known that the master equation
approach can correctly describe the optomechanical dynamics as long as the system
dynamics are limited within a finite Fock subspace. Here, we have set the initial
state as a vacuum state for the cavity mode and the mechanical mode, correspond-
ing to initialize the system around the fixed points of α = E(t)/ (−i∆ + κ) and
β = −g0/ωM |α|2. With a weak driving field, such that the relation of g < κ is
kept, the system dynamics in the displacement picture can be well restricted within
finite Fock spaces. As a consequence, the master equation approach is sufficient to
characterize the optomechanical dynamics in this parameter regime.
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Figure 2.1: Plot of (a) the photon number and (b) phonon number as a function
of pulse duration. The blue solid vertical line shows the upper bound of the time
window, i.e. τ = λ−1

3 . Parameters are chosen as ωM/2π = 3.2 MHz and mechanical
quality factor Q = ωM/γM = 105, with an average thermal bath phonon number as
nth = 0, κ = 0.5ωM and g = 0.05ωM .
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3 . Parameters are the same as Fig. 2.1.
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Fig. 2.1 shows the evolution of the cavity photon number and the mechanical phonon
number in the displacement picture, where the upper bound of the linearization time
window is shown as a blue vertical line. It is evident from Fig. 2.1 that, within the lin-
earization time window, both the cavity photon dynamics and the mechanical phonon
dynamics are well characterized by the linearized optomechanical model, while large
deviations from the master equation approach appear outside the linearization time
window. Fig. 2.2 also confirms that the fluctuations of the quantum field opera-
tors are small compared with their average values inside the time window, indicating
the assumption that all operators have small fluctuations is guaranteed within the
linearization time window. Therefore, as long as the dynamics are limited within
the linearization time window, the linearized optomechanical model provides exactly
the same dynamics as the master equation approach of the standard optomechani-
cal model without any linearization approximation. While outside the time window,
the nonlinear interaction terms start to dominate the dynamics where the linearized
optomechanical model starts to deviate the solutions from the master equation ap-
proach. Notably, for both figures, we have chosen the optomechanical system in the
unstable parameter regime. In Fig. 2.2, the fluctuations of the cavity field amplitude
and mechanical amplitude are studied within the linearization time window. It is ev-
ident that, inside the linearization time window, the fluctuations of these amplitudes
are limited, which is consistent with our expectation of the small fluctuations for the
linearized optomechanical model.

Intra-cavity optomechanical entanglement

To obtain an analytical description and physical understanding of blue-detuned cav-
ity entanglement dynamics in the unstable parameter regime, we start considering
the influence of the linearization time window on the optomechanical entanglement
generation process for the pulsed driving scheme. In this section, we are going to
introduce two different approach of measuring the optomechanical entanglement: the
EPR-Variance method and the logrithmic negativity of covariance matrix. We will
show how the linearization time window influences the maximal available optome-
chanical entanglement measured by these two different methods.

EPR-Variance Approach

For any quantum separable state %(t), the EPR-variance ∆EPR is known to be always
bigger than two [55],

∆EPR = 〈(∆û)2〉% + 〈(∆v̂)2〉% > 2

where the two body quantum operators û and v̂ are defined as û = P̂c + x̂ and
v̂ = X̂c + p̂. Here, the cavity amplitude quadrature (phase quadrature) is denoted
as X̂c (P̂c) and the operator x̂ (p̂) is the mechanical displacement operator (moment
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operator). The EPR-variance ∆EPR provides a direct way to characterize the quantity
of entanglement between the cavity mode and mechanical mode, by which the smaller
value of the variance indicates the larger the entanglement of the optomechanical
quantum state. Under the assumption of RWA, one can prove that 〈(∆û)2〉% =
〈(∆v̂)2〉% and

〈(∆û)2〉% =G1 · e2λ1t +G2 · e(λ1+λ3)t +G3 · e2λ3t

+ Γ1
e2λ1t − 1

2λ1

+ Γ2
e(λ1+λ3)t − 1

(λ1 + λ3)
+ Γ3

e2λ3t − 1

2λ3

(2.13)

where

G1 =
1

2

(
A+

2g

Ω

)2

+

(
n0 +

1

2

)(
B +

2g

Ω

)2

, G2 = n0
4g (2κ− γM)

Ω2
,

G3 =
1

2

(
B − 2g

Ω

)2

+

(
n0 +

1

2

)(
A− 2g

Ω

)2

Γ1 = κ

(
A+

2g

Ω

)2

+ γM

(
nth +

1

2

)(
B +

2g

Ω

)2

,

Γ2 =
4g (2κ− γM)

Ω2

(
γM

(
nth +

1

2

)
− κ
)
,

Γ3 = κ

(
B − 2g

Ω

)2

+ γM

(
nth +

1

2

)(
A− 2g

Ω

)2

,

withA = (Ω + 2κ− γM) /2Ω, B = (Ω− 2κ+ γM) /2Ω and Ω =
√

(4g)2 + (2κ− γM)2.

Initially, at t = 0, 〈(∆û)2〉% = n0 + 1, leading to ∆EPR = 2n0 + 2 > 2 , showing that
the system is in a separable state, and it is consistent with the separability of our
initial state.

The analytical form of the EPR-variance obtained here could be applied to various
parameters regimes and to achieve the same results as previous studies [29, 31, 46,
54]. One example is for the case of no environmental noises, where κ = γM = 0, the
calculation for the EPR-variance of Eq.(2.13) yields ∆EPR = 2 (n0 + 1) e−2gt, show-
ing that radiation pressure interaction helps the system to build up optomechanical
entangled states [54]. Another well known case is the stable blue-detuned optome-
chanical system, in which the corresponding steady state EPR-variance ∆EPR could
be calculated from Eq.(2.13),

(∆EPR)ss = 2〈(∆û)2〉%ss =

(
− 1

λ1

)
· Γ1 +

(
− 1

λ3

)
· Γ2 +

(
− 2

λ1 + λ3

)
· Γ3, (2.14)
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indicating that the steady-state entanglement is sensitive to the temperature [29,
31]. In this expression, it is possible to choose the system parameters so that Γ3 is
negative, indicating the appearance of entanglement. The maximal entanglement is
obtained at nth = 0 with the maximal optomechanical coupling chosen as g =

√
2κγM

due to the restriction of the stability condition. The corresponding entanglement is

min (∆EPR)ss =
1

4

(
1−

√
2γM
κ
− 3

2

(γM
κ

)
− 11×

(γM
2κ

)3/2
)

+ (2nth + 1)
(γM

2κ

)3/2

,

(2.15)

showing that ∆EPR >
1
4
, and it disappears with high nth, consistent with [46].

More importantly, our results could be applied to the case of unstable optome-
chanical system, i.e. λ3 > 0. For the blue-detuned cavity optomechanical system in
unstable parameter regime, our formula shows that the time scale for the system to
build up entanglement is κ−1. In Eq.(2.13), EPR-variance 〈(∆û)2〉% decreases expo-
nentially with e2λ1t and e(λ1+λ3)t where both of these two terms are in the time scale
of κ−1 and all other terms are monotonically increasing functions with t. Physically,
Γ1, Γ2 and Γ3 are caused via the cavity decay and mechanical damping, destroying
the obtained optomechanical entanglement. G3 describes the feedback of the environ-
ment on the radiation pressure coupling. However, it is known that the EPR-variance
approach only detects limited kinds of entangled optomechanical states, and many
optomechanical entangled states are out of its ability. In fact, most optomechani-
cal entangled states could be measured by the logarithmic negativity of the system’s
covariance matrix, details of which we will focus on in the following section.

Covariance matrix approach

Another alternative way to characterize the entanglement dynamics for the optome-
chanical system is the logarithmic negativity of the covariance matrix, which will
be described in this section. Since we have shown that the linearized optomechan-
ical model is guaranteed within the linearization time window, the dynamics of the
unstable optomechanical system can be fully characterized by the covariance ma-
trix of Vij = 〈ui(t)uj(t) + uj(t)ui(t)〉/2 inside the linearization time window, where
uT (t) = [Xc (t) , Yc (t) , x (t) , p (t)]. According to the dynamics of u(t) in Eq.(2.8), the
equation of motion for the covariance matrix V (t) is

dV (t)

dt
= AV (t) + V (t)AT +D, (2.16)

This is a direct result from the linearized QLEs without any additional approxima-
tions, and once it has been solved, all the dynamics of the optomechanical system
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Figure 2.3: Plot of Zero-temperature maximal entanglement and the corresponding
optimal pulse duration. (a) The dependence of logarithmic negativity on mechani-
cal damping rate γM (MHz) and cavity decay rate κ (MHz).(b) The corresponding
optimal pulse duration τ (us) inside the linearization time window. The mechan-
ical coupling rate is fixed as g = 0.3MHz and mechanical frequency is chosen as
ωM = 500MHz � κ, g

could be inferred from it. However, the general analytical expression is too convolved
to be reported here. Under RWA the expression could be further simplified, which are
present in the Appendix A.1. Here we focus on the numerical solutions of Eq.(2.16).

At zero thermal temperature, the dependence of the maximal optomechanical
entanglement on the cavity decay rate κ and the mechanical damping γM are reported
in Fig. 2.3. The maximal values are obtained by searching within the linearization
time window. Our results show entanglement is maximized in the regime where both
γM and κ are small, consistent with the expectation that entanglement is optimized
with small cavity decay and less mechanical damping. Fig. 2.3 also shows that the
pulse duration of the optimal entanglement is larger at smaller cavity decay rate κ,
which is consistent with our previous discussion that κ(−1) is the time scale for optimal
optomechanical entanglement.

For non-zero temperatures, we study the dependence of optimal entanglement on
the mechanical temperature nth for the blue-detuned cavity optomechanical system
in the unstable parameter regime. The results are shown in Fig. 3.2. Because of
the existence of the linear time window in this weak driving unstable regime, the
entanglement is very strong against the thermal noise and the non-zero negativity is
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Figure 2.4: (a) Temperature dependence of the maximal values of logarithmic neg-
ativity En(t) inside the linearization time windows with fixed ωM/2π = 3.8MHz,
γM = ωM/Q(Q = 105), g/2π = 0.3MHz and κ/2π = 0.3MHz (b) The correspond-
ing optimal pulse duration τ . Note that the linearization windows here is t < 0.858
(µs) and in our case the entanglement En always get maximal before the system lose
linearization.

obtained at T = 500 mK. For the steady-state entanglement scheme, the restrictions
from the stability condition make the existence of high temperature optomechanical
entanglement impossible. But in our pulsed driving scheme, because the linearization
is guaranteed in the linearization time window, the stability condition is released, and
the optomechanical entangled states are, therefore, possible for very high mechanical
temperatures.

In Fig. 3.3, we show the optimized optomechanical entanglement on the strength
of optomechanical coupling g and the cavity decay rate κ within the restrictions from
the linearization time window, and the corresponding time duration is shown in Fig.
3.4. The mechanical damping and its thermal temperature are fixed at γM/ωM = 105

and nth = 1100, respectively. It shows that for the unstable parameter regime at non-
zero temperatures, the linearization time window tends to create large entanglement
at smaller cavity decay rate κ with larger optomechanical coupling strength g which
is consistent with the expectation. However, the pulse duration shows some special
behavior that for the special choice of g and κ, the duration for optimal entanglement
is significantly large. The reason is that in these regimes, although the system is
unstable, its linearization time window could last for a very time duration, while in
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Figure 2.5: Maximum values of optomechanical entanglement En as a function of
interaction constant g/2π and cavity dacay rate κ/2π. The mechanical oscillator has
fixed frequency of ωM/2π = 3.8 MHz and its damping rate is set as γM/2π = 3.8×10−5

MHz. The phonon number of the thermal bath is given as nth = 1100. The white
dotted line is the boundary between stable parameters regime and unstable regime,
i.e. above this line, the optomechanical system is unstable due to the large interaction
strength g, i.e. g >

√
κ× γM/2.
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Figure 2.6: The corresponding optimal pulse duration τ for the maximal entangle-
ment. Parameters are the same as Fig. 3.3. The optimal duration τ is found by
searching maximal entanglement inside the time window where the linearization is
always guaranteed.
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these regimes, the time scale of optimal entanglement is solely controlled by κ−1,
which is also a large number.

In practice, people are more interested with the entanglement between the output
field and the mechanical oscillator since we can only measure the outgoing optical field
in experiment. It is, therefore, important to have theoretical tools to characterize such
an entanglement, and this is done in the Appendix A.2, where we propose a realistic
scheme to connect the intra-cavity entanglement with the entanglement among the
output field and mechanical oscillator.

Conclusions

In this study, we successfully established a quantitative description of the linear time
window for the unstable optomechanical system under blue-detuned cavity driving.
It turns out that the standard optomechanical dynamics within linear time window
could be well characterized by the linear optomechanical model, while outside the
time window, a nonlinear description is necessary. We also provided a detail study
on how such a time window influences the entanglement generation for the unstable
blue-detuned optomechanical system. Two different approaches have been employed
to characterize the optomechanical entanglement, one with the simple analytical ex-
pression and clear physics pictures. Another could be implemented with broader
parameter regimes. All these studies show that the linear time window has a strong
influence on the optimal schemes generating entanglement in the unstable regime. In
order to investigate the experimental measurement on the cavity entanglement, an
input-output formalism has been developed to describe the entanglement between the
output field and the mechanical oscillator.

However, the current study is based on RWA, where it requires ωM � κ, and
outside such a parameter regime, the general form for the linear time window is really
involved and has not been fully studied, where it could show new characteristics for
the linear time window. Another possible direction for this study is to investigate
the linear time window beyond the standard optomechanical model, which could
involve several cavity modes interacting with several mechanical modes. Whether
the stability condition will relax or restrict the linear time window is still an open
question and needs further study.
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2.2 Optomechanical System With Periodic

Driving

Introduction

One interesting question about the optomechanical system is how to improve the
obtained optomechanical entanglement for the steady-state entanglement generation
scheme proposed by [29, 31]. The previous section has provided one way to enhance
the optomechanical entanglement via a pulsed driven optomechanical system working
in an unstable parameter regime. However, the complexity of the pulse control along
with the instability issues make it difficult to implement such a scheme experimentally.
Recently, it has been proposed that with a suitable time modulation of the driving
field, the standard optomechanical system could have steady states with significantly
improved entanglement between the cavity light field and the mechanical mode[33,
32, 34]. As outlined in Chapter 1, the periodic time modulation of the driving field
leads to an effective two-mode squeezing interaction for the standard optomechanical
system, which helps to produce highly entangled optomechanical steady states.

In this section, we extend this idea one step further and apply it to the op-
tomechanical system beyond the standard optomechanical model, where our system
includes two cavity modes interacting with one single mechanical mode—a three-
mode optomechanical system. Such a system has been proposed for the frequency
transmission between optical and microwave fields [26, 27], which has many impor-
tant applications in various research [31, 56, 57, 58]. This section focuses on the
improvement of entanglement for the three-mode optomechanical system by means
of suitable time modulation of the driving field. Our results show that the periodic
driving field in the three-mode optomechanical system can not only be utilized to
enhance the cavity-mechanical entanglement as well as the entanglement between the
two cavity modes. It could also be used to reduce the entanglement by controlling
the modulation amplitude, which provide an effective way to improve the quantum
communication scheme. The new scheme present here has the ability to establish or
break the entanglement channels freely. Moreover, at the end of this section, we also
study the influence of the time modulation on the dynamics of the tripartite entangle-
ment for the three-mode optomechanical system. We show that the genuine tripartite
entanglement is sensitive to the external driving and, with appropriate time modu-
lation, the tripartite entanglement of the three-mode optomechanical system can be
enhanced.

Three-mode Optomechanical system

We consider a optomechanical system composed of two cavity modes coupling with
a single mechanical mode via the radiation pressure interaction. One cavity is driven
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by a red-detuned laser field with frequency ωr to generate anti-Stokes process, and
another cavity is driven by a blue-detuned laser field at frequency ωb to generate
Stokes process. The Hamiltonian of this system reads,

Hs = h̄ω1â
†
1â1 + h̄ω2â

†
2â2 +

1

2
h̄ωM

(
p̂2 + q̂2

)
−
∑
i=1,2

h̄giâ
†
i âiq̂

+ ih̄E1 (1 + ηcos (Ωt))
(
e−iωrtâ†1 − eiωrtâ1

)
+ ih̄E2

(
e−iωbtâ†2 − eiωbtâ2

)
(2.17)

where ω1,2 are the frequencies of the two cavities and âi is the corresponding annihila-
tion operator. Here the amplitude of the red detuned driving field is time modulated
with a strength ηE1 and frequency Ω. Operators p̂ and q̂ are the dimensionless op-
erator for the mechanical oscillator with communicator [q̂, p̂] = i. The corresponding
equations of motion read,

˙̂q = ωM p̂, (2.18a)
˙̂p = −ωM q̂ − γM p̂+ g1â

†
1â1 + g2â

†
2â2 + ξ(t), (2.18b)

˙̂a1 = −[κ1 + i∆r]â1 + ig1â1q̂ + E1 + ηE1cos (Ωt) +
√

2κ1â
in
1 , (2.18c)

˙̂a2 = −[κ2 + i∆b]â2 + ig2â2q̂ + E2 +
√

2κ2â
in
2 , (2.18d)

with the cavity detunings given as ∆r = ω1 − ωr > 0 and ∆b = ω2 − ωb < 0. To
investigate the essential features of the periodic time modulation on such a three-
mode optomechanical system, we first consider its purely classical dynamics. To do
so, we replace each operator with its average value. The classical equations of motion
then read,

〈 ˙̂q〉 = ωM〈p̂〉, (2.19a)

〈 ˙̂p〉 = −ωM〈q̂〉 − γM〈p̂〉+ g1|〈â1〉|2 + g2|〈â2〉|2, (2.19b)

〈 ˙̂a1〉 = −[κ1 + i∆r]〈â1〉+ ig1〈â1〉〈q̂〉+ E1 + ηE1cos (Ωt) , (2.19c)

〈 ˙̂a2〉 = −[κ2 + i∆b]〈â2〉+ ig2〈â2〉〈q̂〉+ E2, (2.19d)

The above equations could be solved numerically, as it is done in the following sec-
tions. Another way is to solve the above nonlinear equations via the perturbation
method based on the smallness of the weak optomechanical coupling gi. Since all the
nonlinearities of the above equations are associated with gi and if we further assume
g1 ∼ g2 ∼ g0 is small enough, a power series ansatz could be employed,

〈Ô〉 =
∞∑
n=0

Ong
n
0
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where Ô stands for any quantum operator in the above nonlinear equations. Once
we substitute this expression back into Eq.(2.19) and collect terms of different orders
of g0, one will arrive at a set of linear equations. To solve this set of equations, we
focus on the asymptotic solutions, where all the transient dynamics have died out and
the steady-state amplitudes oscillate as the sidebands of the modulation frequency
Ω. This leads to the following improved ansatz for Eq.(2.19),

〈Ô〉 =
∞∑
n=0

∞∑
`=−∞

On.`g
n
0 e

i`Ωt (2.20)

As a result, the classical steady-state solutions are all periodic due to the time periodic
driving, which provides the basis for the following linearization process of the quantum
Langevin equations Eq.(2.18), and we will discuss it in more detail in the next section.

Linearization of the three-mode optomechanical system

With the classical solutions obtained in the previous section, one could continue
to linearize the quantum Langevin equations of Eq.(2.18) around the asymptotic
quasiperiodic orbits, which are then used to study the second moments of system
operators—the quantum correlations of the three-mode system.

By expanding the quantum operator Ω̂(t) as average value and its fluctuation

operator, i.e. Ω̂(t) = 〈 ˆΩ(t)〉 + δΩ̂(t), and by using the assumption of small fluctua-
tions of the stable three-mode optomechanical system, Eq.(2.18) could be linearized
around the classical solutions into the following first order inhomogeneous differential
equations,

du

dt
= A(t)u(t) + n(t) (2.21)

with the vector defined as u(t) = [δq̂, δp̂, δX̂1, δŶ1, δX̂2, δŶ2, ]
T and the noise vector

is n(t) = (0, ξ(t),
√

2κ1X̂
in
1 ,
√

2κ1Ŷ
in

1 ,
√

2κ2X̂
in
2 ,
√

2κ2Ŷ
in

2 )T . The coefficient matrix is
given by,

A(t) =


0 ωM 0 0 0 0
−ωM −γM G1,x(t) G1,y(t) G2,x(t) G2,y(t)
−G1,y(t) 0 −κ1 ∆1(t) 0 0
G1,x(t) 0 −∆1(t) −κ1 0 0
−G2,y(t) 0 0 0 −κ2 ∆2(t)
G2,x(t) 0 0 0 −∆2(t) −κ2

 (2.22)

where the coefficient matrix A(t) contains the time modulated cavity detuning and
optomechanical coupling as ∆1(t) = ∆r − g1〈q̂(t)〉 and ∆2(t) = ∆b − g2〈q̂(t)〉,

Gi(t) =
√

2gi〈âi(t)〉 ≡ Gi,x(t) + iGi,y(t) (2.23)
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Due to the linearity of Eq.(2.21) and the Gaussian nature of the noise operators, the
dynamics of this three-mode optomechanical system are always kept in Gaussian and
are completely characterized by its symmetrized 6 × 6 covariance matrix, with its
elements given by,

Vij(t) =
1

2
〈ûi(t)ûj(t) + ûj(t)ûi(t)〉 (2.24)

The corresponding equation of motion for the covariance matrix could be obtained
as,

dV (t)

dt
= A(t)V (t) + V (t)AT (t) +D (2.25)

where D=diag(0, γM(2nth + 1), κ1, κ1, κ2, κ2). Combing the solutions of Eq.(2.19)
and Eq.(2.25), one can solve for the dynamics for the three-mode optomechanical
system under the periodic driving.
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Dynamics of the three-mode optomechanical system
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Figure 2.7: The dynamics of the classical solution for the three-mode optomechanical
system with and without time modulation on the red-detuned driving. (a) Phase
Plot of mechanical oscillator. (b) Phase Plot of the cavity modes, the upper ones
are blue detuned cavity mode and the lower ones are the red-detuned cavity modes.
The parameters are: ωM/2π = 1 MHz, γM/2π = 1 Hz with thermal temperature
at nth = 0. One cavity is red-detuned at ∆r = ωM with amplitude E1 = 3.80× 1011

Hz and another cavity is blue-detuned at ∆b = −ωM with amplitude E2 = 0.1E1.
Both cavities have the same decay rate of κ1 = κ2 = 1.35 MHz. The modulation
frequency is Ω = 2ωM with amplitude EΩ = 0.45E1. The optomechanical couplings
are g1/2π = g2/2π = 3.8 Hz.

The phase space trajectories of the first moments of the mechanical oscillator and
cavity fields are shown in Fig. 2.7 (solid curves) and compared with the case of no time
modulation(dashed line curves). Fig. 2.7 shows that the dynamics of the mechanical
oscillator (red curve in Fig. 2.7(a)) and of the red-detuned cavity (red curve in
Fig. 2.7(b)) are strongly imparted by the time modulation, specifically limit circles
rather than fixed points appear for the time modulated dynamics. The blue detuned
cavity mode (blue dashed curve in Fig. 2.7(b)) is almost unaffected by the time
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modulation. This is because only the red-detuned driving field is time modulated,
which influences the blue-detuned cavity field via the weak optomechanical coupling,
making its influence on the blue-detuned cavity mode one order smaller than its
influence on the red-detuned cavity mode.
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Figure 2.8: The entanglement dynamics under the time modulation. Solid cures are
the dynamics with time modulated red-detuned driving and dashed lines are without
time modulation. Parameters are the same as Fig. 2.7

As discussed previously, the quantum fluctuations around the classical orbits are
well characterized by Eq.(2.21), from which the dynamics of the optomechanical quan-
tum correlations can be obtained. One important quantum correlation is the bipartite
entanglement between the cavity fields and mechanical mode. We use the logarithmic
negativity of the covariance matrix as a measure of the optomechanical entanglement
[29], of which the definition is provided in the Chapter 1 with Eq.(1.26). Fig. 2.8
and Fig. 2.9 show the entanglement dynamics under the time modulation of the red
detuned cavity driving (red curves), which are compared with the case of no time mod-
ulation (blue dashed curves). It is evident that both the entanglement between the
red-detuned cavity mode and mechanical mode (Fig.2.9(a)), and the entanglement be-
tween the blue-detuned cavity mode and mechanical mode (Fig.2.9(b)) are improved
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Figure 2.9: The entanglement dynamics under the time modulation. (a) the entan-
glement between the red-detuned cavity and mechanical mode. (b) the entanglement
between the blue-detuned cavity and mechanical mode. Solid cures are the dynamics
with time modulated red-detuned driving and dashed lines are without time modu-
lation. Parameters are the same as FIG.2.7

by the time modulation, while the cavity-cavity entanglement (Fig.2.8) is depressed
by the time modulation. This is due to the fact that the time modulation was added
on the red-detuned driving laser, which generates an effective down-conversion inter-
action between the red-detuned cavity field and mechanical mode, leading to a large
improvement for the red-detuned optomechanical entanglement.

It is also possible to enhance the cavity-cavity entanglement through the time
modulation. One example for the case of the time modulated red-detuned cavity
driving is given in Fig. 2.10(a), where we have fixed the effective cavity detuning as
∆1 = ωM and ∆2 = −ωM . It shows that the cavity-cavity entanglement is signifi-
cantly improved from 1.15 to 1.48 as result. However, the assumption with a time
independent cavity detuning under the time modulation could cause some experimen-
tal difficulties. With another set of parameters, we release this restriction, but only
a slightly enhanced cavity-cavity entanglement is observed. The time modulating of
the blue-detuned cavity driving could also be employed to enhance the steady cavity-
cavity entanglement and Fig. 2.10(b) shows one example with the time modulation
applied to the blue detuned cavity. It clearly shows that the cavity-cavity entangle-
ment is enhanced from EN = 0 with no time modulation to EN ≈ 0.35 with time
modulation. However, we also observed that the bipartite entanglement between the
blue-detuned cavity and mechanical mode is reduced. This is due to the fact that the
time modulation induced an effective beam splitter interaction between them.
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Figure 2.10: (a) Steady-state cavity-cavity entanglement with the cavity detunings
fixed at ∆1(t) = ωM and ∆2(t) = −ωM . The mechanical frequency is chosen as
ωM/2π = 10 MHz and damping as γM/2π = 0.4 MHz with thermal temperature
at nth = 0. The optomechanical couplings are g1/2π = g2/2π = 1.63 Hz, the cavity
decay rate is κ1/2π = κ1/2π = 25 kHz, with E1 = 7.35× 1013, E2 = 5.44× 1013 and
the modulation amplitude is EΩ = 4.41× 1013. (b) Steady-state entanglement under
the time modulation on the driving field of the blue detuned-cavity. Parameters are
the same with (a) except the driving amplitudes E1 = 6.67×1012 Hz, E2 = 7.79×1012

Hz. The modulation amplitude is EΩ = 0.8 E1.

The effective linear Hamiltonian

To explain the above observed influence of the time modulation on entanglement
generation, one reasonable argument is to obtain an effective Hamiltonian from the
linearized Langevin equation Eq.(2.21) and apply a similar argument as it has been
in [32]. To do so, one must work with several rotating frames and use the RWA to
obtain an effective Hamiltonian responsible for creating entanglement among different
subsystems. The original effective Hamiltonian for the time modulation with the red-
detuned driving reads,

Hs = h̄ωM b̂
†
M b̂M + h̄∆1â

†
1â1 + h̄∆2â

†
2â2 −

1

2

(
G1(t)∗â1 +G1(t)â†1

)(
b̂M + b̂†M

)
− 1

2

(
G2(t)∗â2 +G2(t)â†2

)(
b̂M + b̂†M

)
(2.26)

Here we consider the situation of the strength of the red-detuned driving field is much
stronger than the blue detuned driving field, i.e. E1 > E2. One could treat G2(t) as
time-dependent while treating G1(t) as a constant, i.e. G1(t) = G1 + GΩe

−iΩt and
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G2(t) = G2. The system Hamiltonian could be expressed as Hs = H0 +H1 +H2 and

H0 = h̄ωM b̂
†
M b̂M + h̄∆1â

†
1â1 + h̄∆2â

†
2â2, (2.27)

H1 = −1

2
G1

(
â1 + â†1

)(
b̂M + b̂†M

)
− 1

2
G2

(
â2 + â†2

)(
b̂M + b̂†M

)
, (2.28)

H2 = −1

2
GΩ

(
eiΩtâ1 + e−iΩtâ†1

)(
b̂M + b̂†M

)
, (2.29)

By setting ∆1 = ωM and ∆2 = −ωM , in the rotating frame of H0 and applying the
RWA, one could further simplify H1 and H2 as

H ′1 ' −
1

2
G1

(
â1b̂
†
M + â†1b̂M

)
− 1

2
G2

(
â2b̂M + â†2b̂

†
M

)
, (2.30)

H ′2 ' −
1

2
GΩ

(
ei(Ω−2ωM )tâ1b̂M + e−i(Ω−2ωM )tâ†1b̂

†
M

)
, (2.31)

where the fast oscillating terms have been dropped by the RWA. By introducing the
Bogoliubov modes: β̂A = cosh râ1 + sinh râ†2, β̂B = sinh râ†1 + cosh râ2 and Ĉ± =
β̂A ± b̂M/

√
2 with tanh r = G2/G1, the Hamiltonian H ′1 becomes diagonal, i.e.

H ′1 ' −
1

2
G̃
(
β̂†Ab̂M + β̂Ab̂

†
M

)
= −1

2
G̃
(
Ĉ†+Ĉ+ − Ĉ†−Ĉ−

)
(2.32)

Here, G̃ =
√
G2

1 −G2
2. We now preform the second rotating frame of H ′1, in which

the Hamiltonian H ′2 has the following form,

H ′2 ' −
1

2
GΩ

(
ei(Ω−2ωM )t

(
cosh r

2
ĤCC(t)− sinh r√

2
ĤBC(t)

)
+ h.c.

)
(2.33)

with ĤCC(t) = eiG̃tĈ+Ĉ+ − e−iG̃tĈ−Ĉ− and ĤBC(t) = e−i
G̃
2
tβ̂†BĈ+ + ei

G̃
2
tβ̂†BĈ−. Here

are four different resonant frequencies: Ω = 2ωM ± G̃ and Ω = 2ωM ± G̃
2

. The
corresponding four different resonant Hamiltonian are given by

H ′2,1 = −cosh r

4
GΩ

(
Ĉ+Ĉ+ + Ĉ†+Ĉ

†
+

)
, H ′2,2 =

cosh r

4
GΩ

(
Ĉ−Ĉ− + Ĉ†−Ĉ

†
−

)
(2.34)

H ′2,3 =
sinh r

2
√

2
GΩ

(
β̂†BĈ+ + Ĉ†+β̂B

)
, H ′2,4 =

sinh r

2
√

2
GΩ

(
β̂†BĈ− + Ĉ†−β̂B

)
(2.35)
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Figure 2.11: The dynamics of tripartite entanglement with time modulation. Dashed
cures are the results without time modulation. The mechanical frequency is ωM/2π =
10 MHz with its damping as γM/2π = 400 Hz and the temperature nth = 0. The
optomechanical couplings are g1/2π = g2/2π = 1.63 Hz. The cavity decay rate
is κ1/2π = κ1/2π = 25 kHz, with E1 = 9.024 × 1012eiπ/2 Hz and E2 = 1.36 ×
1012e−iπ/2 Hz. The time modulation amplitude EΩ = 0.6E1.

From the above Hamiltonian, it is shown that if the time modulation frequency was
properly tuned, one could arrive at tripartite entanglement using the three-mode
squeezing Hamiltonian of Eq.(2.34), or by exchanging state of two cavity modes to
achieve the global tripartite entanglement through Eq.(2.35). One example is shown
in Fig. 2.11 where the tripartite entanglement is measured by van Loock and Furu-
sawa criterion[59] that the genuine tripartite entanglement exists only if at least one
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of the following relation was kept,

VMC1C2 = ∆

(
δq̂ − δX̂1 + δX̂2√

2

)2

+ ∆

(
δp̂+

δŶ1 + δŶ2√
2

)2

< 2, (2.36)

VC1MC2 = ∆

(
δX̂1 −

δq̂ + δX̂2√
2

)2

+ ∆

(
δŶ1 +

δp̂+ δŶ2√
2

)2

< 2, (2.37)

VC2MC1 = ∆

(
δX̂2 −

δX̂1 + δq̂√
2

)2

+ ∆

(
δŶ2 +

δŶ1 + δp̂√
2

)2

< 2, (2.38)

where ∆(Â)2 = 〈Â2〉 − 〈Â〉2. As it is evident from Fig. 2.11, the tripartite entan-
glement for the three-mode optomechanical system is transient and under the time
modulation the system tends to stay with the tripartite entanglement for a longer
time.

Conclusions

In this study, we successfully demonstrated that the time modulated driving could
be employed to enhance the quantum correlations for the three-mode optomechan-
ical system, as this chapter shows that the cavity-cavity entanglement or cavity-
mechanical mode entanglement is enhanced by the periodic driving. Our study
provides one additional way to optically control the quantum property of the op-
tomechanical system, which has the potential applications in the field of quantum
communication, where the mechanical oscillator works as a transistor for different
cavity modes which carry the quantum information to implement the communica-
tion. The time modulation scheme discussed in this research provides one approach
to control the communication via enhancing or reducing the quantum correlations
between different cavity modes.

However, the current research did not consider the relation among the time modu-
lation and the many body entanglement behaviors of the three-mode optomechanical
system, although, one example for quantum tripartite entanglement is demonstrated
at the end of this chapter. Such a many body behavior may have potential appli-
cations for quantum communication. The effective Hamiltonian approach developed
here could be the basis for the future research in this direction.



Chapter 3

Nonlinear Optomechanical Effects
with Perturbation

As discussed in the previous chapters, the linearized optomechanical model, based
on the approximation that all quantum fluctuations are small, has been successfully
applied to fully describe many interesting optomechanical phenomena, including op-
tomechanical cooling [60, 20, 61], OMIT[35, 36, 37], steady-state optomechanical
entanglement generation [29, 31] and optical string effects [62, 63]. However, even
the linearized optomechanical model itself could be used to predict the breakdown
of its basic assumption of the small fluctuations. As discussed in Chapter 2, with
a large enough driving field and proper cavity detuning, the optomechanical system
could become unstable. As a result, the mechanical amplitude grows exponentially
with time, and any initial fluctuations would become extra large, which breaks down
the basic approximation of the linearized model, and causes it to fail to correctly
characterize the dynamics for the optomechanical system in the unstable regime.

Even for the stable optomechanical system, provided that the radiation pressure
coupling is strong enough, many details of the optomechanical dynamics due to the
nonlinear optomechanical interactions are not resolved by the linearized optomechan-
ical model, which provides another reason for us to study the nonlinear effects in the
optomechanical system. However, there are few theoretical tools to deal with the
influence of nonlinear interaction in the optomechanical dynamics, especially with
the open system dynamics of both the cavity decay and the mechanical damping in-
volved. This chapter is, therefore, devoted to investigate the influence of the nonlinear
optomechanical interaction in the system dynamics under an intermediate radiation
pressure coupling strength, where the nonlinear terms could be treated as perturba-
tions to the linearized optomechanical model.

We address the problem by dealing with the perturbations of the quantum oper-
ator equations in the Heisenberg picture, which are known as the quantum Langevin
equations. Because of the weak optomechanical coupling, the nonlinear terms in

42
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the quantum Langevin equations could be treated as perturbations of the linear op-
tomechanical interaction. Therefore one can expand all the operators in terms of
the different orders of this weak coupling. The zero order operator equations corre-
spond to the case of the linearized optomechanical model, with its solutions easily
obtainable as it has been done in the previous chapters; while in the higher order
operator equations, the original nonlinear terms appear as time dependent driving
terms, made up with the solutions from the lower order equations. In this way, the
nonlinear optomechanical quantum Langevin equations are converted into a set of
inhomogeneous linear operator equations, and one could, therefore, solve them order
by order, details of which are shown in this chapter.

3.1 Introduction

The radiation pressure interaction in the standard optomechanical system is essen-
tially a nonlinear interaction in the sense that its Heisenberg equations for the field
operators are nonlinear. However, with the strong classical driving, the standard
optomechanical system is well approximated with the linearized model, where the
radiation pressure interaction in the system Hamiltonian becomes quadratic of the
field operators, corresponding to an effective beam-splitter like interaction, or two-
mode squeezing interaction, experimentally tuned at will via the control of the driving
laser frequency. This linearized approach has been used to study various interesting
features of the standard optomechanical system, such as the ground-state cooling of
mechanical oscillators [46], quantum standard limit for the displacement detection
[64] and optomechanical squeezing of cavity field [65, 66]. However, the linearized
optomechanical model breaks down when the system is unstable or with a strong op-
tomechanical coupling g0, where the pure linear model fails to describe the nonlinear
effects of the standard optomechanical system. Most studies today could only treat
this nonlinearity in the classical regime with large cavity driving, while the influence
of the nonlinearity in the dynamical behavior for the quantum optomechanical system
is still unclear to us.

In this study, we address this problem for the optomechanical system with an
intermediate radiation pressure coupling strength, where the influence of the nonlin-
earity could be treated as perturbations to the linear model. We deal with the open
system dynamics in the Heisenberg picture via the nonlinear Langevin equations for
field operators. It turns out that by treating the optomechanical coupling as a small
parameter, one could convert the nonlinear quantum Langevin equations into a set
of linear equations with nonlinear terms replaced by time dependent driving, which
can then be solved with the standard perturbation approach.
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3.2 Optomechanical System

The system we considered is a standard optomechanical system with a continuous
driving laser at frequency ωL and amplitude E, for which the system Hamiltonian
reads

Hs = h̄∆0â
†
câc + h̄ωMb

†b+ h̄g0

(
b̂†M + b̂M

)
â†câc + ih̄E

(
â†c − âc

)
(3.1)

with âc and b̂M as the annihilation operator of the cavity mode and mechanical
mode, respectively. Here ∆0 = ωc − ωL is the cavity detuning showing the difference
between the driving laser frequency ωL and the cavity resonance ωc. To express our
perturbation effectively, we need to work in a displacement picture described by the
unitary transformation of U = Dc (αss)DM (βss), with complex amplitudes αss =
(−i∆ + κ)−1E, βss = −g0|αss|2/

√
2ωM . Here the cavity displacement operator

Dc(α) is defined as Dc(α) = eα
∗âc−αâ†c and similarly for the mechanical displacement

operator DM(β). In this displacement picture, the system’s Hamiltonian reads

H̄s = UHsU−1 = h̄∆â†câc+ h̄ωM b̂
†
M b̂M + h̄g

(
â†c + âc

) (
b̂†M + b̂M

)
+ h̄g0â

†
câc

(
b̂†M + b̂M

)
(3.2)

with g = g0αss and ∆ = ∆0+g0 (β∗ss + βss). Under the strong driving, the above treat-
ment is equivalent to the standard linearization process, where the small nonlinear
terms (the last term of Eq.(3.2)) are instead neglected. However, in the intermediate
coupling regime, the contribution from the g0 is non-zero, and its influence is observ-
able from its dynamics. The full dynamical equations, including the cavity decay and
the mechanical damping, are

dû(τ)

dτ
= M · û(τ) + n̂(τ) + ε ·G(û(τ)) (3.3)

with the system operator vector defined as û(τ) =
(
b̂M(τ), b̂†M(τ), âc(τ), â†c(τ)

)T
and noise vector as n̂(τ) = g−1

(
−√γM b̂in(τ), −√γM b̂†in(τ), −

√
2κ ain(τ), −

√
2κ a†in(τ)

)T
.

Here we have rescaled the time t as τ = gt so that the dimensionless small number
ε = g0/g is shown in the above equation. The coefficient matrix M is

M =


−iω̃M − γ̃M

2
γ̃M
2

−i −i
γ̃M
2

iω̃M − γ̃M
2

i i

−i −i −i∆̃− κ̃ 0

i i 0 i∆̃− κ̃

 (3.4)

and the nonlinear terms are denoted as

G(û (τ)) =
(
−iN̂c(τ), iN̂c(τ),−iâc(τ)X̂M(τ), iâ†c(τ)X̂M(τ)

)T
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with N̂c(t) = â†c(τ)âc(τ) and X̂M(t) = b̂†M(t) + b̂M(t). All the parameters with tilde
indicate they have been divided by g, for example, ω̃M = ωM/g. Here âin is the
vacuum radiation input noise whose nonzero correlation function at optical frequency
h̄ωc/kBT � 1 is

〈âin (t) â†in (t′)〉 = δ (t− t′) (3.5)

and b̂in describes the Brownian motion for the mechanical oscillator. The correlation
functions are chosen as,

〈b̂†in(t)b̂in(t′)〉 = n̄δ(t− t′) (3.6a)

〈b̂in(t)b̂†in(t′)〉 = (n̄+ 1)δ(t− t′) (3.6b)

with n̄ =
(
eh̄ωM/KBT − 1

)−1
, and we assumed that the mechanical quality factor

QM = ωM/γM � 1.

3.3 Perturbation in the Heisenberg Picture

With a strong cavity driving amplitude E and the dimensionless number ε = g0/g ∼
E−1 � 1, we could treat ε as a small number and solve Eq.(3.3) in a perturbational
way,

û(τ, ε) = û(0)(τ) + εû(1)(τ) + ε2û(2)(τ) + . . . (3.7)

By inserting it back into Eq.(3.3) and collect different orders of ε, one arrives at a set
of linear equations. The equation for the zero order of ε is given by

dû(0)(τ)

dτ
= M · û(0)(τ) + n̂(τ), (3.8)

and the initial condition is û(0)(0) = (b̂M , b̂
†
M , âc, â

†
c)
T , the same equation obtained in

the linearized optomechanical model. The first order of ε shows that

dû(1)(τ)

dτ
= M · û(1)(τ) + g(û(0)(τ)) (3.9)

with û(1)(0) = 0 as the initial condition and the inhomogeneous term g(û(0) (τ)) =

(−iN̂ (0)
c (τ), iN̂

(0)
c (τ),−iΞ(0)

τ , iΞ
(0),†
τ )T , where Ξ

(0)
τ = â

(0)
c (τ)X̂

(0)
M (τ). With the solutions

of Eq.(3.8), term of g(û(0)) is a known time dependent function so that the above
equation is still a linear equation. Similarly, the second order of ε shows that

dû(2)(τ)

dτ
= M · û(2)(τ) + g(û(0)(τ), û(1)(τ)) (3.10)

with û(2)(0) = 0 as the initial condition and the inhomogeneous term g(û(0)(τ), û(1) (τ)) =

(−iN̂ (0,1)
c (τ), iN̂

(0,1)
c (τ),−iΞ(0,1)

(τ) , iΞ
(0,1),†
(τ) )T with N̂

(0,1)
c (τ) = â

(0),†
c (τ)â

(1)
c (τ)+â

(1),†
c (τ)â

(0)
c (τ)

and Ξ
(0,1)
(τ) = â

(0)
c (τ)X̂

(1)
M (τ) + â

(1)
c (τ)X̂

(0)
M (τ). In practice, we stop at the second order

and focus on the solutions for the above linear operator equations.
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Perturbative solutions

The Langevin equations for the zero order û(0)(τ) can be solved by diagonalizing the
coefficient matrix M ,

U ·M · U−1 = diag[λ1, λ2, λ3, λ4] ≡ D (3.11)

and defining the canonical vector as

ξ̂(0)(τ) = U · û(0)(τ) (3.12)

Here the equation of motion for ξ̂(0)(τ) reads

dξ̂(0)(τ)

dτ
= D · ξ̂(0)(τ) + U · n̂(τ) (3.13)

Because the matrix D has the diagonal form, ξ̂(0)(τ) can be easily integrated out as,

ξ̂(0)(τ) = eDtξ̂(0)(0) + eDt
∫ τ

0

dt′e−Dt
′
U · n̂(t′) (3.14)

with e±Dt ≡ diag[e±λ1t, e±λ2t, e±λ3t, e±λ4t]. By taking the inverse matrix of U , one
arrives at the solution for û(0),

û(0)(τ) = U−1 · ξ̂(0)(τ) = U−1eDtU · û(0)(0) + U−1eDt
∫ τ

0

dt′e−Dt
′
U · n̂(t′) (3.15)

we can solve the first order and second order equations with a similar approach as the
zero order, and the only difference is that n̂(t) should be replaced by the corresponding
g functions, the solutions are

û(1)(τ) = U−1eDt
∫ τ

0

dt′e−Dt
′
U · g(û(0)(t′)), (3.16)

û(2)(τ) = U−1eDt
∫ τ

0

dt′e−Dt
′
U · g(û(0)(t′), û(1)(t′)), (3.17)

Here g(û(0)(t′)) and g(û(0)(t′), û(1)(t′)) are defined in the preceding section. Combin-
ing all these orders yields the second order solution for the system operators,

û(τ) ≈ û(0)(τ) + εû(1)(τ) + ε2û(2)(τ) (3.18)

with ε = g0/g � 1.
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3.4 Applications of the Perturbation Solutions

Field amplitude

In this part, we focus on the application of the above formalism in finding the field am-
plitude operators, such as 〈âc〉 and 〈b̂M〉, under the first order perturbation. Starting
from Eq.(3.18), one can show that the average values of the operator vector is

〈û(τ)〉 ≈ 〈û(0)(τ)〉+ ε〈û(1)(τ)〉 (3.19)

By choosing the system’s initial state characterized by the correlation matrix,

V = 〈û(τ = 0)ûT (τ = 0)〉 (3.20)

and the noise correlation functions of the standard optomechanical system in Eq.(3.5)
and Eq.(3.6), one could prove that the second moment of the system under the first
order perturbation reads (Appendix B.1)

〈û(0)
i (t)û

(0)
j (t)〉 =

∑
l,l′,n,n′

e(λl+λl′ )tU−1
il U

−1
jl′ UlnUl′n′Vnn′

+
∑
l,l′

e(λl+λl′ )t − 1

g · (λl + λl′)
U−1
il U

−1
jl′ Wl,l′ (3.21)

and Wl,l′ = n̄γ̃MUl2Ul′1 + (n̄ + 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4. This yields the i-th element
of 〈û(1)(τ)〉,

〈û(1)(τ)〉i = i
∑
k

U−1
ik

(
(Uk2 − Uk1) ·G1(k, τ)− Uk3F1(k, τ) + Uk4F2(k, τ)

)
(3.22)

Here G1 describes the nonlinear contributions of the radiation force on the mechanical
oscillator, while Fi characterizes the nonlinear feedbacks of the mechanical oscillator
on the cavity field. Their expressions could be found in the Eq.(B.17) of Appendix
B.1. As a result, the amplitude of the field operator is expressed as,

〈û(τ)〉i ≈
∑
k,l

U−1
i,k e

λkτUk,l · 〈û(0)(0)〉l

+ iε ·
∑
k

U−1
ik

(
(Uk2 − Uk1) ·G1(k, τ)− Uk3F1(k, τ) + Uk4F2(k, τ)

)
(3.23)

Combined with U calculated from the coefficient matrix M of Eq.(3.3), we could apply
the above results to study the influence of the nonlinear optomechanical interaction
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on the linearized optomechanical model, which can be done both numerically and
analytically. In general, the form of U is usually involved, however, in the appendix
B.3, we discuss special situations where the analytical form of U is available and,
therefore, all our results could be analytically expressed. Here, we will focus on the
numerical application of Eq.(3.23).
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Figure 3.1: The dynamics of (a) cavity field amplitude and (b) mechanical amplitude
under the perturbation method. System parameters are : the mechanical frequency
ωM/2π = 1 MHz; γM = ωM/105; and the mechanical thermal bath temperature
is nth = 1. The cavity field is red-detuned at ∆ = 4ωM , with cavity decay rate
κ = 0.05ωM , g = 0.05ωM and g0 = 0.3κ.

The first example we studied here is about the optomechanical dynamics starting
from a thermal initial state. The parameters are shown in Fig. 3.1 and the initial
thermal occupation number is n̄ = 1 for both the cavity field and the mechanical
mode. Green curves are the solution of the master equation method of the standard
optomechanical model with the nonlinear interaction terms included. Red curves
are the results of the first order perturbation, and blue squares are the result of
the linearized optomechanical model. With this choice of initial state, the initial
amplitude of the fluctuation operators are zero, which is, in fact, the steady-state for
the linearized optomechanical model (blue square in the figure) and, therefore, the
linearized equations have no dynamics in this case. However, when the contribution
from the nonlinear optomechanical interaction are considered, the system dynamics
reappear (green and red curves). This has been captured by both the master equation
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Figure 3.2: The dynamics of (a) cavity field amplitude and (b) mechanical amplitude
under the perturbation method. System parameters are : The mechanical frequency
ωM/2π = 1 MHz, γM = ωM/105 and the mechanical thermal bath temperature
is nth = 1. The cavity field is red detuned at ∆ = 4ωM , with cavity decay rate
κ = 0.05ωM , g = 0.03ωM and g0 = 0.03κ.

approach and the first order perturbation approach. Fig. 3.1 also confirms that the
first order perturbation gives similar dynamics to the master equation method.

The scenario with the nonzero linearized dynamics is also studied here with the
following initial state,

ρinitial = |α〉c〈α| ⊗ ρthermal (3.24)

Fig. 3.2 compares the results of the first order perturbation, as well as, the mas-
ter equation approach to the linearized optomechanical model. Here the cavity field
amplitude α = 1, and the average mechanical phonon occupation number n̄ = 1.
It shows that the linearized dynamics are not only different from the perturbation
results but it arrives at a different steady-state, indicating that the nonlinear interac-
tion must be taken into consideration for this scenario. It is important to note that
the cavity detuning is the leading factor for such different dynamics. Because at the
cavity detuning of ∆ = 4ωM , the nonlinear optomechanical is at resonance, while the
linear optomechanical interaction is depressed by being out of resonance. When the
cavity detuning becomes resonant with linearized optomechanical interaction, such
as ∆ = ωM , the linearized optomechanical model and the perturbation yields similar
dynamics. This is reported in Fig. 3.3 with all three color curves become indistin-
guishable. Furthermore, we found that the influence of the nonlinear terms increases
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Figure 3.3: The dynamics of (a) cavity field amplitude and (b) mechanical amplitude
under the perturbation method. System parameters are the same as Fig. 3.2 but
with a different detuning at ∆ = ωM .

with the optomechanical coupling g0. One such example is shown in Fig. 3.4, where
the optomechanical coupling strength is increased to g0 = 0.1κ and the resulting dif-
ference between the linearized optomechanical model and the perturbation method is
increased while the perturbation approach is still consistent with the master equation
approach.

Quantum optomechanical correlations

In this section, we focus on the influence of nonlinear optomechanical interaction on
the dynamics of the second moment of the standard optomechanical system, from
which the quantum optomechanical correlation can be extracted. Under the first
perturbation theory, the solution of the system operators are given by

û(τ) ≈ û(0)(τ) + ε · û(1)(τ) (3.25)

where the zero order solution û(0)(τ) is in Eq.(3.15) and the first order solution û(1)(τ)
in Eq.(3.16). The second moment of the system could, therefore, be expressed as

〈ûi(τ)ûj(τ)〉 = 〈û(0)
i (τ)û

(0)
j (τ)〉+ ε · 〈

(
û

(1)
i (τ)û

(0)
j (τ) + û

(0)
i (τ)û

(1)
j (τ)

)
〉 (3.26)
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Figure 3.4: The dynamics of (a) cavity field amplitude and (b) mechanical amplitude
under the perturbation method. System parameters are the same as FIG.3.2 but with
a different optomechanical coupling at g0 = 0.1κ.

If all the third moment for the initial state are known, one could simplify the above
results as

〈û(1)
i (τ)û

(0)
j (τ)〉 = i

∑
k

U−1
ik

(
∆UkΛ1(k, τ)− Uk3Λ2(k, τ) + Uk4Λ3(k, τ)

)
,

(3.27)

〈û(0)
i (τ)û

(1)
j (τ)〉 = i

∑
k

U−1
jk

(
∆UkΛ

′
1(k, τ)− Uk3Λ′2(k, τ) + Uk4Λ′3(k, τ)

)
,

(3.28)

Here ∆Uk = Uk2 − Uk1 and the analytical form of U , Λi and Λ′i are provided in
Appendix B.2 with detailed derivations. Fig. 3.5 shows the resulting dynamics of
the cavity photon number and mechanical phonon number, indicating that the first
order perturbation has no influence on the cavity photons while slightly modifies the
mechanical phonon dynamics. Such a result is expected since the nonlinear optome-
chanical interaction commute with the cavity photon number operator, indicating
that the cavity photon number should be unperturbed by the nonlinear optomechan-
ical interaction.
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Figure 3.5: The dynamics of (a) cavity photon numbers and (b) the mechanical
phonon numbers under the perturbation method. System parameters are the same
as FIG.3.2.

We also investigate the influence of the nonlinear interaction on the entanglement
generation for the standard optomechanical system. In order to quantify the optome-
chanical entanglement with nonlinear interaction, which is non-Gaussian in this case,
we employ the method developed in [67] where the moments of field operators are em-
ployed to characterize the entanglement for a continuous variable system, equivalent
to the positive partial transpose criteria (PPT). With the second moments calculated
from the first perturbation theory above, we could build the entanglement criteria
equivalent to Simon’s criteria of [68] with

En = −det

∣∣∣∣∣∣∣∣∣∣∣

1 〈âc〉 〈â†c〉 〈b̂†M〉 〈b̂M〉
〈â†c〉 〈â†câc〉 〈â†2c 〉 〈â†cb̂

†
M〉 〈â†cb̂M〉

〈âc〉 〈â2
c〉 〈âcâ†c〉 〈âcb̂†M〉 〈âcb̂M〉

〈b̂M〉 〈âcb̂M〉 〈â†cb̂M〉 〈b̂
†
M b̂
†
M〉 〈â2

c〉
〈b̂†M〉 〈âcb̂

†
M〉 〈â†cb̂

†
M〉 〈b̂†2M〉 〈b̂M b̂M〉

∣∣∣∣∣∣∣∣∣∣∣
(3.29)
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Figure 3.6: (a) The entanglement described by Simon’s criteria (b) The entanglement
described Duan’s criteria. Parameters are: ωM/2π = 1 MHz, nth = 0 and γM =
ωM/105, g = 0.1ωM and κ = 0.05ωM



CHAPTER 3. NONLINEAR OPTOMECHANICAL EFFECTS WITH
PERTURBATION 54

and Duan’s criteria of [55] with

En = −det

∣∣∣∣∣∣
1 〈âc〉 〈b̂†M〉
〈â†c〉 〈â†câc〉 〈â†cb̂

†
M〉

〈b̂M〉 〈âcb̂M〉 〈b̂†M b̂
†
M〉

∣∣∣∣∣∣ (3.30)

Our results are reported in Fig. 3.6, where we define the maximum entanglement
Max(En) as the the maximal En achieved during the time evolution of τ = 60π/ωM .
It shows that with an increase of the nonlinear coupling rate g0, the maximal optome-
chanical entanglement increases as well, indicating that nonlinear interactions helps
the entanglement generation with the parameters used above.

3.5 Conclusions

In this chapter, we developed a new perturbative method to investigate the influ-
ence of the nonlinear optomechanical interaction as modifications to the linearized
optomechanical model. Our results show that with an intermediate optomechanical
coupling, the influence of the nonlinear interaction is not negligible and it affects both
the amplitude of the cavity field and the mechanical oscillator, which is consistent
with the standard master equation approach with nonlinear interactions. Our results
also show that the nonlinear interactions could be used to assist the entanglement
generation. However, the perturbative solutions usually have involved form and in
this chapter, we only considered the effects from the first order perturbation while
the influence of the higher orders on system dynamics are still unclear.

Recently, similar methods were used to investigate the contribution of the nonlin-
ear interaction in the optomechanical dynamics involving two driving fields, and they
found that nonlinear optomechanical interaction could lead to the optomechanical in-
duced transparency [38, 39, 40]. In their formalism, the Hamiltonian is diagonalized
while assumptions are made about their interactions with environment. But in our
method, by employing the analytical solutions for the linear optomechanical model,
additional assumptions about the system-bath interaction are unnecessary, leading to
slightly different dynamics for the system. Moreover, the theoretical formalism de-
veloped here is easy to incorporate with numerical analytics due to its simple matrix
form.



Chapter 4

Strongly Coupled Optomechanical
System

With a strong optomechanical coupling strength, the influence of the nonlinear op-
tomechanical interaction becomes even more significant than it is in case of weak
coupling regime. In the strong coupling regime, both the linear approach (Chapter
2) and perturbative method (Chapter 3) fail to provide correct insight for the system
dynamics. To investigate the optomechanical behavior in this regime, new theoretical
tools are necessary to deal with the effects of the strong nonlinear optomechanical
interaction in the open system dynamics, which are the main topics in this chapter.

In this chapter, we consider an optomechanical system with its bare optomechan-
ical coupling constant g0 comparable with the mechanical frequency ωM , which we
call the single photon ultra-strong coupling regime. In this regime, the steady-state
mechanical displacement produced by a single photon is more than its zero-point fluc-
tuation. The mechanical oscillator is, therefore, strongly coupled to the cavity field,
and any fluctuation with the mechanical oscillator immediately shifts the state of the
cavity field. To obtain the truly single photon nonlinearity, we also require the cavity
decay κ to be small compared to the mechanical frequency ωM , so that any single
photon could live long enough to influence the mechanical dynamics which causes the
nontrivial optomechanical effects. Due to such a strong cavity-mechanical coupling,
the optomechanical decoherence behaviors change significantly, and the traditional
treatment of the standard master equations with an independent decoherence model
would not provide a correct insight for the optomechanical dynamics in this regime.

Based on the optomechanical dressed-state basis, a new master equation with a
coupled decoherence model is developed in this chapter for the standard optomechan-
ical system in the ultra-strong coupling regime, where we treat the cavity field and
mechanical oscillator as a single quantum system and consider the influence of the
outside environment via the Born-Markovian master equation approach. The results
show that the cavity decoherence is strongly coupled with the mechanical bath due

55
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to the large optomechanical coupling. As a result, both the transient dynamics and
the steady-state properties are significantly modified. Beyond the standard optome-
chanical model, we also studied the optomechanical system with two cavity modes
interacting with a single mechanical mode. Our results show that the cavity-cavity
entanglement is strongly influenced by the strong optomechanical coupling.

4.1 Introduction

Cavity optomechanics studies the radiation pressure interaction between a cavity field
and the motion of a mechanical oscillator. Such a system has been realized in a variety
of systems, including a Fabry-Perot cavity with moving mirror(s) [4, 5], cold atoms
in a cavity [6, 7], a nanomechanical resonator coupling with superconducting circuits
[69] and photonic crystal structures [9, 10, 11]. The study of such systems can lead to
advances in precision measurements [12, 13], implementations of quantum information
protocols and the testing of macroscopic quantum effects [14]. In recent experiments,
many quantum behaviors of the mechanical modes have been demonstrated , which
include the cooling to the quantum ground state[69, 70], the demonstration of strong
optomechanical coupling[19, 71, 22], and conversion of cavity state to the mechanical
mode [72, 73].

In recent theoretical works, the ultra-strong coupling regime — where the strength
of bare optomechanical coupling is comparable to the mechanical frequency — was
studied [43, 44, 39], where the mechanical displacement, induced by the radiation
pressure of a single photon, is comparable to its zero-point uncertainty [41, 44]. Due
to the strong nonlinearity in this system, many novel quantum effects can be observed
in this regime, such as optomechanical instability [41, 45], photon blockade [43, 44],
normal mode splitting of a mechanical mode[74], and nonlinear optomechanical EIT
[40, 38, 39].

Most of the previous studies have been focused on the steady-state behavior un-
der the standard master equation (SME) [44, 39]. In addition to the usual Born-
Markovian approximation for the weak system-bath interaction, the SME was derived
under the assumption of weak optomechanical coupling in the non-interacting pho-
ton (phonon) basis by integrating out the bath degrees of freedom of the cavity and
mechanical modes separately. However, under the strong optomechanical coupling
between the cavity and the mechanical modes, this approach needs to be revisited in
order to correctly describe the dissipative dynamics of this system.

In this work, we derive the master equation in a more appropriate basis, the eigen-
basis of the optomechanical system (OMS), in the ultra-strong coupling regime and
obtain a new Lindblad master equation which we call the dressed-state master equa-
tion (DSME). We find that the weak coupling assumptions in the SME approach could
result in unrealistic cavity dephasing effects for the strongly coupled OMS, which are
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absent in our dressed-state approach via considering a more realistic contribution of
the strong optomechanical coupling in the system-bath interaction. By comparing the
dynamics of these two different approaches, we show that the unrealistic cavity de-
phasing terms can lead to significantly different behaviors for the transient dynamics
of the cavity field as well as the steady-state properties of systems, such as predicting
the cavity decoherence time as half of its real value and showing g(2)(0) > 1 while
the OMS actually undergoes the photon antibunching. Finally, we extend the DSME
to the case of two cavity modes interacting with a signal mechanical mode and show
that the unrealistic cavity dephasing terms in the SME reduce the coherence time of
the cavity-cavity entanglement by half. In all these cases, the dressed-state approach
is necessary to reveal the correct dissipative dynamics for OMS in the ultra-strong
coupling regime.

The chapter is organized as follows. In Sec.4.2, we present the derivation of the
master equation in the dressed-state basis. In Sec.4.3, analytical result of the time-
dependence of the system operators is derived. We then apply the dressed-state
master equation to study the short-time dynamics of the optomechanical system in
Sec.4.4.The correlation functions of the cavity mode, the optomechanical entangle-
ment, and mechanical modes are calculated using the numerical results. Conclusions
are given in Sec.4.5. We include technical derivations in Appendix C.

4.2 Dressed-state Master Equation

Consider an optomechanical system with one cavity mode and one mechanical mode
interacting via radiation pressure force. The Hamiltonian of this system has the form

Ĥs = h̄ωcâ
†
câc + h̄ωM b̂

†
M b̂M − h̄g0â

†
câc

(
b̂†M + b̂M

)
, (4.1)

where ωc is the cavity frequency, ωM is the mechanical frequency, and g0 is the
optomechanical coupling strength. The operator âc (b̂M) is the annihilation operator
of the cavity (mechanical ) mode. We are interested in the ultra-strong coupling
regime where g0 is comparable to ωM and one example of such a setup is shown in
Fig. 4.1(a). For this coupled system, the eigenbasis can be written as

|n,m(n)〉 = |n〉 ⊗ enβ0(b̂†M−b̂M )|m〉, (4.2)

where |n〉 is the cavity photon Fock state and |m(n)〉 ≡ enβ0(b̂†M−b̂M )|m〉 denotes the
photon displaced mechanical Fock state with displacement nβ0 and β0 = g0/ωM . We
call these eigenstates the dressed-state basis. The corresponding eigenenergies are
En,m = nh̄ωc+mh̄ωM −n2h̄g2

0/ωM and this is illustrated in more detail in Fig. 4.1(b)
where the effects from the external thermal baths have been explained.
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(a)

(b)

Figure .1.

1

Figure 4.1: (a) Standard cavity optomechanical system. (b) Energy level scheme
of the strong coupled optomechanical system. Several possible transitions examples
due to couplings of the external thermal bath are indicated. Here β0 = g0/ωM , Γ̃c
and Γ̃M are the operator of the cavity thermal bath and mechanical thermal bath,
respectively.
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The bath coupled to the cavity mode and to the mechanical mode are both
assumed to be an independent bosonic thermal bath, which are charaterized by
HB
C =

∑
j h̄ωj â

†
j âj and HB

M =
∑

k h̄ωkb̂
†
kb̂k respectively. In the interaction picture

of Ĥs + ĤB
C + ĤB

M , the interaction between the optomechanical system and its envi-
ronments is described by the Hamiltonian H̃B

I = H̃CB + H̃MB, where the system-bath
couplings have the form

H̃CB = ãc(t)
†Γ̃c(t) + ãc(t)Γ̃

†
c(t), (4.3)

H̃MB =
(
b̃M(t)† + b̃M(t)

)(
Γ̃†M(t) + Γ̃M(t)

)
(4.4)

with Γ̃c(t) =
∞∑
j=0

λcje
−iωjtâj (Γ̂M(t) =

∞∑
k=0

λMk e
−iωktb̂k) as coupling operator of the

cavity bosonic bath (mechanical bosonic thermal bath) and ãc(t) is defined as ãc(t) =

eiĤstâce
−iĤst (similarly for b̃M(t)). By expanding the operators in the eigenbasis, the

cavity operator ãc(t) could be expressed as,

ãc(t) =
∑
n,k,j

e−i∆
n
k,jtAj,k,n|n− 1, j(n−1)〉〈n, k(n)| (4.5)

with the transition amplitude Aj,k,n =
√
n〈j(n−1)|k(n)〉 and energy difference ∆n

k,j =
(En,k − En−1,j) /h̄ = ωc+(k−j)ωM+(1−2n)g2

0/ωM . Here, we consider that the cavity
field has the optical frequency, i.e. ωc ∼ GHz � ωM , thus the energy difference
can be approximated as ∆n

k,j ≈ ωc, showing that the optical cavity transition is
not influenced by the optomechanical interaction. As a result, Eq.(4.5) could be
simplified as ãc(t) ≈ e−iωc âc, which is the same form as it is in the weak coupling
regime, indicating that the dissipative cavity response to the cavity thermal bath is
not affected by the strong optomechanical interaction when the cavity mode frequency
is in the optical frequency range. Because in this regime, the modification from the
strong coupling (in the order of g2

0/ωM ∼ ωM ∼ MHz) is small compared with the
optical transition energy (in the order of ωc ∼ GHz).

In the interaction picture, the mechanical operator could be expressed as (Ap-
pendix C.1)

b̃M(t) = e−iωM t
∑
n,`

√
`|n, (`− 1)(n)〉〈n, `(n)|

+ β0

∑
n,`

n|n, `(n)〉〈n, `(n)| (4.6)

It shows that the mechanical-mode-bath interaction [see Eq.(4.4)] involves two phys-
ical processes: (1) the interaction excites the eigenmode by exchanging one phonon
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with the mechanical thermal bath, shown as the first term of Eq.(4.17), causing the
OMS has the mechanical transitions with the energy difference of ωM ; (2) the inter-
action displaces the mechanical oscillator without shifting the system’s energy, shown
as the second term of Eq.(4.17). In general, the contributions of these two processes
are different due to their distinct transition energies and dependent with the spectral
density of the mechanical bath.

However, in the SME approach, because of the weak coupling approximation, the
energy difference of these two type of transitions are not resolved and the two physical
processes are thus treated with equal amplitude, i.e.

b̂M(t) ≈ e−iωM tb̂M ≡ e−iωM t
∑
n,`

√
`|n, (`− 1)(n)〉〈n, `(n)|

+ e−iωM tβ0

∑
n,`

n|n, `(n)〉〈n, `(n)| (4.7)

The Bohr frequencies of the second physical process are mistakenly treated as ωM .
This assumption is not true for the strongly coupled OMS as it is shown by Eq.(4.17)
where the existence of the cavity photon shift the mechanical oscillator with Bohr
frequencies as zero. In this study, we are going to investigate the influence of this
second physical process with a more realistic contribution.

By using the Born-Markov and the rotating-wave approximation (RWA), the mas-
ter equation in the Schrödinger picture with the absence of external driving, which
we call dressed-state master equation (DSME), takes the following form (Appendix
C.2)

dρ(t)

dt
= −i[Ĥs, ρ(t)] + κD[âc]ρ(t) + nthγMD[b̂†M − β0N̂c]ρ(t)

+ (nth + 1)γMD[b̂M − β0N̂c]ρ(t) (4.8)

with the Lindblad superoperator defined byD[Ω̂]ρ(t) = Ω̂ρ(t)Ω̂†−
(

Ω̂†Ω̂ρ(t) + ρ(t)Ω̂†Ω̂
)

,

the cavity and mechanical decay rates being, respectively, κ and γM , and the phonon
occupation number nth = 1/

(
eh̄ωM/kBT − 1

)
. Here N̂c = â†câc is the photon num-

ber operator. In the limit of weak optomechanical coupling, i.e., g0 � ωM , the above
master equation can be simplified to recover the form of the standard master equation
(SME) of

dρ(t)

dt
= −i[Ĥs, ρ(t)] + κD[âc]ρ(t) + nthγMD[b̂†M ]ρ(t)

+ (nth + 1) γMD[b̂M ]ρ(t). (4.9)

To understand the difference of the mechanical dissipative terms between D[b̂M ]ρ(t)
(D[b̂†M ]ρ(t)) and D[b̂M − β0N̂c]ρ(t) (D[b̂†M − β0N̂c]ρ(t)) in Eq. (4.9) and Eq. (4.8),
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respectively, one could work back into the interaction picture with respect to the
cavity-mechanical system Hamiltonian Ĥs, Eq. (4.1). For example, one obtains, by
dropping the fast-oscillating terms using RWA (valid when γM � ωM , the regime we
consider) of Eqs. (4.9) and (4.8),

U (t)†D[b̂M ]ρ(t)U (t) ≈ D[b̂M − β0N̂c]ρ̃(t) +D[β0N̂c]ρ̃(t), (4.10)

U (t)†D[b̂M − β0N̂c]ρ(t)U (t) ≈ D[b̂M − β0N̂c]ρ̃(t), (4.11)

where U (t) = e−iĤst and ρ̃(t) is the reduced density matrix of the cavity-mechanical
system in the interaction picture. One can then clearly see that the extra terms in
the mechanical damping of the resultant equation from the SME (4.9) is (2nth +
1)β2

0γMD[N̂c]ρ̃(t) and it will affect the non-diagonal components but not the diagonal
components (i.e., causing dephasing but not relaxation) of the cavity part of the
density matrix ρ̃(t) (thus also ρ(t) in the photon number basis). As a result, the
standard master equation will cause more dephasing of the photon state. In other
words, more coherent behavior for the cavity mode due to the missing of these extra
dephasing terms in the DSME, Eq. (4.8), is expected.

4.3 Analytical Solutions

In this section, we present analytical solutions for the dynamics of the expectation
values of several quantum operators governed by the dressed-state master equation
in the undriven case. It can be shown that with Eq.(4.8) the equations of motion for
the expectation values of an arbitrary operator Ω are,

d〈Ω〉
dt

= −i〈[Ω, H]〉 − κ

2

(
〈[Ω, â†c]âc〉 − 〈â†c[Ω, âc]〉

)
− γM

2

(
〈[Ω, B̂†i ]B̂i〉 − 〈B̂†i [Ω, B̂i]〉

)
− nth

γM
2

(
〈[[Ω, B̂†i ], B̂i]〉+ 〈[[Ω, B̂i], B̂

†
i ]〉
)
,

(4.12)

where B̂i = b̂M − β0â
†
câc. For example, the dynamics of the mean value of the cavity

operator âc are given by

d〈âc〉
dt

= − iωc〈âc〉+ ig0〈âc
(
b̂M + b̂†M

)
〉 −

(κ
2

+ (2nth + 1) β2
0

γM
2

)
〈âc〉

+ β0
γM
2
〈âc
(
b̂M − b̂†M

)
〉. (4.13)

The cavity mode is now subject to an effective damping rate of κeff = κ + ∆κ with
∆κ = (2nth + 1) β2

0γM , which strongly depends on the optomechanical coupling and
the properties of the mechanical thermal bath. The above equation also shows that the
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dynamics of the cavity mode 〈âc〉 is related to the higher order term 〈âc
(
b̂M + b̂†M

)
〉.

In general, a closed set of operator equations are not available in the single-photon
strong coupling regime, and the dynamics could be non-Gaussian.

For several operators, however, the above equation provides analytical solutions.
For the cavity photon number operator N̂c, we find that

d〈N̂c〉
dt

= −κ〈N̂c〉 (4.14)

and its solution is
〈N̂c(t)〉 = e−κt〈N̂c(0)〉. (4.15)

The dynamics of the cavity photon number 〈N̂c〉 is independent of the mechanical
damping terms in both the dressed-state-basis master equation and the standard
master equation and thus takes the same form for both the master equations. This
is because N̂c commutes with both Ĥs and the operators in the additioanl terms of
the mechanical damping terms. For the mechanical mode operator b̂M , we find that

d〈b̂M〉
dt

= −iωM〈b̂M〉+ ig0〈N̂c〉 −
γM
2
〈b̂M〉+ β0

γM
2
〈N̂c〉. (4.16)

Combined with the solution of cavity photon number Eq. (4.15), Eq. (4.16) leads to
the solution

〈b̂M(t)〉 = e−iωM t−
γM
2
t〈b̂M(0)〉+

ig0 + β0γM/2

iωM + γM
2
− κ

(
e−κt − e−iωM t−

γM
2
t
)
〈N̂c(0)〉. (4.17)

The dynamics of 〈b̂M(t)〉 includes an extra term that depends on initial cavity photon
numbers, but independent of the mechanical thermal bath temperature.

4.4 Numerical Results

In this section, we use numerical solutions of the dressed-state master equation to
illustrate the effect of strong coupling on the system dynamics, and compare these
results with that of the standard master equation.

Dynamics of undriven system

We first apply the DSME to study the evolution of photon coherence and focus on
the case of the ultra-strong coupling regime, i.e. g0/ωM = 0.8. The OMS is initially
prepared in the state |ψ(0)〉 = (|0〉+ |3〉)c⊗|0〉M/

√
2. The coherence of the cavity field

is well described by P03(t) := |〈0|ρ̃c(t)|3〉| which is the off-diagonal matrix element
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of the reduced cavity density matrix in the interaction picture. Fig. 4.2 shows the
dynamics of P03(t) for both DSME of Eq.(4.8) (solid curves) and SME of Eq.(4.9)
(dashed curves) at two mechanical bath temperatures nth = 0 (red color) and nth = 20
(blue color).
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Figure 4.2: Off-diagonal matrix element P03(t). Solid curves are from the dressed-
state master equation (DSME) and dashed curves belongs to the standard master
equation(SME). Parameters are chosen as: ωM/2π = 1 MHz, g0 = 0.8ωM , κ =
0.005ωM , γM = κ/3, nth = 0 (red) and 20 (blue).

In the ultra-strong coupling regime, the cavity coherence is strongly correlated
with the properties of the mechanical bath which are captured by both master equa-
tion approaches. It is shown in Fig.4.2 that the cavity coherence P03(t) at higher me-
chanical bath temperature nth = 20 (blue color curves) decays by a factor of twenty
faster than the case of nth = 0 (red color curves, the full curves are shown in Fig.C.1 of
Appendix C.3) whose decay rates are similar with the intrinsic cavity damping rate,
i.e. 2κ (with g0 = 0). The SME is based on the assumption that the optomechanical
coupling does not have any effect on the interaction between the mechanical mode
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and its bath. Then that all the mechanical bath excitations have the same influence
on the cavity field causes, through the optomechanical coupling in the Hamiltonian,
the cavity field coherence amplitude P03(t) to decay much faster than the intrinsic
cavity damping and dependent with mechanical bath temperature. However, the
above assumption is actually not true for the strongly coupled optomechanical sys-
tem, where the optomechanical coupling makes the influence of the mechanical noise
dependent on the type of system transitions (see Eq.(4.17)). After including these
effects and the property of the spectral density of the mechanical bath, the unrealistic
cavity dephasing terms disappear within DSME so that the corresponding decay of
P03(t) (solid curves) is obviously weaker than what is expected by the SME (dashed
curves). At nth = 20, the decay time of P03(t) obtained by DSME (blue solid curve)
is over twice longer than it is in SME approach (blue dashed curve). At nth = 0
where the mechanical noises are at minimal, both methods provide a similar decay
time while DSME always possess a slightly larger amplitude, indicating that more
coherent dynamics are revealed by the DSME due to the absence of the unrealistic
cavity dephasing, which is consistent with our previous predictions.

Dynamics of driven system

When the cavity is driven with a pump field, we study the properties of the normalized
equal time correlation function at steady state, g(2)(0) := 〈â†câ†câcâc〉ss/〈â†câc〉2ss. It
is known that g(2)(0) < 1 provides a direct experimental measure for nonclassical
antibunching effects of the cavity field, while g(2)(0) > 1 indicates the photon bunching
effects. By assuming that the pump field is weak, the master equation under driving
could be obtained by replacing Ĥs in both Eq.(4.8) and Eq.(4.9) with Ĥ = Ĥs +
ε
(
âce

iωdt + â†ce
−iωdt

)
, where ε is the strength of the pump field and ωd is the driving

frequency. The total master equation takes the following form,

dρ(t)

dt
= −i[Ĥs + ε

(
âce

iωdt + â†ce
−iωdt

)
, ρ(t)] + κD[âc]ρ(t)

+ nthγMD[b̂†M − β0N̂c]ρ(t) + (nth + 1)γMD[b̂M − β0N̂c]ρ(t) (4.18)
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Figure 4.3: g(2)(0) versus g0/ωM at cavity detune ∆0 = ωc − ωd = g2
0/ωM . Solid

curves are from DSME and dashed curves belongs to SME. Parameters are chosen as:
ωM/2π = 1, κ = 0.005ωM , γM = κ/3, ε = κ, nth = 0 (lower curves) and 20 (upper
curves).

To investigate the influence of the radiation-pressure coupling g0 and the me-
chanical bath temperature nth on g(2)(0), we present the dependence of g(2)(0) on
g0 in Fig.4.2 for two different mechanical bath temperatures at cavity detune of
∆0 = ωc − ωd ≡ g2

0/ωM , which corresponds to a single photon resonance [75, 76].
The oscillating feature of g(2)(0) as a function of g0 with the peak positions deter-
mined by the two-photon resonance condition g0/ωM =

√
m/2, m = 0, 1, 2, · · · was

found in Refs.[75, 76]. Compared with the results of g(2)(0) obtained by SME (dashed
curves), the results by DSME (solid curves) show obviously different behavior at large
values of g0 or with high mechanical bath temperature nth. At low mechanical bath
temperature, i.e. nth = 0, both methods correctly predict the antibunching effect for
the OMS. However, at larger g0, larger resonance peaks were resolved only by DSME
approach. With higher mechanical bath temperature, i.e. nth = 20, one can see from
Fig. 4.2, the DSME predicts stronger photon blockade effect between resonance peaks
for the cavity field. More importantly, when g0/ωM > 1.7, at many values of g0, the
DSME predicts antibunching behavior (g(2)(0) < 0.5), while the SME predicts other-
wise (g(2)(0) > 1), showing that at high mechanical thermal bath temperatures with
large optomechanical couplings, the unrealistic cavity dephasing terms could cause
the SME fails to correctly predict the quantum correlations for the cavity field and it
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is necessary to adopt the dressed-state master equation approach for these cases.
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Figure 4.4: Steady-state mean values of 〈âc〉, 〈N̂c〉, 〈b̂M〉 and 〈N̂M〉 as a function of
cavity detuning ∆0. Red curves show the results of the dressed-state master equation
and blue curves are the results of the standard master equation. Parameters used are
ωM = 2π MHz, κ = ωM/15, γM = ωM/20, nth = 3, g0 = ωM and driving strength
ε = κ.

In contrast to the undriven case where no significant differences in the steady-state
properties are observed, the steady-state quantities in the driven case obtained by the
two different master equations could display substantial difference. Figure 4.4 shows
the steady-state mean values of 〈âc〉, 〈N̂c〉, 〈b̂M〉 and 〈N̂M〉 as a function of detuning
∆0 = ωc − ωd for the system in the single-photon strong-coupling regime with a low
bath temperature of nth = 3. The response of the optomechanical system exhibits
several resolved resonances in Fig 4.4. Most of the previous studies [44, 39] used the
standard master equation to study the steady-state behavior. Here, we demonstrate
in Fig 4.4 that significant differences in the steady-state quantities obtained between
the dressed-state master equation and the standard master equation can be observed,
i.e., sharper resonance features for the quantities obtained by the dressed state master
equation.



CHAPTER 4. STRONGLY COUPLED OPTOMECHANICAL SYSTEM 67

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6
ω/ωM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
St

ea
dy

-s
ta

te
 C

av
ity

 S
pe

ct
ru

m
 S

(ω
)

1e 2
SC

Std

Figure 4.5: Steady-state cavity respond with resonant driving at ∆ = 0. Red line
shows the result of the dressed-state master equation and blue line is the result of the
standard master equation. Parameters are chosen as: ωM = 2π MHz, κ = ωM/15,
γM = ωM/20, nth = 3, g0 = ωM and driving strength ε = κ.

Next, we investigate the steady-state cavity output spectrum defined as

S(ω) =

∫ ∞
−∞

[
〈â†c(τ)âc(0)〉 − |〈âc(τ)〉|2

]
, (4.19)

where the initial time t = 0 should be regarded as a time where the system is in the
steady state. The cavity spectrum is related to the Fourier transform of the first-order
coherence function

g1(τ) =
〈â†c(τ)âc(0)〉√

〈â†c(τ)âc(τ)〉〈â†c(0)âc(0)〉
(4.20)

that can be regarded as a measure of the temporal coherence of the cavity field, i.e.,
how long the cavity field is coherent with the field at an earlier time τ . Figure 4.5
shows the steady-state cavity output spectra S(ω) at zero detuning, ∆0 = ωc−ωd = 0.
Both the cavity output spectra obtained by the standard master equation and the
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dressed-state master equation have sideband peaks at integer multiples of the me-
chanical frequency ωM , which is due to the fact that with g0 = ωM all the mechanical
sideband transitions shift the system energy by integers of ωM . Furthermore, the
peaks with widths about the multiple of the mechanical linewidth γM are distinguish-
able, indicating that the system is in the strong-coupling resolved-sideband regime
[44]. The fact that more peaks in the spectra appear at negative frequencies exhibits
that at a low temperature of nth = 3, the cavity photons in the steady state have a
larger probability to create one or more phonons and leave the cavity with frequen-
cies smaller than the driving frequency ωd than to absorb the energy of one or more
phonons and leave the cavity with frequencies larger than ωd. As expected, one can
clearly see from Fig. 4.5 that the peaks are more pronounced and resolved in the
spectrum obtained by the dressed-state master equation.

Multi-cavity system

In the final part of this chapter, we extend the DSME approach to the case of two
cavities coupling with a single mechanical mode and study the entanglement dynamics
among the two cavity modes. With the same argument, in the interaction picture of
system Hamiltonian, one could obtain the DSME as (see Appendix C.4),

dρ̃(t)

dt
=

∑
i

κiD[âci]ρ̃(t) + nthγMD[b̂†M − N̂c]ρ̃(t)

+ (nth + 1)γMD[b̂M − N̂c]ρ̃(t) (4.21)

where N̂c = β1N̂c1 + β2N̂c2 and βi = gi/ωM with gi as the optomechanical coupling
of i-th cavity mode to the mechanical mode. Here Ω̂ci with subscript ci denotes the
operator of i-th cavity mode. The OMS is initially prepared in the entangled cavity
state |ψ(0)〉 = (|0c1〉|1c2〉+ |1c1〉|0c2〉) |0M〉/

√
2 and the cavity-cavity entanglement is

characterized by the Werner negativity [30]

N (ρ) ≡ log2

(
||ρTA||1

)
(4.22)

with ||A||1 = tr
√
A†A being the trace norm of Hermitian operator A, and ρ here being

the bipartite density matrix ρC(t) = trM(ρ̃(t)) for the joint system of the two cavity
modes at time t reduced from the solution of the master equation Eq.(4.21). Fig. 4.6
shows the entanglement dynamics for two different set of optomechanical coupling.
When β1 = β2 = 1.5, due to the fact that photons in the state of |0c1〉|1c2〉 and
photons in the state of |1c1〉|0c2〉 shift the mechanical mode equally, the coherence
between these two cavity modes as well as entanglement is not affected much by
the mechanical mode and its thermal noise. As a result, the two master equations
give the exact same dynamics for the cavity-cavity entanglement and their decay
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Figure 4.6: Entanglement of two cavity modes measured by Werner negativity of
Eq.(4.22). Solid curves are from DSME and dashed curves belongs to the SME.
For asymmetric couplings β1 = 1.5 and β2 = 0.5 (lower curves). For symmetric
couplings β1 = β2 = 1.5 (upper curves). Parameters are chosen as: ωM/2π = 1,
κ1 = κ2 = 0.005ωM , γM = κ/3 and nth = 20.

rate is dominated by the cavity decay rate (κ1 = κ2). However, once there is a
asymmetry in the optomechanical coupling, i.e. β1 6= β2 (blue color curves), the
mechanical noises will dominate the dynamics for the cavity-cavity entanglement,
where the entanglement under the DSME exists twice as long as it is predicted by the
SME approach. This suggests that the SME is insufficient to reveal the entanglement
dynamics for the OMS in the strong coupling regime.
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4.5 Conclusions

Our results suggest that the influence of the optomechanical coupling should be con-
sidered for the dissipative dynamics in the strong coupled optomechanical system,
where the dressed-state master equation approach is necessary to reveal the transient
dynamics in the time scale of the cavity damping. We showed that in the parameter
regimes with high bath temperature or where the mechanical damping is dominant,
the transient dynamics of the cavity coherent amplitude and the mechanical quadra-
tures, the decay of the optical coherence function g(2)(0), and the optomechanical
entanglement are all influenced by the strong optomechanical interaction and in such
situations only the dressed-state master equation Eq.(4.8) is able to reveal the correct
dynamics. Using the standard master equation approach Eq.(4.9) in this case will
introduce additional unrealistic thermal noises to the cavity field. With no external
driving, the dressed-state master equation in the steady state gives the similar results
as the standard master equation approach. Therefore if one is only interested in the
steady-state behavior of the optomechanical system with zero driving, the standard
master equation with the independent bath model is adequate. However, even with
a weak external driving field, many steady-state properties of the strong coupled
optomechanical system are observed only via the dressed-state master equation ap-
proach, indicating that the standard master equation approach is actually inadequate
for charactering the steady-state dynamics for optomechanical system in the strong
coupling regime. Our result indicates that the form of the dissipative cavity response
to the cavity thermal bath in the DSME, Eq. (4.8), is not affected by the strong op-
tomechanical interaction when the cavity mode frequency is in the optical frequency.
It is important to note, however, for the general case, the system response to the cav-
ity thermal bath may be strongly influenced by the optomechanical coupling when
the cavity field frequency is in the microwave region where the cavity responses are
much more complex. However, it is still solvable by our theoretical frame developed
here and needs further investigation.

In summary, we have derived a Lindblad master equation for the optomechani-
cal system with dependent decoherence model in the single-photon strong coupling
regime based on the optomechanical dressed basis. We applied this master equation
to investigate the transient dynamics of optomechanical system in several different
parameter regimes and compared the results to the standard master equation method
with the independent decoherence model. We found that the dressed-state master
equation is capable of revealing more coherent dynamics for the optomechanical sys-
tem under the strong radiation pressure interaction.



Chapter 5

Conclusions and Future Work

We have theoretically investigated the roles of the nonlinear optomechanical interac-
tions for three different parameter regimes, such as weak coupling, medium coupling
and strong coupling regimes. For the weak optomechanical coupling regime, the lin-
earization condition was revisited with focus on the validity of the pulsed scheme
for the linearized optomechanical model; subsequently, a linearization time window
was proposed to guarantee the linearization approximation and was applied to find
new limits on the entanglement generation in pulsed scheme for the blue-detuned
unstable optomechanical system. Moreover, a time dependent driving scheme for the
three-mode optomechanical system has also been proposed here. It provides addi-
tional controls for the entanglement generations of the optomechanical system, which
potentially could be applied for a future optomechanical-based quantum communica-
tion.

For the nonlinear parameter regime, two theoretical methods have been devel-
oped in this dissertation to deal with nonlinear dynamics, i.e. perturbation in the
Heisenberg picture and the dressed-state master equation. With its explicit form, the
perturbation method could be easily applied for various parameter regimes. The first
order perturbation has been implemented to investigate the influence of nonlinear
interaction on the modification of the linearized optomechanical model; it shows the
amplitude of the field operators, as well as the entanglement dynamics, which are
affected by the nonlinear part of the optomechanical interaction. However, the com-
plexity of the perturbation method strongly limited its application. Only some non-
linear properties of the optomechanical system have been revealed by such a method,
but most of the interesting optomechanical phenomena are outside the range of the
perturbation method. Nevertheless, similar methods have been recently implemented
to discover the nonlinear optomechanical induced transparency (OMIT). Due to its
different approaches in handling the environmental noises, we expect that the per-
turbation method developed in this dissertation could yield slightly different pictures
for the nonlinear OMIT.
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In order to overcome these weaknesses of the operator perturbation method, we
constructed a new dressed-state master equation to investigate the influence of non-
linear optomechanical interaction for the open dynamics of the standard optome-
chanical system. In contrast to the traditional master equation approach, this new
master equation treats the mechanical mode and the cavity mode as an integrity,
which leads to dependent decoherence dynamics for these two modes. As a result,
new transient dynamics, as well as steady state behaviors, have been discovered by
this new approach. It is possible that this dressed-state master equation has broad
applications for the atomic gas system, in which the parameter regime tends to reveal
the difference between our new master equation and the traditional one.



Appendix A

Blue-detuned optomechanical
system

A.1 Covariance Matrix under RWA

we only present the analytical results for the blue-detuned cavity driving and assumes
the rotating wave approximation (RWA), for which one can show that the covariance
matrix V of the system takes the form of,

V (t) =


V11 0 0 V14

0 V11 V14 0
0 V14 V33 0
V14 0 0 V33

 (A.1)

where

V11 =
1

2
g2 (λ1, λ3, t) +

(
n0 +

1

2

)
f 2 (t) + γM

(
nth +

1

2

)(
2g

Ω

)2

F (t)

+κG (λ1, λ3, t) , (A.2)

V33 =
1

2
f 2 (t) +

(
n0 +

1

2

)
g2 (λ3, λ1, t) + γM

(
nth +

1

2

)(
2g

Ω

)2

G (λ3, λ1, t)

+κF (t) , (A.3)

V14 = −f(t)g (λ1, λ3, t)−
(
n0 +

1

2

)
f(t)g (λ3, λ1, t)− γM

(
nth +

1

2

)
ξ (A,B)

−κξ (B,A) , (A.4)
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with g (x, y, t) = A · ext +B · eyt and f (t) =
(

2g
Ω

) (
eλ3t − eλ1t

)
F (t) =

e2λ1t − 1

2λ1

− 2
e(λ1+λ3)t − 1

(λ1 + λ3)
+
e2λ3t − 1

2λ3

, (A.5)

G (x, y, t) = A2 · e
2xt − 1

2x
+ 2AB · e

(x+y)t − 1

x+ y
+B2 · e

2yt − 1

2y
, (A.6)

ξ (x, y, t) =

(
2g

Ω

)(
(x− y)

e(λ1+λ3)t − 1

(λ1 + λ3)
− xe

2λ1t − 1

2λ1

+ y
e2λ3t − 1

2λ3

)
, (A.7)

Here V11 is associated with the cavity mode, V33 to the mechanical mode, and V14

describing the correlations between these two. The entanglement of the system can
be well described by the logarithmic negativity EN ,

EN = max
(
0,− ln 2η−

)
where η− = 1√

2

(
Σ (V )−

√
Σ (V )− 4 detV

)1/2

with Σ (V ) = V 2
11 + V 2

33 + 2V 2
14.

Steady-State Entanglement

When both λ1 < 0 and λ3 < 0, the system is in the stable and the steady-state
covariance matrix V can be obtained by setting t→ +∞,

(V11)ss = −γM
(
nth +

1

2

)(
2g

Ω

)2(
1

2λ1

+
1

2λ3

− 2

λ1 + λ3

)
−κ
(
A2

2λ1

+
B2

2λ3

+
2AB

λ1 + λ3

)
, (A.8)

(V33)ss = −γM
(
nth +

1

2

)(
A2

2λ1

+
B2

2λ3

+
2AB

λ1 + λ3

)
−κ
(

2g

Ω

)2(
1

2λ1

+
1

2λ3

− 2

λ1 + λ3

)
, (A.9)

(V14)ss = γM

(
nth +

1

2

)(
2g

Ω

)(
B − A
λ1 + λ3

− B

2λ1

+
A

2λ3

)
+κ

(
2g

Ω

)(
A−B
λ1 + λ3

− A

2λ1

+
B

2λ3

)
, (A.10)

One can show that the above results are equivalent to the steady-state entanglement
obtained in [31], which makes our results of the steady-state entanglement generation
with the same property of [31], i.e. it is limited by En < ln 2 and very sensitive to
thermal noise.
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A.2 Optomechanical Entanglement between

Cavity Output Mode and Mechanical Mode

In practice, people are more interested on the output optical field which could be
measured by experiments. In this section, we provide an input-output formalism to
describe the entanglement between the output field and the mechanical oscillator.

In order to quantify the entanglement between mechanical mode and the cav-
ity output mode we need to introduce the following integrated output field over a
measurement time Tm [77],

âout(t, Tm) =
1√
Tm

∫ t+Tm

t

dt′âout(t
′) (A.11)

where âout(t, Tm) form a set of dimensionless bosonic operators, with commutators
as [âout(t, Tm), â†out(t, Tm)] = 1 and âout(t) is the cavity output field operator which
is related to the intracavity field âc(t) by the input-output relation,i.e.

âout(t) = âin(t) +
√

2κâc(t) (A.12)

If we choose to measure the output field at the end of the blue-detuned laser pulse
with duration of τ , the evolution of âc(t) is actually determined by the following
non-linear langevin equations

d

dt
b̂M(t) = −iωM b̂M(t)− γM

2

(
b̂M(t)− b̂†M(t)

)
− ig0â

†
c(t)âc(t)−

√
γM b̂in(t),

(A.13)

d

dt
âc(t) = iωM âc(t)− κâc(t)− ig0âc(t)

(
b̂M(t) + b̂†M(t)

)
−
√

2κâin(t), (A.14)

However, g0 is always much smaller than κ due to zero driving field and therefore we
can surely neglect the optomechanical interaction during the measurement time Tm if
Tm is in the order of cavity decay time κ−1. As a result after turn off the driving laser
we can assume there is only cavity field leaking out and the mechanical mode is only
in the free evolution during the measurement time Tm, which leads to the following
solutions, i.e. when t > τ

âc(t) = e−κ(t−τ)âc(τ)−
√

2κ

∫ t

τ

ds · e−κ(t−s)âin(s), (A.15)

b̂M(t) = b̂M(τ), (A.16)

where âc(τ) and b̂M(τ) are the solutions of the intracavity optomechanical system at
the end of the blue-detuned laser pulse. By definition, the integrated output field
operator is

âout(τ, Tm) = α (Tm) âc(τ) + n̂in (τ, Tm)
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with

α (Tm) =

√
2κ

Tm

(
1− e−κTm

κ

)
and

n̂in (τ, Tm) =
2√
Tm

∫ τ+Tm

τ

ds ·
(
e−κ(τ+Tm−s) − 1

2

)
âin(s)

and the corresponding amplitude and phase quadratures of the cavity output field
are

X̂out
c (τ, Tm) = α (Tm) X̂c (τ) + X̂ in

n (τ, Tm) ,

P̂ out
c (τ, Tm) = α (Tm) P̂c (τ) + P̂ in

n (τ, Tm) .

Covariance Matrix for the system of output field mode and
mechanical mode

The state of the output field and mechanical oscillator can be completely described
by the Covariance Matrix, which in our case are

V out =

(
A α (Tm) · C

α (Tm) · CT α (Tm)2 ·B + 1−α(Tm)2

2
· I2×2

)
where I2×2 is the two dimensional identity matrix and the element A,B and C comes
from the intracavity Covariance Matrix at the end of the blue-detuned pulse, which
is

V =

(
A C
CT B

)
and in the blue-detuned laser case

A =

(
V11 (τ) 0

0 V11 (τ)

)
, B =

(
V33 (τ) 0

0 V33 (τ)

)
, C =

(
0 V14 (τ)

V14 (τ) 0

)
where Vij (τ) is the solution of CM for the intracavity system and the exact expression
for Vij (τ) is given in Eq.A.4.

With the help of Covariance Matrix V out we can use the lorgrithmic negativity
EN as a quantity to describe the entanglement between the output field mode and
mechanical mode. In the continuous variable case EN can be defined as

EN = max
(
0,− ln 2η−

)
where

η− =
1√
2

(
Σ (V )−

√
Σ (V )− 4 detV out

)1/2

with Σ (V ) = det (A)2 + det
(
α (Tm)2 ·B + 1−α(Tm)2

2
· I2×2

)2

− 2 det (α (Tm) · C)2.
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Perturbation Methods

B.1 Calculation of the Second Moment

To apply the perturbation method, one important step is to have the mathematical
expressions for the inhomogeneous term 〈g(û(0)(t′))〉, which depends on the second
moment of û(0)(t) of the optomechanical system. In this section we show the details
of how to calculate the optomechanical system’s second order moment.

From Eq.(3.15) the i-th element of û(0)(t) reads,

û
(0)
i (t) =

∑
k,l,n

U−1
ik δkle

λktUlnû
(0)
n (0) +

∑
k,l,n,m

U−1
ik δkle

λlt

∫ t

0

dt′δlne
−λnt′Unmn̂m(t′)

=
∑
k,n

U−1
ik e

λktUknû
(0)
n (0) +

∑
l,m

U−1
il e

λlt

∫ t

0

dt′e−λlt
′
Ulmn̂m(t′) (B.1)

which leads to the second moment of û(0)(t) as,

〈û(0)
i (t)û

(0)
j (t)〉 =

∑
k,n

U−1
ik e

λktUkn
∑
k′,n′

U−1
jk′ e

λk′ tUk′n′〈û(0)
n (0)û

(0)
n′ (0)〉 (B.2)

+
∑
l

U−1
il e

λlt
∑
l′

U−1
jl′ e

λl′ tΣl,l′(t) (B.3)

with the integral as

Σl,l′(t) =

∫ t

0

dt1

∫ t

0

dt2e
−λlt1e−λl′ t2

∑
m,m′

UlmUl′m′〈n̂m(t1)n̂m′(t2)〉 (B.4)

We choose our initial state so that its second moments are characterized by the matrix

V = 〈û(τ = 0)ûT (τ = 0)〉 (B.5)
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leading to

〈û(0)
n (0)û

(0)
n′ (0)〉 =

∑
i,j

δn=i,n′=jVij (B.6)

the nonzero noise correlation function for the standard optomechanical system reads

〈b̂in,†(t)b̂in(t′)〉 = n̄δ(t− t′), (B.7)

〈b̂in(t)b̂in,†(t′)〉 = (n̄+ 1)δ(t− t′), (B.8)

〈âin (t) âin,† (t′)〉 = δ (t− t′) , (B.9)

which yields the following relations,

〈n̂m(t1)n̂m′(t2)〉 =

(
(n̄+ 1)γ̃M

g
δm=1,m′=2 +

n̄γ̃M
g

δm=2,m′=1 +
2κ̃

g
δm=3,m′=4

)
δ(t1 − t2)

(B.10)

As a result, the integral shows

Σl,l′(t) =
1− e−(λl+λl′ )t

(λl + λl′) g

(
n̄γ̃MUl2Ul′1 + (n̄+ 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4

)
(B.11)

With these relations, one could simplify the second moment as

〈û(0)
i (t)û

(0)
j (t)〉 =

∑
l,l′,n,n′

e(λl+λl′ )tU−1
il U

−1
jl′ UlnUl′n′Vnn′

+
∑
l,l′

e(λl+λl′ )t − 1

(λl + λl′) g
U−1
il U

−1
jl′

(
n̄γ̃MUl2Ul′1 + (n̄+ 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4

)
(B.12)

Next, let us apply the above results to calculate 〈û(1)(τ)〉, which reads

〈û(1)(τ)〉 = U−1eDτ
∫ τ

0

dt′e−Dt
′
U · 〈g(û(0)(t′))〉 (B.13)

with

〈g
(
û(0)(t)

)
〉 =


−i〈û(0)

4 (t)û
(0)
3 (t)〉

i〈û(0)
4 (t)û

(0)
3 (t)〉

−i〈û(0)
3 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
〉

i〈û(0)
4 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
〉

 (B.14)

and the i-th element of 〈û(1)(τ)〉 could be expressed as,

〈û(1)(τ)〉i = i
∑
k

U−1
ik

(
(Uk2 − Uk1) ·G1(k, τ)− Uk3F1(k, τ) + Uk4F2(k, τ)

)
(B.15)
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where

G1(k, τ) = eλkτ
∫ τ

0

dt′e−λkt
′〈û(0)

4 (t′)û
(0)
3 (t′)〉, (B.16a)

F1(k, τ) = eλkτ
∫ τ

0

dt′e−λkt
′
(
〈û(0)

3 (t′)û
(0)
1 (t′)〉+ 〈û(0)

3 (t′)û
(0)
2 (t′)〉

)
, (B.16b)

F2(k, τ) = eλkτ
∫ τ

0

dt′e−λkt
′
(
〈û(0)

4 (t′)û
(0)
1 (t′)〉+ 〈û(0)

4 (t′)û
(0)
2 (t′)〉

)
, (B.16c)

By substituting the exact form of 〈û(0)
i (t)û

(0)
j (t)〉 in Eq.(B.19), these integral gives,

G1(k, τ) =
∑
l,l′,n,n′

e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
U−1

4l U
−1
3l′ UlnUl′n′Vnn′

+
∑
l,l′

U−1
4l U

−1
3l′

(
n̄γ̃MUl2Ul′1 + (n̄+ 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4

)
× 1

(λl + λl′) g

(
e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
− eλkτ − 1

λk

)
, (B.17a)

F1(k, τ) =
∑
l,l′,n,n′

e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
U−1

3l

(
U−1

1l′ + U−1
2l′

)
UlnUl′n′Vnn′

+
∑
l,l′

(
n̄γ̃MUl2Ul′1 + (n̄+ 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4

)
U−1

3l

(
U−1

1l′ + U−1
2l′

)
× 1

(λl + λl′) g

(
e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
− eλkτ − 1

λk

)
, (B.17b)

F2(k, τ) =
∑
l,l′,n,n′

e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
U−1

4l

(
U−1

1l′ + U−1
2l′

)
UlnUl′n′Vnn′

+
∑
l,l′

(
n̄γ̃MUl2Ul′1 + (n̄+ 1)γ̃MUl1Ul′2 + 2κ̃Ul3Ul′4

)
U−1

4l

(
U−1

1l′ + U−1
2l′

)
× 1

(λl + λl′) g

(
e(λl+λl′ )τ − eλkτ

λl + λl′ − λk
− eλkτ − 1

λk

)
. (B.17c)

B.2 Calculation of the Third Moment

From Eq.(3.15) the i-th element of û(0)(t) reads,

û
(0)
i (t) =

∑
k,n

U−1
ik e

λktUknû
(0)
n (0) +

∑
l,m

U−1
il e

λlt

∫ t

0

dt′e−λlt
′
Ulmn̂m(t′) (B.18)
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which leads the third moment of û(0)(t) as,

〈û(0)
i (t)û

(0)
j (t)û

(0)
k (τ)〉 =

∑
l1, l2
n1,n2

U−1
il1
U−1
jl2
e(λl1+λl2)tUl1n1Ul2n2

∑
l3,n3

U−1
kl3
eλl3τUl3n3Vn1,n2,n3

+
∑
l

U−1
il e

λlt
∑
l′

U−1
jl′ e

λl′ tΣl,l′(t, t)
∑
l3,n3

U−1
kl3
eλl3τUl3n3〈û(0)

n3
(0)〉

+
∑
l

U−1
il e

λlt
∑
l′

U−1
kl′ e

λl′τΣl,l′(t, τ)
∑
l2,n2

U−1
jl2
eλl2 tUl2n2〈û(0)

n2
(0)〉

+
∑
l

U−1
jl e

λlt
∑
l′

U−1
kl′ e

λl′τΣl,l′(t, τ)
∑
l1,n1

U−1
il1
eλl1 tUl1n1〈û(0)

n1
(0)〉

(B.19)

with Vn1,n2,n3 = 〈û(0)
n1 (0)û

(0)
n2 (0)û

(0)
n3 (0)〉 and

Σl,l′(t, t2) =

∫ t

0

ds1

∫ t2

0

ds2e
−λls1e−λl′s2

∑
m,m′

UlmUl′m′〈n̂m(s1)n̂m′(s2)〉 (B.20)

When t ≤ t2

Σl,l′(t, t2) =
1− e−(λl+λl′ )t

g · (λl + λl′)
((n̄+ 1)γ̃Ul1Ul′2 + n̄γ̃Ul2Ul′1 + 2κ̃Ul3Ul′4) (B.21)

Because

〈û(1)
i (τ)û

(0)
j (τ)〉 =

∑
k,l

U−1
ik e

λkτUkl

∫ τ

0

dt′e−λkt
′ · 〈gl(û

(0)(t′))û
(0)
j (τ)〉 (B.22)

with the integral given by

〈û(1)
i (τ)û

(0)
j (τ)〉 =

∑
k

U−1
ik

(
i (Uk2 − Uk1) Λ1(k, τ)− iUk3Λ2(k, τ) + iUk4Λ3(k, τ)

)
(B.23)

where

Λ1(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
4 (t)û

(0)
3 (t)û

(0)
j (τ)〉, (B.24a)

Λ2(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
3 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
û

(0)
j (τ)〉, (B.24b)

Λ3(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
4 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
û

(0)
j (τ)〉, (B.24c)
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Substituting Eq.(B.19) back into the above equations, one arrives at

Λ1(k, τ) =
∑

l1, l2, l3
n1,n2,n3

e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk
U−1

4l1
U−1

3l2
U−1
jl3
Ul1n1Ul2n2Ul3n3Vn1n2n3

−
∑
l1,l2,l3

{∑
n3
Ul3n3〈û(τ)〉n3

g · (λl1 + λl2)

(
e(λk+λl3)τ − eλl3τ

λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1
U−1

3l2
U−1
jl3
Wl1,l2

}
−

∑
l1,l2,l3

{∑
n2
Ul2n2〈û(τ)〉n2

g · (λl1 + λl3)

(
eλl2τ − e(λl3+λk)τ

λl2 − λl3 − λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1
U−1
jl3
U−1

3l2
Wl1l3

}
−

∑
l1,l2,l3

{∑
n1
Ul1n1〈û(τ)〉n1

g · (λl2 + λl3)

(
eλl1τ − e(λl3+λk)τ

λl1 − λl3 − λk
− e(λl2+λl1+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1
U−1
jl3
U−1

3l2
Wl2l3

}
(B.25)

where Wll′ = (n̄+ 1)γ̃Ul1Ul′2 + n̄γ̃Ul2Ul′1 + 2κ̃Ul3Ul′4 and the third order moment for
the initial state reads

Vn1n2n3 = 〈û(0)
n1

(0)û(0)
n2

(0)û(0)
n3

(0)〉 (B.26)

Λ2(k, τ) =
∑

l1, l2, l3
n1,n2,n3

e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk
U−1

3l1

(
U−1

1l2
+ U−1

2l2

)
U−1
jl3
Ul1n1Ul2n2Ul3n3Vn1n2n3

−
∑
l1,l2,l3

{∑
n3
Ul3n3〈û(τ)〉n3

g · (λl1 + λl2)

(
e(λk+λl3)τ − eλl3τ

λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

3l1

(
U−1

1l2
+ U−1

2l2

)
U−1
jl3
Wl1,l2

}
−

∑
l1,l2,l3

{∑
n2
Ul2n2〈û(τ)〉n2

g · (λl1 + λl3)

(
eλl2τ − e(λl3+λk)τ

λl2 − λl3 − λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

3l1
U−1
jl3

(
U−1

1l2
+ U−1

2l2

)
Wl1l3

}
−

∑
l1,l2,l3

{∑
n1
Ul1n1〈û(τ)〉n1

g · (λl2 + λl3)

(
eλl1τ − e(λl3+λk)τ

λl1 − λl3 − λk
− e(λl2+λl1+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

3l1
U−1
jl3

(
U−1

1l2
+ U−1

2l2

)
Wl2l3

}
(B.27)
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Λ3(k, τ) =
∑

l1, l2, l3
n1,n2,n3

e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk
U−1

4l1

(
U−1

1l2
+ U−1

2l2

)
U−1
jl3
Ul1n1Ul2n2Ul3n3Vn1n2n3

−
∑
l1,l2,l3

{∑
n3
Ul3n3〈û(τ)〉n3

g · (λl1 + λl2)

(
e(λk+λl3)τ − eλl3τ

λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1

(
U−1

1l2
+ U−1

2l2

)
U−1
jl3
Wl1,l2

}
−

∑
l1,l2,l3

{∑
n2
Ul2n2〈û(τ)〉n2

g · (λl1 + λl3)

(
eλl2τ − e(λl3+λk)τ

λl2 − λl3 − λk
− e(λl1+λl2+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1
U−1
jl3

(
U−1

1l2
+ U−1

2l2

)
Wl1l3

}
−

∑
l1,l2,l3

{∑
n1
Ul1n1〈û(τ)〉n1

g · (λl2 + λl3)

(
eλl1τ − e(λl3+λk)τ

λl1 − λl3 − λk
− e(λl2+λl1+λl3)τ − e(λk+λl3)τ

λl1 + λl2 − λk

)
× U−1

4l1
U−1
jl3

(
U−1

1l2
+ U−1

2l2

)
Wl2l3

}
(B.28)

For 〈û(0)
i (τ)û

(1)
j (τ)〉, one have

〈û(0)
i (τ)û

(1)
j (τ)〉 =

∑
k,l

U−1
jk e

λkτUkl

∫ τ

0

dt′e−λkt
′ · 〈û(0)

i (τ)gl(û
(0)(t′))〉 (B.29)

with the integral given by

〈û(0)
i (τ)û

(1)
j (τ)〉 =

∑
k

U−1
jk

(
i (Uk2 − Uk1) Λ′1(k, τ)− iUk3Λ′2(k, τ) + iUk4Λ′3(k, τ)

)
(B.30)

where

Λ′1(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
i (τ)û

(0)
4 (t)û

(0)
3 (t)〉 (B.31a)

Λ′2(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
i (τ)û

(0)
3 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
〉 (B.31b)

Λ′3(k, τ) = eλkτ
∫ τ

0

dte−λkt〈û(0)
i (τ)û

(0)
4 (t)

(
û

(0)
1 (t) + û

(0)
2 (t)

)
〉 (B.31c)

Λ′i(k, τ) different from Λi(k, τ) by replacing the term of Vn1n2n3 in the first lines of
Λi(k, τ) into Vn3n1n2 and switch Wlil3 into Wl3li for all the last two lines.
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B.3 Coefficient Matrix Under RWA

In this section, we consider two special situations for which the analytical form of
U as well as λi could be analytically obtained where the mechanical damping γM is
small so that M could be simplified as

M ′ =


−iω̃M − γ̃M

2
0 −i −i

0 iω̃M − γ̃M
2

i i

−i −i −i∆̃− κ̃ 0

i i 0 i∆̃− κ̃

 (B.32)

By putting M into the above form, we have neglected a fast oscillating term for the
mechanical damping, one could prove that this term is oscillating with frequency 2ωM
and proportional to γM/2. With this approximation, the eigenvalues of the coefficient
matrix λi and U are greatly simplified, especially at ∆ = ωM it yields,

λ1,2 = − κ̃+ γ̃M/2

2
±
√

(Γ + iω̃M)2 − 1 (B.33)

λ3,4 = − κ̃+ γ̃M/2

2
±
√

(Γ− iω̃M)2 − 1 (B.34)

with Γ =
√

( κ̃−γ̃M/2
2

)2 + 1. However, the analytical form of matrix U is too complex

to show here.



Appendix C

Dressed-state Master Equation

C.1 Operators in the Dressed-state Basis

This appendix is devoted to the derivation of the mechanical system annihilation
operator b̃M(t) in the dressed-state basis in the interaction picture. The mechanical
oscillator is coupled to its thermal bath via the system operator b̂M [see Eq.(4.4)]
and its contribution to the system dynamics could be understood by its form in the
interaction picture, i.e. b̃M(t). By using the completeness of dressed-state basis, it
can be shown that

b̃M(t) ≡ eiĤstb̂Me
−iĤst (C.1)

= eiĤst

(∑
n,`

|n, `(n)〉〈n, `(n)|

)
I ⊗ b̂M

×

(∑
n′,η

|n′, η(n′)〉〈n′, η(n′)|

)
e−iĤst (C.2)

=
∑
n,`,η

ei(`−η)ωM tBn,`,η|n, `(n)〉〈n, η(n)| (C.3)

where Bn,`,η = 〈n, `(n)|b̂M |n, η(n)〉 that is transition element of b̂M in the dressed-state
basis has two contributions, i.e.,

Bn,`,η = 〈`|e−nβ0(b̂†M−b̂M )b̂†Me
nβ0(b̂†M−b̂M )|η〉

=
√
` δ`,η+1 + nβ0 δ`,η (C.4)

84
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In arriving at Eq. (C.4), the definition of displaced Fock state Eq. (C.50) has been
used. As a result,

b̃M(t) = e−iωM t
∑
n,`

√
`|n, (`− 1)(n)〉〈n, `(n)|+ β0

∑
n,`

n|n, `(n)〉〈n, `(n)| (C.5)

= e−iωM t
(
b̂M − β0N̂c

)
+ β0N̂c. (C.6)

Equation (C.5) indicates that the coupling between the mechanical mode and its
thermal bath would perturb the optomechanical system energy levels by two differ-
ent physical process: (1) exciting the eigenmode by exchanging one phonon with
mechanical thermal bath; (2) displacing the optomechanical system without altering
the system energy. These two process actually have different effects to the system
dynamics depending on the mechanical bath properties, which will be discussed in
details in the next section.

C.2 Dressed-state Master Equation

In this Appendix, we present the derivation of the master equation (4.8) starting from
the Born-Markov master equation,

dρ̃(t)

dt
= −

∫ t

0

dsTrR[H̃I(t), [H̃I(t− s), ρ̃(t)⊗ R̃c ⊗ R̃M ]] (C.7)

with operators in the interaction picture denoted as a tilde on top,

Ω̃(t) = U †(t)Ω̂U(t), U(t) = e−i(Ĥs+Ĥ
B
C+ĤB

M )t. (C.8)

Here ρ̃(t) is the reduced density matrix of the cavity-mechanical system in the inter-
action picture after tracing out the environment (bath) degrees of freedom. While R̃c

denotes the density matrix of cavity thermal bath (an effectively zero-temperature
bath due to the high cavity frequency) and R̃M is the density matrix for mechanical
thermal bath in a thermal state at temperature T . In order to simplify our notations,
let us define a superoperator L on density matrix as following,

dρ̃(t)

dt
= −Lρ̃(t). (C.9)

Due to the fact that the bath coupled to the cavity mode and the bath coupled to the
mechanical mode are assumed to be independent and the fact that ãc(t) and b̃M(t)
commute, the superoperator could be expressed as two parts: one due to the cavity
bath and the other due to the mechanical bath, i.e.,

Lρ̃(t) = Lcρ̃(t) + LM ρ̃(t). (C.10)
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with

Lcρ̃(t) =

∫ t

0

dsR1(s)
(
ãc(t)ã

†
c(t− s)ρ̃(t)− ã†c(t− s)ρ̃(t)ãc(t)

)
+h.c.

+

∫ t

0

dsR2(s)
(
ã†c(t)ãc(t− s)ρ̃(t)− ãc(t− s)ρ̃(t)ã†c(t)

)
+h.c. (C.11)

where R1(s) = TrR

(
Γ̃†c(t)Γ̃c(t− s)Rc

)
, R2(s) = TrR

(
Γ̃c(t)Γ̃

†
c(t− s)Rc

)
and h.c.

denotes the Hermitian conjugate of the previous term, and

LM ρ̃(t) =

∫ t

0

dsRM(s)

(
X̃M(t)X̃M(t− s)ρ̃(t)− X̃M(t− s)ρ̃(t)X̃M(t)

)
+ h.c., (C.12)

where X̃M(t) = b̃M(t) + b̃†M(t), RM(s) = TrR{X̃Γ (t)X̃Γ (t − s)R̃M} and X̃Γ (t) =
Γ̃M(t) + Γ̃ †M(t).

I. Cavity bath contribution Lc

By expanding ãc(t) in the eigen-basis |n,m(n)〉 of Hs, one can simplify Lcρ̃(t) into
following form;

Lcρ̃(t) =
∑
n,j,k
m,`,η

C1

(
Ânj,k(t)Â

m,†
`,η (t)ρ̃(t)− Âm,†`,η (t)ρ̃(t)Ânj,k(t)

)
+ h.c.

+
∑
n,j,k
m,`,η

C2

(
Âm,†`,η (t)Ânj,k(t)ρ̃(t)− Ânj,k(t)ρ̃(t)Âm,†`,η (t)

)
+ h.c., (C.13)

where Ânj,k(t) = e−i∆
n
k,jtAj,k,n|n − 1, j(n−1)〉〈n, k(n)|, with the transition amplitude

Aj,k,n =
√
n〈j(n−1)|k(n)〉 and ∆n

k,j = (En,k − En−1,j) /h̄ = ωc + (k − j)ωM + (1 −
2n)g2

0/ωM . Here the correlation of the optical thermal bath gives

C1 =

∫ t

0

dse−i∆
m
`,η sR1(s) =

∫ ∞
0

dω

∫ t

0

ds ei(ω−∆m
`,η)sgc(ω)|λc(ω)|2n̄(ω, T ),

(C.14)

where gc(ω) and λc(ω) are the density of state of and coupling strength to the optical
thermal bath, respectively. Making the Markovian approximation by extending the
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upper limit of the integration with respect to the variable s to t→∞ and using the
relation ∫ ∞

0

dsei(ω−ω
′)s = πδ(ω − ω′) + i P.V.

1

ω − ω′
(C.15)

with P.V. denoting the Cauchy principal value, one obtains

C1 ≈ πgc(∆
m
`,η)|λc(∆m

`,η)|2n̄(∆m
`,η, T ), (C.16)

where the imaginary part with the P.V. contribution which can be in principle put
into the renormalized frequency of the cavity mode has been neglected. We consider
that ωc is in the optical frequency range in the order of 1015Hz, much larger than
ωM and g0. Thus it dominates the energy difference due to the photon number
change, i.e., ∆m

`,η ∼ ωc. As a result, a constant cavity decay rate can be defined as
κ = 2πgc(ωc)|λc(ωc)|2, independent of the quantum number changes (transitions) of
the mechanical mode and C1 is simplified as,

C1 ≈ n̄(ωc, T )κ (C.17)

Similarly, one obtains

C2 =

∫ t

0

dsei∆
n
j,ksR2(s) ≈ κ

2
[n̄(ωc, T ) + 1] . (C.18)

Furthermore, the large value of ωc � kBT/h̄ effectively makes n̄(ωc, T ) ∼ 0 (an
effective zero temperature bath). As a result, C1 ≈ 0 and C2 ≈ κ/2. From Eq. (C.13),
one then has

Lcρ̃(t) =
κ

2

∑
n,j,k
m,`,η

(
Âm,†`,η (t)Ânj,k(t)ρ̃(t)− Ânj,k(t)ρ̃(t)Âm,†`,η (t)

)
+ h.c. (C.19)

which is actually the term of κD[âc]ρ(t) in the interaction picture of Ĥs. Here the

superoperator D[Ω̂]ρ(t) = Ω̂ρ(t)Ω̂† −
(

Ω̂†Ω̂ρ(t) + ρ(t)Ω̂†Ω̂
)

.

Therefore, in the strong coupling regime the dissipative terms of the cavity decay
is still in the form of

Lcρ(t) = κD[âc]ρ(t), (C.20)

the same as that in the standard master equation. We will see in the next section that
it is , however, not the case for the dissipative terms of the decay of the mechanical
mode. The essential difference between the cavity decay and mechanical decay is
that the optical cavity mode has a very high energy change when it is excited by
its thermal bath, and this makes the energy modifications from the optomechanical
interaction insignificant. Therefore all the transitions have the same contribution (or
the same decay rate κ), leading to the same decoherence terms as the standard cavity
decay.
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II. Mechanical bath contribution LM

In this section we present the derivation for the dissipative terms in the dressed-state
master equation for the mechanical mode. The first term in LM ρ̃(t) of Eq. (C.12) has
the following terms, i.e.,

L(1)
M ρ̃(t) =

∫ t

0

ds RM(s)X̃M(t)X̃M(t− s)ρ̃(t) (C.21)

with X̃M(t) = b̃M(t) + b̃†M(t). It immediately follows that

L(1)
M ρ̃(t) =

∑
i,j=±

L(i,j)
M ρ̃(t) (C.22)

with

L(+,+)
M ρ̃(t) =

∫ t

0

ds RM(s)b̃†M(t)b̃†M(t− s)ρ̃(t),

L(−,−)
M ρ̃(t) =

∫ t

0

ds RM(s)b̃M(t)b̃M(t− s)ρ̃(t),

L(+,−)
M ρ̃(t) =

∫ t

0

ds RM(s)b̃†M(t)b̃M(t− s)ρ̃(t),

L(−,+)
M ρ̃(t) =

∫ t

0

ds RM(s)b̃M(t)b̃†M(t− s)ρ̃(t).

Substituting Eq. (C.6) for b̃M(t) and b̃†M(t), one can obtain

L(+,+)
M ρ̃(t) = C0β

2
0N̂cN̂cρ̃(t) + e2iωM tC−B̂

†
M B̂

†
M ρ̃(t)

+ eiωM t (C0 + C−) β0B̂
†
MN̂cρ̃(t),

L(−,−)
M ρ̃(t) = C0β

2
0N̂cN̂cρ̃(t) + e−2iωM tC+B̂M B̂M ρ̃(t)

+ eiωM t (C0 + C+) β0B̂MN̂cρ̃(t),

L(+,−)
M ρ̃(t) = C0β

2
0N̂cN̂cρ̃(t) + C+B̂

†
M B̂M ρ̃(t)

+
(
eiωM tC0B̂

†
M + e−iωM tC+B̂M

)
β0N̂cρ̃(t),

L(−,+)
M ρ̃(t) = C0β

2
0N̂cN̂cρ̃(t) + C+B̂M B̂

†
M ρ̃(t)

+
(
e−iωM tC0B̂M + eiωM tC−B̂

†
M

)
β0N̂cρ̃(t),
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with B̂M = b̂M − β0N̂c and the coefficients defined by

C0 =

∫ t

0

dsRM(s), C− =

∫ t

0

dse−iωMs RM(s),

C+ =

∫ t

0

dseiωMs RM(s).

Here RM(t) is defined under Eq. (C.12). Several fast-oscillating terms , i.e., terms
proportional to e±niωM , in the above expressions have very small contributions and are
neglected due to the fact that the case we consider is in the regime where ωM � γM ,
where γM is the mechanical decay rate and its definition will be given later . This
is called the rotating-wave approximation. The above expressions, after neglecting
these fast-oscillating terms, becomes

L(1)
M ρ̃(t) =

(
4C0β

2
0N̂cN̂c + C−B̂M B̂

†
M + C+B̂

†
M B̂M

)
ρ̃(t),

(C.23)

where the coefficients are given

C0 =

∫ t

0

dsTrR

(
X̃Γ(t)X̃Γ(t− s)R̃M

)
, (C.24)

C− =

∫ t

0

dse−iωMsTrR

(
Γ̃†M(t)Γ̃M(t−s)R̃M

)
, (C.25)

C+ =

∫ t

0

dseiωMs TrR

(
Γ̃M(t)Γ̃†M(t−s)R̃M

)
. (C.26)

Let us look at more details of a typical bath contributions from Eq. (C.24)∫ t

0

dsTrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
=

∫ t

0

ds

∫ ∞
0

dω e−iωsgM(ω)|λM(ω)|2n(ω, T )

(C.27)

and the contribution from (C.25)∫ t

0

dse−iωMsTrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
=

∫ t

0

ds

∫ ∞
0

dω e−i(ω−ωM )sgM(ω)|λM(ω)|2n(ω, T ) (C.28)

where the trace of the bath correlation functions have been converted to the bath
frequency integration with gM(ω) and λM(ω) being the density of states of and the
coupling strength to the mechanical bath, respectively.
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With Markovian approximation, one requires that TrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
de-

cays in a very short time, i.e., the bath correlation time is very short compared to the
typical system response time. In this case, Eq. (C.28) could be calculated by letting
upper limit of the integration t→∞, i.e.,∫ t

0

ds

∫ ∞
0

dω e−i(ω−ωM )sgM(ω)|λM(ω)|2n(ω, T )

=

∫ ∞
0

dω
(∫ ∞

0

dse−i(ω−ωM )s
)
gM(ω)|λM(ω)|2n(ω, T )

=

∫ ∞
0

dωπδ(ω − ωM)gM(ω)|λM(ω)|2n(ω, T ) + i P.V.

∫ ∞
0

dω
gM(ω)|λM(ω)|2n(ω, T )

ωM − ω

= πgM(ωM)|λM(ωM)|2n(ωM , T ) + i P.V.

∫ ∞
0

dω
gM(ω)|λM(ω)|2n(ω, T )

ωM − ω
. (C.29)

In the second step, we have used Eq. (C.15). Therefore Eq. (C.28) can be written as∫ t

0

dse−iωMsTrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
=
γM
2
nth(ωM) + i ImC− (C.30)

where nth(ωM) = n(ω, T ) is the average occupation number of the thermal mechanical
bath modes, γM = 2πgM(ωM)|λM(ωM)|2 is the decay rate of the mechanical mode,
and ImC− is the imaginary part defined through the P.V. term of Eq. (C.29) and
will contribute to the effective Hamiltonian. However, the contribution of Eq. (C.27)
is quite different and can be neglected as compared to Eq. (C.28). To give a concrete
estimate, let us employ the same assumption of short bath correlation time τc and
assume the bath correlation function, without losing any generality, in a form of
exponential decay as

TrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
∼ CRe

−s/τc . (C.31)

We then find for Eq. (C.27)∫ t

0

dsTrR

(
Γ̃†M(t)Γ̃M(t− s)RM

)
∼ CR

∫ t

0

dse−s/τc = CR(1− e−t/τc)τc. (C.32)

As a result, the contribution of C0 proportional to the very short bath correlation time
τc can be neglected as compared to those of C− and C+. We note here that obtain-
ing the vanishing result for Eq. (C.27) is equivalent to assuming no significant low-
frequency contribution near ω = 0 from the spectral density J(ω) = gM(ω)|λM(ω)|2
of the mechanical bath. This can be understood as follows. If one follows the similar
calculation for Eq. (C.28) in Eq. (C.29) by setting ωM = 0 in Eq. (C.29) for the
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evaluation of Eq. (C.27), then the contribution of Eq. (C.27) is tiny if J(ω = 0) is
very small as compared to J(ω = ωM). Thus we have

C0 =

∫ t

0

dsTrR

(
X̃Γ(t)X̃Γ(t− s)R̃M

)
≈ 0 (C.33)

C− =

∫ t

0

dse−iωMsTrR

(
Γ̃†M(t)Γ̃M(t−s)R̃M

)
= nthγM + i ImC− (C.34)

C+ =

∫ t

0

dseiωMs TrR

(
Γ̃M(t)Γ̃†M(t−s)R̃M

)
= (nth + 1)γM + i ImC+ (C.35)

Notice in the standard master equation that the C0 term is kept and is assumed
to have the same contributions as C− and C+, but this is not true in the strong
coupling regime. Actually this C0 term generates dephasing to the cavity mode
and the disappearance of this term in the strong coupling regime indicates that the
strong optomechanical interaction could help the cavity mode from dephsing which
is confirmed from our simulations. In summary, it is this coefficient C0 that has
negligible contribution in the strongly coupling regime and thus in turn makes the
resultant dressed-state master equation deviate from the standard master equation.
By Going Backing to the Schrödinger picture, the real part of the coefficients leads
to

U(t)
(
L(1)
M ρ̃(t)

)
U †(t) = γMnth(ωM)

(
b̂M − β0N̂c

)(
b̂†M − β0N̂c

)
ρ(t)

+ γM(nth(ωM) + 1)
(
b̂†M − β0N̂c

)(
b̂M − β0N̂c

)
ρ(t)

(C.36)

Using the similar arguments and calculations for each part of LMρ(t) in Eq. (C.12),
one can show that

LMρ(t) = (nth + 1)γMD[b̂M − β0N̂c]ρ(t) + γM · nthD[b̂†M − β0N̂c]ρ(t). (C.37)

The imaginary parts of the coefficients will contribution to a modification to the
system Hamiltonian, i.e.

Ĥ ′ = C
(
b̂†M b̂M − β0â

†
câc(b̂

†
M + b̂M) + β2

0 â
†
câcâ

†
câc

)
, (C.38)

where the coefficient C = ImC+ + ImC− is in the order of lamb shift and normally
could be neglected.
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C.3 Master Equations in the Interaction Picture

In this section, we present both the dressed-state master equation and the standard
master equation in the interaction picture of Ĥs. Due to the fact that in the interac-
tion picture of Ĥs, one could have the following form for the Heisenberg operators,

ãc(t) =
∑
n,k,j

e−i∆
n
k,jtAj,k,n|n− 1, j(n−1)〉〈n, k(n)| ≈ e−iωc âc (C.39)

b̃M(t) = e−iωM t
∑
n,`

√
`|n, (`− 1)(n)〉〈n, `(n)|

+ β0

∑
n,`

n|n, `(n)〉〈n, `(n)|

= e−iωM t
(
b̂M − β0â

†
câc

)
+ β0â

†
câc (C.40)

so that we have the following relations,

U †D[b̂M ]ρ(t)U ≈ D[b̂M − β0N̂c]ρ̃(t) +D[β0N̂c]ρ̃(t) (C.41)

U †D[b̂M − β0N̂c]ρ(t)U ≈ D[b̂M − β0N̂c]ρ̃(t) (C.42)

where we have used the RWA to drop the fast oscillating terms. As a result, the
dressed-state master equation could expressed as,

dρ̃(t)

dt
= κD[âc]ρ̃(t) + nthγMD[b̂†M − β0N̂c]ρ̃(t)

+ (nth + 1)γMD[b̂M − β0N̂c]ρ̃(t) (C.43)

while the standard master equation could be expressed as

dρ̃(t)

dt
= κD[âc]ρ̃(t) + nthγMD[b̂†M − β0N̂c]ρ̃(t)

+ (nth + 1)γMD[b̂M − β0N̂c]ρ̃(t)

+ (nth + 1)β2
0γMD[N̂c]ρ̃(t)

+ nthβ
2
0γMD[N̂c]ρ̃(t) (C.44)

Therefore compared with the dressed-state master equation, the standard master
equation clearly show two additional terms related with the cavity dephasing. In
our paper, we showed the result of P03(t) := |〈0|ρ̃c(t)|3〉| in the interaction picture,
however P03 is closely related with the off diagnoal element of ρ03(t) := |〈0|ρc(t)|3〉|
which we can show in the following,

ρ03 = trM [ρs(t)|0〉〈3| ⊗ IM ] = trM [ρ̃s(t)e
iĤst|0〉〈3|

⊗IMe−iĤst] (C.45)
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Figure C.1: Off-diagonal matrix element P03(t) (dashed curves) and the Schrödinger
picture element |ρ03| (Solid curves). Red curves are from the dressed-state master
equation and blue curves belongs to the standard master equation. Parameters are
chosen as: ωM/2π = 1, g0 = 0.8ωM , κ = 0.005ωM , γ = κ/3, nth = 0

It can be shown that

eiĤst|0〉〈3| ⊗ IMe−iĤst = e−3iωcte9iβ2
0ωM t|0〉〈3| ⊗ eiωM tb̂

†
M b̂M

× e−iωM t(b̂
†
M−3β0)(b̂M−3β0) (C.46)

and Using the fact that

eiωM tb̂
†
M b̂M e−iωM t(b̂

†
M−3β0)(b̂M−3β0) = e−i9β

2
0sin(ωM t)e3β0((eiωMt−1)b̂†M−(e−iωMt−1)b̂M) (C.47)

one could obtain

ρ03 = A · trM [ρ̃s(t)|0〉〈3| ⊗ e3β0((eiωMt−1)b̂†M−(e−iωMt−1)b̂M)]

(C.48)

with the constant phase factor as A = e−3iωct+9iβ2
0(ωM t−sin(ωM t)). Therefore P03 is not

exactly |ρ03| but the difference is the oscillating shift operator in the above equa-
tion. One example of P03(t) for the relationship between the interaction picture and
Schrödinger picture is shown in Fig.C.1.
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C.4 Two-cavity Dressed-state Master Equation

We consider the following optomechanical system Hamiltonian, i.e. two cavity modes
interacting with a single mechanical mode,

Ĥs =
∑
i

h̄ωciâ
†
i âi + h̄ωM b̂

†
M b̂M −

∑
i

h̄g0iâ
†
i âi

(
b̂†M + b̂M

)
(C.49)

where operator of the form Ωci indicates the operator belongs to the ith cavity mode
and âci (b̂M) is the annihilation operator for the ith cavity mode (mechanical mode).
The eigen-basis of Hs are known as

|n1, n2, m̃(n1, n2)〉 = |n1〉 ⊗ |n2〉 ⊗ e(
∑
i niβi)(b̂†M−b̂M )|m〉 (C.50)

with βi = g0i/ωM and the corresponding eigen-energy (dressed-state bais) is given by

En1,n2,m = n1h̄ωc1 + n2h̄ωc2 +mh̄ωM − (n1β1 + n2β2)2 h̄ωM (C.51)

For the cavity modes in the optical frequency we still have the following approxima-
tion, Applying the same arguement, one could also approximate,

ãci(t) ≈ e−iωcitâci (C.52)

However, for the mechanical mode it becomes

b̃M(t) = e−iωM t
∑
n1,n2,`

√
`|n1, n2, ˜̀(n1, n2)〉〈n1, n2, ˜̀(n1, n2)|

+
∑
n1,n2,`

(n1β1 + n2β2) |n1, n2, ˜̀(n1, n2)〉〈n1, n2, ˜̀(n1, n2)|

= e−iωM t
(
b̂M − N̂c

)
+ N̂c. (C.53)

where N̂c = β1N̂c1 + β2N̂c2 and we have used the following relations,

e(−
∑
i niβi)(b̂†M−b̂M )b̂†M b̂Me

(
∑
i niβi)(b̂†M−b̂M )

= b̂†M b̂M + (n1β1 + n2β2)2 + (n1β1 + n2β2)
(
b̂†M + b̂M

)
(C.54)

e(
∑
i niβi)(b̂

†
M−b̂M)

(
b̂†M + b̂M

)
e−(

∑
i niβi)(b̂

†
M−b̂M)

=
(
b̂†M + b̂M

)
− 2 (n1β1 + n2β2) (C.55)

which could be easily proved by the Hadamard lemma. Based on these two facts, one
could easily arrive at the dressed-state master equation for the two cavity modes case
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as (in the interaction picture of Ĥs),

dρ̃(t)

dt
=

∑
i

κiD[âci]ρ̃(t) + (nth + 1)γMD[b̂M − N̂c]ρ̃(t)

+ nthγMD[b̂†M − N̂c]ρ̃(t)

(C.56)

where N̂c = β1N̂c1 + β2N̂c2.
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